
RTC: Language Support For Real-Time Concurrency

MS-CIS-91-35
GRASP LAB 260

Victor Wolfe
Susan Davidson

Insup Lee

Department of Computer and Information Science
School of Engineering and Applied Science

University of Pennsylvania
Philadelphia, PA 19104-6389

Revised
March 1992

RTC: Language Support For Real-Time
Concurrency*

Victor Wolfe Susan Davidson and Insup Lee

Dept. of Computer Science and Statistics Dept. of Computer and Information Science
University of Rhode Island University of Pennsylvania

Kingston, RI 02881 Philadelphia, PA 19104

January 1992

Abstract

This paper presents a model and language constructs for expressing timing and con-
currency requirements in distributed red-time programs. Our approach combines an
abstract data type paradigm for the specification of shared resources and a distributed
transaction-based paradigm for the specification of application processes. Resources
provide abstract views of shared system entities, such as devices and data structures.
Each resource has a state and defines a set of actions that can be invoked by processes
to examine or change its state. A resource also specifies scheduling constraints on the
execution of its actions to ensure its consistency. Processes access resources by invok-
ing actions and by expressing precedence, execution and timing constraints on action
invocations. The implementation of our language constructs and the use of this system
to control the simulation of a distributed robotics application is also described.

1 Introduction

In real-time applications such as robotics, industrial control and avionics, the correctness

of a system depends on the satisfaction of timing constraints and maintenance of resource

consistency constraints. However, techniques to enforce these two forms of constraints have

not traditionally been integrated. For instance, priority-driven preemptive scheduling for

tasks is used to meet the timing constraints of processes, but ignores the consistency con-

straints of resources. On the other hand, mutual exclusion techniques are used to ensure

the consistency of resources, but typically ignore timing constraints. Although there have

'This work is support in part by the following grants: ARO DAAG-29-84-k-0061, ONR N00014-89-J-1131,
and NSF CCR90-14621.

recently been efforts to combine the knowledge of timing constraints with consistent access to

shared resources [I, 2, 31, the application domain has been restricted to real-time databases.

This paper develops programming concepts and language constructs for expressing timing

and resource consistency constraints as well as exception handlers for recovery from timing

faults, and discusses their implementation.

As an example of a system with timing and resource consistency constraints, consider

a simplified robotics application where two robot arms must lift a container of chemicals

from a moving conveyer belt. The arms are shared among the lifting task and other tasks

that execute concurrently in the application. To prevent spills when lifting, the following

constraints on the operation of the arms must be expressed in its control program: the

arms should lift simultaneously, no other use of the arms should be allowed while the lift

is being performed, and either both arms should lift or neither arm should lift. The lifting

should also meet timing constraints that arise from the dynamics of the moving belt and

inherent properties of robot control algorithms. Furthermore, recovery should be specified

for violations of any of these constraints.

To support such concurrent real-time applications, a programming language and its run-

time system should have the following characteristics: First, the language should facilitate

the expression of real-time concurrency constraints, which are functional consistency con-

straints and timing constraints imposed by the application. Many of these constraints are

illustrated in the example, including start times and deadlines, exclusive execution, simulta-

neous execution, all-or-nothing execution, and predictable execution. Second, the run-time

system should enforce the constraints. Third, the language should support the specification

of exception handlers for recovery from timing faults, since some timing constraints may be

violated at run-time. Fourth, since many real-time applications are distributed, the run-time

system should be distributed.

Some concurrent real-time languages, such as Ada and Modula-2, require that schedul-

ing primitives be added to programs to meet constraints. In Ada, the programmer must

determine the static priorities of tasks from these constraints so that priority-based schedul-

ing of the tasks meets the constraints. In Modula-2, the programmer must explicitly add

transfer commands so that co-routines coordinate to meet their constraints. Since the con-

straints are not explicitly stated, but hidden in scheduling, programs are difficult to write,

verify and modify. Detecting and recovering from constraint violations is also complicated

by the constraints being hidden. Furthermore, since the scheduling primitives are added at

compile-time, their ability to cope with dynamic environments is limited. These and other

weaknesses of real-time languages are described in [4]; some of these deficiencies appear to

be addressed in proposals for Ada9X [5].

Recent real-time languages such as Flex [6] and Real-time Euclid [7] allow explicit expres-

sion of some timing constraints. However, timing constraints are only used for scheduling

the CPU; mutual exclusion is used to control concurrent access to other resources. This

has two disadvantages: First, access to resources is often first-come, first-served; no timing

information is used. Second, no concurrent access to resources is allowed, even if it does not

violate their consistency. Hence, the run-time system may not be able to meet the stated

timing constraints, although they could be met using other queuing techniques or techniques

that allow concurrency.

Consistent concurrent execution is often supported by transactions. A particularly clear

model of a transaction-based system can be found in [8], where a transaction is defined as

a partial order of actions terminated by a commit or abort. A transaction is also defined to

be independent: it does not directly communicate or synchronize with other transactions. A
transaction's actions are typically understood as simple read and write operations, although

other work has extended the notion to include more complex operations [8,9]. A transaction-

based system must guarantee that:

1. Each transaction accesses shared data without interference from other transactions;

2. If a transaction terminates normally, then all of its effects are realized; otherwise, none

of its effects are realized.

Unfortunately, the traditional notion of a transact ion does not include timing constraints.

Also, since transactions are independent, we cannot specify the relative order of transactions.

For instance, it impossible to specify that a transaction for lifting the container must always

execute after a transaction for detecting the container.

Our approach to concurrent real-time programming is to explicitly express real-time

concurrency constraints in a program, and allow the run-time system to enforce them or

raise an exception when they are violated. To define these constraints precisely, we develop

a real-time concurrency paradigm that combines an abstract data type approach for the

specification of shared resources with a distributed transaction-based approach for the spec-

ification of application processes. In addition we develop a notion of timing constraints. To

express these constraints, we define the Real-Time Concurrency (RTC) language constructs.

The constructs are designed to be embedded in C, although any block-structured procedural

host language could be used. We then describe how to implement the constructs using an

operating system with traditional dynamic priority-based CPU scheduling and the ability

to block interrupts. Note that our system is designed for run-time enforcement of real-time

concurrency constraints; we do not guarantee that all timing constraints will be met, but

allow the specification of recovery from timing faults. Hence we are not addressing a priori

schedulability analysis [7, 101.

The rest of this paper is structured as follows. Section 2 presents requirements for

real-time concurrent programming systems. We describe our paradigm for such a system

including a basic set of constraints that should be expressed. Section 3 presents the RTC
language constructs and illustrates how they can be used to express the constraints found in

the robot lifting example; their implementation is discussed in Section 4. Section 5 describes

related work that formed the basis for our system and compares our work to other real-time

languages. Section 6 summarizes and discusses future work towards dynamic support of

concurrent real-time programming.

The Real-Time Concurrency Model

Our paradigm for distributed real-time computing combines an abstract data type paradigm

with a transaction-based paradigm and adds provisions for timing and precedence constraints

using the notions of resources and processes. Resources provide abstract views of shared

system entities such as devices and data structures. Each resource has a state and defines

a set of actions that can be invoked by processes to examine or change the resource's state.

A resource also specifies permissible overlapping of execution of its actions that preserves

its state's consistency. Processes capture a transaction-based paradigm by specifying a set

of action invocations along with precedence orderings, execution constraints, and timing

constraints.

More formally, a system consists of a set of resources, R, a set of processors, P , and a set

of processes, Q. Resources provide actions, which are invoked by processes. The execution of

an action is called an action invocation, and is characterized by a start time, a complete time,

and a processor p E P on which the action is executed. For action invocation a, the start

time will be referred to as start(a), the complete time as complete(a), and the processor

as proc(a). Two action invocations a1 and a2 are said to be overlapped if start(al) <
complete(a2), and complete(al) > start(a2). Action invocations may overlap either because

they execute concurrently on different processors or because they are interleaved on the

same processor. A process is characterized by a set of behaviors, each of which is a set of

action invocations. Both resources and behaviors provide constraints on action invocations;

resources constrain which actions can have overlapping invocations, and behaviors constrain

the start times and complete times of action invocations. The execution of a system defines

an instantiation of action invocations, i.e., for each action invocation a, an execution defines

start (a), complete(a) and proc(a) (where start (a) 5 complete(a)) . If action invocation a

does not occur in an execution of a system then start(a) = cornplete(a) = oo. The

execution of a system is said to be correct if it satisfies all constraints expressed by resources,

and it satisfies all constraints of some behavior for each process.

2.1 Resources

A resource, r, is characterized as (ST, A,, C,), where ST is a set of consistent states, A, is

a set of actions, and C, is a compatibility relation on actions in A,. An action invocation

that overlaps with no other action invocations transforms any state in ST to another state

in S, and returns values to the process. However, the state of the resource during the action

invocation is not guaranteed to be consistent, i.e. its intermediate state may not be in ST.

The compatibility relation C, is a symmetric relation on A, that constrains which actions can

have overlapping executions. That is, if (al, a2) E C, then invocations of a1 and a2 can be

overlapped and will always result in a consistent state for resource T after their completion.

Note that the designer of the system must ensure that C, is defined correctly.

In our example, a robot arm is a resource. Part of its state information includes the

Cartesian position of its arm and the position of its hand (grasplungrasp); consistent states

are those that are within the reachable space of the arm and do not violate any of its

mechanics. Actions of the arm include: lift, which increments the z-coordinate of the arm's

state; lower, which decrements the z-coordinate; grasp, which affects the hand; and read,

which does not change the state, but returns its values. The compatibility relation C,,,
includes: (li f t, grasp), because the actions affect different parts of the state, and (read, read),

because the state is not affected. It does not contain (lift, lower) because interleaving the

executions of lift and lower may not have the same effect on the state as executing them

one after the other (e.g . executing lift completely then executing lower); hence the state

resulting from an interleaved execution may not be in S,,,.

2.2 Processes

A process is defined by its set of possible behaviors; each behavior has constraints on the time

at which action invocations can occur in an execution. That is, each behavior b of a process

q is defined as (A&, +:, +:, XEb, AEb, ATb, STb, GTb), where AIb is a set of invocations of

actions on resources in R. The start and complete times of action invocations in b are

constrained by precedence constraints (4; and +:), execution constraints (X Eb and AEb),

and timing constraints (ATb, STb, GTb).

Precedence Constraints. A behavior b expresses two forms of precedence constraints for

action invocations: local precedence constraints, +:, and global precedence constraints, 4:.

Behavior b's local precedence constraints is an irreflexive partial ordering on AIb. That

is, if ai, a j E AIb such that ai -4; aj, then either ai completes before a j starts, or ai starts

executing but a j does not, or neither action invocation is executed (complete(ai) < start(aj)

or complete(a;) = start(aj) = oo). Since +f, is a partial order, it may allow certain action

invocations to overlap. For instance, we could define a behavior b of the lifting process ql;jt

in our example by: AIb = {readarml li f tarml, readaTm2, grasparm2, li f tarm2). The

precedence constraints of b could be defined follows:

(where "+" indicates ('+f,"). In this behavior the read action invocation on arm1 must

complete before each of the grasp action invocations and also before each of the lift action

invocations start, but the two read action invocations may be concurrent (as may the two

grasp action invocations and the two lift action invocations).

For a given process q, behavior b's global precedence constraints, +:, express precedence

orderings between action invocations in AIb and action invocations in behaviors of other

processes in &, i.e. it is a relation on (A& x AI,) U (AI, x AIb), where AI, is a behavior

of any process q' # q. For example, the robotics application which lifts a container could

be extended to include another sensor process q,,,,, which monitors the conveyor belt to

detect the next container. We might specify that the lifting of a container occur after its

detection for each pair of possible behaviors of q,,,,, and ql;jt, i.e. that all action invocations

in qlij, used to lift the i'th container be ordered after the invocation of the i'th detect action

In Qsense-

Execution Constraints. Two forms of execution constraints can be specified on a behav-

ior b: exclusivity, XEb; and all-or-nothing behavior, AEb. Each constraint is a set of sets of

action invocations from AIb (XEb, AEb C 2Azb).

Using the notion of conflict provided by the compatibility relations of resources, an

exclusive execution constraint specifies that sets of action invocations must be executed

exclusive of interruption from any conflicting action. That is, no action invocation in set

x E XEb can have an overlapped execution with any action invocation that is incompatible

with some element of x. In our example, for each behavior b of qlijt, XEb contains the sets

{grasparml, li f taTml) and {grasparm2, li f taTmz) since once the grasp and lift of the container

by each arm has started, another process should not be allowed to move an arm.

Behaviors can also specify that sets of action invocations have an all-or-nothing execution.

That is, if s E AEb then either every action invocation in s was executed (for every a E s,

complete(a) # m), or no action invocation in s was executed (for every a E s, start(a) =

oo). In the example, the two lift action invocations should be constrained to have all-or-
nothing execution to prevent one arm from lifting without the other.

Timing Constraints. A behavior b can specify three forms of timing constraints: absolute

timing constraints, ATb; simultaneity constraints, STb; and guaranteed constraints, GTb.

Absolute timing constraints are expressed by a set of temporal scopes. A temporal scope

t s E ATb is defined as ts = (A, sa, sb,d), where A AIb is the set of action invocations

to be time constrained, sa is an absolute earliest start time, s b is an absolute latest start

time, d is an absolute latest complete time (deadline) for the action invocations in A, and

sa 5 sb < d. That is, for a E A, sa 5 start(a) < sb and complete(a) < d.

Simultaneity constraints are a set of sets of action invocations (STb C 2 A I b) , constraining

certain action invocations to start executing at the same time. That is, if s E STb then

for each pair of action invocations a;, a j E s , start(a;) = start(aj). In the example,

{liftarrnl, li ftaTm2) is a simultaneous set for each behavior of qrijt.

Guaranteed constraints are a set of action invocations (GTb AIb), where each action

invocation in the set must execute at the earliest time that it is ready. An action invocation

is said to be ready at time t iff executing it at t meets all precedence and absolute timing

constraints. More precisely, an action invocation a is ready at time t if all precedence

constraints have been met (t > maz {complete(c) 1 c +f, a } and t > max{complete(c) 1 c 4:

a I), all absolute timing constraints have been met (t > max{ sa,(c)l ts; E ATb A c E A;)),
and all simultaneous execution constraints have been met (for every action invocation c such

that {a, c) C s E STb, the precedence and absolute timing constraints of c have been met).

Furthermore, a must continue to execute without interruption until it is completed. That

is, no other action c may execute on proc(a) between start(a) and complete(a).

In the example, the two lift action invocations should be guaranteed in each behavior of

ql;p. Assume it is known that the lifting will take T time without contention for resources

and there is a deadline of d to complete the lifting. By including the lift action invocations

in the set of guaranteed action invocations and by using a latest start time constraint of

s b = d - T, each behavior of qr;ft will force the lift of each arm to start only if it can meet

its deadline.

Inter-resource Constraints. Note that consistency constraints cannot span multiple re-

sources. In our example, if each arm is its own resource we cannot explicitly represent the

consistency constraint that the arms should not collide (i.e. the Cartesian coordinate of

arml and am22 must be disjoint). If we want to specify such a constraint, then arml and

arm2 must be a single resource; the move actions of each arm must be designed to check

the Cartesian coordinates of the other arm, and the move action of each arm be specified as

incompatible with the other.

3 Language Constructs

The RTC language constructs are embedded in the C language, and consist of a small set

of orthogonal primitives that naturally and explicitly express the constraints of the RTC

model. In Section 4, we describe a run-time system that ensures correct executions of the

system. However, since users may specify unsatisfiable timing constraints, or failures may

cause timing constraints to be violated, we include timing-constraint exception handling

in the language constructs so that users can express various forms of recovery, including

compensating actions [ll, 12, 131, imprecise computations [6], or other forms of roll-back or

roll-forward techniques.

The RTC language constructs consist of resources, processes, and statements. The prece-

dence, execution, and timing constraints described in Section 2 are captured in block state-

ments. Processes request resource actions using action invocation statements. We do not

describe the exact syntax and semantics of each construct; instead, we describe the con-

structs using an outline of a RTCprogram for the robot lifting example. In the description

of constructs, we pay particular attention to defining the start time, complete time and ready

time of statements since the model is ultimately concerned with precedence orderings and

timing properties of programs.

An outline of the syntax of RTC constructs appears in Figure 1, where () indicates

non-terminal symbols, bold face indicates terminal symbols, I indicates alternatives, and

[] indicates optional syntax.

3.1 Resources

The resource construct contains local data and procedure declarations, action declarations,

and initialization statements. The local declarations and initialization statements are writ-

ten in C. An action declaration specifies parameters for exchanging information with its

invoking process, as well as which actions of the resource are compatible with it (i.e., may

be overlapped with it). The body of an action is a sequence of C language statements, as

well as signal, clear, timing block, and no-except block statements. For simplicity, we do

not allow actions to invoke other actions; the extension of the model and language to allow

actions to invoke other actions is discussed as future work. In case the calling process aborts

the action before it is completed, an exception handler should be used to specify the action's

(resource)

(action)

(action statement)

(process)

(statement)

(action invocation)

(signal)
(clear)
(block)

(timing block)
(tbhead)

(abs-expr)

(abs-value)
(rel-expr)

(rel-op)
(absfun)

(guaranteed block)

(simultaneous block)

(exclusive block)
(no-except block)

resource (ident) [(host lang. declarations)]
[(actions)] [(host lang. stmts.)] end resource
action (ident) ([(parameters)]) [(host lang. declarations)]
[compatible (ident-list)] (action statements) end action
(host lang. stmt.) ((signal) I (clear) I (timing block) (
(no-except block)
process (ident) [(host lang declarations)]] (statements)
end process
(host lang. stmt.) ((action invocation) I (signal) ((clear) I
(block)
action (actionID).(resourceID) ([(arguments)]) (
action& [((event))] (resourceID).(actionID) ([(arguments)])
signal ((event-list))
clear ((eventlist))
(timing block) ((guaranteed block) I (exclusive block) I
(no-except block) ((simultaneous block)
(tb-head) (statements) [(tb-chandler)] end do
[after (abs-expr)] [before (abs-expr)] [execute (rel-expr)]
[by (abs-expr)] do I
[from (abs-expr)] every (rel-expr) [while (condition)] do
except
[when E-START do (statements) end when]
[when E-EXECUTE do (statements) end when]
[when E-DEADLINE do (statements) end when]
(abs-value) I (abs-expr) + (rel-expr) 1
(absfun) ((abs-exprlist))
(abs-constant) ((abs-variable) I (event)
(rel-constant) I (rel-variable) (((rel-expr)) I
(rel-expr) (rel-op) (rel-expr)

+ I - 1 * 1 /
max I min
guaranteed (statements)
[except when E-GUARANTEED do
(statements) end when]
end guaranteed
simultaneous by (abs-expr) (action invocations)
[except when E-SIMULTANEOUS do
(statements) end when]
end simultaneous
exclusive (statements) end exclusive
no-except (statements) end no-except

Figure 1: Outline of RTC Syntax

resource Arml
C data structures for Cartesian coordinates and hand position
action lift (parameters)

compatible read, grasp

i action body: C code for lifting
except /* Process aborts lift */

when EABORT do

i C code for exception handling (stop arm, etc.)
end when

end action

i other action declarations (lower, read, gmsp, etc.)

i C code for arm calibration and initialization
end resource

Figure 2: Arml Resource in Lifting Program

recovery. Details of these statements and exception handlers are discussed in Section 3.3

Figure 2 shows how these constructs are used to specify resource Arml in the lifting

application.

3.2 Processes

An RTC process contains local data structure and procedure declarations that are written

in the C language, and a sequence of statements. In addition to C language statements, pro-

cesses include RTC statements for action invocations and blocks that capture the constraints

described in Section 2.

3.2.1 Action Invocation Statements

An action invocation statement may be synchronous, denoted by:

act ion: (resourceID) . (actionID) ((arguments))

or asynchronous denoted by:

action& ((event-variable)) (resourceID) . (actionID) ((arguments))

With a synchronous action invocation statement, the calling process waits for the invoked

action to complete; the calling process does not wait for an asynchronously invoked action

to complete. Completion of an asynchronously invoked action can be indicated by using an

event variable (see Section 3.3), which is signaled by the run-time system upon completion

of the invoked action.

The start time of any action invocation statement is when the first primitive instruc-

tion for requesting the action invocation starts executing. A synchronous action invocation

statement's complete time is when the process has been notified of the completion of the

action invocation. An asynchronous invocation statement's complete time is when the action

invocation has been requested.

3.2.2 Block Statements

RTCprovides timing block, guaranteed block, simultaneous block, exclusive block, and no-except

block statements. A block statement is a sequence of statements that may have an associated

exception handler. The start time of a block is the minimum of the start times of its enclosed

statements; the complete time of a block is when the processor finishes executing the last

primitive instruction in the block. If no exception is raised, the last primitive instruction

completes after the sequence of statements in the block have completed (e.g., when the pro-

cess executes the last primitive instruction to release locks used in the block); otherwise, the

last primitive instruction completes after the exception handling statements finish executing.

When an exception is raised, the process aborts the statements in the block for which

the exception was raised. When a process aborts a block, the next statement in the block

does not become ready; instead, the exception handler of the block becomes ready. The

process aborts a block at the completion of the current primitive instruction, except in two

cases: during a no-except block statement (indicated by no-except - e n d no-except) and

when waiting for a synchronous action to complete. In the first case, all exceptions from

timing blocks in which the no-except block appears are delayed until after the no-except

block completes. In the second case, the process aborts without waiting for the synchronous

action invocation to complete.

When a calling process aborts an action invocation statement, the system raises an

E-ABORT exception in the invoked action, the invoked action aborts its body (if it has not

yet completed), and the statements of the invoked act ion's E-ABORT exception handler

become ready.

Figure 3 shows the outline of RTC constructs for the lifting process of the two arm

example; details of the block statements will be given in the next section.

3.3 Expression of Constraints

Absolute Timing Constraints. Absolute timing constraints are specified in a program

using the timing block construct, which explicitly constrains the earliest start time, latest

start time, maximum execution time, and completion time of statements in the block. The

event detected /* Global event signaled by another process */
process Q l i f t

event readl, read2, graspl, grasp2, liftl, lift2
other declarations

a f t e r detected by (detected+ lOsec) do
exclusive

action&(readl) Arml.read (position)
action&(read2) Arm2.read (position)
a f te r max(read1 ,read2)
action&(graspl) Arml.grasp (position)
action&(grasp2) Arm2.grasp (position)
af ter max(grasp 1 ,grasp2) before (detected+ 6sec) d o

guaranteed no-except s imultaneous by (lsec)
action&(lift 1) Arm1 .lift()
actionk(lift2) Arm2.lift()

e n d simultaneous no-except guaranteed
af te r max(lift 1 ,lift2)

except /* start time violation */
when E-START d o stop application e n d when

e n d do
e n d exclusive

except /* detected + lOsec deadline violation */
when E-DEADLINE do stop application, emergency actions e n d when

e n d d o

e n d process

Figure 3: Two-arm lifting Example

timing expressions used to express these constraints have operands of the following three

types: abs-time for representing absolute time (e.g., 10:OO am in EST); reLtime for repre-

senting relative time (e.g., 10 seconds); and event for representing either absolute time or a

special infinite absolute time value called DNO (Did Not Occur). There is also a read-only

global absolute time variable called NO Wwhose value is the current absolute time. Variables

of type abs-time and reLtime may be declared in programs and are assigned values using C

language assignment statement. Variables of type event may be declared in processes and

actions, or may be global to all processes. Event values may be assigned in one of three

ways:

A process executes a signal statement, which assigns the absolute time that the sig-

nal statement starts executing on a processor to each event in the signal statement's

specified list.

A process executes a clear statement, which resets the value of each event variable in

the clear statement's specified list to D NO;

The system "signals" an event variable associated with the completion of an asyn-

chronous action invocation by assigning the event variable's value to the complete

time of the action invocation. Until it is signaled, the value of the event variable is

DNO.

Timing expressions can be formed using arithmetic operations, maximum functions, and

minimum functions involving time values (see Figure 1).

A timing block constrains the start time of its statements to be after the absolute time

specified by after (abs-expr). If some statement in the timing block has not started by the

time specified by before (abs-expr), the statements of the timing block are not started, and

the E-START exception handler becomes ready. If the statements of the timing block or

E-START exception handler execute on a processor for longer than the relative time specified

by execute (rel-expr), the current execution is aborted, and the E-EXECUTE exception

handler becomes ready. If the timing block has not completed by the time specified in by
(abs-time) , then the current execution is aborted and the E-DEADLINE exception handler

becomes ready. Note that these semantics imply that if exceptions occur simultaneously,

their precedence is E-START < E-EXECUTE < E-DEADLINE. Also note that many parts

of a timing block are optional (see Figure 1).

To specify periodic behavior, a timing block establishes a series of time intervals called

period frumes, where the beginning of period frame i is the end of period frame i - 1.
The statements of the timing block become ready at the beginning of each frame. If the

statements have not completed by the end of a period frame, then the system aborts the

statements and the E-DEADLINE exception handler becomes ready. The first period frame

begins at the time specified by start (absfime). The duration of each period frame is the

relative time specified by every (rel-expr) . Negative durations result in an E-DEADLINE

exception for the first frame. If there are no exceptions, the periodic timing block com-

pletes at the completion of the first frame during which the boolean expression specified in

while (condition) evaluates to FALSE. Note that in addition to C language relational pred-

icates, the terminating condition, (condition), may contain relational predicates involving

(timing-expr) values to determine the number of period frames generated.

RTC syntax restricts timing blocks to be either nested or disjoint; that is, a statement

may appear in two timing blocks only if the two timing blocks are nested. Timing blocks can

be nested by placing a timing block in another timing block's body or exception handler.

In the example of Figure 3, the line:

after detected by (detected +10sec) do

is a timing block header that constrains its statements to start after the event detected is

signaled, and to complete by 10 seconds after event detected is signaled. If the statements do

not complete by the deadline, they are aborted and the associated E-DEADLINE exception

handler becomes ready. This exception handler stops the application and takes emergency

actions.

A second timing block is expressed by:

after max(graspl,grasp2) before (detected+6sec) do.

This timing block constrains its enclosed statements to start executing after both events

grasp1 and grasp2 have been signaled and before 6 seconds past the time that event detected

was signaled. If the statements have not started by this latest start time, they are not started

and the E-START exception handler becomes ready. Note that this second timing block is

nested within the first timing block, causing the statements of the second timing block to be

constrained by both timing blocks (e.g., the deadline of the first timing block still applies in

the second timing block).

Guaranteed Constraints. To specify a guaranteed constraint in a process, a guaranteed

block, denoted by guaranteed - end guaranteed, is used. Once a guaranteed block starts,

its enclosed sequence of statements must be executed as soon as they are ready. In addition,

all action invocations requested in the guaranteed block must be executed on their processors

as soon as they are ready, which is when the action invocation request is received by the

run-time system. That is, no delays due to contention for resources may occur in the process

or the actions that it invokes while it is in the guaranteed block. In the example of Figure

3, &,;it uses a guaranteed block to specify that once the two lift actions start, they may not

be delayed by contention with other processes for use of the arms.

Simultaneity Constraints. Simultaneous execution of statements is indicated by a simul-

taneous block, denoted by simultaneous by t - end simultaneous. The action invocations

of a simultaneous block are requested concurrently by the process and must be started within

the stated time t from the time at which the simultaneous block is entered. If the actions are

not started within t , perhaps due to contention for the resource or its processors or due to

a fault, the action invocation statements are aborted and an ESIMULTANEOUS exception

handler becomes ready. In the example of Figure 3, a simultaneous block is used to specify

that the two lift actions start within 1 second.

Local Precedence Constraints. Local precedence orderings are naturally specified by

the sequential composition operator (";" in C), as well as by asynchronous action invoca-

tions and timing blocks. In the example of Figure 3, the two grasp actions are invoked

as (concurrent) asynchronous action invocations with associated event variables graspl and

grasp2, respectively. Since events graspl and grasp2 are signaled by the system when the

grasp action invocations have completed, the second timing block's after construct specifies

that both lift action invocations are to be executed after both grasp action invocations have

finished. Using traditional concurrency terminology, a process "forks" asynchronous action

invocations and uses after clauses of a timing block to "join" combinations of these action

invocations at later points in its execution.

Global Precedence Constraints. Global precedence orderings are specified using global

events and timing blocks. For example, the first timing block in Figure 3 specifies that all of

its statements execute after the event detected has been signaled. We assume that another

process Q,,,,, (not shown in Figure 3) detects the container and then executes a signal

statement on the global event variable detected. Therefore, all of process Qrift's statements

execute after the detection of the container by Q,,,,,.

Exclusive Execution Constraints. Exclusive execution constraints are indicated by an

exclusive block, denoted exclusive - end exclusive. The set of exclusive action invoca-

tions specified by the exclusive block is comprised of all of the action invocations in the

block. Therefore, after the exclusive block starts and before it completes, no action that is

incompatible with any action invocation in the exclusive block may be executed by another

process. In the example of Figure 3, process Ql;it uses an exclusive block to specify that

once process QIjf t starts using the arms, no incompatible actions may be executed on the

arms by other processes until Qrift completes lifting.

All-or-Nothing Execution Constraints. To specify that all statements in a block com-

plete, a no-except block can be used to delay exceptions until after the statements complete.

Specifying the "nothing" alternative involves ensuring that no actions are executed if excep-

tions are possible during the no-except block. This is done by nesting the no-except block

inside a guaranteed block as the first statement of a timing block. The timing block specifies

a latest start time that is sufficiently far in advance of the deadline to allow the statements

to complete under normal operating conditions. Note that the programmer must know the

maximum execution time of the statements to be guaranteed in order to establish this latest

start time. For example, in Figure 3 we assume that the lift actions each take a maximum

of 4 seconds including message delays when there is no contention for resources. The before

clause is used to ensure that either the the Iifl actions start prior to 4 seconds before their

deadline, or they are not started and the E-START exception is handled. If the lift action

invocations are started, the no-except block prevents abortion due to a deadline violation.

While this expression of "atomicity" is somewhat unconventional, the fact that real-

time control applications directly affect the environment and are time-constrained makes

traditional atomic rollback [8, 141 impossible. For example, if an action moves an arm from

a starting position, a compensating action [13, 121 can bring it back to the starting position,

but not erase the fact that the move was performed or that the move took time. Thus, to

achieve atomicity in a real-time environment, we require that either all of the constrained

statements complete once they are started, or that none of them start.

Multiple Constraints. Multiple constraints are expressed by nesting blocks. The seman-

tics of nested blocks is a composition of the semantics of the individual blocks, thus allowing

the expression of multiple constraints on parts of processes. If exceptions are raised simulta-

neously in several nested blocks, only the "outermost" violated block handles the exception.

For example, in Figure 3, the two lift action invocations are placed in a simultaneous block,

nested within a no-except block, nested within a guaranteed block. These nested blocks

specify that the two lift action invocations must start at the same time, and once started

they may not be interrupted by other action invocations or by timing constraint violations.

These nested blocks also appear within an exclusive block, so that even if one lift finishes

before the other, no incompatible action, such as another movement of the arm, may exe-

cute until the other lift finishes. Furthermore, these statements are nested in the two timing

blocks that specify their earliest start time, latest start time, and deadline.

4 Run-Time System and Implementation

In our implementation, a preprocessor translates programs written in C + RTC into C

programs that interact with the operating environment and run-time system.

The operating environment is a distributed collection of processors and devices (such as

robot arms) that are connected by a network. The TimixV2 real-time kernel [15] resides

on each processor to perform services including thread management, low-level device man-

agement, asynchronous message communication between threads, and signaling of errors

and alarms. The kernel provides a dynamic, priority-based scheduler for threads; currently,

the dynamic priority is computed as a function of the deadline alone. In general, timing

constraint information should be incorporated into the dynamic priority value to improve

performance, although RTC run-time system does not require it. Currently, the operating

environment consists of MicroVax I1 computers connected via an Ethernet.

The RTC run-time system consists of a set of manager tasks, each of which is implemented

using one or more threads. Each RTC process is managed by its own process manager

task (QMT). Each RTC resource may be distributed, but has a single resource manager

task (RMT); that is, each resource is assumed to have an associated set of processors on

which its actions may be executed, although access to actions is controlled by a single

task. Each processor in the system has a processor manager task (PMT) which is used to

reserve processors on behalf of processes for guaranteed executions of actions. There is also

a centralized event manager task (EMT) in the system which interacts with process and

resource managers to implement global RTC events.

4.1 Run-Time Support for Timing Blocks

To enforce the after construct of a timing block in process q, the process manager task for

q, QMT,, suspends q and sets an alarm for the earliest start time. When the alarm signal

arrives, process manager QMT, re-activates process q. To enforce the before construct of

a timing block in process q, &MTq sets an alarm for the latest start time. If the alarm is

signaled before process q executes the statments of the timing block, process manager QMT,

causes process q to jump to the timing block's E-START exception handler. Otherwise,

process manager Q MT, removes the alarm and process q continues to execute the statements

in the timing block.

The by and execute constructs of a timing block in process q are implemented using a

stack of temporal scopes to keep track of current timing constraints. Process manager QMT,

notifies the real-time kernel of the deadline and execution timing constraints on the top of the

stack. The kernel uses these constraints to determine the scheduling priority of the process,

and to notify QMT, of deadline and execution time violations. As nested timing blocks

are entered during process q's execution, process manager QMT, pushes modified timing

constraints for that block onto the stack. That is, QMT, compares the timing constraints

specified by the block to those on the top of the stack, and pushes the "tighter" timing

constraints. For instance, if the current deadline of a process is 10:OO o'clock and a nested

timing block specifies a deadline of 11:OO o'clock, the current deadline of 10:OO o'clock is

pushed on the temporal scope stack; therefore, the process continues to operate under the

10:OO o'clock deadline. This adjustment of timing constraints is performed so that statements

meet the timing constraints of all temporal scopes in which they appear. When process q

completes all statements in a timing block, QMT, pops the timing block's temporal scope

from the stack.

When the kernel signals process manager QMT, that a deadline or execution timing con-

straint was violated, QMT, first pops the temporal scope stack until the timing constraints

of the timing block that surrounds the violated timing block are on the top of the stack.

QMT, then causes process q to jump to the violated timing block's exception handler. The

new constraints on the top of the temporal scope stack are used by the kernel as process q

executes the exception handler.

Although we described the timing block implementation only for processes, a similar

implementation is used for action invocations.

4.2 Resource and Processor Management

To ensure correct execution of an action, we need the ability to block incompatible action

invocations. To guarantee the timely execution of an action, we need the ability to reserve

execution time on an associated processor. We therefore use exclusive locks (without pre-

emption) at both the resource and processor level: At the resource level, if an action is

locked, then no actions that are incompatible with the locked action may be executed until

the lock is released. At the processor level, if a processor is locked on behalf of a process q,

then an action invocation of q will be executed as soon as it is requested, pre-empting any

other activity on the processor. Since execution is guaranteed, a lock for a given processor

may be held on behalf of at most one process. Note that there are many action locks for a

given resource, but that there is a single processor lock per processor.

A process manager task requests action locks from the appropriate RMT; if it also requires

a processor lock, then the RMT forwards the request to the associated PMTs on behalf of

the process. Pending requests to RMTs and PMTs are served in order of the priority of the

requesting process. This indirection is used so that processes do not have to be aware of the

association between processors and resources.

4.2.1 Resource Manager Tasks

A resource manager RMT, for resource r gets requests from process managers to acquire

action locks, acquire a processor lock, invoke actions, and release locks. An action can either

be invoked directly, or first locked and then later invoked. The latter is done to guarantee

execution of an action.

Acquiring Action Locks. Process manager QMT, requests action locks from resource

manager RMT, by specifying the set of actions that process q wishes to lock on resource r ,

{al,. . . ,an). RMT, grants the request only if each action in {al , . . . , an) is compatible with

resource r's currently held action locks and pending requests of higher priority. If RMT,

does not grant a resource lock request, it queues the request based on process q's priority.

Acquiring a Processor Lock. Process manager QMT, may also include a processor lock

request with the action lock requests. If such a request is received, RMT, forwards the

request to its associated PMTs. If some PMT grants process manager QMT,'s request, the

PMT notifies RMT,, which then informs QMT, that a processor lock has been granted.

Note that process manager QMT, does not need to know which PMT has granted the lock,

only that some processor associated with resource r has been locked. When process manager

QMT, receives a processor lock, process q's action invocations from {al, . . . , an) will execute

with the highest priority on the locked processor. This "immediate execution" is required

to implement guaranteed blocks.

Invoking Actions. When RMT, gets an action invocation request a from QMT, that

has not been locked, it must first lock the action; when the invocation completes, it must

also unlock the action. Once a lock is held for the action, RMT, creates a thread, t,

for a and grants t access to the data of resource r . If process manager QMT, holds a

processor lock, RMT, assigns thread t to the locked processor and assigns highest priority

to t; otherwise, RMT, assigns t to any one of the processors associated with resource r and

gives the requesting process q's priority to t.

If process q's action invocation is synchronous, process manager QMT, suspends q while

waiting for return parameters; if the action invocation is asynchronous, q is not suspended.

When an action invocation completes, the resource manager forwards the action's return

parameters to process manager QMT, in a message. Process manager QMT, accepts the

returned parameters and updates their values in process q's local state.

The QMT requesting an action invocation may also request an acknowledgement on the

start of the action, as will be discussed under simultaneous blocks in the next subsection. In

this case, the thread for the action invocation will send an acknowledgement to the requesting

QMT when it starts executing.

Releasing Locks. When a process manager releases an action lock for r, RMT, grants

action locks to the highest priority set of non-conflicting action lock requests. When a process

manager releases a processor lock, RMT, notifies the appropriate PMT to release the lock.

4.2.2 Processor Manager Tasks

A PMT handles processor lock requests and releases for guaranteed execution that have

been forwarded from RMTs. If there is no processor lock currently held, the PMT grants

the request and sets a counter of the number of lock requests for this process to 1. Otherwise,

it grants the lock and increments the counter only if the requesting process is the same as

the process who is currently holding the lock. Thus, while only one process may hold a lock

on a given processor, forwarded requests from several RMT's may be satisfied by a single

processor lock if the requests are by the same process. If the lock cannot be granted, the

PMT queues the request. When an RMT notifies the PMT to release the processor lock, the

PMT decrements the counter for the processor lock; when the counter becomes 0, the PMT

releases the processor lock and grants it to the pending request with the highest priority.

The PMT also grants the processor lock to all pending requests that originate from the same

process as the one to whom the lock was granted.

Since a process may hold the same processor lock for two different actions, it is possible

that the actions will be invoked at the same time. Thus, even though the associated RMTs

forward the requests with high priority, at most one of the action invocations can execute

on the processor, violating the notion of guaranteed execution. We must therefore ensure

that these conflicts are detected and that the QMT for the requesting process is notified so

that a E-GUARANTEED exception can be raised. Since at most one process can hold the

processor lock, and action invocations are given high priority only if the requesting process

holds the processor lock, this can be detected by checking if a request for execution of a high

priority action is received while another high priority action is being executed.

4.3 Meeting Constraints

We now discuss how a RTC program and its run-time system implement the remaining RTC
language constructs: simultaneous blocks, exclusive blocks, guaranteed blocks and no-except

blocks.

Simultaneous Blocks. To implement the simultaneous execution of action invocations in

a simultaneous block with bound t , the QMT must measure the delay between the time at

which the first action invocation request is sent to an RMT, and the time at which the last

acknowledgement that an action invocation was started is received. If the delay is greater

than t , then the QMT cannot be sure that they were started within t of each other and an

E-SIMULTANEOUS exception is raised. Note that is also possible that they were started

in time, but that the acknowledgements were not received in time.

Note that the value of t will affect the likelihood of success. If it is less than 26 + p, where

6 is the minimum message delay time and p is the minimum time for the action invocation

request to be processed by its RMT, the QMT will always raise an exception. A more

reasonable choice is to use the average message delay time and average action invocation

time. Note that even if worst case times are used, the exception can still be raised due to

contention on resources. Therefore, if the user wants to improve the likelihood of successful

execution of the simultaneous block, it should be enclosed in a guaranteed block.

Exclusive Blocks. To ensure exclusive execution, the QMT must obtain action locks for

all action invocations in the exclusive block before the process executes any action invocations

in the block. The action locks must be held until all action invocations in the block have

completed. In this way, no action invocation that is incompatible with any action invocation

in the exclusive block will overlap the execution of the block.

Guaranteed Blocks. To ensure guaranteed execution, the QMT must obtain action locks

and an associated processor lock for all actions invoked in the guaranteed block before it

invokes any action in the block. All locks are released when the guaranteed block completes.

The action locks ensure that no action invocation of the guaranteed block is queued by

an RMT. The processor locks ensure that the action invocations execute on their assigned

processors when the action invocations are ready and that the action invocations are not

preempted. However, a process may attempt to execute two guaranteed actions on the

same processor at the same time, in which case the PMT of the processor will signal an

E-GUARANTEE exception and the guaranteed block will be aborted. We could improve

this method for detecting guaranteed block exceptions by attempting a priori determination

of which guaranteed actions invocations will be concurrent and then trying to assign them

to different processors. However, such solutions appear to be too complicated to justify the

marginal improvement.

No-except Blocks. No-except blocks are implemented by the QMT delaying all exception

signals until after block. The capability to delay signals is directly provided by the TimixVZ

real-time kernel as well as many other operating systems, including Real-Time Unix [16].

Deadlock Prevention. In each of the block implementations, a process must obtain a set

of locks for the block. If processes obtain only some of their required locks while waiting for

others, deadlock is possible. Deadlock detection and recovery techniques involve preempting

resources or aborting process, which make the execution time of processes unpredictable. We

therefore feel that these techniques are not suitable for many real-time applications, and use

deadlock prevention. Our prevention scheme is an example of the AND-OR request model

[17], since an action lock must be acquired for each action invocation, as well as a processor

lock on some associated processor; requests for action and processor locks must be acquired

in a certain order. To obtain this ordering, processors are first ordered arbitrarily; actions

are then ordered based on their highest associated processor. The algorithm and proof of

correctness can be found in [18].

4.4 Performance

To determine the overhead imposed by the RTC run-time system in our current implemen-

tation, we measured the amount of time required to perform some of its basic execution.

The results are shown in Figure 4. For these measurements, we used a Codar Technology

clock/timer device that has a 4MHz crystal and allows measurements of durations with ac-

curacy on the order of micro-seconds. These measurements were made on MicroVax I1 nodes

controlled by the Timix V2 real-time kernel [15] and connected by an Ethernet.

Due to space limitations, we discuss only the action invocation case in the performance

measurements shown in Figure 4. Lines 1 and 2 show the amount of time from the start

of a synchronous (null) action invocation to its return. Line 1 represents the case where

the calling process and resource are on the same machine and Line 2 represents the case for

them being on different machines. The approximately 8ms difference in the times represents

the message delays due to the network communication. However, the estimated message

delay on the TimixV2 MicroVax I1 system is 9ms [15]. Using this value one would expect

the action invocation time on different machines to be at least 18ms more than its time on

the same machine (a message delay for the request and reply). The increase of only 8ms

is due to concurrent execution of the process and RMT that reside on the two machines.

A completed action sends two messages: a return message to the calling process, and a

completion message to the RMT so that the RMT can service queued requests. Let A be the

time required for the RMT to update its book-keeping information upon the return of an

Figure 4: Performance Measurements For the RTC Run-time System

Execution avg. (ms) I min. (ms) (max. (ms)
action invocations

action, and B be the time required for a process manager to receive the return message and

update its arguments. In the case of two machines, A and B are performed in parallel when

1
2
3
4
5

the respective completion and return messages are received; in the case of the same machine,

73.667
81.752
10.004
45.680
1.147

action invocation round trip, same machine
action invocation round trip, diff machine
action invocation before sending
RMT time to start action (p)
Asynchronous action return (async thread)

A is performed before B, which extends the time that the action invocation completes. The

12
13
14
15
16
17

execution of A, accounts for the approximate lOms difference between the expected value

67.844
77.500
9.996

44.340
1.110

locking

and the observed value of action invocation times.

75.856
89.708
10.011
47.660
1.245

17.340
37.060
14.712
16.166
22.477
42.477

6
7
8
9
10
11

timing blocks

In general, these performance measurements show a disadvantage of our current run-time

Alock request round trip, same machine
Alock request round trip, diff. machines
Alock release, same machine
Alock release, different machine
Plock request round trip, same machine
Plock request round trip, diff. machines

setting deadline (push)
pop temporal scope
event query/set/clear, same machine
event query with response, same machine
event query/set/clear, diff. machine
event query with response, diff. machine

system: the high overhead imposed by the checking done by managers. However, we believe

17.240
36.992
14.464
15.668
22.376
42.373

that in many applications the improved concurrency and use of real-time scheduling for

17.340
37.164
14.832
19.012
22.596
42.586

1.676
2.137
5.261
7.557
7.981

27.527

passive resources will make up for performance lost due to the overhead. The RTC overhead

can also be significantly reduced by using a faster processor than the MicroVax 11.

1.672
2.132
5.232
7.492
7.968

27.288

4.5 Application

1.684
2.152
5.892
8.276
7.992

29.684

We have used the RTC constructs and run-time system to program control of a graphic

simulation of the two arm lifting application. In the application, graphic models of Puma560

robot arms are controlled by a distributed C + RTCprogram executing on a three TimixV2

Micro Vax I1 processors. In addition to the lifting process that was described in Section 3,

Figure 5: Two-Arm Simulation Software and System

9

demon processes were introduced to the system to compete for use of the arms.

sirnulailon
mrnrnunlcatlon a@

Simulation Operating Environment. The operating environment (shown in Figure 5)
consists of the three MicroVax I1 computers running the TimixV2 real-time kernel, a Mi-

croVax I1 computer running Ultrix, and a 16 MIPS Personal Iris 4D-25 computer with a

hardware turbo graphics option, all connected via an Ethernet.

The Iris executes software based on a 3-D modeling package provided by the Computer

Graphics Laboratory at the University of Pennsylvania [19]. The package was extended to

simulate the control of Puma560 robot manipulators in a kinematic environment [20].

@ @ @
@ @

Application Software. The application's RTC processes and resources are indicated in

in Figure 5. Process Lift is essentially the same as the process described in the example

of Section 3. It awaits the detection of the moving object, which is signaled by the Sensor

resource, then requests actions to move to, grasp, and lift the object. The other two pro-

cesses are used to compete for the resources. Process Demonl attempts to move the arms

(incompatible actions to the actions in process Lift) periodically with a period of 1.4 seconds.

The deadline imposed by process Demonl's period causes this process to have higher priority

than process Lift, which has a 10 second deadline. However, allowing process Demonl to

overlap execution with process Lift would violate process Lift's guaranteed and exclusive

execution constraints and possibly its simultaneity constraint. The other process, Demon2,

Tirnixl node Timix2 node

Interpretor C E T
Unix node Timid node

@ @

@ esourm @ IRIS Graphics WotWalkn

reads the position of the arms and writes it to the screen with a period of 1.2 seconds.

Process DemonZ's execution can be allowed to overlap with Lift because it is executing

compatible actions to those in Lift. The locking provided by our run-time support proved

sufficient to assure process Lift's correct execution.

A more-complete discussion of the implementation, performance evaluation, and applica-

tion of this implementation of the RTC language constructs and run-time system can be

found in [21].

Related Work

Related work in abstract data type techniques and in transaction theory formed the basis for

the programming paradigm that was presented in Section 2. However, since typical abstract

data type and transaction-based models ignore timing constraints, we incorporated work

in the area of explicit timing constraint expression and system enforcement into our model

and language constructs. Also absent from typical transaction models are the requirements

of inter-process synchronization and communication found in concurrent real-time systems;

therefore we also examined work in these areas. In addition to theoretical work, the features

of many current languages that have influenced our work.

Transaction-Theory. The RTC action and process constructs are based on Bernstein,

Hadzilacos, and Goodman's transaction model [a], with several modifications. RTC actions

are modified transactions that have their notion of conflict defined on the level of actions

rather than on the level of read and write operations [a]. Our notion of compatibility

relations has its origins in the semantic compatibility of transactions [22, 9, 111. Although

compatibility relations are often too large and complex for general transaction systems,

the limited number of actions within an RTC resource make their use possible for defining

a resource's actions compatibility. Another difference between actions and transactions is

that actions always commit unless instructed to abort externally from the calling process;

they "abort" to a user-defined (consistent) state that was not necessarily the original state.

Furthermore, actions can be time constrained and their priority is inherited from the caller.

While RTC processes borrow the notions of partial ordering, exclusive execution, and

atomic execution from transactions, an RTC process is not a transaction. First, exclusivity

and atomicity are decoupled and enforced on parts of an RTC process instead of all of it as

is done with a transaction. This design allows the locking implementation of Section 4 to

improve resource utilization and concurrency because locks do not have to be held for an

entire process. Second, the action invocations of an RTCprocess are transactions rather than

simple operations. This establishes a paradigm similar to a nested transaction paradigm,

which Moss [23] describes as an excellent way to enforce complex consistency constraints.

Third, RTCprocesses have no explicit commit or abort actions. Furthermore, RTCprocesses

are not independent; they synchronize through inter-process precedence orderings. Finally,

RTC processes are time constrained and transactions typically are not.

Real-Time Databases. Recently the integration of timing and consistency constraints

has been addressed in the domain of real-time databases. Most of these approaches incor-

porate time into traditional concurrency control mechanisms: times tamp methods [24, 251 ;

optimistic concurrency control methods [26, 27, 281; multiversion methods [29], and lock-

ing methods[l, 2, 24, 30, 311. All of these methods use serialization of transactions as the

correctness criteria for concurrency control. For instance, in [2] and [29], the serialization

order is dynamically adjusted to reflect the priorities of transactions. Others have exam-

ined relaxing data consistency requirements to better meet timing constraints [32, 33, 341.

Most of these approaches to concurrency control use blocking and/or abortion of transac-

tions that can reduce predictability of real-time scheduling. Like many of these real-time

database approaches, the RTC run-time system described in Section 4 uses priority-based

locking. However, as described in the model of Section 2, the RTC system does not require

strict serializability, but instead requires a semantic conflict-based concurrency control cri-

teria similar to that proposed in [22]. This relaxed requirement allows the operating system

flexibility in employing real-time scheduling of tasks. Also, the RTC run-time system does

not abort tasks due to conflict.

To limit the adverse real-time effects of priority inversion caused by blocking, priority

inheritance protocols have recently been proposed [35, 3, 311. Although we do not currently

address priority inversion, these ideas could easily be used in the resource manager tasks to

limit priority inversion due to granting compatible locks to low-priority action invocations

when there are higher-priority action invocations pending.

Real-Time Languages and Systems. Although current real-time languages provide sup-

port for subsets of the required constraints described in Section 2, no current language pro-

vides support for all of them. Ada and Modula-2 provide no explicit support for specifying

absolute start times, execution durations, deadlines, periods, nested timing constraints and

variable timing constraints. Also, as we discussed in Section 1, Ada and Modula-2 use mu-

tual exclusion techniques with FCFS queuing to schedule shared resources. ARTC++ [36]

employs an object-based paradigm with concurrency. Explicit timing constraints are pro-

vided in the temporal scope constructs of [37], Real-Time Euclid [7], Flex[6] and Maruti

[38], among others. Temporal Scopes, Real-Time Euclid, and Flex also provide exception

handling for constraint violations. The Spring kernel [39] provides guaranteed execution for

entire processes rather than a set of actions. Esterel [40] provides event-based predecence

ordering capability where timing constraints are treated as events. This is a dual notion

to RTC, which also provides event-based precedence ordering, but treats events as timing

constraints. Separate exclusive and atomic sets as well as concurrency based on action-level

compatibility are not directly supported in other current real-time languages.

Maruti 1381 provides many of the real-time concurrency requirements described in Section

2. The biggest difference between their approach and ours is that Maruti assumes that ev-

eryt hing can be prescheduled. On the other hand, we use priority- based run-time scheduling

and exception handling to respond to dynamic environments in a more flexible manner. Due

to their static approach to scheduling, Maruti does not provide exception handling capa-

bilities or event-relative timing expression for temporal scopes, and has a more restrictive

notion of precedence ordering.

Halang and Stoyenko provide a good evaluation of other real-time languages, such as

Pearl [41], in [4].

Conclusion

This paper has described the RTC model, language constructs, their implementat ion and

application in concurrent real-time programming.

The real-time concurrency model of Section 2 provides a framework to define and rea-

son about real-time concurrency constraints found in distributed real-time applications. It

synthesizes aspects of distributed transaction-based programming, an abstract data type

paradigm, timing constraint enforcement, and precedence orderings into a paradigm and

basic set of requirements for concurrent real-time programming.

The RTC language constructs naturally express real-time constraints, and can be em-

bedded in a variety of programming languages. This explicit constraint expression allows

system enforcement of constraints instead of burdening the programmer with their enforce-

ment. Furthermore, our run time system can be easily implemented on any operating system

that has dynamic priority-based scheduling and the ability to block interrupts.

Our current model has a limitation in that it disallows nested resources and nested action

invocations. It may be useful to support nested resources, so that consistency requirements

spanning multiple resources can be naturally defined by a resource which encloses the con-

flicting resources. In addition, nested actions might be useful to allow one resource to use

other resources directly, which has been shown useful in the untimed nested transaction

model of [14] and [23]. However, it is not clear that this complexity is useful in a real-time

environment and should be investigated.

Our current implementation is also relatively slow due to the fact that the underlying

processors are slow. For example, we could not use the current implementation of the RTC

constructs to perform actual low-level robot control with sampling periods on the order of

tens of milli-seconds, although the refresh rate of the graphic simulator was sufficiently slow

for our system to work. To further investigate the effectiveness of our approach, we intend

to implement the RTC constructs and run-time system in other (hopefully faster) real-time

operating environments such as those adhering to the POSIX 1003.4 standard [16].

Having examined several different distributed robotic applications, we feel that timing

and consistency constraints are needed. However, current paradigms for programming such

systems do not adequately support these constraints. We believe that the development of the

RTC model, the RTC constructs and their implementation are an important contribution in

providing such support.

Acknowledgements: The authors thank Lui Sha of the Software Engineering Institute

for his helpful suggestions, Robert King of IBM's Watson Research Center for his support

with the TimixV2 system, and Janez Funda of IBM's Watson Research Center for support

with the robotics application.

References

[I] R. Abbot and H. Garcia-Molina, "Scheduling Real-Time Transactions: A Performance Evalu-
ation," in 14th VLDB Conference, Aug. 1988.

[2] Y. Lin and S. Son, "Concurrency Control in Real-Time Databases by Dynamic Adjustment of
Serialization Order," in Real-Time Systems Symposium, IEEE Computer Society, Dec. 1990.

[3] J. Huang and J. Stankovic, "On Using Priority Inheritance in Real-Time Databases," in Real-
Time Systems Symposium, IEEE Computer Society, Dec. 1991.

[4] W. Halang and A. Stoyenko, "Comparitive Evaluation of High Level Real-Time Programming
Languages," Real-Time Systems Journal, vol. 2, pp. 365-382, 1990.

[5] T. Baker and 0. Pazy, "Red-Time Features for Ada 9x," in Real-Time Systems Symposium,
IEEE Computer Society, Dec. 1991.

[6] K.-J. Lin and S. Natarajan, "Expressing and MAintaining Timing Constraints in FLEX," in
Real-Time Systems Symposium, pp. 96-105, IEEE Computer Society, 1988.

[7] E. Klingerman and A. Stoyenko, "Real-Time Euclid: A Language for Reliable Real-Time
Systems," IEEE Tmnsactions on Software Engineering, vol. SE-12, pp. 941-949, Sept . 1986.

[8] P. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and Recovery in Database
Systems. New York: Addison Wesley, 1986.

[9] W. Weihl, 'bCommutativity-Based Concurrency Control for Abstract Data Types," IEEE
Transactions on Computers, vol. 37, pp. 1488-1505, Dec. 1988.

[lo] W. Zhao, K. Ramamritham, and J. Stankovic, "Scheduling Tasks with Resource Require-
ments in Hard Real-Time Systems," IEEE Transactions on Software Engineering, vol. SE-13,
pp. 564-577, May 1987.

[ll] N. A. Lynch, "Multilevel Concurrency - A New Correctness Criterion for Database Concur-
rency Control," ACM Transactions on Database Systems, vol. 8, pp. 484-502, December 1983.

[12] A. Gheith and K. Schwan, "CHAOSart: Support for Real-Time Atomic Transactions," in
Nineteenth International Symposium on Fault-Tolerant Computing, pp. 462-469, June 1989.

[13] H. Tokuda, "Compensatable Atomic Objects in Object-oriented Operating Systems," in Pacific
Computer Communication Symposium, Oct. 1985.

[14] B. Liskov, "Distributed Programming In Argus," Communications of the ACM, vol. 31,
pp. 300-312, Mar. 1988.

[15] R. King, "Design, Implementation, and Evaluation of a Distributed Real-Time Kernel for Dis-
tributed Robotics," Tech. Rep. CIS-90-40, Department of Computer and Information Science,
University of Pennsylvania, November 1990.

[16] W. Corwin, C. D. Locke, and K. Gordon, "Overview of the IEEE Posix P1003.4 Real-time
Extension to POSIX," IEEE Real-Time Systems Newsletter, vol. 6, pp. 9-18, Winter 1990.

[17] E. Knapp, "Deadlock Detection in Distributed Databases," ACM Computing Surveys, vol. 19,
pp. 304-328, Dec. 1987.

[18] V. Wolfe, S. Davidson, and I. Lee, "Deadlock Prevention in Distributed Real-Time Systems."
Submitted to The Real-Time Systems Journal, November 1990.

[19] C. Phillips and N. Badler, "Jack: a Toolkit for Manipulating Articulated Figures," in Proceed-
ings of ACM/SIGGRAPG Symposium on User-Interface Software, pp. 22-30, 1988.

[20] J. Funda, Telepqmmming: Overcoming Communication Delays in Remote Manipulation.
PhD thesis, Department of Computer and Information Science, University of Pennsylvania,
1991.

[21] V. Wolfe, Supporting Real-Time Concurrency. PhD thesis, Department of Computer and
Information Science, University of Pennsylvania, 1991. Available as Technical Report MS-
CIS-91-55.

[22] H. Garcia-Molina, "Using Semantic Knowledge For Transaction Processing in a Distributed
Database System," ACM Transactions on Database Systems, vol. 8, pp. 186-213, June 1983.

[23] E. Moss, Nested Tmnsactions, An Apprwch to Reliable Distributed Computing. The MIT
Press, 1985.

[24] W. S. Kim, T. M. Chan, and J . Srvastava, "Processor Scheduling and Concurrency Control in
Real-Time Main Memory Databases," in Symposium on Applied Computing, IEEE Computer
Society, April 1991.

[25] 0. Ulusoy and G. Belford, "Real-Time Concurrency Control in Distributed Database Systems,"
IEEE Technical Committee on Real-Time Systems Newsletter, vol. 3, pp. 1-5, Feb. 1991.

[26] J. Harista, M. Carey, and M. Livny, "On being Optimistic about Real-Time Constraints," in
ACM PODS Symposium, April 1990.

[27] J. Harista, M. Carey, and M. Livny, "Dynamic Optimistic Concurrency Control," in Real- Time
Systems Symposium, IEEE Computer Society, Dec. 1990.

[28] J. Huang, J . Stankovic, and D. T . an K. Ramamaritham, "Experimental Evaluation of Real-
Time Optimistic Concurrency Control Schemes," in 17th VLDB, April 1991.

[29] W. S. Kim and J. Srvastava, "Enhancing Real-Time DBMS Performance with Multiversion
Data and Prioirty Based Disk Scheduling," in Real-Time Systems Symposium, IEEE Computer
Society, Dec. 1991.

[30] J. Huang, J. Stankovic, and D. T. an K. Ramamaritham, "Experimental Evaluation of Real-
Time Transaction Processing," in Real-Time Systems Symposium, IEEE Computer Society,
Dec. 1989.

[31] L. Sha, R. Rajkumar, S. Son, and C. Chang, "A Real-Time Locking Protocol," IEEE Trans-
actions on Computers, vol. 40, pp. 793-800, july 1991.

[32] H. Korth, "Triggered Real-Time Databases," in 16th VLDB Conference, August 1990.

[33] K. J . Lin, "Consistency Issues in Real-Tie Database Systems," in 22nd Hawaii Internaltion
Conference on System Science, Jan. 1989.

[34] S. Vrbsky and K. J. Lin, "Recovering Imprecise Transactions With Real-Time Constraints,"
in Symposium on Reliable Distributed Systems, Oct. 1988.

[35] R. Rajkumar, Task Synchronization in Real-Time Systems. PhD thesis, Carnegie Mellon
University, 1989.

[36] Y. Ishikawa, H. Tokuda, and C. Mercer, "Object Oriented Real-Time Language Design: Con-
structs for Timing Constraints," Tech. Rep. CMU-CS-90-111, Carnegie Mellon University,
March 1990.

[37] I. Lee and V. Gehlot, "Language Constructs for Distributed Real-Time Programming," in
Proc. IEEE Real-Time Systems Symposium, IEEE Computer Society, Dec. 1985.

[38] V. Nirkhe, S. Tripathi, and A. Agrawala, "Language Support for the Maruti Real-Time Sys-
tem," in Real-Time Systems Symposium, pp. 257-266, IEEE Computer Society, Dec. 1990.

[39] J. Stankovic and K. Ramamritham, "The Spring Kernel: A New Paradigm For Real-Time
Operating Systems," ACM Operating Systems Review, vol. 23, pp. 54-71, July 1989.

[40] G. Berry, S. Moisan, and J.-P. Rigault, "ESTEREL: Towards a Synchronous and Semantically
Sound High Level Language for Red Time Applications," in Real-Time Systems Symposium,
1983.

[41] T. Martin, "Real-Time Programming Language PEARL - Concept and Characteristics," in
Proc. COMPSAC, Chicago, pp. 301-306, 1978.

