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Rotational and vibrational dynamics of interstitial molecular hydrogen
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The calculation of the hindered roton-phonon energy levels of a hydrogen molecule in a confining potential
with different symmetries is systematized for the case when the rotational angular momentumJ is a good
quantum number. One goal of this program is to interpret the energy-resolved neutron time-of-flight spectrum
previously obtained for H2C60. This spectrum gives direct information on the energy-level spectrum of H2

molecules confined to the octahedral interstitial sites of solid C60. We treat this problem of coupled transla-
tional and orientational degrees of freedom~i! by construction of an effective Hamiltonian to describe the
splitting of the manifold of states characterized by a given value ofJ and having a fixed total number of
phonon excitations,~ii ! by numerical solutions of the coupled translation-rotation problem on a discrete mesh
of points in position space, and~iii ! by a group theoretical symmetry analysis. Results obtained from these
three different approaches are mutually consistent. The results of our calculations explain several aspects of the
experimental observations, but show that a truly satisfactory orientational potential for the interaction of an H2

molecule with a surrounding array of C atoms has not yet been developed.

DOI: 10.1103/PhysRevB.66.214301 PACS number~s!: 78.70.Nx, 34.50.Ez, 82.80.Gk, 71.20.Tx
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I. INTRODUCTION

The study of rotational and vibrational dynamics of gu
molecules~i.e., CO, O2, H2, etc.! trapped in porous media
such as fullerenes, zeolites, and graphite has recently bec
an active subject both experimentally and theoretically1–5

This is because such studies can yield valuable informa
about the host-guest interactions which could be impor
for several technical applications such as gas separation
hydrogen storage.1–3 In particular, hydrogen molecule
trapped in interstitial cavities in solid C60 as well as hydro-
gen molecules embedded in nanotube ropes are of inte
due to quantum behavior of hydrogen molecules in qu
zero and one-dimensional sites.2,3,5

In this paper, we develop a detailed analysis of coup
rotational and vibrational dynamics of a molecular hydrog
encapsulated in a solid using numerical, perturbative,
group theoretical methods. In particular we will be interes
in what one might call the ‘‘weak-coupling limit,’’ when the
interaction between molecular rotations and center-of-m
translations is weak enough that the rotational angular
mentum quantum numberJ is a good quantum number. Th
limit is almost never satisfied except for very light molecu
like hydrogen or deuterium. The energy levels of a free
tator are

EJ5BJ~J11!, ~1!

whereB5\2/(2I ), I is the moment of inertia of the mol
ecule, andEJ is (2J11)-fold degenerate. For H2 the rota-
tional constant 2B has the value 60 cm21, 14.7 meV, or
B/k585 K ~and the corresponding values for D2 are half as
large!, so that the energy separation between differentJ lev-
els is large enough that oftenJ is a good quantum numbe
0163-1829/0/66~21!/214301~20!/$20.00 66 2143
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This is certainly true for solids consisting of these molecu
unless the pressure is quite large.~For a review of the prop-
erties of the hydrogen molecule and solid hydrogen see R
6.!

We have been led to consider this phenomenon in view
an experimental study of energy spectra of H2 and D2 in-
serted into the octahedral interstitial sites in solid C60 carried
out by neutron time-of-flight techniques.5 In considering this
phenomenon we should keep in mind the following expe
mental facts concerning the host solid of C60. The centers of
the C60 molecules form an fcc lattice.7 At temperature above
Tc , whereTc is about 260 K, the molecules are orientatio
ally disordered. AtT5Tc long-range orientational orderin
occurs8 and the molecules are ordered into four sublattices

described byPa3̄ symmetry.9–12 In the orientationally disor-
dered phase the local symmetry at the octahedral inters
site is indeed that of the point groupOh . In the presence of
orientational ordering the symmetry of what was the ‘‘oc
hedral’’ interstitial site is now reduced to a uniaxial symm
try, specifically that of point groupS6.13 In experiments, hy-
drogen molecules are stable in the octahedral interstitial
only for temperatures well belowTc ~where the interstitial
site does not actually have octahedral symmetry!.

While a general understanding of the time-of-flight e
periments was presented,5 some of the finer details of the
experiment remained unexplained. For instance, the shif
the energy associated with ortho-para (J51→J50) conver-
sion in the interstitial relative to its value for free molecul
was not understood. Also the feature in the energy gain sp
trum at about twice the ortho-para conversion energy was
unambiguously identified. These issues are both address
this paper. More generally we give a calculation of the cro
section for neutron energy loss for comparison with the
01-1
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served time-of-flight spectrum. For that purpose we need
only to consider the cross section for para-ortho convers
as compared to phonon creation, but also to calculate
phonon excitations of (J51) molecules. These calculation
require us to develop and implement a scheme for trea
coupled translations and rotations. In this paper we prese
systematic analysis of the simplest case of this coup
which occurs when the quantum numberJ characterizing
free rotation remains a good quantum number. In that c
the well-known numerical schemes for solving the trans
tion problem can be easily extended to include the effec
the coupling to rotations. In addition, we also give analy
expressions obtained by treating this coupling within pert
bation theory. As we will see, this analytic development e
ables us to interpret many of the numerical results in a me
ingful way. In addition, we analyze in detail variou
simplified models which illustrate our group theoretic
analysis of the symmetry present in the system of coup
translations and rotations. This analysis indicates that a
ments for the degeneracies of coupled translation-rota
modes based on simple classical concepts are incorrec
summary: in this paper we present an analysis based on
merical, perturbative, and group theoretical methods.

Up to now there have not been many theoretical studie
energy levels in such irregular geometries like the octahe
interstitial sites in C60. A notable exception is the work o
van der Avoird and collaborators14 on CO in C60. That work
examined an even more complicated situation in which
rotational and translation degrees of freedom interac
strongly. As a result, the problem was analyzed numerica
In contrast, for the present problem FitzGeraldet al.5 applied
a number of analytic and semianalytic techniques to the
oretical study the spectra of hydrogen molecules in C60. This
paper may be regarded as an extension and systematiz
of their approach.

II. GENERAL FORMULATION

Clearly the first step is to establish a satisfactory poten
for the intercalated hydrogen molecule. This potential fu
tion V(r ,V) gives the energy of a hydrogen molecule who
center of mass is atr and whose orientation is specified b
V[(u,f). A convenient starting point is to use an atom
atom potential15 to describe the interaction between each
the two hydrogen atoms and the atoms in the confining st
ture. Unless otherwise indicated, all the results reported
this paper are obtained from the same WS77 potentia15

2A/r 61B exp(2Cr), that is used in Ref. 5~where A
55.94 eV Å6, B5678.2 eV, andC53.67 Å21).

In this paper we will mainly consider the octahedral i
terstitial site in solid C60, but many of the consideration
apply with slight modification to molecules confined with
other structures such as single wall carbon nanotubes.16 The
determination of the potentialV(r ,V) for H2 in solid C60 is
discussed in Appendix A. From the numerical evaluation
this potential we have extracted the expansion coefficie
when it is written in the following canonical form:
21430
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V~r ,V!5V0~r !1 (
l 52,4,•••

(
m52 l

l

Al
m~r !Yl

m~V!. ~2!

We assume~and it is generally true! that the orientational
energies which are relevant are much less than the sma
energy difference between successiveJ levels of a molecule
(10B for an ortho molecule and 6B for a para molecule!.
Accordingly, we may consider only that part of the potent
which is diagonal inJ. When the potential is written in the
form of Eq. ~2!, it is easy to implement the truncation t
terms diagonal inJ. So for a fixed value ofJ we have the
HamiltonianHJ as

HJ5
p2

2m
1V0~r !1BJ~J11!I1 (

l 52,4,•••
(

m,m8
Al

m2m8~r !

3@ uJm&^JmuYl
m2m8~V!uJm8&^Jm8u#

52
\2

2m
¹21V0~r !1BJ~J11!1VJ~r !, ~3!

whereVJ(r ) is the orientationally dependent part of the p
tential ~the terms involvingAl

m) and I is the unit operator.
Furthermore, we consider the angular-dependent term in
expansion to be a perturbation on the first term,V0(r ). For
each value ofJ the HamiltonianHJ will give a manifold of
states which is the direct product of a manifold correspo
ing to various numbers of localized phonons being exci
with the manifold of (2J11) states having different value
of mJ . An important simplification is that spherical harmo
ics with l .2J have no nonzero matrix elements in the ma
fold of states of angular momentumJ.

Note that apart from the kinetic energy, this Hamiltoni
is a strictly local operator. Thus we solve the eigenva
problem on a discrete mesh of points on a cube centere
the octahedral site when the wave function is required
vanish on the boundary of the cube. Each edge of the cub
taken to be@2L,L# with mesh point spacing ofdL. In this
scheme the wave function at each mesh point is
(2J11)-component vector. We are mainly concerned w
the manifoldJ50 andJ51, in which case the problem i
numerically not significantly harder than for a scalar pro
lem. Even though the resulting matrix size is very large, it
a block band matrix and is very sparse. The numerical res
reported here were obtained fromL51.65 Å and dL
50.075 Å, which requires diagonalization of a matrixn
3n where n5273 375). However, we confirmed that
coarse mesh points withL51.2 Å and dL50.17 Å gives
almost the same results~where the matrix size isn
514 739). The large sparse matrix eigenvalue problem
solved using the packageARPACK.17

Since numerical results sometimes do not provide co
plete insight into the nature of the solutions, we have a
used perturbation theory to understand the results. In
approach we treatVJ(r ) in Eq. ~3! as the perturbation. The
unperturbed problem, apart from the additive energyBJ(J
11) is thus that for translations of the spherical (J50) mol-
ecule. This spectrum is not too different from that of a thre
dimensional harmonic oscillator. Accordingly, to qualit
1-2
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ROTATIONAL AND VIBRATIONAL DYNAMICS O F . . . PHYSICAL REVIEW B 66, 214301 ~2002!
tively interpret our more accurate numerical results,
apply perturbation theory in which we develop an effect
Hamiltonian18 to describe the splitting of this manifol
which is characterized by a value ofJ and of N, the total
number of phonon excitations.~The perturbative effects du
to coupling between manifolds of differentJ is negligibly
small for hydrogen in C60.5! This effective Hamiltonian is a
matrix of dimensionalityD, where D5(2J11)(N11)(N
12)/2 and schematically is of the form

H~N,J!5BJ~J11!I1Hphonon1VJ
DIAG2VJ

OFF1

E VJ
OFF,

~4!

whereHphonon gives the energy of the various states with
total of N phonons. These energies are just those calcul
for a (J50) molecule. AlsoVJ

DIAG is the part ofVJ which is
diagonalwith respect to the number of phonons, VJ

OFF is the
part of VJ which is off-diagonalwith respect to the numbe
of phonons, andE is the change in phonon energy caused
VJ

OFF.
This effective Hamiltonian is defined by its matrix el

ments as

^N,a;J,M uH~J,N!uN,a8;J,M 8&

5@BJ~J11!1EN,a#da,a8dM ,M8

1(
l 51

J

^N,auA2l
M2M8~r !uN,a8&

3^JMuY2l
M2M8~V!uJM8&1 (

N8ÞN
(

l ,l 851

J

(
m

(
b51

kN8

3@EN,a2EN8,b#21^N,auA2l
M2m~r !uN8,b&

3^N8,buA2l 8
m2M8~r !uN,a8&^JMuY2l

M2m~V!uJm&

3^JmuY2l 8
m2M8~V!uJM8&, ~5!

wherekN5(N11)(N12)/2 and the states withN phonons
are labeledN,a, wherea runs from 1 tokN .

We now briefly discuss how theAl
m’s of Eq. ~2! are ob-

tained from the atom-atom potential between each H a
and each carbon atom. Here we will assume that the at
atom potential is of the formF(ur i2rHu), wherer i and rH
are the displacements of thei th carbon and of the H atom
respectively, relative to the center of the H2 molecule. For
this form of potential, we show in Appendix A that

A2
m52p(

i
Y2

m~ r̂ i !* E
21

1

~3x221!

3F~@r i
22 1

4 r21rxri #
1/2!dx, ~6!

wherer is the separation between H atoms in the H2 mol-
ecule and the sum overi is over all relevant neighboring
carbon atoms. It is instructive to expand this expression
r/r i , which yields
21430
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S F92
F8

r i
DY2

m~ r̂ i !1o~r4/r i
4!, ~7!

where F9 and F8 are the second and first derivatives
F(r i).

This expansion is good enough to reproduce most of
results discussed in this paper. We note that theAl

m’s ~i.e., the
orientational potential! are zero for a harmonic potential@i.e.,
F(r i)5 1

2 kri
2] because the prefactor (F92F8/r i) is zero.

This can be also seen easily as follows. Assuming an at
atom potential between each H atom and the C atoms in
adjacent C60 molecules, we may write the potential of an H2
molecule as

V~r ;V!5Va~r1 1
2 rn̂!1Va~r2 1

2 rn̂!, ~8!

whereVa is the potential of a single atom due to the ent
octahedral cage in which it is confined,n̂ is a unit vector
along the axis of the molecule, andr is the separation be
tween atoms in the molecule. As we shall see, the total
tential is nearly isotropic. So we write

Va~r !5 1
2 kr21dr 4. ~9!

When we substitute this into Eq.~8!, we obtain the result

V~r ;V!5V0~r !12d~r 2r2cos2u r ,n2 1
2 !, ~10!

whereu r ,n is the angle between the vectorsr andn̂ andV0 is
independent ofu r ,n . The point is that the orientationally de
pendent part of the interaction depends on the anharmo
ity: for a purely harmonic and isotropic interactionVa , the
total potential energy is independent of the molecular ori
tation. Thus we expect rotation-translation coupling to
weak. On the other hand in nanotubes, where the quad
term isanisotropic, this coupling will be more important.16

III. ENERGY SPECTRUM OF A „JÄ0… H2 MOLECULE

We start by considering the eigenvalue spectrum ofH0 in
which the orientational dependence of the potential is
glected. In this approximation, apart from the additive co
stant BJ(J11), the total energy~rotational plus transla-
tional! is the same as that of a (J50) molecule. For most
purposes a (J50) molecule may be considered to be
spherical molecule because the orientational wave func
Y0

0(V) is uniform over all orientations. Each eigenfunctio
of H0(J) is the product of a rotational function taken fro
the manifold of 2J11 degenerate orientational wave fun
tions and a translational wave function which represents
eigenfunction for a spherical molecule confined to a ca
These translational wave functions satisfy

H0ck~r !5S p2

2m
1V0~r ! Dck~r !5Ekck~r !, ~11!

whereV0(r ) is the potential discussed in Appendix A. Th
indexk labels states which we might otherwise label by thr
indices, each quantum number characterizing the numbe
excitations in each direction. Note that these unperturbed
1-3
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T. YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 66, 214301 ~2002!
lutions do not involve the coupling between rotations an
translations. As discussed above, these eigenfunctions
obtained by converting the continuum equation~11! into a
discrete equation on a mesh of points and solving the res
ing matrix eigenvalue problem using a sparse ma
routine.17

Since it happens that the energy levels and eigenfunct
we obtained numerically are not qualitatively different fro
those of a spherical harmonic oscillator, we first study
energy spectrum as perturbationsd, k, and l are sequen-
tially turned on in the following potential:

V~r !5 1
2 kr21dr 41k~x41y41z42 3

5 r 4!

1l~xy1yz1zx!. ~12!

Figure 1 shows the evolution of the energy spectrum as
turbations are sequentially introduced which take the sph
cal harmonic oscillator into the actual lower symmetry o

FIG. 1. Energy levels of a spherical (J50) H2 molecule con-
fined in various ways. Here~g! is the degeneracy and the symmet
labels are given. Left: The molecule is in a spherical harmo
potentialV(r )5

1
2 k(x21y21z2) or an anharmonic spherically sym

metric potential~i.e., a generic spherically symmetric potential!. For
a harmonic spherically symmetric potential the energy depends
on N, the total number of phonon excitations in the oscillators alo
the three coordinate directions. For a spherically symmetric po
tial eigenstates are characterized by their total orbital angular
mentumL. Center: the molecule is in a potential appropriate to
octahedral interstitial site of orientationally disordered (Fm3m)
solid C60. Right: the molecule is in a potential appropriate to t

octahedral interstitial site of orientationally ordered (Pa3̄) solid
C60, in which case the site symmetry isS6. The potentials used fo
the interstitial cases are discussed in Appendix A.
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molecule in an octahedral interstitial site. In the left-mo
panel we show the energy levels for a spherical harmo
oscillator, with \v adjusted to correspond to the singl
phonon levels of H2 in an octahedral interstitial site in C60.
Note that the levels are highly degenerate because the en
depends only on the total number of quanta. The symm
of the Hamiltonian is U(3), the group of unitary three-
dimensional matrices. We now add to this potential an anh
monic term of the formdr 4. This perturbation lowers the
symmetry to that of the rotation group in three dimensio
As is well known, each eigenfunction in a generic sphe
cally symmetric potential can be labeled by the magnitude
the orbital angular momentumL. Thus the single phonon
levels are unsplit by this anharmonic perturbation and
now labeled as angular momentumL51 states, whereas th
two phonon levels split into a manifold of fiveL52 states
and oneL50 state and similarly for states with more tha
two phonons. In Fig. 1 we have taken the constantd to be
that which best describes the anharmonicity of H2 in C60.
The energies of the perturbed levels are given in Table I

Next, we consider what happens when the spherical os
lator potential is augmented by a cubic symmetry potentia
the form k(x41y41z42 3

5 r 4). This potential is appropriate
for a spherical molecule in an octahedral interstitial when
C60 are orientationally disordered and have anFm3m crystal
structure.7 The degeneracy associated with spherical symm
try is lifted,19 but as shown here one retains cubic symme
so the three one-phonon states which transform asx, y, andz
are degenerate. The two-phonon states are of three diffe
symmetries. One (t2g) transforms likexy, xz, andyz. This is
the lowest level. The next highest level is thes-wave sym-
metric combination which transforms likex21y21z2. Then
one has a doublet ofd-wave (e2g) symmetry. This classifi-
cation scheme is continued in the higher-energy lev
Although we are not dealing with harmonic phonons,
is still useful to consider manifolds characterized by t
quantum numbersJ and N, which are respectively the

c

ly
g
n-
o-
e

TABLE I. Effect of a spherical symmetric perturbation onU3

states. TheU3 states are characterized byN, the total number of
harmonic phonons. Wave functions in a spherical potential are c
acterized by angular momentumK. Here we give the effect of the
perturbationD(r /s)4, where^r 2&53s2 for the isotropic harmonic
oscillator in three spatial dimensions. In the last column we give
shift in the average energy of the multiplet of states of a given va
of N.

N N,K Energy Avg.E

0 ~0,0! 15 D 15 D

1 ~1,1! 35 D 35 D

2 ~2,0! 75 D 65 D

~2,2! 63 D

3 ~3,1! 119 D 105 D

~3,3! 99 D
1-4
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TABLE II. Energy-level systematics for a (J50) molecule in an octahedral interstitial site of C60. Here
we show the removal of degeneracy from a manifold of initial symmetryI to manifolds of final symmetryF
due to a perturbationV, as calculated in lowest-order perturbation theory. HereN is the total number of
phonons,K is the angular momentum, and the other group theoretical labels are as in Fig. 1. We give a
eigenfunctionc to illustrate the symmetry. Hered is the degeneracy~Deg.! of the manifold ands25^x2&
5^y2&5^z2&. Here the coordinate axes coincide with the cubic@100# directions.

I c V c F Deg. Energy

N52,K52 r 2Y2
M(V) k(x41y41z42

3
5 r 4) (x22y2) Eg 2 36

5 ks4

xy T2g 3 2
24
5 ks4

N53,K53 r 3Y3
M(V) k(x41y41z42

3
5 r 4) (x32

3
5 xr2) T1u 3 36

5 ks4

x(y22z2) T2u 3 2
12
5 ks4

xyz A2u 1 2
72
5 ks4

N51,K51,T1u rY1
M(V) l(xy1yz1zx) Eu 2 2ls2

Au 1 2ls2

N52,K52,T2g xy l(xy1yz1zx) Eg 2 2ls2

Ag 1 2ls2

N53,K53,T2u x(y22z2) l(xy1yz1zx) Eu 2 3
2 ls2

Au 1 23ls2

N53,K53,T1u (x32
3
5 xr2) l(xy1yz1zx) Eu 2 3

10ls2

Au 1 2
3
5 ls2

N53,K51,T1u x(r 22
1
3 s2) l(xy1yz1zx) Eu 2 3ls2

Au 1 26ls2
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rotational angular momentum and the total number
phonons, at least up toN53. Quantitative results are give
in Table II.

Finally, in the right-most panel of Fig. 1 we show th
further reduction in degeneracy which occurs when the o
hedral interstitial is surrounded by C60 molecules which have
the long-range order associated with thePa3̄ crystal
structure.9–12 In this case, each interstitial is uniaxial~with
symmetryS6) rather than octahedral. Accordingly, we intr
duce a potential of the forml(xy1yz1zx)[ 1

2 l(3j2

2r 2), where thej axis is taken to lie along the threefol
axis of the interstitial site. There are four symmetry rela
interstitial sites, each of which has its threefold axis alon
different @1,1,1# direction. The resolution of degeneracy
the presence of this uniaxial perturbation is also given
Table II. In all these cases, no interactions between rotat
and translations are involved.

We have solved the eigenvalue problem of Eq.~11! on a
mesh of points and obtained the results given in Table
Results labeled ‘‘Octahedral’’ are those for the orientatio
ally disordered phase, where each C60 molecule is replaced
by a sphere of carbon atoms as is discussed in Ref. 5. S
these numerical results lead to manifolds of energy lev
associated with a given number of phonons and the de
eracies of these manifolds are as expected from our gen
discussion above, we conclude that the potential seen
spherical H2 molecule in the low-lying phonon levels is no
very different from that of a spherical harmonic oscillato
However, as noted in Ref. 5, the effective harmonic poten
must be taken to be a self-consistently renormalized pote
to take account of the larger zero-point motion.
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IV. ENERGY SPECTRUM OF A JÄ1 MOLECULE

We now discuss the energy spectrum of an ortho molec
with (J51). As we have seen for (J50) molecules, our

TABLE III. Phonon levels for a (J50) H2 molecule in an oc-
tahedral site for orientationally ordered and disordered C20, respec-
tively. Energies~meV! are with respect to the ground-state ener
E0,1. The symmetry of each manifold of degenerate levels can
read from Fig. 1.

EN,a Octahedral Pa3̄ (S6)

N a

1 1 14.38 13.16
1 2,3 14.38 14.47

2 1 28.26 26.69
2 2,3 28.26 27.49
2 4 30.69 30.41
2 5,6 31.73 31.39

3 1 41.62 40.10
3 2,3 44.39 42.40a

3 4 44.39 42.42a

3 5,6 45.23 44.40
3 7 45.23 45.83
3 8,9 50.07 49.36
3 10 50.07 49.85

aThese energies are accidentally almost identical. However, gr
theory indicates that these levels are generically nondegenera
1-5
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numerical results indicate that forN up to, say, 3, one can
clearly identify the manifold ofN phonons. We therefore
discuss the systematics of these manifolds.

A. Zero-phonon manifold

We first consider the case ofJ51 with N50 phonons.
This manifold is described by the effective Hamiltonian

H5~2B1DE!I1d~Jz
22 2

3 !. ~13!

The splittingd must be zero when C60 is orientationally dis-
ordered. From Eq.~5! one sees that because the spher
harmonics are traceless, the average energy shiftDE has
nonzero contributions only from terms which involve co
pling to excited phonon states.~In Ref. 5 a negligibly small
shift was found due to off-diagonal effects inJ which we
ignore here.! From Eq.~5! we find that

DE52
1

3 (
NÞ0,a

EN,a
21 (

m,t
u^0,1uA2

t~r !uN,a&u2u

3^1~m1t!uY2
t~V!u1m&u2. ~14!

To implement this equation, we first constructAl
m(r ) as dis-

cussed in Eq.~6!. Then matrix elements ofA2
M(r ) are taken

between phonon states for aJ50 molecule which we ob-
tained previously and which are labeledN,a (u0,1& being the
phonon ground state!. Thereby we obtained the results give
in Tables IV and V. In Eq.~14! the matrix elements o
spherical harmonicsY2

M(V) are taken between orientation
states labeled byJ andJz . To evaluateDE we use

TABLE IV. Matrix elements of̂ NauA2
t(r )u01& ~in meV! for H2

in octahedral andS6 potential, respectively. Elements not listed a
expected to be zero by symmetry. Numerically such elements w
found to be very small. For this table the wave functions with
each degenerate manifold were chosen to make the matrix elem

of A2
t(r ) as simple as possible. ForPa3̄ symmetry, thez axis is

taken to be the local threefold axis. Therefore the octahedral w

functions are not necessarily identical to thePa3̄ wave functions.

^NauA2
t(r )u01& Octahedrala Pa3̄ (S6)

N a t

0 1 0 ~0,0! (21.286,0)
2 1 0 ~0,0! (20.506,0)
2 1 1 (a,0) ~0,0!
2 1 2 ~0,0! ~0,0!
2 2 1 (0,a) (20.176,20.106)
2 3 2 (0,a) (2.413,22.388)
2 4 0 ~0,0! (20.224,0)
2 5 0 ~0,0! ~0,0!
2 5 2 (b,0) (26.500,21.754)
2 6 0 (A2b,0) ~0,0!
2 6 1 ~0,0! (28.862,21.400)

aOur numerical results givea50.859 andb55.662~in meV!.
21430
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(
m

u^1~m1t!uY2
t~V!u1m&u25

3

10p
~15!

so that

DE52
1

10p (
NÞ0,a

EN,a
21 (

t
u^0,1uA2

t~r !uN,a&u2. ~16!

In Appendix B we give a model calculation of an H2
molecule in a spherical cavity from which we evaluate E
~16! to give DE520.14 meV. In this calculation the trans
lational wave functions are assumed to be those of a
monic oscillator with^r 2&50.1875 Å2. As noted, the result
is very sensitive to the value used for^r 2&. For octahedral
symmetry~i.e., for orientationally disordered C60) we evalu-
ate Eq.~16! using the data in Table IV. Thereby we find
shift DE520.133 meV. The same approach using our n
merical solutions for the phonon states of a (J50) molecule
for the orientationally orderedPa3̄ phase yields the result
DE520.141 meV, compared to the experimental valu5

DE520.35 meV. Again we mention that a small change
parameters could easily lead to a much larger calcula
value ofDE. From the numerical solution for the three com
ponent wave function of a (J51) molecule on a mesh o
points, we obtained the valueDE520.16 for the Pa3̄
phase. The various numerical results forDE are summarized
in Table VI.

From Eq.~5! we also find the splitting~in thePa3̄ phase!
to be

re

nts

ve

TABLE V. Nonzero matrix elements of̂1auA2
t(r )u1b& ~in

meV! for H2 in octahedral and S6 potential, respectively. We also
note that ^1auA2

t(r )u1b&5^1buA2
t(r )u1a& and ^1auA2

2t(r )u1b&
5(21)t^1auA2

t(r )u1b&* . For the octahedral symmetry, the wav
functions within each degenerate manifold were chosen to make
matrix elements ofA2

t(r ) as simple as possible.

^1auA2
t(r )u1b& Octahedral Pa3̄ (S6)

t a b

0 1 1 (23.853,0) (22.020,0)
0 2 2 (23.853,0) (21.326,0)
0 3 3 ~7.708,0! (21.326,0)
1 1 2 ~0,0! (22.109,21.131)
1 1 3 ~0,0.881! (1.137,22.104)
1 2 2 ~0,0! ~1.534,2.440!
1 2 3 (20.881,0) (2.435,21.533)
1 3 3 ~0,0! (21.531,22.442)

2 1 1 (24.119,0) ~0,0!
2 1 2 ~0,0.880! (20.225,23.022)
2 1 3 ~0,0! (23.022,0.226)
2 2 2 ~0,0! ~0.560,0.835!
2 2 3 ~0,0! (20.830,0.556)
2 3 3 ~0,0! (20.565,20.831)
1-6
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TABLE VI. Shift of the center of gravity~CG! and splitting~in meV! of the (J51,N50) manifold when
the nominally octahedral site has octahedral andS6 symmetry.

Our calculations Experimentd

Quantity Octahedral (Oh) Pa3̄ (S6) Pa3̄ (S6)

Shift of CGa 20.134 20.141 0.35
Shift of CGb 20.16 0.35
Splitting first orderc 0 0.487
Second orderc 0 20.010
Totalc 0 0.477 0.70
Totalb 0 0.46 0.70

aPerturbation result of Eq.~16!.
bObtained by direct diagonalization of Eq.~3!.
cPerturbation result of Eq.~17!.
dFrom Ref. 5.
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3^0,1uA2

0u0,1&

A20p
1

3

20p (
e

E~e!21@ u^0,1uA2
0~r !ue&u2

1u^0,1uA2
1~r !ue&u222u^0,1uA2

2~r !ue&u2#, ~17!

where the quantization axis is taken to lie along the three
axis of symmetry of the interstitial site. Using the matr
elements given in Table IV, we find that the contribution
the splittingd comes almost exclusively from the diagon
term ^0,1uA2

0u0,1& and we obtain the results listed i
Table VI.

B. One-phonon manifold

1. Numerical results

Next we consider the manifoldJ51 with N51 phonon.
Again only Yl

m with l 52 contributes, so that we may write

H~1,1!am;a8m8[^amuH~N51,J51!ua8m8&

5@2B1E01\va#dm,m8da,a8

1^1auA2
m2m8~r !u1a8&
21430
ld

3^1muY2
m2m8~V!u1m8&

2 (
N8Þ1

(
a951

kN8

(
m9

1

EN8,a92E1,a

3^1auA2
m2m9~r !uN8a9&

3^N8a9uA2
m92m8~r !u1a8&

3^1muY2
m2m9~V!u1m9&

3^1m9uY2
m92m8~V!u1m8&. ~18!

This is a 939 matrix, which gives the 9 (J51,N51) levels.
Since the first term gives rise to the removal of degener
expected from group theoretical considerations, we did
include the second term in our numerical evaluations. T
procedure was sufficiently accurate to provide a useful ch
on the validity of the more accurate numerical solutions
the three-component wave functions of our set of me
points. In Table VII these numerical results~‘‘full mesh’’ ! are
given and are compared to the results using perturba
d

TABLE VII. Energy ~in meV! of J51 single-phonon states where zero-of-energy is taken to be 2B.

Octahedral (Oh) Pa3̄ (S6)

C Full mesha Perturbationb C Full mesha Perturbationb

T1g 13.11 13.14 Ag 12.59 12.52
T1g 13.11 13.14 Eg 12.82 12.87
T1g 13.11 13.14 Eg 12.82 12.87
T2g 13.6 13.68 Eg 13.47 13.51
T2g 13.6 13.68 Eg 13.47 13.51
T2g 13.6 13.68 Ag 14.20 14.16
Ag 15.61 15.78 Ag 15.75 15.31
Eg 16.46. 16.60 Eg 16.60 15.79
Eg 16.46. 16.60 Eg 16.60 15.79

aSolution to Eq.~3! for the three component wave function on a mesh of points.
bSolution to Eq.~5! using wave functions and energies for aJ50 molecule as previously determine
numerically on a mesh of points.
1-7
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T. YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 66, 214301 ~2002!
theory, as in Eq.~18!. As can be seen, the two approach
yield quite compatible results.

2. Qualitative remarks

Some additional comments on Eq.~18! are in order. The
first line of this equation gives the energy at first order
perturbation theory. At this order the wave function rema
a product of the spatial ground-state spatial wave func
for a J50 molecule times aJ51 rotational wave function.
At this level of approximation there is no dynamical co
pling between translation and rotation. In second-order p
turbation theory we see that admixtures of two phonon st
which are multiplied by different rotational states are intr
duced. For example, consider the situation when the m
ecule is in a uniaxial symmetry site and letuX&, uY&, anduZ&
be theJ51 states for which respectivelyJx , Jy , andJz are
zero. If, for simplicity, we assume that the unperturbed s
tial wave function is spherically symmetric, then the sta
which without perturbation was

C0uZ&e2r 2/(4s2), ~19!

whereC0 is a normalization constant, is now

C1uZ&e2r 2/4s2
1C2uX&zxe2r 2/(4s2)1C2uY&zye2r 2/(4s2),

~20!

whereC1'C0 andC2 is small compared toC1. The point is
that this formulation allows the molecule to change its o
entational state as it translates. For H2 in C60 this effect is
small, however, in less symmetrical cavities, as
nanotubes,16 this effect can become more important.

3. Group theoretical analysis

In Fig. 2 we show the influence of roton-phonon coupli
and local site symmetry on the energy spectrum of the o
phonon (J51) manifold. At the far left we start from the
case of highest symmetry when the phonon and rotat
separately have complete rotational invariance and
phonon-roton coupling is present. In this case the manif
of nine states@three one-phonon stateŝ three (J51)
states# is completely degenerate. When roton-phonon c
pling is included ~but the environment is still sphericall
symmetric! we have overall rotational invariance and the
sulting eigenstates are characterized by their total ang
momentumK. The roton-phonon coupling causes states w
different K to have different energy, as illustrated in Appe
dix B 3. ~The size of the splitting shown in the figure
adjusted to agree with the center of gravity of the appropr
levels for cubic site symmetry.!

The two right-hand columns pertain to the situation wh
a (J51) hydrogen molecule occupies the octahedral inter
tial site of C60. When the C60 molecules are orientationall
disordered the interstitial site hasOh symmetry and we con
sider that case first. Use of the character tables for theOh
group indicates that the original nine dimensional reduci
representationG is decomposed into irreducible represen
tion of theOh group as
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G5T2g% T1g% Eg% Ag , ~21!

and the basis functions associated with these irreducible
resentations are given in Table VIII. As mentioned above,
temperatures below about 260 K, the C60 molecules order
into a structure of crystal symmetryPa3̄,9–12 in which case
the formerly octahedral interstitial has the lowerS6
symmetry.13 Use of the relevant character table shows t
now

G53Ag% 3Eg% 3Eg* , ~22!

whereEg is a complex one-dimensional representation a
Eg* is its complex conjugate partner. The basis functions
sociated with these irreducible representations are give
Table VIII. The most important conclusion from this analys
is that the energy eigenfunctions arenot simply products of
translational and rotation wave functions, but instead are
ear combinations of such products. This type of wave fu
tion reflects the fact that symmetry operations act simu
neously on the position and the orientation of a molecule

To emphasize this fact we give, in Fig. 3, a pictorial re
resentations of the translation-rotation wave functions. T
representation is to be interpreted as follows. We know t
the rotational wave functions for a freeJ51 molecule can be

FIG. 2. Removal of degeneracy as roton-phonon interactions
introduced and the site symmetry is lowered. The degenerac
indicated by the number in parentheses. At the far left is shown
completely degenerate level when spherical symmetry is assu
and no roton-phonon coupling is present. The next panel shows
effect of allowing roton-phonon interactions but preserving ove
spherical symmetry. HereK is the total~orbital plus orientational!
angular momentum. In the next panel spherical symmetry is lo
ered to octahedral symmetry which is appropriate for H2 in the
octahedral interstitial site in orientationally disordered C60. The far
right panel ~and the energy scale! applies to the case of H2 in
orientationally ordered C60 in which case the site symmetry isS6.
1-8
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TABLE VIII. Basis functions within the one-phonon (J51) manifold. Herex, y, and z are the one-
phonon states with a single excitation in the phonon associated with thex, y, andz direction, respectively.a

In terms of the mJ states ~denoted umJ&) within (J51) we have X[(u21&2u1&)/A2, Y[ i (u1&
1u21&)/A2, andZ[u0&.

Oh symmetrya

T2g (xZ1zX), (yZ1zY), (xY1yX)
T1g (xZ2zX), (yZ2zY), (xY2yX)
Eg (2zZ2yY2xX), (xX2yY)
Ag (xX1yY1zZ)

Pa3̄ symmetryb

Eg andEg* (xZ1zX,yZ1zY), (xZ2zX,yZ2zY), (xX
2yY,xY1yX)

Ag zZ, xX1yY, xY2yX

aThe x, y, andz directions are taken to coincide with the fourfold axis ofOh .
bThe z direction coincides with the threefold axis ofS6.
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taken to be analogs ofpx , py , andpz functions and we will
label theserotational wave functions asX, Y, or Z. For in-
stance uX&;sinu cosf, uY&;sinu sinf, and uZ&;cosu.
These wave functions have two lobes, one positive, the o
negative, aligned along the axis associated with their s
label. When such a rotational function is multiplied by
one-phonon function in thea direction, (ux& denotes a wave
function for a single-phonon excitation in thex direction!,
the total wave function will be an odd function ofa. Thus
the wave functionuxX& is an odd function ofx and is there-
fore depicted by twopx functions, one at positivex and
another at2x, with the signs of the two lobes changed. F
simplicity in the figures we show only those functions whi
have appropriate dependence in the plane of the paper, w
is taken to be thex-y plane. At the upper left we show a
xy-like function. It has two othert2g symmetry partners
which arexz-like andyz-like. At the upper right we show one
of the twoEg functions which isx22y2-like. These fivet2g
andEg functions comprise the manifold of total angular m
mentumK52 states. Within spherical symmetry all five o
these states are degenerate in energy. In the lower left of
3 we show thez-like function of t1g symmetry. Its other two
partners are obtained by cyclically permutingx, y, and z.
These three functions comprise the manifold of total angu
momentumK51 states, which transform under rotation as
vector. Finally at the lower right we show the angular m
mentumK50 state. Thus in spherical symmetry, the ni
J51 single phonon states give rise to three distinct ene
manifolds which have degeneracies 1, 3, and 5, corresp
ing respectively to total angular momentumK50, K51,
andK52.

The simplest classical arguments do not reproduce
above results. For instance, one might argue that transla
can occur equivalently along either of three equivalent co
dinate axes. In each case, one can have the molecule orie
along the axis of translational motion or perpendicular to t
axis. This argument would suggest that the nine levels br
into a threefold degenerate energy level in which the m
21430
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FIG. 3. Translation-rotation wave functions for a (J51) H2

molecule in an octahedral interstitial site with one phonon. Here
plane of the paper is thex-y plane and for simplicity only the
dependence in this plane is depicted. Each figure eight represen
uX& or uY& orientational wave function and the sign associated w
each lobe of thisp-like function is indicated. Each orientationa
wave function is multiplied by a translational wave functionux&,
uy&, or uz&, where for instanceux&;x exp@2 1

4(x/s)2#. The presence
of a phonon in ther a coordinate thus causes the wave function
be an odd function ofr a , as one sees in the diagrams. As indicat
in Fig. 2, the total angular momentumK, which is the sum of the
angular momentum of the phonon and that of rotation, is a g
quantum number whose value is indicated. Top, left: aK52, T2g

function; top right: aK52, Eg function; bottom left: aK51, T1g

function; and bottom right aK50, Ag function.
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ecule is oriented longitudinally and a sixfold level in whic
the molecule is oriented transversely. This discussion sh
that it is essential to treat the translation-rotation probl
quantum mechanically to get the correct degeneracy.

V. NEUTRON SPECTRUM

In the experimental study of Fitzgeraldet al.,5 the neutron
energy-loss spectrum of H2 trapped in C60 was measured
with an energy resolution of 0.3 meV. The spectrum sho
surprisingly rich features. However, the origin of these fe
tures was not successfully identified in detail. Since the
served neutron spectrum is a direct probe of the intermole
lar potential between H2 molecules and C60 host lattice, it is
very important to see if available atom-atom potentials c
give a spectrum which is similar to the experimental data
suitable analysis of the high-resolution inelastic neutr
scattering data in Ref. 5 should, in principle, give a detai
information about the intermolecular potential between2
molecules and the host lattice.

Figure 4 illustrates several possible transitions, involv
both rotational and vibrational excitations, that could be o
served in a neutron-scattering experiment for H2 in solid
C60. In order to estimate the intensities of these transitio
and the corresponding neutron spectrum, in Appendix C
derive the inelastic neutron cross section for trapped H2 mol-
ecules in a powder sample at low temperature. Below
discuss the contribution to the total neutron spectrum fr
each of these transitions, labeled asTA , . . . ,TE , and then
compare the calculated spectrum with experimental data
ing various atom-atom potentials.

We start with the transitions involving phonon creation
para hydrogen, as shown byTD in Fig. 4. Because of the
spin-dependent interaction between the proton and the

FIG. 4. A schematic representation of possible transitions
tween the rotation-phonon energy levels that could be observed
neutron-scattering experiment. At low temperature, only theJ
50,N50) and (J51,N50) states are populated and therefore
transitionTC can not be observed at low temperature. The transi
TD is proportional to the coherent cross section of H2 and therefore
very small. The transitionsTB andTA have comparable cross se
tions ~see text for details!.
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tron, processes in which a para molecule is not converte
an ortho molecule are forbidden, or more correctly speak
are proportional to the coherent cross sectionb, which is
very small compared to incoherent cross sectionb8. Hence
the transitionTD will not have a noticeable contribution t
the total cross section.

We next discuss the contribution to the total spectr
from processes in which either a (J50) molecule is con-
verted to (J51) molecule~para-ortho conversion, labeled a
TA in Fig. 4! or a single phonon is created~as shown byTB).
Our calculations presented so far indicate that both proce
will give features around 14 meV in the neutron spectrum

In Appendix C we find that the cross section due to pa
ortho conversion~indicated by the subscript 0→1) is given
by

]2s

]V]E D
0→1

5
3

4
N

k8

k
~12x!Fb8 j 1S 1

2
kr D G2

e22W(k)

3(
m

d@EL2~Ec1Em!#, ~23!

whereN is the total number of H2 molecules,k (k8) is wave
vector of the incident~scattered! neutron,k5k82k, x is the
fraction of H2 molecules which are ortho~oddJ) molecules,
r is the separation between protons in the H2 molecule,b8 is
the spin-dependent cross section in the proton-neu
pseudopotential,j n is the nth-order spherical Bessel func
tion, andW(k) is the Debye-Waller factor which we take t
be 1

3 k2^u2&. Also, EL is the energy loss of the neutron, an
Ec1Em is the para-ortho conversion energy when the fi
state of the ortho hasJz5m.

Similarly, the cross section due to ortho-para conversi
]2s/]V]E)1→0 has the same expression as Eq.~23! but now
the factor (12x) is replaced byx. Hence the ratio of the tota
cross section for ortho to para conversion to that of para
ortho conversion is (12x) to x, wherex is the ortho concen-
tration. Normally the ratio of energy gain to energy loss cro
sections follows the Boltzmann factor. Here, the populatio
are set byx rather than by the temperature.

We now discuss the cross section due to phonon crea
on a (J51) molecule ~indicated here by the subscript
→1), which is calculated in Appendix C. These transitio
are shown asTB in Fig. 4. The result requires a knowledge
the translation-rotation wave function of the H2 molecule.
We find that

]2s

]V]E D
1→1

5Nx
k8

k
b82(

n51

4

S1→1,n
(1) , ~24!

where the cross sectionS1→1,n
(1) are given in Eqs.~C34!,

~C35!, and~C43! of Appendix C.
In Fig. 5 TB represents the transitions from the (J51,N

50) levels to the manifold of nine energy levels of (J
51,N51). Accordingly, we expect several transitions wi
nonzero amplitude and thus rich features in the total neu
cross section.

Also one may consider the cross section integrated o
energy, which is a useful quantity to indicate the relati

-
a
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ROTATIONAL AND VIBRATIONAL DYNAMICS O F . . . PHYSICAL REVIEW B 66, 214301 ~2002!
strength of the different transitions discussed above. The
tio r P of the integrated neutron energy-loss cross section
phonon creation~processTB in Fig. 4! divided by that for
para-ortho conversion~processTA in Fig. 4! was found in
Appendix C to be

r P5
2

27
k2^u2&

x@ j 0~ 1
2 kr!212 j 2~ 1

2 kr!2#

~12x! j 1~ 1
2 kr!2

. ~25!

This ratio is plotted as a function ofk for x53/4 in Fig. 6.
Since this ratio is of order unity, the energy-loss spectr
will display features due to both phonons and para-or
conversion.

In Appendix C we also calculate the zero-phonon or
cross section for the transition shown asTE in Fig. 4. Since
the (J51) levels are in thermal equilibrium, in this case t

FIG. 5. The calculated transition probabilities from theJ
51,N50) levels to the ninefold manifold of (J51,N51) levels at
T54 K. The energies of the levels are given in Table VII~under
full mesh!. For each pair of energies these transition probabilit
represent the appropriate sum over degenerate levels. Note
there are at least eight transitions with comparable probability, s
gesting that rich features could be observed in a neutron-scatte
experiment.

FIG. 6. The solid curve is the ratior P of the single-phonon cros
section to that from para-ortho conversion as given in Eq.~25! as a
function of momentum transfer. The dotted line shows 503r J51

(T50) as given in Eq.~26!. The experimental situation of Ref.
corresponds to a momentum transfer between 2 and 4 Å21.
21430
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ratio of the cross sections at energy gain to those of ene
loss does satisfy detailed balance. The ratio of the total c
section~counting both energy loss and energy gain! for tran-
sitions within the (J51) ground manifold to that due to par
to ortho conversion was found at zero temperature to be

r J51~T50!5
x

12x

4 j 2~ 1
2 kr!2

15j 1~ 1
2 kr!2

. ~26!

Figure 6 shows that this ratio is quite small and theref
experimental observation of this transition~i.e., TE'0.7
meV shown in Fig. 4! would be very difficult.

Figure 7 shows the neutron energy-loss spectrum and
calculated total spectrum using the same potential, the
called WS77 model,15 used by FitzGeraldet al.5 Even
though the calculated spectrum is wider than the experim
tal spectrum, it is still possible to make a one to one cor
spondence between calculation and experiment as is sh
by arrows in Fig. 7. The top curve in this figure shows wh
the spectrum looks like if the orientational part of the pote
tial is scaled by about half. The agreement between the
and calculations is somewhat better after this arbitrary s
ing, indicating that the potential used is too anisotropic
the center-of-mass motion of H2 molecule but at the sam
time it is too weak for the orientational part of H2 @because it
gives too small a result ford, the splitting of the (J51)
ground manifold#.

We also tested other potentials commonly used in the
erature and these results are shown in Fig. 8. The top curv
from Novaco’s 6-12 potential which was developed to stu
hydrogen on graphite.4 Clearly this potential gives too low
phonon energies and too little splitting of the (J51) levels
for H2 in solid C60. The other two curves in Fig. 8 are 6-ex
potentials tabulated in Ref. 15. The spectrum from these
tentials does not agree with experiment either. We a
searched the potential parametersA andB for 6-12 andA, B,

s
hat
g-
ng

FIG. 7. Neutron energy-loss spectrum~middle! at 4.2 K. The
bottom curve is the result from our calculation using the WS
potential. The dashed and gray lines are the contributions from
tational and vibrational excitations, respectively. The top curve
the spectrum after arbitrarily scalingAl

m by half, indicating that the
orientational potential used in our calculations is too anisotropic
far as the center-of-mass motion is concerned.
1-11
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and C for 6-exp types of potentials. However, we were n
able to improve the fit to experiment using these atom-a
potentials. Hence it seems that simple atom-atom poten
does not describe the details of the H2-C60 interaction well. It
is an open and important question to find a better poten
can reproduce the experimental spectrum better. It is als
important to see how well the potentials obtained fro
density-functional theory within local-density approximatio
will do.

Finally, in addition to features observed near 14 me
Fitzgeraldet al.5 also observed a feature at about 28 meV
the energy gain time-of-flight spectrum. This energy is ab
twice that of either the para-ortho conversion energy or
energy of the translational phonon for an H2 molecule in an
octahedral interstitial site. Clearly this feature represents
energy of two excitations, but it was not clear whether th
would be two phonons, one phonon, and one ortho-para t
sition, or two ortho-para transitions. In Fig. 9 we show t
temperature dependence of the total intensity of this feat
This temperature dependence follows a thermal activa
with an energy of about 14 meV. Thus the initial state m
consist of one thermally excited phonon and the transit
observed destroys one thermal phonon and converts
ortho molecule~which occurs with temperature-independe
probability x) to a para molecule, thus giving the observ
energy of about 28 meV.

VI. CONCLUSIONS

Our results indicate that the coupled phonon-roton pr
lem is a rich one. For the light molecules of H2 where the
splitting of rotational levels is large compared to most latt
vibrational modes, one is in a so-called weak-coupling lim
where the interactions between rotons and translatio
phonons can be treated perturbatively. Even at this level
recovers an interesting structure. Needless to say, we h

FIG. 8. Neutron energy-loss spectrums obtained from vari
commonly used intermolecular potentials. For each potential
give the value ofd, the splitting of the (J51) zero-phonon levels
which may be compared to the experimentally determined valud
50.75 meV~Ref. 5!. Note that the average phonon energies of
first two potentials~top and middle curves! are way off from the
observed value of'14 meV.
21430
t
m
ial

al
of

,

t
e

e
e
n-

e.
n
t
n
ne
t

-

t
al
ne
pe

that the calculations in this paper will motivate more detai
experiments at higher resolution to elucidate the structure
the roton-phonon spectrum.

We may summarize our main conclusions as follows:
• We have presented a systematic perturbative approac

the calculation of the roton-phonon spectrum of hydrog
molecules in confined geometry. Our calculations agree w
the group theoretical analysis for the geometries conside
here.

• In a general way, the techniques of this paper~use of the
atom-atom potential combined with perturbation theory! may
prove useful to treat hydrogen molecules in other confin
geometries, in particular in or on nanotubes. We are curre
analyzing this situation.

• We give a calculation of the expected energy-loss sp
trum from hydrogen in C60 in the energy range wher
phonons and para-ortho conversion both are important.
find that none of the traditional 6-12 and 6-exp types
potentials give good results for the detailed energy dep
dence of the observed phonon spectrum, although the W
potential15 we used was definitely the most satisfactory. It
a theoretical challenge to determine a potential which fu
reproduces the observed spectrum.

• We identify the feature at 28 meV in the energy ga
spectrum as consisting of conversion of one ortho molec
to a para molecule combined with annihilation of a sing
phonon. This identification is uniquely indicated by the te
perature dependence of this feature.
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APPENDIX A: ATOM-ATOM POTENTIAL AND AL
M

We model the interactions between the hydrogen m
ecule and the surrounding cage of C60 molecules using an

s
e

e

FIG. 9. Temperature-dependent neutron energy gain spectru
H2 in C60 ~the data is taken from Ref. 5!. The inset shows ln(I/I0)
versus 1/kT, whereI is the intensity of the feature at about 28 me
The slope of the line indicates an activation energy barrier of 1
meV.
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ROTATIONAL AND VIBRATIONAL DYNAMICS O F . . . PHYSICAL REVIEW B 66, 214301 ~2002!
atom-atom potential.15 Unless otherwise indicated, all the re
sults reported in this paper are obtained from the same
tential 2A/r 61B exp(2Cr) that is used in Ref. 5~whereA
55.94 eV Å6, B5678.2 eV, andC53.67 Å21).

We consider two cases depending on the orientatio
state of C60 molecules. When the molecules in the surroun
ing cage are orientationally disordered, we distribute the
bon centers uniformly over the surface of a sphere. This c
corresponds to the octahedral symmetry discussed in the
The resulting integration of the atom-atom potential ove
spherical surface is done analytically in Ref. 5 and theref
is not given here. For thePa3̄ symmetry, the C60 molecules
are oriented according to theirPa3̄ settings and then the
total potential andAl

m’s are calculated on a mesh points of
cube centered at the octahedral site. Below we derive a
venient way to obtain theAl

m’s from the atom-atom potential
We write the potentialVH-C between a single H atom an

a single C atom as

VH-C5F~r !, ~A1!

wherer is the displacement of the C atom relative to the
atom. Thus the interactionV(H2) of a H2 molecule with a C
atom can be written as

V~H2!5 (
s561

F@~r 21 1
4 r21srr•n̂!1/2#, ~A2!

where nowr is the displacement of the C atom relative to t
center of the H2 molecule whose atoms are at positio
6 1

2 rn̂, wheren̂ is a unit vector specifying the orientation o
the molecular axis of the H2 molecule. Then

A2l
m5(

s
(

i
E Y2l

m~ n̂!* F@~r i
21 1

4 r21srr i•n̂!1/2#dV,

~A3!

wheredV indicates an integration over all orientations ofn̂
and the sum overi is over all neighboring carbon atoms. W
use this to get

A0
0[V052Ap(

i
E

21

1

F@~r i
21 1

4 r21rr ix!1/2#dx.

~A4!

To get theAl
m’s for l .0 we write

(
s

F@~r i
21 1

4 r21srr i•n̂!1/2#5(
L

B2L~r i !Y2L
0 ~u r ,n!,

~A5!

where u r ,n is the angle between the vectorsr i and n̂. We
have that

B2L~r i !52p(
s

E
0

p

F@~r i
21 1

4 r21srr icosu!1/2#

3Y2L
0 ~u!sinudu. ~A6!

Now substitute Eq.~A5! into Eq. ~A3! to get
21430
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A2l
m5(

i
E Y2l

m~ n̂!* (
L

B2L~r i !Y2L
0 ~u r ,n!dV. ~A7!

Using the addition theorem for spherical harmonics20 we
have

A2l
m5(

i
E Y2l

m~ n̂!* (
L

B2L~r i !A4p/~2L11!

3(
n

Y2L
n ~ n̂!Y2L

n ~ r̂ i !* dV

5(
i

B2l~r i !A4p/~2l 11!Y2l
m~ r̂ i !* . ~A8!

For A2
m we get

A2
m52p(

i
Y2

m~ r̂ i !* E
21

1

~3x221!

3F~@r i
21 1

4 r21r irx#1/2!dx. ~A9!

For power-law functionsF ~i.e., F;1/r 2n), this integral can
be done analytically.

APPENDIX B: SPHERICAL CAVITY

In this appendix we apply our formalism discussed in t
text to a simple toy model to utilize the main physics
quantum roton-phonon dynamics of a H2 molecule confined
in a spherically symmetric cavity for which the potenti
differs perturbatively from harmonic.

1. Orientationally dependent potential

For a diatomic molecule for which the spherical part
the potential is that of an isotropic spherical oscillator, w
take the orientationally dependent part of the potential to

U~r ,V!

5 f ~r !@~ x̂ sinu cosf1 ŷ sinu sinf1 ẑ cosu!22 1
3 #,

~B1!

wherex̂[x/r , ŷ[y/r , and ẑ5z/r .
This potential can be written in the canonical form of E

~2! with

A2
m5

8p

15
f ~r !Y2

m~ r̂ !* . ~B2!

2. Energy shift of the JÄ1 manifold

To evaluate Eq.~16! for the shift in the center of gravity
of the J51 zero phonon levels, we need the wave functi
of the ground state, namely

c0~r !5ae2r 2/(4s2). ~B3!

wherea5s23/2(2p)23/4. Also we can write the two-phonon
excited states~for spherical symmetry! as
1-13
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c2,m
(L52)5b~r /s!2Y2

m~ r̂ !e2r 2/(4s2), ~B4!

for m522,21,0,1,2, and for angular momentumL52 and
whereb5s23/2A2/15(2p)21/4. The sixth two-phonon state
is ans-wave state, whose wave function we do not need.
will also need theL52 (d-wave! four-phonon states which
are

c4,m
(L52)5g@~r /s!427~r /s!2#Y2

m~ r̂ !e2r 2/(4s2), ~B5!

for m522,21,0,1,2, and whereg5s23/2A1/105(2p)21/4.
Now we assume the following polynomial fit forf (r ):

f ~r !5g2~r /s!21g4~r /s!41g6~r /s!6. ~B6!

We then find

u^0uA2
m~r !uc2,m

(L52)&u54Ap

15
ug217g4163g6u[4Ap

15
G

~B7!

and

u^0uA2
m~r !uc4,m

(L52)&u54A14p

15
ug4118g6u. ~B8!

Thus we have

DE52
4

15

~g217g4163g6!2

\v
2

28

15

~g4118g6!2

\v
.

~B9!

From numerics we get

A2
0~z!50.07226r 410.0348r 6. ~B10!

For convenience we takes50.25 Å. ThenA2
0 is of the form

of Eqs.~B2! and ~B6! with

g450.07226s4, g650.0348s6, ~B11!

g450.07226/25650.282 meV, ~B12!

g650.0348/409650.0084 meV. ~B13!

We evaluate the first and second terms on the right-hand
of Eq. ~B9! to be 0.115 and 0.025 meV, respectively. Th
we have

DE50.14 meV. ~B14!

Notice thatDE is a very strong function ofs. For instance,
if you take s50.26 Å, you get g450.33 meV andg6
50.011 meV in which caseDE50.19 meV.

3. Effect of translation-rotation coupling on the JÄ1 one-
phonon manifold

In the absence of coupling between translations and r
tions we characterize the single-phonon states by pho
angular momentumLP , so that
21430
e

de

a-
on

uLP561&57S x6 iy

s Dc0~r !, uLP50&5~z/s!c0~r !.

~B15!

We now wish to include the effect of the perturbation of t
form of Eq.~2! when the coefficients are as in Eq.~B2!, with
f (r ) given by Eq.~B6!. We know that states are now cha
acterized by the total angular momentumK5LP1J. So the
energy of theK52 manifold is given by

E~K52!5^LP51,Jz51uU~r ,V!uLP51,Jz51&

52
1

15

E dr u
x2 iy

s
u2e2r 2/(2s2) f ~r !

3z22r 2

r 2

E dr u
x2 iy

s
u2e2r 2/(2s2)

3^Jz51u~3Jz
222!uJz51&

5

2E dr r 2f ~r !e2r 2/(2s2)

225s2E dre2r 2/(2s2)

5
2

15
G, ~B16!

wheref (r ) andG are defined in Eqs.~B6! and~B7!, respec-
tively.

Similarly, one can evaluate the Hamiltonian in the ma
fold of statesf15uLP51,Jz50& and f25uLP50,Jz51&.
The Hamiltonian matrix in this basis is found to be

H5GF 2
4

15

2

5

2

5
2

4

15
G . ~B17!

This matrix has an eigenvalue215 G which is associated with
the K52, Kz51 state and the new eigenvalue for theK
51 manifold,E(K51)52 2

3 G.
Similarly, one can evaluate the Hamiltonian in the ma

fold of states f15uLP51,Jz521&, f25uLP50,Jz50&,
and f35uLP521,Jz51&. The Hamiltonian matrix in this
basis is found to be

H5G3
2

15
2

2

5

4

5

2
2

5

8

15
2

2

5

4

5
2

2

5

2

15
4 . ~B18!

In this manifold we reproduce the eigenvalues forK52 and
K51. The new eigenvalue isE(K50)5 4

3 G.
1-14
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APPENDIX C: NEUTRON-SCATTERING CROSS SECTION

1. General formulation

Following Elliott and Hartmann,21 we write

V~r2rn!5
2p\

m0
d~r2rn!@b1b8~s•I !#, ~C1!

wherem0 is the neutron mass,s is the neutron spin,r is the
coordinate of the proton,rn the coordinate of the neutron,I is
the proton spin, andb andb8 are the coherent and incohere
scattering lengths for this scattering. Sinceb is very small,
we drop that term from now on. The differential scatteri
cross section is

]2s

]V]E
5

k8

k (
i f

Pid~E2Ei1Ef !uVu2, ~C2!

whereE5\2@(k8)22k2#/(2m0), Pi is the Boltzmann prob-
ability, and the sum is over all states of the system. Here
potential is

V5b8(
j a

ei k•Rj ,as•I j ,a , ~C3!

wherek5k82k, j labels molecules anda51,2 the atoms
within a molecule. Performing the sum overa we get

V5b8(
j

ei k•Rj$~s•I j !cos~ 1
2 k•r!

1 i sin~ 1
2 k•r!@s•~ I j 12I j 2!#%, ~C4!

where I j5I j 11I j 2. The first term acts only on ortho mo
ecules because for paras the total spin is zero and the se
term causes transitions between ortho and para molecule
we write the scattering cross section as the sum of th
terms, the first of which represents scattering from an or
molecule and others ortho-para conversion or the reve
Thus

]2s

]V]E
5

k8

k
@NxS1→11NxS1→01N~12x!S0→1#,

~C5!

whereN is the total number of molecules andx is the ortho
concentration. Because there are no correlations betw
nuclear spins each cross section is actually a sum over c
sections for each molecule:

Sb5(
j

Sb j , ~C6!

wherej labels the molecule,b is 0→1, etc., and

S0→1,j5 (
Ji50,Jf51

Pid~E2Ei1Ef !u^ f ub8ei k•Rjsin~ 1
2 k•r!

3@s•~ I j 12I j 2!#u i &T
2,
21430
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S1→0,j5 (
Ji51,Jf50

Pid~E2Ei1Ef !u^ f ub8ei k•RjsinS 1

2
k•rD

3@s•~ I j 12I j 2!#u i &T
2,

S1→1,j5 (
Ji51,Jf51

Pid~E2Ei1Ef !u^ f ub8ei k•RjcosS 1

2
k•rD

3@s•I #u i &T
2, ~C7!

where the sums are over states for the fixed species~ortho or
para! of molecule as indicated and the subscriptT indicates
that the wave functions include nuclear-spin functions.

Now we perform the sum over the spin states of the n
tron and proton to obtain the results

S0→1,j5
3
4 ~b8!2 (

Ji50,Jf51
Pid~E2Ei1Ef !

3u^ f uei k•Rjsin~ 1
2 k•r!u i &2,

S1→0,j5
1
4 ~b8!2 (

Ji51,Jf50
Pid~E2Ei1Ef !

3u^ f uei k•Rjsin~ 1
2 k•r!u i &2,

S1→1,j5
1
2 ~b8!2 (

Ji51,Jf51
Pid~E2Ei1Ef !

3u^ f uei k•Rjcos~ 1
2 k•r!u i &2, ~C8!

where now statesu f & andu i & no longer include nuclear spin
wave functions. We write

ei k•Rj5ei k•(Rj
(0)

1uj )'ei k•Rj
(0)

e2(1/2)(k•uj )
2
@11 i ~k•uj !#

'e2Wei k•Rj
(0)

@11 i ~k•uj !#, ~C9!

whereRj
(0) is the equilibrium value ofRj andW' 1

6 k2^u2&
[ 1

6 k2^ux
21uy

21uz
2&. Since spherical harmonics of degre

higher than two do not affect the manifolds ofJ50 or J
51, we now use

cos~ 1
2 k•r!5 j 0~ 1

2 kr!24p j 2~ 1
2 kr!(

n
Y2

n~ k̂!* Y2
n~ r̂!

~C10!

and

sin~ 1
2 k•r!54p j 1~ 1

2 kr!(
n

Y1
n~ k̂!* Y1

n~ r̂!. ~C11!

We expand in displacements to get
1-15



nt
th

q

h

r

ec-

ton
de-

tem

at
ent.

s to

T. YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 66, 214301 ~2002!
S0→1,j5~4p!2A (
Ji50,Jf51

Pid~E2Ei1Ef !^ f u@11 i k•uj #

3(
n

Y1
n~ k̂!* Y1

n~ r̂!u i &^ i u@12 i k•uj #

3(
m

Y1
m~ k̂!Y1

m~ r̂!* u f &, ~C12!

S1→0,j5~4p!2B (
Ji51,Jf50

Pid~E2Ei1Ef !^ f u@11 i k•uj #

3(
n

Y1
n~ k̂!* Y1

n~ r̂!u i &^ i u@12 i k•uj #

3(
m

Y1
m~ k̂!Y1

m~ r̂!* u f &, ~C13!

where A5 3
4 e22W@b8 j 1( 1

2 kr)#2, B5 1
4 e22W@b8 j 1( 1

2 kr)#2,
and

S1→1,j5
1
2 ~b8!2 (

Ji51,Jf51
Pid~E2Ei1Ef !^ f u@11 i k•uj #

3F j 0~ 1
2 kr!24p j 2~ 1

2 kr!(
n

Y2
n~ k̂!* Y2

n~ r̂!G u i &
3^ i u@12 i k•uj #F j 0~ 1

2 kr!

24p j 2~ 1
2 kr!(

m
Y2

m~ k̂!Y2
m~ r̂!* G u f &. ~C14!

Since the phonon energy is much larger than the orie
tional energy, we may classify contributions according
number of phonons that are involved. In the notation of E
~C6! we write

Sb5S b
(0)1S b

(1) , ~C15!

whereS b
(0) corresponds to a zero-phonon process andS b

(1) to
a process in which one phonon is created or destroyed. T

S 0→1
(0) 5~4p!2A (

Ji50,Jf51
Pid~E2Ei1Ef !(

mn
^ f uY1

n~ r̂!u i &

3^ i uY1
m~ r̂!* u f &Y1

n~ k̂!* Y1
m~ k̂!, ~C16!

S 0→1
(1) 5~4p!2A (

Ji50,Jf51
Pid~E2Ei1Ef !

3 (
mnab

^ f uua* Y1
n~ r̂!u i &^ i uub* Y1

m~ r̂!* u f &

3kakbY1
n~ k̂!* Y1

m~ k̂!. ~C17!

Here and below we use spherical components of a vectov:
v6157(vx6 ivy)/A2 andv05vz . Similarly
21430
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S 1→0
(0) 5~4p!2B (

Ji51,Jf50
Pid~E2Ei1Ef !(

mn
^ f uY1

n~ r̂!u i &

3^ i uY1
m~ r̂!* u f &Y1

n~ k̂!* Y1
m~ k̂!, ~C18!

S 1→0
(1) 5~4p!2B (

Ji51,Jf50
Pid~E2Ei1Ef !

3(
mn

^ f uua* Y1
n~ r̂!u i &^ i uub* Y1

m~ r̂!* u f &

3kakbY1
n~ k̂!* Y1

m~ k̂!, ~C19!

S1→1
(0) 5~4p!2C (

Ji51,Jf51
Pid~E2Ei1Ef !(

m,n
^ f uY2

m~ r̂!u i &

3^ i uY2
n~ r̂!u f &Y2

m~ k̂!* Y2
n~ k̂!* , ~C20!

whereC5 1
2 e22W@b8 j 2( 1

2 kr)#2 and

S 1→1
(1) 5D0 (

Ji51,Jf51
Pid~E2Ei1Ef !(

ab
^ f uua* u i &

3^ i uubu f &ka* kb14pD1 (
Ji51,Jf51

Pid~E2Ei1Ef !

3 (
mab

^ f uua* Y2
m~ r̂!u i &^ i uub* u f &kakbY2

m~ k̂!*

14pD1 (
Ji51,Jf51

Pid~E2Ei1Ef ! (
mab

^ f uua* u i &

3^ i uub* Y2
m~ r̂!u f &kakbY2

m~ k̂!*

1~4p!2D2 (
Ji51,Jf51

Pid~E2Ei1Ef !

3 (
mnab

^ f uua* Y2
n~ r̂!* u i &

3^ i uub* Y2
m~ r̂!u f &kakbY2

m~ k̂!* Y2
n~ k̂!

5 (
n51

4

S1→1;n
(1) , ~C21!

where Dn5 1
2 (21)n(b8)2e22Wj 0( 1

2 kr)22nj 2( 1
2 kr)n and

S1→1;n
(1) is the contribution to the one-phonon ortho cross s

tion from thenth term in the first equality.
Note the existence of terms in which a phonon and a ro

are created, the system evolves, and finally a phonon is
stroyed. This type of process can only occur when the sys
supports roton-phonon interactions. All the termsS1→1;n

(1) cor-
respond approximately to the phonon energy.

2. Powder average at low temperature

Here we restrict attention to the energy-loss spectrum
low temperature when there are no thermal phonons pres
Also, we now take the powder average. This correspond
1-16
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actual experimental situation in Ref. 5, but would also b
reasonable approximation to take account of the differe
oriented symmetry axes of the various octahedral interst
sites. Below we calculate the cross sections for the follow
processes;~a! energy loss by conversion,~b! energy gain by
conversion,~c! single-phonon energy loss, and finally~d!
zero-phonon transition from (J51,M50) to (J51,M
561).

a. Energy loss by conversion

We have

^S 0→1
(0) &5~4p!A (

Ji50,Jf51
Pid~E2Ei1Ef !

3(
m

^ f uY1
m~ r̂!u i &^ i uY1

m~ r̂!* u f &, ~C22!

where^ & indicates a powder average. The initial state is
J50,Jz50 zero-phonon state, which we write as

c i5(
r

ci~r !ur ;J50;Jz50&, ~C23!

where ci(r ) is the amplitude of the wave function at th
mesh pointr . The final state is aJ51 zero-phonon state
which we similarly write as

c f ,m5(
r ,M

cf ,m~r ,M !ur ;J51;Jz5M & ~C24!

and whose energy relative to theJ50 state is

Ef ,m5Ec1Em . ~C25!

If EL52E is the energy loss, we may write

^S 0→1
(0) ~EL!&5A(

m
d@EL2~Ec1Em!#

3(
m

U(
r

cf ,m~r ,m!* ci~r !U2

. ~C26!

To a good approximation the zero-phonon wave functions
J51 can be chosen to be composed of a single value ofJz .
Thus we may label the wave functions so thatm5m:

^S 0→1
(0) ~EL!&5A(

m
d@EL2~Ec1Em!#

3U(
r

cf ,m~r ,m!* ci~r !U2

. ~C27!

The corresponding integrated intensity is

I (0)[E dEL^S 0→1
(0) &5A(

m
U(

r
cf ,m~r ,m!* ci~r !U2

.

~C28!

The inner product of theJ50 wave function and the spatia
part of theJ51 zero-phonon states is essentially unity. S
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I (0)53A. ~C29!

b. Energy gain by conversion

Here we give a similar analysis of the energy-gain sp
trum at low temperature due to ortho-para conversion. T
derivation is similar to that for para-ortho conversion so
only quote the results:

^S 1→0
(0) ~EL!&5B(

m
Pmd@E2~Ec2Em!#

3U(
r

ci ,m~r ,m!* cf~r !U2

, ~C30!

wherePm is the probability that theJ51,Jz5m state is oc-
cupied and the role of initial and final states is interchang
from the para to ortho processes. The corresponding i
grated intensity is

I (0)[E dE^S 1→0
(0) &5B(

m
PmU(

r
ci ,m~r ,m!* cf~r !U2

5B.

~C31!

SinceB53A we see that ratio of the total cross section f
ortho to para conversion to that of para to ortho conversio
(12x) to x, wherex is the ortho concentration. Normally th
ratio of energy gain to energy-loss cross sections follows
Boltzmann factor. Here, the populations are set byx rather
than by the temperature.

c. Single-phonon energy loss

We have the powder average ofS1→1;1
(1) of Eq. ~C21! as

^S1→1;1
(1) &5

1

3
k2D0 (

Ji51,Jf51
Pid~E2Ei1Ef !(

L
u^ f uuLu i &u2

~C32!

and the corresponding integrated intensity is

I 1
(1)[E dEL^S1→1;1

(1) ~EL!&5
1

3
k2^u2&D0 . ~C33!

In terms of the amplitudes of the wave function on the me
points, the above result is

^S1→1;1
(1) &5

1

3
k2D0(

i , f
Pid~EL2Ef1Ei !

3(
L

U(
M ,r

ci~M ,r !cf~M ,r !r LU2

. ~C34!

Also we obtain the powder average ofS1→1;2
(1) andS1→1;3

(1)

of Eq. ~C21! as
1-17



ca

m
a

h

ro-

the
se

T. YILDIRIM AND A. B. HARRIS PHYSICAL REVIEW B 66, 214301 ~2002!
^S1→1;2
(1) ~EL!&5^S1→1;3

(1) ~EL!&*

52
2

5
A8p

15
D1k2(

i , f
Pid~EL2Ef1Ei !

3 (
M ,M8

C~112;M ,M 8!~21!M1M8

3^ f uu2MT2
M1M8~J!u i &^ i uu2M8u f &,

~C35!

where theT2
M(J) are the operator equivalents of the spheri

harmonics:22

T2
62~J!5A 15

32p
J6

2 ,

T2
61~J!57A 15

32p
~JzJ61J6Jz!,

T2
0~J!5A 5

16p
~3Jz

222!. ~C36!

Here

^ i uu2M8u f &5(
m,r

ci~m,r !* cf~m,r !r 2M8 . ~C37!

and

^ f uu2MT2
M1M8~J!u i &5

5

A8p
(
m,r

ci~m,r !cf~m1M

1M 8,r !* r 2MC~121;m,M1M 8!,

~C38!

where we used

^J51;Jz5M uT2
L~r!uJ51;Jz5M 8&

5
5

A8p
dM ,L1M8C~121;M 8,L !. ~C39!

We have the contributions to the integrated intensity

I 2
(1)5I 3

(1)* 5E dEL^S1→1;2
(1) ~EL!&

52
2

5
A8p

15
D1k2(

i f
Pi (

M ,M8
C~112;M ,M 8!

3~21!M1M8^ i uu2M8u f &^ f uu2MT2
M1M8~J!u i &.

~C40!

Here the sum over final states should be restricted
single-phonon states. Higher energy states make only a s
contribution to this sum. So we make the closure approxim
tion that the sum overu f & extends over all states, in whic
case
21430
l

to
all
-

I 2
(1)52

2

5
A8p

15
D1k2(

i
Pi (

M ,M8
C~112;M ,M 8!

3~21!M^ i uuM8
* u2MT2

M1M8~J!u i &. ~C41!

As illustrated by Eq.~20!, the initial stateu i & is dominantly
comprised of a single value ofJz . Thus in Eq.~C41! M
1M 850 dominates. In addition, the system is nearly isot
pic. Then (MC(112;M ,2M )(21)Muu2Mu250. So, to a
good approximation,

I 2
(1)1I 3

(1)50. ~C42!

We have made several approximations, but our result for
total integrated intensity will not be much affected by the
approximations.

Similarly, we get

^S1→1;4
(1) ~EL!&5

16p

75
k2D2 (

i , f ,m,M
Pid~EL2Ef

1Ei !u^ f uuMT2
m~J!u i &u2

2
32p

25A21
D2k2 (

i , f ,n,M ,M8
Pid~EL2Ef

1Ei !C~112;M ,M 8!C~222;M1M 8,n!

~21!M8^ f uu2MT2
2n~J!u i &

3^ f uuM8T2
2M2M82n~J!u i &* . ~C43!

We now evaluate the integrated intensity,

I 4
(1)[E dEL^S1→1;4

(1) ~EL!&[t11t2 , ~C44!

where

t15
16p

75
k2D2 (

i , f ,m,M
Pi^ i uu2MT2

2m~J!u f &

3^ f uuMT2
m~J!u i &~21!M1m. ~C45!

Making the closure approximation this is

t15
16p

75
k2D2 (

i ,m,M
Pi^ i uu2MuMT2

2m~J!T2
m~J!u i &~21!m1M

5
2

3
k2D2(

i
Pi^ i uu2MuMu i &~21!M5

2

3
k2D2^u

2&.

~C46!

Similarly

t252
32p

25A21
D2k2 (

i ,M ,M8n

PiC~112;M ,M 8!C~222;M

1M 8,n!~21!M1n^ i uuM* T2
M1M81n~J!u2MT2

2n~J!u i &.

~C47!
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Again, we treatu i & as having a single value ofJz , so that
M1M 850. Also we again assume spatial isotropy, so t
(MC(112;M ,2M )(21)Muu2Mu250. Thent250.

d. Zero-phonon ortho cross section

Finally we consider the zero-phonon contribution to t
ortho to ortho cross section. Taking the powder average,
have

^S1→1
(0) &54pC (

Ji51
(

Jf51
Pid~E2Ei1Ef !

3(
m

^ f uY2
m~ r̂!u i &^ i uY2

2m~ r̂!u f &~21!m.

~C48!

If d is the energy of theJz561 levels relative to theJz
50 level and if the Boltzmann probability of the stateum& is
Pm , then we may write

^S1→1
(0) &54pCP0d~E1d! (

m561
@ u^muY2

1~ r̂!u0&u2

1u^muY2
21~ r̂!u0&u2#14pCd~E2d!

3 (
m561

Pm@ u^muY2
1~ r̂!u0&u21u^muY2

21~ r̂!u0&u2#,

~C49!

which gives

^S1→1
(0) &5 6

5 CP0d~E1d!1 6
5 CP1d~E2d!. ~C50!

The ratio of cross sections at energy gain to those of ene
loss does satisfy detailed balance because within the sp
(J51) we do maintain thermal equilibrium.
e

n,

y,

M
x
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3. Intensity ratios

We develop an expression for the ratior P , defined to be
the integrated intensity due to phonon creation divided
that due to para-ortho conversion. Using the results forI (n)

obtained above we have

r P5
xEdEL^S1→1

(1) ~EL!&

~12x! EdEL^S0→1
(0) ~EL!&

5
x@ I 1

(1)1I 4
(1)#

~12x!I (0)

5

1
3 k2^u2&D01 2

3 k2^u2&D2

3A S x

12xD
5

2

27
k2^u2&

j 0~ 1
2 kr!212 j 2~ 1

2 kr!2

j 1~ 1
2 kr!2 S x

12xD .

~C51!

The ratior C, defined to be the ortho to para conversion cro
section in energy gain to that in energy loss due to para
ortho conversion, is given by

r C5
x

12x
. ~C52!

Finally, we haver J51, defined to be the total cross sectio
~counting both energy loss and energy gain! for transitions
within theJ51 ground manifold divided by that due to pa
to ortho conversion, as

r J515S x

12xD 6
5 C~P01P1!

3A
5~P01P1!r J51~T50!,

~C53!

where

r J51~T50!5S x

12xD 4 j 2~ 1
2 kr!2

15j 1~ 1
2 kr!2

. ~C54!
.
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