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ABSTRACT 

 

GOLD AND IRON LOADED MICELLES: A MULTIFUNCTIONAL 
APPROACH FOR COMBINED IMAGING AND THERAPY, WITH 

IMPROVED PHARMACOKINETICS 
 
 

Ajlan Al Zaki 

 

Andrew Tsourkas, Ph.D. 

 

Radiation therapy is an important component in the treatment and management of cancer 

patients. Despite current advances in imaging technologies and treatment planning 

strategies, a major limitation persists in accurately delineating tumor from normal tissue 

resulting in radiation-induced damage to healthy structures. Therefore, the frequency and 

dose of radiation exposure is limited by the generated toxicity in healthy tissues. The use 

of nanoparticles for contrast-enhanced imaging could improve the accuracy of therapeutic 

delivery and guide radiation treatments to maximize delivery to disease target tissues 

while sparing adjacent normal structures. Further, advancements in radiation therapy 

focus on the use of radiosensitizers that are intended to enhance tumor cell killing while 

minimizing effects on normal tissue. We have developed multifunctional nanoplatforms, 

containing sub-nanometer gold and iron nanoparticles that can provide contrast 

enhancement using computed tomography and magnetic resonance imaging, while also 

serving as radiosensitizers for X-ray therapy. The effectiveness of these nanoparticles 
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was evaluated in vivo demonstrating an improvement in both tumor margin visualization 

for image-guided radiation therapy and overall survival in tumor bearing mice. 

Importantly, we found that measurements of contrast enhancement in imaging correlated 

strongly with tumor response after radiation therapy. Furthermore, we have found that by 

encapsulating sub-nanometer gold particles within micelles we are able achieve improved 

excretion profiles compared to larger gold particles, with gold detected in both urine and 

feces suggesting that particles within this size range are more efficiently removed by the 

kidneys and liver. Finally, the use of an actively targeted nanoplatform can achieve 

higher tumor retention, facilitate nanoparticle internalization, and improve tumor 

specificity. To facilitate the introduction of targeting molecules onto micelle 

formulations, a naturally occurring surfactant protein oleosin was used to stabilize 

superparamagnetic iron oxide clusters. Functionalization with targeting ligands (e.g. 

Her2/neu affibody) was achieved by fusing the biologically relevant motifs to oleosin 

using standard cloning techniques, and cell specific targeting was confirmed using 

magnetic relaxation techniques. In the future, we envision that strategies like this will 

minimize the off-target effects of radiation, reduce tumor burden, provide information on 

the likelihood of tumor regression in response to therapy and reduce long-term 

nanoparticle retention. 
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Chapter 1: Introduction to Radiation therapy, 

Nanotechnology, and Radiosensitizers 

1.1 X – Ray Radiation Therapy 

The discovery of X-rays in 1895 by Wilhelm Rontgen has paved the way for 

many advancements in medical imaging. In 1896, Emil Grubbe was one of the first 

physicians to administer X-rays for the treatment of cancer. Since then there have been 

many parallels in X-ray imaging and therapy that continues to be an integral component 

in healthcare.  Radiation therapy, an important cornerstone in cancer therapy, is one of 

the most common and efficient treatments for many types of cancer. It is estimated that 

approximately 50% of patients diagnosed with cancer will undergo radiation therapy 

during the course of their treatment.1 In particular radiation therapy with ionizing 

radiation (IR) such as X-rays, gamma rays and charged particles are used to cause lethal 

damage to cancer cells.  

For diagnostic imaging, X-rays are generated by accelerating electrons across a 

potential difference. These electrons leave the negative cathode and strike a positively 

charged metal target. At the anode, X-rays are created as the electrons strike the metal 

target losing their kinetic energy either through inelastic scattering with nuclei resulting 

in the production of bremsstrahlung radiation, or by scattering inner electrons resulting in 

Auger electrons and characteristic radiation. The energy range of diagnostic X-rays are 

typically in the range of 10 – 150 kV.2 X-rays with an energy range of 150-500 kV are 

called ortho-voltage and occasionally used for the treatment of tissues with depths 

between 4-6 cm.3 Megavoltage X-rays, produced by linear accelerators (linacs), contain 

the highest energies ranging from 1-25 MV and are the most commonly used in 
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radiotherapy as they have a higher penetration depth (in cm). As a rule of thumb, 80% of 

the maximum dose lies at a depth (cm) that is roughly one third of the electron energy 

(MV).  

1.1.1 Conventional External Beam Radiation Therapy 

A Conventional or two-dimensional radiotherapy arrangement, also known as box 

radiotherapy, typically consists of one or more beams of radiation delivered to the patient 

from various directions. Two-dimensional treatment planning is performed using 

radiation simulators in conjunction with diagnostic X-ray tubes. Using these simulators, 

the dose distribution is calculated and the treatment fields necessary to encompass the 

target tissue while sparing normal tissue are determined.4   

Unfortunately, conventional therapy lacks accurate tissue localization,5 especially 

with tissues of complex contours making it difficult to spare radiation doses to 

uninvolved healthy tissues. As a result, high dose therapies are limited by the radiation 

tolerability of healthy tissues adjacent to target tumor regions.6 Furthermore, treatment 

planning is limited to estimating dose distributions in one or few planes of the patients 

target volume.  

1.1.2 Stereotactic Radiation 

Stereotactic radiation is a specialized technique of external beam radiotherapy.  In 

this procedure beams of ionizing radiation coming from various directions converge at a 

target that is spatially localized in a three-dimensional coordinate system. This is 

achieved using state of the art computer and imaging systems to guide ablative radiation 

beams with precision to tumors previously not achievable using conventional external 

beam therapy.7 
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 Stereotactic radiation can be categorized into two different types. The first is 

stereotactic radiosurgery (SRS), first introduced by a Swedish neurosurgeon named Lars 

Leksell,8 which involves the use a single or multiple stereotactic radiation treatments for 

ailments of the central nervous system. Typically a head frame is fixed to the skull to 

provide an external three-dimensional frame of reference for precise localization of 

intracranial radiotherapies.7 The second is called stereotactic body radiation therapy 

(SBRT) and is an extension of SRS used to treat extra-cranial diseases. 

 However there are limitations to stereotactic radiation. About one-third of patients 

experience potential side-effects immediately post SRS.9 Furthermore, even with the 

improved precision of beam delivery, there is the potential for long term side effects 

ranging from neurological toxicity to death.10-13 There have also been reported cases of 

the long-term neuropsychological effects of SRS with patients exhibiting cognitive 

decline and memory impairment.14 Another concern of using high-energy ionizing 

radiation in SRS is the potential risk of radiation-induced malignancies such as 

glioblastomas.15-20  

For SBRT applications, immobilization is one critical factor that must be taken 

into consideration when administering radiotherapy. Tumor motion during respiration can 

pose challenges exposing surrounding tissues to radiation as the tumor changes position. 

As a result, several immobilization and positioning strategies are employed such as body 

frames,21-23 real time tracking of fiducial makers,24 and respiratory holding and gating.25 

 

1.1.3 3-Dimensional and Intensity-Modulated Radiation 

Therapy 
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As the name suggests 3-dimensional conformal radiotherapy (3DCRT) is 

performed such that the profile of the radiation beams is molded to match that of the 

shape of the tumor. This can be achieved through the use of specialized planning 

software and imaging systems such as computed tomography (CT), and magnetic 

resonance imaging (MRI) enabling physicians to take into account axial anatomy, and 

complexities in tumor morphology. As this type of treatment conforms to the gross tumor 

volume (GTV), radiation doses to the tumor can be increased with relatively lower 

increases in radiation toxicity of surrounding tissue structures. While 3DCRT enabled the 

planning and delivery of radiation to irregular structures, it is limited in modulating the 

intensity of radiation within a single field(i.e single uniform intensity).26-28 

 

 

 

 

 

 

 

 Figure 1.1. (A) Schematic of 2-dimensional radiotherapy showing two beams with single 

intensities and (B) intensity modulated radiation therapy showing multiple beams with varying intensities 

applied from any angle.(adapted from Bucci et al.)5 

 
Intensity-modulated radiation therapy (IMRT) is an advanced high precision 

radiation modality that builds on 3DCRT with the ability to customize radiation doses 

within a single field.29  Treatment plans are generated using inverse planning software 
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and computer controlled intensity modulation to produce non-uniform radiation beam 

intensities throughout the tumor during treatment.30 Therefore, the radiation dose is 

elevated within the GTV and minimized or negligible among the neighboring healthy 

tissue. Therefore IMRT can provide more selective tumor targeting with reduced 

radiation toxicity as compared to 3DCRT.31 

1.1.4 Other forms of Radiation Therapy 

Gamma rays are also commonly used as a radiation source in the clinic. They are 

generally produced through decay of radioactive substances (e.g. radium, technetium-

99m, cobalt-60). Particle therapy is another emerging technique in the field of 

radiotherapy and is increasing in popularity worldwide. With X-rays the dose absorbed 

decreases exponentially  as the tissue depth increases. On the other hand, for heavier ions, 

the dose increases as the particle travels through tissue and loses energy continuously as 

it starts to slow down (Figure 1.2).  

 

 Figure 1.2. Comparison of physical dose as a function of tissue depth for X-rays and high energy 

particles.(adapted from Durante et al.)32 
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External beam radiation therapy can be carried out using a variety of charged 

particles including electrons, protons, neutrons, and other heavy ions (carbon, helium, 

neon).32, 33 One distinction of this type of therapy from X-rays is the linear energy 

transfer (LET), which is a measure of the number of ionizations generated per unit 

distance, and is a function of both charge and velocity. Fast moving light particles have a 

low LET compared to slow moving heavy particles resulting in reduced biological 

effectiveness. Compared to X-rays, charged particles have a high linear energy transfer 

(LET) radiation, that is they deposit larger amounts of energy as they move across a 

tissue section. Electrons have a finite range after which the dose drops off rapidly and are 

generally reserved for the treatment of superficial tumors (lymphomas, melanomas) since 

they poorly penetrate into deep sites within the body.33 Protons beams produce 

characteristic dose-tissue absorption profiles called the Bragg peak. Hence the radiation 

dose increases with increasing tissue thickness up to the Bragg peak occurring near the 

end of the particle trajectory (Figure 1.2). Beyond the Bragg Peak, the dose drops to zero 

and can be finely tuned to coincide with target tissues such that the radiation payload is 

released almost entirely within the tumor while sparing normal healthy tissues. Proton 

therapy is already used for the treatment of pediatric tumors located adjacent to critical 

structures where radiation exposure could be detrimental.34 Neutrons are classified as 

indirectly ionizing radiation exerting their biological effect almost entirely due to the 

generation of secondary electrons within tissues. However, they have not gained 

widespread use due to the difficulty in generating neutrons, and the associated costs.  
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1.2 Mechanism of Radiotherapy 

The primary objective of radiation therapy is to deprive cancer cells of their 

mitotic potential and ultimately promote cancer cell death. The main interaction of X-

rays in cells is by Compton scattering, producing secondary high-energy electrons that 

exert their effects on biological structures.  In the cell, DNA is the desired biological 

target of ionizing radiation. There are two mechanisms by which radiation can interact 

with DNA. The first is known as direct action where ionizing radiation interacts directly 

with DNA to cause damage. The second is known as indirect action where ionizing 

radiation interacts with the surrounding water molecules, generating free radicals, notably 

hydroxyl radicals,35 which cause lethal damage to cellular DNA. Hydroxyl radicals are 

generated either directly by the oxidation of water by ionizing radiation, or indirectly by 

the formation of secondary partially reactive oxygen species (ROS). ROS include 

superoxide (O2
-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH-). The damage 

incited can include DNA strand breaks that are initiated by the removal of a deoxyribose 

hydrogen atom by the activated hydroxyl radical.36 

Excessive damage to cells exposed to radiation can lead to either double strand 

breaks (DSB) or single strand breaks (SSB). DSBs are the not the most common type of 

radiation induced damage but are regarded as the most serious and potentially lethal. At 

this stage, some cells will arrest their cell cycle to repair the damage. If the damage is 

beyond repair then the cell will undergo apoptosis. Alternatively, some cancer cells with 

mutations in cell cycle checkpoints can continue to proliferate following radiation 

exposure. However, the majority of these cells will undergo cell death during mitosis as a 

result of sustained DNA damage and chromosomal defects. The post mitotic or 
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reproductive mode of cell death is considered to be the most prevalent mechanism in cells 

exposed to ionizing radiation.37-39 The apoptotic signaling pathway can be initiated in 

various cellular compartments that include the plasma membrane, cytoplasm and 

nucleus.40 In the plasma membrane, ionizing radiation can promote lipid oxidative 

damage through interactions with radiation induced free radicals resulting in altered ion 

channels, a build up in arachidonic acid, and the production of ceramide which is 

involved in mediating cellular death. Cell death occurs via free radical molecules eliciting 

cumulative un-repairable lipid oxidative damage.41  
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1.3 Types of Cell Death – Cell Response to Radiation 

Therapy  

1.3.1 Apoptosis 

Apoptosis, derived from ancient Greek implying “leaves falling from a tree”,42-44 

also known as programmed cell death is a regulatory cellular mechanism that eliminates 

unwanted cells occurring during embryonic development, cellular regeneration, growth 

and differentiation.42 It is characterized by specific morphological events such as cell 

shrinkage as the cytoskeleton is broken down, chromatin condensation, DNA 

fragmentation, membrane blebbing and the formation of apoptotic bodies as the cell 

breaks apart.45 Apoptosis can also be characterized by biochemical events (elevated TNF 

cytokines, activated caspases, mitochondrial release of apoptosis-inducing factor).46-48 

Physiological or pathological stress factors such as receptor mediated processes, 

oxidative stress, chemotherapeutic drugs and radiation can trigger apoptotic signaling 

pathways.49, 50 
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 Figure 1.3. Three Pathways of Cell Death. Among the three major pathways of cell death — 

apoptosis, autophagy, and necrosis — a particular mode of cell death may predominate, depending on the 

injury and the type of cell. Cross-talk among the different types of cell-death pathways exists at multiple 

levels and is not shown.(adapted from Hotchkiss et al. 51) 

 
 Radiation induced apoptosis is regarded as a significant component in the 

mechanism of cell death after exposure to ionizing radiation.49 Further findings suggest 

that plasma membrane damage may activate intracellular transduction pathways that are 

responsible for the regulation of the apoptotic pathway.52, 53 In the cytoplasm, ionizing 

radiation can generate cytosolic stimuli such as reactive oxygen intermediates, and Bcl-2-

associated X protein that can induce mitochondrial damage that activates mitochondrial 

release of caspase-activating factors promoting apoptosis.54 In response to radiation-

induced nuclear DNA damage, tumor suppressor protein p53 is activated which halts cell 

cycle progression allowing DNA repair to take place prior to replication and cell 
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division.55, 56 However, if DNA repair is unsuccessful, p53 may trigger cell death through 

apoptosis. In vivo, apoptosis is generally seen as individual cells that are subsequently 

phagocytosed by macrophages or neighboring cells.57 

1.3.2 Mitotic-Linked Death 

Numerous studies quantitatively comparing apoptotic death with mitotic-linked 

death in irradiated cells have shown that the primary mechanism of cell death is 

associated with mitotic catastrophe.50 Specifically, this type of cell death occurs during or 

after abnormal mitosis, characterized by various morphological changes such as 

missegregated chromosomes, multinucleated giant cells and resulting in cell death.58 

Combined apoptosis and mitotic-linked cell death account for most of the ionizing 

radiation induced cell death.33 

1.3.3 Senescence 

Another mechanism of cell death in response to radiotherapy is known as 

senescence which is a cellular processes that results in an irreversible cell cycle growth 

arrest.59 These cells are viable and primarily characterized by a reduction in proliferative 

capacity, no longer synthesize DNA, acquire distinct changes in shape by flattening out 

with an increase in cytoplasmic vacuolization, and can be identified biochemically by an 

increase in senescence associated β-galactosidase (SA-β-gal) activity.60 

1.3.4 Necrosis 

Necrosis, originating from Greek “necros” for corpse, differs from apoptosis in 

cells exposed to ionizing radiation by the loss of plasma membrane integrity prior to 

randomized DNA degradation.57 In necrosis, there is a characteristic swelling of cells and 

their organelles, which is a consequence of an early disruption in membrane intactness 
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allowing the influx of extracellular ions and fluid.51 Ultimately, plasma and organelle 

membranes swell so much that they rupture allowing lyososomal proteolytic enzymes to 

escape into and out of the cytosol causing cellular damage.61, 62 Generally, necrosis is 

initiated in events associated with metabolic stress such as the rapid depletion of ATP 

that can occur in ischemic scenarios.63, 64 Although not as frequent, necrosis can also 

occur in irradiated cells mediated by the generation of reactive oxygen species.33 In vivo, 

necrosis usually presents as clumps of cells surrounded by an infiltrating inflammatory 

response resulting from intracellular release of compromised cells.65 

1.3.5 Autophagy 

Autophagy, originating from Greek self “auto” and eating “phagy”, is another 

type of programmed cell death in which the cell eats itself. It is characterized by the 

presence of autophagosomes,61, 66 double membrane vacuoles that engulf cytosolic 

proteins and organelles, which are delivered to and fused with lysosomes for 

degradation.67, 68 The autophagic response in cells receiving ionizing radiation is 

controversial.69 Recently, this mechanism of cell death has been reported in irradiated 

cancer cells lacking various apoptotic regulators.70, 71 However, autophagy may also elicit 

a protective mechanism against radiation-induced injury by sequestering damaged 

proteins and organelles.72 
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1.4 Radioresistant Cancer Cells 

Although ionizing radiation is an integral component in antineoplastic management and 

control, malignancies resistant to radiation often relapse and continue to pose major 

challenges and limitations to this type of therapy. During the early 20th century, Bergonié 

and Tribondeau proposed radioresistant cells are characterized by a high mitotic rate, 

evade normal cellular senescence, and have an undifferentiated phenotype.3 More 

recently, this has been attributed to cells in metabolic statuses associated with high levels 

of free radical scavengers, low proteosome activation and activated DNA checkpoints.73  

Originally described by Withers, the fundamental principles of radiobiology, also 

known as the “four R’s”, help to explain some mechanisms for cells that are resistant to 

radiation damage. These are: repair, redistribution, repopulation and reoxygenation.73  

1.4.1 Repair 

Chromatin is the molecular complex that contains nuclear DNA within the cell 

and is composed of nucleosomes that play an important role in providing structure and 

function in DNA packaging. The nucleosome is made up of a base pair strand of DNA 

that is wound around eight histone protein cores (a pair of H4, H3, H2B, and H2A). 

Evidence suggests that the nucleosome is not only involved in the essential packaging of 

DNA, but also in the regulation of information transfer from DNA including 

transcription, meiosis and mitosis, and the maintenance of genomic integrity.74-76 

Specifically, these functions are carried out through the modification of specific amino 

acid residues on histones.74 

The H2A histone family member X (H2AX) is involved in the localization and 

repair of DNA DSBs. One of the hallmarks in radiobiology for DNA DSB, occurring 
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within three minutes after irradiation,77 is the phosphorylation on serine 139 of H2AX, 

primarily by the kinases ataxia telangiectasia mutated (ATM), ataxia telangiectasia and 

Rad3-related protein (ATR).78 This phosphorylation at the specific serine site is called γ-

H2AX and it is believed that phosphorylation decondenses DNA providing repair 

proteins space during recruitment. γ-H2AX nuclear foci can be quantitatively determined 

immunohistochemically using an antibody to the phosphorylated serine of γ-H2AX. 

Furthermore, the extent of DSBs is proportional to the number of γ-H2AX foci with each 

foci corresponding to a single DSB.79, 80 Several groups have shown that resistant cancer 

cell lines tend to have lower γ-H2AX foci and appear to resolve faster after radiation.81, 82 

In this thesis, I use the γ-H2AX assay to quantify the amount of DSBs in cells lines the 

presence or absence of X-ray radiation therapy. 

A considerable amount of cell death is based on the ability of ionizing radiation to 

inflict sufficient damage to induce un-repairable DSBs. However, at low doses the 

majority of radiation induced DNA damage is sublethal enabling cells to repair the breaks 

and proliferate. The interaction of ionizing radiation with water molecules generates 

reactive oxygen species (ROS) that rapidly interact with molecules in cells. These ROS 

generated are more efficient in causing DNA damage than the direct interaction of DNA 

with ionizing radiation.73 Therefore the presence of free radical scavengers within the cell 

is a major determining factor on the fate of irradiated cells. A study on CD24-/low/CD44+, 

a breast cancer cell line with low levels of ROS and high free radical scavengers, was 

found to have low levels of DSBs with increased tumorigenicity.83 Further studies verify 

this hypothesis by reversing radiation resistances after the depletion of glutathione, an 

important intracellular free radical scavenger.84 Thus, the level of radiation generated 
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ROS within a cancer cell may help in determining the responsiveness to radiation. In 

glioblastomas, Bao et al. showed that CD133+ cancer stem cells can become 

radioresistant by activating DNA damage checkpoints that increase their ability to repair 

DNA.85 Other groups have proposed alternative mechanisms of radioresistance, such as 

increased autophagy related proteins in CD133+ cells after irradiation as alternative 

explanations for their radioprotective mechanisms.86  

1.4.2 Redistribution 

The resistance to radiation damage is determined largely by what phase of the cell 

cycle a cell is experiencing, with cells in mitosis being the most sensitive to DSBs and 

cells in the S phase being the least sensitive.87 This is modulated by the activation of cell 

cycle checkpoints, which can be induced in the G1, S, and G2 phases of the cell cycle, to 

allow the cell to repair possible defects. Therefore, attempts to synchronize tumor cells in 

a specific phase of the cell cycle are regarded as a potentially beneficial strategy to 

enhance the efficacy of radiation therapy.88-90   

After a dose of radiation, most surviving cells will be those that were in the S 

phase of the cell cycle (Figure 1.4). Sufficient time must be allowed for cells to 

redistribute before another dose is administered. This timed treatment, termed dose 

fractionation, allows the redistribution of cells in radioresistant phases of the cell cycle 

into more sensitive phases and is especially therapeutically beneficial for slower cycling 

tumor cells.91  
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Figure 1.4. Synchronized human kidney cells show a differential survival depending on cell cycle 

phase in which they are irradiated. Cells are most sensitive to irradiation during mitosis and in G2, less 

sensitive in G1, and least sensitive during the latter part of S phase.(adapted from Sinclair et al.)92  

 
1.4.3 Repopulation (Regeneration) 

The concept of cellular repopulation is an important biological predictor of 

clinical outcome of fractionated radiation therapy.93, 94 The administration of radiation 

therapy is usually divided into multiple doses and spaced out over several weeks. This 

strategy provides normal tissues with some time to recover and regenerate during 

prolonged treatment regimens. Although this temporal modulation of therapy allows 

normal cells to repopulate, repopulation of cancer cells also occurs, increasing the 

number of cells that need to be eliminated. It is this process of cancer cell proliferation 

that is one of the main causes of treatment failures in radiation therapy.95 

 There are numerous studies that suggest accelerated repopulation during 

fractionated radiation therapy in humans. In squamous cell carcinomas of the head and 

neck, it was shown that the total radiation doses required to control 50% of tumors 
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(TCD50) increased when the treatment lasted more than 4 weeks.96 Furthermore, the 

doubling time of these cancers cells decreased from 2 - 3 months to 4 days after radiation 

therapy. Other studies demonstrate that for every daily increase in the duration of 

therapy, the likelihood that tumors will grow out of control increase by 1 – 1.5%, and the 

radiation dose required to combat repopulation increases by about 0.5 – 1 Gy.97-99 Hence 

there may be detrimental effects of prolonging treatment time for tumor control but this 

may be tumor specific.  

 Clinical outcomes could potentially be improved by attempts to inhibit or limit 

repopulation during radiotherapy. This can be achieved by using a modified dose-

schedule of treatment. Accelerated fractionation is a fractionation technique that shortens 

the overall treatment time, to minimize tumor growth during treatment and prevent tumor 

cells from repopulating.96, 100 This strategy has shown promise in tumor control for both 

Burkitt’s lymphoma and squamous cell carcinomas of the head and neck.101-103 Other 

studies comparing accelerated therapies and conventional therapies have concluded that 

the accelerated schedule leads to an improvement in tumor control and overall 

survival.104, 105 

1.4.4 Reoxygenation  

The level of oxygenation of a tumor is a major determinant of the effectiveness of 

radiation therapy. Numerous studies have shown that poorly perfused hypoxic tumors are 

two to three times more resistant to radiation and are associated with poor prognosis and 

recurrence.106-110 This phenomenon is known as the oxygen enhancement ratio. Within a 

tumor there is a dynamic and heterogeneous distribution of oxygen levels that exist 

largely because of insufficient vascularization and unevenness of supporting stromal 
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tissue.111 Oxygen is thought to behave as a direct radiosensitizer, inflicting DNA damage 

through the generation of free radicals. Specifically, according to the “oxygen fixation” 

hypothesis, exposure of ionizing radiation generates free radicals in water and DNA. The 

DNA formed free radicals are able to react with O2 to generate peroxy radicals, 

modifying the DNA by fixing O2. However, if O2 is absent, the DNA free radical will be 

reduced to its original form.112 

 Strategies focusing on increasing tumor oxygenation through the use of 

hyperbaric O2,113, 114 erythropoietin infusions,115, 116 and red blood cell transfusion have 

been attempted.117 Unfortunately these approaches did not gain widespread clinical use 

since these techniques are difficult to implement and studies were inconclusive. 

Furthermore, the use of nitroimidazoles that mimic the effect of O2 are associated with 

dose-limited toxicities.118 More recently, alternative strategies have been aimed at 

selectively killing hypoxic tumor cells by using drugs that are known to be cytotoxic for 

cells in hypoxic environments.119 Tirapazamine is one example of a an anticancer drug 

that is readily reduced in hypoxic cells, forming free radicals that give rise to DNA DSBs 

in a topoisomerase II dependent fashion.120 The specific mechanism of action is uncertain 

but it is hypothesized that the drug acts a substrate for intracellular reduction. In the 

presence of O2, the drug radical transfers its electron to molecular oxygen forming 

superoxide and regenerating the initial drug. However, in the absence of O2, the drug 

radical accumulates and can either itself cause cytotoxic damage or undergo further 

reactions to generate more substantial toxins.120 Clinical trials with this compound 

demonstrate therapeutic efficacy in patients with head and neck cancer or non-small cell 

lung cancer.121, 122 
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1.5 Clonogenic Assays  

A clonogenic cell is a term that is given to a single cell that is capable of 

proliferating and producing a substantial number of progeny. The radiation sensitivity of 

this cell is experimentally determined using an in vitro clonogenic cell survival assay or 

colony formation assay.123, 124 This type of assay is the gold standard in determining cell 

reproductive death after radiation therapy and describes the relationship between the 

radiation dose with the fraction of cells that survive. This type of assay can also be used 

to assess the tumoricidal effectiveness of other cytotoxic agents. Generally, cells are 

seeded into culture dishes before or after irradiating at different doses and allowed to 

form colonies between 1 – 3 weeks. After this time has elapsed, the colonies are fixed, 

stained with crystal violet, and counted using a light microscope. Clonogenic assasys 

were used in this thesis to assess the in vitro survival of cell lines in response to various 

doses of X-ray radiation in the presence or absence of the radiosensitizer.    

 Colonies with less than 50 cells are not counted for the survival calculation. These 

cells may be physically present and struggle through 2-3 cell divisions, but if they have 

lost the capacity to divide indefinitely and produce small colonies (< 50), then they are by 

definition dead. On the other hand, surviving cells are those cells that have retained their 

reproductive potential and proliferate indefinitely producing large clonogenic colonies. It 

is these colonies that are included in the survival analysis.  

 A survival curve is a plot of the fraction of surviving cells on a logarithmic scale 

against the cumulative radiation dose on a linear scale. At low doses, survival curves 

typically have an initial shoulder representing an accumulation of sublethal damage. As 

the radiation dose increases, the curve bends as the surviving fraction exponentially 
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decreases with further dose increments. The type of cell undergoing ionizing radiation, 

recovery from sublethal injury, reoxygenation of hypoxic cells, redistribution of the cell 

cycle and repopulation all affect the survival curve.  
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1.6 Complications from Radiotherapy 

While the pathological mechanisms of radiation injury begin immediately 

following radiation therapy, the clinical and histological signs may take days, weeks, 

months or even years after administration. For example, changes in the lung 6 weeks after 

high dose therapy are mild compared to widespread fibrosis detected 6 months later.6 The 

tolerance of normal tissues to radiation varies and dictates the dose that is prescribed in a 

specified treatment regimen. Thus, an important distinction in radiation injury that must 

be taken into account is the difference between early and late effects of normal tissues.  

1.6.1 Acute (Early) Effects 

Acute or late effects are a form of radiation induced normal tissue damage that 

usually presents weeks after therapy. This type of radiation damage is most pronounced 

in tissues with cell populations that are rapidly proliferating such as skin or mucosal 

membranes. Symptoms arise when functional cells are compromised as part of cell death 

and not regenerated. Some cells such as those in skin and the alimentary tract are 

generally more tolerant to radiation and usually heal rapidly. As a result, acutely 

developed symptoms are often self-limiting over the course of radiotherapy.  

Other acute reactions, such as edema and erythema, can arise from mechanisms 

that do not involve cell death. For example, ionizing radiation may activate multiple 

cellular signaling pathways that stimulate pro-inflammatory cytokine release,125-127 down-

regulate physiological anticoagulants,128 and cause organ damage secondary to vascular 

injury.129 These reactions may be responsible for the initiation of an inflammatory 

response, increased vascular permeability leading to swelling, and the activation of the 

coagulation cascade. 
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1.6.2 Chronic (Late) Effects 

Unfortunately, radiation is the gift that keeps on giving. Late effects are described 

as radiation induced normal tissue damage occurring months, years or even decades after 

radiation exposure.130, 131 The severity of symptoms vary, developing suddenly or 

gradually over time, and are generally associated with tissues of cell populations with 

slow turnover, such as brain, bones, muscle, kidneys, and liver.6 The underlying 

mechanisms behind late effects are multifactorial and poorly understood, but it is 

believed that damage to vasculature and immune reactions are main components in 

exacerbating late effects including lesions such as fibrosis, necrosis, atrophy, and 

fractures.  

Radiation induces blood vessel injury resulting in increased permeability and 

vasoactive cytokine release.132-134 This allows fibrin in the bloodstream to extravasate out 

into surrounding tissues promoting collagen formation.126, 135 In addition, activated 

lymphocytes in the circulation can adhere to damaged endothelial cells and narrow the 

lumen restricting blood supply to downstream cells.6 
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1.7 Radiation Dose Fractionation 

Fractionation is a technique of treating malignancies with radiation therapy. In 

this strategy the total dose of radiation to be administered is divided into several discrete 

dose fractions and is often delivered over period of five to seven weeks. Conventional 

fractionation is typically delivered once a day on weekdays at a dose per fraction of 2 

Gray. This schedule of five fractions per week allows the recovery of normal cells from 

radiation damage thereby avoiding severe toxic reactions and maximizing the effect of 

radiation on cancer cells while minimizing off target toxicity.95 In general when more 

than one fraction is administered per day, an inter-treatment interval of at least 6 hours 

should be used. The benefit of this approach has been demonstrated with in vivo studies, 

which have concluded that five daily fractions of 2.5 Gy result in higher levels of 

apoptosis than either a single dose of 25 Gy or two fractions of 12.5 Gy separated by 5 

days.136 Their rationale is that after each fraction of radiation, a new subpopulation of 

radiosensitive cells is primed for radiation-induced apoptosis. Numerous other reports are 

consistent with these findings.137, 138 

 Various dose fractionation strategies can be designed by adjusting either the 

treatment duration or the radiation dose received per fraction. Most strategies however, 

avoid increasing the dose per fraction, as these are associated with poor tolerability and 

increased toxicity.96  

1.7.1 Hyperfractionation 

Hyperfractionation, is when the total radiation dose is divided into small doses 

(smaller than conventional i.e 1.15 – 1.25 Gy) while keeping the duration of therapy 

constant (treatments are given more than once a day). Patients selected for 
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hyperfractionation therapy are those where treatment is limited by the dose tolerance of 

late effect tissues. The rationale behind hyperfractionation is differential repair, in that 

slowly responding tissues have a greater capacity of repairing sub-lethal damage (at 

reduced dose fraction) than tumors.  By significantly reducing the size per fraction and 

increasing the number of fractions, resistant cells are allowed to redistribute themselves 

through the cycle increasing the likelihood that they are in a relatively more 

radiosensitive state by the next cycle.139, 140 However, redistribution also occurs in normal 

cells and so no therapeutic benefit will be observed relative to acute normal tissue 

responses. Cells responsible for late reactions tend to be slower cycling normal cells or 

late responding tissues and are less sensitive to redistribution resulting in lower late toxic 

events for a given level of tumor control.  

1.7.2 Accelerated Fractionation 

Patients whose tumors have a high proliferative capacity such as Burkitt’s 

lymphoma and inflammatory carcinoma of the breast may benefit from accelerated 

fractionation.139 This regimen uses shorter treatment durations while maintaining similar 

doses as conventional radiation therapy. It often involves fewer than ten fractions per 

week, but any number above five per week will accelerate the treatment time. For 

example, a patient may receive seven 2 Gy treatments over the course of 5 days or be 

treated 6 days a week. The main objective of this treatment strategy is to limit growth of 

rapidly proliferating cells by applying radiation treatments with shortened inter-treatment 

intervals in order to reduce the ability for tumor cell regeneration.96, 139  As this treatment 

is accelerated, acute tissue toxicity can be worse, limiting the tolerance dose. Thus, on 

days with multiple treatments, fractionation intervals must be as long as possible to allow 
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repair of sub-lethal damage in slowly responding tissues and maximize the redistribution 

of tumor cells. Also, because the fraction size remains unchanged, one would expect little 

or no changes in slowly cycling cells for late responses especially since these cells do not 

undergo rapid repopulation.   

1.7.3 Accelerated Hyperfractionation 

This strategy aims to improve the therapeutic ratio by combining both accelerated 

and hyperfractionated treatment protocols.  Here there is a decrease in both the dose 

received per fraction, typically higher than hyperfractionation but lower than 

conventional dose fractions, and the total treatment duration. However this approach is 

limited by acute tissue toxicity as both of these strategies independently increase early 

tissue responses necessitating breaks between fractions. Clinical trials comparing 

continuous, hyperfractionated accelerated radiotherapy (CHART) with conventional 

radiotherapy demonstrate a statistically significant improvement in the survival of 

patients with locally advanced non-small cell lung cancer.141, 142 

1.7.4 Hypofractionation  

Historically, there were two main reasons for the introduction of clinical 

hypofractionation. First, increased demand for radiotherapy and a shortage of treatment 

units meant that patients received larger but fewer fractions so more patients could be 

treated over time. Second, this strategy could lower the burden on patients who would not 

have to frequent the hospital on a daily basis for several weeks.143, 144 With 

hypofractionation the total dose of radiation is divided into doses that are larger than 

conventional therapies (> 2 Gy). A larger dose fraction results in a shortened treatment 

period counterbalancing the principal disadvantage of delivering large fraction sizes. The 
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therapeutic benefit of hypofractionation is controversial with many studies raising 

concerns of injury,145, 146 and little evidence to support its superiority to conventional 

methods.147 However recently, Whelan and colleagues demonstrated that accelerated 

hypofractionated whole breast irradiation was on par with standard radiation treatment in 

women who had undergone breast conserving surgery for invasive breast cancer.148 The 

implications of this study is that it will conserve large amounts of time and money for 

patients while maintaining similar outcomes and side effects as the current standard.   
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1.8 Limitations of Radiation therapy  

The overall objective of radiation therapy is to maximize the dose of total 

radiation delivered to the tumor. In theory, achieving a tumoricidal dose of radiation can 

be achieved by exposing the tumor to large doses of radiation. However, this comes at the 

expense of exposing surrounding normal tissues within the treatment boundaries 

ultimately limiting the radiation doses that can be utilized. In general late tissue effects 

are sensitive to changes in fraction size,140 while early tissue effects are more sensitive to 

overall treatment time.149 Furthermore, there is patient-to-patient variability in the 

severity of side effects after a session of radiotherapy, which can usually never be 

predicted prior to treatment. As mentioned previously, these side effects can either 

subside over time or limit future radiotherapy exposures. For example, patients with 

genetic mutations like ataxia telangiectasia present with serious radiation reactions due to 

repair in DNA after radiation exposure.150, 151 Moreover, ionizing radiation can be 

carcinogenic with the possibility of malignancies developing when patients are exposed 

to either diagnostic or therapeutic doses of radiation. However, patients receiving higher 

doses of radiation are at most risk for radiation-induced malignancies. Many studies have 

reported patients developing second malignancies after receiving radiotherapy.152-155  

Finally, through technological advances and image guided radiotherapy, geometric 

radiation targeting can be administered with high precision, however, a major limitation 

is the treatment of microscopic lesions and tumor margins that can be very difficult to 

detect. While most of these techniques incorporate CT, MR and/or other imaging 

techniques, there are no tools that measure the biological change or healthy tissue 

function during the course of radiotherapy. Such advances in functional imaging using 
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MRI and PET may lead to improvements in radiotherapy planning and tumor responses 

while minimizing off target effects.156  
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1.9 Radiosensitizers 

Since current irradiation strategies may fail to kill all cancer cells within an 

irradiation volume, it may be beneficial to selectively enhance radiation at the cellular 

level. Consequently, many approaches have been developed to enhance the radiation 

effects specifically within tumors. A radiosensitizer is an agent or drug that increases the 

cytotoxic susceptibility of cancer cells to radiation therapy. Ideally a radiosensitizer 

would act specifically on tumor cells sparing normal tissues, have favorable 

pharmacokinetic profiles for tumor accumulation prior or during radiation therapy, and be 

nontoxic.  

 In general radiosensitizers can be categorized into five groups: (i) oxygen 

mimicking agents, (ii) sensitization by the structural incorporation of thymine analogues 

into DNA, (iii) inhibitors of cellular repair processes and cell signaling processes, (iv) 

agents that suppress intracellular thiols or other free radical scavengers, and (v) agents 

that generate cytotoxic substances via radiation interaction with sensitizer.157  

1.9.1 Oxygen Imitators  

Oxygen, one of the most important physiological radiosensitizers, has two 

unpaired electrons that can rapidly add to other free radicals to generate new 

reactive radicals that can cause DNA strand breaks. Many approaches have 

attempted to take advantage of this by increasing the oxygen supply to the tumor. 

Hyperbaric oxygen was one of the earliest strategies to be used clinically that 

demonstrated the value of increasing blood oxygen levels, however, difficulties in 

simultaneous application of hyperbaric oxygen and radiotherapy, as well as severe 

tissue radiation injury have limited their clinical use.158 Studies using efaproxial, a 
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drug that non-covalently interacts with and lowers the affinity of hemoglobin for 

oxygen thereby increasing the partial pressure of O2 in tissues and tumors, 

demonstrates an increase in responsiveness for patients with brain metastasis.159  

Furthermore, vasoactive agents such as nicotinamide in combination with carbogen 

(95% oxygen and 5% carbon dioxide) that are capable of eliminating acute hypoxia 

have shown promise in some clinical studies.160  

Nitroimidazoles are an electron affinic (i.e ability to capture electrons) class of 

drugs and commonly known as oxygen mimetics as they react similarly to DNA base 

radicals. This type of drug is shown to be particularly useful in radiosensitizing hypoxic 

cells with no detectable effect on normoxic cells.161 The most plausible explanation for 

this is the abundance of oxygen in normal cells out-competes with nitroimidazole 

radiosensitizers. 5-nitroimidazole is currently used for head and neck cancer treatments in 

Denmark,160 and several nitroimidazole derviatives (2-nitroimidazole) have yielded 

attractive sensitization enhancement ratios.162-164 Finally, nitric oxide, like oxygen is 

highly reactive towards free radicals, and has also been shown to enhance the formation 

of DSBs, although the mechanisms are not yet clearly understood.160  

1.9.2 Thymine Analogues as Radiosensitizers 

Some thymine analogues can serve as electron sinks during irradiation forming 

DNA free radicals (Figure 1.5). During cellular DNA synthesis, cells are unable to 

recognize the difference between thymidine and halogenated forms as the molecular size 

of the halogens are similar to the methyl group of the thymine. Cells incubated with these 

analogues start to incorporate them into their DNA. After irradiation, the halogen is 

released resulting in a carbon free radical that can lead to DNA strand breaks.157 
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Figure 1.5 Possible pathways by which hydroxyl radicals can add to the 5,6-double bond of 

pyrimidines (1) to form a carbon-centred radical (2) that can either add oxygen to form a peroxyl radical (3) 

or add to the oxygen atom in the nitro moiety of a nitroaromatic radiosensitizer (ArNO2) to form a radical 

adduct (6). In either case the intermediate radical (3) or (6) might abstract hydrogen from a neighbouring 

sugar C–H bond (5′ in this example, although 3′-abstraction may occur) to transfer radical damage from 

base to sugar (4) or (7), leading to a strand break (5) or (8).(adapted from Wardman et al.)157  

 
1.9.3 Inhibitors of Cellular Repair and Cellular Processes  

There are many different classes of DNA-targeted radiosensitizing agents that 

have shown to be efficacious including 5-fluorouracil through inhibiting thymidilate 

synthase,165 a key enzyme responsible in regulation of the supply of DNA precursors, 

platinum containing compounds that inhibit DNA repair and enhance the formation of 

platinum intermediates via radiation induced free radicals,166-168 gemcitabine which is a 

strong radiosensitizer that inhibits the action of ribonucleotide reductase, an enzyme 

responsible for producing deoxyribonucleotides that are used in DNA replication and 

repair,169 and topoisomerase I targeted drugs that interfere with rejoining of DNA 
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strands.170 Recently, new approaches have been aimed at targeting cell signaling and 

growth factor receptors for radiosensitzation.157 The Ras family, an important regulator of 

cellular growth and differentiation, is one of the most widely studied signaling pathways 

with respect to radioresistance. Through inhibition of Ras functionality, radioresistance 

can be reversed in cells over-expressing the Ras oncogene.157  The inhibition of 

epidermal growth factor receptor (EGFR) and cyclooxygenase (COX) 2 are two other 

approaches that are currently being investigated in pre-clinical studies.165 

1.9.4 Depletion of Radioprotective Compounds 

An alternative approach to increasing cellular radiosensitivty is to deplete or 

inactivate the cells capacity to absorb/neutralize activated radiation intermediates. 

Intracellular thiols in particular are important antioxidants that mitigate the damaging 

effects of reactive oxygen species preventing many cellular components from damage. 

Specifically, thiol-containing compounds, such as glutathione, are able to donate 

electrons to unstable molecules such as free radicals.  Therefore, initial attempts were 

geared towards the depletion of intracellular thiols particularly through oxidation. While 

in vitro studies seemed very promising, the in vivo concentration of thiols is much higher 

than the tolerable doses of many agents outcompeting the oxidative effect.157 A much 

more realistic approach of thiol depletion is through the inhibition of intracellular 

biosynthesis. One example is L-S-buthionine sulphoximine, an inhibitor of gamma-

glutamylcysteine synthetase, which is responsible for the first step of glutathione 

synthesis. In vitro analysis showed significant enhancement in radiosentization but 

unfortunately this was not corroborated in in vivo evaluations.171-174 A likely explanation 

for poor in vivo enhancement is that other than glutathione, cells contain many other 
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antioxidants and thiols such as ascorbate, cysteine, and protein thiols.157 Circumin, the 

yellow pigment of turmeric, has also been shown to confer radiosensitizing effects in 

cancer cells.175 It has been suggested that a possible mechanism of radioprotection is 

through the enhancement of ROS production by down-regulating Prp4K, a serine–

threonine protein kinase that plays a central role in cell signaling and proliferation, and 

through the suppression of antioxidant enzymes.176, 177 

1.9.5 Radiation Induced Radiosensitizers 

Radiation induced radiosensitizers have recently attracted a lot of interest. These 

agents primarily take advantage of the reactive chemical intermediates that are generated 

within an irradiated region of interest. For example, Tanabe et al. showed that a prodrug 

conjugate of fluoro-2′ deoxyuridine with a strong electrophile was released after ionizing 

radiation,178 and Sykes et al attached DNA alkylating agents to 2,6-dintrophenyl that 

were released following radiolytic reduction resulting in enhanced cell death.179 Redox 

metals such as cobalt (III) and copper (II) have been investigated for their use as 

radiosensitizers. Ahn et al. used cobalt (III) complexes, containing 8-hydroxyquinoline or 

tetradentate macrocycles, as a redox target for radiation induced reducing radicals. Once 

reduced, 8-hydroxyquinoline can alkylate DNA and inhibit cell proliferation.180 

Many studies have indicated that molecules containing high atomic number (Z) 

elements might serve as radiosensitizers.181 The number of DNA DSBs was found to 

increase when radiation was applied in the presence of platinum containing 

compounds.182 Furthermore, gadolinium, which has reached clinical trials, has shown 

improved neurological time to progression in patients with brain cancer metastasis.183 

With recent advances in nanotechnology and chemistry, various novel and effective 
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nano-sensitizers have been developed and evaluated in biological systems including 

carbon nanotubes,184 and platinum,185 gadolinium186, 187 and gold nanoparticles.186, 188 Of 

these elements, gold is by far the most popularly examined nanoplatform in 

radiosensitization and it was adapted for use in the work described in this thesis.  
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1.10 Gold Nanoparticles 

 Nanoparticles are generally defined to be anything on the scale of 1 – 200 nm in 

diameter and are being extensively investigated for their use in prevention, diagnosis, and 

treatment of disease. This technology has the potential to extend life expectancy, improve 

the quality of life, lower healthcare costs, and ultimately patient outcome.189 

Nanotechnology has moved towards clinical translation in many fields including drug 

delivery,190 immunizations,191, 192 image-guided surgery,193, 194 and imaging.195, 196  With 

the growing number of nanoparticle formulations, the variety of materials used, the 

number of distinct nano-platforms is too numerous to count.  

Gold nanoparticles (AuNPs) have attracted considerable interest in the field of 

medicine. Due to their unique chemical and physical properties, AuNPs have been shown 

to be beneficial in many applications including catalysis, biosensors, cancer imaging, 

photothermal therapy, and drug delivery.197, 198 AuNPs can be finely tuned to many 

different shapes and sizes, decorated with stealth-like features for immune system 

evasion and improve stability, functionalized with various targeting moieties to improve 

tumor specificity, and are considered to be nontoxic.199, 200  In fact, aurothiolate and 

colloidal gold have been historically used in medical practice as a treatment for 

rheumatoid arthritis.201 Recently, studies have proposed the use of AuNPs as novel 

radiosensitizers that can selectively enhance radiation therapy efficacy leading to 

increased DNA damage and cell death.202, 203 

1.10.1 Limitations to Clinical Translation 

Currently, a major obstacle that must be overcome before AuNPs (and many other 

nanoparticulate systems) can be translated to the clinic is slow elimination. It has been 
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found that there is only a 9% fall in the content of gold in the liver from day 1 to 6 

months, following the intravenous injection of 40nm AuNPs.204 This is consistent with a 

number of similar studies, which saw little to no clearance of ~20 nm AuNPs over shorter 

time periods (1 to 4 months).205, 206 It has been shown that whole-body clearance can be 

improved through the use of small AuNPs (<6 nm), since these particles are small enough 

to undergo glomerular filtration.207, 208 However, smaller AuNPs possess a smaller cross-

sectional area and shorter path length for x-ray attenuation and are much more rapidly 

excreted through the kidneys.209 Therefore, they are expected to be less favorable for both 

enhanced permeability and retention mediated tumor accumulation and targeted studies, 

where AuNP accumulation is governed by blood residence time or the number of cell 

surface receptors at the target site, respectively. Larger AuNPs are expected to provide 

superior circulation, higher contrast-to-noise ratio, and better radioenhancement in these 

applications. Larger AuNPs are also expected to have longer circulation times for CT 

angiography. A major goal of this thesis was to develop a nanoformulation containing 

AuNPs that exhibited a long circulation time but was still capable of being efficiently 

excreted. 

1.10.2 Mechanism of Gold Dose Enhancement in X-ray 

Therapy 

The mechanism of gold enhancement, in X-ray therapy, is dependent on the 

energy of incident ionizing photons and different interactions between the photons and 

AuNPs. Here, I will discuss three fundamental mechanisms of radiation enhancement 

photoelectric effect, Compton scattering, and pair prodcution. The photoelectric effect is 

the predominant mechanism of radiosensitization of high atomic number (Z) elements, 
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for photons with energies in the range of 10 to 500 keV.210 The cross section of the 

photoelectric effect varies with the atomic number approximately as Z3, meaning that 

higher Z atoms will have a larger absorption cross section. The photoelectric effect is also 

dependent on the energy of the photon, with a maximum cross section when the photon 

energy is equal to the binding energy of orbital electrons. This effect decreases sharply as 

energy is increased and varies as E-3 (Figure 1.6). The binding energies of electrons 

bound to gold are 79 keV for the inner shells, 13 keV, and 3 keV for outer shells, while 

those of soft tissue are on the order of 1 keV or lower resulting from the lower atomic 

number of organic matter. Therefore gold would absorb significantly more energy than 

soft tissue in the kilovoltage energy range. When photons with energies in these ranges 

interact with AuNPs, they can produce electrons, characteristic X-rays of gold atoms, or 

Auger electrons. Once an atom absorbs a photon an electron may be emitted resulting in 

an ionized atom.  

 

Figure 1.6. Comparison of mass energy absorption coefficients as a function of photon energy.211 (adapted 

from Butterworth et al.) 
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When photons of energy greater than the binding energy of an inner shell electron 

collide, that electron is ejected leaving behind a vacancy in an orbital electron shell. As a 

result, outer electrons in a higher energy state fill the vacancy in the lower energy orbital. 

This process is accompanied by either a fluorescent photon or an Auger electron ejected 

from an outer shell with an energy equal to the difference between the two orbital shells. 

If multiple shells exist within an atom then further auger electrons can be generated as 

outer shell electrons fill in the vacancies. This phenomenon is known as the Auger 

cascade. The number of Auger electrons emitted is directly proportional to the atomic 

number. Therefore high Z atoms are expected to generate much more Auger electrons.181  

The range of these emitted electrons have been calculated to be around tens of 

nanometers depositing their energy along their path and distributing radiation throughout 

the system.181 Furthermore, the Auger electron “shower” can produce highly positively 

charged ions, causing local Coulomb-force fields that can disrupt nearby cellular 

strcutures.  

The enhancement of radiation with high-Z material was first realized when DNA 

damage was detected in lymphocytes isolated from patients receiving iodinated contrast 

agents for X-ray imaging.212 Since then many other studies have demonstrated that 

radiation therapy in combination with iodine suppressed tumor growth and improved 

survival in animal models.213 Another interesting approach was the incorporation of 

iodine into cellular DNA yielding a 3-fold improvement in in vitro radiosensitization.214 

However this strategy is not as effective if insufficient levels of iododeoxyuridine is 

substituted with thymine. Although the mechanisms of radiation enhancement of gold 

nanoparticles are not well understood, it is currently believed that the interaction of X-
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rays with high Z atoms induces the release of photoelectrons and Auger electrons.210 

Given that gold has a higher Z number, it is likely that gold as a radiosensitizer would be 

much more effective than iodine.  

When photon energies are greater than 500 keV, Compton effects begin to 

dominate. The Compton effect is the incoherent or inelastic scattering between an X-ray 

photon and an electron of an atom. In this interaction, only a part of the energy is 

transferred to the electron. The resulting emitted electron is known a Compton electron 

leaving behind an ionized atom or molecule. In contrast to photoelectric interactions 

where most photoelectrons are inner electrons, Compton interactions increase for loosely 

bound electrons. So most of the Compton electrons are valence electrons. In contrast to 

Auger electrons, Compton electrons are capable of travelling several hundred microns.  

For incident photons with energies higher than 1.02 MeV, a process known as 

pair production dominates where the photon is absorbed by the nucleus with the 

production of a positron and electron pairs. The probability of pair production increases 

with the atomic number as Z2 and linearly with the energy of incident photons.  

In this thesis, I evaluate the radiosensitizing capabilities of AuNPs using 

orthovolatge energy ranges with the hope that it applies to the clinically relevant 

megavoltage energies. The interaction of charged particles is more complex and beyond 

the scope of this thesis, however, some studies have speculated that proton-AuNP 

interactions lead to increased production of low energy delta-ray electrons producing a 

high degree of lethal damage within the cells thus lowering the surviving fraction of 

cells.215  
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While most AuNP radiosensitization has primarily been attributed to their photon 

absorption capabilities, recent studies highlight that a significant biological component 

may be responsible for radiosensitization. In the absence of radiation, AuNPs have been 

reported to induce ROS that cause oxidative DNA damage.211 In addition, AuNPs have 

been shown to cause alterations in the cell cycle with an increase in cells at the G2/M 

phase.216 In a recent study by Kang et al., the nuclear targeting of AuNPs has been shown 

to cause cytokinesis arrest leading to the failure of complete cell division and 

apoptosis.217 Although experimental evidence may suggest the involvement of biological 

components in radiosensitization, the exact mechanisms are still not clearly understood. 

1.10.3 Modeling Dose Enhancement of AuNPs 

Clinically, most X-ray radiotherapy is administered in the MV energy range as 

these energies have superior penetration capabilities along with a reduced dose delivered 

to surrounding normal tissues. Until recently, most preclinical studies performed with 

AuNPs were limited to kilovolatge X-rays, which can be attenuated by normal tissues and 

have poor penetration capabilities, especially for deep-seated tumors. Some preliminary 

simulations using AuNPs and radiation are suggestive that they may be effective at 

clinically relevant radiation energies. 

Most theoretical studies of high-Z dose enhancement are performed using Monte 

Carlo modeling.218 These theoretical experiments simulate the probabilistic interaction of 

photons and electrons based off the cross-section of different interaction processes. Using 

these modeled interactions along with parameters that take into consideration the 

attenuation of the medium, the production of secondary electrons through interaction with 

biological structures and gold, as well as the irregularities in beam geometry, predictions 
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regarding the dose distributed can be made.211 Recent studies have assessed the 

enhancement effects of radiation in tumors containing high-Z materials. In a study 

performed by Robar et al., gadolinium and iodine contrast media showed very little dose 

enhancement between incident photon energies of 6 – 24 MV, however when lower 

energy filters were removed, there was an improvement in the dose enhancement 

factor.219 Ngwa et al. used Monte Carlo simulations to show that AuNPs may be used to 

ablate tumor endothelial cells using brachytherapy sources of radiation with endothelial 

dose enhancement factors ranging from 6.4 – 271.5, for AuNP concentrations ranging 

from 7 to 350 mg/g.220 Several other studies also validated that AuNPs could be used 

along with clinical brachytherapy sources for significant tumor dose enhancements.221, 222 

In another study by Cho et al., Monte Carlo simulations were used to determine the dose 

enhancements using three different gold concentrations at 140 kVp X-rays, 4, and 6 

MV.223 The largest dose enhancement factors observed were those using the highest 

concentrations of AuNPs (3% Au in tumor). Specifically, 2-MV and 6-MV photon beams 

yielded enhancements between 1% and 7% depending on the AuNP concentration. 

However, at 140-kVp dose enhancement effects that ranged from 211% to 560% were 

obtained. Consistent with this study, other Monte Carlo reports have analyzed the 

characteristics of secondary electrons when X-rays interact with AuNPs (50 kVp, 250 

kVp, cobalt – 60, and 60 MV). It was confirmed that low energy photon beams and larger 

diameter AuNPs were 2 – 3 fold more efficient in AuNP interaction compared to MV 

energies. Moreover, secondary electron production increased by 10 to 2000 fold 

compared to radiation without AuNPs and the electron trajectory for the beams used 

ranged from 3 µm to 1 mm.224 Tsiamas et al. investigated the dose enhancement ratio due 
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to AuNPs using various filtered beam energies (2.5, 4, 6.5 MV) and low Z linac targets. 

They concluded that 2.5 MV AuNP therapy is possible for deep seated tumors with an 

increase in the dose enhancement ratio by a factor of 2, as compared to a standard 6.5 

MV linac.225 While most Monte Carlo simulations show little enhancement with AuNPs 

at the megavoltage energies typically used in radiotherapy, some in vitro experiments 

have reported significant radiosensitization using megavoltage X-ray sources.213, 226 In an 

attempt to explain these discrepancies, McMahon et al. used Monte Carlo simulations to 

calculate the radiation dose on the nanoscale. Their findings suggest that AuNP 

radiosensitization is governed by dose inhomogenieties on the nanoscale level.227 Finally, 

a recent study published by Dorsey et al., concluded that a 1 and 10mg/ml solution of 

pegylated AuNPs showed 1.8 – 2 fold dose enhancement compared to a PEG solution or 

water alone using unfiltered beam energies of 6 MV.200  

1.10.4 In vitro Radiosensitization Using AuNPs 

By far the majority of in vitro and in vivo studies analyzing AuNP mediated 

radioenhancement rely on the enhanced permeability and retention effect (EPR). As a 

tumor continues to grow, it will reach a level where metabolic requirements exceed the 

ability of the vasculature supply.228 Consequently, the tumor will respond by secreting 

factors to promote the process of angiogenesis resulting in the formation of new blood 

vessels crucial for continued growth. Many of these rapidly forming blood vessels are 

characterized by a non-intact basement membrane resulting in an increased permeability 

to macromolecular structures.229 In addition, these actively growing tumors are often 

equipped with impaired and disorganized lymphatic vessels, causing poor lymphatic 

drainage resulting in retention of material in the tumor interstitium.228 This phenomenon 
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of leaky blood vessels and ineffective lymphatic drainage is known as the EPR effect and 

is a main driving force behind nanoparticle accumulation in malignancies for diagnostic 

and therapeutic applications. Tumor targeting that relies solely on the nanoparticle’s 

pharmacokinetic profile and EPR effect is most commonly referred to as passive 

targeting, while strategies that achieve tumor delivery via specific interactions with either 

cancer cells or their microenvironment is referred to as active targeting. 

One of the earliest studies using gold for radioenhancement was performed by 

Regulla and colleagues.230 In this study, enhanced radiation effects were observed in 

mouse embryo fibroblasts that were exposed to gold surfaces compared to those exposed 

to polymethylmethacrylate. Secondary electrons were found to travel a range of 

approximately 10 µm. Following this study, numerous other experimental studies using 

AuNPs over both orthovoltage and megavoltage ranges have been described. Many of 

these reports are controversial as there are many parameters that must be considered 

when performing AuNP radiosensitization such as size, shape, surface coating, 

concentration, radiation type and energy, and origin of cell lines (Table 1.1, adapted from 

Butterworth et al.). In an attempt to address these issues, Brun and coworkers 

investigated AuNP radiation enhancement by altering AuNP concentrations, AuNP 

diameter, and incident X-ray energy (range 14.8 – 70 keV). They determined that the 

conditions with the most radiation enhancement were those using larger sized AuNPs, 

high gold concentration, and 50 keV photons providing dose enhancement factors of 6.231 

In a separate study, 1.9 nm AuNPs enhanced the response of bovine aortic endothelial 

cell damage inflicted by X-ray irradiation, with a dose enhancement factor up to 24.6.232 

While optimal sizes for AuNP radiation therapy may be inconclusive, it is generally 
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accepted that radiation induced DNA damage will increase with increasing 

concentrations of AuNPs.233 In vitro experiments using brachytherapy sources and 

AuNPs have also been reported and initially demonstrated a biological effect with 

irradiation up to 130% greater than without AuNPs.234  

 Most photoelectrons, Auger electrons, and other secondary electrons have low 

energies and a short range in tissues (nm to µm) delivering lethal doses in their 

immediate surroundings.235 The possibility of having AuNPs target specific cancer cells 

may increase the production of secondary electrons within the vicinity of DNA 

molecules, especially if they involve cellular internalization.236 Chattopadhyay et al. was 

one of the first to validate this hypothesis by synthesizing trastuzumab-PEG-AuNPs.237 

Briefly, SKBR-3 cells were irradiated after treatment with either phosphate buffered 

saline, PEG-AuNPs, or trastuzumab-PEG-AuNPs. The DNA DSBs as measured by γ-

H2AX foci increased 5.1 and 3.3 times for targeted AuNPs compared to cells treated with 

PBS or PEG-AuNPs respectively. AuNPs modified with either cysteamine of thioglucose 

have been shown to have differential accumulation in cancer cells. While cysteamine 

modified AuNPs were preferentially limited to the cell membrane of MCF-7 breast 

cancer cells, glucose-AuNPs are internalized and distributed throughout the 

cytoplasm.238, 239 Furthermore, glucose-AuNPs exhibited enhanced irradiation (200 kVp) 

induced cell death compared to cysteamine-AuNPs and irradiation alone. Finally, in 

another independent study, radiotoxicity of proton therapy with AuNP internalization was 

increased by approximately 15 – 20% compared to proton therapy without AuNPs.215 

However, these results are inconclusive, as targeted AuNPs were not compared to non-

targeted AuNPs. 
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Table 1.1. Summary of in vitro radiosensitzation experiments using AuNPs 

*SER- Surface Enhancement Ratio 

*DEF- Dose Enhancement Factor 

Author Size 
(nm

) 

Concen-
tration 

Surface 
coating 

Cell model Energy 
source 

DEF SER 
 

Geng et 
al.239 

14 5 nM Glucose SKOV-3 90 kVp 
6 MV 

1.002 
1.0000

9 

1.3 
1.2 

Jain et 
al.226  

1.9 12 µM Thiol DU145 
MDA-231MB 

L132 

160 kVp 
6 MV 

15 MV 
6 MeV e- 
16 MeV 

e- 

1.05 
1.0005 
1.0005 

1 
1 

<1.41 
<1.29 
1.16 

<1.12 
1.35 

Chithrani 
et al.213 

14 
74 
50 

1 nM Citrate HeLa 220 kVp 
6 MV e- 
662 keV 

1.09 
1.0008 
1.0006 

1.17-
1.16 

Liu et 
al.240 
2010 

6.1 >1 mM PEG CT-26 
EMT-6 

6 keV e- 

160 kVp 
6 MV 

1 
1.02 

1.002 

2 
1.1 
1 

Butterwor
th et al.241 

1.9 2.4 µM 
0.24 µM 

Thiol DU-145 
MDA-231MB 

AG0-1522 
Astro 
L132 
T98G 

MCF-7 
PC-3 

160 kVp 1.01 
1.01 
1.01 
1.01 
1.01 
1.01 
1.01 
1.01 
1.01 

<1 
<1.67 
<1.97 
<1.04 

<1 
<1.91 
<1.41 
<1.07 

1.3 
Kong et 
al.238 

10.8 15 nM Glucose 
Cysteamine 

MCF-7 
MCF-10A 

200 kVp 
662 keV 
1.2 MV 

1.01 
1.0000

8 
1.0000

1 

1.3 
1.6 

Rahman 
et al.232 

1.9 <1 mM Thiol BAEC 80 kV 
150 kV 
6 MV e- 

12 MV e- 

6.6 
5.2 
1 
1 

20 
1.4 
2.9 
3.7 

Roa et 
al.216 

10.8 15 nM Glucose DU-145 662 keV 1.0000
8 

>1.5 

Zhang et 
al.242 
2008 

30 15 nM Glucose 
TGS 

DU-145 200 kVp 1.0083 
1.0083 

>1.3 
>1.5 

Chang et 
al.243 

13 11 nM Citrate B16F10 6 MV e- 1 
 

1 

Chien et 
al.244 

20 <2 mM Citrate CT-26 6 MV e- 1 1.19 
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Zhang et 
al.245 
2009 

4.8 
12.1 
27.3 
46.6 

0.095 – 
3mM 

Citrate K562 2-10 kR 
gamma 

  

Liu et 
al.246 
2008 

4.7 500 µM PEG CT-26 6 MV  1.3 – 1.6 

Chattopa-
dhyay et 
al.237 
2010 

30 0.3 nM Trastuzumab 
PEG 

SK-BR-3 300 kVp  5.1 

Brun et 
al.231 

8.1 
20.2 
37.5 
74 

91.7 

1 – 5 nM Citrate Plasmid DNA 30 kV 
80 kV 
80 kV 

100 kV 
120 kV 
150 kV 

 < 3.3 

 

1.10.5 In vivo Radiosensitization Using AuNPs 

In 2004, Hainfeld et al. performed the first animal study evaluating enhanced 

tumor radiosensitization using AuNPs. Using 1.9 nm AuNPs in combination with 250 

kVp X-rays (30 Gy), overall tumor-xenograft mouse survival was 86% versus 20% for 

radiation alone and 0% for gold only.188 Since then AuNPs radiosensitization has been 

demonstrated in vivo with murine mammary ductal carcinoma,201 murine squamous cell 

carcinomas,188 human sarcoma cells,203 and cervical carcinoma(See Table 1.2).247 In a 

study by Zhang and colleagues, in vivo radiosensitization was studied using four different 

sizes of PEG-AuNPs, and demonstrated that while all sizes can decrease tumor volumes 

after gamma radiation (5 Gy), the smallest (4.8 nm) and largest (46.6 nm) particles tested 

had weaker sensitization effects than 12.1 and 27.3 nm.248 However, in a recent study by 

Zhang et al., glutathione coated AuNPs with sizes less than 2 nm have the ability to 

accumulate preferentially within subcutaneous tumor bearing mice providing strong 

radioenhancement for cancer therapy.247 More recently, Joh et al. showed that PEG-

AuNPs and radiation therapy can enhance DNA damage, tumor cell destruction, and 
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improve survival in mice with orthotopic glioblastoma multiforme tumors.249 

Intriguingly, they also showed that ionizing radiation could compromise the integrity of 

the blood brain barrier significantly increasing the accumulation of AuNPs within brain 

tumor bearing mice. All of these strategies mentioned are examples of passive tumor 

targeting of AuNPs that are reliant on the EPR effect. To our knowledge, a study 

conducted by Chattopadhyay and coworkers is the only one that assessed the in vivo 

radioenhancement effects of AuNPs, using a tumor specific HER-2 targeted 

nanoplatform.235 However, the benefits of having targeted-AuNPs versus untargeted were 

not conclusive as there were no in vivo comparisons made, and AuNPs were 

administered via intratumoral injections.  

 Very few in vivo studies have been carried out using MV photon energy beams 

that are commonly used in radiotherapy. However, some emerging studies are suggestive 

of the clinical potential of AuNPs in improving outcomes of radiotherapy. Using 6 MV 

electrons with 13 nm AuNPs, tumor growth was significantly retarded and survival was 

prolonged compared to radiation alone in mice with melanoma flank tumors.243 Increased 

tumor sensitization with AuNPs has also been demonstrated using proton therapy.250 

Proton beam irradiations of 45 MeV (10-41 Gy) were delivered to subcutaneous colon 

carcinoma tumors in mice after receiving a single dose of 100 – 300 mg/kg of AuNPs, 

which led to a 58 – 100% one year survival versus 11 – 13% in proton only irradiations.  
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Table 1.2 Summary of in vivo radiosensitzation experiments using AuNPs 

*DE- Dose Enhancement 

Author Size 
(nm) 

AuNP 
Dose 

(g kg-1) 

Tumor 
conc. 

(mg g-1) 

Surface 
coating 

Cell 
model 

Source 
energy 

Dose 
(Gy) 

Predicted 
DE 

Hainfeld et 
al.202 

1.9 0-2.7 7 Thiol SCCVII 68 kV 
157 kV 

30 1.84 
1.315 

Hebert et al.201 5 0-0.675 0.1 DTDTPA-
Gd 

MCF7-L1 150 kV 10 1.01 

Chang et al.243 13 0-0.036 74 Citrate B16F10 MV e- 25 1.01 
Hainfeld et 
al.188 2004 

1.9 0-2.7 7 Thiol EMT-6 250 kV 26-30 1.56 

Joh et al.203 
2013 

12.4 0-1.25 1.25 PEG HT1080 
 

175 kV 6 Gy 1.16 

Joh et al.249 
PLOS 

12 0-1.25 0.15 PEG U251 175 kV 20 Gy 1.3 

Kim et al.250 
2012 

14 0-0.3 0.1 – 0.2 Citrate CT26 Proton 
40 MV 

10-41 
Gy 

 

Zhang et al.248 
2012 

4.8 
12.1 
27.3 
46.6 

0-4  PEG U14 Gamma 
Rays 

5 Gy 1.41 
1.65 
1.58 
1.42 

Chattopadhyay 
et al.237 

30  4.8 Herceptin MDA-
MB-361 

100 kV 11 Gy  

Atkinson et 
al.251 

 n/a n/a n/a  n/a 6 Gy  

Zhang et al.247 
2014 

1.5 0.01 0.01456 GSH 
BSH 

U14 662kV 5 Gy  
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1.11 X-ray Computed Tomography Imaging & Contrast 

Agents 

Developed in the 1970s, computerized transverse axial tomography is a technique 

that acquires many X-ray projection images from different directions. Using dedicated 

computer algorithms, 3D volume reconstructions are generated enabling the visualization 

of internal anatomical features within the human body. Today, with the introduction of 

modified detector technologies and the advent of spiral scanning, whole organs or the 

body can be imaged in a matter of seconds with sub-millimeter resolution.    

While many tissue structures may have varying X-ray attenuation characteristics, 

it is often difficult to delineate abnormal tissue pathology accurately without the 

administration of a contrast agent. Water-soluble iodinated compounds have long been 

used as X-ray contrast agents. Iodinated compounds in clinical use have low molecular 

weights, ranging from 127 Da for iodide to about 1600 Da for tri-iodobenze dimers (e.g. 

iodixanol, 1550 Da). Because of their small size, iodinated contrast agents exhibit rapid 

renal clearance and vascular permeation, necessitating short imaging times. As a result, 

intra-arterial catheterization is often needed, which carries the risk of arterial puncture, 

dislodgement of plaques, stroke, myocardial infarction, anaphylactic shock and renal 

failure. Patients with impaired renal function carry a particular high risk for adverse 

effects.209, 252 

To overcome some of the disadvantages associated with low-molecular weight 

contrast agents, chemists have used many different strategies to increase the molecular 

weight of X-ray contrast media, e.g. iodinated polysaccharides,253polymeric tri-

iodobenzenes,254 and cascade polymers carrying tri-iodobenzenes.255 Similar agents have 
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also been prepared with dysprosium and gadolinium (Gd).256, 257 However, complex 

chemistry and problems with tolerability have kept these agents from reaching clinical 

trials.255 

An alternative to using macromolecules is to incorporate many highly attenuating 

atoms into nanoparticles. Nanoparticles offer an opportunity for longer circulation times, 

visualization of the reticuloendothelial system (RES), blood pool imaging, and 

lymphography. Molecular imaging is also possible since each nanoparticle is capable of 

carrying many atoms with high atomic number, providing a mechanism to increase 

contrast at the target site.258, 259 Over the past two decades, many nanoparticulate X-ray 

contrast agents have been developed, including liposomes loaded with iodinated 

compounds,260, 261 polymeric iodine-containing PEG-based micelles,262 iodine containing 

perfluorocarbons,263, 264 bismuth sulfide nanoparticles,265 and AuNPs.188, 209 Of these, gold 

nanoparticles have garnered a particularly high degree of interest. In comparison to 

iodine, gold possesses a mass attenuation coefficient that is ~2.7-fold higher.266 

Accordingly, it was found that 1.9 nm AuNPs exhibit a better contrast-to-noise ratio 

(CNR) on both projection radiography (40-80 kVp) and computed tomography (CT) (80-

140 kVp).209, 266-268 Specifically, at equimolar concentrations, AuNPs exhibited an 89% 

improvement over iopromide at low energies near the mammographic range (40 kVp) 

and a 114% greater CNR at higher energies (140 kVp).266 Similarly, 30 nm AuNPs 

attenuated 120 kVp X-rays 5.7 times more than the iodine-based agent, Ultravist.268 The 

high attenuating properties of AuNPs has recently led to their successful implementation 

as targeted molecular imaging agents in mice.258, 259 Notably, the additional benefits of 

working with AuNPs are that the size and shape can easily be controlled and the surface 
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can be modified with various functional groups. In contrast, while other nanoparticle 

formulations, such as bismuth sulfide and tantalum oxide nanoparticles,269 may also 

exhibit higher X-ray absorption than iodine (at 50 kVp), it is difficult to control their size 

and there is a lack of chemical methods to modify their surface.265, 268 
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1.12 Magnetic Resonance Imaging 

Magnetic resonance imaging is a noninvasive imaging modality that utilizes 

strong magnetic fields to produce clinically relevant images of not only tissue structure, 

but also function.270 The primary molecules responsible for signal generation during 

image acquisition are the protons in water, with intrinsic contrast provided by the spatial 

differences in proton density and relaxation times. In general there are two relaxation 

signals that characterize MR signals referred to as longitudinal (T1) and transverse 

relaxation (T2) time constants. The longitudinal time constant T1, also called spin-lattice 

relaxation, is the process by which, following a radiofrequency pulse, the magnetization 

vector realigns along the longitudinal (z) axis as proton spins give their energy back to 

the surrounding lattice, coming into equilibrium with its surroundings. The transverse 

time constant T2, also called spin-spin relaxation, is the time required for the transverse 

component of the magnetization vector to decay, and is a consequence of interactions 

between spins as well as external field inhomogeneities. By taking advantage of the 

different T1 and T2 time constants in tissues, MR images of the same anatomical 

structures with varying degrees of hyperintesities and hypointensities can be obtained. 
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1.13 Superparamagnetic Iron Oxide (SPIO) Nanoparticles 

 SPIO nanoparticles are predominately composed of a magnetite (Fe3O4) and/or 

maghemite (ɤ-Fe2O3) iron core and a hydrophilic/hydrophobic surface coating.271, 272 

These particles have the greatest application in providing useful contrast on T2 or T2
* 

weighted MR imaging, producing a hypointense (dark) signal. When an external 

magnetic field is applied, the magnetic moments are oriented in the direction of the 

magnetic field thereby enhancing the magnetic flux in their vicinity. The disturbances in 

the local magnetic field results in a rapid de-phasing of surrounding protons following an 

RF pulse, altering both their longitudinal and transverse relaxation characteristics, and 

generating a detectable change in the MR signal. Due to their strong enhancement in 

proton relaxation, SPIO nanoparticles have been extensively investigated as MR contrast 

agents. While many of the clinical studies using SPIO are in early phase clinical trials or 

discontinued, a few have been marketed.273 

 Over the past decades, studies using SPIO nanoparticles have shown potential 

applications in MR hepatic imaging (as they are readily taken up by Kupffer cells), cell 

tracking, cardiovascular imaging, and biomolecular detection.272 In cancer imaging, SPIO 

can be used for the detection of lymph node metastases, which aids in cancer staging and 

therapeutic planning.274, 275 While these applications are promising, a desirable goal is to 

utilize SPIO nanoparticles for cellular and molecular imaging applications, to provide 

earlier detection of malignancies prior to metastasis. However, a major hurdle for the 

detection of non-RES lesions is the sensitivity limitations of some MR contrast agents. 

As a result, many strategies have been utilized to improve SPIO nanoparticle sensitivity 

including the optimization of MR hardware and pulse sequences, nanoparticle shape and 
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size, SPIO cell specific targeting, and the development of SPIO nanocarriers. For 

example, the development of an activatable SPIO nanoparticle probe has been shown to 

increase contrast by improving site-specific accumulation.276 Other approaches have 

significantly increased particle relaxivity by incorporating many SPIO nanoparticles 

within the hydrophobic core of polymeric micelles.277, 278  This approach has been 

adapted in this thesis to create micelles that are capable of generating strong MR contrast. 

SPIO was combined with AuNPs, to create a micelle that has both diagnostic and radio-

therapeutic potential.  
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1.14 Polymeric Micelles  

 Polymeric micelles offer a powerful multifunctional platform for drug delivery and 

diagnostic imaging applications.279, 280 These nanoconstructs are composed of 

amphiphilic block co-polymers with distinct hydrophobic and hydrophilic domains that 

can self-assemble into supramolecular core-shell structures (usually 10 to 100 nm) in 

aqueous solution. The hydrophobic micelle core provides an ideal carrier compartment 

for hydrophobic drugs and nanoparticles,277 and the shell consists of a protective corona 

that stabilizes the nanoparticles. Among the many different classes of amphiphilic block 

copolymers used, polyethylene oxide (PEO)-b-polycaprolactone (PCL) or poly(lactic 

acid) (PLA) have received the most interest as they are FDA approved materials with 

potential benefits that span drug delivery and diagnostic applications.281 The dense PEG 

corona of the PEG-b-PCL vesicles imparts stealthiness and is able to deter membrane 

opsonization, and significantly extend in vivo circulation times.282 

 For example, the incorporation of insoluble anticancer agents into micelles has been 

shown to improve drug circulation, enhance cytotoxicity at the target site and enable 

delivery of higher doses to the tumor than with agents alone.283, 284 Other groups have 

incorporated imaging agents including SPIO, for magnetic resonance imaging, 

radioactive metals for positron emission tomographic imaging, and organic iodine for X-

ray/CT imaging.285 Until now, the only clinically approved micelle formulation is 

Genexol-PM, a PEG-PLA micelle entrapped formulation of paclitaxel, used in the 

treatment of breast cancer. Furthermore, polymeric micelles have the flexibility of 

incorporating multiple types of compounds within the core for multimodal and 

theranostic applications as well as surface bioconjugation for active targeting.277, 281  
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 In this thesis small (< 6 nm) AuNPs were encapsulated within the hydrophobic core 

of polymeric micelles such that they would mimic AuNPs with larger core diameters and 

significantly prolong their circulation in the blood. However, upon the hydrolysis of the 

amphiphilic polymer, we hypothesized that that presence of small AuNPs could help to 

improve the clearance from various organ systems and reduce long term retention. SPIO 

was also encapsulated within the micelle to allow for MR imaging. 
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1.15 Preface to Dissertation 

While AuNPs have been used for diverse applications in both imaging and 

therapy, their poor long-term elimination and low sensitivity in X-ray imaging is a major 

limitation. This dissertation thesis is laid out to follow a sequence of findings that led to 

the development of a nanoplatform for imaging and radiotherapy with improved 

pharmacokinetics. The chapters are broken down as follows:  

Chapter 2: Development of gold-loaded polymeric micelles with prolonged 

circulation for combined X-ray imaging and radiation therapy. 

Chapter 3: Preparation of superparamagnetic iron oxide and gold loaded micelles 

for improved imaging sensitivity.  

Chapter 4: Develop a targeted superparamagnetic iron based micelles for cell 

specific targeting. 

Chapter 5:  Examination of the in vivo long-term toxicity, clearance, and organ 

retention of gold-loaded polymeric micelles using two different sizes of AuNPs. 

Chapter 6 is a summary of the primary discussion points that have been highlighted over 

the course of this dissertation and future directions for this work.  
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Chapter 2: Development of Gold-Loaded Polymeric 

Micelles for Computed Tomography–Guided Radiation 

Therapy Treatment and Radiosensitization 

 

2.1 Abstract 

Gold nanoparticles (AuNPs) have generated interest as both imaging and 

therapeutic agents. AuNPs are attractive for imaging applications since they are nontoxic 

and provide nearly three times greater X-ray attenuation per unit weight than iodine. As 

therapeutic agents, AuNPs can sensitize tumor cells to ionizing radiation. To create a 

nanoplatform that could simultaneously exhibit long circulation times, achieve 

appreciable tumor accumulation, generate computed tomography (CT) image contrast, 

and serve as a radiosensitizer, gold-loaded polymeric micelles (GPMs) were prepared. 

Specifically, 1.9 nm AuNPs were encapsulated within the hydrophobic core of micelles 

formed with the amphiphilic diblock copolymer poly(ethylene glycol)-b-poly(ε-

caprolactone). GPMs were produced with low polydispersity and mean hydrodynamic 

diameters ranging from 25 to 150 nm. Following intravenous injection, GPMs provided 

blood pool contrast for up to 24 hours and improved the delineation of tumor margins via 

CT. Thus, GPM-enhanced CT imaging was used to guide radiation therapy delivered via 
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a Small Animal Radiation Research Platform. In combination with the radiosensitizing 

capabilities of gold, tumor-bearing mice exhibited a 1.7-fold improvement in the median 

survival time, compared with mice receiving radiation alone. It is envisioned that 

translation of these capabilities to human cancer patients could guide and enhance the 

efficacy of radiation therapy.     
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2.2 Introduction 

Over the past two decades, many nanoparticle formulations have been evaluated 

as computed tomography (CT) contrast agents, including liposomes loaded with 

iodinated compounds,1-3 polymeric iodine-containing poly(ethylene glycol) (PEG)-based 

micelles,4 iodine-containing perfluorocarbons,5, 6 bismuth sulfide nanoparticles,7 and gold 

nanoparticles (AuNPs).8-10 Of these, gold nanoparticles have garnered a particularly high 

degree of interest. This is largely due to the high mass attenuation coefficient of gold, 

which is ~ 2.7-fold higher than iodine.11 Accordingly, it has been found that 30nm 

AuNPs can attenuate 120 kVp x-rays 5.7 times more than the iodine-based agent, 

Ultravist.10 Additional benefits of working with AuNPs include the ability to finely tune 

their size and shape and modify their surface with various functional groups. While other 

nanoparticle formulations, such as bismuth sulfide nanoparticles, may also exhibit a 

higher x-ray absorption than iodine, it is difficult to control their size and there is a lack 

of chemical methods to modify their surface.10, 12 Surface chemistry is important when 

attempting to prolong systemic circulation, a prerequisite for tumor imaging and tumor 

accumulation via the enhanced permeability and retention (EPR) effect.13 An extended 

circulation also offers an opportunity to image the reticuloendothelial system (RES), the 

blood pool, and in some cases the lymph system.  

In addition to their use as CT contrast agents, AuNPs have also shown promise as 

radiosensitizers. Radiosensitization is due to the high absorbance of gold and the 

resulting deposition of energy in surrounding tissues from photoelectrons (i.e. 
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photoelectric effect), Auger electrons, and the generation of free radicals.14, 15 Within the 

kilovoltage energy range, the radiosensitization effect is generally attributable to the 

photoelectric effect while Auger electrons are hypothesized to be responsible for energy 

radiosensitization within the megavoltage range of radiation energies.16-19 It has been 

shown that AuNPs in combination with radiation treatment can lead to an increase in the 

number of DNA double-stranded breaks compared with radiation alone.14, 20-25 In one 

recent study it was shown that 1.9 nm AuNPs could even lead to an increase in the 

survival of tumor-bearing mice, compared with radiation therapy (RT) alone.9 However, 

because of the rapid clearance of the small nanoparticles used in this study, the tumors 

had to be irradiated immediately after AuNP administration. In general, rapid clearance 

limits tumor-specific accumulation via EPR, and thus can limit the ability of small 

AuNPs to guide, via CT, the precise delivery of radiation therapy.  

When designing a treatment plan, radiation oncologists must take into account 

several critical factors including the mapping of true tumor margins, which can 

sometimes be challenging to define using current imaging techniques. Therefore, a more 

accurate definition of tumor boundaries would facilitate more precise delivery of 

radiation therapy and as a result decrease normal tissue exposure to undesirable 

radiation.26-28 With this goal in mind, it is envisioned that long-circulating AuNPs that 

appreciably accumulate in tumors via EPR can be used to guide RT planning and 

treatment, through improved contrast-enhanced delineation of tumor boundaries via CT, 

thus minimizing energy deposition in surrounding healthy tissues. In addition, AuNP-

mediated radiosensitization can also directly increase the radiation dose received by the 
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tumor, thus providing a second complementary mechanism by which the overall 

therapeutic index can be increased.  

In this study, we describe the development of a multifunctional micelle that 

simultaneously exhibits long circulation times, achieves appreciable tumor accumulation, 

generates CT image contrast, and serves as a sensitizer for radiation therapy in cellular 

and animal models at sublethal radiation doses. Specifically, using a microemulsion 

synthesis method, we have been able to prepare gold-loaded polymeric micelles (GPMs), 

with tunable hydrodynamic diameters ranging from 25 to 150 nm.  The GPMs are formed 

using the amphiphilic diblock copolymer poly(ethylene glycol)-b-poly(ɛ-caprolactone) 

(PEG-b-PCL) and have tightly packed clusters of 1.9 nm AuNPs incorporated within the 

hydrophobic core (Figure 2.1). We first evaluated the ability of GPMs to enhance double-

stranded DNA breaks in vitro in response to radiation. Next, we assessed whether GPMs 

are capable of generating contrast for CT blood pool and tumor imaging. Finally we 

investigated whether the radiosensitization in cells translated to an improvement in 

survivability in murine tumor xenograft models.  

 

Figure 2.1. Schematic of gold-loaded polymeric micelles (GPMs). Gold nanoparticles are self-assembled 

into the hydrophobic core of micelles, stabilized with the amphiphilic diblock copolymer PEG-b-PCL. 
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Each GPM is composed of approximately hundreds to thousands of individual gold nanoparticles, 

depending on their size. 

 

2.3 Materials and Methods 

Synthesis of 1.9 nm gold AuNPs  

Dodecanethiol capped AuNPs were prepared according to the procedure 

described by Brust et. al,46 using a two phase reduction of tetrachloroaurate (HAuCl4) by 

sodium borohydride (NaBH4) in the presence of an alkanethiol. Briefly, 30 mL of an 

aqueous solution of 30 mM HAuCl4 was mixed with 50 mM of tetraoctylammonium 

bromide (TOAB) in 80 mL of toluene. The solution was stirred until the HAuCl4 solution 

transferred into the organic phase. Then, 0.84 mM of 1-dodecanethiol was added to the 

solution while stirring followed by the dropwise addition of a 0.4 M aqueous solution of 

NaBH4. The resultant mixture was then stirred for at least 3 hours and precipitated twice 

at -20°C in ethanol overnight to remove excess thiols. The precipitate was collected via 

centrifugation and the supernatant was decanted. The remaining pellet was dissolved in 

toluene.  

 
Synthesis of GPMs  

Gold loaded polymeric micelles were synthesized using oil-in-water emulsions 

and stabilized using the amphiphilic diblock copolymer polyethylene glycol (4k) – 

polycaprolactone (3k) (PEG-b-PCL). AuNPs were dissolved in toluene at 30 mg Au/mL 

and PEG-b-PCL was also dissolved in toluene at a concentration of 50 mg/mL. A 

combined solution (200 µL) of the diblock (4 mg) and the AuNPs (3.5 mg) was added 

directly to a glass vial containing 4 mL of millipore water and the mixture was emulsified 
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for approximately 3 minutes in an ultrasonic bath. The emulsions were then allowed to 

stand overnight in a desiccator prior to their characterization and purification. The 

resulting dark brown solution was centrifuged at 400 RCF for 10 minutes to remove the 

largest micelles. The solution was then centrifuged twice at 3100 RCF for 30 minutes, 

after which the supernatant was removed, and the pellet was re-suspended in pH 7.4 

phosphate buffered saline (PBS). Different size fractions were collected using different 

centrifugal rates. Free polymer and smaller sized particles were removed by diafiltration 

using a MidGee hoop cross flow cartridge with 750 kDa molecular weight cutoff (GE 

Healthcare, Piscataway, NJ, USA) and was then filtered through a 0.2 µm cellulose 

acetate membrane filter (Nalgene, Thermo Scientific) to remove any oversized particles. 

Finally the nanoparticles were concentrated using 50 kDa MWCO centrifugal filter units 

(Millipore, Billercia, MA, USA). 

 
Physicochemical analysis of GPMs  

GPM stock solutions were diluted in Millipore water and deposited on 200-mesh 

carbon coated copper grids (Polysciences, Warrington, PA) for TEM imaging using a 

JEOL 1010 transmission electron microscope operating at 80 kV. Stock samples of GPM 

were diluted in PBS for measuring the hydrodynamic diameter of the nanoparticles by 

dynamic light scattering (DLS). These measurements were acquired using a Zetasizer 

Nano-ZS (Malvern Instruments, Worcestershire, UK) using the non-invasive back-scatter 

(NIBS) mode. Zeta potential measurements were carried out by diluting GPM stock 

samples in PBS and the mean particle zeta potential was measured using a Zetasizer 

Nano-ZS. 
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Cell culture and γ-h2ax immunofluorescence  

HT-1080 human fibrosarcoma cells (ATCC) were cultured and maintained in 

Dulbecco’s modified Eagle’s medium (DMEM), supplemented with 10% fetal bovine 

serum (FBS), 1% penicillin/streptomycin at 37°C and 5% CO2. Cells in chamber slides 

were exposed to culture medium with 1 mM of AuNPs for 24 hours then irradiated using 

a Small Animal Radiation Research Platform (SARRP) (150 kVp, 15 mA). After 12 

hours post-irradiation, cells were fixed with 10% neutral buffered formalin (Sigma-

Aldrich) for 10 minutes. Cells were then rinsed with PBS, and the nuclei were stained 

with Hoechst 33342 (25 µM) for 15 minutes. The slides were permeabilized with 0.5% 

Triton X-100 in PBS and then exposed to blocking buffer (PBS, 0.5% Triton X-100, 5% 

normal chicken serum, 1% BSA) for 30 minutes at room temperature and subsequently 

incubated overnight at 4oC with mouse monoclonal anti-phospho-histone γ-H2AX 

primary antibody (JBW301, Upstate) at 1:1500 dilution in PBS (with 0.5% Triton X-100 

and 1% BSA). Cells were washed with PBS and then incubated with chicken anti-mouse 

Alexa 594 secondary antibody (Molecular Probes) at 1:1000 dilution in PBS (with 0.5% 

Triton X-100 and 1% BSA) for 1 hour at room temperature.  After rinsing with PBS, the 

slides were mounted with Prolong Gold Antifade Reagent (Invitrogen) and coverslips.  

Fluorescence imaging was performed using a Deltavision Deconvolution microscope 

(Applied Precision) equipped with a 60x (1.42 NA) oil-immersion lens and 

thermoelectrically cooled 12-bit monochrome CCD camera.  Images were recorded as z-

stacks (0.3 µm steps). Following reconstructive deconvolution, the maximum values of 

the pixels were used to assemble two-dimensional projections. Foci were counted 
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automatically using ImageJ after applying a top-hat filter and constant value threshold 

based on unirradiated controls. 

 
Clonogenic Assay  

Cells were incubated for 24 hours in culture medium with or without 100 µg/mL 

of GPMs in 100 mm dishes and then irradiated with the SARRP (150 kVp, 15 mA) at the 

specified radiation doses (0 Gy, 2 Gy, 4 Gy and 6 Gy). After radiation, the cells were 

washed three times with PBS, trypsinized, and plated at predetermined densities. The 

plates were kept in a humidified incubator and maintained in a 37oC and 5% CO2 

environment for 10 to 14 days. The cells were then stained with methylene blue and the 

resulting colonies counted. A colony by definition had n > 50 cells. The surviving 

fraction was calculated as (colonies counted) / (cells seeded x (plating efficiency/100)).  

Each point on the survival curve represents the mean surviving fraction from at least 

three replicates. The survival curves were fitted to a linear-quadratic equation: surviving 

fraction = exp[-(αD+βD2)]. The sensitizer enhancement ratio (SER) was calculated as the 

ratio of the mean inactivation doses, defined as the dose at which there is 37% survival 

with and without GPMs.   

 
Quantification of blood clearance via ICP-OES  

Approximately 6 week old female nu/nu nude mice (n = 3) were used for the 

GPMs blood clearance experiments. The GPMs were injected retro-orbitally at a dose of 

approximately 100 ppm in 200 µL of injected solution. Prior to injection, an aliquot of 

the GPM solution was saved for inductively coupled plasma – optical emission 

spectroscopy (ICP-OES) for the determination of the gold concentration of injected 
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sample. Blood samples (10 µL each) were collected from each animal using the tail-nick 

method at 1 min, 10 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, and 48 h post-injection.  

 
Contrast Enhanced in vivo CT imaging and biodistribution analysis 

Approximately 6 week old female nu/nu nude mice (Charles River Laboratory, 

Charles River, MS, USA) were maintained in accordance with the Institutional Animal 

Care and Use Committee of the University of Pennsylvania. Mice were anesthetized 

using isoflurane, and HT-1080 cells were injected subcutaneously into the back left flank 

(2 x 106 cells in 0.1 mL of PBS). Tumors were grown until the mean diameter was 

approximately 7 – 8 mm, and pre-contrast cone beam CT imaging was performed using a 

Small Animal Radiation Research Platform, SARRP (Gulmay Medical, Inc.). CT 

imaging was conducted at 50 kVp (0.5 mA), and 1440 projections were used to 

reconstruct the cone-beam images using the algorithm provided by the manufacturer. 

Immediately following the pre-contrast image acquisition, either GPMs or 1.9 nm 

AuroVistTM gold nanoparticles (Nanoprobes, Yaphank,NY) were intravenously injected 

into the HT-1080 tumor-bearing mice (n = 3 for each group). Using isoflurane to 

anesthetize the mice, both contrast agents were administered by retro-orbital injection 

(650 mg Au/kg in 0.2 mL). Post-contrast images were collected 30 min, 24 h, and 48 h 

post-injection with the same imaging parameters used for pre-contrast images. After 48 

hours, the animals were sacrificed and the tumors, livers, spleens, kidneys, hearts, and 

lungs were harvested. Tissue samples were thoroughly washed with PBS and blotted dry 

to minimize the contribution of any nanoparticles remaining in the bloodstream. The 

tissue were weighed and digested in HNO3 overnight at 70°C. Following the overnight 
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digestion, HCl was added to dissolve the gold. Samples were diluted with Millipore water 

and analyzed for gold content using ICP-OES.  

 
Toxicity studies  

Approximately 6 week old female nu/nu nude mice were randomized into four 

groups of 3 animals per group receiving 650 mg Au/kg,  or sham-injected with PBS. 

Animals were weighed and observed regularly for clinical signs for up to 1 week post-

injection. Animals were euthanized by CO2 at 1 day and 1 week after intravenous gold 

injections and 0.3 mL blood was removed from the right ventricle immediately after the 

cessation of breathing. Blood chemistry analytes included blood urea nitrogen (BUN), 

phosphate, albumin, globin, gamma glutamyl transpeptidase (GGT), alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, total 

bilirubin, cholesterol, and creatinine 

 
In vivo radiation therapy  

Approximately 6 week old female nu/nu nude mice were anesthetized using 

isoflurane, and HT-1080 cells were injected subcutaneously into the back left flank (2 x 

106 cells in 0.1 mL of PBS). Tumors were grown until the mean diameter was 

approximately 7 – 8 mm. Next, tumor-bearing mice were split into four groups of 7 each 

– the first group received 6 Gy RT only; the second group received an intravenous 

injection of GPMs (650 mg Au/kg in 0.2 mL) 24 hours prior to a single dose of 6 Gy RT; 

the third group received GPMs only (i.e. no RT), and the fourth group received no GPMs 

and no RT. When applicable, GPMs were administered by retro-orbital injection. In all 

groups receiving RT, CT imaging was used to localize the isocenter of the tumor. 
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Radiation therapy was administered using a SARRP (175 kVp, 15 mA) and delivered 

through a 17 mm diameter collimator. Mice were monitored for tumor growth, and were 

sacrificed when the tumor volume reached 1300 mm3. Tumor volumes were calculated 

assuming an ellipsoidal tumor shape (1 / 2 x length x width2).47 Survival time to this 

endpoint was calculated from date of treatment. 

2.4 Results and Discussion  

Characterization of 1.9 nm AuNPs  

Hydrophobic AuNPs were prepared with dodecanethiol as a capping agent. 

Transmission electron microscopy (TEM) was used to characterize the mean core size of 

the individual hydrophobic AuNPs. TEM images showed a uniform distribution of 

AuNPs with a core size of 1.93 ± 0.16 nm (Figure 2.2). Purity was confirmed via UV-vis 

spectroscopy (Figure 2.3).  

 

Figure 2.2. (A) Transmission electron micrograph of 1.9 nm AuNPs. Scale bar is 20 nm. (B) Core size 

distribution of 1.9 nm AuNPs. The mean size and standard deviation is shown. 
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Figure 2.3.  UV-vis absorption spectrum of 1.9 nm AuNPs with a broad surface plasmon resonance 

ranging from 490 nm – 510 nm. 

 
Synthesis and Characterization of GPMs  

GPMs were prepared by encapsulating 1.9 nm AuNPs within the diblock 

copolymer PEG-b-PCL, using a microemulsion method. These GPMs were soluble in 

aqueous solutions owing to the hydrophilic PEG corona of the diblock copolymer. 

Following synthesis and purification of the GPMs, six different sizes (25 – 150 nm, 

Figure 2.4) were collected using differential centrifugation, as confirmed by dynamic 

light scattering (DLS). The DLS measurements demonstrate particle measurements with 

a low polydispersity index for all GPM fractions (< 0.1). TEM was used to determine the 

morphology of the GPMs and the packing of AuNPs within the hydrophobic core. TEM 

micrographs revealed a narrow distribution of spherical GPMs with tightly packed 

clusters of AuNPs contained within the hydrophobic core of the micelles (Figure 2.4). 

The TEM micrographs also revealed a low polydispersity, correlating well with the DLS 

measurements. The zeta potential of the various GPMs formulations was near neutral. A 

summary of the GPM physical-chemical properties is provided in Table 2.1. 
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Figure 2.4. Size and morphology of GPMs. (A) Dynamic light scattering profiles of six GPM formulations 

with mean sizes ranging from 25 - 150 nm, in phosphate buffered saline, pH 7.4. (B) Transmission electron 

microscopy (TEM) images of the same six GPM formulations, respectively. The electron micrographs 

reveal a narrow monodispersed distribution of spherical GPMs, with tightly packed gold clusters contained 

within the hydrophobic core (all scale bars = 100 nm). 

 
Table 2.1. Summary of GPM physical-chemical properties 

Hydrodynamic 
Diameter (nm) 

Core Size     (nm) Polydispersity 
Index 

Zeta potential 
(mV) 

30.9 ± 2.4 26.8 ± 10.4 0.088 -1.34 ± 0.17 
57 ± 5.7 39.5 ± 10.3 0.063 -1.01 ± .05 

78.6 ± 3.8 54.8 ± 7.1 0.05 -0.95 ± 0.3 
97.8 ± 3.4 70.4 ± 16.8 .049 -1.17 ± 0.04 

130.2 ± 2.7 106.3 ± 11.5 0.042 -1.5± 0.23 
153.8 ± 6.3 115.2 ± 20.3 .055 -1.62 ± 0.85 

 

Evaluation of GPMs as a radiosensitizer  

GPMs with a hydrodynamic diameter of approximately 75 nm were selected for a 

more detailed evaluation as radiosensitizing agents. This size was selected because it was 

produced in significantly higher yields than the other sizes and was thus more amenable 

for in vivo testing. To evaluate the radiosensitization effects of the 75 nm GPMs in vitro, 

HT-1080 human fibrosarcoma cells were irradiated (4 Gy) or mock irradiated in the 

presence or absence of GPMs and analyzed for double-stranded breaks (γ-h2ax staining) 
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(Figure 2.5a-b). Immunofluorescent images revealed very low levels of γ-h2ax foci 

(observed as bright fluorescent spots) in unirradiated cells, regardless of the presence of 

GPMs. In contrast, high levels of γ-h2ax foci were observed within the nuclei of cells that 

received radiation treatment, with a noticeably higher number of double-stranded breaks 

in cells that were treated in the presence GPMs. Quantitatively, there were very few γ-

h2ax foci per unit area in unirradiated controls, as expected, and there was no statistically 

significant difference between cells incubated in the presence or absence of GPMs. 

However, when cells were irradiated, the number of γ-h2ax foci increased and a 

statistically significant difference was observed between cells irradiated in the presence 

and absence of GPMs. Compared to cells receiving radiation only, the cells that were 

irradiated in the presence of GPMs exhibited roughly a 2.2 times higher density of DNA 

double-stranded breaks. Furthermore, clonogenic survival assays revealed a decrease in 

survival of HT-1080 cells irradiated in the presence of GPMs compared to those 

receiving irradiation alone (Fig. 2.5c). A statistically significant difference in survival (p 

< 0.05) was observed for radiation doses of 4 and 6 Gy. Using the linear-quadratic model 

to assess the enhancement of radiation effects, it was estimated that GPMs produced a 

sensitizer enhancement ratio (SER) of approximately 1.2, which is consistent with 

previous studies that utilized AuNPs as a radiosensitizer.22, 29  

 
 

(C) 
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Figure 2.5. In vitro evaluation of radiation induced DNA double-stranded breaks in the presence and 

absence of GPMs. (A) Immunofluorescent imaging of γ-h2ax foci in HT-1080 cells incubated with or 

without GPMs in the absence (top) or presence (bottom) of irradiation (4 Gy). (B) Quantitative analysis of 

γ-h2ax foci density (# foci/um2) for n > 100 cells in each treatment group. Error bars represent 95% 

confidence intervals. (C) Clonogenic assay of HT-1080 cells treated with and without GPMs and given 

radiation doses of 0, 2, 4 and 6 Gy. Error bars represent the mean survival ± standard error of at least three 

replicates. 

 
Stability of GPMs in serum  

Prior to evaluating GPMs as an imaging and radiosensitizing agent in living 

subjects, the stability of 75 nm GPMs was evaluated in fetal bovine serum (Figure 2.6). 

Upon incubating the GPMs with 100% serum for 24 h at 37°C, there was no difference in 

the size of the GPMs as determined by DLS and no visible precipitates were observable 

in the solution. Moreover, no evidence of leaching of AuNPs from the micelle or 

alteration in the micelle structure was observed on TEM images following incubation in 

serum (Figure 2.7), suggesting that GPMs are sufficiently stable for in vivo studies. It 

should be noted that all of the micelle samples (i.e. all size fractions) also appear to be 

stable in PBS at pH 7.4 for months with no observable changes in hydrodynamic 

diameter or structure, as determined by DLS and TEM, respectively.  

 

Figure 2.6. Mean hydrodynamic diameter of GPMs in fetal bovine serum as determined by dynamic light 
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scattering. GPMs were incubated at 37°C and the hydrodynamic diameter was measured over the course of 

24 hours.  

 

 

Figure 2.7 Transmission Electron Microscopy image of GPMs in fetal bovine serum prior to (left) and 24 

hours after (right) incubation at 37ᵒC.  

 
GPM pharmacokinetics  

Long circulating particles, that are able to avoid rapid clearance from the 

bloodstream via glomerular filtration and the reticuloenodthelial system (RES), are 

necessary for EPR-driven tumor accumulation. Therefore, if GPMs are to be used to help 

delineate tumor margins and guide radiation therapy, it is necessary for them to exhibit a 

long circulation half-life. It was determined that the circulation half-life of 75 nm GPMs 

is ~ 1 hour during the early distribution phase and 8.7 hours during the elimination phase 

(Figure 2.8). This long circulation time is likely governed by the dense hydrophilic PEG 

coating present on the micelle. 
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Figure 2.8. Blood clearance profile and CT imaging of GPMs in blood pool. (A) ICP-OES analysis of gold 

content in blood at various times following the intravenous administration of GPMs to mice (n = 3). (B) 

Serial CT coronal views of a mouse following retro-orbital injection of 200 µL of GPMs solution (650 mg 

Au/kg). Coronal view of heart and liver (top) and inferior vena cava and kidneys (bottom) are shown.  

 
The ability of GPMs to generate contrast in vivo was validated in mice. Images 

acquired 30 minutes post-injection demonstrated enhancement of the great vessels and 

minor branches such as the renal vessels and interlobular vessels (Figure 2.8). 

Furthermore, the cardiac chambers were readily visualized demonstrating the potential 

use of GPMs as a blood-pool contrast agent. After 24 hours there was residual 

enhancement of the heart and great vessels indicative of the long circulation time of the 

GPMs. The administered dose of GPMs (650 mg Au/kg) was well within the range of 

clinically approved intravenous contrast agents. For example, Iodixanol (VISIPAQUE) is 

typically administered at doses ranging from 300 to 1200 mg I/kg body weight. 

Additionally, the dose utilized in this study was lower than what was used in prior studies 

that employed gold as a radiosensitizer (i.e. > 1350 mg Au/kg).9, 29  

 The biodistribution of GPMs was evaluated at 48 hours and at 1 week post-

injection by performing an ICP-OES analysis of gold content within the heart, kidneys, 

lungs, spleen, liver, feces, and urine (Table 2.2). All organs examined showed a marked 

reduction in gold accumulation between these two time points, including the liver and 

spleen. Specifically, ICP-OES findings revealed a 28% reduction of gold in the liver and 

a 47.5% reduction of gold in the spleen.  Evaluation of gold content within feces and 

urine suggests that the primary route of clearance was biliary excretion.  
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Table 2.2. Biodistribution of GPM in mice at 48 hours and 1 week post-injections displayed as a 

percentage of injected dose (%ID) and percentage of injected dose per gram of tissue (%ID/g) 

Organs %ID (48 hr) %ID/g (48 hr) %ID (1 week) %ID/g (1 week) 
Heart 0.1 ± 0.02 1.1 ± 0.2 0.05 ± 0.004 0.4 ± 0.01 
Kidney 0.7 ± 0.1 1.9 ± 0.2 0.4 ± 0.01 1.1 ± 0.1 
Lungs 0.4 ± 0.1 2.6 ± 0.7 0.04 ± 0.005 0.3 ± 0.01 
Spleen 11.6 ± 0.3 104.3 ± 14.6 6.3 ± 0.6 61.9 ± 5.2 
Liver 17.6 ± 1.8 13.9 ± 0.4 12.6 ± 1.0 10.0 ± 0.5 
Feces 2.0 ± 0.06 0.6 ± 0.02 0.64 ± 0.04 0.19 ± 0.01 
Urine not determined 0.006 ± 0.001 not determined 0.002 ± 0.000 

 

Toxicity analysis  

The intravenous injection of GPMs at 650 mg Au/kg into healthy mice led to no 

signs of illness, weight loss (Figure 2.9), or change in activity. Notably, the amount of 

gold administered was well below the LD50, which was previously reported to be 3.2 g 

Au/kg.9 A toxicological analysis of mice 1 day and 1 week following the administration 

of GPMs (650 mg Au/kg) revealed normal blood chemistry, compared to saline injected 

controls (Table 2.3). 

 

Figure 2.9. Whole animal weights of tumor-free mice treated with 650 mg Au/kg GPMs (0.2 mL) 

compared with mice sham injected with phosphate buffered saline (0.2 mL). Data reflect average weights 

and n = 3 for all groups.  
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Table 2.3. Serum clinical chemistry of mice injected with 650 mg Au/kg GPMs (0.2 mL) and sampled at 

24 hours and 1 week compared with mice sham injected with phosphate buffered saline (0.2 mL). All 

values were within normal limits and n = 3 for all groups. Data is recorded ± standard error.  

 BUN Albumin ALT AST Alk. Phos. GGT 
Day 1 GPMs 24.3 ± 3.9 2.4 ± 0.1 157.7 ± 111.7 377 ± 146.5 114 ± 7.1 5.3 ± 0.3 
Control 25 ± 2.1 2.4 ± 0.1 180  ± 89.3 337  ± 122.1 129.7 ± 11.8 9 ± 1.5 
Day 7 GPMs 30.3 ± 3.5 2.4 ± 0.3 93 ± 29.5 245.3 ± 102.9 62.3 ± 2.9 12.7 ± 3.9 
Control 20 ± 2.6 2.3 ± 0.2 139 ± 4.4 267.3 ± 78.1 68.7 ± 10.7 23.1 ± 13.3 

 Total Bil. Cholesterol Calcium Creatinine Glucose Phosphorus 
Day 1 GPMs 0.5 ± 0.2 99.3 ± 9.8 8.9 ± 0.4 0.2 ± 0.0 168.7 ± 24.5 8.5 ± 0.3 
Control 1.1 ± 0.0 91.3 ± 2.7 8.6 ± 0.4 0.2 ± 0.0 195.7 ± 34.1 10  ± 0.4 
Day 7 GPMs 0.9 ± 0.6 77.3 ± 5 8.8 ± 0.1 0.2 ± 0.1 279.7 ± 10.3 7.7  ± 0.5 
Control 1.5 ± 0.9 180 ± 45 9.1 ± 0.6 0.1 ± 0.0 195.7 ± 34.1 8.6  ± 1.6 
*BUN, creatinine, total bili (total bilirubin), and cholesterol are in units of mg/dL. ALT, AST, alk. phos. 

(alkaline phosphatase), and GGT are in units of U/L. Albumin is in units of g/dL. Blood samples were 

obtained from mice injected with 400 mg Au/kg of GSM or sham injected with saline. Data is recorded ± 

standard error.  

GPMs as a CT contrast agent 

The ability of GPMs to accumulate within tumors at sufficient levels to provide 

CT contrast was confirmed in mice bearing HT-1080 flank tumors. Axial tumor slices of 

3 different tumor-bearing mice were analyzed pre-contrast as well as 30 min, 24 h and 48 

h post-contrast (Figure 2.10). The variation of signal enhancement from slice to slice was 

accounted for by normalizing the signal to the corresponding para-spinal muscles for 

each slice. In the pre-contrast image, the tumor on the flank of the mouse located between 

the thigh and para-spinal muscles is not clearly delineated. At the 30 minute time point, 

there is no qualitative or statistical difference in contrast enhancement within the tumor 

compared to the pre-contrast image. However, at 24 hours and 48 hours post-contrast, the 

tumor is revealed as a hyper-intense heterogeneously enhancing region with well-defined 

margins. These enhancements in tumor contrast were statistically different from both the 
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pre-contrast and 30 minute time points. This result is likely due to the extravasation of 

GPMs out of leaky vasculature and accumulation within the tumor owing to the EPR 

effect. This distinction between tumor and normal tissue can help in the design of 

radiation treatment of cancer by enabling visualization of regional tumor margins and 

spread, to help localize and maximize radiation doses to malignancies while minimizing 

exposure to normal tissue. Notably, within the tumor margins, the contrast enhancement 

was somewhat heterogeneous, likely due to variations in the ability of GPMs to penetrate 

far beyond the vascular wall.  

 

Figure 2.10. In vivo CT images and intensity analysis of nu/nu nude mice with HT-1080 flank tumors. (A) 

Representative CT images in the axial plane prior to injection (pre-contrast) and 30 min, 24 h and 48 h 

post-injection of GPMs (n = 3) or AuroVistTM (n = 3). Tumor boundaries are indicated by white arrows. (B) 
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Quantitative analysis of CT images. Signal intensity of each tumor was normalized to adjacent paraspinal 

muscle. For contrast measurement, the relative signal intensity, RSI, was calculated as the quotient of the 

post-contrast to pre-contrast normalized tumor intensity. Statistically significant values of p < 0.05 are 

indicated with an asterisk. 

 
 To demonstrate the importance of a long circulating platform for effective 

extravasation and accumulation in tumors, 1.9 nm control AuNPs were also administered 

to tumor-bearing mice and imaged 30 min, 24 h and 48 h post-contrast. At each time 

point, no visible tumor contrast enhancement was observed, compared with pre-contrast 

images.  This is likely because > 90 % of the particles are cleared within the first 30 

minutes.8 

 

Figure 2.11. ICP-OES analysis of gold distribution at 48 hours following the administration of GPMs or 

AuroVistTM. The percent injected dose per gram of tissue was calculated by measuring the concentration of 

gold in excised organs via ICP-OES. There is a statistically significant increase in the accumulation of gold 

in tumors of mice receiving GPMs (p < 0.05) compared to mice injected with AuroVistTM. 

 
 To quantitatively determine the amount of GPMs and 1.9 nm AuNPs delivered to 

the tumor, as well as other organs, the liver, spleen, lung, heart, kidneys, and tumor were 

harvested 48 hours post-injection and the gold content was analyzed by ICP-OES (Figure 



113 
 

2.11). Mice injected with GPMs had the highest levels of gold in the liver and spleen, and 

only modest levels of gold in the heart, lungs, and kidneys. In contrast, mice injected with 

1.9 nm AuNPs had higher levels of gold within the kidney, lower uptake in the liver and 

spleen, and very modest uptake in the heart and lungs. This difference in organ 

distribution is expected since the mechanism of elimination differs for both formulations. 

In general neutrally charged particles with hydrodynamic sizes smaller than ~ 6 nm are 

cleared from the systemic circulation via glomerular filtration and excreted in the urine,30 

whereas particles greater than ~ 6 nm are primarily cleared by the RES system.31 This 

disparity in elimination was also supported by in vivo CT imaging. Following GPM 

administration, the spleen and liver gradually brighten over the course of 48 hours 

(Figure 2.12); in contrast, mice injected with AuroVistTM exhibit very bright contrast 

within the kidneys and bladder at early time points of CT imaging and gradually return to 

baseline at 24 hours post-injection. With respect to tumor delivery, mice injected with 

GPMs displayed a statistically significant 6-fold increase in gold accumulation compared 

to mice injected with AuroVistTM. From the ICP-OES data, the average concentration of 

gold within the tumor was calculated to be 0.57 ± 0.1 mg/mL and 0.14 ± 0.01 mg/mL for 

mice injected with GPMs and AuroVistTM, respectively. In general, the sensitivity for Au 

detection using CT imaging is estimated to be around 0.5 mg/mL.21 However, as a result 

of the heterogeneous distribution of Au within the tumor, some regions likely have gold 

concentrations well above this lower detection limit. Furthermore, these tumor 

concentrations were well above the 0.1 mg Au/mL, where a radiosensitization effect was 

observed in vitro. Importantly, this circulation-mediated increase in nanoparticle delivery 

was sufficient to provide CT contrast prior to tumor radiation therapy. This demonstrates 
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the importance of having a long circulating platform since the improvement in delivery 

has the ability to yield significant contrast enhancement for CT-guided radiation therapy.  

 

Figure 2.12. Computed tomography images of mice injected with AuroVistTM or GPMs. (A) The kidneys, 

ureter and bladder (arrows) are enhanced during early imaging time points following the injection of 

AuroVistTM, but no contrast is evident at 24 h or 48 h, consistent with renal clearance. (B) The spleen 

(arrows) is observed as early as 5 minutes post-injection of GPMs and contrast continues to increase over 

the next 48 h, indicative of RES uptake. 

 
Radiosensitization of tumors with GPMs 

To specifically examine the therapeutic effects of using GPMs as radiosensitzers 

in vivo, nu/nu mice bearing 7 - 8 mm subcutaneous HT-1080 flank tumors were divided 
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into four groups (n = 7 per group). The first two groups were the unirradiated controls 

with one of the two groups receiving GPMs. The next two groups received either 

radiation therapy (6 Gy) alone or were injected with GPMs 24 hours prior to radiation 

treatment. Notably, contrast enhancement was visible within the tumors of mice receiving 

GPMs, which enabled CT-guided stereotactic radiation. Mice were monitored for tumor 

growth and were sacrificed when the tumors reached the predetermined threshold volume 

(1300 mm3). The survival time was measured from the time of radiation (or mock 

irradiation). Mice that received GPMs prior to radiation therapy exhibited a statistically 

significant (p < 0.05) improvement in median survival (68 days), compared to mice 

treated with radiation alone (38 days) (Figure 2.13). It should be noted that all mouse 

groups appeared to tolerate GPMs very well over the course of study with no observable 

changes in behavior or symptoms of poisoning such as loss of appetite, diarrhea, or 

vomiting. For the group receiving radiation only, two mice were sacrificed prior to the 

threshold volume cutoff due to an ulcerated tumor in one and severe emaciation in 

another. The general observable trend in tumor growth post radiation therapy was a 

reduction in tumor growth, followed by a reduction in tumor volume and then eventual 

tumor re-growth (Figure 2.14). Only one mouse out of seven in the radiation-only group, 

with a slow growing palpable tumor, survived 90 days post treatment. In contrast, 3 of the 

7 mice that received GPMs prior to radiation survived 90 days post therapy. Two out of 

the three mice had complete remission with no palpable tumor while the third mouse had 

a palpable static tumor. With respect to the unirradiated groups, GPMs alone had no 

effect on tumor growth compared to untreated controls. These results suggest that the 
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EPR-dependent accumulation of GPMs within tumors can guide and enhance the efficacy 

of radiation therapy. 

 

Figure 2.13. Kaplan-Meier survival analysis. A survival analysis was performed for tumor bearing mice (n 

= 7 per group) receiving no treatment (dotted grey line), GPMs only (dotted black line), irradiation only 

(solid grey line), or irradiation 24 h after retro-orbital injection of GPMs (solid black line). GPMs were 

administered at a dose of 650 mg Au/kg. The radiation dose administered was 6 Gy at 150 kVp. The 

asterisk indicates statistical significance (p < 0.05). 
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Figure 2.14. Tumor growth curves of mice receiving GPMs with radiation therapy (blue) or radiation 

therapy alone (red). 

 

2.5 Conclusion 

Gold nanoparticles present a promising platform for therapeutic and imaging 

(theranostic) applications because of their unique physical-chemical properties, their 

ability to be easily functionalized and their safety profile. Gold has been used in medical 

practice throughout history and continues today as a treatment for rheumatoid arthritis.32 

Numerous animal studies suggest that AuNPs are also very well tolerated.33-38 In fact, 

several AuNP formulations have even entered clinical trials for cancer treatment, 

including CYT-6091 and AuroShell®. In this study 1.9 nm AuNPs were encapsulated 

within the biocompatible and biodegradable polymer PEG-b-PCL, forming gold-loaded 

polymeric micelles. An anticipated benefit of this GPM formulation over pegylated, solid 

AuNPs of similar size is that it is easy to incorporate other anticancer and/or other 

metallic nanoparticles into the micelle core,39-41 if additional functionality is desirable. 

Moreover, we believe that the presence of many small AuNPs (1.9 nm) may allow for 

more rapid dissolution and excretion, compared with a single large AuNP. It was 

previously reported that with 40 nm solid AuNPs there is only a 9% fall in the content of 

gold in the liver from day 1 to 6 months.42 In addition, many studies report inefficient 

clearance and a persistent accumulation of AuNPs within the reticuloendothelial 

system.43-45 In contrast, we observed more than a 28% fall in gold content within the liver 

between day 2 and day 7. These results are very promising, although a more complete 

analysis must still be performed to study additional and later time points before a 
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definitive conclusion can be drawn.  

 In summary, we showed that GPMs were capable of enhancing radiation-induced 

DNA double-stranded breaks in a cell culture model, consistent with prior work with 

solid AuNPs.14, 15, 20-25, 29 Furthermore, because of their extended clearance half-life, 

GPMs exhibited improved EPR-dependent accumulation in murine tumor xenografts, 

compared to individual 1.9 nm AuroVistTM nanoparticles. The higher levels of GPM 

accumulation in the tumor provided clear and quantifiable improvement in CT contrast. 

The combination of CT-guided radiation therapy and gold-mediated radiosensitization 

led to a statistically significant increase in the mean survival time of tumor-bearing mice 

compared with mice receiving radiation alone. Accurate delineation of tumor extent and 

tumor-specific radiosensitization is important for radiotherapy, due to radiation dose 

limitations of the surrounding normal tissue. Therefore, we envision that GPMs can be 

used someday in a tractable manner to both guide and enhance the efficacy of radiation 

therapy.  
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Chapter 3: Development of a Multi-Functional 

Nanoplatform for Imaging, Radiotherapy, and the 

Prediction of Therapeutic Response 

 

3.1 Abstract 

Gold nanoparticles have garnered interest as both radiosensitzers and computed 

tomography (CT) contrast agents. However, the extremely high concentrations of gold 

nanoparticles required to generate CT contrast is far beyond that needed for meaningful 

radiosensitization, which limits their use as combined therapeutic-diagnostic – theranostic 

– agents. To establish a theranostic nanoplatform with well-aligned radiotherapeutic and 

diagnostic properties for better integration into standard radiation therapy practice, we 

developed a gold- and superparamagnetic iron oxide nanoparticle (SPION)-loaded 

micelle (GSM). Intravenous injection of GSMs into tumor-bearing mice led to selective, 

tumoral accumulation, enabling magnetic resonance (MR) imaging of tumor margins. 

Subsequent irradiation led to a 90-day survival of 71% in GSM-treated mice, compared 

with 29% for irradiation-only mice. Furthermore, measurements of the GSM-enhanced 

MR contrast were highly predictive of tumor response. Therefore, GSMs may not only 

guide and enhance the efficacy of radiation therapy, but may allow patients to be 

managed more effectively. 
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3.2 Introduction 

External beam radiation therapy is an integral part of current treatment strategies 

for a variety of cancer types, both for initial therapy and recurrence. Increasingly, more 

targeted approaches using stereotactic radiosurgery are also being used to maximize the 

dose to the tumor volume while limiting off-target side effects. Moreover, a wide range 

of radiosensitizers, including existing chemotherapeutic agents, are being explored to 

specifically enhance ionizing radiation within tumor tissue without going above the 

relative dose limitations of surrounding normal tissue.1,2 Some of the most promising 

nanotechnology candidates being evaluated as radiosensitizers utilize high-Z materials 

(i.e. high atomic number), such as gold nanoparticles (AuNPs), to significantly enhance 

the dose of radiation therapy.3-7 AuNP-mediated radiosensitization is due to the greater 

absorption and deposition of energy in surrounding tissues from photoelectrons, Auger 

electrons, and characteristic X-rays.8-9 10-14 It has been shown that the administration of 

AuNPs can lead to a statistically significant increase in median survival in tumor-bearing 

mice compared with radiation therapy alone.15-18  

Accurate dosimetry planning prior to radiation treatment requires radiation 

oncologists and radiation physicists to consider a number of critical factors including the 

mapping of tumor margins, which can often be difficult to assess using current imaging 

techniques. AuNPs have long been exploited as computed tomography (CT)-contrast 

agents and recently have been used to assist with the delineation of tumors boundaries to 

guide external beam irradiation, thereby simultaneously serving as both a therapeutic and 

imaging agent.8,19 The results from these studies have been encouraging, with tumor-

bearing mice exhibiting enhanced tumor contrast and improved median survival when 
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treated with AuNPs in combination with radiation therapy, compared with radiation 

therapy alone.17,18 However, a debilitating limitation of this approach is the considerable 

mismatch between the lower detection limit of gold on CT systems (mM concentration 

range) and the tumoral concentration required for gold-mediated radiosensitization (µM 

range). This disparity therefore would require the administration of supratherapeutic 

doses – on the order of grams Au/kg body weight8 – to perform imaging studies prior to 

initiating radiotherapy treatment. 

Magnetic resonance (MR) imaging is an integral component of the workup for 

many tumors and increasingly utilized for treatment planning. Consequently, 

nanoplatforms that include MR contrast agents could be organically integrated into 

standard radiation therapy practice. Superparamagnetic iron oxide nanoparticles 

(SPIONs) are a popular class of MR contrast agent that generate contrast by rapidly de-

phasing the magnetic moments of proximal water molecules.20 SPIONs are capable of 

generating T2-weighted contrast enhancement in MR imaging at nanomolar 

concentrations and can therefore be detected by MR at concentrations far lower than 

those at which AuNPs can be detected via CT.20  

 Herein, we report the design and testing of a multifunctional nanoplatoform 

consisting of Gold- and SPIO-nanoparticle loaded polymeric Micelles (“GSMs”) with 

well aligned radiotherapeutic and diagnostic (“RadioTheranostic”) properties. The 

AuNPs and SPIONs were encapsulated within the hydrophobic core of micelles formed 

with the biodegradable, amphiphilic diblock copolymer poly(ethylene glycol)-b-poly(ɛ-

caprolactone) (Figure 3.1a). The physical-chemical properties of GSMs and their 

contrast- and radio-enhancement characteristics were first evaluated in vitro. A focused 
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pharmacokinetic and toxicity analysis was subsequently performed in healthy mice. 

GSMs were then translated into a murine tumor xenograft model in order to assess their 

in vivo imaging, therapeutic, and prognostic benefits.  

 

 
 
Figure 3.1. (A) Schematic of gold- and SPIO-nanoparticle loaded polymeric micelles (GSMs). Gold and 

SPIO nanoparticles are self-assembled into the hydrophobic core of micelles, stabilized with the 

amphiphilic diblock copolymer PEG-b-PCL. Each GSM is composed of approximately hundreds to 

thousands of individual gold nanoparticles and tens to hundreds of SPIO nanoparticles. (B) Dynamic light 

scattering profile of GSMs in phosphate buffered saline, pH 7.4. The average hydrodynamic diameter is 

100 nm. (C) Transmission electron microscopy (TEM) image of a single GSM. The electron micrograph 

reveals the incorporation of two size populations of nanoparticles (gold, 1.9 nm; SPIO, 12 nm) tightly 

packed within the hydrophobic core (all scale bars = 100 nm). (D-E) Energy dispersive X-ray spectroscopy 

analysis on GSM with Au and Fe signals respectively. (F) CT phantoms of GSMs and gold-loaded 

polymeric micelles (GPMs) with a sensitivity detection limit around 500 µg Au/mL. (G) MR phantoms of 

GSMs and GPMs (sensitivity detection limit 12.5 µg Au/mL (3.48 µg Fe/mL). 
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3.3 Materials and Methods  

Materials 

 Laboratory stock chemicals, as well as iron and gold salts, were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Cell culture materials (medium, serum, trypsin, 

and antibiotics) were purchased from Invitrogen (Carlsbad, CA, USA). Other materials 

were ordered as specified.   

 
Synthesis of hydrophobic 1.9 nm gold nanoparticles 

 Dodecanethiol-capped gold nanoparticles, 1.9 nm in diameter, were prepared by 

the reduction of gold salts in a two-phase reaction, as previously described by Brust et al. 

46 Briefly, a 30 mM solution of HAuCl4 (30 mL) was mixed with 80 mL of a 50 mM 

solution of tetraoctylammonium bromide in toluene, with the addition of 170 mg (84 

mmol) of 1-dodecanethiol. While this two-phase solution was stirring vigorously, a 25 

mL aqueous solution of 400 mM NaBH4 was added dropwise at a rate of 1 mL per 

minute. The resulting mixture was then allowed to stir for three hours. Next, the aqueous 

phase was removed from the organic phase, which contained the AuNPs. The organic 

solution was then diluted with three volumes of 95% ethanol, and the mixture was 

precipitated overnight at -20°C. The resulting precipitate was then collected via 

centrifugation and the supernatant removed. Finally, the gold nanoparticles were 

resuspended in toluene to a final concentration of ~ 40 mg/mL.  

 
Synthesis of hydrophobic 12 nm SPIO nanoparticles 

 Oleic acid stabilized SPIO particles were prepared by thermal decomposition as 

previously described by Park et al.47 After allowing the reaction to cool to room 
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temperature, two volumes of acetone were added and the resulting mixture was 

centrifuged to precipitate the nanoparticles. The particles were then washed in 10 mL 

hexane and precipitated again using 35 mL of acetone followed by centrifugation. This 

washing procedure was repeated until the supernatant was clear. The particles were then 

allowed to air dry and dissolved in toluene at ~ 40 mg/mL.  

 
Synthesis of gold-superparamagnetic iron oxide polymeric micelles (GSMs) 

 GSMs were prepared using an oil-in-water emulsion-based self-assembly method. 

First, polyethylene glycol (4k) – polycaprolactone (3k) (PEG-b-PCL) was dissolved in 

toluene to a concentration of 50 mg/mL. A solution (205 µL) containing AuNPs (4 mg), 

SPIO (1 mg), and PEG-b-PCL (4 mg) was then injected into a glass vial containing 4 mL 

of dH2O and the sample was sonicated (Branson Ultrasonics, Danbury, CT, USA) until a 

homogenous mixture was obtained. The toluene was then left uncapped and allowed to 

evaporate overnight. For large scale preparation, this synthesis was easily scaled up by a 

factor of 10 using a sonic dismembrator (Fisher Scientific, Waltham, MA, USA). 

  
Purification of size-specific GSMs 

 GSM samples were first centrifuged at 1,000 RCF for 30 minutes to remove large 

aggregates. The resulting supernatant then underwent diafiltration using a MidGee hoop 

cross flow cartridge with 750 kDa molecular weight cutoff (GE Healthcare, Piscataway, 

NJ, USA) in order to remove small impurities and exchange the solution into PBS. GSMs 

were then passed through a 0.22 µm SFCA filter (Millipore, Billercia, MA, USA) to 

remove oversized particles. Finally, this filtered solution was centrifuged at 31,000 RCF 

for one hour, and the pellet was resuspended in PBS. Micelles were then concentrated as 
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needed using 50 kDa MWCO centrifugal filter units (Millipore, Billercia, MA, USA) and 

exchanged into cell culture media as necessary.   

 The concentrations of gold and iron in a given micelle sample were measured by 

Genesis ICP-OES (Spectro Analytical Instruments GMBH; Kleve, Germany) at the 

Department of Earth and Environmental Sciences, University of Pennsylvania, PA, USA. 

Analytical standards were purchased from RICCA Chemical Company (Arlington, TX, 

USA), and nitric acid and hydrochloric acid were purchased from Fisher Scientific. All 

dilutions were done using deionized water (≥ 18 MΩ-cm) obtained from a Millipore 

water purification system. 

 
Metal nanoparticle and GSM physicochemical characterization 

 AuNP and SPIO size distributions were verified by TEM. Stock samples were 

diluted in dH2O and deposited on 200-mesh carbon coated copper grids (Polysciences, 

Warrington, PA, USA) for TEM imaging with a JEOL 1010 transmission electron 

microscope. Mean particle diameters and standard deviations were assessed by measuring 

the diameters of 50 individual particles in ImageJ. GSM size distributions and zeta 

potentials were measured in pH 7.4 phosphate buffered saline (PBS) by dynamic light 

scattering using a Zetasizer Nano-ZS (Malvern Instruments, Worcestershire, UK). GSMs 

were also imaged by TEM, using the same method used for individual metal 

nanoparticles. GSM relaxivities (r1 and r2) were measured using a Bruker mq60 tabletop 

MR relaxometer (1.41 T, 60 MHz). The gold and iron content of the GSMs was assessed 

using both a Genesis ICP-OES and energy dispersive X-ray spectroscopy (EDS) mapping 

using a JEOL 2010F transmission electron microscope.  
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Determination of contrast sensitivity limit 

 The radiologic sensitivity was determined for both CT and MRI imaging 

modalities using 100 nm GSMs. A 384-well plate (well volume of 100 uL) was prepared 

using GSMs (100 nm diameter) in dH2O with concentrations ranging from 0 to 3,000 µg 

Au/mL. The same setup was duplicated in parallel on the same plate using 100 nm Au-

only micelles (GPMs) as a nanoparticle control. A row of pure dH2O was included 

between the rows of GSMs and GPMs as a no-particle control. The CT image was taken 

at 55 kVp, 5 mAs using the Small Animal Radiation Research Platform (SARRP) at the 

Perelman School of Medicine of the University of Pennsylvania. The MR image was 

taken with a 9.0 T magnet at the Small Animal Imaging Facility of the University of 

Pennsylvania using a gradient echo multislice (GEMS) sequence, TR = 200 ms, and TE = 

5 ms. Images were analyzed using ImageJ software. For the CT phantom, Hounsfield 

units were computed for each well based upon a linear transformation setting HUair = –

1000 and HUdH2O = 0. In order to reduce image noise, the final CT phantom image was 

constructed by averaging together all of the image slices containing a full view of all 

pertinent wells from five separate CT scans of the phantom. For the MRI image, the 

contrast ratio (CR) was computed as the ratio of the average well intensity for micelle 

and water containing wells, respectively. Statistical analysis (α = 0.05) was then 

performed to determine the lowest concentrations at which the GSMs gave a contrast 

signal significantly different from baseline (i.e. CR = 1 or HU = 0) in each modality. A 

similar analysis was performed for the Au-only micelles.  

 
Cell culture and tumor model 
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HT-1080 mammalian fibrosarcoma cells were cultured and maintained at 37°C 

and 5% CO2 in minimum essential media (MEM), supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin / streptomycin. Six-week old female nu/nu nude mice 

(Charles River Laboratory, Charles River, MA, USA) were maintained according to the 

regulations of the Institutional Animal Care and Use Committee of the University of 

Pennsylvania. Mice were anesthetized using isoflurane and, for xenograft tumor models, 

HT-1080 cells (2 x 106 cells in 0.2 mL PBS) were injected into the left flank by 

subcutaneous injection.  

 
In vitro assessment of radiosensitization 

The radiosensitization effects of GSM were assessed using a γ-h2ax assay to 

quantify the number of DNA double-stranded breaks (DSBs) per unit cell area. The assay 

was performed using HT-1080 cells, plated at 100,000 cells per well in 4-well chamber 

slides (Nunc Lab-Tek II CC2 Chamber Slide System, Thermo Scientific, Waltham, MA). 

Three different treatment conditions were evaluated: 100 nm GSMs at a concentration of 

100 µg Au/mL, 100 nm AuNP-only micelles (GPMs) at 100 µg Au/mL, and no micelles. 

After a 24-hour incubation period, the samples were irradiated with 4 Gy of radiation 

(150 kVp, 10 mA) using the SARRP at the Perelman School of Medicine of the 

University of Pennsylvania. Three cohorts of treatment slides were used, one each for the 

time points T = 0 hours (no radiation), T = 6 hours post-radiation, and T = 12 hours post-

radiation. At each time point, cells were fixed in 10% neutral buffered formalin (Sigma-

Aldrich) for 10 minutes. After being rinsed with PBS, the nuclei were stained with 

Hoechst 33342 (25 µM) for 15 minutes. Slides were then permeabilized with 0.5% Triton 

X-100 in PBS and exposed to a blocking buffer composed of PBS, 0.5% Triton X-100, 
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5% normal chicken serum, and 1% BSA, for 30 minutes at room temperature. Cells were 

then incubated overnight in a humidified chamber at 4ºC with mouse monoclonal anti-

phosphohistone γ-h2ax primary antibody (JBW301, Upstate) at 1:1500 dilution in PBS 

(with 0.5% Triton X-100 and 1% BSA). After approximately 24 hours, slides were 

washed with PBS, and a chicken anti-mouse Alexa 594 secondary antibody (Molecular 

Probes) was applied at 1:1000 dilution in PBS (with 0.5% Triton X-100 and 1% BSA) for 

1 hour. Finally, slides were incubated for 12 hours with ProLong Gold antifade reagent 

(Invitrogen) and coverslips applied. Fifteen images were captured of the each slide using 

a Deltavision deconvolution microscope (Applied Precision) equipped with a 60x (1.42 

NA) oil-immersion lens and thermoelectrically cooled 12-bit monochrome CCD camera. 

Images were recorded as z-stacks with 0.3 µm steps. Each image was then processed and 

analyzed in order to quantify the number of foci (DSBs) per unit cell area using a custom 

ImageJ macro developed by co-author M. Vido.  

 
In vitro characterization of dose-dependent radiosensitization effects 

 The dose dependence of 100 nm GSMs on radiosensitization was evaluated using 

a clonogenic assay. Briefly, HT-1080 cells were grown to confluence, as described 

above, and plated at increasing cell concentrations ranging from 200 cells to 4,000 cells 

in 60 mm x 15 mm Petri dishes. Prior to irradiation at 150 kVp, 10 mA, the media was 

aspirated away and 3 mL of 100 nm GSMs in media were applied to each plate. Each 

plate was then exposed to 0 Gy, 2 Gy, 4 Gy, or 6 Gy of radiation, with plates originally 

seeded with higher cell concentrations receiving the higher doses of radiation. Following 

radiation, the GSM media was aspirated away and replaced with fresh media. The assay 

was completed once for each of the following GSM concentrations: 0 µg Au/mL, 25 µg 
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Au/mL, 50 µg Au/mL, 100 µg Au/mL, and 200 µg Au/mL. After waiting 14 days, 

colonies were stained with methylene blue. The surviving fraction was then calculated as 

S = (number of colonies counted) / (cells seeded * %plating efficiency). Survival curves 

were fit to the linear quadratic model, where S = exp[-(αD + βD2)], for the dose, D, and 

the constants, α and β. A sensitizer enhancement ratio was computed for each GSM 

treatment condition by first computing the mean inactivation dose (MID),48 where 

MID = !
!

!
!
∗ 𝑒!! ∗ (1− erf 𝑧 ), for 𝑧  =   !

! !
. The SER for a given GSM concentration 

was then equal to the ratio SER = (MID for radiation alone) / (MID for radiation + 

GSMs). GSMs were sterilized before use in this assay by prior irradiation for 500 

minutes at 11 Gy/min.  

 
Blood distribution, clearance, and tumor delivery 

 Three nude mice with HT-1080 tumor xenografts were injected intravenously 

under anesthesia with 100 nm GSMs in PBS at dose of 400 mg Au/kg body weight. Post-

injection, 10 µL blood samples were collected via the tail-nick method from each animal 

at the following times: 0.5, 1, 2, 4, 6, 8, and 24 hours. After the final aliquot of blood was 

collected, the animals were sacrificed and the brain, thyroid, heart, lungs, liver, spleen, 

small bowel, large bowel, kidneys, inguinal lymph nodes, tumor, skin, bone, and muscle 

were removed from each animal. Organ samples were washed with dH2O to minimize 

contamination from any nanoparticles still circulating in the blood. The blood samples 

and organs were then analyzed for gold content by ICP-OES. Organ samples were 

weighed into Teflon PFA vials (Savillex, Minnetonka, MN, USA) and digested overnight 

at 37°C with 70% nitric acid to digest the organic material. HCl was added the next day 
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to dissolve the AuNPs. Blood samples were dissolved directly in aqua regia. Blood GSM 

content was calculated as the percent of the injected dose per gram of blood analyzed 

(%ID/g). Organ GSM content was similarly calculated as the percent of the injected dose 

present per gram of organ/tumor tissue.  

 
Toxicity studies 

Approximately 6 week old female nu/nu nude mice were randomized into four 

groups of 3 animals per group receiving 650 mg Au/kg or sham-injected with PBS. 

Animals were weighed and observed regularly for clinical signs of toxicity. Animals 

were euthanized by CO2 1 day and 8 days after intravenous injections and 0.3 mL blood 

was removed from the right ventricle immediately after the cessation of breathing. Blood 

chemistry analytes included blood urea nitrogen (BUN), albumin, alanine 

aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase, total 

bilirubin, cholesterol, creatinine, and gamma-glutamyl transpeptidase (GGT). 

  
In vivo testing of GSMs as a radiosensitizer and MR contrast imaging agent 

 Four cohorts of mice were prepared with HT-1080 fibrosarcoma tumors in their 

left, hind flank as described above. One cohort (n = 8) was preserved as an untreated 

control. The next cohort (RT-only, n = 8) was irradiated with 6 Gy of radiation at 17 kVp 

and 10 mA using the SARRP. Another cohort (GSM-only, n = 7) was injected 

intravenously with 100 nm GSMs in PBS at a dose of 400 mg Au/kg body weight. Prior 

to contrast administration, the final cohort (GSM+RT, n = 7) was first imaged by CT (55 

kVp, 5 mAs) and MRI (GEMS sequence, 200 ms TR, 5 ms TE). Next, the GSM+RT 

mice were injected as described above with 100 nm GSMs. Twenty four hours later, post-
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injection images were acquired using MRI and CT, followed by a single 6 Gy irradiation 

at 150 kVp and 10 mA. Tumor volumes were monitored thrice weekly using a dial 

caliper, and the tumor volume was computed as V = (π/6)*A*B*C, for A, B, and C, the 

three tumor diameters. Mice were deemed ready to enter the treatment protocol when 

their average tumor diameter was between 7 and 8 mm. Mice were sacrificed if their 

average tumor volume rose above 1,300 mm3, if their tumors became severely ulcerated, 

or if the mice appeared  emaciated (as per IACUC regulations). Progression was defined 

as occurring on the first of three consecutive days of increasing volume, following the 

initial period of tumor shrinkage after irradiation. Remission was defined as occurring on 

the first of three consecutive days of zero palpable tumor volume, following the initial 

period of tumor shrinkage post-irradiation.  

 Pre- and post-contrast MR images were analyzed using ImageJ software. The 

average intensity inside a region of interest (ROI) drawn around the tumor and inside a 

region of nearby muscle was computed for each image. The relative signal intensity (rSI) 

was computed as the ratio of average intensity inside the tumor ROI to average intensity 

inside the muscle ROI for a given image. Finally, the contrast enhancement of a given 

mouse was then computed as the ratio of post-contrast and pre-contrast CT scores.  

 Using tumor volume data, the average initial rate of tumor shrinkage post-

radiation was computed for the GSM+RT mouse cohort. The initial rate of tumor 

shrinkage was computed using the largest tumor volume reached before the tumor began 

shrinking and the tumor volume reached approximately 15 days later (or on the first day 

of tumor remission, if it occurred before 15 days). These average tumor shrinkage rates 
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were then correlated to the contrast enhancement for the mice from which they were 

derived.  

 
Numerical and statistical analysis 

 All numerical and statistical analysis was performed in Microsoft Excel. Where 

appropriate, a Student’s t-test was used to determine if differences were statistically 

significant. For the survival studies, the Prism 5 (GraphPad software) was used to 

perform log-rank survival analysis on data presented in Kaplan-Meier curves. All error 

bars are reported as standard error of the mean. 
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3.4 Results and Discussion  

Physical characterization of GSMs 

 Dodecanethiol-terminated AuNPs and oleic acid-stabilized SPIONs were 

synthesized with mean diameters of approximately 1.9 nm and 12 nm respectively, as 

measured by transmission electron microscopy (TEM) (Figure 3.2). Using an oil-in-water 

emulsion method, GSMs were then prepared with a mean hydrodynamic diameter of 100 

nm and low polydispersity (PDI < 0.10) (Figure 3.1b). Although the different sizes of the 

AuNPs and SPIONs allow TEM to provide a cursory determination that both particle 

types have been incorporated into the micelles (Figure 3.1c) , the presence of both Au and 

Fe was further verified through energy dispersive X-ray spectroscopic analysis of the 

micelles (Figure 3.1d-e). Furthermore, the spatial arrangement of particles in the micelles 

was examined using tomographic electron microscopy. These data illustrate that SPIONs 

can be found throughout the entire GSM volume, interspersed with the smaller AuNPs, 

and are not restricted to either the center or the periphery of the hydrophobic core.  
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Figure 3.2. Electron micrographs of (A) AuNPs and (B) SPIO nanoparticles were acquired using a JEOL 

1010 transmission electron microscope (scale bars = 30 nm). (C) The size distribution of AuNPs and SPIO 

nanoparticles was determined by measuring the diameter of 50 individual particles. The average diameters 

of these particles are 2.20 ± 0.44 nm and 13.6 ± 2.72 nm (± standard deviation), for AuNPs and SPIONs 

respectively.  

 
The average mass ratio of gold-to-iron in these samples was 5.53 ± 0.50:1, as 

determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). 

GSMs were easily mass-producible and yielded a longitudinal relaxivity r1 = 0.536 ± 

0.121 mM-1s-1 and a transverse relaxivity r2 = 232.9 ± 11.7 mM-1s-1 at 1.41 T (60 MHz) 

(Figure 3.3). The zeta potential of GSMs was -1.55 ± 0.19 mV. 
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Figure 3.3. GSM transverse relaxivity (r2) was measured using a Bruker mq60 tabletop MR relaxometer 

(1.41 T, 60 MHz) for five different batches of GSMs. The average r2 relaxivity for these batches was found 

to be 236.9 mM-1 s-1
.  

 
Assessment of GSM imaging characteristics 

 To assess the lower detection limits of GSMs via CT (Figure 3.1f) and MR 

(Figure 3.1g), phantom images were acquired using decreasing concentrations of GSMs 

dispersed in deionized water. GSMs were compared to micelles containing AuNPs only, 

i.e. gold-loaded polymeric micelles (GPMs),18 to determine the effects of substituting 

SPIONs for AuNPs on CT contrast.  

The concentration at which both GSMs and GPMs showed a statistically 

significant difference in Hounsfield units from baseline (HU of deionized water = 0) was 

500 µg Au/mL (at 55 kVp, 0.5 mA), which was consistent with previous studies.21 There 

was no significant difference in the Hounsfield units between the GSM or GPM wells, 

indicating that, at this Au:Fe ratio, the addition of Fe had no substantial effect on CT 

contrast. Figure 3.1g shows that the lower detection limit for detecting GSMs by T2 

weighted MR was 12.5 µg Au/mL (3.48 µg Fe/mL). No MR contrast from baseline was 

detected using GPMs for all concentrations, which was expected given that GPMs do not 
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contain any paramagnetic material. Therefore, 40-fold less GSMs are required for 

detection via MR imaging than either GSMs or GPMs for detection via CT imaging.  

 
Evaluation of GSM radiosensitizing properties 

 To evaluate the radiosensitization effects of GSMs in vitro, HT-1080 human 

fibrosarcoma cells were irradiated (4 Gy) or mock irradiated in the presence of GSMs 

(100 µg Au/mL), GPMs (100 µg Au/mL), or no micelles, and analyzed for double-

stranded breaks (γ-h2ax staining) (Figure 3.4a). The number of DNA double-stranded 

breaks correlates with the overall absorbed radiation dose.22,23 It was found that the 

number of γ-h2ax foci / 100 µm2 (observed as bright fluorescent spots) was enhanced by 

1.4 and 2.2 times at 6 hours and 12 hours post-radiation respectively (Figure 3.4b), when 

either GPMs or GSMs were applied, compared with radiation alone. Both GSMs and 

GPMs provide statistically similar amounts of radiosensitization in vitro. 

Immunofluorescent images revealed very low levels of γ-h2ax foci in unirradiated cells, 

regardless of the presence of GPMs or GSMs. 
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Figure 3.4. In vitro evaluation of radiation induced DNA double-stranded breaks and cell survival in the 

presence and absence of GSMs/GPMs. (A) Immunofluorescent imaging of γ-h2ax foci in HT-1080 cells 

incubated with GSMs (100 µg Au/mL), GPMs (100 µg Au/mL) or without micelles in the absence (top) or 

presence (bottom) of irradiation (4 Gy, 150 kVp). (B) Quantitative analysis of γ-h2ax foci density (# 

foci/um2) for n > 100 cells in each treatment group. Error bars represent 95% confidence intervals. The 

number of γ-h2ax foci / 100 µm2 (observed as bright fluorescent spots) was enhanced by 1.4 and 2.2 times 

at 6 hours and 12 hours post-radiation respectively. (C) Clonogenic assay of HT-1080 cells treated with and 

without GSMs (25, 50, 100, and 200 µg Au/mL) and given radiation doses of 0, 2, 4 and 6 Gy (150 kVp). 

Error bars represent the mean survival ± standard error of at least three replicates. (D) Plot of sensitizer 

enhancement ratio (SER) vs concentration of GSMs. The SER increases linearly as the GSMs 

concentration is also increased (R2 = 0.993). 

 
Clonogenic assays were performed on HT-1080 cells that were treated with 

increasing GSM concentrations and radiation at 4 Gy, revealing a dose dependent 
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response to both radiation dose and GSM concentration in vitro (Figure 3.4c). The 

sensitizer enhancement ratio (SER), a measure of how effectively a radiosensitizer 

reduces tumor cell proliferation, increased linearly (Figure 3.4d, R2 = 0.993, slope p < 

0.001) as the concentration of GSMs was increased. The SER for a GSM dose of 100 µg 

Au/mL was 1.32, which is comparable to the SER for other AuNP formulations found in 

the literature.17,24  

 
GSM Pharmacokinetics and phamacodynamics 

To evaluate the pharmacokinetic and pharmacodynamic properties of GSMs, the 

blood clearance profile (Figure 3.5a), organ biodistribution (Figure 3.5b), and blood 

chemistries (Table 3.1) were acquired following intravenous injection of GSMs into HT-

1080 tumor-bearing, nu/nu mice. The clearance of GSMs from circulation followed a bi-

exponential profile with a 1.45 h half-life for the distribution phase and a 17.5 h half-life 

for the elimination phase (Figure 3.5a).  
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Figure 3.5. Blood clearance profile of GSMs. (A) ICP-OES analysis of gold content in blood at various 

times following the intravenous administration of GSMs to mice (n = 3). (B) ICP-OES analysis of gold 

distribution at 24 hours and 8 days following the administration of GSMs. The percent injected dose per 

gram of tissue was calculated by measuring the concentration of gold in excised organs via ICP-OES. 

There is a statistically significant decrease in the content of gold in tumors of mice receiving GSMs (p < 

0.05). 
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Table 3.1. Blood Chemistry* Serum clinical chemistry of mice injected with 450 mg Au/kg GSMs (0.2 

mL) and sampled at 24 hours and 1 week compared with mice sham injected with phosphate buffered 

saline (0.2 mL). All values were within normal limits and n = 3 for all groups. Data is recorded ± standard 

error. 

 

*BUN, creatinine, total bili (total bilirubin), and cholesterol are in units of mg/dL. ALT, AST, alk. phos. 

(alkaline phosphatase), and GGT are in units of U/L. Albumin is in units of g/dL. Blood samples were 

obtained from mice injected with 400 mg Au/kg of GSM or sham injected with saline. Data is recorded ± 

standard error.  

 
The organ biodistribution of GSMs, as percent injected dose per gram of tissue 

(%ID/g), was acquired 24 hours and 8 days post-injection of GSMs. The high proportion 

of GSMs found in the spleen and liver suggest that GSMs are cleared primarily through 

the reticuloendothelial system, as has been previously observed for other PEG-b-PCL 

micelle formulations.18 It is interesting to note that there is high GSM uptake within the 

inguinal lymph nodes, an observation consistent with GSM extravasation and/or 

trafficking of cells from other lymphoid organs.   

Gold is primarily excreted within feces, with very little found in the urine. Similar 

amounts of gold are found in the feces on both day 1 and day 8 post-injection, suggestive 

of continual excretion. Accordingly, the concentration of Au found in the spleen and the 

 BUN Albumin ALT AST Alk. Phos. 
Day 1 GSMs 25.7 ± 3.2 3.1 ± 0.3 501 ± 149 927 ± 183 157 ± 48 
Control 24.3 ± 1.3 2.7 ± 0.3 430 ± 290 506 ± 194 111 ± 13 
Day 8 GSMs 21.5 ± 3.6 2.4 ± 0.1 121 ± 18 336 ± 78 109 ± 26 
Control 16.0 ± 3.7 2.3 ± 0.7 318 ± 190 421 ± 227 78 ± 18 
 GGT Total Bil. Cholesterol Creatinine  
Day 1 GSMs 45.4 ± 16.9 4.5 ± 0.9 200 ± 4 0.10 ± 0.2  
Control 15.2 ± 7.3 1.7 ± 0.7 91 ± 2 0.18 ± 0.2  
Day 8 GSMs 15.0 ± 4.7 1.1 ± 0.2 112 ± 26 0.13 ± 0.2  
Control 27.0 ± 9.4 1.5 ± 0.6 173 ± 45 0.18 ± 0.2  
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liver decreases significantly over the course of a week. This result is very encouraging, as 

most tissue biodistribution studies that have been performed following the injection of 

AuNPs composed of a single, large gold core (> 10 nm) have indicated very poor 

excretion profiles.25-28 For example, it has been found that there is only a 9% fall in the 

content of gold in the liver from day 1 to 6 months, following the intravenous injection of 

40nm AuNPs.28 It is hypothesized that the encapsulation of very small (1.9 nm) AuNPs 

into a larger GSM construct may facilitate more rapid dissolution and excretion than 

larger, single-particle systems.  

The intravenous injection of GSMs (400 mg Au/kg) into healthy mice led to no 

signs of illness, change in activity, or weight loss (Figure 3.6). Notably, the amount of 

gold administered was well below the LD50, which was previously reported to be 3.2 g 

Au/kg.29 A toxicological analysis of mice 1 day and 8 days following the administration 

of GSMs (400 mg Au/kg) revealed blood chemistries that were not statistically different 

from those of saline injected controls (Table 3.1).  
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Figure 3.6. Whole animal weights of tumor-free mice treated with 400 mg Au/kg GPMs compared with 

mice sham injected with phosphate buffered saline. Data reflect average weights (n = 3) for each group. 

The average weights of the two cohorts do not differ significantly over the studied time period (p > 0.05).  

 
In vivo imaging and therapy 

HT-1080 cells were injected subcutaneously into the back left flank (2 x 106 cells 

in 0.1 mL of PBS) of 6 week old female nu/nu mice. Tumors were grown until the mean 

tumor diameter was approximately 7 – 8 mm. Next, tumor-bearing mice were split into 

four cohorts – (i) no treatment (n = 8); (ii) GSMs only (400 mg Au/kg, n = 7); (iii) 

radiation therapy (RT) only (6 Gy, n = 8); (iv) GSMs plus RT 24 h post-injection (n = 7). 

Animals in the GSM+RT cohort were imaged using MRI and CT both prior to and 24 h 

following GSM injection. After imaging, mice underwent tumor localized radiation 

therapy and were followed for 90 days with their tumor sizes measured periodically. 

Representative pre- and post-contrast images of a single mouse using both CT and 

MRI are shown in Figure 3.7a-b. Note that at this GSM dosage no enhancement is visible 
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with CT imaging, but the tumor is hypointense on MRI, consistent with SPIONs 

accumulation, effectively revealing the proximal edge of the tumor.  To quantitatively 

determine the amount of GSMs delivered to the tumor, an analogous study was 

performed (n = 3), whereby the tumors were harvested 24 hours post-injection and the 

gold content was analyzed by ICP-OES. It was determined that the tumors possessed 

6.64% ID of Au/g tumor (6.64% ID of Fe/g, assuming intact GSMs). Upon adjusting for 

tumor volume, the average concentration of gold within the tumor was calculated to be 

0.55 ± 0.17 mg Au/mL (99 ± 3 µg Fe/mL). This is at the lower detection limit for gold by 

CT (i.e. ~ 0.5 – 1.0 mg/mL), but well above the lower detection limit for SPION via MRI 

(i.e. ~ 0.87 – 1.74 µg Fe/mL). These tumor concentrations are also well above the 0.1 mg 

Au/mL needed for a radiosensitization effect, based on the in vitro analysis. A silver 

enhancement stain performed on tumor histology sections of mice injected with GSMs 

confirmed the presence of AuNPs throughout the tumor. No enhancement was observed 

in mice that were administered saline (Figure 3.7c).  
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Figure 3.7. In vivo imaging and intensity analysis of a single nu/nu nude mouse with a HT1080 flank 

tumor. (A) Representative CT  (top) and MR (bottom) images in the axial plane prior to injection (pre-

contrast) and 24 h post-injection (postcontrast) of GSMs (400 mg Au/kg)  (n = 7). Tumors are indicated by 

white arrows. No enhancement is visible via CT imaging. (B) Quantitative analysis of CT and MR images. 

Signal intensity of each tumor was normalized to adjacent paraspinal muscle. For contrast measurement, 

the relative signal intensity, RSI, was calculated as the quotient of the post-contrast to pre-contrast 

normalized tumor intensity. Statistically significant values of p < 0.05 are indicated with an asterisk. (C) 

Representative histologic sections of HT-1080 tumors excised from mice 24 hours after i.v. injection with 

saline (left) or GSMs (right) stained with H&E (top) and a silver enhancement (bottom). (D) Plot of initial 

rate of tumor volume decrease vs the % change in tumor contrast for all mice (n = 7) receiving GSMs (400 

mg Au/kg) plus radiation therapy (6 Gy, 150 kVp) in the survival study (see Figure 5). There is a strong 

linear correlation between the contrast enhancement and tumor response (R2 = 0.95). 
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Following imaging, mice were monitored for tumor growth and were sacrificed 

when the tumors reached the predetermined threshold volume (1,300 mm3). The survival 

time was measured from the time of radiation (or mock irradiation). Mice that received 

GSMs prior to radiation therapy exhibited a statistically significant (p < 0.05) 

improvement in median survival (75.6 ± 9.2 d), compared to mice treated with radiation 

alone (50.4 ± 10.6 d) (Figure 3.8a). It should be noted that all mouse groups appeared to 

tolerate GSMs very well over the course of study with no observable changes in behavior 

or symptoms of hepatic or gastrointestinal toxicity, such as loss of appetite, diarrhea, or 

vomiting. The mean survival times for the control and GSM-only mice were not 

statistically different at 20.0 ± 2.5 d and 25.7 ± 2.6 d, respectively. The general 

observable trend in tumor growth post radiation therapy was a reduction in tumor growth, 

followed by a reduction in tumor volume and then either eventual tumor re-growth or 

remission (Figure 3.8b). A significantly larger (p < 0.05) proportion of mice from the 

GSM+RT group derived a complete response with no discernable tumor (71%) compared 

to the mice in the RT-only group (14%). Note that of the two surviving mice in the RT-

only group, one mouse derived a complete response and the other mouse had a residual, 

palpable but stable mass at the end of the study period. 
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Figure 3.8. (A) A Kaplan-Meier survival analysis was performed for HT-1080 tumor-bearing mice 

receiving no treatment (n = 8, dotted grey line), GSMs only (n = 7); (dotted black line), radiation therapy 

(RT) only (n = 8, solid grey line), or radiation therapy plus 24 h intravenous injection of GSMs (n = 7, solid 

black line). GSMs were administered at a dose of 400 mg Au/kg.  The radiation dose administered was 6 

Gy at 175 kVp. The asterisk indicates statistical significance (p < 0.05). (B) Average tumor volumes over 

time of mice receiving GSMs with radiation therapy (solid line) or radiation therapy alone (dotted line). 

 
To evaluate the predictive value of GSM–enhanced MR imaging, we compared 

the tumor contrast enhancement to the rate of tumor volume decrease following 
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irradiation. The analysis revealed a strong correlation (R2 = 0.95) between contrast 

enhancement and tumor response (Figure 3.7d). This relationship is consistent with the in 

vitro data linking GSM dose to the efficacy of radiosensitization and provides a 

promising mechanism to guide follow-up treatment accordingly.   

 The GSMs reported here address the aforementioned disparity between the dose 

of gold-only particles needed to obtain therapeutic benefit and the dose needed for 

imaging enhancement. The MR imaging enhancement provided by GSMs was highly 

robust, due to their high transverse relaxivity (r2 = 233 mM-1s-1) and consequent 

nanomolar sensitivity. This is similar to the characteristics of SPIO-only formulation30 

and allowed tumor boundaries to be readily identified and the extent of GSM uptake to be 

assessed. Therefore, GSMs could enable radiation oncologists in more accurately 

planning both the geometric and dosimetric aspects of radiation therapy.  

 Unlike many other dual imaging-treatment nanoparticles, which use 

chemotherapeutics as their payload,31,32 GSMs are not inherently cytotoxic and only exert 

their therapeutic effects under the influence of ionizing radiation. Coupled with the need 

for lower concentrations to achieve imaging, these properties render GSM extraordinarily 

safe. Accordingly, the administration of GSMs did not result in any significant changes in 

weight, blood chemistry, or behavior.  

At the radiation energies tested, GSMs provided a potent dose-dependent 

enhancement of DNA double-stranded breaks and SER in vitro. They also significantly 

increased survival and tumor response in vivo, compared with radiation treatment alone. 

The linear relationship between the contrast enhancement and therapeutic response 

further supports the dose dependent radiosensitization of tumor cells. The GSM-mediated 
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radiation enhancement effects are expected to allow physicians to increase the efficacy of 

a given overall dose or radiation therapy administered, with no incremental risk to normal 

tissues. 

While MR contrast and therefore GSM localization correlated with the initial rate 

of tumor volume decrease, there was no correlation observed between the level of image 

contrast and overall therapeutic outcome. This dissociation of initial response and clinical 

end point may be due to differences in the tumor microenvironment (e.g. hypoxia, 

inflammatory reaction, heterogeneous vasculature), which predispose certain tumors to 

either an early, necrotic response or a delayed apoptotic response to radiation therapy. 

The relationship between gold-enhanced radiation therapy and the mechanism of tumor 

cell death bears further investigation.  

 The accumulation of GSMs in tumors is mediated by the EPR effect. However, 

EPR has been shown to vary from tumor to tumor with the level of tumor 

vascularization.33-35 Differences in vascularization lead to variations in the tumoral 

delivery of nanoparticle-based therapeutic agents and thus a large variability in 

nanoparticle treatment efficacy.36 However, because GSM-enhanced MR imaging can be 

used to quantify the tumor penetrance, tumor dosimetry planning can be adjusted 

accordingly.  

 While EPR alone may not be sufficient to produce widespread dissemination of 

GSMs throughout all tumors, the administration of GSMs over the course of a 

fractionated radiation therapy regiment may promote the spatially targeted delivery of 

GSMs into the tumor. Recent MRI studies have shown that radiation can increase the 

permeability of tumors to gadolinium in human patients.39 Additionally, it has recently 
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been shown that radiation therapy can enhance the delivery of nanopolymers (diameter ≈ 

40-70 nm),40 pegylated near-infrared fluorescent probes,41 and pegylated AuNPs 

(diameter ≈ 23 nm)17 to tumors in murine models. These data suggest that targeted 

radiation therapy can enhance the uptake of circulating nanoformulations by increasing 

vascular and interstitial permeability. 

At 150 kVp, the most likely mechanism for the dose enhancement effects of gold 

is the photoelectric effect,8,9 leading to extensive DNA damage. The attenuation of X-

rays with depth at this energy makes the treatment of superficial tumors by external beam 

radiation, the enhancement of brachytherapy, and the enhancement of intra-operative 

radiation therapy three possible applications for GSMs. Furthermore, other research has 

already illustrated the efficacy of gold nanoparticles in enhancing radiation therapy at 

higher, megavoltage energies (e.g. 6 MV) more commonly seen in the clinical treatment 

of deep-seated tumors.24,42 As the photoelectric cross-section is nearly zero at these 

higher energies, the likely radiosensitization mechanism is not photoelectric, but 

potentially relies on the generation of reactive oxygen species to cause cellular damage or 

on other scattering mechanisms.43,44 The use of platinum (atomic number ZPt = 78) to 

enhance proton beam therapy suggests that GSMs (ZAu = 79) may also have a role in 

enhancing proton-mediated radiation therapy.45 
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3.5 Conclusions 
 

In conclusion, incorporating GSMs with radiation therapy could augment cancer 

treatment by facilitating imaging, increasing the efficacy of therapy, and helping to 

predict response. Moreover, since GSMs are prepared using a highly modular synthetic 

pathway, additional components, including standard and alternative therapeutics could 

readily be incorporated into the micelle’s core while targeting moieties (e.g. tumor-

specific antibodies or Fab’s) can be coupled onto the unobstructed micelle surface, 

further broadening the range and types of tumors that can be effectively treated. The 

extravasation properties of these particles may also make them useful in treating diseases 

localized to regional lymph nodes, such as Hodgkin’s lymphoma. Therefore, it is 

envisioned that translation of GSM to oncology could have far reaching implications.  
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Chapter 4: Superparamagnetic Iron Oxide Nanoparticle 

Micelles Stabilized by Recombinant Oleosin for Targeted 

Magnetic Resonance Imaging  

 

4.1 Abstract 

A wide variety of nanoplatforms are being developed for the diagnosis and detection of 

malignancies. However, a major limitation of many of these approaches is that they 

exploit passive mechanisms of targeting. Passively targeted nanoparticles accumulate 

preferentially in tumors primarily due to the EPR effect, but nanoparticle retention is 

nonspecific relying primarily on high vascular permeability and poor lymphatic drainage 

at the tumor site. Conversely, actively targeted nanoparticles exploit targeting and 

binding to specific receptors present on tumor cells. Therefore the use of an actively 

targeted nanoplatform can achieve higher tumor retention, facilitate nanoparticle 

internalization for improved efficacy, and improve tumor specificity. To facilitate the 

introduction of targeting molecules onto micelle formulations, a naturally occurring 

surfactant protein oleosin was used to stabilize superparamagnetic iron oxide clusters. 

Functionalization of these particles with targeting ligands (e.g. Her2/neu affibody) was 

then achieved by simply fusing the biologically relevant motifs to oleosin using standard 

cloning techniques. Using this approach, nanoparticle formation and functionalization 

was completed in one step without the requirement of post-synthesis surface 

modifications. Specific targeting was confirmed through cell binding assays in the 

presence and absence of a competitive inhibitor and quantified using magnetic relaxation 
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techniques. We envision that oleosin stabilized nanoparticle micelles will represent a 

promising platform for therapeutic and imaging applications, since size, charge, targeting 

moiety, and solubility can all be easily modified with high precision and essentially no 

variability. 
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4.2 Introduction 

Superparamagnetic iron oxide (SPIO) nanoparticles have gained interest for use 

as magnetic resonance contrast agents, with the ability to provide T2 weighted contrast 

enhancement on MR imaging applications.1-4 Their strong contrast enhancing capabilities 

have rendered them useful for molecular imaging applications with various targeting 

molecules being conjugated to the surfaces of SPIO nanoparticles.5-8 These strategies 

have the potential to increase tumor accumulation, specificity, and therapeutic efficacy. 

The prerequisite for any targeted nanoparticles is the successful bioconjugation of ligands 

onto the nanoparticle surface, some which have low reaction efficiencies, require 

multiple conjugation steps, and often create products with poorly oriented antibodies. 

Developing recombinant proteins that can stabilize SPIO nanoparticles would allow for 

the functionalization of particles in the formulation step by directly modifying the protein 

through molecular biology.  

We chose to engineer the naturally occurring surfactant protein oleosin.9  Oleosin 

is expressed in plant seeds with the native function of stabilizing fat reservoirs called oil 

bodies. The protein consists of three domains, a central hydrophobic domain flanked by 

two hydrophilic arms on the C- and N-terminus.9, 10 The protein resembles a hairpin 

structure with a proline knot embedding in the central hydrophobic domain that forces a 

180° turn.11 Recombinant oleosin has been exploited for it surfactant nature in many 

biotechnology applications.12-17 
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4.3 Materials and Methods 

Gene synthesis  

Genes were created using standard molecular biology techniques. All mutants 

were confirmed through DNA sequencing. Oleosin-30G(-)was created from the template 

Oleosin-30G18 using sequential PCR steps with the following primers: 1S 5’ – 

GATCAGCATGATCAACACACCGGTGACCAGCTCACCCACCCACAGGACCAGC

AACAAGGCCCCTCAACCGGCGAACTCGCTCTCGGTGCGACTCC -3’, 2S 5’ – 

AATTCAATAGGATCCGAAGCCACCACAACCAACGACCAGCACCATGTCACCA

CCACCCAACCCCAAGATCAGCATGATCAACACACC – 3’, 1AS 5’ – 

TATCTGCTGGCCCAAGTCGTTCGTGTTCTGGCCCGTCTGCTCCCCCACATCCT

GCAATTCCCCGTTCACGTTATCCTGCCACTGAAACCCGGTAACACC – 3’, 2AS 

5’ – TTCTGCCCTTCGTTCCCACCACCCTGACCCTGACCCTGGCCCTGGTCA 

CCCATTTCATGGGCCGTATGCTGTATCTGCTGGCCCAAGTCG – 3’, 3AS 5’ – 

TTTATGAATCTCGAGTCAGTCATCGTGGTGGTGGTGGTGGTGGTTCCCCCCTT

CGTTCTGCCCTTCGTTCCCACC – 3’. The Oleosin-30G(-) PCR product was cloned in 

the expression vector pBamUK. The Her2 affibody was amplified using the primers Her2 

1S 5’ – GATGCGCAGGCGCCGAAAGGCGGCGGTGGCGGTAGC – 3’, and Her2 

fusion AS 5’ – GGTTGTGGTGGATCCTTTCGGCGCCTGC – 3’ and cloned into the 

vector pBamUK-Oleosin-30G to create pBamUK-Her2-Oleosin-30G. The gene for the 

expression of the Her2 affibody alone was created using the following primers:  Her2 1S 

5’ – GATGCGCAGGCGCCGAAAGGCGGCGGTGGCGGTAGC – 3’, and Her2 AS 5’ 

– TAGATAATTCTCGAGTTTCGGCGCCTGCGCATCG – 3’ and cloned into 
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pBamUK. pBamUK adds a 6-histidine tag onto the C-terminus of the protein to allow for 

immobilized metal affinity chromatography (IMAC).  

 
Protein production and purification 

Mutants were expressed under the control of the lac promoter in E. coli (BL21 

DE3, Stratagene). The protein mutants were solubilized according to the B-PER protocol 

and purified using IMAC following the Hispur Ni-NTA resin protocol. Mutants were 

expressed under the control of the lac promoter in E. coli (BL21 DE3, Stratagene). 

Cultures were grown until OD600~0.7 and induced with isopropyl β-D-1-

thiogalactopyranoside to a final concentration of 1.0 mM (Fisher Scientific). Cells were 

pelleted at 5,000 RPM and frozen at -20°C prior to purification. Oleosin-30G(-) and the 

Her2 affibody were expressed solubly, whereas the fusion Her2-Oleosin-30G was 

expressed in inclusion bodies. The protein mutants were solubilized according to the B-

PER protocol for soluble or insoluble proteins respectively. Unpurified protein solutions 

were added to Ni-NTA beds (Hispur Ni-NTA resin, Thermo Scientific) and allowed to 

bind to the column ~ 1 hour at room temperature. Protein was washed and eluted in 

fractions according to the Hispur protocol. Protein concentration was measured using a 

Nanodrop-1000 (Fisher Scientific). Buffer exchanges were completed with dialysis or 

with centrifugal filters (Amicon Ultra, 3 kDa, Millipore).  

 
Protein sequences 

Oleosin-30G(-) 

GSEATTTNDQHHVTTTQPQDQHDQHTGDQLTHPQDQQQGPSTGELALGATPLF
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GVIGFSPVIVPAMGIAIGLAGVTGFQWQDNVNGELQDVGEQTGQNTNDLGQQIQ

HTAHEMGDQGQGQGQGGGNEGQNEGGNHHHHHHDD 

 
Her2-Oleosin-30G 

VDNKFNKEMRNAYWEIALLPNLNNQQKRAFIRSLYDDPSQSANLLAEAKKLND

AQAPKGSTTTYDRHHVTTTQPQYRHDQHTGDRLTHPQRQQQGPSTGKLALGAT

PLFGVIGFSPVIVPAMGIAIGLAGVTGFQRDYVKGKLQDVGEYTGQKTKDLGQKI

QHTAHEMGDQGQGQGQGGGKEGRKEGGKLEHHHHHH 

 
Her2 

VDNKFNKEMRNAYWEIALLPNLNNQQKRAFIRSLYDDPSQSANLLAEAKKLND

AQAPKLEHHHHHH 

 
Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE gels were run in MES buffer with NuPAGE Novex 4–12% Bis-Tris 

mini gels (Invitrogen). After electrophoresis, the gels were stained with SimplyBlue 

Safestain (Invitrogen) and destained in water overnight. The resulting gel was imaged 

with a Kodak Gel Logic 100 Imaging station.  

 
Matrix assisted laser desorption/ionization time of flight mass spectroscopy (MALDI-

TOF) 

MALDI-TOF spectra were used to confirm the molecular weights of the mutants. 

Sample spots were created with 0.5 µL protein in pH 7.4 phosphate buffered saline (PBS) 

and 0.5 µL saturated sinapinic acid solution (50/50 acetonitrile/water + 0.1% TFE). 

Spectra were collected on an Ultraflextreme MALDI-TOF (Bruker, Billerica, MA).  
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Circular dichroism (CD) 

Far-UV CD spectra were collected on an AVIV 410 spectrometer (AVIV 

Biomedical Inc.) at 25 °C in 1 mm quartz cuvettes. Protein concentration was 10 µM in 

10 mM phosphate, 140 mM NaF due to the high signal from the Cl- ion in PBS.  

 
Fe2O3 synthesis  

Superparamagnetic iron oxide nanoparticles were synthesized according to a 

protocol adapted from Cheon et al.19 Briefly, 0.6 mmol of Fe(CO)5 dissolved in 0.3 mL 

of ortho-dichlorobenzene (ODCB) was rapidly injected into a hot solution containing 1.2 

mL of ODCB and 0.6 mmol of dodecylamine (DDA). The resulting mixture was 

maintained at 180ºC under aerobic conditions. During this process, the initial orange 

color of the solution gradually changed to slightly brownish black. After 9 hours, the 

resulting solution was cooled to room temperature and an approximately 3-fold volume 

excess of toluene was added to adjust the solubility of the nanocrystals. The nanoparticle 

solution was then centrifuged to remove nanoparticle aggregates. After adding ethanol 

into the remaining solution, resulting black flocculates were isolated by centrifugation. 

 
Nanoparticle assembly and purification  

Fe2O3-oleosin micelles were synthesized using an oil in water emulsion and 

purified using sequential centrifugation as previously reported.20 Fe2O3-oleosin micelles 

were synthesized using an oil in water emulsion and stabilized with Oleosin-30G(-). 

Fe2O3 nanoparticles were dissolved in toluene at a concentration of 80 mg/mL. Protein 

stocks were diluted into sterile PBS to a concentration of 2 mg/mL. The FeO 

nanoparticles in toluene (50 µL) were directly injected to the protein solution and 
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sonicated until a uniform emulsion was created and no visible iron aggregates existed. 

The emulsion was allowed to dry overnight at room temperature. The particles were 

purified using sequential centrifugation. The solution was centrifuged at 380 RCF for 10 

minutes and large aggregates were removed in the pellet. The supernatant was 

centrifuged at 4646 RCF for 30 minutes and the resulting supernatant was removed. Two 

pellets exist from this spin, a soft soluble pellet, and a hard, insoluble pellet of 

aggregates. The soft pellet was removed and used for further studies. The nanoparticles 

were concentrated and solution exchanges were completed using centrifugal filters 

(Amicon Ultra, 50 kDa MWCO, Millipore). 

 
Dynamic light scattering 

Dynamic light scattering of nanoparticle solutions was performed on samples in 

PBS using a Malvern Zetasizer Nano ZS (Westborough, Massachusetts). Each sample 

was run in triplicate.  

 
Cryogenic transmission electron microscopy (Cryo-TEM) 

Cryogenic transmission electron microscopy was performed at the University of 

Pennsylvania in the Nanoscale Characterization Facility (Philadelphia, PA). Lacey 

formvar/carbon grids (Ted Pella) were rinsed in chloroform to remove the formvar 

template. The resulting grids were carbon coated with a Quorum Q150T ES carbon coater 

(Quorum Technologies, United Kingdom). Grids were cleaned with hydrogen/oxygen 

plasma for 15 seconds using the Solarus Advanced Plasma System 950 (Gatan, 

Pleasanton, CA). A 2 µL drop of nanoparticles in PBS was deposited onto the grid and 

added to a Gatan Cp3 cryoplunger (Gatan, Pleasanton, CA). The samples were blotted by 
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hand and plunged into liquid ethane. Grids were transferred to a Gatan CT3500TR 

cryoholder (Gatan, Pleasanton, CA) and immediately inserted into a JEOL 2100 HRTEM 

(JEOL, Tokyo, Japan) operating at 200 keV. Micrographs were imaged with an Orius 

SC200 digital camera. 

 
Stability 

Particles were incubated at 37°C for 5 days in either PBS or DMEM plus 

glutamax, 10% FBS, and penicillin streptomycin. DLS measurements were taken daily to 

monitor for particle degradation or aggregation.  

 
Cell lines  

NIH/3T3 and T6-17 cells (i.e., NIH/3T3 cells engineered to stably express the 

Her2/neu receptor, kindly provided by Dr. Mark Greene, University of Pennsylvania) 

were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 

10% fetal bovine serum, 1% penicillin/streptomycin at 37°C, and 5% CO
2
.  

 
Cell V iability Assay  

The viability and proliferation of cells in the presence of FeO-oleosin 

nanoparticles were evaluated by 3-[4,5-dimethylthialzol-2-yl]-2,5-diphenyltetrazolium 

bromide (MTT, Sigma) assay. The assay was performed in triplicate in the following 

manner. NIH/3T3 cells were seeded into 96-well plates at a density of 1 x 104 cells per 

well in 200 µL of media and grown overnight. The cells were then incubated with various 

concentrations of FeO-oleosin (0, 0.025, 0.05, 0.075, 0.1, and 0.15 mg Fe/mL) for 4 

hours. Following incubation, cells were incubated in media containing 0.1 mg/mL of 

MTT for 1 hour. Thereafter, MTT solution was removed, and precipitated violet crystals 
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were dissolved in 200 ìL of DMSO. The absorbance was measured at 560 nm. 

 
Her2/neu targeting  

T6-17 and NIH/3T3 cells were incubated with 100 µg Fe/mL of Her2/neu-

targeted SPIO micelles for 45 minutes in full media in triplicate. The media was removed 

and the cells were washed with PBS two times to remove any unbound micelles. Cells 

were trypsinized and counted. Cell suspensions were diluted to 0.4 × 106 cells/mL and T2 

relaxation times were measured using a benchtop relaxometer (Bruker mq60).  
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4.4 Results and Discussion 

We have previously engineered oloesin to self-assemble into vesicles, fibers or 

sheets by creating a family of truncation mutants thereby varying the 

hydrophilic/hydrophobic ratio of the surfactant protein.21 Further truncations of the 

hydrophobic block have led to soluble oleosin mutants that spontaneously self-assemble 

in aqueous solution as a function of concentration.22 These proteins can be highly 

engineered for specific applications. We present here the engineering of oleosin mutants 

to stabilize and target iron oxide protein micelles for enhanced magnetic resonance 

imaging (Figure 4.1A).  
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Figure 4.1. (A) Cartoon depiction of Her2/neu targeted iron oxide nanoparticle micelles stabilized by 

oleosin. (B) Protein purity is accessed to be > 95% pure by SDS-PAGE (lane 1: Oleosin-30G(-), lane 2: 

Her2/neu-Oleosin-30G, lane 3: Her2/neu affibody). (C) Circular dichroism indicates an unordered structure 

for the charged mutant Oleosin-30G(-). (D) CD spectra for the fusion Her2/neu-Oleosin-30G show 

contributions from the helical Her2/neu affibody and the unordered Oleosin-30G. (E) CDSSTR analysis of 

CD spectra shows increased helical structure in the fusion compared to Oleosin-30G indicating that the 

affibody is likely folded on the N-terminus of the oleosin mutant. 

 
Two oleosin genes were engineered, one to stabilize the FeO micelles and a 

second to target the resulting clusters to Her2/neu+ cells. Previously it has been shown 

that oleosin can be engineered to stabilize various interfaces such as emulsion droplets21 

and bubbles.18  In order to provide adequate repulsion between the micelles, we mutated 

the hydrophilic arms of oleosin-30G to be negatively charged. Negative nanoparticles 
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have also been shown to limit nonspecific cell targeting.23-25 Specifically, all positive 

amino acids as well as any tyrosine residues in the hydrophilic arms were mutated to Q, 

N, D, or E depending on the location and local charge. The negative charge was spread 

evenly across the hydrophilic arms with an average negative amino acid every six 

residues. This mutant is called Oleosin-30G(-). To directly target Her2/neu+ cancer cells, 

we have fused a Her2/neu affibody onto the N-terminus of the oleosin mutant Oleosin-

30G. This targeted mutant is named Her2/neu-Oleosin-30G. The Her2/neu affibody was 

expressed independently as a competitive inhibitor for cell studies. Mutants were made 

using standard molecular biology techniques and cloned into the expression vector 

pBamUK, which adds a 6-histine tag on the C-terminus of the protein for immobilized 

metal affinity chromatography (IMAC). Oleosin mutants were confirmed through DNA 

sequencing. Vectors were transformed into the Escherichia coli strain BL21 (DE3) for 

expression. Her2/neu-Oleosin-30G was insoluble and expressed in inclusion bodies 

whereas Oleosin-30G(-) was soluble. Mutants were purified using IMAC. Protein yields 

were ~ 24 mg, ~ 80 mg, and ~ 65 mg of purified protein per liter of culture for Her2/neu-

Oleosin-30G, Oleosin-30G(-), and Her2/neu respectively.  SDS-PAGE indicates highly 

purified products after IMAC (Figure 1B). The band for Oleosin-30G(-) runs much 

higher than expected on the gel, likely due to its highly negative charge. Molecular 

weights were confirmed with MALDI-TOF (Oleosin-30G(-) expected: 14956, measured: 

14958; Her2/neu-Oleosin-30G: expected: 21714, measured: 21713; Her2/neu expected: 

7771, measured: 7773).  

Protein secondary structure was elucidated with circular dichroism. The parent 

molecule Oleosin-30G is a highly unordered protein.18 CD indicates that Oleosin-30G(-) 
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remains unordered after the various mutations to the hydrophilic arms (Figure 4.1C). The 

secondary structure of Her2/neu-Oleosin-30G was investigated to ensure correct affibody 

folding as a fusion partner. The Her2/neu affibody is a highly helical protein (Figure 

4.1D) and when fused to oleosin, the Her2/neu-Oleosin fusion displays structure from the 

helical affibody and the unordered oleosin backbone (Figure 4.1D). The spectra were fit 

with the CDSSTR analysis method using Dichroweb (Figure 4.1E).26-28 The analysis 

shows clear helical structure in the fusion protein indicating that the affibody is likely 

folded in the fusion.  

SPIO-oleosin micelles were assembled through an emulsion method. SPIO 

nanoparticles solubilized in toluene were injected into solutions of protein in PBS. The 

emulsion was sonicated and the toluene was allowed to evaporate overnight at room 

temperature. This led to a heterogeneous mixture of micelles. SPIO-Oleosin micelles 

were purified using stepwise centrifugation.20 Cryo-TEM of the various separation 

fractions indicates large aggregated particles are removed in pellet after low RCF spins 

and excess protein and small particles in the supernatant of the high RCF spins (Figure 

4.2). The mass ratio of the particles to the protein, the oil volume fraction, and the 

particle stabilization coat all play an important role in the formation of packed 

nanoclusters. The oil volume fraction and mass ratio of protein to iron was optimized. 

Previous studies used an oil volume fraction of 4.8% for particle formation and a 4:4 ratio 

of nanoparticle to surfactant (mg:mg).20  We found that decreasing the volume fraction of 

toluene in the emulsion to 1.2% and increasing the protein concentration greatly affected 

the resulting structures. The optimal particles were created by injecting 50 uL of toluene 

containing 4 mg of SPIO-dodecylamine coated nanoparticle into a 4 mL solution of 
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protein in PBS at a concentration of 2 mg/mL (Figure 4.3).   

 
 

Figure 4.2. Cryo-TEM micrographs of the various fractions during purification. (A) The hard, insoluble 

pellet after the high RCF spin shows large aggregates of particles stuck together. (B) The soft, soluble 

pellet that is extracted and used for further studies shows individual nanoclusters. (C-D) The supernatant 

after the high RCF contains excess protein (C) and small nanocluster (D). All scale bars are 200 nm. 

!" #"
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Figure 4.3. Optimization of iron-to-protein ratio and oil volume fraction. Increasing the amount of 

surfactant and decreasing the volume of toluene used in the emulsification led to highly packed particles 

with little-to-no aggregates present after purification. 

 
Dynamic light scattering of the purified particles show a monodisperse population 

with an average hydrodynamic diameter of 113 nm (peak: 127 nm, PDI = 0.104) (Figure 

4.4A). Purified particles were imaged using cryo-TEM (Figure 4.4B). The micrograph 

displays tightly packed iron oxide nanoparticles and no visible excess protein on the 

particles. Particles from three independent batches were directly measured from 

micrographs and found to have an average diameter of 74 ± 33 nm (n = 660 particles) 

(Figure 4.4C). As expected, the number average diameter measured in micrographs is 

less than the hydrodynamic diameter measured by DLS. The DLS data are skewed to 

higher diameters due to increased intensity of scattering from larger particles.  
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Figure 4.4. (A) Dynamic light scattering reveals a monodisperse population of micelles with an average 

diameter of 113 nm (PDI=.104). (B) Cryo-TEM micrograph of FeO micelles stabilized by Oleosin-30G(-) 

in PBS. (C) Particle size distribution measured directly from cryo-TEM images. The average particle size 

was found to be 74 ± 33 nm (standard deviation, n = 660 particles). This diameter is significantly lower 

than the hydrodynamic diameter from DLS due to the increased scattering from larger particles. (D) Protein 

stabilized particles are stable over 5 days in buffer (PBS) and serum at 37°C as measured by DLS. (E) 

Particles show high relaxivity with an r2 value of 407.2 ± 4.0 mM-1 s-1. (F) The r1 value was found to be 

4.47 ± 0.46 mM-1 s-1. 

 
The surface charge of SPIO particles has been shown to have significant impact in 

the uptake by cells.4 Zeta potential measurements indicated a negative surface charge at 

of -12.5 ± 1.7 mV. The high negative charge is needed to provide repulsive electrostatic 

interactions between the emulsion droplets during particle formation reducing 

aggregation. The particles show long-term stability in buffer (PBS) and serum with no 

significant change in the hydrodynamic diameter over 5 days at 37°C (Figure 4.4D). The 

particles display extremely high relaxivity with an r2 value of 407.2 ± 4.0 s-1 mM-1 and an 
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r1 value of 4.47 ± 0.46 s-1 mM-1. The potential cytotoxicity of the nanoparticles was 

assessed using an MTT assay. Over all concentrations, cell viability remained above 97% 

for the 4-hour incubation with particles (Figure 4.5A).  

 

 

Figure 4.5. (A) Particles show no toxicity between 25 and 150 µM after 4 hours of incubation at 37°C with 

NIH/3T3 cells. (B) Functional evaluation of the Her2/neu SPIO-oleosin micelles conjugates. SPIO-oleosin 

and Her2/neu-SPIO-oleosin were incubated with either Her2/neu+ and Her2/neu- cells in the presence and 

absence of excess free affibody. Free affibody served as a competitive inhibitor to confirm specific binding 

of the Her2/neu receptor. Relaxivity measurements of cells incubated with SPIO-oleosin micelles or 

Her2/neu-SPIO-oleosin micelles were acquired. 
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Table 4.1. Physical and magnetic properties of oleosin stabilized nanoparticles 
 

Hydrodynamic diameter (nm) 113 ± 36 
Number diameter (nm) 74 ± 33 

Zeta potential (mV) -12.5 ± 1.7 
R2 (mM-1 s-1) 407.2 ± 4.0 
R1 (mM-1 s-1) 4.47 ± 0.46 

R2/R1 91.1 
 
 

Her2/neu+ targeted micelles were created by blending Her2/neu-Oleosin with 

Oleosin-30G(-) at 10% by weight in the PBS solutions (0.8 mg Her2/neu-Oleosin-30G: 

7.2 mg Oleosin-30G(-)). The micelles were prepared and purified in the same manner. 

The blending of the targeted mutant into the micelles did not change the size of the 

micelles as measured by DLS (Figure 4.6A) or the stability of the particles over time 

(Figure 4.6B). The surface charge of the particles remains negative but slightly increased 

to -10.7 ± 0.8 mV.  

 
Figure 4.6. Characterization of Her2+ functional nanoparticles. (A) DLS spectra shows monodisperse 

particles with a peak at 131 nm (PDI = 0.11) indicating that the Her2-Oleosin-30G blending into the 

micelles does not affect the overall size. (B) Functionalized particles are stable in PBS and serum for up to 

5 days at 37°C.  
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FeO micelles were incubated with Her2/neu- (NIH/3T3) and Her2/neu+ (T6-17) 

cells at a concentration of 100 µg/mL for 45 minutes. The T2 relaxation time for the 

NIH/3T3 cells showed no difference between negative control particles, targeted 

particles, or cells incubated without particles, indicating little to no nonspecific binding 

(Figure 4.5B). In the Her2/neu+ cell line, the cells incubated with the targeted particles 

show a significantly lower T2 relaxation time, consistent with the presence of SPIO, 

compared to cells with the negative control particles or cells incubated without particles. 

A competitive binding study was completed by adding excess Her2/neu affibody to the 

T6-17 cells before and during the incubation with the targeted particles. The affibody 

competition led to a significant increase in the T2 time. Therefore, these results provide 

clear evidence that Her2/neu oleosin micelles provide cell specific targeting. 
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4.5 Conclusions 

This work demonstrates the engineering of the naturally occurring surfactant 

protein oleosin to stabilize and target FeO nanoparticle micelles to Her2/neu+ cells. The 

functionalization of these particles is trivial due to the ease of incorporating biologically 

relevant motifs into the protein through molecular biology. These particles are extremely 

stable and display high relaxivity. We envision oleosin stabilized nanoparticle micelles 

will represent a promising platform for targeted enhanced imaging applications. 

Specifically, varying the surface charge and appending specific stealth ligands29 to the 

particles could engineer nanoparticle shells to be nontoxic and maintain long circulation 

times.  
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Chapter 5: Biodistribution and Clearance of Gold Loaded 

Polymeric Micelles Using 0.9 and 5 nm Gold Nanoparticles  

 

5.1 Abstract 

 Long-circulating gold nanoparticles (AuNPs) have garnered a great deal of 

interest as both imaging and therapeutic agents. However, their protracted elimination 

and long-term persistence within many organ systems remains a concern for clinical 

translation. To improve the excretion of long-circulating nanoparticles, we prepared ~80 

nm biodegradable polymeric micelles with 0.9 nm or 5 nm AuNPs tightly packed within 

the hydrophobic core. These gold-loaded polymeric micelles (GPMs) were expected to 

allow for improved excretion of gold, compared with single large AuNPs, owing to the 

smaller size and larger surface-to-volume ratio of the individual AuNPs within the 

micelle. Following intravenous administration of GPMs, organs were harvested and 

examined for gold content using inductively coupled plasma optical emission 

spectrometry (ICP-OES) for up to 3 months post-injection. While both GPM 

formulations showed significant clearance of gold over time, micelles containing 0.9 nm 

AuNPs showed a 72% and 67% reduction in gold content in the liver and spleen, 

respectively, between 1 day and 3 months post-injection, compared with a 38% and 35% 

reduction in mice receiving 5 nm GPMs. Furthermore, feces and urine analysis revealed 

approximately 7.5 and 100 times more gold, respectively, in mice that received 0.9 nm 
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GPMs one day after injection. These findings suggest that the excretion profile of 

inorganic nanomaterials may be improved if clusters of small inorganic materials are 

used in favor of single solid particles. 

5.2 Introduction 

The use of gold nanoparticles (AuNPs) in biological applications began in 1971 

when Faulk and Taylor invented the immunogold staining procedure for electron 

microscopy.1 Since then, AuNPs have attracted considerable interest across a wide range 

of biomedical applications. For example, AuNPs have been utilized for catalysis, 

biosensors, cancer imaging, photothermal therapy, and drug delivery.2, 3 The widespread 

interest in using AuNPs for imaging and therapeutic applications stems from their ability 

to be finely tuned to many different shapes and sizes, ease of surface modification, 

unique optical properties, high attenuation coefficient, and the strong evidence indicating 

that gold is nontoxic.4, 5 In fact, aurothiolate and colloidal gold have historically been 

used in medical practice as a treatment for rheumatoid arthritis.6 

Despite the beneficial aspects of using AuNPs in biomedical applications, a major 

lingering concern with their clinical translation is their long-term retention within many 

organ systems, most notably the liver and spleen. For example, it has been found that 

there is only a 9% drop in the content of gold in the liver from day 1 to 6 months, 

following the intravenous injection of 40nm AuNPs.7 This is consistent with a number of 

similar studies, which saw little to no clearance of ~ 20 nm AuNPs over shorter time 

periods (1 to 4 months).8, 9 As these inorganic particles are not readily biodegradable, 

they can potentially result in liver and immune system damage,10 raising concerns about 

their long term toxicity and biosafety.11, 12 Previous studies have shown that whole-body 
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clearance can be improved through the use of small AuNPs (< 6 nm), since these particles 

are small enough to undergo glomerular filtration.10, 13, 14 However, smaller AuNPs 

possess lower blood residence times due to their rapid renal excretion.15 As a result, they 

are expected to be less favorable as blood pool agents for computed tomography (CT) 

angiography and for tumor targeting via enhanced permeability and retention, where 

nanoparticle accumulation is generally governed by blood residence time.16, 17 Moreover, 

larger AuNPs are also expected to be superior for receptor-targeted imaging/therapeutic 

studies, whereby the number of localized nanoparticles is limited by the number of cell 

surface receptors at the target site. Therefore, larger AuNPs would presumably allow for 

higher total accumulation of gold.  

In this study, we examined whether a AuNP formulation could be prepared that is 

above the size threshold for renal clearance, but still exhibit favorable tissue clearance 

and excretion profiles. Specifically, we prepared ~80 nm gold-loaded polymeric micelles 

(GPMs) with sub-6 nm AuNPs tightly packed within the hydrophobic core (Figure 5.2 A, 

B). The blood clearance profile, tissue biodistribution, and excretion of gold was 

evaluated over a 3 month time period. Blood chemistry as well as liver and spleen 

histology were also examined for indications of toxicity.  
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5.3 Materials and Methods 

Synthesis of 0.9 nm gold AuNPs  

Dodecanethiol-capped 0.9nm AuNPs were prepared through the reduction of gold 

chloride triphenylphospine (AuClPPh3) with tert-butylamine-borane (C4H14BN), 

according to the procedure described by Li et. al.18 Briefly, 0.375 mmol of AuClPPh3 was 

added to 21 mL of ethanol at room temperature. The resultant mixture was stirred and 

3.75 mmol of the tert-butylamine-borane reducing agent was added. After 30 minutes, 

48µL of dodecanethiol was added and the dark brown solution was stirred for at least an 

hour. The solvent was then evaporated in a vacuum centrifuge and the particles were 

resuspended in toluene followed by centrifugation to remove any insoluble material. This 

was repeated twice.  

 

Synthesis of 5 nm gold AuNPs  

Dodecanethiol-capped 5nm AuNPs were prepared using a two-phase reduction of 

tetrachloroaurate (HAuCl4) with sodium borohydride (NaBH4), followed by the addition 

of an alkanethiol, according to the procedure described by Brust et al.19 Briefly, 25mL of 

an aqueous solution of 35mM hydrogen HAuCl4 was mixed with 50 mM of 

tetraoctylammonium bromide (TOAB) in 70 mL of toluene. The solution was stirred until 

the HAuCl4 solution transferred into the organic phase. This was followed by the drop-
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wise addition of a 0.4 M aqueous solution of NaBH4. Then, 0.84 mM of dodecanethiol 

was added to the solution while stirring. The resultant mixture was then stirred for at least 

3 hours and precipitated twice at -20°C in ethanol overnight to remove excess thiols. The 

precipitate was collected via centrifugation and the supernatant was decanted. The 

remaining pellet was dissolved in toluene.  

 

Synthesis of GPMs  

 Gold-loaded polymeric micelles were synthesized using oil-in-water emulsions 

and stabilized using the amphiphilic diblock copolymer polyethylene glycol (4k) – 

polycaprolactone (3k) (PEG-b-PCL).17 AuNPs, either 0.9nm or 5nm, were dissolved in 

toluene at 40 mg Au/mL and PEG-b-PCL was also dissolved in toluene at a concentration 

of 40 mg/mL. A combined solution (200 µL) of the diblock (4 mg) and the AuNPs (4 

mg) was added directly to a glass vial containing 4mL of dH2O and the mixture was 

emulsified for approximately 3 minutes in an ultrasonic bath. The emulsions were then 

allowed to stand overnight in a desiccator prior to their characterization and purification. 

The resulting dark brown (0.9 nm) / dark purple (5 nm) solution was centrifuged at 400 

RCF for 10 minutes to remove the largest micelles. The solution was then centrifuged 

twice at 3100 RCF for 30 minutes, after which the supernatant was removed, and the 

pellet was re-suspended in pH 7.4 phosphate buffered saline (PBS). Free polymer and 

smaller sized particles were removed by diafiltration using a MidGee hoop cross flow 

cartridge with 750 kDa molecular weight cutoff (GE Healthcare, Piscataway, NJ, USA). 

The GPMs were then filtered through a 0.2 µm cellulose acetate membrane filter 

(Nalgene, Thermo Scientific) to remove any oversized particles. Finally the nanoparticles 
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were concentrated using 50 kDa MWCO centrifugal filter units (Millipore, Billercia, MA, 

USA). The gold concentration was determined by inductively coupled plasma optimal 

emission spectroscopy (ICP-OES, Spectro Analytical Instruments GMBH; Kleve, 

Germany). 

 

Tissue distribution and blood clearance  

Thirty-six nude mice (n = 18 per group) were injected intravenously under 

anesthesia with 75 nm GPMs (containing either 0.9nm or 5nm AuNPs) in PBS at dose of 

150 mg Au/kg body weight and then bled and sacrificed at various times after the 

injection of the agent. Specifically, three mice from each group was bled at 1 h, 2 h, 6 h, 

12 h, 24 h, 3 d, 7 d, 14 d, 1 mo, and 3 mo, and the blood collected and analyzed for gold 

by ICP-OES. Each mouse was bled twice. Therefore, 10 uL blood samples were collected 

via the tail-nick method from three animals at the following times: 1 hour and 3 days, 2 

hours and 7 days, 6 hours and 14 days, 24 hours and 1 month, and 1 hour and 3 months. 

At the second bleed time point, the mice were euthanized by CO2 and 0.3 mL blood was 

removed by cardiac puncture from the right ventricle immediately after the cessation of 

breathing. After the final aliquot of blood was collected the brain, heart, lungs, kidneys, 

spleen, liver, skin, small bowel, large bowel, pancreas, thyroid, femur, and inguinal 

lymph nodes were removed from each animal. Three additional mice per GPM 

formulation were used for three additional blood collections at 5 minutes, 10 minutes, 

and 15 minutes and sacrificed at 24 hours and organs harvested. Organ samples were 

washed with PBS to minimize contamination from any nanoparticles still circulating in 

the blood. The blood samples and organs were then analyzed for gold content by ICP-
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OES. Organ samples were weighed into Teflon PFA vials (Savillex, Minnetonka, MN, 

USA) and digested overnight at 60°C with 70% nitric acid to digest the organic material. 

HCl was added the next day and the digest continued to dissolve the inorganic material. 

Blood samples were dissolved directly in aqua regia. Blood GPM content was calculated 

as the percent of the injected dose per gram of blood analyzed (%ID/g). Organ GPM 

content was similarly calculated as the percent of the injected dose present per gram of 

tissue. 

 
 

Toxicity studies  

Blood samples obtained by cardiac puncture were analyzed for blood chemistry 

analytes (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline 

phosphatase, and total bilirubin(TBIL). All samples were analyzed by the diagnostic core 

laboratories at the University of Pennsylvania School of Veterinary Medicine 

 

Hematoxylin and eosin (H&E) staining  

Hematoxylin-eosin (HE) staining was performed using 5 µm thickness sections 

from formalin-fixed, paraffin-embedded tissue blocks. Specimens were fixed in formalin 

(Fisher Scientific, Waltham, MA) immediately after harvesting and followed by gradient 

dehydration with 70%, 95%, and 100% ethanol. Tissue were then processed in xylene 

(Fisher) and embedded in paraplast tissue embedding medium (Fisher). Slides were 

prepared using Microm HM550. Paraffin sections were deparaffinized in xylene followed 

by rehydration with 100%, 95%, 70% ethanol and then Milli-Q water (Millipore, 

Bedford, MA) before the staining. Harris hematoxylin (Fisher) was used for nuclei 
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staining. Excess hematoxylin was removed by dipping slides in acid alcohol (Leica 

Biosystems, Richmond, VA). Slides were then placed in running warm water until the 

nuclei turned blue. Eosin (Leica Biosystems) was used to stain for cytoplasm. Slides were 

later mounted using permount (Fisher) after clearing with xylene.  
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5.4 Results and Discussion 

Characterization of 0.9 and 5 nm AuNPs 

Hydrophobic AuNPs with dodecanethiol as a capping agent were prepared with 

low polydisperity and diameters of 0.93 ± 0.19 and 4.66 ± 0.57 nm, respectively, 

according to an analysis of transmission electron microscopy (TEM) images (Figure 5.1). 

Purity was further confirmed via UV–vis spectroscopy Figure 5.1).  

 

Figure 5.1. (A) Transmission electron micrograph of 0.9 nm AuNPs. Scale bar is 20 nm. (B) Core size 

distribution of 0.9 nm AuNPs.  The mean size and standard deviation is shown. (C) UV-vis absorption 

spectrum of 0.9 nm AuNPs. (D) Transmission electron micrograph of 5 nm AuNPs. Scale bar is 20 nm. (E) 

Core size distribution of 5 nm AuNPs.  The mean size and standard deviation is shown. (F) UV-vis 

absorption spectrum of 5 nm AuNPs. 

 
Synthesis and Characterization of GPMs 
 

GPMs were prepared by encapsulating either 0.9 or 5 nm AuNPs within the 
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diblock copolymer PEG-b-PCL, using a microemulsion method described previously.17 

These GPMs were soluble in aqueous solutions owing to the hydrophilic PEG corona of 

the diblock copolymer. Following synthesis and purification of the GPMs, ~ 80 nm 

GPMs were collected using differential centrifugation, as confirmed by dynamic light 

scattering (DLS) (Figure 5.2 C). The DLS measurements demonstrate particle 

measurements with a low polydispersity index for both GPM formulations (< 0.1). TEM 

was used to determine the morphology of the GPMs and the packing of AuNPs within the 

hydrophobic core. TEM micrographs revealed spherical GPMs with tightly packed 

clusters of AuNPs contained within the hydrophobic core of the micelles (Figure 5.2 

D,E). The zeta potential of the various GPM formulations was near neutral. A summary 

of the GPM physical-chemical properties is provided in Table 5.1. 

 

 

Figure 5.2. Schematic and size analysis of GPMs. Schematic of (A) 0.9 nm GPMs and (B) 5 nm GPMs. 

Both GPM formulations consist of AuNPs encapsulated within the hydrophobic core of micelles formed 

using the biodegradable diblock co-polymer PEG-b-PCL. (C) Dynamic light scattering profiles of 0.9 nm 

and 5 nm GPMs. Representative transmission electron microscopy (TEM) images of a (D) 0.9 nm and (E) 5 

nm GPM. All scale bars = 100 nm. 
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Table 5.1. GPM physical-chemical properties 

AuNP size 
(nm) 

Hydrodynamic 
diameter (nm) 

Polydispersity 
index 

Zeta potential 
(mV) 

0.9 79.8 ± 3.9 0.083 -1.5 ± 1.10 
5 78.5 ± 2.4 0.075 -1.04 ± 0.84 

 

 

 

GPM Pharmacokinetics 

Following intravenous administration, 0.9 and 5 nm GPMs exhibited similar 

blood clearance profiles with circulation half-lives of ~ 1.5 hours and ~ 2.6 hours, 

respectively (Figure 5.3). 

 

Figure 5.3. (A-B) Blood clearance profile using ICP-OES analysis of gold content in blood at various 

times following the intravenous administration of  (A) 0.9 nm GPMs and (B) 5 nm GPM in mice (n = 3). 

 
The biodistribution of GPMs was evaluated at 1 day, 3 days, 1 week, 2 weeks, 1 

month, and 3 months post-injection (150 mg Au/kg) by performing an inductively 

coupled plasma–optical emission spectroscopy (ICP-OES) analysis of gold content 

within the brain, thyroid, lungs, heart, liver, spleen, small bowel, large bowel, kidneys, 
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pancreas, sublingual lymph nodes, skin, bone, muscles, feces, and urine. As expected, the 

largest fractions of gold were observed in the spleen and liver (Figure 5.4).  

 

Figure 5.4. Measurement of gold content in primary excretory organs and waste. The percent injected dose 

of gold per gram of tissue was measured in the (A) spleen, (B) liver, (C) feces, (D) small bowel, (E) 

kidneys and (F) urine at various times following the intravenous administration of 0.9 nm and 5 nm GPMs. 

All measurements of gold were acquired via ICP-OES. Asterisk indicates statistical significance (p < 0.05) 

between 0.9 nm GPM and 5 nm GPM groups. 

 

Higher levels of gold were observed in the spleen following intravenous injection 

of the 5 nm GPMs, compared with the 0.9 nm GPMs, for all time points studied. 

However, both groups showed a marked reduction in gold accumulation between one day 

and three months post-injection. Specifically, there was a 35% reduction of gold in the 

spleen of mice that received 5 nm GPMs and a 55% reduction of gold in the spleen of 

mice that received 0.9 nm GPMs.  

Initially, the levels of Au within the liver were higher for the 0.9 nm GPM group 

(40.3 ± 6.3 %ID/g), compared with the 5 nm GPM group (23.7 ± 2.5%ID/g). However, 



201 
 

after 3 months the Au content dropped more dramatically in mice that received the 0.9 

nm GPMs (65%) compared to the 5 nm GPMs (38%). As a result, the 0.9nm GPMs 

group (14.3 ± 1.5 %ID/g) and 5 nm GPMs group (14.7 ± 1.4 %ID/g) had similar levels of 

gold retained in the liver at this later time point.  

Hepatobiliary excretion appeared to be the primary pathway for gold removal, 

with measureable levels of gold detected in the feces following injection of both 0.9 nm 

and 5 nm GPMs.  However, this excretion pathway appeared to be significantly more 

efficient for the 0.9 nm GPMs, compared to the 5 nm GPMs, with approximately 7.5 

times more gold detected in the feces one day post-injection. For both groups, the gold 

content in the feces decreased over the duration of the study with no detectable levels at 3 

months. 

Consistent with the more efficient removal of gold from 0.9 nm GPMs via the 

hepatobiliary system, qualitatively higher levels of gold were also found in the small 

bowel, although not statistically significant, one day and 3 days post-injection, compared 

with mice receiving 5 nm GPMs.  By one week and at all subsequent time points, similar 

levels of gold were observed in the small bowels for both GPM formulations. Evidence 

of hepatobiliary excretion is consistent with previous studies, which have shown that 17 

nm AuNPs that are taken up by Kupffer cells and hepatocytes are secreted primarily by 

hepatocytes within the first 24 hours through the hepatobiliary pathway, after which they 

are cleared through Kupffer cells through mechanisms that are poorly understood.20, 21  

The quantity of gold found in the kidneys was far lower than what was found in 

the liver and spleen for both the 0.9 nm and 5 nm GPM groups. This is not surprising 

considering that GPMS are too large to undergo glomerular filtration. It was anticipated 
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that the GPMs would be predominantly taken up by the reticuloendothelial system (RES) 

prior to breakdown of the polymeric micelle and release of the encapsulated AuNPs.  

Nonetheless, a measureable amount of gold was detected in the kidneys, with statistically 

significant lower levels of gold found one day, 1 month and 3 months post-injection of 

the 0.9 nm GPMs, compared with 5 nm GPMs. This difference was most pronounced at 

the later two time points. Interestingly, there also seemed to be some renal excretion of 

gold from mice that received 0.9 nm GPMs. In fact, approximately 100-fold more gold 

was detected in the urine one day following the administration of 0.9 nm GPMs (0.29 % 

ID/g) compared with 5 nm GPMs (0.003 % ID/g). These urine concentrations gradually 

decreased to undetectable levels at 3 months. We attribute the difference between the two 

GPM formulations to be a direct result of the difference in the sizes of encapsulated 

AuNPs. Since 0.9 nm AuNPs are much smaller than the size cut-off limit for successful 

glomerular filtration, even if opsonized, they should enjoy more efficient excretion into 

the urine than the larger 5 nm AuNPs.  

Two organs that appeared to exhibit somewhat surprising levels of gold following 

the injection of the 5 nm GPMs were the brain and heart (Figure 5.5). Specifically, in the 

brain we detected 2.8 ± 0.3 %ID/g one day post-injection, compared with only 0.14 ± 

0.03% ID/g for 0.9 nm GPMs. Although not high per se, this level of gold is readily 

measureable. Nonetheless, it is likely that gold from the 5 nm GPMs did not penetrate the 

blood-brain barrier considering their large size and that levels of gold were at or near the 

detection limit after just one week post-injection. Gold would presumably not be cleared 

from brain in such a short timeframe if it has entered the brain parenchyma. The presence 

of gold does not seem to be an artifact since it was found to be at similar levels in all of 
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the mice at one and three days post-injection.  Notably, others have also reported the 

presence of low levels of AuNPs  (15 nm and 50 nm) in brain 24 hrs after intravenous 

injection.22 

 

Figure 5.5. Measurement of gold content in the brain and heart. The percent injected dose of gold per gram 

of tissue was measured in the (A) brain and (B) heart at various times following the intravenous 

administration of 0.9 nm and 5 nm GPMs. All measurements of gold were acquired via ICP-OES. Asterisk 

indicates statistical significance (p < 0.05) between 0.9 nm GPM and 5 nm GPM groups. 

 

In the heart, the gold content was 2 times greater one day following the 

administration of 5 nm GPMs (3.1 ± 0.2 %ID/g) compared with 0.9 nm GPMs (1.5 ± .06 

%ID/g). Both groups showed a reduction in gold content (75% for 5 nm GPMs and 86% 

for 0.9 nm GPMs) in the heart over 3 months, however, mice receiving 5 nm GPMs 

possessed higher levels of gold at all time points. 

In the skin, the gold content fluctuated between 2 and 12 %ID/g (on average) 

during the duration of the studies with no statistically significant differences between the 

0.9 nm and 5 nm GPMs during the 3 month time period (Figure 5.6). The skin has long 

been shown to be an important site of accumulation for nanoparticles that are 

administered intravenously. Studies have shown that AuNPs can exit blood vessels in the 
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skin and be phagocytosed by dermal macrophages and dendritic cells.23 As these 

phagocytes become saturated they begin to accumulate in the pericellular space of the 

dermis and subcutaneous tissue. In fact, this phenomenon was visible in the skin of mice 

injected with GPMs, which did have some discoloration. The distribution of GPMs in the 

skin of mice was heterogeneous with some areas exhibiting a dark purplish hue and other 

areas showing little to no change in skin color. 

 

Figure 5.6. Measurement of gold content in the lymph nodes and skin. The percent injected dose of gold 

per gram of tissue was measured in the (A) lymph nodes and (B) skin at various times following the 

intravenous administration of 0.9 nm and 5 nm GPMs. All measurements of gold were acquired via ICP-

OES. No statistically significant difference (p < 0.05) was observed between 0.9 nm and 5 nm GPM 

groups. 

 

High overall levels of gold were also observed in the lymph nodes of mice 

following the injection of 0.9 nm and 5 nm GPMs, with levels exceeding 20 %ID/g at 

various time points for both groups (Figure 5.6). However, due to the high variability, no 

statistically significant differences were observed between the groups at any one time 

point. High lymph uptake was not completely unexpected considering that many studies 

have shown the accumulation of nanomaterials in lymph nodes, in the size range of 10 – 

300 nm. 23-28 It has been postulated that nanomaterials can slowly extravasate from the 
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vascular to interstitial space, and are then transported to lymph nodes through the 

lymphatic vessels. Alternatively, it has also been suggested that nanoparticles can be 

taken up by the RES and trafficked to the lymph nodes. 

For most of the other organs that were examined, including the thyroid, pancreas, 

large bowel, and muscle, there was a general trend of higher levels of gold in mice 

injected with 5 nm GPMs, compared with 0.9 nm GPMs (Figure 5.7). However, at most 

time points the differences were not statistically different and the overall levels of gold 

were quite low, <2.5 %ID/g (on average).  Both groups showed a significant reduction in 

gold content over the 3-month time period in each of these organs.  

 

Figure 5.7. Measurement of gold content in various organs. The percent injected dose of gold per gram of 

tissue was measured in the (A) thyroid, (B) pancreas, (C) large bowel, (D) muscle, (E) bone and (F) lungs 

at various times following the intravenous administration of 0.9 nm and 5 nm GPMs. All measurements of 

gold were acquired via ICP-OES. Asterisk indicates statistical significance (p < 0.05) between 0.9 nm GPM 

and 5 nm GPM groups. 
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In bone, the levels of gold were generally higher in mice receiving 0.9 nm GPMs, 

particularly at early time points, but again the differences were not statistically significant 

(Figure 5.7). Similar levels of gold were observed in the lungs following the injection of 

0.9 nm and 5 nm GPMs for all time points (Figure 5.7). A significant reduction in gold 

was observed in both bone and lungs following the injection of 0.9 nm and 5 nm GPMs. 

Toxicity Analysis 
 

The intravenous injection of 0.9 nm and 5 nm GPMs into healthy mice led to no 

signs of illness, change in activity, or weight loss (Figure 5.8). A toxicological analysis of 

mice 1 day, 1 week, 1 month and 3 months following the administration of GPMs 

revealed blood chemistry levels within normal limits, despite being highly variable 

(Figure 5.9). It should be noted that enzyme levels can fluctuate due to the method and 

rate of blood collection, time of day in which blood was collected, and level of animal 

physical activity and are therefore highly variable in nature.23 

 

Figure 5.8. Whole animal weights of mice treated with 0.9 nm or 5 nm GPMs (150 mg Au/kg). Data reflect 

average weights (n = 3) for each group. 
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Figure 5.9. Hematological analysis of mice treated with GPMs. Blood enzyme levels of female nude 

athymic mice were acquired 1 day, 7 days, 1 month, and 3 months days post-injection of 150 mg Au/kg of 

0.9 nm GPMs (grey) or 5 nm GPM (black). Grey dotted lines denote the “normal” analyte levels. The 

specific enzymes analyzed were (A) alkaline phosphatase (ALKP), (B) alanine transaminase (ALT), (C) 

aspartate aminotransferase (AST), and (D) total bilirubin (TBIL). 

 
Histology of liver and spleen  

To further evaluate the potential toxicity of GPMs, histological analysis was 

performed on the liver and spleen 1 day, 1 week, 1 month, and 3 months following the 

injection of 0.9 nm and 5 nm GPMs. Hematoxylin and eosin (H&E) stains of these 

organs showed no evidence of abnormal pathology or adverse effects (Figure 5.10). 

These results are consistent with previously established literature touting the safety 

profile of AuNPs.11, 29-34 
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Figure 5.10. Histological of liver and spleen for mice treated with GPMs. Mice (n=3 per group) received a 

single intravenous injection of 0.2 mL of either PBS (control), 0.9 nm GPMs, or 5 nm GPMs (150 mg 

Au/kg dose in PBS) followed by dissection of the liver and spleen at the indicated times. Sections were 

stained with H&E and images were acquired via light microscopy at 10x magnification. 
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5.5 Conclusions 

Numerous reports have indicated that AuNPs are poorly cleared from the 

reticuloendothelial system following intravenous administration. For example, 

Balasubramanian et al showed that in rats injected with 20 nm PEG AuNPs, gold levels 

in the liver and spleen remain high even at 2 months follow up (6 % reduction in gold).8 

In another study by Sadauskas et al, analysis of livers in mice injected with 40 nm AuNPs 

resulted in only a modest 9% reduction in gold content over a 6-month time period.7 Goel 

et al found that the gold content in the liver was reduced by approximately 50% 

following the injection of 33 nm PEG AuNPs, but that levels of gold in the spleen 

remained essentially unchanged 3 months post-injection.9 In this study we investigated 

the organ distribution and retention of GPMs, which consist of clusters of 0.9 or 5 nm 

AuNPs encapsulated within the hydrophobic micelle core, for up to three months post-

injection. As expected, accumulation was highest in organs rich in macrophages (liver, 

spleen, lymph nodes). However, in contrast to the many studies that report inefficient 

clearance and a persistent accumulation of AuNPs within the reticuloendothelial system, 

we observed a 65% and 55% reduction in gold content in the liver and spleen, 

respectively, between 1 day and 3 months following the injection of 0.9 nm GPMs.  A 

38% and 35% reduction in gold content was observed in the liver and spleen, 

respectively, following injection of 5 nm GPMs. A reduction of gold in most other organs 

was observed as well. The primary mechanism of excretion seemed to be via the 

hepatobiliary systems, although some renal clearance was also observed. In general, 

GPMs containing 0.9 nm AuNPs seemed to exhibit more efficient excretion compared to 

5 nm GPMs, with higher levels of gold detected in the feces and urine at earlier time 
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points (1 – 7 days). Both the 0.9 nm and 5 nm GPMs were found to be biocompatible 

with no evidence of toxicity as measured by blood chemistry, loss in body weight, signs 

of distress, and histological analysis of liver and spleen tissue sections. Overall, these 

findings suggest that the excretion profile of inorganic nanomaterials may be improved if 

nanoparticles formed from clusters of small inorganic materials are used in favor of 

single solid particles. 
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Chapter 6: Summary Discussion, Future Directions and 

Concluding Remarks 

6.1 Summary Discussion 

6.1.1 GPMs for CT Imaging and Radiation Enhancement 
 

Due to their unique physical, chemical and optical properties, AuNPs have been 

proposed for use in many diverse biomedical applications including biosensors, photo-

responsive agents, drug delivery vehicles, and therapeutic agents.1 Furthermore, the high 

electron density and atomic number of gold nanoparticles has proven to be valuable for 

electron and X-ray attenuation. Initially proposed by Hainfeld et al.,2 the intravenous 

administration of AuNPs has been shown to provide blood pool contrast enhancement in 

X-ray imaging. Since then many studies have used AuNPs as contrast agents for X-ray 

imaging including metabolic disorders,3 malignancies,4 and cardiovascular diseases.5 

However, a limitation of Hainfeld’s study is the rapid clearance of AuNPs, which can 

limit EPR driven accumulation necessary for successful contrast enhanced tumor 

imaging. We have shown that by encapsulating small AuNPs within micelles, we can 

significantly improve the nanoparticle blood circulation time as compared to single 

AuNPs and potentially improve AuNP elimination. Furthermore, this enhanced 

circulation was visible in CT images with GPMs remaining in the bloodstream for a 

much longer duration. The advantage of prolonging nanoparticle blood residence time is 

to increase the accumulation of nanoparticles within the tumor. When the nanoparticles 

first enter the tumor circulation, a small percentage will exit the vasculature due to the 

EPR effect while the majority will remain in the systemic circulation. The longer the 
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nanoparticles remain in the circulation, the higher the probability that more particles will 

permeate across the leaky tumor vasculature and enter the tumor interstitium. Indeed, this 

was shown in CT images of tumor bearing mice where gold mediated contrast was 

clearly visible in mice administered GPMs but not in mice receiving single 1.9 nm 

AuNPs. This GPM enhanced CT image was used to guide the delivery of a single 6 Gy 

dose of X-ray radiation therapy that yielded improved survival when compared to non-

irradiated and irradiated controls. These results are truly exciting as they have the 

potential to spare normal healthy tissue on two fronts. First, the use of contrast enhanced 

image guided radiation therapy could provide a more accurate morphological 

representation of tumor geometry and margins for maximizing therapeutic delivery 

within the lesion. Second, the use of AuNPs as radiation enhancing agents could reduce 

the overall dose required for complete tumor eradication, and therefore reduce the 

exposure of adjacent healthy tissues to further radiation.  

6.1.2 GSMs for MR Imaging and Radiation Enhancement 

The main motivation for introducing superparamagnetic iron oxide nanoparticles 

(SPIO) into our micelles was the apparent mismatch between the GPM dose needed for 

radiation enhancement and the lower detection limit of GPMs via CT. In our GPM in 

vitro studies, we observed approximately a 2.2 fold increase in DNA-DSBs as well as a 

decrease in cell survival at Au concentration of 0.1 mg/ml. However, the minimum 

concentration of Au that can be detected using CT imaging is approximately 0.5 mg/ml. 

This five-fold difference in concentration means that large doses of Au are required to 

provide sufficient tumor contrast for guiding radiation therapy, and that the concentration 

of Au within the tumor exceeds the 0.1 mg/ml needed for effective radiosensitization.  
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The incorporation of SPIO nanoparticles with AuNPs in micelles enabled contrast 

enhanced imaging using MRI. As a result, MRI and CT phantoms of GSMs showed a 

sixty six fold improvement in sensitivity using MR. Furthremore, in vivo imaging 

demonstrated that while no tumor contrast enhancement was observed using CT imaging, 

MRI contrast was clearly visible producing a hypointense image within the tumor.  

 For each group of animals receiving radiation therapy, an MR image was acquired 

both pre-injection and twenty-four hours after injection of GSM prior to the 

administration of radiation. Intriguingly, the amount of tumor contrast generated on T2 

weighted MR imaging correlated linearly with the rate of tumor reduction therapy after 

therapy meaning that those tumors with the most MR contrast exhibited higher reductions 

in tumor volume post therapy. While image contrast did correlate with tumor response, 

there was no correlation with overall survival. A likely explanation could be that some 

cancer cells may have been excluded from the treatment volume resulting in a 

repopulation of cells and tumor relapse. Furthermore, as a result of the heterogeneous 

distribution of nanoparticles in the tumor, some areas within the tumor may experience 

more radiation enhancement than others resulting in differential cell death. Moreover, 

alternate factors that are most likely excluded during fractionation including phase of cell 

cycle, and tumor oxygenation may play a role in tumor recurrence.  

6.1.3 GPMs for Enhanced Clearance and Improved 

Pharmacokinetics 

A major limitation for nanoparticle technologies is their poor elimination profiles, 

especially for particles larger than 6 nm, which is believed to be the size cut off for 

successful renal clearance. Large sized particles are retained primarily in organ systems 
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that are particularly high in macrophages such as the liver, spleen, bones, lymph nodes, 

and skin. For gold, as these particles are not biodegradable, they remain there for 

extended periods without significant reduction in gold content. In this thesis, our 

approach was to form polymeric micelles with small AuNPs (0.9 and 5 nm) in their core. 

We evaluated various organs for gold content up to three months, while regularly 

measuring blood chemistries, weight changes, and monitoring for any signs of toxicity. In 

contrast to many other documented studies, we saw a reduction over time in many organs 

including the liver and the spleen. For both particle sizes, gold was detected in feces 

suggesting the hepatobiliary pathway to be involved in particle excretion. Furthermore, 

smaller AuNPs showed superior clearance to larger AuNPs with higher gold contents 

measured in the feces during early time-points. Similarly, in the urine, gold was detected 

only in mice administered 0.9 nm GPMs at very early time-points. Therefore, the use of 

sub-nanometer particles within micelles can facilitate gold excretion via the liver in the 

feces and kidneys at early time-points. It is important to note that very little or no gold 

was detected in the feces or urine at three months showing that gold excretion reaches a 

plateau at this timepoint. While AuNPs were not completely eliminated at the end of the 

study, there was significant reduction of gold content in the RES compared to other 

studies evaluating the biodistribution of AuNPs.  

6.1.4 Targeted Iron Oxide Nanoparticle Oleosin Micelles  
 

Thus far, both GPM and GSM particles used for our in vivo evaluations consisted 

of a pegylated, hydrophilic corona and relied on passive targeting, i.e. nonspecific 

accumulation within tumors through the EPR effect. Although some tumors may 

experience high permeability, multiple passes through the circulation are needed for a 
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substantial amount of nanoparticles to enter tumor tissue. Therefore, a critical criteria for 

successful passive delivery is the design of nanoparticles with long in vivo circulation 

times. Furthermore, passive targeting is non-specific relying heavily on high vascular 

permeability and poor lymphatic drainage at the tumor site. In contrast, active targeting 

arises from the direct interaction of targeting ligands with specific receptors on cancer 

cells. While initially receptor targeted particles are also dependent on the EPR effect for 

tumor penetration, there are several key advantages for targeted agents including higher 

tumor retention, the ability to facilitate nanoparticle internalization for improved efficacy, 

and improved tumor specificity. Our approach was to use a naturally occurring surfactant 

protein oleosin to stabilize SPIO nanoparticles. These particles displayed high r2 

relaxivity and showed cell specific targeting in cells overexpressing the Her2/neu 

receptor. In addition, a major advantage of this platform compared to other targeted 

particles is the ability to develop functionalized particles in a single step by blending in a 

Her2 affibody-oleosin mutant.  

6.2 Future Directions 

6.2.1 Improving CT Sensitivity for Molecular Imaging 

For molecular and tumor imaging, a fundamental limitation of using AuNPs as 

CT contrast agents is the low sensitivity detection limit of X-rays compared to other 

imaging modalities. Specifically, studies have shown that the detection limit of gold is 

approximately 0.5 mg/ml. This is orders of magnitudes higher when compared to other 

imaging modalities such as MRI and PET. In order to overcome the sensitivity limitations 

of CT, highly concentrated doses need to be administered. In addition, although AuNPs 

attenuate X-rays better than conventionally used iodinated contrast agents, the cost of 
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using gold is a huge obstacle for their clinical utilization. However, recent improvements 

in CT technology such as multicolor spectral CT have shown that molecular imaging 

using CT may be possible.5 This technique enables the simultaneous detection of multiple 

elements by distributing incident X-rays into various energy bins enabling significantly 

lower concentrations of AuNPs to be administered. Another imaging strategy to improve 

contrast is to use dual energy X-ray imaging that increases the signal intensity of imaging 

agents by the removal of the soft-tissue signal variation in the background. This is 

obtained by subtracting the images obtained at two energy levels that flank the k-edge of 

the contrast material. 

6.2.2 Fractionated Studies Using GPMs and GSMs 

Although there are some scenarios during which a single radiation dose exceeds 2 

Gy (high grade gliomas),6 most conventional radiation therapy treatment regimens are 

generally divided into multiple sessions with doses usually not exceeding 1.8 – 2 Gy. To 

our knowledge, there are currently no documented studies examining the 

radiosensitization effects of AuNPs that are administered during fractionated radiation 

therapy. Therefore, it would be valuable to compare the benefits AuNPs with sub-

therapeutic doses of radiation therapy.  

The administration of radiation to blood vessels has been shown to increase 

endothelial permeability.6 This strategy could be adapted to our studies such that sub-

therapeutic doses of radiation are applied to tumor volumes in order to disrupt tumor 

vasculature thereby increasing nanoparticle penetration for subsequent radiation therapy. 

AuNPs can either be injected prior to or right after the first few fractions of radiation 

therapy. The advantage of administering AuNPs prior to the initiation of fractionated 
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radiation therapy is that they can provide tumor contrast for assisting image guided and 

enhanced radiation therapy. However, the application of AuNPs after the first fraction of 

radiation would increase nanoparticle tumor accumulation, thereby increasing AuNPs 

mediated radiosensitization during subsequent fractions. 

Lastly, most studies including our own demonstrate improved dose enhancement 

and radiosensitization in the less clinically relevant kilovoltage energy ranges. While a 

handful of studies have shown some improvement in the radiation enhancement effects at 

megavoltage energies, the exact mechanisms of sensitization are largely unknown. 

Therefore, further studies need to be carried out at these energies in order to examine the 

therapeutic benefits of AuNP mediated cytotoxicity.  

6.2.3 In Vivo Use of GSMs for Evaluating Tumor 
Physiology 
 

Therapeutic response is an important subject in the management of cancer 

patients. While some malignancies may be responsive to anticancer agents, a majority of 

them will relapse increasing their resistance to first line therapies. These resistances are 

governed by mutations in cancer cells that can alter their phenotype and expression 

profiles. Moreover, some regions of tumors may be poorly visible on imaging or have 

limited access through the blood supply for successful distribution of agents. As a result, 

therapies are often costly, time consuming, and unsuccessful with huge burdens on 

patients.  

 Through MR imaging, we found a direct correlation between extent of tumor 

contrast and response to radiation therapy. While the most likely explanation for this 

effect is due to the increased accumulation of nanoparticles, there are also other potential 

causes. Since there is heterogeneity in the vascular supply and permeability of blood 
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vessels supplying tumors, one must consider this to be a key barrier that limits the 

successful delivery of intravenously administered agents to tumor cells. In fact, we 

observed this in our animal studies with some tumors showing more nanoparticle 

accumulation than others. Increased tumor permeability to particles can also mean 

increased tumor oxygenation. As mentioned in the introduction section, hypoxia is a 

significant contributor to tumor radioresistance. With this in mind, tumors exhibiting 

substantial nanoparticle accumulation may experience some free radical generation from 

the presence of oxygen in addition to photoelectrons generated from nearby 

nanoparticles. Therefore the use of MR imaging, particularly nanoparticle mediated 

contrast enhancement, can provide some insight on tumor vascularization, permeability, 

oxygenation, and the likelihood to be responsive to specific therapies. This approach can 

be extended to other forms of cancer therapy to provide information of drug 

accumulation at tumor sites.  

6.2.4 Improved Clearance Using Novel AuNPs 
  

Since a micelle nanoplatform can carry a payload of small AuNPs, it can 

significantly increase the particle size to prolong blood circulation and avoid renal 

clearance. We have already seen that using smaller AuNPs can help enhance total body 

excretion. However despite using sub-nanometer AuNPs, there are still a number of 

improvements to be made using this nanoparticle formulation since gold within the 

organs was not completely eliminated, and levels of gold in both urine and feces were 

essentially undetectable at later time point. Although, this study has shown significant 

clearance of AuNPs over 3 months, the hydrophobic coating present on the surface of the 

nanoparticles may limit their complete removal. An alternative strategy would be to 
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develop sub-nanometer AuNPs that transition from hydrophobic to hydrophilic. Initially, 

these particles would be hydrophobic enabling the successful encapsulation of gold into 

the hydrophobic core of the micelle. However, as these cells are internalized, and 

experience a low pH environment within lysosomes, the biodegradable coating will be 

hydrolyzed exposing the hydrophobic AuNPs. These AuNPs will become water-soluble 

within acidic lysosomes. Once dispersed, their small size will render the individual 

AuNPs susceptible to excretion by glomerular filtration and/or more readily degraded by 

lysosomal enzymes. Alternatively, nanoformulations can be developed that can 

incorporate hydrophilic AuNPs directly. Previous studies have shown that AuNPs can be 

assembled into clusters using weakly adsorbing biodegradable triblock copolymers.7 

Once the polymer is degraded, the nanclusters can deaggregate into individual AuNPs to 

facilitate clearance.  

6.2.5 In Vivo Targeting of Iron Oxide Oleosin Micelles 
  

While we have successfully demonstrated cell specific targeting of iron micelles 

to cancer cells in vitro, a more thorough biological investigation is warranted in vivo. 

Since the protein oleosin is easily modifiable, alterations in the surface charge and 

appending specific stealth ligand (CD47) to the particles could engineer nanoparticles to 

be less immunogenic and nontoxic while maintaining long circulation times.8 The amino 

acid sequence of the oleosin protein can also by modified such that particle formation and 

stability are improved. Further modifications to the nanoparticle surface could improve 

targeting. For example, the density of targeting ligand on the surface of the nanoparticle 

is a major determinant of cell specific binding.9 Therefore, optimizations of ligand 

density will likely improve nanoparticle targeting capabilities. Linkers between oleosin 
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and the ligand can also be introduced to reduce the steric hindrance of targeting agents 

and maximize ligand receptor interactions.  

6.3 Concluding Remarks 

 During the past decades, advancements in the field of radiation therapy have 

revolutionized the process of cancer treatment. New technologies that enable accurate 

tumor segmentation, dose specific deliveries, and specific tumoricidal agents have 

contributed significantly to maximizing therapeutic doses only to intended tissues.  In the 

future, we envision a nanoplatform that can be used to actively target cancer cells via 

ligand-receptor mediated interactions, provide tumor specific contrast for image guided 

radiation therapy and prognostic information, and that is effectively cleared from both 

systemic circulation as well as the reiculoendothelial system. Further improvements to 

increase tumor specific targeting and biological clearance would inevitably facilitate the 

translatability of nanodevices to the clinic.      
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