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Abstract

Contemporary linguistic formalisms have become so rigorous that it is now possible to view them

as very high level declarative programming languages. Consequently, grammars for natural languages

can be viewed as programs; this view enables the application of various methods and techniques that

were proved useful for programming languages to the study of natural languages. This paper adapts

the notion of program composition, well developed in the context of logic programming languages,

to the domain of linguistic formalisms. We study alternative de�nitions for the semantics of such

formalisms, suggesting a denotational semantics that we show to be compositional and fully-abstract.

This facilitates a clear, mathematically sound way for de�ning grammar modularity.

1 Introduction

The tasks of developing large scale grammars for natural languages become more and more complicated:
it is not unusual for a single grammar to be developed by a team including a number of linguists,
computational linguists and computer scientists. The problems that grammar engineers face when they
design a broad-coverage grammar for some natural language are very reminiscent to the problems tackled
by software engineering (see Erbach and Uszkoreit (1990) for a discussion of some of the problems involved
in developing large-scale grammars). It is possible { and, indeed, desirable | to adapt methods and
techniques of software engineering to the domain of natural language formalisms.

The departure point for this work is the belief that any advances in grammar engineering must be
preceded by a more theoretical work, concentrating on the semantics of grammars. This view re
ects
the situation in logic programming, where developments in alternative de�nitions for the semantics of
predicate logic led to implementations of various program composition operators. Viewing contemporary
linguistic formalisms as very high level declarative programming languages, a grammar for a natural
language can be viewed as a program. The execution of a grammar on an input sentence yields an output
which represents the sentence's structure.

This paper adapts well-known results from logic programming languages semantics to the framework
of uni�cation-based linguistic formalisms. While most of the results we report on are probably not
surprising, we believe it is important to derive them directly for linguistic formalisms for two reasons.
First, practitioners of linguistic formalisms usually do not view them as instances of a general logic
programming framework, but rather as �rst-class programming environments which deserve independent
study. Second, there are some crucial di�erences between linguistic formalisms and, say, Prolog: the basic
elements | typed feature structures | are more general then �rst-order terms, the notion of uni�cation
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is di�erent, and computations amount to parsing, rather than SLD-resolution. The fact that we can
derive similar results in this new domain is encouraging, and should not be considered trivial.

In the next section we review the literature on modularity in logic programming. We discuss alter-
native approaches, both operational and denotational, to the semantics of uni�cation-based linguistic
formalisms in section 3. In section 4 we show that the standard semantics are \too crude" and present
an alternative semantics, which we show to be compositional (with respect to grammar union, a simple
syntactic combination operation on grammars). However, this de�nition is \too �ne": we show that it is
not fully-abstract, and in section 5 we present an adequate, compositional and fully-abstract semantics
for uni�cation-based linguistic formalisms. We conclude with suggestions for further research.

2 Modularity in logic programming

The seminal work in the semantics of logic programming is Van Emden and Kowalski (1976), where three
alternative de�nitions for the meanings of predicate logic sentences are given and proven equivalent: the
model theoretic de�nition, viewing the denotation of the program as its minimal model, the intersection
of all its Herbrand models; the operational de�nition, viewing the denotation of a program as the set
of consequences derivable from the data structures it manipulates; and the �xpoint semantics, by which
the meaning of a program is the least �xpoint of its immediate consequence operator. These results are
elaborated upon by Apt and Van Emden (1982), further exploiting the application of �xpoints by relating
them to SLD resolution and accounting also to �nite failure.

A di�erent approach is pursued by Lassez and Maher (1984): viewing a logic program as the set of
its rules, distinct from the facts, they de�ne an immediate consequence operator for the rules only. The
denotation of a grammar is the �xpoint of this operator, starting from the set of facts. This approach
facilitates composition of programs, as the meaning of any composite sentence can be expressed in terms
of the meanings of its immediate constituents.

Gaifman and Shapiro (1989) observe that the classical Herbrand-base semantics of logic programs is
inadequate, as it identi�es programs that should be distinguished and vice versa. They de�ne the notions
of compositional semantics and fully-abstract semantics and show that the reason for the inadequacy of
the standard model-theoretic semantics lies in the fact that it captures only the derivable atoms in its
Herbrand base, whereas a query can introduce new function symbols that are not part of the program's
signature. Rather than resort to a solution that incorporates a \universal" signature for logic programs,
they change the notion of program equivalence by taking as invariant the set of all most general atomic
logical consequences of the program. This de�nition of semantics is shown to be both compositional and
fully-abstract.

Gaifman and Shapiro (1989) de�ne compositional semantics as follows: let P be a class of programs (or
program parts); let Ob be a function associating a set of objects, the observables, with a program P 2 P.
Let Com be a class of composition functions over P such that for every n-ary function f 2 Com and
every set of n programs P1; : : : ; Pn 2 P , f(P1; : : : ; Pn) 2 P . A compositional equivalence (with respect
to Ob;Com) is an equivalence relation `�' that preserves observables (i.e., whenever P � Q, Ob(P ) =
Ob(Q)), and for every f 2 Com, if for all 1 � i � n, Pi � Qi then f(P1; : : : ; Pn) � f(Q1; : : : ; Qn).

The need for a modular extension for logic programming languages has always been agreed upon, as
relations were viewed as providing too �ne-grained abstraction for the design of large programs. Two
major tracks were taken: one, referred to as programming in the large and inspired by O'keefe (1985),
suggests a meta-linguistic mechanism: modules are viewed as sets of Horn clauses and their composition
is modeled in terms of operations on the components (such as union, deletion, closure etc.) The other
approach, known as programming in the small and originating with Miller (1986; 1989), enhances logic
programming with linguistic abstraction mechanisms that are richer than those o�ered by Horn clauses
(see Bugliesi, Lamma, and Mello (1994) for a review of modularity in logic programming).

Unlike O'keefe (1985), who de�nes the denotation of a program to be the transformation operator

2



obtained by applying deduction steps arbitrarily many times, Mancarella and Pedreschi (1988) move
from an object level to a function level and interpret a logic program as its immediate consequence
operator, modeling a single deduction step. They de�ne an algebra over operators, suitable for de�ning
a union composition operator over sub-programs. These results are extended in Brogi et al. (1990),
where an additional operator, intersection, is added to the union operator. The composition operators
are characterized both model-theoretically and using meta-interpreter techniques; both approaches are
shown to be equivalent to each other and to the original algebraic characterization.

A di�erent approach is taken by Brogi, Lamma, and Mello (1992), who observe that the reason for
the inadequacy of the standard Herbrand model semantics for compositionality stems from the adoption
of the closed world assumption. When program composition is to be supported, programs should be view
as open, to be completed by additional knowledge. Viewing the denotation of a program as the set of
all its Herbrand models is inadequate; rather, program meaning is de�ned to be a subset of its models,
namely its admissible models { those that are supported by the assumption of a set of hypotheses. A
natural notion of program composition is thus obtained. This work is extended by Brogi, Lamma, and
Mello (1993), adding a close operator and exemplifying its usage.

The notion of compositionality employed in these two works is slightly di�erent: given a program P ,
let [[P ]] be the denotation of P . Let [ be a composition operator on programs, and � be a composition
operator on denotations. A semantics is compositional if [ and � commute, that is, if [[P [Q]] = [[P ]]�[[Q]].
To avoid confusion, we say that a semantics is commutative with respect to the operator � i� it is
compositional by this de�nition. Commutativity is a stronger notion than the de�nition of Gaifman and
Shapiro (1989) above: if a semantics is commutative with respect to some operator then it is compositional
(with respect to a singleton set containing the same operator).

Proposition 1. Let P be a class of programs, [[�]] a denotation operator, [ a combination operator on
programs and � a combination operator on denotations. For P;Q 2 P, let P � Q i� [[P ]] = [[Q]]. If [[�]]
is commutative with respect to [; �, then � is compositional with respect to [.

Proof. Assume that P1 � P2 and Q1 � Q2.

[[P1 [Q1]] = [[P1]] � [[Q1]] commutativity of [[�]]
= [[P2]] � [[Q1]] since P1 � P2
= [[P2]] � [[Q2]] since Q1 � Q2

= [[P2 [Q2]] commutativity of [[�]]

3 Semantics of linguistics formalisms

Viewing grammars as formal entities that share many features with computer programs, it is natural
to consider the notion of semantics of uni�cation-based formalisms. Analogously to logic programming
languages, the denotation of uni�cation based grammars can be de�ned using various techniques. We
review in this section the operational de�nition of Shieber, Schabes, and Pereira (1995) and the deno-
tational de�nition of, e.g., Pereira and Shieber (1984) or Carpenter (1992, pp. 204-206). We show that
these de�nitions are equivalent and that none of them supports compositionality.

3.1 Basic notions

We assume familiarity with theories of feature structure based uni�cation grammars, as formulated by,
e.g., Carpenter (1992) or Shieber (1992). Grammars are de�ned over typed feature structures (TFSs)
which can be viewed as generalizations of �rst-order terms (Carpenter, 1991). TFSs are partially ordered
by subsumption, with ? the least (or most general) TFS. A multi-rooted structure (MRS, see Sikkel
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(1997) or Wintner and Francez (1999)) is a sequence of TFSs, with possible reentrancies among di�erent
elements in the sequence. Meta-variables A;B range over TFSs and �; � { over MRSs. MRSs are partially
ordered by subsumption, denoted `v', with a least upper bound operation of uni�cation, denoted `t',
and a greatest lowest bound denoted `u'. We assume the existence of a �xed, �nite setWords of words.
A lexicon associates with every word a set of TFSs, its category. Meta-variable a ranges over Words

and w { over strings of words (elements of Words
�). Grammars are de�ned over a signature of types

and features, assumed to be �xed below.

De�nition 1 (Grammars). A rule is an MRS of length greater than or equal to 1 with a designated
(�rst) element, the head of the rule. The rest of the elements form the rule's body (which may be
empty, in which case the rule is depicted as a TFS). A lexicon is a total function from Words to �nite,
possibly empty sets of TFSs. A grammar G = hR;L; Asi is a �nite set of rules R, a lexicon L and a
start symbol As that is a TFS.

Figure 1 depicts an example grammar,1 suppressing the type hierarchy on which it is based.2 When
the initial symbol is not explicitly depicted, it is assumed to be the most general feature structure that
is subsumed by the head of the �rst listed rule.

As = (cat : s)

R =

8<
:

(cat : s) ! (cat : n) (cat : vp)
(cat : vp) ! (cat : v) (cat : n)
(cat : vp) ! (cat : v)

9=
;

L(John) = L(Mary) = f(cat : n)g
L(sleeps) = L(sleep) = L(loves) = f(cat : v)g

Figure 1: An example grammar, G

The de�nition of uni�cation is lifted to MRSs: let �; � be two MRSs of the same length; the uni�cation
of � and �, denoted � t �, is the most general MRS that is subsumed by both � and �, if such an MRS
exists. Otherwise, the uni�cation fails.

De�nition 2 (Reduction). An MRS hA1; : : : ; Aki reduces to a TFS A with respect to a grammar G
(denoted hA1; : : : ; Aki )G A) i� there exists a rule � 2 R such that hB;B1; : : : ; Bki = �th?; A1; : : : ; Aki
and B v A. When G is understood from the context it is omitted. Reduction can be viewed as the
bottom-up counterpart of derivation.

For two functions f , g, over the same (set) domain, f + g is de�ned as �I:f(I)[ g(I). Let IN0 denote
the set f0; 1; 2; 3; : : :g. Let Items be the set f[w; i; A; j] j w 2Words

�, A is a TFS and i; j 2 IN0g. Let

I = 2Items. Meta-variables x; y range over items and I { over sets of items. When I is ordered by set
inclusion it forms a complete lattice with set union as a least upper bound (lub) operation. A function
T : I ! I is monotone if whenever I1 � I2, also T (I1) � T (I2). It is continuous if for every chain
I1 � I2 � � � �, T (

S
j<! Ij) =

S
j<! T (Ij). If a function T is monotone it has a least �xpoint (Tarski-

Knaster theorem); if T is also continuous, the �xpoint can be obtained by iterative application of T to
the empty set (Kleene theorem): lfp(T ) = T " !, where T " 0 = ; and T " n = T (T " (n� 1)) when n is
a successor ordinal and

S
k<n(T " n) when n is a limit ordinal.

1Grammars are displayed using a simple description language, where `:' denotes feature values and `,' denotes conjunction.
2Assume that in all the example grammars, the types s, n, v and vp are maximal and (pairwise) inconsistent.
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3.2 An operational semantics

As Van Emden and Kowalski (1976) note, \to de�ne an operational semantics for a programming language
is to de�ne an implementational independent interpreter for it. For predicate logic the proof procedure
behaves as such an interpreter." Shieber, Schabes, and Pereira (1995) view parsing as a deductive process
that proves claims about the grammatical status of strings from assumptions derived from the grammar.
We follow their insight and notation and list a deductive system for parsing grammars formalized as in
the previous section. As the special properties of di�erent parsing algorithms are of little interest here,
we limit the de�nition to a simple bottom-up procedure.

De�nition 3 (Deductive parsing). The deductive parsing system associated with a grammar G =
hR;L; Asi is de�ned over Items and is characterized by:

Axioms:

[�; i; A; i] if B is an �-rule in R and B v A

[a; i; A; i+ 1] if B 2 L(a) and B v A

Goals:

[w; 0; A; jwj] where A w As

Inference rules:

[w1; i1; A1; j1]; : : : ; [wk; ik; Ak; jk] if jl = il+1 for 1 � l < k and
i = i1 and j = jk and

[w1 � � �wk; i; A; j] hA1; : : : ; Aki )G A

Notice that the domain of items is in�nite, and in particular that the number of axioms is in�nite.
Also, notice that the goal is to deduce a TFS which is subsumed by the start symbol, and when TFSs can
be cyclic, there can be in�nitely many such TFSs (and, hence, goals) { see Wintner and Francez (1999).

When an item [w; i; A; j] can be deduced, applying k times the inference rules associated with a
grammar G, we write `kG[w; i; A; j]. When the number of inference steps is irrelevant it is omitted.

De�nition 4 (Operational semantics). The operational denotation of a grammar G is [[G]]op =
fx j`G xg. G1 �op G2 i� [[G1]]op = [[G2]]op.

We use the operational semantics to de�ne the language generated by a grammar G. The language
of a grammar G is L(G) = fhw;Ai j [w; 0; A; jwj] 2 [[G]]opg. Notice that a language is not merely a set
of strings; rather, each string is associated with a TFS through the deduction procedure. Note also that
the start symbol As does not play a role in this de�nition; this is equivalent to assuming that the start
symbol is always the most general TFS, ?.

The most natural observable for a grammar would be its language, either as a set of strings or
augmented by TFSs. Thus we take Ob(G) to be L(G) and by de�nition, the operational semantics `[[�]]op'
preserves observables.

3.3 Denotational semantics

As an alternative to the operational semantics discussed above, we consider in this section denotational
semantics through a �xpoint of a transformational operator associated with grammars. This is essentially
similar to the de�nition of Pereira and Shieber (1984) and Carpenter (1992, pp. 204-206). We then show
that the algebraic semantics is equivalent to the operational one.

Associate with a grammarG an operator TG that, analogously to the immediate consequence operator
of logic programming, can be thought of as a \parsing step" operator in the context of grammatical
formalisms. For the following discussion �x a particular grammar G = hR;L; Asi.
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De�nition 5. Let TG : I ! I be a transformation on sets of items, where for every I � Items,
[w; i; A; j] 2 TG(I) i� either

� there exist y1; : : : ; yk 2 I such that yl = [wl; il; Al; jl] for 1 � l � k and il+1 = jl for 1 � l < k and
i1 = 1 and jk = j and hA1; : : : ; Aki ) A and w = w1 � � �wk; or

� i = j and B is an �-rule in G and B v A and w = �; or

� i+ 1 = j and jwj = 1 and B 2 L(w) and B v A.

Theorem 2. For every grammar G, TG is monotone.

Proof. Suppose I1 � I2. If x 2 TG(I1) then x was added by one of the three operations in the de�nition
of TG. Notice that the last two clauses of de�nition 5 are independent of I : they add the same items
in each application of the operator. If x 2 TG(I1) due to them, then x 2 TG(I2), too. If x was added
by the �rst clause, then there exist items y1; : : : ; yk in I1 to which this operation applies. Since I1 � I2,
y1; : : : ; yk are in I2, too, and hence x 2 TG(I2), too.

Theorem 3. For every grammar G, TG is continuous.

Proof. First, TG is monotone. Second, let I = I0 � I1 � : : : be a chain of items. If x 2 TG(
S
i�0 Ii) then

there exist y1; : : : ; yk 2
S
i�0 Ii as required, due to which x is added. Then there exist i1; : : : ; ik such that

y1 2 Ii1 ; : : : ; yk 2 Iik . Let m be the maximum of i1; : : : ; ik. Then y1; : : : ; yk 2 Im, x 2 TG(Im) and hence
x 2

S
i�0 TG(Ii).

If x 2
S
i�0 TG(Ii) then there exists some i that x 2 TG(Ii). Ii �

S
i�0 Ii and since TG is monotone,

TG(Ii) � TG(
S
i�0 Ii), and hence x 2 TG(

S
i�0 Ii). Therefore TG is continuous.

Corollary 4. For every grammar G, the least �xpoint of TG exists and lfp(TG) = TG " !.

Following the paradigm of logic programming languages, de�ne a �xpoint semantics for uni�cation-
based grammars by taking the least �xpoint of the parsing step operator as the denotation of a grammar.

De�nition 6 (Fixpoint semantics). The �xpoint denotation of a grammar G is [[G]]fp = lfp(TG).

G1 �fp G2 i� lfp(TG1
) = lfp(TG2

).

The denotational de�nition is equivalent to the operational one:

Theorem 5. For x 2 Items, x 2 lfp(TG) i� `G x.

Proof.

� If `nG[w; i; A; j] then [w; i; A; j] 2 TG " n. By induction on n: if n = 1 then [w; i; A; j] is an axiom
and therefore either jwj = 1, j = i+1 and B 2 L(w) for B v A; or w = �, i = j and B is an �-rule for
B v A. By the de�nition of TG, TG(;) = f[�; i; A; j] j B v A is an �-ruleg[ f[w; i; A; i+1] j jwj = 1
and B 2 L(w) for B v Ag, so we have [w; i; A; j] 2 TG " 1.
Assume that the hypothesis holds for n�1; assume that `nG[w; i; A; j] for n > 1. Then the inference
rule must be applied at least once, i.e., there exist items [w1; i1; A1; j1]; : : : ; [wk; ik; Ak; jk] such that
jl = il+1 for 1 � l < k and i = i1 and j = jk and hA1; : : : ; Aki ) A and w = w1 � � �wk. Furthermore,
for every 1 � l � k, the item [wi; il; Al; jl] can be deduced in n � 1 steps: `n�1G [wl; il; Al; jl]. By
the induction hypothesis, for every 1 � l � k, [wl; il; Al; jl] 2 TG " (n� 1). By the de�nition of TG,
applying the �rst clause of the de�nition, [w;i; A; j] 2 TG(TG " (n� 1)) = TG " n.
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� If [w; i; A; j] 2 TG " n then `nG[w; i; A; j]. By induction on n: if n = 1, that is, [w; i; A; j] 2 TG " 1,
then either i = j, w = � and B v A is an �-rule in G, or i+1 = j and B 2 L(w) for B v A. In the
�rst case, `1G[w; i; A; j] by the �rst axiom of the deductive procedure; in the other case, `1G[w; i; A; j]
by the second axiom.
Assume that the hypothesis holds for n� 1 and that [w; i; A; j] 2 TG " n = TG(TG " (n� 1)). Then
there exist items y1; : : : ; yk 2 TG " (n � 1) such that yl = [wl; il; Al; jl] for 1 � l � k and il+1 = jl
for 1 � l < k and i1 = 1 and jk = j and hA1; : : : ; Aki ) A and w = w1 � � �wk. By the induction
hypothesis, for every 1 � l � k, `n�1G [wl; il; Al; jl], and the inference rule is applicable, so by an
additional step of deduction we obtain `nG[w; i; A; j].

Corollary 6. The relation `�fp' preserves observables: whenever G1 �fp G2, also Ob(G1) = Ob(G2).

3.4 Compositionality

While the operational and the denotational semantics de�ned above are standard for complete grammars,
they are too coarse to serve as a model when the composition of grammars is concerned. When the
denotation of a grammar is taken to be [[G]]op, important characteristics of the internal structure of
the grammar are lost. To demonstrate the problem, we introduce a natural composition operator on
grammars, namely union of the sets of rules (and the lexicons) in the composed grammars.

De�nition 7 (Grammar union). If G1 = hR1;L1; A
s
1i and G2 = hR2;L2; A

s
2i are two grammars over

the same signature, then the union of the two grammars, denoted G1 [ G2, is a new grammar G =
hR;L; Asi such that R = R1 [ R2, L = L1 + L2 and As = As

1 u As
2.

Figure 2 exempli�es the union operation on grammars. Observe that G1 [G2 = G2 [G1.

G1 : As = (cat : s)
(cat : s) ! (cat : n) (cat : vp)
L(John) = f(cat : n)g

G2 : As = (?)
(cat : vp) ! (cat : v)
(cat : vp) ! (cat : v) (cat : n)
L(sleeps) = L(loves) = f(cat : v)g

G1 [G2 : As = (cat : s)
(cat : s) ! (cat : n) (cat : vp)
(cat : vp) ! (cat : v)
(cat : vp) ! (cat : v) (cat : n)
L(John) = f(cat : n)g
L(sleeps) = L(loves) = f(cat : v)g

Figure 2: Grammar union

Proposition 7. The equivalence relation `�op' is not compositional with respect to Ob; f[g.
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Proof. Consider the following grammars:

G1 : As = (cat : s)
(cat : s) ! (cat : n) (cat : vp)
L(John) = f(cat : n)g

G2 : As = (?)
L(loves) = f(cat : v)g

G3 : As = (?)
(cat : vp) ! (cat : v) (cat : n)
L(loves) = f(cat : v)g

G1 [G2 : As = (cat : s)
(cat : s) ! (cat : n) (cat : vp)
L(John) = f(cat : n)g
L(loves) = f(cat : v)g

G1 [G3 : As = (cat : s)
(cat : s) ! (cat : n) (cat : vp)
(cat : vp) ! (cat : v) (cat : n)
L(John) = f(cat : n)g
L(loves) = f(cat : v)g

Note that
[[G2]]op = [[G3]]op = f[\loves"; i; (cat : v); i+ 1] j i � 0g

but
f[\John loves John"; i; (cat : s); i+ 3 j i � 0g � [[G1 [G3]]op

f[\John loves John"; i; (cat : s); i+ 3 j i � 0g 6� [[G1 [G2]]op

Thus G2 �op G3 but (G1 [ G2) 6�op (G1 [ G3), hence `�op' is not compositional with respect to
Ob; f[g.

The implication of the above proposition is that while grammar union might be a natural, well
de�ned syntactic operation on grammars, the standard semantics of grammars is too coarse to support
it. Intuitively, this is because when a grammar G1 includes a particular rule � that is inapplicable for
reduction, this rule contributes nothing to the denotation of the grammar. But when G1 is combined
with some other grammar, G2, � might be used for reduction in G1 [ G2, where it can interact with
the rules of G2. The question to ask is, then, in what sense is a grammar a union of its rules? We
suggest an alternative, �xpoint based semantics for uni�cation based grammars that naturally supports
compositionality.

4 A compositional semantics

To overcome the problems delineated above, we follow Mancarella and Pedreschi (1988) in moving one
step further, considering the grammar transformation operator itself (rather than its �xpoint) as the
denotation of a grammar.

De�nition 8 (Algebraic semantics). The algebraic denotation of a grammar G is [[G]]al = TG.
G1 �al G2 i� TG1

= TG2
.

Not only is the algebraic semantics compositional, it is also commutative with respect to grammar
union. To show that, a composition operation on denotations has to be de�ned, and we follow Mancarella
and Pedreschi (1988) in its de�nition:

TG1
� TG2

= �I:TG1
(I) [ TG2

(I)

8



Theorem 8. The semantics `�al' is commutative with respect to grammar union and `�': for every two
grammars G1, G2, [[G1]]al � [[G2]]al = [[G1 [G2]]al.

Proof. It has to be shown that for every set of items I , TG1[G2
(I) = TG1

(I) [ TG2
(I).

� if x 2 TG1
(I)[TG2

(I) then either x 2 TG1
(I) or x 2 TG2

(I). From the de�nition of grammar union,
x 2 TG1[G2

(I) in any case.

� if x 2 TG1[G2
(I) then x can be added by either of the three clauses in the de�nition of TG.

{ if x is added by the �rst clause then there is a rule � 2 R1 [ R2 that licenses the derivation
through which x is added. Then either � 2 R1 or � 2 R2, but in any case � would have
licensed the same derivation, so either x 2 TG1

(I) or x 2 TG2
(I).

{ if x is added by the second clause then there is an �-rule in G1 [G2 due to which x is added,
and by the same rationale either x 2 TG1

(I) or x 2 TG2
(I).

{ if x is added by the third clause then there exists a lexical category in L1 [ L2 due to which
x is added, hence this category exists in either L1 or L2, and therefore x 2 TG1

(I) [ TG2
(I).

Since `�al' is commutative, by proposition 1 it is also compositional with respect to grammar union. Intu-
itively, since TG captures only one step of the computation, it cannot capture interactions among di�erent
rules in the (unioned) grammar, and hence taking TG to be the denotation of G yields a compositional
semantics.

The TG operator re
ects the structure of the grammar better than its �xpoint. In other words, the
equivalence relation induced by TG is �ner than the relation induced by lfp(TG). The question is, how
�ne is the `�al' relation? To make sure that a semantics is not too �ne, one usually checks the reverse
direction.

De�nition 9 (Full abstraction). A semantic equivalence relation `�' is fully-abstract i�

P � Q i� for all R, Ob(P [ R) = Ob(Q [ R)

As it turns out, the selection of TG as the denotation of G is too �ne: `�al' is not fully-abstract. To
show that, one must provide two grammars, say G1 and G2, such that G1 6�al G2 (that is, TG1

6= TG2
),

but still for every grammar G, Ob(G [G1) = Ob(G [G2).

Proposition 9. The semantic equivalence relation `�al' is not fully abstract.

Proof. Let G1 be the grammar

As
1 = ?;L1 = ;;R1 = f(cat : s)! (cat : np)(cat : vp); (cat : np)! (cat : np)g

and G2 be the grammar

As
2 = ?;L2 = ;;R2 = f(cat : s)! (cat : np)(cat : vp)g

� G1 6�al G2: because

TG1
(f[\John loves Mary"; 6; (cat : np); 9]g) = f[\John loves Mary"; 6; (cat : np); 9]g

but
TG2

(f[\John loves Mary"; 6; (cat : np); 9]g) = ;

9



� for all G, Ob(G[G1) = Ob(G[G2). The only di�erence between G[G1 and G[G2 is the presence
of the rule (cat : np) ! (cat : np) in the former. This rule can contribute nothing to a deduction
procedure, since any item it licenses must already be deducible. Therefore, any item deducible with
G [G1 is also deducible with G [G2 and hence Ob(G [G1) = Ob(G [G2).

A simple solution to the problem would have been to consider, instead of TG, the following operator
as the denotation of G:

[[G]]id = �I:TG(I) [ I

In other words, the semantics is TG + Id, where Id is the identity operator. Evidently, for G1 and G2 of
the above proof, [[G1]]id = [[G2]]id, so they no longer constitute a counter example. Also, it is easy to see
that the proof of theorem 8 requires only a slight modi�cation for it to hold in this case, so TG + Id is
commutative (and hence compositional).

Unfortunately, this does not solve the problem. Let t1; t2; t3 be (pairwise) inconsistent types (i.e.,
t1 t t2 = t2 t t3 = t1 t t3 = >). Let G1 be the grammar

As
1 = ?;L1 = ;;R1 = f(t1)! (t2); (t2)! (t3); (t3)! (t1)g

and G2 be the grammar

As
1 = ?;L1 = ;;R2 = f(t1)! (t3); (t2)! (t1); (t3)! (t2)g

To see that [[G1]]id 6= [[G2]]id, observe that

TG1
(f[w; i; (t1); j]g) = f[w; i; (t1); j]; [w; i; (t3); j]g

but
TG2

(f[w; i; (t1); j]g) = f[w; i; (t1); j]; [w; i; (t2); j]g

To see that Ob(G[G1) = Ob(G[G2) for every G, consider how a derivation in, say, G[G1 can make use
of, say, the rule (t1)! (t2). For this rule to be applicable, (t2) must be deducible; hence, by application
of the rules (t3) ! (t2) and (t1) ! (t3), (t1) is deducible in G [G2. Every rule application in either G1

or G2 can be modeled by two rule applications in the other grammar, and hence every TFS deducible in
G [G1 is deducible in G [G2 and vice versa.

5 A compositional, fully abstract semantics

We have shown so far that `[[�]]fp' is not compositional, and that `[[�]]id' is compositional but not fully

abstract. The \right" semantics, therefore, lies somewhere in between: since the choice of semantics
induces a natural equivalence on grammars, we seek an equivalence that is cruder than `[[�]]id' but �ner
than `[[�]]fp'. In this section we adapt results from Lassez and Maher (1984) and Maher (1988) to the

domain of uni�cation-based linguistic formalisms.
Consider the following semantics for logic programs: rather than taking the operator associated with

the entire program, look only at the rules (excluding the facts), and take the meaning of a program to
be the function that is obtained by an in�nite applications of the operator associated with the rules. In
our framework, this would amount to associating the following operator with a grammar:

De�nition 10. Let RG : I ! I be a transformation on sets of items, where for every I � Items,
[w; i; A; j] 2 RG(I) i� there exist y1; : : : ; yk 2 I such that yl = [wl; il; Al; jl] for 1 � l � k and il+1 = jl
for 1 � l < k and i1 = 1 and jk = j and hA1; : : : ; Aki ) A and w = w1 � � �wk.

The functional denotation of a grammar G is [[G]]fn = (RG + Id)! = �1n=0(RG + Id)n. Notice that

R!
G is not RG " !: the former is a function from sets of items to set of items; the latter is a set of items.

10



Observe that RG is de�ned similarly to TG (de�nition 5), ignoring the items added (by TG) due
to �-rules and lexical items. If we de�ne the set of items InitG to be those items that are added by
TG independently of the argument it operates on, then for every grammar G and every set of items I ,
TG(I) = RG(I) [ InitG. Relating the functional semantics to the �xpoint one, we follow Lassez and
Maher (1984) in proving that the �xpoint of the grammar transformation operator can be computed by
applying the functional semantics to the set InitG.

De�nition 11. For every grammar G = hR;L; Asi, let

InitG = f[�; i; A; i] j B is an �-rule in G and B v Ag [ f[a; i; A; i+ 1] j B 2 L(a) for B v Ag

Theorem 10. For every grammar G, (RG + Id)!(InitG) = lfp(TG).

Proof. We show that for every n, (TG + Id) " n = (�n�1
k=0 (RG + Id)k)(InitG) by induction on n.

For n = 1, (TG + Id) " 1 = (TG + Id)((TG + Id) " 0) = (TG + Id)(;). Clearly, the only items
added by TG are due to the second and third clauses of de�nition 5, which are exactly InitG. Also,
(�0k=0(RG + Id)k)(InitG) = (RG + Id)0(InitG) = InitG.
Assume that the proposition holds for n � 1, that is, (TG + Id) " (n � 1) = (�n�2

k=0 (RG + Id)k)(InitG).
Then

(TG + Id) " n = (TG + Id)((TG + Id) " (n� 1)) de�nition of "
= (TG + Id)((�n�2

k=0 (RG + Id)k)(InitG)) by the induction hypothesis
= (RG + Id)((�n�2

k=0 (RG + Id)k)(InitG)) [ InitG since TG(I) = RG(I) [ InitG
= (RG + Id)((�n�2

k=0 (RG + Id)k)(InitG))
= (�n�1

k=0 (RG + Id)k)(InitG)

Hence (RG + Id)!(InitG) = (TG + Id) " ! = lfp(TG).

The choice of `[[�]]fn' as the semantics calls for a di�erent notion of observables. The denotation of a

grammar is now a function which re
ects an in�nite number of applications of the grammar's rules, but
completely ignores the �-rules and the lexical entries. If we took the observables of a grammar G to be
L(G) we could in general have [[G1]]fn = [[G2]]fn but Ob(G1) 6= Ob(G2) (due to di�erent lexicons), that is,

the semantics would not preserve observables. However, when the lexical entries in a grammar (including
the �-rules, which can be viewed as empty categories, or the lexical entries of traces) are taken as input, a
natural notion of observables preservation is obtained. To guarantee that the semantics is Ob-preserving,
we de�ne the observables of a grammar G with respect to a given input.

De�nition 12 (Observables). The observables of a grammar G = hR;L; Asi with respect to an input
set of items I are ObI(G) = fhw;Ai j [w; 0; A; jwj] 2 [[G]]fn(I)g.

Corollary 11. The semantics `[[�]]fn' is ObI-preserving: if G1 �fn G2 then for every I, ObI(G1) =

ObI(G2).

The above de�nition corresponds to the previous one in a natural way: when the input is taken to be
InitG, the observables of a grammar are its language.

Theorem 12. For every grammar G, L(G) = ObInitG (G).

Proof.

L(G) = fhw;Ai j [w; 0; A; jwj] 2 [[G]]opg de�nition of L(G)

= fhw;Ai j `G [w; 0; A; jwj]g de�nition 4
= fhw;Ai j [w; 0; A; jwj] 2 lfp(TG)g by theorem 5
= fhw;Ai j [w; 0; A; jwj] 2 [[G]]fn(InitG)g by theorem 10

= ObInitG(G) by de�nition 12

11



To show that `[[�]]fn' is compositional we must de�ne an operator for combining denotations. Unfor-

tunately, the simplest operator, `+', would not do. To see that, consider the following grammars, where
the types s, vp and v are pairwise incompatible:

G1 : As
1 = ?;L1 = ;;R1 = f(cat : s)! (cat : vp)g

G2 : As
2 = ?;L2 = ;;R2 = f(cat : vp)! (cat : v)g

Observe that, for x = [w; i; (cat : v); j],

[[G1]]fn(fxg) = fxg

[[G2]]fn(fxg) = fx; [w; i; (cat : vp); j]g

[[G1 [G2]]fn(fxg) = fx; [w; i; (cat : vp); j]; [w; i; (cat : s); j]g

That is, ([[G1]]fn + [[G2]]fn)(fxg) = [[G1]]fn(fxg) [ [[G2]]fn(fxg) 6= [[G1 [G2]]fn(fxg).

However, a di�erent operator does the job. De�ne [[G1]]fn � [[G2]]fn to be ([[G1]]fn + [[G2]]fn)
!. Then

`[[�]]fn' is commutative with respect to `�' and `['. This proof is slightly more involved.

Lemma 13. For every grammar G, [[G]]fn is increasing: [[G]]fn(I) � I for all I.

Proof. Since (RG + Id)(I) � I , also (RG + Id)!(I) � I .

De�nition 13. If f; g are two functions over the same domain and range, let f � g i� for all I,
f(I) � g(I). Let f � g denote function composition.

Lemma 14. For every two grammars G1; G2, ([[G1]]fn + [[G2]]fn) � ([[G1]]fn � [[G2]]fn).

Proof. ([[G1]]fn � [[G2]]fn)(I) = [[G1]]fn([[G2]]fn(I)). [[G1]]fn(I) � I , hence [[G1]]fn([[G2]]fn(I)) � [[G2]]fn(I).

From lemma 13 and monotonicity, also [[G1]]fn([[G2]]fn(I)) � [[G1]]fn(I). Hence ([[G1]]fn � [[G2]]fn)(I) �

([[G1]]fn [ [[G2]]fn)(I) and ([[G1]]fn + [[G2]]fn) � ([[G1]]fn � [[G2]]fn).

Lemma 15. For every grammar G, [[G]]fn is idempotent: [[G]]fn � [[G]]fn = [[G]]fn.

Proof. (Lassez and Maher, 1984) For every I , ([[G]]fn � [[G]]fn)(I) = ((RG + Id)! � (RG + Id)!)(I) =

(RG + Id)!((RG + Id)!(I)) = �1i=0(RG + Id)i(�1j=0(RG + Id)j(I)) = �1i=0�
1
j=0(RG + Id)i+j(I) =

�1m=0(RG + Id)m(I) = (RG + Id)!(I) = [[G]]fn.

Theorem 16. [[G1 [G2]]fn = [[G1]]fn � [[G2]]fn.

Proof. (Lassez and Maher, 1984)

[[G1 [G2]]fn = (RG1
+ Id+RG2

+ Id)!

� ((RG1
+ Id)! + (RG2

+ Id)!)! since RG + Id � (RG + Id)! for every G

� ((RG1
+ Id)! � (RG2

+ Id)!)! by lemma 14
� ((RG1[G2

+ Id)! � (RG1[G2
+ Id)!)! since G1 [G2 � G1 and G1 [G2 � G2

= ([[G1 [G2]]fn � [[G1 [G2]]fn)
! de�nition of [[�]]fn

= ([[G1 [G2]]fn)
! by lemma 15

= [[G1 [G2]]fn since (f!)! = f!

Thus all the inequations are equations, and in particular [[G1 [G2]]fn = ((RG1
+ Id)!+(RG2

+ Id)!)! =

([[G1]]
!

fn + [[G2]]
!

fn)
! = [[G1]]fn � [[G2]]fn.
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Since `[[�]]fn' is commutative, it is also compositional. For logic programs, Maher (1988) shows that

this choice of semantics is also fully abstract, but this proof is not carried out in the algebraic domain.
Rather, Maher (1988) shows that two programs are fn-equivalent i� they have the same Herbrand model,
and then uses logical equivalence to derive full abstraction. A similar technique, using the logical domain,
is employed by Bugliesi, Lamma, and Mello (1994) to prove the same result. We pride a more direct,
constructive proof below.

Theorem 17. The semantics `[[�]]fn' is fully abstract: for every two grammars G1 and G2, if for every

grammar G and set of items I, ObI(G1 [G) = ObI (G2 [G), then G1 �fn G2.

Proof. Assume that [[G1]]fn 6= [[G2]]fn. Without loss of generality, assume that there exist an item

x = [w; i; A; j] and a set I such that x 2 [[G1]]fn(I) but x 62 [[G2]]fn(I). x is added to [[G1]]fn(I) through

successive applications of the rules in R1 to items in I . Let fy1; : : : ; ykg � I be the (input) items that
partake in this sequence. For every 1 � i � k, let Ai be the TFSs included in yi; let y

0
i = [a; i� 1; Ai; i],

for some a 2Words.
Recall from the de�nition of RG that applicability of a rule to a set of items depends both on the TFSs

and on the indices of the items; however, when a rule is applicable to some sequence of items, the same
rule is also applicable to di�erent items, with identical TFSs, as long as their indices are consecutive. In
other words, the requirement that the indices of an item sequence be consecutive is independent of the
requirement that the TFSs in the sequence be uni�able with the rule.

Now consider the set J = fy01; : : : ; y
0
kg and the item x0 = [ak; 0; A; k]. We claim that x0 2 [[G1]]fn(J)

but x0 62 [[G2]]fn(J). x
0 2 [[G1]]fn(J) for the same reason that x 2 [[G1]]fn(I) { exactly the same rules can

be applied in order to generate x0. Now assume x0 2 [[G2]]fn(J); by the same rationale, the same rules

that are applied in order to generate x0, starting from J , could have been applied in order to generate x
starting from I , contradicting the assumption that x 62 [[G2]]fn(I). Thus we posit a set of items, J , such

that x0 2 [[G1]]fn(J) but x
0 62 [[G2]]fn(J). Hence ha

k; Ai 2 ObJ (G1) but hak; Ai 62 ObJ(G2).

6 Conclusions

This paper discusses alternative de�nitions for the semantics of uni�cation-based linguistic formalisms,
culminating in one that is both compositional and fully-abstract (with respect to grammar union, a simple
syntactic combination operations on grammars). This is mostly an adaptation of well-known results from
logic programming to the framework of uni�cation-based linguistic formalisms, and it is encouraging to
see that the same choice of semantics which is compositional and fully-abstract for Prolog turned out to
have the same desirable properties in our domain.

The functional semantics `[[�]]fn' de�ned here assigns to a grammar a function which re
ects the

(possibly in�nite) successive application of grammar rules, viewing the lexicon as input to the parsing
process. We believe that this is a key to modularity in grammar design. A grammar module has to
de�ne a set of items that it \exports", and a set of items that can be \imported", in a similar way to the
declaration of interfaces in programming languages. We are currently working out the details of such a
de�nition. An immediate application will facilitate the implementation of grammar development systems
that support modularity in a clear, mathematically sound way.

The results reported here can be extended in various directions. First, we are only concerned in
this work with one composition operator, grammar union. But alternative operators are possible, too.
In particular, it would be interesting to de�ne an operator which combines the information encoded in
two grammar rules, for example by unifying the rules. Such an operator would facilitate a separate
development of grammars along a di�erent axis: one module can de�ne the syntactic component of a
grammar while another module would account for the semantics. The composition operator will unify
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each rule of one module with an associated rule in the other. It remains to be seen whether the grammar
semantics we de�ne here is compositional and fully abstract with respect to such an operator.

A di�erent extension of these results should provide for a distribution of the type hierarchy among
several grammar modules. While we assume in this work that all grammars are de�ned over a given
signature, it is more realistic to assume separate, interacting signatures. We hope to be able to explore
these directions in the future.

This paper is an extended version of Wintner (1999). I am grateful to Nissim Francez for commenting
on an earlier version. This work was supported by an IRCS Fellowship and NSF grant SBR 8920230.
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