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We reconsider the problem of deforming a conformal field theory to a neighboring

theory which is again critical. An invariant formulation of this problem is important for

understanding the underlying symmetry of string theory. We give a simple derivation of

A. Sen’s recent formula for the change in the stress tensor and show that, when correctly

interpreted, it is coordinate-invariant. We give the corresponding superconformal pertur-

bation for superfield backgrounds and explain why it has no direct analog for spin-field

backgrounds.
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1. Introduction

Suppose that one were handed the space of solutions to Yang-Mills on a compact

manifold. This is a large and complicated space: large because it contains all gauge

copies, complicated because it contains all the instanton moduli spaces. One is now told

that this space sits in a still larger, but much simpler, space as the solutions to a simple

differential equation. How does one discover that the larger space is the space of Yang-Mills

connections, particularly if the solution space is presented in some awkward coordinates

having little relation to the convenient Aa
µ?

This hypothetical situation may seem far-fetched, but it is of course our present

dilemma in string theory. We have a clear characterization of the solution space as the

space of (super) conformal field theories with c = 0 and a specific ghost sector. We can

for example characterize such theories by weights and operator products, or sometimes

by spacetime background fields. These coordinates may well be unrelated to the good

coordinates on the full configuration space.

In the Yang-Mills case a good move would be to examine the solution space for its

symmetries. In fact we can find the full symmetry group of configuration space just by

examining solution space. Indeed every nontrivial gauge transformation acts nontrivially

on some solution. We can then seek coordinates on which the symmetries act in a simple

way, then discover the full space of connections. Can we do as much for string theory?

Certainly our first steps should be to get an abstract characterization of infinitesimal

gauge symmetry, one not tied to weak background fields about flat spacetime. But we

can take a hint from string perturbation theory. There it is known that perturbation by

spurious states decouple, and so can be interpreted as symmetry transformations. Accord-

ingly we abstract the idea that at least some brst-exact deformations of conformal field

theories should be regarded as small gauge transformations. Finding the Lie algebra of

these transformations for closed strings is a challenging task; good coordinates must be

found in which the structure ‘constants’ are constant.

Moreover it is not clear that all brst-exact deformations will be symmetries. Indeed

by studying sigma models Evans and Ovrut have found an important condition for a

deformation to be a gauge deformation [1]. We will return to this point, but let us note

here that a key element of their analysis was the explicit construction of the change in the

stress tensor as we deform the theory. It is this change which we will reconsider here.

The stress tensor is an operator-valued (2,0)-form which we build for any c = 0

CFT. It is a convenient probe for distinguishing different theories. Conversely we can
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think of T (z) as partially defining the theory, and attempt to construct a new theory by

modifying T (z). This is the approach taken in [1]. However we regard T , it is a useful

device not only for studying symmetry in string theory [2][1], but also for investigating the

background-dependence of string field theory [3] and the structure of auxiliary fields and

their symmetries in string-induced supergravity theories [4][5][6][7].

Also of course the deformation of CFT is a problem of independent mathematical

interest. There is a generalization of Kodaira-Spencer theory in which the brst operator

plays the role of the Čech differential. In this language the gauge deformations are given

by trivial Čech classes.

Recently A. Sen has given a formula for the perturbation of the stress tensor as we

change the theory [3]:

Ln + δLn = Ln −
∆

2πi

∮

|z|=ǫ

dz̄ zn+1Φzz̄(z, z̄) . (1.1)

Here Φzz̄ is a conformal field of weight (1, 1) and ∆ is a small number. Various features of

this formula are at first sight puzzling. The stress tensor should characterize the theory,

but δLn seems to depend on a cutoff ǫ, and indeed on a coordinate z. The coordinate-

dependence enters both through the field Φ and through the choice of contour, which

matters since Φ is not holomorphic. This contour arises also in the formula of [1]

T (z) + δT (z) = T (z) + ∆Φ(z, z̄) , on the cylinder (1.2)

which is valid only on one equal-time contour τ = const and so again appears coordinate-

dependent. Finally in [7] we find (this time on |z| = const)

Tzz(z) + δTzz(z) = Tzz(z) +
z̄

z
Φzz̄(z, z̄) on the plane (1.3)

which not only seems to be coordinate-dependent, but also gives an apparent singularity

in the o.p.e. T (z)T̄ (w̄) [7]!

In fact all of these formulas are correct when suitably interpreted. We will rederive

(1.1) from scratch using a geometrical approach which absolutely guarantees that the c = 0

Virasoro algebra will be satisfied, without any calculations. The reader may want to pass

directly to this derivation, section three. We then argue that (1.1) is in fact coordinate-

independent, again without calculation. Along the way we will review the approach to

CFT presented by G. Segal, and in particular the notion of conformal field. This will

make it clear why no formula like (1.1) can be expected to work when Φ is a spin field,

or space-time fermion vertex operator, as found empirically in [5][7]. We will however

generalize to the case where Φ is a spacetime boson; this is very easy with our geometrical

construction.
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2. Conformal Fields

2.1. Operator formalism

We must briefly review some key ideas codified in [8], all of which essentially appear

in [9][10] and elsewhere.

A conformal field theory with c = 0 is essentially a machine taking Riemann surfaces

with holes to vectors in a state space H, its dual H∗, or their various tensor products. Let

us make this a bit more precise. If Σ is a Riemann surface without holes, suppose ζ is

a local complex coordinate, a function ζ : Σ → C well defined in some neighborhood of

ζ = 0. We momentarily suppose that ζ−1 : C → Σ is well defined throughout the unit

disk D = {|z| < 1} where z is the standard coordinate on C. Then we can delete the disk

Dζ = ζ−1(D) from Σ to get Σ\Dζ . If ζ−1 is not well-defined on all of D we can always

rescale ζ to a new ζ ′ which is.

A CFT then assigns to Σ a number, the partition function; to (Σ, ζ) a vector |Σ, ζ〉 ∈

H; to (Σ, ζ1, ζ2) a bivector |Σ, ζ1, ζ2〉 ∈ H ⊗ H, and so on. A perhaps obvious point

which will later prove crucial is that the vector |Σ, ζ1, ζ2 . . . ζk〉 ∈ H⊗k depends only on the

isomorphism class of (Σ, ζ1, . . . , ζk) as a Riemann surface with chosen local coordinates.

Thus if (Σ̃, z1, . . . , zk) is another Riemann surface with coordinates and if we find an

analytic isomorphism

Φ: Σ\
(
Dζ1

∪Dζ2
· · ·

) ∼
−→Σ̃\

(
Dz1

∪Dz2
· · ·

)
, with ζi = zi ◦ Φ (2.1)

on some neighborhoods of the punctures, then the two vectors must agree. This require-

ment concisely summarizes both conformal invariance and modular invariance. We may

phrase it even more concisely as the requirement of “no additional data.” All of our con-

structions must operate on (Σ, ζ1, . . .) with no choices of additional data (metric, marking,

etc.) on Σ.

Consider the sphere P
1 regarded as the z-plane plus a point. Then z, z−1 are co-

ordinates well-defined and centered at 0, ∞, so |P1, az, (az)−1〉 ∈ H ⊗ H for |a| > 1.

Considering the isomorphism z → z−1 we see that this bivector is symmetric. We require

of any CFT that it be a nondegenerate form on H∗ ⊗H∗ and so (taking a → 1) defines a

bilinear metric on H.1 Accordingly we can attach to each hole on Σ an orientation: if it

1 We will have no need for the hermitian metric induced by the Minkowski structure [8].

Evidently, all our constructions are formal since H is infinite-dimensional. In practice H is graded

and finite-dimensional in each grade, or else the tensor product of this with something simple.
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matches the induced orientation we use the vector |Σ, ζ〉 above; otherwise we use the trans-

pose vector 〈Σ, ζ| ∈ H∗ constructed using the metric. Similarly with two holes |Σ, ζ1, ζ2〉

can be converted into an operator on H. In particular |P1, z, z−1〉 is by construction 1.

Given two Riemann surfaces with coordinates (ΣL, ζ
L
1 , . . .), (ΣR, ζ

R
1 , . . .) we can sew

them in the usual way by removing {ζLi = 0} and {ζRj = 0} and identifying PL ∼ PR when

ζLi (PL) = 1/ζRj (PR) . (2.2)

This construction is natural, i.e. the isomorphism class of the joined surface depends only

on the isomorphism classes of the original surfaces under (2.1). Then it makes sense to

demand of a CFT that the vector associated to the joined surface should be the product

of the vectors associated to the original surfaces:

|(ΣL, ζ
L
1 , . . .)∞ij(ΣR, ζ

R
1 , . . .)〉 = 〈ΣL, ζ

L
1 , . . . |ΣR, ζ

R
i , . . .〉ij (2.3)

where the notation means the dual pairing of the i-th copy of H∗ with the j-th copy of H;

we choose opposite orientations for these holes. ∞ij denotes the geometrical operation of

sewing.

The sewing axiom just expresses locality of field theory. In path integral language it

says that we must be able to cut spacetime, impose matching boundary conditions on each

side of the cut, do two separate path integrals, and then sum over all boundary data to

obtain the original path integral.

These three axioms—no additional data, nondegeneracy, and “sewing” (2.3) —are

the main ingredients in conformal field theory.2 We should note, however, that when

we consider families of CFT’s, for example in the deformation problem, a new subtlety

will arise: the vector space H will itself depend on the theory. Suppose we consider only

infinitesimal deformations by ∆ ≪ 1 about a generic theory, so that all the H∆ can be

identified. In general there will still be some freedom in how we identify them, i.e. in

trivializing the bundle of state spaces over theory space. We can readily see this freedom

in the above axioms. Given a CFT, let us construct a new one by letting |Σ, ζ〉∼ ≡ U |Σ, ζ〉,

where U is a constant invertible matrix. Then ∼〈Σ, ζ| = 〈Σ, ζ | U−1 and so ∼〈ΣL, ζ
L |

ΣR, ζ
R〉∼ = 〈ΣL, ζ

L | ΣR, ζ
R〉, so the “new” theory again obeys the sewing axiom. In fact

we have done nothing but change the framing for H, a trivial passive transformation. All

operators |Σ, ζ1, ζ2〉 simply suffer an inner automorphism by U .

2 The other axioms of [8] will not be of interest here.
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Passive coordinate transformations in general have no physical significance. In some

cases however, they imply true (dynamical) symmetries. For example in special relativity

those coordinate transformations preserving the metric are symmetries because the metric

is the only geometrical object which must be chosen to define the action. Similarly Evans

and Ovrut found that some, but not all, inner automorphisms correspond to low-energy

symmetries of string theory. In background-independent language their operator U must

be generated by the contour integral of a local current. It would be extremely interesting to

work backwards and find the hidden geometrical object (analogous to the 4-metric hiding

in Maxwell’s equations) which is preserved when this criterion is met. Just as in relativity

one can then explore what happens when this object is made dynamical.

2.2. Virasoro algebra

Again consider the sphere P1. The surface (P1, ϕ◦z, z−1) has the property that when

joined to (Σ, ζ1, . . .) at the i-th hole it yields (Σ, ζ1, . . . , ϕ◦ζi, . . .). We define the generator

ℓn of coordinate changes by the map

ϕ(z) = z − ǫzn+1 ,

for small ǫ. The operator |P1, ϕ ◦ z, z−1〉 is then close to 1. Expanding it as

∣∣∣P1, z −
∑

n

ǫnz
n+1, z−1

〉
≡ 1+

∑

n

(ǫnL−n + ǭnL̄−n) (2.4)

defines operators Ln and L̄n. We have dropped order |ǫ|2 terms, but since the ǫ are complex

we must expand in both ǫ and ǭ, where ǭ is the complex conjugate. Note that L̄n need

not be conjugate to Ln. In (2.4) we take the second puncture to live in H∗, the first in H.

Thus the sewing property (2.3) says that

|Σ, ζ − ǫζn+1〉 = (1+ ǫL−n + ǭL̄−n)|Σ, ζ〉 , n ≥ 0 . (2.5)

We can similarly define L−n by (2.4) for n < 0; such transformations then change the

shape of Σ or the location of the hole instead of just changing the shape of the hole as in

(2.5).

We see from (2.4) that the Ln are universal operators quite independent of the surface

Σ to which we may apply them in (2.5). Let us consider two such transformations in
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succession. If ψ(z) = z − δzm+1, then ψ ◦ ϕ(z) = z − ǫzn+1 − δzm+1 + ǫδ(m+ 1)zn+m+1.

We will drop order ǫ2 or δ2 terms. We thus get

|P1, z−ǫzn+1−δzm+1+ǫδ(m+1)zn+m+1, z−1〉 = (1+δL−m+ δ̄L̄−m)(1+ǫL−n+ ǭL̄−n) .

We can now write the lhs as 1 − (m + 1)(ǫδL−n−m + ǭδ̄L̄−n−m) plus terms symmetric

under ǫ↔ δ, n↔ m. Making the exchange and subtracting we thus find that

[Ln, Lm] = (n−m)Ln+m, [L̄n, L̄m] = (n−m)L̄n+m , [Ln, L̄m] = 0 , (2.6)

the algebra Vect ⊕ Vect of meromorphic vector fields on C and its conjugate.

We have repeated this well-known derivation for two reasons. First, we wished to

emphasize that the algebra (2.6) arises simply as a direct geometrical consequence of the

Lie bracket algebra of vector fields. We derived it purely from the axioms of section 2.1.

When those axioms are satisfied and Ln is defined via (2.4) there is no need to do any

computation to verify (2.6), nor (we will see) the Ward identity. Secondly, there is no need

to pretend that z, z̄ are somehow independent in order to get two commuting copies of

Vect.3

We note in passing that the surface (P1, z− ǫzn+1, z−1) is isomorphic to (P1, z, z−1 −

ǫ(z−1)−n+1). Equating the two states obtained from (2.5), we get 1 + ǫL−n + ǭL̄−n =

1+ ǫLT
n + ǭL̄T

n where the operator adjoint comes from taking the dual on the second copy

of H. Thus LT
n = L−n again follows from axioms already stated, and we have

〈Σ, ζ − ǫζn+1| = 〈Σ, ζ|(1+ ǫLn + ǭL̄n) . (2.7)

Now that we have an operator L0 + L̄0 which rescales the coordinate ζ, we see that

we need not literally cut out the unit disk Dζ from Σ to define |Σ, ζ〉. Instead we may

rescale ζ to get some conveniently small disk Dζ/q and let |Σ, ζ〉 = q−(L0+L̄0)|Σ, ζ/q〉.

Using the Ln, L̄n we can classify states as usual [9]. We now wish to recall why a

primary state ψ ∈ H of weight (h, h̄) gives rise to a rank (h, h̄) tensor field 〈ψ(P )〉Σ on

Σ. Choose any point on Σ and a coordinate ζ centered there. Then the number 〈Σ, ζ | ψ〉

3 The reader may ask how a central term can arise. In fact when c 6= 0 the axioms of 2.1 fail;

the vector |Σ, ζ〉 is only projectively defined [8].
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has very little dependence on ζ. Transforming ζ by ℓn, n > 0 has no effect at all because

Lnψ = 0, n > 0, while ζ ′ = (1 + ǫ)ζ gives a factor of

1− ǫh− ǭh̄ =

(
∂ζ ′

∂ζ

)−h (
∂ζ̄ ′

∂ζ̄

)−h̄

since L0ψ = hψ, L̄0ψ = h̄ψ. Hence the form

〈ψ(P )〉Σ ≡ 〈Σ, ζ | ψ〉(dζ|P )
h(dζ̄|P )

h̄ ; ζ(P ) = 0 (2.8)

is independent of the choice of ζ. Varying P we get a tensor field on Σ.

When ψ is not primary then we must indicate its ζ-dependence explicitly. One con-

venient notation [11] is

〈:ψ(P ):ζ〉Σ ≡ 〈Σ, ζ | ψ〉 ; ζ(P ) = 0 .

This makes sense, since a change of ζ changes the mode expansion of ψ and is precisely a

change of normal ordering.

2.3. Operator fields

In quantum field theory it is often important to think of fields not just in terms of their

correlations, but as operator-valued differential forms, mapping a suitable “in” state space

to an “out” space. Normally this poses few problems. We choose a Lorentz frame and

equal-time hyperplanes; we restrict functional integrals to the region between t = ±T with

appropriate vacuum boundary conditions on each, eventually taking T → ∞. Changing

to a different Lorentz frame changes the hyperplanes, but this is easily compensated.

A unitary operator U(Λ) changes the state associated to one hyperplane to the other.

Since the theory is Lorentz invariant, nothing changes if we subject everything to the

transformation Λ, and so for example scalar field operators obey

U(Λ)†Φ(x)U(Λ) = Φ(Λ−1x) (2.9)

in the full interacting theory.

In quantum gravity we have much more symmetry. Spacetime can be very compli-

cated; the initial and final surfaces may be arbitrary hypersurfaces. But CFT lies some-

where between these two extremes. Spacetime is again complicated, but we can take all

of our hypersurfaces to be of the form |ζ| = 1 where ζ is some analytic coordinate. We
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already know the analog of U(Λ) for changes of ζ, so we again get a Ward identity like

(2.9).

Specifically given a CFT and a primary ψ, we define the field operator Ψ on the plane

by

Ψ(P ; z) ≡ 〈P1, z, z−1, u | ψ〉(du|P )
h(dū|P )

h̄ . (2.10)

Here P is a point on the z-plane and u is any coordinate centered at P ; z is the usual

coordinate centered at the origin.4 As before the choice of u drops out. Note however that

Ψ(P ; z) has a functional dependence on z. Since we agree to think of larger radius (closer

to ∞) as ‘later’ time, we make (2.10) into an operator by taking the dual on the copy of

H associated to z, the coordinate centered on 0. Thus Ψ eats ‘in’ state coming from 0.

One simple choice of u in (2.10) is u = z − z(P ); then we abbreviate

Ψzz...(P ) ≡ 〈P1, z, z−1, z − z(P ) | ψ〉P . (2.11)

As usual we write h unbarred and h̄ barred indices. Note that (2.11) does not treat the in-

and out-points symmetrically. The formulas (2.10), (2.11) make it clear that the conformal

field Ψ depends not only on ψ ∈ H but also on the theory in question: if we identify the

state spaces of two theories then the same ψ yields two very different fields. For example

changing the hamiltonian L0 + L̄0 changes the dependence of Ψ on the radius |z|.

Again we get a Ward identity analogous to (2.9). It says that since only the conformal

structure enters into CFT, transforming everything in (2.11) by an isomorphism changes

nothing; this is of course just the “no extra choices” axiom of section 2.1 again. Clearly it

is not enough to transform Ψ as a tensor: we must also transform the in- and out-slices.

Using (2.4), (2.7), we at once get

Ψz′z′...(P
′) = Ψzz...(P ) where z(P ) = z′(P ′) (2.12)

or

0 = z(P )n+1 ∂

∂z(P )
Ψz...(P ) + h(n+ 1)z(P )nΨz...(P )− [Ln,Ψz...(P )] , (2.13)

which is the usual Ward identity [9]. The commutator comes because z−1 7→ z−1 +

ǫ(z−1)−n+1, but we take a dual on the inner hole’s state space. Again we have given

4 As mentioned earlier it does not matter that the in- and out-surfaces both coincide at |z| = 1;

we can rescale both using q(L0+L̄0).

8



this derivation to emphasize that (2.13) is is a purely geometrical fact, an automatic

consequence of the axioms of section 2.1. The conditions (2.13) are very restrictive; most

operator-valued forms on C are not conformal fields at all. Since the conditions depend on

Ln we again see that the notion of conformal field depends on the CFT.

Note that the idea of conformal field elaborated here needs no modification for super-

fields. We consider the family of spheres (P
1|1
NS , (z, θ), (z

−1,±iz−1θ), (z−z(P̂ )−θθ(P̂ ), θ−

θ(P̂ )) where z(P̂ ), θ(P̂ ) are two constants and P
1|1
NS is the usual super sphere. Inserting a

primary Neveu-Schwarz state at P̂ gives us a superconformal tensor-valued field [12], and

identities like (2.13) follow. For spin fields the situation is quite different. It now makes no

sense to let a point P̂ move around on a fixed super Riemann surface P
1|1
R . This is because

the superconformal structure is required to degenerate at the moving point P̂ [13][14],

and also at one of the fixed points 0,∞. We can certainly invent a family of SRS with

coordinates which behaves in this way, but it will give a much more complicated formula

than (2.13).

2.4. Stress tensor

We can now construct an example of a conformal field. Letting

Tzz(P ) =

∞∑

n=−∞

z(P )−n−2Ln (2.14)

we find that (2.13) is satisfied with (h, h̄) = (2, 0), using (2.6). Eqn. (2.14) would of course

seem strange if we expected the lhs to transform simply as a tensor, since the operators

Ln on the rhs are the same in every coordinate system. T deserves to be called the stress

tensor because the Ln, which generate conformal transformations, are moments of T

Ln = T [−ℓn] ≡
1

2πi

∮
zn+1Tzz(z) dz (2.15)

just as the usual Lorentz generators are moments of the usual stress tensor.

3. Deformation

3.1. Conformal case

Let us try to deform our CFT while preserving the axioms of section 2.1. The easiest

way to ensure the sewing property (2.3) is to modify the partition function by the insertion
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of a local field, then integrate over the insertion point. Sewing will be satisfied if we further

specify that on a surface with holes we integrate the new field over Σ\(Dζ1
∪Dζ2

. . .) only.

We stress that due to (2.2) we want to exclude unit disks, not ǫ-disks, from this integral.5

Then cutting the partition function into 〈ΣL, ξ | ΣR, ζ〉, the change is
∫
Σ
〈Φ(P )〉, which

equals the inner product of

|ΣR, ζ〉∆ ≡ |ΣR, ζ〉0 +
∆

2πi

∫

P∈ΣR\Dζ

P 〈φ | ΣR, ζ, u〉0 du|P dū|P (3.1)

times the corresponding left state up to order ∆. u is a coordinate centered at P ; ∆ is a

real constant.

We need to make (3.1) a bit more precise. To maintain conformal and modular

invariance the rhs must depend only on the isomorphism class of (ΣR, ζ
R). The only

things which can be invariantly integrated on Σ are densities, or equivalently tensor fields

of rank (1,1). Thus we see that φ must be taken to be a primary state of weight (1,1): a

vertex operator. Finally, we generalize (3.1) in the obvious way to allow for several holes

on the lhs.

One consequence of (3.1) is immediate. The state |P1, z, z−1〉∆ = |P1, z, z−1〉0, since

there is no area between the two unit disks. Since this state defines the metric, the

latter does not change. More invariantly, (3.1) implies that some identification of state

spaces H0
∼= H∆ has been made; we see that this identification corresponds to a unitary

connection.

We thus see that by taking the state space to be the same H as before and the state

to be (3.1) we satisfy all three of our axioms and hence have a new CFT. As we have

emphasized, the new theory has a new stress tensor which is guaranteed without any

calculations to obey the Virasoro algebra. We can now write it down by combining (2.7)

with (3.1).

Eqn. (2.7) says for ζ ′ = ζ − ǫζn+1

0〈Σ, ζ
′| = 0〈Σ, ζ|(1+ ǫLn + ǭL̄n) +O(ǫ2)

∆〈Σ, ζ
′| = ∆〈Σ, ζ|(1+ ǫ(Ln +∆Xn) + ǭ(L̄n +∆X̄n)) +O(ǫ2) +O(∆2) ,

(3.2)

5 Since the actual size of the holes can be taken less than 1, we have no possibility of a

singularity here.
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where we write the modified generator as L
(∆)
n ≡ Ln +∆Xn (recall ∆ is real). Expanding

both sides of (3.2) we get

0〈Σ, ζ | (ǫXn + ǭX̄n) =
1

2πi

∫

Q∈Σ\Dζ′

0〈Σ, ζ, u|φ〉Qdu|Q ∧ dū|Q

−
1

2πi

∫

Q∈Σ\Dζ

0〈Σ, ζ, u | φ〉Q du|Q ∧ dū|Q

(3.3)

where u is centered at Q. Thus Xn involves an integral over the signed area of Dζ\Dζ′

(see Fig. 1). We dropped some terms of order ǫ2 from the lhs of (3.3). Thus the response

of the perturbed theory to a change of the region is the integral of the local perturbation

over the new territory.

Fig. 1: The dotted regions get an extra minus sign in eqn. (3.3).

Since Dζ\Dζ′ is very thin, both sides of (3.3) are of order ǫ. In fact to lowest order

the integral is just the line integral along |ζ| = 1 times the width of the region in Fig. 1.

The width is just − 1
2 (ǫz

n + ǭz̄
n
) in the z-plane.

For example let Σ be the sphere with an additional hole. Since (P1, z, z−1) just gives

the unit operator, eqn. (3.3) gives

ǫXn+ ǭX̄n =
1

2πi

∫ 2π

0

dθ ·(−2i)(− 1
2 )(ǫz

n+ ǭz̄
n
)〈P1, z, z−1, z−z(Q)|φ〉Q , z(Q) = eiθ .

We took u = z − z(Q) and did the radial integral. Hence

Xn = −
1

2πi

∮

|z(Q)|=1

dz̄ zn+1Φzz̄(Q) ; (3.4)

which is Sen’s formula. Φ is the operator field of (2.11), in the unperturbed theory. Note

that unlike (2.15), formula (3.4) requires a specific contour in the z-plane.
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One can easily check that Ln +∆Xn, L̄n +∆X̄n obey all of (2.6) as we argued they

had to: using the methods of [15] we find [Ln, Xm] = (1 − m)Xn+m and [L̄n, Xm] = 0,

from which (2.6) follows. One can also construct

T (∆)
zz (z) =

∞∑

−∞

z−n−2(Ln +∆Xn) . (3.5)

Unlike formulas (1.2), (1.3) this is valid throughout the plane and it is manifestly holomor-

phic in z, by fiat. Also (3.5) reduces to (1.3) for |z| = 1, or to (1.2) on the cylinder. And

the Ward identity (2.13) is satisfied for L
(∆)
n and T

(∆)
zz (z), as we argued had to happen; in

particular the operator product of T (∆) with T̄ (∆) is nonsingular in contrast to [7]. The

root cause of the various apparent paradoxes with (3.4), (3.5) have to do with the fact that

Φ in (3.4) is a conformal field for the original theory while T (∆) is a conformal field for

the perturbed theory. As we stressed before these are distinct notions. Note that by itself

the second term of (3.5) is not a conformal field in either sense, nor should it be.

The real question about (3.4) is as we indicated whether it makes coordinate-invariant

sense. Since (3.5) satisfies the criterion of no dependence on additional choices, this too

should follow automatically. Let us verify it.

We want to compare (3.4) to

X ′
n = −

1

2πi

∮

|z′(P )|=1

dz̄
′
(z′)n+1Φz′z̄′(P ) .

To compare this to Xn we need to account for all the coordinate dependence of Φ, including

the constant-time slices. But under the map z → z′(z) a point Q with |z(Q)| = 1 goes to

a point P with z′(P ) = z(Q); by (2.12) we have Φzz̄(Q) = Φz′z̄′(P ), and hence

Xn = X ′
n = −

1

2πi

∫ 2π

0

dθeiθΦzz̄(Q) , z(Q) = eiθ .

One can easily verify this argument explicitly using the Ward identity. The point is that

the disturbing contour dependence of (3.4) is eliminated by the derivative ∂Φ term in the

transformation law of Φ.
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3.2. Superconformal case

A superconformal field theory obeys axioms similar to those of section 2.1.6 We asso-

ciate states inH to (Σ̂, z1, . . .) where zi = (zi, θi) is a local superconformal coordinate. Cor-

responding to the small superconformal transformations z 7→ z+V z(z, θ), θ 7→ θ+V θ(z, θ)

we get generators Ln, Gk as before. We will confine our attention to “super” (or NS) punc-

tures for reasons discussed earlier; then the index k is an integer plus one half. Specifically

we define

〈Σ̂, (z − ǫzn+1, θ − 1
2θǫ(n+ 1)zn)| ≡ 〈Σ̂, (z, θ)|(1+ ǫLn + ǭL̄n) (2.7)′

〈
Σ̂,

(
z + 1

2αθz
k+1/2, θ − 1

2αz
k+1/2

)∣∣∣ ≡ 〈Σ̂, (z, θ)|(1+ 1
2αGk + 1

2 ᾱḠk) . (3.6)

Exactly as before we find from the axioms two commuting copies of the Neveu-Schwarz

algebra. Similarly define operator superfields by

Ψ
z...(P̂ ) ≡ 〈P

1|1
NS , (z, θ), (z

−1, iz−1θ), (z − z(P̂ )− θθ(P̂ ), θ − θ(P̂ ))|ψ〉 . (2.11)′

Here P
1|1
NS is the usual super sphere obtained from the (z, θ)-plane, z(P̂ ), θ(P̂ ) are constants

regarded as the coordinates of a point P̂ , and ψ is any vector annihilated by Ln, Gn−1/2,

n > 0. One shows that under changes of superconformal coordinates preserving P̂ the

quantity 〈Ψ
z...(P̂ )〉Σ̂dz

2h
dz̄

2h̄
is invariant while Ψ

z...(P̂ ) obeys a rule like (2.13).

To deform the theory we write

|Σ̂, z〉∆ = |Σ̂, z〉0 +
∆

2πi

∫

Q̂∈Σ\Dz

Q̂〈φ | Σ̂, z,u〉dudū (3.1)′

where ∆ is again real and φ is primary of weight ( 12 ,
1
2 ). The integral is over a supermanifold

with boundary |z| = 1; θ is unrestricted. The integral (3.1)′ is over all SRS with two

punctures which reduce to (Σ̂, z) when we forget the location of one puncture. As we

have noted, this is ill-defined for spin (or Ramond) punctures since there is no canonical

forgetful map which forgets a spin puncture.

We can now repeat the derivation leading to (3.4). Letting z
′ = (z − ǫzn+1 +

1
2αθz

k+1/2, θ − 1
2αz

k+1/2 − 1
2θǫ(n+ 1)zn) we define

0〈Σ̂, z
′| = 0〈Σ̂, z|(1+ ǫLn + ǭL̄n + 1

2αGk + 1
2 ᾱḠk)

6 See e.g. [12][14][16][17].
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∆〈Σ̂, z
′| = ∆〈Σ̂, z|(1+ ǫ(Ln +∆Xn) +

1
2α(Gk +∆Yk) + conj.) . (3.2)′

Again we drop order ǫ2, ǫα, and ∆2, but keep ǫ∆, α∆. Thus

0〈Σ̂, z|(ǫXn + 1
2αYk + conj.) =

1

2πi

∫

Q̂∈Dz\Dz
′

0〈Σ̂, z,u | φ〉Q̂ dudū . (3.3)′

We need to interpret the rhs. We do this formally by introducing a step function ϑ(x) and

writing

1

2πi

∫

Dz

ϑ(|z − ǫzn+1 + 1
2αθz

k+1/2| − 1) 0〈Σ̂, z, z− z(θ̂) | φ〉Q̂ dz(Q̂) dz̄(Q̂) .

in an evident notation.

Expand the step function as

ϑ(|z| − 1)− 1
2δ(|z| − 1)(ǫzn − 1

2αθz
k−1/2 + c.c.)

to read off

Xn =
1

2πi

∮

|z|=1

idz̄ dθ(−2i)(− 1
2 )z

n+1〈P
1|1
NS , z, z

−1, z− z(Q̂)|φ〉Q̂

Yk =
−1

2πi

∮

|z|=1

idz̄(−2i)(− 1
2 )z

k+1/2〈P
1|1
NS , z, z

−1, z− z(Q̂)|φ〉Q̂|θ(Q̂)=0 .

In the second equation the rules of Grassmann integration tell us to discard terms with θ.

Thus we find L
(∆)
n = Ln +∆Xn; G

(∆)
k = Gk +∆Yk with

Xn = −
1

2πi

∮

|z(Q̂)|=1

dz̄ dθzn+1Φ
z,z̄(Q̂) (3.4)′

Yk =
1

2πi

∮

|z(Q̂)|=1

dz̄ zk+1/2Φ
zz̄
(Q̂)|θ(Q̂)=0 . (3.7)

These formulas look even more coordinate-dependent than (3.4), but once again we know

that they must be well-defined and satisfy the NS algebra simply because they were derived

from a perturbation (3.1)′ which preserves the superconformal structure of the theory.

The super stress tensor is now

T (∆)
zz

(z) =
∑

k

z−n−3/2 1
2 (Gk +∆Yk) + θ

∑

n

z−n−2(Ln +∆Xn) . (3.5)′

Again it is holomorphic by fiat and obeys the appropriate Ward identity.

One can readily expand (3.4)′, (3.7) in components to recover the explicit formulas of

Ovrut and Rama [5]. This requires some superficial modifications for the heterotic case.
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3.3. Heterotic case

In the heterotic case we have no θ̄ nor ᾱ. Thus for example one term is missing from

(3.6) on the rhs. We can deform using a state φ annihilated by Ln, L̄n, Gn−
1
2
, n > 0 and

of weight ( 12 , 1). Also in contrast to the previous subsection we take the overall parity of

φ to be odd. Then letting

∆〈Σ, z| = 0〈Σ, z|+
∆

2πi

∫

Q̂∈Σ\Dz

[dudū|dθ] 0〈Σ, z,u|φ〉Q̂ (3.1)′′

we find that the rhs is coordinate invariant; more generally for a field ψ of weight (h, h̄)

the expectation

〈ψ(P )〉Σ̂ ≡ 〈Σ̂, z | ψ〉(dz)2h(dz̄)h̄ (2.8)′

is invariant. Recalling that odd variables like α now anticommute with the measure dzdz̄ ≡

[dzdz̄|dθ] we again find the changes

Xn = −
1

2πi

∮

|z(Q̂)|=1

[dz̄|dθ]zn+1Φ
zz̄(Q̂) (3.4)′′

Yk = −
1

2πi

∮

|z(Q̂)|=1

dz̄ zk+1/2Φ
zz̄(Q̂)|θ(Q̂)=0 . (3.7)′

Substituting various states φ of weight ( 12 , 1) we recover the formulas of [5].

4. Conclusion

We set out to find a formula for the change of the stress tensor under a small perturba-

tion of a generic CFT, i.e. one whose state space H doesn’t change suddenly in structure.

Eqns. (3.4), (3.5), and their super generalizations, are the correct answer to our problem,

but they may still seem distasteful. The point is that we cannot expect manifestly holo-

morphic formulas when the space of theories is itself not a complex manifold (for example

for c = 1 theories it has one real dimension [18]). In particular we see that Φ, being of

dimension (1,1), cannot be analytic; locality has taken precedence over analyticity.

Throughout this paper we have touched only on first-order perturbations. It is well

known that second-order changes pose new problems, essentially related to the divergences

of string perturbation theory [18];7 there may be no natural choice of framing for the

7 In this connection the ideas of [19] may be helpful.
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bundle H of state spaces due to some sort of curvature. But we have suggested that even

the first-order formula (3.1) has some important information about the structure group of

H. It would be very interesting to uncover this additional structure.
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