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� Introduction

This paper is a �rst attempt at a formal theory of the development of semantic behavior�
We will take as our starting point the acquisition of quanti�er denotations� This might� at
�rst blush� seem a curious point of departure� The past two decades have� however� seen
as explosive growth in the study of quanti�ers and the theory of generalized quanti�ers
is now su�ciently mature that its learnability properties can be studied� As we shall see�
an algorithm exists that will learn the �rst�order quanti�ers� higher order quanti�ers� like
most� will present a greater challenge� however�
It should come as no surprise that the learnability properties of quanti�ed expressions

have not been the subject of widespread investigation� What� after all� do quanti�ed
expressions refer to� The question has been a matter of debate since at least the scholastic
philosophers of the middle ages who took it as problem of the reference of general and
particular terms �Loux� �	
��� Consider a recent example of the discussion

If a class were taken as consisting of its members� there could be no place for
a null class in logic� when �nothing� or �no man� stands as a grammatical
subject� it is ridiculous to ask what it refers to � � � Although it might seem
sensible to ask which portion of the class of men is constituted by the men
referred to as �all men� or �some men�� we may be led to doubt the legitimacy
of this question� if we once think of comparing the adjectival uses of �all��
�some�� �no�� and �alone����all men laugh� some men laugh� no men laugh�
men alone laugh���we see that none of these has the role of marking out part
of a class�
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�� � �� Phrases like �all men� and �some men� will not on this interpretation
have any reference at all� �all� and �some� will be signi�cant not as pre�xes to
single terms� but as parts of logical frameworks with place for two terms� �All
��� are ����� �Some ���are ����� �Some ��� are not ����� � �

�P� T� Geach� Reference and Generality

On the above theory� quanti�ed expressions have no reference� Their meaning is acquired
from the part that they play in a theory of inference�� The above point is made �and
lampooned� quite clearly by Lewis Carroll

�I see nobody on the road�� said Alice�

�I only wish I had such eyes�� the King remarked in a fretful tone� �To be
able to see Nobody� And at that distance too� Why� it�s as much as I can do
to see real people� by this light��

�Who did you pass on the road�� the King went on� holding out his hand to
the Messenger for some more hay�

�Nobody�� said the Messenger�

�Quite right�� said the King �this young lady saw him too� So of course
Nobody walks slower than you��

�I do my best�� the Messenger said in a sullen tone� �I�m sure that nobody
walks much faster than I do��

�He can�t do that�� said the King� �or else he�d have been here �rst�����

�Lewis Carroll� Through the Looking�Glass and What Alice Found There

The above quote is instructive since the King treats nobody as though it referred to
an individual� contrary to Geach�s admonitions� He then applies an inferential rule to
conclude incorrectly that nobody walks slower than the Messenger� Had the King only
followed Geach�s advice� he could have avoided his error�
Consider� though� the problem of a learner trying to associate meanings with words�

According to Geach� the learner must� �rst� recognize that certain words or phrases do not
refer to anything� That is� the learner must avoid the trap of treating nobody as though
it referred to some object or objects in the world� Instead� the learner must discover
the syllogistic patterns that they enter into� Presumably� the Geachian learner observes
its caretakers engaging in various sorts of syllogistic reasoning and� then� associates each
quanti�er with the proper syllogism� This seems a rather unlikely scenario� it presupposes

�This point of view has won wide acceptance in generative grammar� see� for example� the discussion
of Quanti�er Raising in May ������ or Chomsky ������	
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that� once the learner detects a quanti�er� it must wait until it observes someone in its
environment producing an inferential pattern� a behavior that has a rather low probability
of overtly manifesting itself in the normal course of events�
Our goal in this report is to show that there is a reasonable procedure for associating

�rst�order quanti�ers with their denotations� Our results relate recent work on generalized
quanti�ers �Barwise � Cooper� �	��� Keenan � Stavi� �	��� van Benthem� �	��� with
work on learning regular sets� We will turn� �rst� to some general discussion of the problem
of learning word meanings� After that� we will consider some properties of generalized
quanti�ers� The formal study of generalized quanti�ers in natural language has led to the
interesting result that �rst order quanti�ers can be simulated by �nite state automata�
We then apply some recent results on the learnability of regular sets to derive the result
that �rst�order quanti�ers in natural language are learnable� This result has a general
interest� since it provides an interesting computational approach to the study of conceptual
development� Whatever one believes about learning�whether learning is the application
of a general inductive procedure to raw experience or whether learning is the labeling of
innate concepts�quanti�er denotations provide an interesting puzzle� Somehow� on the
basis of the interaction between experience and inborn cognitive structure� native speakers
of English learn that the phonic sequence written �no� has a particular interpretation�
providing an answer to how they are able to do this is one of the fundamental challenges
that confronts any thoery of the development of language�

� Word Learning and Perceptual Regularities

One popular theory of word learning holds that the learner associates perceptual regular�
ities with words� In particular� the learner monitors its sense data looking for correlations
between its representations and speech� For example� a caretaker might repeatedly present
the learner with a cup while uttering the word �cup�� Eventually� the learner would come
to associate its internal representation of the cup with the word �cup�� Similarly� the
learner might hear the word �red� while a red patch is present in its sense data� this
latter example is deliberately drawn from Quine ��	
��� but he major proponent of this
theory is surely Locke ���	���
The search for perceptual regularities must be constrained by innate mechanisms�

Given the number of possible correlations that might exist in the sensory data available
to the learner �Goodman� �	
	�� it would take an enormous number of presentations for
the learner to discover just the right set of properties to associate with a word� Consider�
also� such basic problems like object recognition� how does the learner come to individuate
objects in its sensory data� For example� the learner must come to realize that all those
di�erent patterns of light hitting its retina is� in fact� di�erent presentations of the family
cat� The learner must also be able to detect properties of objects� even when the objects
that have some property are otherwise quite divers� Consider how the learner would learn
round� The learner might� for example� be told at various times that a pencil� a basketball�
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a face� an eye� an egg and a football are all round� The problem becomes worse if we take
into account properties of properties of objects like sweet� which might hold of various
tastes and dispositions�
There is some evidence that this approach works for concrete nouns� The naive view

of verb learning fails for verbs �as shown by Gleitman�� Finally� as is easy to imagine�
the sensory approach seems to be quite hopeless for quanti�er denotations� Consider the
following problems

��� a� What perceptual regularities correlate with no or nobody�
b� What perceptual regularities correlate with every�
c� What perceptual regularities correlate with at least ���

The problems in ��� are reminiscent of the problems that the scholastic philosophers
found in considering the reference of terms� Does every man have some sort of strange
distributed reference or does it refer to some sort of abstract particular in an inaccessible
Platonic paradise� In any event� it doesn�t seem as though every man could refer to
anything accessible in the learner�s perceptual world� If this is so� then� how does the
learner come to associate a meaning with quanti�ed noun phrases�

��� Syntactic Bootstrapping

Since the idea that the learner acquires word meanings by associate perceptual regularities
with phonological representations fails for quanti�er meanings� we must try to take an en�
tirely di�erent approach to the problem� The main competitor to the semantic approach
outlined above is syntactic bootstrapping� This is the theory that the learner uses infor�
mation about syntactic distributions of words to break into their semantics� For example�
semantic verb classes can be discovered exploiting innate correspondence rules between
syntactic structures and semantic classes� Thus� the learner would class monotransitives
into a broad semantic group� distinct from ditransitives� The theory is put quite succintly
in the following

The child who understands the mapping rules for semantics onto syntax can
use the observed syntactic structures as evidence for deducing the meanings�
The learner observes the real�world situation but also observes the structures in
which various words appear in the speech of the caretakers� Such an approach
can succeed because� if the syntactic structures are truly correlated with the
meanings� the range of structures will be informative for deducing which word
goes with which concept�

�Lila Gleitman� �The structural sources of verb meanings�

After identifying broad semantic classes� the learner could use other information to re�ne
these sets into subgroupings� Syntactic bootstrapping would� at very least� provide the
learner with a way into the problem of discovering word meanings�
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The syntactic bootstrapping account can correctly identify determiners as a semantic
class� Suppose� for example� that the learner has associated boy with a set of entities and
walk as a predicate on entities� Then the following provides a syntactic frame for some
determiners

���

�

Det

boy

N

NP

walks

V

VP

S

That is� the learner could use the above frame to determine that every� no� some and
so on� are functions that map noun denotations onto elements that combine with VPs
to yield sentences� This is type theoretically correct� if common nouns are of type he� ti
�functions from entities to truth values� and verb phrases are of the same type �functions
that are true or false of entities�� then determiners map noun denotations onto functions
from VP denotations to truth values

��� a� hhe� ti� hhe� ti� tii
b� �P�Q�x�P �x�� Q�x��

���a shows the type theoretic analysis of determiners as functions from nouns denotations
to functions from VP denotations to truth values� ���b shows a simpli�ed montagovian
analysis of every �I have suppressed intentional operators�� suppose that the semantic
translation of the common noun boy� which is of type he� ti is given to the function in ���b
the result is

��� �Q�x�BOY�x�� Q�x��

Feeding the denotation of walks� which is also of type he� ti� to the above function gives

��� �x�BOY�x��WALK�x��

which is a fair approximation of the sentence every boy walks� Thus� the syntactic boot�
strapping theory has the virtue of taking us to the correct semantic class of functions
for determiner denotations� But how could the learner distinguish between elements in
this class� For example� no and the have virtually the same syntactic distribution� but
they surely mean very di�erent things� To crack this puzzle� we will need to consider the
theory of generalized quanti�ers�
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� Generalized Quanti�ers

Let us begin our review of generalized quanti�er theory with a basic case� a subject and
a predicate as in ���

��� Every somnambulist is a philatelist�

The quanti�er every in ��� can be taken as a relation between two ��place prediactes� the
property of being a somnambulist and the property of being a philatelist� as shown in �
�

�
� every�fx j x is a somnambulistg� fy j y is a philatelistg�

The truth conditions for every can be given as show in ���� in particular� every holds of
two predicates P and Q� every�P�Q�� just in case P is a subset of Q

��� every�X�Y � �

�
� i� X � Y

� otherwise

Given that ��place predicates are of the type he� ti� then every is a function that maps two
��place predicates to a truth value� If we express every in terms of the lambda calculus

�	� �P�Qevery�P�Q�

then� in terms of type theory� it is of type hhe� ti� hhe� ti� tii� just as in Montague�s analysis
of quanti�ers �see ���b� above��
More generally� we might analyze a generalized quanti�er� Quant� as expressed syn�

tactically in a simple predicational structure like

���� Quant P �s� is�are Q�

as a function between two ��place predicates

���� Quant�fx j x � Pg� fy j y � Qg�

The truth conditions of the quanti�er Quant will generally be of the form

���� Quant�P�Q� �

�
� i� f�P�Q�
� otherwise

where f is some relation on the sets P and Q�
From what we have said so far� f can be any function we like between the two sets

P and Q� How many such functions between sets exist� P and Q are subsets on the
domain of discourse� D� thus they are elements of the power set of D and there are �jDj

such sets� where jDj is the cardinality of D� There are� then� �jDj choices for the �rst
argument of f and the same number for the second argument� Since f is a mapping from
pairs of sets to truth values� there are are ��

jDj
such functions� For even a small domain�

this leads to a dazzlingly large number of possible quanti�er denotations� Thus� it is of
great interest to the linguistic theory� as well as to a general theory of learning� to discover
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natural constraints on quanti�er denotations� These constraints would serve to limit what
a possible quanti�er denotation could be in a natural language� We turn to this topic in
next�

��� Constraints on Quanti�er Denotations

We begin with a well�known constraint� conservativity� formulated most clearly in Keenan
� Stavi ��	���� A form of conservativity can also be found in Barwise � Cooper ��	���
in the guise of the requirement that a quanti�er must live on its �rst argument� A simple
formulation of the conservativity constraint is given in ����

���� Conservativity
Quan�P�Q� i� Quan�P�P � Q�

Conservativity requires that a natural language quanti�er� Quan� holds between two sets
P and Q if and only if Quan also holds between P and the intersection of P and Q� This
requirement entails that the following two sentences are paraphrases of each other

���� a� Every somnambulist is a philatelist�
b� every somnambulist is both a somnambulist and a philatelist�

�
It should be noted that ���� as been put forward as a counterexample to conservativity

���� Only frogs croak�

Notice that the entire set of croaking things must be considered in determining the truth
of ����� If I restrict myself to the intersection of the frogs and the croaking things� I will
get the truth conditions of ���� wrong since� crucially� if a non�frog croaks then ���� is
false� it is su�cient to �nd a single non�frog among the croakers� One might treat only
as having the odd property of being conservative in its second argument� In particular

���� only�P�Q� �

�
� i� Q� P � �
� otherwise

For present purposes� I will set aside a detailed analysis of only as tangential to our main
goal of establishing an algorithm that will acquire �rst order quanti�er denotations�
Conservativity places a strong constraint on the class of functions in which determin�

ers can take their denotation� Conservativity reduces the number of possible determiner
denotations from ��

jDj
to ��

jDj
�Keenan � Stavi ��	���� Keenan � Faltz ��	���� van Ben�

them ��	����� Indeed� conservativity catures a general sense that a generalized quanti�er�
Quan�P�Q� is somehow about P � It fails to fully characterize this intuition� as we shall
see� In what follows� we will let D denote the domain of discourse and let Quan

D
�P�Q�

denote a generalized quanti�er on D� It seems sensible to say that once P and Q have
been �xed then adding new elements to the universe does not change the interpretation
of Quan�P�Q�� This principle can be stated as






��
� Extension
If P�Q � D � D�� then Quan

D
�P�Q� i� Quan

D��P�Q�

Conservativity and extension are closely related principles that are intended to capture
the intuition that Quan�P�Q� is somehow about P and Q� At �rst glance� one might
think that extension could follow from conservativity� but this is not the case� Consider�
in particular the de�nition of the following quanti�er� G

���� G�P�Q� �

�
� i� jP �Qj � jD � �P �Q�j
� otherwise

By de�nition� G is conservative� it requires that at least have of the elements of D be
both P and Q� Notice� however� that adding new elements to the domain can change
the truth of G�P�Q�� It is possible to construct of a domain D� with the property that
D � D� and GD�P�Q� is true but GD��P�Q� is false� violating extension�
A �nal constraint which will be important for our present purposes is that of quantity

as de�ned in ��	�

��	� Quantity
Quan

D
�P�Q� depends only on the numbers of individuals in P � P � Q� Q and

D�

Formally� ��	� disallows reference to hidden sets in the de�nition of a quanti�er� In
essence� we claim that the truth of Quan

D
�P�Q� can be determined by inspection of P � P�

Q and� possibly� D� For our purposes� the truth of many expressions containing common
natural language quanti�ers can be established without ever having to look outside the
set P � Suppose� for example� that I had the power to assemble all the somnambulists
before me in a �eld and I was asked to verify that every somnambulist is a philatelist�
Conservativity� extension and quantity together mean that I will never need to look beyond
the residents of the �eld to verify that no somnambulist is a non�philatelist�

��� The Tree of Numbers and Finite State Automata

Following van Benthem ��	���� we will follow an alternative� graph�oriented approach to
thinking about quanti�cation� Conservativity� quantity and extension guarantee that any
natural language quanti�er� Quan�P�Q�� is equivalent to a set of couples of cardinalities�
�m�n� as de�ned in ����

���� �m�n� where m � jP �Qj� n � jP �Qj

Imagine� now� the ordered pairs de�ned in ���� arrayed as shown in �gure �� that is� with
the pair ��� �� at the apex and� for any pair �i� j�� the pair �i  �� j� is written below it
and to the left� while the pair �i� j  �� is written below �i� j� and to its right� This is� of
course� the upper right hand quadrant of a cartesian coordinate system�
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(0,0)

(0,1)(1,0)

(1,1)(2,0) (0,2)

(2,1)(3,0) (1,2) (0,3)

(3,1)(4,0) (2,2) (1,3) (0,4)

Figure � The Tree of Numbers

Each point in the quadrant� then� corresponds to a situation where P �Q and P �Q
have particular cardinalities� For example� ��� �� corresponds to the case where there are
two elements in P � Q and nothing in P � Q� In this case� all the P s are Q� loosely
speaking� we can say that ��� �� is in the denotation of every�P�Q�� Suppose we replace
every pair that is in every�P�Q� by the symbol ! � and every pair that is not in every�P�Q�
by !��� We get the following graph for every�P�Q�

���� every�

+
+-

+--
+---

That is� every point in the right�descending spine of the tree is marked ! � and everything
else is marked !��� Equally� no is the mirror image of every

���� no�

+
+ -

+ - -
+ - - -

A point is contained in no�P�Q� just in case it is in P � Q and not in P � Q� Thus�
the left�desceding spine of the tree consists of points marked by ! � with all other points
marked !��� The mirror symmetry between every and no is unsurprising given their status

	



as duals�
Consider� next� some�P�Q�� A point in the tree is contained in some�P�Q� just in case

n � � in �m�n�� this corresponds to the case where P �Q is non�null

���� some�

+
-

-
+ +-

- + + +
Notice that the tree in ���� can be constructed from the tree in ���� by mapping ! � in
���� to !�� in ���� and mapping !�� to ! �� This is as expected given that some is the
complement of no�
Finally� let us take the case of a numeric quanti�er like at least two� The generalized

quanti�er� at�least���P�Q� holds if jP � Qj � �� In terms of the tree of numbers� this
means that a point �m�n� is contained in at�least���P�Q� just in case n � �� Marking
points contained in at�least���P�Q� with ! �� as usual� gives the following graph

���� at least two�

-
--

- - +
- - + +

- - + + +
Notice that the tree in ���� is like the tree in ���� except that the triangle of ! �s has
been shifted down and to the right� In general� at least n creates a downward triangle of
 �s rooted in ��� n��
The tree of numbers graphically presents a number of interesting properties of �rst�

order generalized quanti�ers� The reader is referred to van Benthem ��	��� for a more
thorough�going discussion of the tree of numbers and generalized quanti�ers� For our pur�
poses� it is important to note that any �rst order generalized quanti�er can be represented
by a regular pattern of  �s and ��s� In fact� the pattern associated with any �rst order
quanti�er is �nite in the sense that there is a �nite upper triangle in the tree of numbers
that can be used to generate the entire in�nite pattern� To show this� we must appeal to
a result from �nite model theory�
As a point of notation let us de�ne a relation on sets X and Y � X 	n Y � as follows

���� X 	n Y if either jXj � jY j � k � n� or jXj� jY j � n�

That is� X and Y are indistinguishable if the have the same cardinality or if their cardi�
nalities both exceed some threshold k�
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���� THEOREM� On �nite models� a quanti�er Quan is �rst�order de�nable if
and only if� for some �xed n� hD�P�Qi 	n hD�� P �� Q�i implies Quan

D
�P�Q� i�

Quan
D��P �� Q���

The above theorem can be interpreted as saying that �rst�order quanti�ers can only
distinguish models up to a certain point� once the cardinalities of D and D� exceed some
number n� for example� then �rst�order quanti�ers can no longer distinguish between D
and D��
In terms of the tree of numbers� this means that there is a �nite top triangle that

completely speci�es the behavior of the quanti�er� In particular� for each �rst�order
quanti�er there will be a threshold line at a b � �n in the tree of numbers� following van
Benthem ��	��� let us refer to it as the �Fra"iss#e threshold�� with the following properties

��
� The Geometric Interpretation of the Fra"iss#e Threshold

�i� the truth value at �n� n� determines the value of its generated downward
triangle�

�ii� the truth values at �n k� n�k� are propagated along their downward left
lines�

�iii� the truth values at �n � k� n  k� are propagated along their downward
right lines�

I can de�ne a �rst order quanti�er simple by giving the pattern of  �s and ��s for the
top triangle� up to the Fra"iss#e threshold�
This �geometric� result has an interesting an interesting interpretation with respect to

automata theory� since it allows us to simulate any �rst�order quanti�er by a �nite state
automaton� Recall that a �nite state automaton consists of a �nite set of states and a set
of transitions from state to state that occur on input symbols chosen from an alphabet
$� The formal de�nition of a �nite state automaton is given in ����

���� A �nite state automaton is a ��tuple �Q�$� �� q�� F � where

�� Q is a �nite set of states�

�� $ is a �nite input alphabet�

�� q� � Q is the initial state�

�� � is a transition function mapping Q
 $ to Q�

�� F � Q is a set of �nal states�

Intuitively� �nite state automata are extremely simple� memoryless devices which accept
strings drawn from a language� when in a particular state� qi� they will move to some new
state� qi��� when presented with a symbol � drawn from $ just in case ��qi� �� � qi���
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Having entered a new state� the device retains no memory of what went before� The set
of languages accepted by �nite set automata are referred to as the regular sets�
The fact that �rst order quanti�ers can be simulated by a device as simple as a

�nite state automaton is suggested by comparing the Fra"iss#e threshold and the following
�pumping lemma� for the regular sets

��	� The Pumping Lemma for Regular Sets

THEOREM� Let L be a regular set� Then there is a constant n such that if z
is a word in L and jzj � n� we may write z � uvw in such a way that juvj � n�
jvj � � and for all i � �� uviw is in L� Furthermore� n is no greater that the
number of states of the smallest �nite state automaton accepting L�

We can think of the relationship between regular sets and �rst�order quanti�ers as follows
each string is a model which could either be accepted or rejected by Quant�P�Q�� In ��	��
the string v can be thought of as �witness� for L � Quan�P�Q� and the number n is the
Fra"iss#e threshold�
Let us be a bit more precise about how to construct a �semantic automaton�� The

results from �nite model theory show that a �rst�order quanti�er can be represented by
a �nite upper triangle of the tree of numbers� We can give a procedure for mapping from
models to strings in a regular language� as suggested by our discussion of the pumping
lemma for regular sets in ��	�� Suppose we are given a quanti�er Quan

D
�P�Q� de�ned

on domain D over sets P and Q� To construct a string in the regular language

���� a� Place the elements of P in a sequence� The sequence can be determined at
random�

b� Let elements of the set P � Q be denoted by !���
c� Let elements of the set P �Q be denoted by !���

Quan
D
�P�Q� a set of strings of �s and �s where each element in P can be replaced by �

if it is in P �Q and � if it is in P �Q� Recall that conservativity� extension and quantity
guarantee that we don�t need to look outside of P to verify the truth of QuanD�P�Q��
Consider� now� the following automaton

��



���� all� every�

1

0

1

0

By convention� the starting state of the automaton is the leftmost state and the �nal
state is circled� The automaton in ���� will accept a string consisting only of �s� a single
� sends the automaton to a non�accepting state from which it cannot escape� By our
conventions in ���� this corresponds to a model where all elements of P are in P � Q�
That is P � Q or every�P�Q� � �� In brief� the automaton in ���� will accept a string
just in case it witnesses a model where every�P�Q� is true�

���� some�

1

0

1

0

Similarly� consider the automaton in ����

��



���� no�

0

1

0

1

Notice that the automaton in ���� is like the automaton in ���� except that the accepting
state and the non�accepting states have been interchanged� Thus� the automaton in ����
will accept a string consisting only of �s� if it encounters a � in a string� it will move to
a non�accepting state from which it cannot escape� Since � corresponds to an element in
P �Q� the strings accepted by the above automaton witness models where no P is Q�
Finally� the following automaton simulates �not all P are Q�� the complement of the

regular set given in ����

���� not all�

0

1

0

1

The automaton above will accept any string that contains at least one �� Notice� again�
that the automaton in ���� is like the one given in ���� except that the accepting and
non�accepting states have been interchanged�
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The automata in ����� ����� ���� and ���� complement the famous Aristotelian square
of opposition� which was long taken as the basis for philosophical logic� Notice that we
can simulate negation in the following way

���� Given an automaton� QD� which simulates a �rst�order quanti�er QuanD�P�Q��
we can construct an automaton� Q�

D
� which simulates its negation� Quan�

D
�P�Q��

by mapping every accepting state in QD� to a non�accepting state in Q�
D
and

mapping every non�accepting state in QD� to an accepting state in Q�
D
�

By ����� the automaton which simulates Quan�
D
�P�Q� will halt on an input string just in

case the automaton which simulates Quan
D
�P�Q� does not halt and vice verse�

Consider the sentence in ����

���� Some but not all somnambulists are philatelists�

The sentence in ���� involves the conjunction of two �rst�order quanti�ers� We can
simulate conjunction of �rst�order quanti�ers Quan� and Quan� by the following trick

��
� Given that a �nite state automaton Q� simulates Quan��P�Q� and a �nite state
automaton Q� simulates Quan��P�Q�� we can simulate the conjunction of the
two quanti�ers� Quan� �Quan��P�Q�� by running Q� and Q� in parallel on the
witness string� �� If both Q� and Q� accept �� then Quan� � Quan��P�Q� is
true in the model witnessed by ��

Consider a quanti�er like �at least n� where n is an integer� This quanti�er can be
modeled by copying the following fragment n times

1

0

and then attaching a �nal state with transitions for !�� and !�� leading back into it

��



1

0

Thus� at least two can be mapped to the automaton shown in ����

���� at least two�

1

0

1

0 1

0

An obvious manipulation yields an automaton that will accept exactly n� for example�
exactly two can be simulated by the following automaton

��



��	� exactly two

0

1

00

1

1

1

0

The automaton in ��	� is like the one in ���� except that there is a transition labeled
��� leading from the accepting state to a non�accepting state� The language recognized
by ��	� consists of strings containing exactly two ��s� If we follow standard conventions
in taking the to be interpreted as the one� we have an account for the de�nite article in
terms of semantic automata�
We can easily construct an automaton for at most two from the automaton in ��	� by

making the �rst two states accepting states

���� at most two�

0 0 0

0

1

1 1 1

Next� consider a quanti�er like the one in ����

���� At most �ve or exactly ten somnambulists smoke�

The complex determiner in ���� involves the disjunction of two �rst�order quanti�ers� We
can simulate such a quanti�er by consider the union of two regular sets� in particular� we
can use the following trick

���� Given that a �nite state automaton Q� simulates Quan��P�Q� and a �nite state
automaton Q� simulates Quan��P�Q�� we can simulate the conjunction of the
two quanti�ers� Quan�  Quan��P�Q�� by running Q� and Q� in parallel on
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the witness string� �� If either Q� or Q� accepts � �or both�� then Quan� 
Quan��P�Q� is true in the model witnessed by ��

Combining the tricks in ����� ��
� and ����� we see that we can simulate a large set of
�rst�order quanti�ers since both sets are closed under complementation� intersection and
union� This is unsurprising given

���� a� THEOREM� The class of regular sets is closed under complementation� That
is� if L is a regular set and L � $� then $ � �L is a regular set�

b� THEOREM� The regular sets are closed under intersection�
c� THEOREM� The regular sets are closed under uncion� concatenation and
Kleene star�

The proofs of the theorems in ���� can be found in Hopcroft � Ullman ��	
	�� The
closure properties in ���� mean that a �nite set of semantic automata could be used to
generate the �rst�order quanti�ers in natural language� On analogy with the technique
used in Keenan � Stavi ��	���� we could de�ne a set of basic automata� show that it is
closed under boolean operations and argue that some boolean combination of the basic
automata can be used to simulate any arbitrarily selected �rst�order quanti�er� Consider
in this light the following theorem from van Benthem ��	���

���� THEOREM� The �rst�order de�nable quanti�ers are precisely those that can
be accepted by permutation�invariant acyclic �nite state automata�

The term acyclic in ���� means that no state in the �nite state automaton can be con�
nected to an earlier state� once a state has been exited� there is no way of revisiting it�
although a state may be connected to itself� Permutation�invariance means that the au�
tomaton is insensitive to the order of ���s and ���s in the string� it will accept any order
so long as the quantity of ���s and ���s is correct�
We can extend the coverage a bit by allowing cyclic �nite state automata into the set�

The following is an automaton that will simulate an even number of

���� an even number of�

0

1

0

1

The following theorem� again from van Benthem ��	���� shows how this extends our
coverage

��



���� THEOREM� The permutation�closed languages or quanti�ers recognized by
�nite two�state automata are

all� some� no� not all� an even number of� an odd number of� all but

an even number of� all but an odd number of�

Finally� we should note that we have not accounted for all the natural language quan�
ti�ers in the above discussion

��
� a� Dr� Caligari�s somnambulist stalked the city�
b� Most somnambulists sleep deeply�
c� At least half of the somnambulists failed to vote�
d� More somnambulists than insomniacs abhor ludism�
e� Every integer is either even or odd�

We have said nothing about non�logical quanti�ers like the possessive in ��
�a� notice
that possessives are not permutation invariant �Keenan � Stavi� �	��� and so deserve
special treatment� Nor can we simulate most as in ��
�b or proportional determiners as in
��
�c using �nite state automata� These quanti�ers are not �rst�order since they are not
compact �for example� see Landman� �		�� for a proof that most is not �rst�order�� these
quanti�ers can� however� be simulated using push�down automata� the stack being nec�
essary to keep track of proportions� Since the push�down automata have rather di�erent
properties with respect to the learning algorithms discussed in the next section� we will
put them aside and leave them as a topic for future research� The complex determiner in
��
�d is not �rst�order and has a rather di�erent structure from the determiners discussed
above� These latter determiners take two one�place predicates to a truth value while the
determiner in ��
�d takes three one�place predicates to a truth value� Again� we will not
treat these determiners in the present work�
Finally� the example in ��
�e involves a �rst order determiner that cannot be simulated

by a �nite state automaton for the simple reason that the automaton will never halt� By
de�nition� a �nite state automaton accepts a string just in case it halts in a �nal state� The
proper analysis of ��
�e would require some special analysis which we will not undertake
here� Examples like ��
�e do seem rather remote from the primary linguistic data� so that
excluding such cases does not seem particularly troublesome�

� Learning Algorithms

We have seen� so far� that �rst order quanti�cation can be simulated using very sim�
ple machines� �nite state automata� In particular� a �rst order generalized quanti�er�
Quan�P�Q�� can be treated as a regular language� L� As such� there exists a �nite state
automaton� call it MQuan� which accepts L� Furthermore� the class of �nite state au�
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tomata which simulate �rst�order quanti�cation in natural language� call itMDet� has a
very simple structure

���� a� The class of quanti�ers which can be simultated by permutation invariant �nite
state automata for example� some� every� no� an even number of and so forth�

b� The class of numeric quanti�ers� like exactly n� at least n� at most n and so
forth� which can be recognized by acyclic �nite state automata having either
n  � or n � states�

Indeed� following the strategy developed by Keenan � Stavi ��	��� would could de�ne
a basic class of automata� Mbasic� and simulate any �rst�order quanti�er by boolean
combinations of automata inMbasic
In this section� we will turn to a general discussion of the learnability properties of

MDet� As we shall see� a powerful algorithm� due to Angluin ��	�
�� exists which will
learn the set of regular languages� Since the regular languages are a superset of the set of
languages accepted by the automata inMDet� we will have established the learnability of
the latter set� in doing so� however� we must convince ourselves that the environment for
learning presupposed by Angluins algorithm is a plausible one� We will turn to this task in
section ���� We will turn to the algorithm itself in section ���� Angluin�s algorithm itself
is more powerful than we require to learnMDet� we will discuss possible simpli�cations
in section �

��� The Environment for Learning

We turn now to a characterization of the environment in which learning must take place�
In order for semantic learning to take place� it is insu�cient to present the learner with
a sentence drawn from the target language� If a learner were presented with a sentence
and nothing else� there would be no obvious means of associating sentences with extra�
linguistic objects� namely meanings� We assume that the learner must be presented with
a sentence paired with some extra�linguistic object which will provide a set in which the
subparts of the sentence can take their denotations� Normally� one assumes that the
objects associated with sentences be sets of things drawn from the external world� but
this need not be so� The object may be syntactic in nature� for example� it might well be
a mental representation which� in turn� has semantic content�
Let us return to one of the notions that has motivated much of the thinking behind

work on word learning� Recall that associationist theories required that the learner as�
sociate phonetic sequences with perceptual regularities� While this theory has an ample
number of shortcomings� it has the virtue of tying language to the external world� to the
degree that perceptual regularities are caused by events external to the learner� Thus�
while the theory is %awed� we should at least preserve some of its elements� I will sup�
pose� in particular� that the learner has a sensorium� where I take the sensorium to be an
abstract� centralized level of representation of sensory input� I will assume� for example�
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that objects in the visual �eld have been individuated at this level� and so forth� Thus�
the sensorium is somewhat removed from raw sensory input�
During learning� the learner is presented with a pair consisting of a sentence and the

contents of its sensorium� Notice that the meaning of the sentence is not provided to the
learner� At best� if the utterance is bound to the immediate environment� subparts of
the utterance will take elements of the sensorium as their denotation� There is nothing
that guarantees that this is so� For example� the adult might utter �I dreamt I was a
butter%y dreaming I was a man�� a sentence which is obviously not tied to the external
world in any obvious way� We will require� however� that adults do speak of things in the
immediate environment with su�cient regularity to make learning possible� Assuming
that this is so� then when the learner is presented with a sentence�sensorium pair� the
learner will �rst attempt to parse the sentence� If the parse fails� we will assume that
the learner has failed to categorize or individuate all the words properly and semantic
learning is abandoned for the moment� Suppose� however� that the learner succeeds in
parsing the sentence and identi�es that one of the words is a determiner� Recall that this
occurs in the following syntactic environment� for example

��	�

�

Det

toy

N

NP

is

V

broken

Adj

AdjP

VP

S

For example� the learner might be presented with every toy is broken� This structure is
su�cient to class every as a determiner�
Once the learner identi�es an element that must be a determiner� it must attempt con�

struct a string in the language Det�P�Q�� To do so� it surveys its sensorium to determine
whether anything in the sensorium satis�es the noun �P �� In our example� it would test
the sensorium for representations of TOYS� If it �nds elements of P in the sensorium�
it then scans the sensorium for elements in P � Q and P � Q� intuitively� it tests the
environment to see which elements of P satisfy the predicate Q and which elements do
not� In our case� the learner tests to see which TOYS are BROKEN� if any� Having done
so� the learner then constructs a string of �s and �s� which is a string in the language
denoted by Det�P�Q�� Finally� if it fails to identify any elements of P in the sensorium�
it abandons the sentence as uninterpretable�
Suppose� on the other hand� that the adult utterance is of the form det P is not Q�

The learner then surveys its sensorium to determine whether anything in the sensorium

��



satis�es the noun �P �� If so� it scans the sensorium for elements in P �Q and P �Q� as
above� and having done so� it constructs a string of �s and �s� which is a string that is not
in the language denoted by Det�P�Q�� Notice that negation gives the learner information
about a string that is contained in Det��P�Q�� the complement of Det�P�Q�� Once again�
if it fails to identify any elements of P in the sensorium� it abandons the sentence as
uninterpretable�
The fact that the learner has information about the complement of Det�P�Q� is crucial

since it supports the hypothesis that� as far as semantic learning goes� the learner has
access to a minimally adequate teacher� Strictly speaking� a minimally adequate teacher
answers two types of queries on the part of the learner� The �rst type is a membership

query where the teacher responds yes or no depending on whether a particular string is a
member of the target set or not� Intuitively� negation provides a membership query for the
language Det�P�Q� allowing the learner to get access to information about strings that
are not in the language denoted by the determiner� A second type of query consists of a
conjecture� consisting of a description of a regular set� The answer is yes if the description
is equal to the target set and a string� called a counterexample� drawn from di�erence of
the target set and the description set otherwise�
It is not obvious that there is a real world correlate to a conjecture� Some further

evidence comes from Brown � Hanlon ��	
��� a study of the role of the adult input
to children� and Brown ��	
��� They report that adults tend to pay little attention to
syntactic ill�formedness of children�s utterances� they react instead to the truth value of
the proposition which they suppose that the child intended to assert� This is somewhat
like a conjecture to the degree that the learner produces a string contained in it hypothesis
set and can then monitor parental assent to its utterances� Notice� however� that mere
assent or dissent is just another form of a membership query� If the adult provides a new
sentence which is intended to truthfully characterize the publicly available scene� then he
or she has provided the learner with a counterexample� Furthermore� the child does not
produce a full�blown description of his or her hypothesis set and present it to the parents
for their approval�
Summarizing� the learner has partial access to a minimally adequate teacher� This

access comes in the form of negation as well as parental assent to the truth value of
the proposition encoded by the learner� We might say that they learner has access to
a noisy oracle� The oracle is noisy to the degree that it cannot inspect a description
of the learner�s hypothesis and since it does not have reliable access to the proposition
that it supposes the learner was trying to encode� This implies that the learner must
approximate the target set statistically� Nevertheless� we can say that the learner has
access to some negative data� Thus� semantic learning is in sharp contrast to syntactic
learning where the learner is not systematicly informed about ungrammaticality� The fact
that the learner has access to a minimally adequate teacher� albeit a noisy one� greatly
simpli�es the learning task and implies that there is a sound� tractable algorithm for
learning �rst�order quanti�er denotations�
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��� The Learning Algorithm

The learning algorithm presented here is that of Angluin ��	�
�� The basic idea is that
the learner observes strings drawn from some regular set and uses them to construct an
observation table� The observation table� itself� is equivalent to a �nite state automaton�
In this subsection we will discuss how the learner constructs the observation table and
how to interpret observation tables as �nite state automata�
We begin with the de�nition of an observation table� We �rst require the notion of

pre�x and pre�x closed

���� a� A string � is a pre�x of another string � if and only if there exists a string 	
such that � � � � 	 �� is equal to concatenating � before 	��

b� A set is pre�x closed if and only if every pre�x of every member of the set is
also a member of the set�

Su�x and su�x closed are de�ned analogously� We will assume that� associated with
each quanti�er� L� the learner constructs an observation table� �S�E� T �� which records
information about �nite strings over a set A� The observation table consists of

�� a nonempty pre�x�closed set S of strings�

�� a nonempty su�x�closed set E of strings�

�� a �nite function T mapping ��S � S �Q� � E� to f�� �g� where T �x� � � if and only
if x is in the unknown regular set�

This table is a two dimensional array with rows labeled by elements of �S � S � A� and
columns labeled by elements of E� An entry for row s and column e is the value of T �s �e��
Initially� the table is set to the null string� that is� S � E � f�g� The table is augmented
by the algorithm on the basis of observations�
For each s � �S � �S � A��� we will let row�s� denote the binary sequence in the row

labeled by s in the observation table� The ith element of the string corresponds to T �s � e�
where e is the label of the ith column� We now de�ne the following

���� a� An observation table is closed if and only if for each t � S � A� there is some
s � S such that row�t� � row�s��

b� An obersvation table is consistent if and only if whenever s�� s� � S such that
row�s�� � row�s��� then for all a � A� row�s� � a� � row�s� � a��

If �S�E� T � is closed and consistent then we can de�ne a �nite state automatonM�S�E� T �
which will accept the language L� Let M�S�E� T � � �Q�$� �� q�� F � be de�ned by

�� Q � frow�s�  s � Sg

�� q� � row���
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�� F � frow�s�  s � S and T �s� � �g

�� ��row�s�� a� � row�s � a�

Thus� we can reinterpret the observation table as a �nite state automaton� Angluin� in
fact� proves the following

���� THEOREM� If �S�E� T � is a closed� consistent observation table� then the
acceptorM�S�E� T � is consistent with the �nite function T � Any other acceptor
consistent with T but inequivalent to M�S�E� T � must have more states�

In other words�M�S�E� T �� the �nite state automaton built from �S�E� T � is the minimal
automaton for accepting the language de�ned by T �
Angluin ��	�
� gives a procedure for constructing an observation set given access to

a minimally adequate teacher� repeated below� The learning algorithm� L�� constructs
an observation table� �S�E� T �� until it is closed and consistent� When this happens� it
constructs the �nite state automaton� M�S�E� T � and conjectures it� The teacher the
replies either with yes or with a counterexample

Initialize S and E to f�g�
Ask membership queires for � and each a � A�
Construct the initial observation table �S�E� T ��

Repeat

While �S�E� T � is not closed or note consistent

If �S�E� T � is not consistent�

the �nd s� and s� in S� a � A and e � E such
that
row�s�� � row�s�� and T �s� �a�e� �� T �s��a�e��
add a � e to E�
and extend T to �S�S�A��E using membership
queries�

If �S�E� T � is not closed�

then �nd s� � S and a � A such that
row�s� �a� is di�erent from row�s� for all s � S�
add s� � a to S�
and extend T to �S�S�A��E using membership
queries�

Once �S�E� T � is closed and consistent� letM �M�S�E� T ��
Make the conjectureM � If the Teacher replies with a coun�
terexample t� then
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add t and all its pre�xes to S
and extend T to �S � S � A� � E using membership
queries�

Until the teahcers replies yes to the conjecture M �
Halt and output M �

Angluin ��	�
� gives the following result for the learning algorithm L�

���� THEOREM� Given any minimally adequate teacher presenting an unkown
regular set U � the learner L� eventually terminates and outputs an acceptor
isomorphic to the minimum deterministic �nite state automaton accepting U �
Moreoever� if n is the number of states of the minimum deterministic �nite
state automaton accepting U and m is an upper bound on the length of any
counterexample provided by the teacher� then the total running time of L� is
bounded by a polynomial in m and n�

The theorem shows that L� will learn any regular set and will do so in time bounded
by n� the number of states in the minimal deterministic �nite state automaton accepting
the set� and m� the length of the longest counterexample available to L�� Note� then�
that the �rst�order quanti�ers are learnable� since they are a subset of the regular sets�
Indeed� abstracting away from the learner�s ability to make conjectures� we would expect
the �rst�order quanti�ers to be learned quite e�ciently since ��� aside from the numeric
quanti�ers� they are mainly two state automata and ��� the shortest counterexamples for
each quanti�er is proportional to the number of states in the automaton that simulates
the quanti�er�

� Prospects

In this section� we turn to future work that the above approach to semantic learnability
suggests� First� and most obviously� there is the problem of the role that conjectures
play in L�� It seems obvious that real world learners do not propose the description of a
regular set for their care takers� consideration� If we can eliminate conjectures from L��
we would also eliminate a potential source of information to the learner� We do not yet
have a characterization of how this would a�ect the learner�
We can speculate that the use of conjectures is not crucial for learning natural lan�

guage quanti�ers� The procedure described above can be used for learner regular sets
quite generally� The learner makes a conjecture when its observation table is closed and
consistent and uses the result to either terminate or discover that its observation table is
not� in fact� closed� As we have seen� NL quanti�ers have a great deal of structure� Can
the procedure by optimized to exploit this structure� Indeed� we might suppose that the
learner has a stock of basic quanti�ers supplied a priori� Learning a quanti�er denotation
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would be either to associate a determiner� like some� with a particular automaton� or to
construct an appropriate automaton via a �nite boolean combination of basic automata�
In the former case� the learner could let all the basic automata run on the string supplied
by its sensorium� eliminating those automata that do not accept the string� Membership
queries �for example� negation� would expedite the process� Complex determiners� those
formed by a boolean combination of basic determiners� would not be simulated by any
basic automaton and� so� would eventually be associated with the null set� at this point�
a special procedure for forming combinations of basic automata could be called on�
Assuming that we are able to eliminate conjectures from the learning algorithm� we

would want to know the expected sample size for convergence and how long it would
take to see a su�cient number of examples in a real text� Intuitively� we would expect
that simple determiners like some� all� no and the to be learned �rst� since they would
correspond to the simple two�state automata� Numeric quanti�ers� like at least n would
take longer and would depend on the ability to construct n  � state automata� We
would want to con�rm this result and investigate how these complexity results square
with developmental evidence�
Finally� what about higher order quanti�ers� like most and 	�
� These can be simu�

lated with push�down automata� but Angluin�s method must be extended for these cases�
Angluin ��	�
� discusses extending L� to context�free grammars and some work has been
done by Sakakibara ��		�� who uses unlabeled structural descriptions as input to the
learner� The model described above uses simple transduction to reduce the semantic
problem �quanti�er denotations� to a syntactic problem �learning regular sets�� We do
not yet have a model which would transduce the structures that correlate with higher order
quanti�cation to the sort of unlabeled constituent structures that Sakakibara�s algorithm
uses� It may be that there is su�cient structure in higher order quanti�ers in natural
language that we could use some other method to construct the appropriate push�down
automata� We will leave this as a problem for future research�
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