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Modifications of general relativity provide an alternative explanation to dark energy for the observed

acceleration of the universe. We calculate quasilinear effects in the growth of structure in fðRÞ models of

gravity using perturbation theory. We find significant deviations in the bispectrum that depend on cosmic

time, length scale and triangle shape. However the deviations in the reduced bispectrum Q for fðRÞ
models are at the percent level, much smaller than the deviations in the bispectrum itself. This implies that

three-point correlations can be predicted to a good approximation simply by using the modified linear

growth factor in the standard gravity formalism. Our results suggest that gravitational clustering in the

weakly nonlinear regime is not fundamentally altered, at least for a class of gravity theories that are well

described in the Newtonian regime by the parameters Geff and �=�. This approximate universality was

also seen in the N-body simulation measurements of the power spectrum by Stabenau & Jain (2006), and

in other recent studies based on simulations. Thus predictions for such modified gravity models in the

regime relevant to large-scale structure observations may be less daunting than expected on first

principles. We discuss the many caveats that apply to such predictions.
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I. INTRODUCTION

The energy contents of the Universe pose an interesting
puzzle, in that general relativity (GR) plus the standard
model of particle physics can only account for about 4% of
the energy density inferred from observations. By intro-
ducing dark matter and dark energy, which account for the
remaining 96% of the total energy budget of the universe,
cosmologists have been able to account for a wide range of
observations, from the overall expansion of the universe to
the large-scale structure of the early and late universe [1].

The dark matter/dark energy scenario assumes the va-
lidity of GR at galactic and cosmological scales and in-
troduces exotic components of matter and energy to
account for observations. Since GR has not been tested
independently on these scales, a natural alternative is that
GR itself needs to be modified on large scales. This pos-
sibility, that modifications in GR on galactic and cosmo-
logical scales can replace dark matter and/or dark energy,
has become an area of active research in recent years.

Attempts have been made to modify GR with a focus on
galactic [2] or cosmological scales [3–5]. Modified
Newtonian dynamics (MOND) and its relativistic version
(Tensor-Vector-Scalar, TeVeS) [2] attempt to explain ob-
served galaxy rotation curves without dark matter (but
have problems on larger scales). The DGP model [4], in
which gravity lives in a 5D brane world, naturally leads to
late time acceleration of the universe.

Adding a correction term fðRÞ to the Einstein-Hilbert
action [3] also allows late time acceleration of the universe
to be realized.

In this paper we will focus on modified gravity (MG)
theories that are designed as an alternative to dark energy

to produce the present day acceleration of the universe. In
these models, such as DGP and fðRÞmodels, gravity at late
cosmic times and on large-scales departs from the predic-
tions of GR. By design, successful MG models are difficult
to distinguishable from viable DE models against obser-
vations of the expansion history of the universe. However,
in general they predict a different growth of perturbations
which can be tested using observations of large-scale
structure (LSS) [6–21].
In this paper we consider the quasilinear regime of

clustering in which perturbation theory calculations are
valid. We explore what fðRÞ modifications to gravity pre-
dict about the behavior of the three-point correlation func-
tion. In Sec. II we outline the particular type of fðRÞ
gravity model we will be using for our calculations. In
Sec. III we introduce the fundamentals of perturbation
theory and, in particular, how it applies to modified gravity.
In Sec. IV we focus on second order corrections and, in
particular, the Bispectrum. In Sec. V we present our results
and compare with other studies of the nonlinear regime. In
Sec. VI we discuss the implications for observations.

II. THE fðRÞ MODIFIED GRAVITY MODEL

In general fðRÞ models are a modification of the
Einstein-Hilbert action of the form:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
Rþ fðRÞ

2�2
þLm

�
; (1)

where R is the curvature, �2 ¼ 8�G, and Lm is the matter
Lagrangian. A major issue with gravity modifications has
been that while they are successful at explaining the ac-
celeration of the universe, they also tend to fail to comply
with Solar System (very small scales) observations.
Recently, though, the so called Chameleon mechanism*borisov@physics.upenn.edu
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was found [22,23] that makes it possible to overcome this
problem. Significant attempts have been made to include
Chameleon behavior [24] in DGP theories as well. One
example of an fðRÞ model that exhibits Chameleon behav-
ior was constructed by Hu and Sawicki [25]. The func-
tional form of fðRÞ there is derived from a list of
observational requirements: it should mimic �CDM in
the high-redshift regime as well as produce �CDM accel-
eration of the universe at low redshift without a true
cosmological constant; it should also fit Solar System
observations.

The particular form chosen by [25] is:

fðRÞ ¼ �m2 c1ðR=m2Þn
c2ðR=m2Þn þ 1

(2)

with

m2 � �2 ��0

3
¼ ð8315 MpcÞ�2

�
�mh

2

0:13

�
; (3)

where � � 8�G and ��0 is the average density today. In this
model, modifications to GR only appear at low redshift,
when we are safely in the matter dominated regime. The
properties of the model are well described by the auxiliary

scalar field fR � dfðRÞ
dR .

Before going to the expansion history, it is worth briefly
reviewing the main features of this model, following the
original presentation in [25]. The trace of the modified
Einstein equations serves as the equation of motion for fR:

3hfR � Rþ fRR� 2f ¼ ��2�; (4)

or, in terms of the effective potential,

hfR ¼ @Veff

@fR
: (5)

The effective mass for the fR field is then given by the
second derivative of Veff , evaluated at its extremum:

m2
eff ¼

@2Veff

@f2R
¼ 1

3

�
1þ fR
fRR

� R

�
: (6)

The Compton wavelength of the field is then given by
�fR � m�1

eff .

It is very convenient to introduce a dimensionless quan-
tity:

B ¼ fRR
1þ fR

R0 H
H0 : (7)

It has been shown [25] that in the high-curvature regime B
is connected to the Compton wavelength via:

B1=2 � �fRH (8)

and thus is essentially the Compton wavelength of fR at the
background curvature in units of the horizon length.

In the static limit with jfRj � 1 and jf=Rj � 1, Eq. (4)
becomes

52 fR � 1

3
ðR� �2�Þ; (9)

where � is the local density. This equation has 2 modes of
solutions. One is the very high curvature R � �2� and the
other one is the low curvature (but still high compared to
the background density) R � �2�. For more on the inter-
play of these two regimes and applications in solar system
observations see [25].
Let us now move on to the expansion history. For the

model to yield behavior that is observationally viable
requires a choice for the present day value of the fR field
fR0 � 1. This is equivalent to R0 � m2. In that case the
approximation R � m2 is valid for the whole expansion
history and we have:

lim
m2=R!0

fðRÞ � � c1
c2

m2 þ c1
c22

m2

�
m2

R

�
n
: (10)

In the limiting case of c1=c
2
2 ! 0 at fixed c1=c2 we

obtain a cosmological constant behavior �CDM. Thus to
approximate the �CDM expansion history with a cosmo-
logical constant �� and matter density �m we set:

c1
c2

� 6
��

�m

: (11)

This leaves 2 remaining parameters to play with: n and
c1=c

2
2 to control how closely the model mimics �CDM.

Larger n mimics until later in the expansion history, while
smaller c1=c

2
2 mimics it more closely.

For flat �CDM we have the following relations:

R � 3m2

�
a�3 þ 4

��

�m

�
; (12)

fR ¼ �n
c1
c22

�
m2

R

�
nþ1

: (13)

As we will see later these are the necessary ingredients
for the application of perturbation theory to the model.
Finally we need to obtain a suitable parametrization of

the mode. At the present epoch we have:

R0 � m2

�
12

�m

� 9

�
; (14)

fR0 � �n
c1
c22

�
12

�m

� 9

��n�1
: (15)

In particular, for �� ¼ 0:76 and �m ¼ 0:24, we have
R0 ¼ 41m2 and fR0 � �nc1=c

2
2=ð41Þnþ1. From now on

we will parametrize the model through fR0 and n. Fig. 9
in [25] shows that there is a wide range of viable parameter
values which satisfy Solar System and Galaxy require-
ments. We reiterate that what makes this particular fðRÞ
model viable is its Chameleon behavior—the possibility of
uniting Galaxy and Solar System observations with the
expansion of the Universe.
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III. PERTURBATION FORMALISM

By definition, the dark sector (dark matter and dark
energy) can only be inferred from its gravitational conse-
quences. In general relativity, gravity is determined by the
total stress-energy tensor of all matter and energy (G�� ¼
8�GT��).

We may consider the Hubble parameter HðzÞ to be fixed
by observations. In a dark energy model, �� is given by the
Friedman equation of GR: �� ¼ 3H2=8�G. The equation
of state parameter isw ¼ �1� 2 _H=3H2. The correspond-
ing modified gravity model has matter density to be deter-
mined from its Friedman-like equation. We will consider
MG models dominated by dark matter and baryons at late
times.

A. Metric and fluid perturbations

With the smooth variables fixed, we will consider per-
turbations as a way of testing the models. In the Newtonian
gauge, scalar perturbations to the metric are fully specified
by two scalar potentials � and �:

ds2 ¼ �ð1� 2�Þdt2 þ ð1� 2�Þa2ðtÞd~x2; (16)

where aðtÞ is the expansion scale factor. This form for the
perturbed metric is fully general for any metric theory of
gravity, aside from having excluded vector and tensor
perturbations (see [26] and references therein for justifica-
tions). Note that� corresponds to the Newtonian potential
for the acceleration of particles, and that in general rela-
tivity � ¼ �� in the absence of anisotropic stresses.

A metric theory of gravity relates the two potentials
above to the perturbed energy-momentum tensor. We in-
troduce variables to characterize the density and velocity
perturbations for a fluid, which we will use to describe
matter and dark energy. The density fluctuation � is given
by

�ð ~x; tÞ � �ð ~x; tÞ � ��ðtÞ
��ðtÞ ; (17)

where �ð ~x; tÞ is the density and ��ðtÞ is the cosmic mean
density. The second fluid variable is the divergence of the
peculiar velocity

� � rjT
j
0=ð �pþ ��Þ ¼ ~r � ~v; (18)

where ~v is the (proper) peculiar velocity. Choosing �
instead of the vector v implies that we have assumed v to
be irrotational. Our notation and formalism follows that of
[27].

In principle, observations of large-scale structure can
directly measure the four perturbed variables introduced
above: the two scalar potentials � and �, and the density
and velocity perturbations specified by � and �. It is
convenient to work with the Fourier transforms, such as:

�̂ð ~k; tÞ ¼
Z

d3x�ð ~x; tÞe�i ~k� ~x: (19)

When we refer to length scale �, it corresponds to a
statistic such as the power spectrum on wave number k ¼
2�=�. We will henceforth work exclusively with the
Fourier space quantities and drop the ^ symbol for
convenience.

B. Linearized fluid equations

We will use the perturbation theory equations for the
quasistatic regime of the growth of perturbations. We begin
with the fluid equations in the Newtonian gauge, following
the formalism and notation of [28].
For minimally coupled gravity models with baryons and

cold dark matter, but without dark energy, we can neglect
pressure and anisotropic stress terms in the evolution equa-
tions to get the continuity equation:

_� ¼ �
�
�

a
� 3 _�

�
’ ��

a
; (20)

where the second equality follows from the quasistatic
approximation as for GR. The Euler equation is:

_� ¼ �H�� k2�

a
: (21)

We parametrize modifications in gravity by two func-

tions ~Geffðk; tÞ and 	ðk; tÞ to get the analog of the Poisson
equation and a second equation connecting � and �
[27,29]. We first write the generalization of the Poisson
equation in terms of an effective gravitational constant
Geff:

k2� ¼ �4�Geffðk; tÞ ��MGa
2�MG: (22)

Note that the potential � in the Poisson equation comes
from the spatial part of the metric, whereas it is the
‘‘Newtonian’’ potential � that appears in the Euler equa-
tion (it is called the Newtonian potential as its gradient
gives the acceleration of material particles). Thus in MG,
one cannot directly use the Poisson equation to eliminate
the potential in the Euler equation. A more useful version
of the Poisson equation would relate the sum of the poten-
tials, which determine lensing, with the mass density. We

therefore introduce ~Geff and write the constraint equations
for MG as

k2ð���Þ ¼ �8� ~Geffðk; tÞ ��MGa
2�MG (23)

� ¼ ��	ðk; tÞ; (24)

where ~Geff ¼ Geffð1þ 	�1Þ=2.
The parameter ~Geff characterizes deviations in the

(���)-� relation from that in GR. Since the combina-
tion ��� is directly responsible for gravitational lens-

ing, ~Geff has a specific physical meaning: it determines the
power of matter inhomogeneities to distort light. This is the
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reason we prefer it over working with more direct general-
ization of Newton’s constant, Geff .

With the linearized equations above, the evolution of
either the density or velocity perturbations can be de-
scribed by a single second order differential equation.
From Eqs. (20) and (21) we get, for the linear solution,

�ð ~k; tÞ ’ �initialð ~kÞDðk; tÞ,

€�þ 2H _�þ k2�

a
¼ 0: (25)

For a given theory, Eqs. (23) and (24) then allow us to
substitute for � in terms of � to determine Dðk; tÞ, the
linear growth factor for the density:

€Dþ 2H _D� 8� ~Geff

ð1þ 	Þ ��a
2 D ¼ 0: (26)

What we need now are ~Geff and 	 for our modified
gravity model.

C. Parametrized post-Friedmann framework

Hu & Sawicki [25] also developed a formalism for
simultaneous treatment of the superhorizon and quasistatic
regime for modified gravity theories (in particular fðRÞ and
DGP) [30] (see also [31]. They begin by describing the
different regimes individually and the requirements they
impose on the structure of such models. Consequently they
describe a linear theory parametrization of the superhor-
izon and the quasistatic regime and test it against explicit
calculation. What is important for this paper is the pro-
posed interpolation function for the metric ratio

g ¼ �þ�

���
: (27)

For consistency we will express formulas from Hu &
Sawicki in terms of physical time instead of expansion
factor. We start with a background FRWuniverse for which
we have the curvature in terms of the Hubble parameter
R ¼ 6 _Hþ 12H2. As we mentioned the background evo-
lution H is chosen to match that of flat �CDM. We can
then compute the Compton parameter B for our preferred
model since we know what fðRÞ, R and H are:

B ¼ fRR
1þ fR

_R
H
_H
: (28)

The next step is to look at the superhorizon regime. In
that case we know how to calculate the potentials� and�.
Their evolution is given by [14]:

€�þ
�
1� €H

H _H
þ _B

Hð1�BÞ þB
_H

H2

�
H _�

þ
�
2

_H

H2
� €H

H _H
þ _B

Hð1�BÞ
�
H2�¼ 0; ðkH ! 0Þ

(29)

� ¼ ��� B _�=H

1� B
; ðkH ! 0Þ: (30)

This allows us to compute gSH ¼ gðt; kH ! 0Þ.
Furthermore in the case of subhorizon evolution where

kH ¼ k=aðtÞH � 1 we have gQS ¼ � 1
3 [14].

According to [30] in the case of fðRÞ theories we can use
the following interpolation functions for the metric ratio:

gðt; kÞ ¼ gSH þ gQSðcgkHÞng
1þ ðcgkHÞng : (31)

The evolution then is well described by [30] cg ¼ 0:71B1=2

and ng ¼ 2 In terms of the post-Newtonian parameter:

	 ¼ ��=� we have g ¼ ð	� 1Þ=ð	þ 1Þ.
We still need one more ingredient, ~Geff , which is given

by [30]

~G effðk; tÞ ¼ G

1þ fR
(32)

We now have all the needed components to use in
Eq. (26) for the growth factor of density perturbations.
Calculations of the fractional change in the linear density
power spectrum compared to GR have been done [25]. We

show these in Fig. 1, using ~Geff and 	 for the particular
model we investigate. We have assumed the transfer func-
tion for the concordance �-CDM model consistent with
the 5-year WMAP data [32].
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FIG. 1 (color online). Fractional change at z ¼ 0 in the density
power spectrum of the fðRÞ model compared to �CDM for a set
of choices of fR0. The upper panel is the n ¼ 4 model, while the
lower panel has n ¼ 1. This figure can be compared with Fig. 4
in [25].
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We can also use the relations given above to obtain the
linear growth factors for � and the potentials from D. Note
that in general the growth factors for the potentials have a
different k dependence than D. For example in Fig. 2 we
show the fractional change in the velocity power spectrum
as compared to GR

IV. THE BISPECTRUM IN PERTURBATION
THEORY

A. Nonlinear fluid equations

The fluid equations in the Newtonian regime are given
by the continuity, Euler and Poisson equations. Keeping
the nonlinear terms that have been discarded in the study of
linear perturbations above, the continuity equations gives:

_�þ � ¼ �
Z d3k1

ð2�Þ3
~k � ~k1
k21

�ð ~k1Þ�ð ~k� ~k1Þ; (33)

where the term on the right shows the nonlinear coupling of
modes. Note that the time derivatives are with respect to
conformal time in this section.

The Euler equation is

_�þH�þ k2� ¼ �
Z d3k1

ð2�Þ3
k2 ~k1 � ð ~k� ~k1Þ
2k21j ~k1 � ~k2j2

� �ð ~k1Þ�ð ~k� ~k1Þ: (34)

We neglect pressure and anisotropic stress as the energy
density is taken to be dominated by nonrelativistic matter
[33]. The Poisson equation is given by Eq. (23) and sup-
plemented by the relation between � and � given by
Eq. (24). Using these equations we can substitute for �
in the Euler equation to get

_�þH�þ 8� ~Geff

ð1þ 	Þ ��MGa
2� ¼ �

Z d3k1
ð2�Þ3

k2 ~k1 � ð ~k� ~k1Þ
2k21j ~k1 � ~k2j2

� �ð ~k1Þ�ð ~k� ~k1Þ: (35)

Eqs. (33) and (35) are two equations for the two variables �
and �. They constitute a fully nonlinear description and can

be solved once 	 and ~Geff are specified. An important
caveat is that they may nevertheless be invalid on strongly
nonlinear scales or for particular MG theories. For the fðRÞ
model considered here, they are valid on scales well above
1 Mpc; on smaller scales the chameleon mechanism modi-
fies the growth of structure [34]. Since we will use pertur-
bation theory, our approach breaks down once �� 1 in any
case.

Next we consider perturbative expansions for the density
field and the resulting behavior of the power spectrum and
bispectrum. Let � ¼ �1 þ �2 þ . . . where �2 �Oð�2

1Þ. In
the quasilinear regime, i.e. on length scales between
�10–100 Mpc, mode coupling effects can be calculated
using perturbation theory. While this is strictly true only
for general relativity, a MG theory that is close enough to

GR to fit observations can also be expected to have this
feature.
For MG, following [27], let us simplify the notation by

introducing the function:


ðk; tÞ ¼ 8� ~Geff

ð1þ 	Þ ; (36)

which is simply 4�G in GR but can vary with time and
scale in MG theories. The evolution of the linear growth
factor is given by substituting for � in Eq. (37) to get (as
above, but with conformal time here)

€� 1 þH _�1 � 
 ��a2�1 ¼ 0: (37)

The linear growth factor has a scale dependence for our
fðRÞ as shown in Fig. 1.
In addition we show below that the second order solution

has a functional dependence on ~Geff and 	 that can differ
from GR. Thus potentially distinct signatures of the scale

and time dependence of ~Geffðk; zÞ can be inferred from
higher order terms. These rely either on features in k and
t in measurements of P��� and P�, or on the three-point
functions which can have distinct signatures of MG even at
a single redshift [35]. Quasilinear signatures due to 	ðk; zÞ
can also be detected via second order terms in the redshift
distortion relations for the power spectrum and bispectrum.
Our discussion generalizes that of [6] who examined a
Yukawa-like modification of the Newtonian potential.
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FIG. 2 (color online). Fractional change at z ¼ 0 in the veloc-
ity power spectrum of the fðRÞ model compared to �CDM for a
set of choices of fR0. The upper panel is the n ¼ 4 model, while
the lower panel has n ¼ 1.
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B. Second order solution

From a perturbative treatment of Eqs. (33) and (35) the
second order term for the growth of the density field is
given by [27]

€� 2 þH _�2 � ��a2
�2 ¼ HI1½ _�1; �1	 þ I2½ _�1; _�1	
þ _I1½ _�1; �1	; (38)

where I1 and I2 denote convolution like integrals of the two
arguments shown, given by the right-hand side of Eqs. (33)
and (35) as follows

I1½ _�1; �1	ð ~kÞ ¼
Z d3k1

ð2�Þ3
~k � ~k1
k21

_�1ð ~k1Þ�1ð ~k� ~k1Þ (39)

and

I2½ _�1; _�1	ð ~kÞ ¼
Z d3k1

ð2�Þ3
k2 ~k1 � ð ~k� ~k1Þ
2k21j ~k1 � ~k2j2

_�1ð ~k1Þ _�1ð ~k� ~k1Þ:

(40)

Finally, the last term in Eq. (39) is simply _I1½ _�1; �1	 ¼
I1½ €�1; �1	 þ I1½ _�1; _�1	. Note that by continuing the itera-
tion, higher order solutions can be obtained.

C. Three-point correlations

Distinct quasilinear effects are found in three-point cor-
relations—we will use the Fourier space bispectrum.
Recently Tatekawa & Tsujikawa have performed a similar
perturbative analysis and presented results on the skewness
[36]. We prefer to use the bispectrum as it allows one to
study specific quasilinear signatures contained in the con-
figuration dependence of triangle shapes. The bispectrum
for the density field B� is defined by

h�ð ~k1Þ�ð ~k2Þ�ð ~k3Þi ¼ ð2�Þ3�Dð ~k1 þ ~k2 þ ~k3ÞB�ð ~k1; ~k2; ~k3Þ:
(41)

Since B� � h�3i � h�2
1�2i (using h�3

1i ¼ 0 for an initially

Gaussian density field) at tree level, the second order
solution enters at leading order in the bispectrum. Note
also that the wave vector arguments of the bispectrum form
a triangle due to the Dirac delta function on the right-hand
side above.

The bispectrum is the lowest order probe of gravitation-
ally induced non-Gaussianity. A useful version of it is the
reduced bispectrum Q, which for the density field � is
given by

Q� � B�ð ~k1; ~k2; ~k3Þ
P�ðk1ÞP�ðk2Þ þ P�ðk2ÞP�ðk3Þ þ P�ðk1ÞP�ðk3Þ :

(42)

Q is useful because it is insensitive to the amplitude of the
power spectrum; thus e.g. at tree level and in the case of a
scale free linear power spectrum PðkÞ � kn it is static and
scale independent for regular gravity [37].

V. RESULTS

In Fig. 3 we present the bispectrum for the fðRÞ model
and its dependence on scale for two different redshifts. For
comparison we also show the bispectra predicted in GR. In
the lower panel we present the ratio of the fðRÞ bispectra to
that in GR. We have assumed the transfer function for the
concordance �-CDM model consistent with the 5-year
WMAP data [32]. Calculation is done at tree level with
�m ¼ 0:24. The bispectra in fðRÞ gravity are enhanced
relative to GR, increasingly so at high-k. The enhancement
is of order 10–20% for observationally relevant scales
around k� 0:1 and redshifts below unity.
We turn our attention to the reduced bispectrum Q,

which is expected to show features not associated with
the linear power spectrum [37]. We show two relevant
cases. The first one is with equilateral triangles, shown in
Fig. 4. Deviations from GR are at the percent-level, which
makes them impossible to detect with current measure-
ments. Qualitatively, the parameters of the model do influ-
ence the scale and time dependence of the reduced
bispectrum.
Slightly stronger deviations from regular gravity are

observed for isosceles triangle configurations, shown in
Fig. 5. Once again strong scale and time variation is
observed when changing the model parameters. We also
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FIG. 3 (color online). Upper panel: The Bispectrum of the
fðRÞ model for equilateral triangles depending on scale for the
fðRÞ model with fR0 ¼ 10�5, n ¼ 1. The corresponding regular
gravity bispectrum is shown as the dashed curve. Lower panel:
The ratio of the fðRÞ Bispectrum to the regular gravity one. Note
that results beyond k ’ 0:2 (in this and subsequent figures) need
to be tested with N-body simulations, as discussed in the text in
Sec. VA.
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show the angular dependence of the reduced bispectrum
for 3:1 ratio configurations and its comparison to regular
gravity in Fig. 6.

A. Does the Linear growth factor determine nonlinear
clustering?

Quasilinear effects, and the bispectrum, in particular,
show signatures of gravitational clustering. However, we
find that the reduced bispectrum Q remains very close to
that of GR in the modified gravity models we have con-
sidered (see also [36] for a related study). This is qualita-
tively similar to previous findings about the insensitivity of
Q to cosmological parameters within a GR context [37].
Thus the deviations in the bispectrum are largely deter-

mined by the linear growth factor. Ambitious future sur-
veys will be needed to achieve the percent-level
measurements required to probe the unique signatures of
modified gravity in the bispectrum. On the other hand, this
means that the bispectrum can be used as a consistency
check on the power spectrum. It has been shown that the
bispectrum contains information comparable to the power
spectrum, thus improving the signal-to-noise [38]. Equally
importantly, it is affected by sources of systematic error in
different ways and contains signatures of gravitational

0.500.200.100.050.020.01
0.99

1.00

1.01

1.02

1.03

k h Mpc 1

z 0 z 1

FIG. 5 (color online). The reduced bispectrum Q for isosceles
triangles (ratio of sides lengths 1:3:3), where the x-axis shows
the length of the smallest k in the triangle. The ratio of Q for the
fðRÞ model with fR0 ¼ 10�5, n ¼ 1 to regular gravity is shown.
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FIG. 6 (color online). Upper panel: The angular dependence
of the reduced bispectrum Q for triangles with the two fixed side
lengths in the ratio 1:3 and k ¼ 0:1h=Mpc for the smaller one.
The fðRÞ model with fR0 ¼ 10�5, n ¼ 1 at z ¼ 0 is used. The
dashed line shows the prediction for GR. Lower panel:
Comparison to regular gravity at two redshifts. We can observe
that for obtuse shapes (�� 0) our model predicts a lower Q for
fðRÞ gravity, while for shapes close to isosceles it is enhanced.
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FIG. 4 (color online). The reduced bispectrum Q for equi-
lateral triangles for the fðRÞ model compared to regular gravity.
Top panel: fR0 ¼ 10�5, n ¼ 1. Middle panel: fR0 ¼ 10�4, n ¼
4. Bottom panel: fR0 ¼ 10�5, n ¼ 4.
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clustering that are unlikely to be mimicked by other
effects.

Currently the results of N-body simulations for this fðRÞ
model [34] show that our assumptions are consistent with
their result for the power spectrum on scales k &
0:2½h=Mpc	). On smaller scales, the onset of nonlinearity
and the chameleon mechanism invalidate our results. The
deviation from the linear prediction grows fast and is of
order 10% on scales k� 0:2–0:5½h=Mpc	 depending on the
model. So the results in our plots on those scales will need
to be carefully checked with simulations.

Modifications to the Newtonian potential were simu-
lated by [21] (also see [6,39]). These simulation studies
found that, to a good approximation, the nonlinear power
spectra depend only on the initial conditions and linear
growth. The standard fitting formulas for Newtonian grav-
ity [40] were adapted to predict the nonlinear spectrum at a
given redshift. Therefore tests for modified gravity using
the power spectrum require either a measurement of the
scale dependent growth factor (in combination with the
initial spectrum measured from the CMB), or of measure-
ments at multiple epochs. More likely a combination of
probes will be used for robust tests of gravity (see e.g.
[27]).

Related studies of nonlinear clustering in fðRÞmodels or
DGP gravity are in progress [41–43]; these authors are
considering the power spectra, bispectra as well as halo
properties, in particular, the halo mass function. The fðRÞ
studies of [34,43] show distinct effects of the chameleon
field on small scales (comparable to galaxy and cluster
sized halos for most models); [30] suggest a fit for the
nonlinear power spectrum with additional parameters that
describe the transition to the small-scale regime. The DGP
study of [41] requires inclusion of nonlinear terms in the
Poisson equation. So clearly for different models there can
be new nonlinearities and couplings to additional fields that
impact the small-scale regime of clustering. Even so, for a
class of models that includes the fðRÞmodels studied here,
the quasistatic, Newtonian description parametrized by
~Geff and 	 ¼ �=� applies over a wide range of scales
relevant for large-scale structure observations. In this re-
gime, to a good approximation, many clustering statistics
can be predicted using the linear growth factor and the
standard gravity formalism.

B. Implications for lensing and dynamics

Lensing observations provide estimates of the conver-
gence power spectrum and bispectrum (see e.g. [44]). For a
rough estimate of these quantities, we take the source
galaxies distribution to be a delta function at a given
redshift and take the lensing matter to be situated at half
the distance. Since we have taken the expansion history to
be �CDM, so comoving distances are the same as in GR.
With these approximations, P� / P���. From Eq. (23) we
can see that the difference of the lensing behavior of our

modified gravity case and the regular gravity one is given
by (see also [35])

P��� / P�

� ~Geffðk; t1=2Þ
G

�
2
; (43)

where t1=2 is the physical time at the redshift of the lensing

matter.
Thus we can write:

P�MG

P�GR
/ P�MG

P�GR

� ~Geffðk; t1=2Þ
G

�
2
: (44)

Analogously we can see that the ratio of convergence

bispectra behaves like ð ~Geffðk; t1=2Þ=GÞ3 but the ratio of the
reduced bispectra behaves like

Q�MG

Q�GR

/ Q�MG

Q�GR

G
~Geffðk; t1=2Þ

: (45)

Thus the convergence power spectrum and reduced bis-
pectrum could be successfully used to differentiate and/or
rule out models of modified gravity. Unfortunately in the
currently discussed model we have Eq. (32):

�ðk; tðaÞÞ ¼
~Geff

G
¼ 1

1þ fRðaÞ ; (46)

which deviates from unity at the order of fR0, which is
much smaller than unity. Thus the convergence power
spectrum and reduced bispectrum follow almost identi-
cally the predictions for their matter counterparts. This
means that the comparison of lensing to tracers of mass
fluctuations does not reveal distinct signatures of fðRÞ
gravity.
The Newtonian potential � drives dynamical observ-

ables such as the redshift space power spectrum of galaxies
[27,29]. The velocity growth factor D� is related to the
density growth factor via the function �:

D� / a�HD; (47)

where � ¼ d lnD=d lna. This function varies with scale
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FIG. 7 (color online). The fractional change in � (blue lines)
and �2 (red lines) for the fðRÞ model with fR0 ¼ 10�5, n ¼ 1
compared to GR as a function of scale.
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and expansion factor for our fðRÞ models. Both � and �
can be seen in Fig. 7 which clearly shows that observables
based on peculiar velocities would show a clear signature
of fðRÞ gravity. More detailed calculations of lensing and
velocity statistics are beyond the scope of this study.

VI. DISCUSSION

In this paper we studied the growth of structure in an
fðRÞ modified gravity model [25]. In the quasilinear re-
gime, we used perturbation theory to calculate the three-
point correlation function, the bispectrum, of matter. Our
results are applicable up to scales at which the derivation of
the quasilinear perturbation theory is still valid.

We found that in the bispectrum the dominant behavior
is due to the difference in the linear growth factors between
the modified gravity model and regular gravity. The bis-
pectrum itself shows significant departures in scale and
time compared to the predictions of GR. However the
reduced bispectrum, which is independent of the linear
growth factor in perturbation theory for GR, remains
within a few percent of the regular gravity prediction. It
does show interesting signatures of modified gravity at the
percent level.

Our results are consistent with studies of the nonlinear
regime via N-body simulations, which have found that on a
wide range of scales the nonlinear power spectrum can be
predicted using the (modified gravity) linear growth factor

in the standard formulas developed for Newtonian gravity.
Our results imply that three-point correlations follow this
trend at the few percent level. (The regime around and
inside halos probed by [34] to test the chameleon behavior
is not included in our perturbative study.) It would be
interesting to compare perturbative and simulation results
for the bispectrum for the models considered here and
other modified gravity models.
Upcoming surveys in the next five years will not attain

the percent-level accuracy at which the reduced bispectrum
shows distinct signatures of fðRÞ gravity. In this time-
frame, the bispectrum will be useful as a consistency check
on potential deviations from GR found in the power spec-
trum. Such a check is useful since measurement errors and
scale dependent biases of tracers can mimic some of the
deviations in the power spectrum. Next generation surveys,
to be carried out in the coming decade, will provide suffi-
cient accuracy to test the distinct signatures seen in our
results for the reduced bispectrum. With these surveys, the
bispectrum can provide truly new signatures of gravity.
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