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A B S T R A C T

People frequently fail to wait for delayed rewards after choosing them. These preference reversals are sometimes
thought to reflect self-control failure. Other times, however, continuing to wait for a delayed reward may be
counterproductive (e.g., when reward timing uncertainty is high). Research has demonstrated that people can
calibrate how long to wait for rewards in a given environment. Thus, the role of self-control might be to integrate
information about the environment to flexibly adapt behavior, not merely to promote waiting. Here we tested
effects of acute stress, which has been shown to tax control processes, on persistence, and the calibration of
persistence, in young adult human participants. Half the participants (n = 60) performed a task in which
persistence was optimal, and the other half (n = 60) performed a task in which it was optimal to quit waiting for
reward soon after each trial began. Each participant completed the task either after cold pressor stress or no
stress. Stress did not influence persistence or optimal calibration of persistence. Nevertheless, an exploratory
analysis revealed an “inverted-U” relationship between cortisol increase and performance in the stress groups,
suggesting that choosing the adaptive waiting policy may be facilitated with some stress and impaired with
severe stress.

1. Introduction

The ability to persist in waiting for future rewards is central to self-
control. Yet people often fail to persist in waiting, even when they
express a desire for the future reward. For example, many people do not
stick to healthy diets even when they have a goal to lose weight.
Contextual factors, such as the person's beliefs about the environment,
can influence whether an individual persists in waiting for future re-
wards. For instance, if a person believes that not having seen results in a
week means they are unlikely to lose weight at all, they may give up on
their diet. Another potentially relevant contextual factor is one's on-
going level of stress. It is unknown how stress affects overall levels of
persistence or how it interacts with beliefs about the environment. The
present study tests how acute aversive stress, induced by the cold
pressor test, affects subsequent decisions about waiting for future re-
wards.

Stress can be defined in multiple ways, but here we focus on a re-
latively long-lasting affective state that is characterized by specific

physiological and neurohormonal changes. A stress reaction is accom-
panied by transient sympathetic nervous system arousal, as well as
activation of the hypothalamic-pituitary-adrenal (HPA) axis, which
results in the release of glucocorticoids, such as cortisol (Arnsten, 2009;
Joëls and Baram, 2009). These neurohormonal effects of stress, which
can persist for minutes to hours following the stressor (Dickerson and
Kemeny, 2004), have been shown to impair cognitive capacities that
depend on the prefrontal cortex (PFC; Arnsten, 2009; Holmes and
Wellman, 2009), including goal-directed behavior (Otto et al., 2013;
Plessow et al., 2012) and executive control and flexibility (Alexander
et al., 2007; Goldfarb et al., 2016; Plessow et al., 2011). Here we
measure cortisol as a marker of HPA-axis activation following stress,
and investigate whether stress influences subsequent persistence for
delayed rewards.

The precise role of PFC-mediated cognitive control (and conse-
quently, the precise effect of stress) in persistence decisions is subject to
debate. One perspective holds that the ability to keep waiting through a
delay depends on sustaining self-control, or “willpower,” amid a
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dynamic interplay between “hot” and “cool,” or “affective” and “de-
liberative” mental processes (Metcalfe and Mischel, 1999). In this fra-
mework, successful persistence relies on exerting cognitive control
(activating the “cool” system) in order to combat temptation (which
increases activity in the “hot” system). There is some evidence for this
perspective; in the famous “marshmallow experiment,” children who
were able to distract themselves from the food items in front of them in
order to reduce their emotional impact were more successful at waiting
for the experimenter to return (Mischel et al., 1972). Moreover, the
prefrontal cortex has been shown to be involved in exerting control to
avoid temptations in some contexts (Hare et al., 2009; Maier et al.,
2015). This “hot”/“cool” theory predicts that acute stress would lead to
a reduced tendency to wait for future rewards, by taxing PFC-dependent
cognitive control and shifting the balance of activity toward a “hot”
motivational system (Heatherton and Wagner, 2011; McClure and
Bickel, 2014).

An alternative theory for how persistence decisions are approached
makes a different prediction about how acute stress would influence
this process. It has recently been proposed that the decision to persist
emerges from a dynamic reassessment of costs and benefits that takes
into account one's beliefs about the environment (McGuire and Kable,
2013). In other words, people continually re-evaluate the subjective
value of an awaited reward based on how long they have been waiting
and how long they believe they still have to wait. In certain situations
(including many that require self-control), when uncertainty about fu-
ture reward timing is high, it may be adaptive to quit waiting after a
period of time. In a set of studies, McGuire and Kable (2012, 2015)
showed that people are able to calibrate their waiting times based on
the statistics of the reward environment. Specifically, people wait
longer when reward delays are drawn from a uniform distribution and
are sure to arrive within a predictable period of time (“high-persis-
tence” environment), and they wait less time when reward delays are
drawn from a heavy-tailed distribution, when it is suboptimal to wait
for every delayed reward (“limited-persistence” environment). The
ventromedial prefrontal cortex (vmPFC) has been linked with the dy-
namic valuation signal that enables calibrating waiting times appro-
priately (McGuire and Kable, 2015). Thus, according to this dynamic
reassessment hypothesis, the role of PFC-dependent cognitive control is
not to increase persistence, but rather, to flexibly calibrate persistence
behavior according to one's knowledge about the timing statistics of the
environment. If acute stress impaired this calibration process, the result
would be reduced waiting time in “high-persistence” conditions, but
increased waiting time in “limited-persistence” conditions.

A third possible outcome is that acute stress would have no overall
effect on persistence or the calibration of persistence. Indeed, one study
showed that acute sleep deprivation (another type of psychophysiolo-
gical perturbation) did not significantly influence persistence decisions
(Massar and Chee, 2015). Often null findings of stress may emerge
because of individual differences in stress-response magnitude com-
bined with an underlying non-monotonic dose-response function. Be-
havior in tasks that rely on the PFC has been shown to suffer under high
levels of stress but improve under low levels of stress (Diamond et al.,
2007; Luksys and Sandi, 2011; Sapolsky, 2015). For example, model-
based learning, which involves bearing a complex task structure in
mind, is impaired under stress but only in individuals with low
working-memory capacity, for whom the task is more difficult (Otto
et al., 2013). This “inverted-U” pattern, if found here, would mask any
overall effect of stress on behavior. Given the preponderance of evi-
dence that performance in goal-directed tasks after acute stress follows
an “inverted-U” function, in the present work we tested both linear and
curvilinear models to relate individual stress responses to behavior.

In the current study, we tested three possible effects of stress on
persistence behavior. We induced stress with the cold pressor test, a
manipulation that involves submerging an individual's arm in ice water
for 3 min. If stress interferes with control processes necessary for per-
sistence in the face of a delay, then acute stress should impair the ability

to wait for delayed rewards. If instead stress interferes with control
processes that support the optimal calibration of waiting time de-
pending on the statistics of the environment, then high levels of acute
stress would interfere with the ability to wait in high-persistence con-
ditions, but would lead to excessive waiting in limited-persistence
conditions. Finally, it may be that both overall persistence and the
calibration of persistence are impervious to the effects of acute stress.

2. Methods

2.1. Participants

One hundred and twenty participants (69 F; mean age = 23.34;
SD = 4.04; 30 participants per group, consistent with previous studies
of stress and decision-making: FeldmanHall et al., 2015; Lenow et al.,
2017; Otto et al., 2013) were recruited via paid advertisement on New
York University's campus and received $15/hour for participating in
the study, in addition to compensation from the task (∼$10; see below
for details). Approval was obtained from the University Committee on
Activities Involving Human Subjects at New York University, and all
participants signed a consent form before the experiment.

2.2. Procedure

To control for circadian fluctuations in cortisol levels (Lupien et al.,
2007), all sessions were conducted between the hours of 12 and 5 p.m.
Subjects were randomly assigned to one of four groups, representing a
2 × 2 crossing of a stress manipulation (stress vs. no stress) and a
manipulation of the timing in the willingness-to-wait task: Stress High
Persistence, Control High Persistence, Stress Limited Persistence and
Control Limited Persistence.

After giving informed consent, participants completed a pre-study
questionnaire, which assessed factors that might influence the stress
response, including current medication use (corticosteroids, beta-
blockers, anti-depressants, and oral contraceptives) and routine ex-
posure to ice baths. After 7 min of acclimation to the lab environment,
subjects provided the first saliva sample (T1) and then completed three
questionnaires: the Perceived Stress Scale (PSS; Cohen et al., 1983)
which measures the extent to which stressors have felt uncontrollable in
the last month, the Beck Depression Inventory (BDI-II; Beck et al.,
1996), which measures depressive symptoms, and the State and Trait
Anxiety Inventory - Trait version (STAI-T; Spielberger, 1983), which
measures the participant's general susceptibility to be anxious.

Upon their completion of the questionnaires, participants were
presented with Block 1 (the first of three) of the willingness-to-wait task
(described below). This first block was completed prior to the stress
manipulation, to allow learning of the task to stabilize prior to the stress
or control manipulation. Stress has been found to influence learning
processes (Luksys and Sandi, 2011), and here we were interested in
stress effects on performance, not initial learning. Participants then
completed the Positive and Negative Affect Scale (PANAS; Watson
et al., 1988) to assess current levels of positive and negative affect.
Subjects then underwent either the stress or control manipulation
(described below). Following this, participants completed a second
PANAS questionnaire to assess how their affect changed after experi-
encing the stress or control manipulation. After this, there was a 7 min
break to allow for cortisol levels to increase in the stress groups
(Dickerson and Kemeny, 2004). The second saliva sample (T2) was
taken at the end of this break period, before Blocks 2 and 3 of the task
were presented to the participant. The third and final saliva sample (T3)
was taken after the task was completed. Finally, participants completed
three more questionnaires: the Deferment of Gratification scale (DoG;
Ray and Najman, 1986), which measures ability to wait for rewards in
everyday life, the Barratt Impulsiveness Scale (BIS; Patton et al., 1995)
which measures everyday impulsiveness, and the Intolerance of Un-
certainty questionnaire (IUS; Buhr and Dugas, 2002) which measures
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attitudes toward uncertainty in everyday life. Fig. 1 depicts the timeline
of the procedure.

2.3. Stress manipulation

Participants in the stress groups underwent the cold pressor test (CPT),
during which they submerged their non-dominant hand to elbow in a
0–4 °C ice-water bath for 3 min. The CPT is widely used in the laboratory
to model the effects of mild to moderate acute stress that participants
might encounter in everyday life. It has been shown to reliably activate
sympathetic nervous system and hypothalamic-pituitary-adrenal axis
arousal as measured by increased physiological, endocrine (i.e., cortisol),
and subjective levels of stress (Lupien et al., 2007; McRae et al., 2006;
Velasco et al., 1997). Participants in the control groups submerged their
non-dominant arms in room temperature water for 3 min. To assess sub-
jective levels of stress after the task, all participants rated how unpleasant
they found the stress or control task on a scale from 0 (not at all un-
pleasant) to 10 (extremely unpleasant).

2.4. Cortisol measurement

We measured cortisol levels from saliva samples. As salivary free
cortisol levels correspond well with plasma free cortisol levels, collec-
tion of saliva is a simple, non-invasive means to obtain an index of the
biologically active fraction of this hormone (Kirschbaum and
Hellhammer, 1989). Participants were instructed to refrain from eating,
consuming caffeine and alcohol, and exercising for at least 2 h before
study participation. Saliva samples were collected using Salimetrics oral
swabs after the first set of questionnaires and acclimation to the lab
environment (T1), and approximately 10 min (T2) and 25 min after the
stress manipulation (T3). Cortisol levels corresponding to the stress
response tend to peak at around 20–30 min post-stress (Dickerson and

Kemeny, 2004; Kirschbaum et al., 1993). Subjects placed the oral swabs
under their tongues for 2 min, after which the swabs were placed in
vials and stored in a freezer until later processing. Cortisol samples
were assayed at Salimetrics, LLC (Carlsbad, CA, USA). A participant was
considered an outlier if his/her raw baseline cortisol measurement was
more than 2.3 standard deviations from the mean; outliers were ex-
cluded from all analyses.

To assess individual differences in cortisol change in response to
stress, we first log10-transformed the raw cortisol measurements (which
were in units of μg/dl). This is common practice in stress research
(Lenow et al., 2017; Otto et al., 2013), because cortisol measurements
tend to be non-normally distributed (Miller et al., 2013). Then we
subtracted the cortisol measurement at T1 from the average of cortisol
measurements at T2 and T3. This “Δ Cortisol” measure represents the
amount of cortisol secreted as a result of the manipulation (Lenow
et al., 2017; Otto et al., 2013).

2.5. Willingness-to-wait task

This task has been previously used to study persistence (McGuire
and Kable, 2015, 2012) and was programmed using the Psychophysics
Toolbox in Matlab (Brainard, 1997; Kleiner et al., 2007). At the outset
of the task, participants were told that their goal was to earn as much
money as possible in a fixed amount of time (7 min per block), since
they would keep any money that they earned in the task as additional
compensation for the study.

On each trial of this task, participants saw a circular green token la-
beled “0¢” appear on the screen. After a random delay, the token turned
blue and was worth 10¢. Participants could sell the token at any time by
pressing the spacebar. After pressing the spacebar, they were shown
feedback (the word “SOLD” appeared over the token) for 1 s. After a 1 s
blank ITI, a new trial began (see Fig. 2 for sample trial). The token's value

Fig. 1. Timeline of the procedure. After an ac-
climation period during which participants gave
informed consent, the first cortisol measurement
was taken. Then subjects did one block of the
willingness-to-wait task before they underwent
either the cold pressor test (stress groups) or
submerged their arms in room temperature water
(control groups). After a short break during
which cortisol levels increase after acute stress,
another cortisol measurement was taken.
Following this, participants completed two more

blocks of the willingness-to-wait task before the final cortisol measurement.

Fig. 2. One trial of the willingness-to-wait task. Subjects could either wait for the token to mature to sell it, or sell the token before it matured to advance to the next trial. Once they
pressed a key to sell the token, the word “SOLD” appeared over the token for 1 s, and then, after a blank 1-s ITI, a new trial appeared on the screen. A visual representation of time was
depicted by a moving bar below the token. Time left (out of 7 min) was also indicated on each screen.
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was added to the participant's total earnings, which accumulated
throughout the block. The earnings were displayed on the screen
throughout the experiment, along with the time remaining in the block. A
white progress bar marked the amount of time the current token had been
on the screen, and the full length of the bar corresponded to 50 s. The bar
grew continually from the left and re-set when a new token appeared. The
progress bar was included to discourage a strategy of counting time
(McGuire and Kable, 2015). Participants were informed that they could
sell the token before it matured if they felt it was taking too long and they
wanted to move on to a new token, but they would not earn any money
from selling 0¢ tokens. Unlike in a previous version of this task (McGuire
and Kable, 2012), the initial token was not worth any money. This has
little influence on behavior or the incentive structure of the task (McGuire
and Kable, 2015), and it ensures that participants do not spend time ex-
ploring the ultimately unproductive strategy of ignoring the large reward
and solely accruing small rewards.

Each participant was randomly assigned to either a high-persistence
or limited-persistence task condition. These conditions differed in the
timing statistics of reward delivery, and were designed so that either
high or limited persistence was advantageous. In the high-persistence
condition, delays were drawn from a uniform distribution, spanning
0–20 s. Here the reward maximizing strategy was to always wait for the
token to mature. In the limited-persistence condition, delays were
drawn from a (truncated) generalized Pareto distribution. In this heavy-
tailed distribution, there was a high probability that the token would
mature after a short delay, but after that delay had passed, the token
was unlikely to mature until 40 s had passed. Here the optimal waiting
policy was to quit if the token had not arrived within 2.22 s (see 2.6.
Normative Analysis section below). After 2.22 s, the subjective value of
waiting deteriorated since the opportunity cost of waiting for the token
to mature increased (Fig. 3).

2.6. Normative analysis

The “giving-up time” is defined as the time at which a decision
maker will give up waiting on each trial if the reward has not yet ar-
rived. The expected return for giving up at time t is calculated as fol-
lows. Let pt be the proportion of rewards delivered earlier than t. Let τt
be the mean duration of these rewarded trials. One trial's expected re-
turn, in dollars per second, is:

=

+ − +

R
p

p p
 

0.10( ) 
τ    t (1     )    2 t

t

t t t

The numerator is the trial's expected gain in dollars, and the de-
nominator is the trial's expected cost in seconds, given a 10¢ reward
and 2-s ITI. The value of t that maximizes Rt is the optimal giving-up
time. The optimal giving-up time in the high-persistence condition was
20 s (reward rate = 83¢ s−1), while the optimal giving-up time in the
limited-persistence condition was 2.22 s (reward rate = 93¢ s−1).

2.7. Behavioral measures

To operationalize participants' willingness to wait, we constructed a
Kaplan–Meier survival curve for each participant. The Kaplan–Meier is
a nonparametric estimator of the survival function (Kaplan and Meier,
1958). For each time t, it plots the participant's probability of waiting at
least until t if the reward is not delivered earlier. Analyses were re-
stricted to the 0–20 s interval for which there were observations in both
conditions (we can only observe an individual's willingness to wait t
seconds if we have trials where the scheduled delay equals or exceeds
t). The area under the survival curve (AUC) is a useful summary sta-
tistic, representing the average number of seconds an individual was
willing to wait within the analyzed interval. We constructed two Ka-
plan-Meier curves and computed the AUC separately for each. The first
curve corresponded to behavior in the first block of the task (pre-ma-
nipulation) and the second corresponded to behavior in the last two
blocks of the task (post-manipulation).

To assess the calibration of persistence, we calculated the deviation
from the optimal giving-up time, the extent to which participants
waited too long in the limited-persistence condition or not long enough
in the high-persistence condition. In the high-persistence group this
corresponded to 20 s minus the participant's AUC; in the limited-per-
sistence group it corresponded to the participant's AUC minus 2.22 s. In
the latter group, we excluded the 5 participants (out of 60) whose AUC
was lower than 2.22. Thus, a large deviation from optimal is indicative
of waiting too long in the limited-persistence condition, and not waiting
long enough in the high-persistence condition. As a secondary measure
of performance in the blocks post-manipulation, we also recorded the
total earnings (in dollars) in those blocks, expecting that better-cali-
brated individuals would tend to earn more money.

3. Results

3.1. Pre-study exclusionary criteria questionnaire

In the pre-study questionnaire, 2 participants reported routine ex-
posure to ice baths (as part of athletic training), but since they were in
the control (i.e., warm water) group, they remained in the sample. No
participants reported current corticosteroid, beta-blocker, or anti-de-
pressant use. Sixteen participants reported current oral contraceptive
use (10 in stress group, 6 in control group). Whereas they were not
excluded, all analyses of cortisol data were also done without these
participants, since there is some evidence that cortisol responses to
stress may be influenced by oral contraceptive use (Kuhlmann and
Wolf, 2005; Rohleder et al., 2003).

One participant (in the stress group) had a baseline cortisol mea-
surement more than 5 SD from the mean (1.132 μg/dl) so they were
removed from all analyses, leaving 119 participants.

Fig. 3. (A) Cumulative reward probability as a
function of elapsed time in the trial in the high
persistence and limited-persistence conditions. In
the high persistence condition, all delays were
between 0 and 20 s, and the cumulative prob-
ability of reward receipt increased linearly until
20 s had passed. In the limited-persistence con-
dition, the cumulative reward probability in-
creased steeply in the first few seconds, and then
less dramatically from there on out. (B) Projected
(average) earnings per block as a function of
giving-up time in each trial. The reward rate in-
creased in the high persistence condition as the
giving-up time increased, suggesting that it is
optimal to never give up until the reward arrives.
In the limited-persistence condition, on the other
hand, the average reward rate increased until

approximately 2.22 s, and then began to decrease, so the optimal strategy was to quit if the reward had not arrived in that amount of time.
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3.2. Manipulation check

The stress manipulation had a significant effect on subjective mar-
kers of stress (see Table 1). We used the PANAS scale to assess sub-
jective affect. In a 2 × 2 ANOVA with stress group (Stress/No Stress) as
a between-subjects factor and time (pre/post manipulation) as a within-
subjects factor, negative affect showed borderline main effects of time
(F(1,117) = 4.03; p = 0.047) and group (F(1,117) = 4.06; p = 0.046).
Negative affect tended to increase over time, and the stress group en-
dorsed higher negative affect ratings overall. Crucially, however, there
was a significant group × time interaction (F(1,117) = 13.33;
p < 0.001). Independent paired t-tests revealed no significant differ-
ence in negative affect between groups before the stress or control
manipulation (t117 = 0.08; p= 0.936), but a significant difference after
the manipulation (t117 = −3.40; p = 0.001). There was a main effect
of time on positive affect (F(1,117) = 7.13; p= 0.009), such that positive
affect decreased after the manipulation. There was only a trending main
effect of group (F(1,117) = 3.43; p = 0.067), and interaction of group
and time (F(1,117) = 3.65; p = 0.059) on positive affect ratings, con-
sistent with previous research showing that stress does not necessarily
lower positive affect ratings, even as it increases negative affect ratings
(Ossewaarde et al., 2011).

After the CPT or control manipulation, participants were asked how
unpleasant they found the water bath, on a scale from 0 to 10. There
was a main effect of stress group on unpleasantness rating
(F(1,117) = 260.29; p < 0.001), in that individuals who underwent the
CPT reported the water bath as significantly more unpleasant compared
to individuals who underwent the room temperature water bath in the
control condition (t117 = −16.13; p < 0.001).

The stress manipulation also had a significant effect on physiolo-
gical markers of stress. We examined cortisol measurements as a phy-
siological measure of stress response. We conducted a 2 × 3 ANOVA
with stress group (Stress/No Stress) and time (Baseline / 10 min post-
manipulation/ 25-min post-manipulation) as factors. There was a sig-
nificant effect of time (F(2, 1.37) = 14.57; p < 0.001) and of group
(F(1,117) = 8.47; p = 0.004) on cortisol, in that cortisol levels increased
over time overall, and were higher in the stress group compared to the
control group. Critically, however, there was a significant time × group
interaction (F(2, 1.37) = 26.50; p < 0.001) on cortisol. Individuals in
the stress groups had significantly higher cortisol levels 10 min
(t117 = −2.96; p = 0.004) and 25 min post manipulation
(t117 = −5.08; p < 0.001), but not at baseline (t117 = 0.44;
p = 0.443; Fig. 4). All effects remained significant when excluding the
sixteen participants who reported current oral contraceptive use (main
effect of group: F(1,101) = 5.86; p = 0.017; main effect of time: F(2,
1.38) = 15.13; p < 0.001; group × time interaction: F(2, 1.38) = 28.09;
p < 0.001).

3.3. No effects of stress manipulation on persistence or calibration of
persistence

We replicated previous research (McGuire and Kable, 2015, 2012)
showing that individuals are capable of learning the statistics of the
environment and calibrating their waiting behavior appropriately. We
conducted a 3-way ANOVA, with group (Stress / No Stress) and task
condition (Limited-Persistence / High Persistence) as between-subjects
factors, Time (Pre / Post manipulation) as a within-subjects factor, and
the AUC of the Kaplan-Meier survival curve as the dependent variable.
There was a main effect of task, showing that individuals in the limited-
persistence condition successfully waited less time on average than
individuals in the high-persistence condition (F(1, 115) = 33.71;
p < 0.001). There was a main effect of time, indicating that across all
participants, people were more likely to wait less time after the ma-
nipulation than before (F(1, 115) = 19.30; p < 0.001). Finally, there
was a time × task interaction, showing that individuals were learning
over time to wait less in the limited-persistence condition relative to the
high-persistence condition (F(1, 115) = 18.15; p < 0.001). After the
manipulation, participants in the high-persistence condition waited
longer than participants in the limited-persistence condition, both in
the stress group (mean difference between high-persistence and limited-
persistence = 6.45 s; SE of difference = 1.30 s; t57 = 4.95; p < 0.001)

Table 1
Affective ratings and raw cortisol values for control and stress groups.

Measure Control Group
(N = 60)

Stress Group
(N = 59)

Control > Stress

Positive Affect
(pre-manipulation)

M = 32.72
SD = 7.52

M = 29.98
SD = 6.71

t117 = 2.78
p = 0.006

Positive Affect
(post-manipulation)

M = 30.17
SD = 9.74

M = 28.66
SD = 8.32

t117 = 0.91
p = 0.367

Negative Affect
(pre-manipulation)

M = 14.50
SD = 3.86

M = 14.42
SD = 6.18

t117 = 0.08
p = 0.936

Negative Affect
(post-manipulation)

M = 13.68
SD = 4.34

M = 17.24
SD = 6.82

t117 = −3.40
p < 0.001

Manipulation unpleasantness
rating

M = 1.52
SD = 2.10

M = 7.76
SD = 2.12

t117 = −16.13
p < 0.001

Baseline Cortisol (μg/dl) M = 0.22
SD = 0.13

M = 0.21
SD = 0.15

t117 = 0.77
p = 0.443

Cortisol +10 min post
manipulation (μg/dl)

M = 0.19
SD = 0.10

M = 0.25
SD = 0.14

t117 = −2.96
p = 0.004

Cortisol +25 min post
manipulation (μg/dl)

M = 0.21
SD = 0.17

M = 0.39
SD = 0.28

t117 = −5.08
p < 0.001

Mean ratings for positive and negative affect pre- and post-manipulation, mean un-
pleasantness ratings (scale: 0–10, where 0 = neutral; 10 = extremely unpleasant) for the
water bath manipulation, and raw cortisol values at baseline, 10 min after manipulation
and 25 min after manipulation. All t-tests are two-sided. Note: summary statistics for
cortisol are shown in raw units, but significance testing was performed on log-trans-
formed values. Stress groups showed a significant increase in negative affect and cortisol
compared to control groups following the stress manipulation, and they endorsed sig-
nificantly higher unpleasantness ratings.

Fig. 4. Effects of stress manipulation on cortisol
levels. (A) Average (log10) cortisol at baseline, at
10 min after the manipulation, and at 25 min
after the manipulation for stress and control
groups. Cortisol was higher for individuals in the
stress groups at T2 and T3, but not at baseline.
(B) Scatterplot showing cortisol at baseline
plotted against average cortisol across T2 and T3.
Individuals to the left of the diagonal showed
higher cortisol levels post-manipulation. While
there were large individual differences in cortisol
responsiveness, individuals in the stress group
tended to show increases from baseline.
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and the control group (mean difference between high-persistence and
limited-persistence = 5.96 s; SE of difference = 1.35 s; t58 = 4.40;
p < 0.001).

Contrary to our initial hypotheses, acute stress interfered neither
with the ability to wait for future rewards nor with the ability to op-
timally calibrate persistence based on the task environment. There was
no main effect of stress on giving-up time (F(1, 115) = 0.002; p= 0.966),
nor was there a stress × time interaction (F(1, 115) = 0.05; p = 0.821),
showing that stress did not make individuals more or less likely to
persist for delayed rewards. There was also no stress × task interaction
(F(1, 115) = 0.01; p = 0.915), or stress x task × time interaction (F(1,
115) = 0.29; p = 0.590; Fig. 5), showing that the ability to calibrate
persistence appropriately was also intact under stress.

3.4. Exploratory: curvilinear relationship between cortisol response to stress
and calibration of persistence

Although there was no effect of the stress manipulation on overall
persistence or calibration of persistence in the willingness-to-wait task,
previous research has shown that the magnitude of the physiological re-
sponse to stress can predict the extent of behavioral effects. Specifically,
there is evidence for both linear (Goldfarb et al., 2016; Luksys et al., 2009;
Maier et al., 2015) and curvilinear (Diamond et al., 2007; Luksys and
Sandi, 2011; Otto et al., 2013; Sapolsky, 2015) relationships between
cortisol responses to stress and behavior in PFC-dependent tasks. Such
effects might be masked if only overall effects of the stress manipulation
are considered. Thus, in an exploratory analysis, we examined individual
differences in behavior as a function of stress response. To this end, we
computed Δ Cortisol for each participant, and collapsed across both timing
manipulation groups within the stress group to increase power. We ex-
cluded participants who did not show an increase in cortisol post-stress
(i.e., Δ Cortisol < 0, N = 20; leaving N = 362).

To test for effects of Δ Cortisol on giving-up time, we entered AUC

post-manipulation as the dependent variable in our regression. We
controlled for timing condition (High-Persistence or Limited-
Persistence) by entering it as a dummy variable. To test for effects of Δ
Cortisol on the calibration of persistence, we used deviation from op-
timal giving-up time as our dependent variable. We tested both linear
and quadratic models.

Contrary to the hypothesis that acute stress decreases persistence in
the face of a delay, there was no discernible effect of the physiological
response to stress on people's ability to wait for delayed rewards. There
was neither a significant linear relationship between Δ Cortisol and
AUC (β = −3.36; p = 0.473), nor a significant quadratic relationship
(Δ Cortisol β= 3.57; p= 0.829; (Δ Cortisol)2 β=−11.68; p= 0.663).

We did find, however, some support for the hypothesis that acute
stress would influence the ability to flexibly calibrate persistence.
Specifically, there was an inverted-U shaped relationship between
people's physiological response to stress and their ability to calibrate
persistence appropriately to the environment. There was a trend sug-
gesting a linear relationship between Δ Cortisol and deviation from
optimal giving-up time (β = −8.49; p = 0.054; R2 = 0.1046;
AIC = 212.52). However, the quadratic model fit the data significantly
better (Δ Cortisol β= -52.98; p < 0.001; 95% CI {-80.41,−25.55}; (Δ
Cortisol)2 β = 74.57; p = 0.002; 95% CI {30.38, 118.77};
F(2,33) = 8.51; p = 0.001; R2 = 0.3403; AIC = 203.53; likelihood ratio
test comparing models: χ2 = 10.99; p < 0.001; Fig. 6a). Among re-
sponders to the stress manipulation, when cortisol increased slightly
post-stress, individuals performed more optimally in the task – they
waited less time for rewards in the limited-persistence condition, and
more time for rewards in the high-persistence condition. However, re-
sponders with a more substantial increase in cortisol post-stress per-
formed worse. This relationship did not hold when examining the
control groups, showing that random fluctuations in cortisol do not
yield this same behavioral pattern (Δ Cortisol β = 3.37; p = 0.426; (Δ
Cortisol)2 β = 6.31; p = 0.663; F(2,56) = 0.38; p = 0.6833;
R2 = 0.0135; AIC = 365.67). Moreover, both linear and quadratic
relationships did not hold when examining non-responders within the
stress group (Δ Cortisol < 0; N = 20; linear: Δ Cortisol β = −17.53;
p = 0.396; quadratic: Δ Cortisol β = 27.66; p = 0.735; (Δ Cortisol)2

Fig. 5. Average Kaplan-Meier survival curves for partici-
pants in the control (Panels A, B) and stress groups (C, D).
Solid lines represent participants in the high-persistence
(HP) condition. Dotted lines represent participants in the
limited-persistence (LP) condition. Shaded areas signify
SEM. While differences between high-persistence and lim-
ited-persistence conditions increased over time with ex-
perience in the task (Area under the curve (AUC) of the
Kaplan-Meier curve increased in the high-persistence con-
dition and decreased in the limited-persistence condition),
there were no overall differences between the stress and
control groups in behavior in this task, either with respect
to calibration of persistence, or persistence in general.

2 In individual differences analyses, participants with an AUC post-manipulation
of< 2.22 s were excluded (see Behavioral Measures in Method). Four of these participants
were in the stress group, and one was in the control group.
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β = 186.78; p = 0.568; F(2,17) = 0.53; p = 0.596). Finally, there was
no significant relationship between Δ Cortisol and deviation from op-
timal giving-up time in the first block of the task (prior to the stress
manipulation; linear: F(1,34) = 2.38; p = 0.132; quadratic:
F(2,33) = 2.30; p = 0.116). This demonstrates that the effect was a
consequence of stress and not a trait variable that might correlate with
the magnitude of the stress response.

We found a similar inverted-U shaped relationship between phy-
siological responses to stress and our secondary measure of perfor-
mance in the task: earnings post-manipulation. There was no significant
linear relationship between Δ Cortisol and earnings (β = 1.18;
p = 0.204; R2 = 0.0469; AIC = 101.255), but there was a significant
quadratic relationship (Δ Cortisol β = 9.84; p = 0.002; 95% CI {3.83,
15.86}; (Δ Cortisol)2 β=−14.53; p= 0.005; 95% CI {-24.23, −4.83};
F(2,33) = 5.69; p = 0.008; R2 = 0.2563; AIC = 94.327; likelihood ratio
test: χ2 = 8.93; p = 0.003; Fig. 6B).3 When cortisol increased slightly,
people earned more money in the task (regardless of task condition) but
when it increased to higher levels, people earned less. Once again, this
relationship did not hold in the control groups (Δ Cortisol β = −1.07;

p = 0.255; (Δ Cortisol)2 β = −0.95; p = 0.768; F(2,56) = 0.68;
p = 0.5126; R2 = 0.0236; AIC = 187.85), or in non-responders within
the stress group (Δ Cortisol < 0; N = 20; Δ Cortisol β = −19.12;
p = 0.329; (Δ Cortisol)2 β = −93.00; p = 0.238; F(2,17) = 0.99;
p = 0.3923; R2 = 0.1042; AIC = 69.92).

3.5. Self-report questionnaire results

There were no significant correlations between giving-up time
(AUC) or calibration of persistence (deviation from optimal) and scores
on any of the self-report measures. There were, however, significant
correlations among self-report measures (see Table 2 for correlation
matrix).

Given the finding that only thirty-six individuals within the stress
group showed a cortisol response that was greater than zero, we in-
vestigated whether cortisol “responder” status was related to self-report
measures of stress (unpleasantness rating and change in negative and
positive affect). Within the stress group, cold pressor test unpleasant-
ness ratings did not differ between responders and non-responders
(t57 = 1.56; p = 0.124). The difference in negative affect from before
to after stress also did not differ between these two subgroups
(t57 = −0.71; p = 0.484). Finally, positive affect change also did not
differ between these subgroups (t57 = −0.005; p = 0.996). Thus, it is
not necessarily the case that people who reported feeling less stressed
were the individuals who did not show an increase in cortisol following
stress.

Table 2
Correlations among self-report and behavioral measures.

AUC Deviation from optimal STAI-T PSS BDI-II IUS DoG BIS-11

r = 0.02
p = 0.828

r = −0.03
p = 0.771

r = 0.05
p = 0.621

r = 0.02
p = 0.832

r = 0.05
p = 0.622

r = 0.11
p = 0.260

r = −0.06
p = 0.517

AUC

r = −0.03
p = 0.756

r = −0.02
p = 0.867

r = −0.11
p = 0.246

r = −0.06
p = 0.544

r = 0.08
p = 0.415

r = −0.18
p = 0.054

Deviation from optimal

r = 0.64∗∗

p < 0.001
r = 0.73∗∗

p < 0.001
r = 0.66∗∗

p < 0.001
r = −0.33∗∗

p < 0.001
r = 0.50∗∗

p < 0.001
STAI-T

r = 0.64∗∗

p < 0.001
r = 0.58∗∗

p < 0.001
r = −0.28∗

p = 0.002
r = 0.44∗∗

p < 0.001
PSS

r = 0.61∗∗

p < 0.001
r = −0.31∗

p = 0.001
r = 0.58∗∗

p < 0.001
BDI-II

r = −0.11
p = 0.25

r = 0.28∗

p = 0.002
IUS

r = −0.66∗∗

p < 0.001
DoG

BIS-11

Pearson correlations among self-report and behavioral measures. Average giving-up time (AUC) and calibration of persistence (deviation from optimal giving-up time) post-manipulation
were unrelated to scores on self-report questionnaire measures. STAI-T = State and Trait Anxiety Inventory – Trait version; PSS = Perceived Stress Scale; BDI-II = Beck Depression
Inventory; IUS = Intolerance of Uncertainty Scale; DoG = Deferment of Gratification scale; BIS-11: Barratt Impulsiveness Scale (11-item). There were, however, significant correlations
among self-report measures (*p < 0.01; **p < 0.001; p values are uncorrected for multiple comparisons; N = 115).

Fig. 6. Plots of Δ Cortisol against deviation from
optimal giving-up time (A) and earnings (B) in
the stress groups. Individuals in gray had cortisol
responses to the stressor that did not exceed zero,
so they were not included in analyses. Among
participants with an increase in cortisol (shown
in black), there was a significant curvilinear re-
lationship between these variables and Δ Cortisol
(deviation from optimal: F(2,33) = 8.51;
p = 0.001; earnings: F(2,33) = 5.69; p = 0.008).

3 When excluding four additional participants who were taking oral contraceptives
(leaving N = 32), results remained similar for deviation from optimal giving-up time
(linear: Δ Cortisol β = −9.15; p = 0.052; quadratic: Δ Cortisol β = −55.94; p = 0.001;
(Δ Cortisol)2 β = 77.1; p = 0.003; F(2,29) = 8.11; p = 0.0016; R2 = 0.3587;
AIC = 182.51) and for earnings (linear: Δ Cortisol β = 1.32; p = 0.178; quadratic: Δ
Cortisol β = 10.18; p = 0.004; (Δ Cortisol)2 β = −14.6; p = 0.008; F(2,29) = 5.26;
p = 0.0113; R2 = 0.2661; AIC = 85.02).
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4. Discussion

The current study tested the effects of acute physical stress on a
process that is emblematic of self-control: waiting for delayed rewards.
We found that both persistence for delayed rewards and the calibration
of persistence in response to environmental statistics were unaffected
by acute stress. In an exploratory analysis of individual differences, we
found that, among participants who responded physiologically to the
stressor, a small increase in cortisol predicted better calibration of
persistence, and a larger increase in cortisol was associated with worse
calibration. In other words, there was an “inverted-U” relationship
between performance in this task and cortisol response to stress. Given
the post-hoc nature of this analysis, this result should be interpreted
with caution. Nevertheless, it suggests an interesting hypothesis for
testing in future studies.

Stress has been shown to impair performance on tasks that require
cognitive control and flexibility (Arnsten, 2009; Otto et al., 2013;
Plessow et al., 2012, 2011; Raio et al., 2013), whereas it can actually
improve performance on simpler, more well-rehearsed tasks (de Kloet
et al., 1999; Diamond et al., 2007; Hartley and Adams, 1974; Sandi and
Pinelo-Nava, 2007). This has been explained partly through neurobio-
logical mechanisms. Cognitive control tasks rely on the prefrontal
cortex, a region that is impaired following high levels of acute stress
(Arnsten, 2009; Holmes and Wellman, 2009). One dominant theory of
self-control has suggested that the role of regions involved in executive
control (such as the PFC) is to facilitate persistence in the face of
temptation (Heatherton and Wagner, 2011; Metcalfe and Mischel,
1999). Here we found that, regardless of the delay-timing statistics in
the task, acute stress had no effect on persistence per se. This was the
case both when looking at effects of stress overall, and when examining
the relationship between average giving-up time and cortisol response.
This null result is consistent with emerging literature suggesting that
PFC control processes optimally integrate costs and benefits, rather
than merely increase wait times (Berkman et al., 2017; Kurzban et al.,
2013; McGuire and Kable, 2013; Shenhav et al., 2013). Previous evi-
dence of the involvement of PFC in persistence might be better ex-
plained by its role in cost-benefit decision-making.

Most studies examining the effects of stress on self-control to date
have utilized intertemporal choice tasks, which involve discrete choices
between outcomes available at different points in time (e.g., “$10 today
or $20 in 30 days”). There is some experimental evidence that stress
leads to an increased likelihood to choose immediate rewards in these
paradigms (Kimura et al., 2013), but the effect size is small (Fields
et al., 2014), and the evidence is inconsistent. One study showed that
there was no effect of laboratory-induced stress on intertemporal
choices (Haushofer et al., 2013), and another showed that these deci-
sions depended on individual differences in perceived stress (Lempert
et al., 2012). The paradigm in the current study involved delays on the
order of seconds, rather than days, and thus might involve a different
decision process (Hayden, 2015; Jimura et al., 2013). Nevertheless, our
null result regarding stress and persistence adds to the evidence that
stress does not necessarily lead to more impulsive choice.

Self-control, though, can involve not just persistence, but the proper
integration of contextual factors into the decision to persist. Giving up
waiting for a reward can be conceptualized as a rational decision in
response to certain environmental conditions. Here we found, con-
sistent with previous studies (Fung et al., 2017; Massar and Chee, 2015;
McGuire and Kable, 2015, 2012), that individuals are capable of
shifting their willingness to wait for rewards in response to the reward
timing distributions they encounter. This capacity to calibrate persis-
tence was preserved under acute stress, but the relationship between
the cortisol response to stress and optimal calibration was curvilinear. If
individuals showed a small physiological response to stress, then their
performance improved, but at high levels of stress, their ability to ca-
librate persistence diminished. These results are in line with research
showing that, in small amounts, stress facilitates performance on PFC-

dependent tasks, but that more extreme stress leads to decrements in
performance (Luksys and Sandi, 2011).

One limitation of the current study is that, whereas our stressor –
the cold pressor test –induced significant increases in physiological and
self-report measures of stress on average, many participants did not
show a hormonal response. While variability in physiological responses
allowed us to investigate individual differences, the relatively large
number of non-responders may have limited our power to detect a re-
lationship between cortisol response and behavior. Another limitation
is that the only physiological measure of stress that we assayed was
cortisol. Acute stress elicits both a fast sympathetic nervous system
response and a slower HPA-axis response (Joëls and Baram, 2009). Here
we were primarily interested in the HPA-axis response, but future stu-
dies will be needed to assess how stress might influence this decision
process at different time points, and how different aspects of the stress
response relate to these decisions. Finally, whether an individual per-
ceives a stressful situation as a “challenge” or a “threat” (Blascovich
et al., 1999), or as controllable or uncontrollable (Koolhaas et al.,
2011), has been shown to impact later decisions (Kassam et al., 2009)
and performance on cognitive tasks (Henderson et al., 2012; Jamieson
et al., 2012, 2010). Here we did not probe for individual appraisals of
the stressor, and we only examined one type of stress (physical pain),
somewhat limiting the generalizability of our findings.

Self-control has often been defined as the ability to persist for future
rewards, but persistence is not always optimal. Perhaps a more precise
conceptualization of self-control is the ability to integrate information
about the environment in order to flexibly adapt behavior. In line with
this, we have shown that acute stress, which can impair controlled
processes, has no effect on persistence, but does impair the calibration
of persistence in individuals with a high cortisol response to stress. This
work adds to our understanding of the mechanisms behind decision-
making in complex environments, and how emotional states might af-
fect these decisions.
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