
Perceptually Realistic Behavior through Alibi Generation

Ben Sunshine-Hill and Norman I. Badler
Center for Human Modeling and Simulation

Computer and Information Science
University of Pennsylvania

bsunshin@seas.upenn.edu, badler@seas.upenn.edu

Abstract

Real-time pedestrian simulation for open-world games in-
volves aggressive behavior simplification and culling to keep
computational cost under control, but it is diffficult to predict
whether these techniques will become unrealistic in certain
situations. We propose a method of perceptually simulating
highly realistic pedestrian behavior in virtual cities in real-
time. Designers build a highly realistic simulation, from
which a perceptually identical “perceptual simulation” is gen-
erated. Although the perceptual simulation simulates only
a small portion of the world at a time, and does so with
inexpensive approximations, it can be statistically guaranteed
that the results are perceptually indistinguishable from those
of the original simulation.

1 Introduction

In recent years, the “open world” style of video game, in
which players wander freely through a large populated area,
has become very popular. Most agents in open world games
are not enemies, but residents, going about their life as the
backdrop of the main gameplay. At times they are drawn
into the gameplay, and must react to the player’s behavior
and to the indirect results of that behavior. In order to main-
tain suspension of disbelief in these games, it is important
that agents behave realistically in all situations, giving the
impression of a living city. Patterns of unrealistic or unlikely
behavior negatively impact the realism of the game.

The increased demands for agent realism and large, open
worlds present practical difficulties for game developers.
Memory and processing power is limited on video game
hardware, and much of it is devoted to graphics, sound, and
other resource-intensive tasks. As the size and complexity of
the virtual population grows, it quickly becomes intractable
to simulate the virtual population in real-time.

Luckily, real-time simulation of the entire virtual popula-
tion is not required for these games. Because the player can
only see a small portion of the world at a time, he cannot
evaluate the overall realism of the world, only that portion
which is visible to him. As far as the player is concerned the
world is realistic as long as the visible portions of it at any
given time are realistic.

These twin demands — thrifty use of computational re-
sources, and the appearance of realistic simulation — have

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

driven the development of a variety of clever methods
(tricks) which maintain the perception of realism while re-
ducing the actual realism. For instance, out-of-view portions
of the world will have their agents deleted entirely, with
a set number randomly created when the player returns to
the vicinity. Even agents which are invisible because they
are behind the character may be frozen in place in order to
free up simulation resources. Agents will often have only
a veneer of realistic behavior, appearing at first glance to
be moving towards some desired destination while actually
turning randomly at each intersection.

Such tricks are difficult to get just right. User testing is
required to determine whether they compromise realism in
unanticipated ways. Parameter tweaking is often necessary
to arrive at a realistic configuration, and the parameters may
not map cleanly to quantities which designers wish to di-
rectly control. For example, if the rate at which agents enter
an area does not match the initial population, the agents’
speed of motion, and the geometry of the area, agents may
exit the area at a greater rate, and the player will perceive
that an area is always well-populated when he arrives, only
to mysteriously empty out soon afterwards. In contrast, if
the rates of exit and entry are directly tied to each other,
the player may perceive that a small area always happens to
have three people in it, with one entering every time another
leaves. Agents with only random turning will quickly reveal
their unrealistic behavior if followed by the player. These
tricks may produce realistic results early in development,
only to become unrealistic later due to designers’ varying
demands on the world.

We propose an alternative approach, whereby designers
build a highly realistic whole-world pedestrian simulation,
from which a perceptually identical “perceptual simulation”
is generated. Although the perceptual simulation simulates
only a small portion of the world at a time, and does so with
inexpensive approximations, it can be statistically guaran-
teed that the results are perceptually indistinguishable from
those of the original simulation.

The basis of the simulation is the probabilistic modeling
of observable information about an agent. Agents are ini-
tially created with only a minimal set of information, and
any information which is later required for a higher level of
detail is created on demand in a manner which ensures con-
sistency with previous observations of the agent. We refer to
such an incremental addition of information about an agent

83

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



as an alibi, which fills in details of the agent’s goals and
back-story to give the impression that his behavior is driven
by concrete needs and goals. The act of giving an agent
an alibi causes no immediately visible changes, but allows
the realism of the agent’s actions to hold up under closer
scrutiny from the player.

Related work

Simulation level-of-detail The application of level-of-
detail (LOD) techniques to simulation, rather than render-
ing, was pioneered by Carlson and Hodgins (1997). Sung,
Gleicher, and Chenney (2004) applied simulation level-of-
detail (SLOD) by freezing out-of-view agents, advancing
them by large steps at infrequent intervals to maintain the ap-
pearance of continued action. These approaches minimized
but did not eliminate the computational burden of simulating
an individual out-of-view agent, and were targeted to sit-
uations where the long-term plausibility of all individuals’
actions was important.

Approaches to agent level of detail O’Sullivan et
al. (2002) developed the ALOHA framework to apply LOD
techniques to both simulation and rendering of humans.
MacNamee et al. (2002) extended this framework to “role
passing”: the temporary assumption of specific roles by pre-
viously generic agents; their work is philosophically similar
to ours, in that it leverages role passing as necessary to mit-
igate the perception of generic behavior. Likewise, Brom,
Šerỳ, and Poch (2007) used hierarchical representation of
goals to determine current behavior from preexisting goals
as necessary. These approaches are limited in their ability to
simulate large areas, because the full population exists at all
times.

Niederberger and Gross (2005) dynamically prioritized
agents within a group to maximize the perception of realism.
Osborne and Dickinson (2010) used hierarchical groups to
optimize crowd simulation with the Reynolds (1987) flock-
ing model. These approaches improve the perceptual quality
of pathing, but do not address realism in long-term behavior.

Population distribution modeling Stylianou, Fyrillas,
and Chrysanthou (2004) synthesized population distribu-
tions from a roadmap by performing random walks and sam-
pling agent positions in the steady state. Plausible popula-
tion densities could thus be created without any semantic
information about land use, and the system allowed man-
ual modification of population densities to correct unrealis-
tic areas. They briefly discuss the use of as-needed agent
creations to minimize simulation time.

Haciomeroglu, Laycock, and Day (2008), likewise, found
shortest paths between all road segment pairs in an unanno-
tated road graph (using a distance metric which minimized
turning angles) and based population density on the resultant
road utilizations. They then dynamically inserted pedestri-
ans into in-view and nearby areas to maintain these densities,
giving agents destinations which took them into and then
back out of the simulation area.

Population simulation in industry practice Brocking-
ton (2002) discussed the use of LOD to manage agent sim-
ulation time in the video game Neverwinter Nights; agents

still existed when out of view, but could be frozen or sim-
ulated using large time-steps. Adzima (2001) used a fixed
radius around the player for ambient car simulation in Mid-
town Madness 2, with cars turning randomly and being re-
placed as necessary to keep them close to the player. More
recent open world games, such as Grand Theft Auto IV, tend
to use weighted random walks for visible characters, and
proactively remove occluded characters and objects from
memory. This leads to populations which appear realistic in
the aggregate, but individual agents act unrealistically over
time.

Organization

The remainder of the paper is organized as follows. First
we give a motivating example of an agent behavior simula-
tion whose details will serve to illuminate various aspects
of our approach. Secondly, we describe the form of our
perceptual simulation strategy, which can perceptually ap-
proximate these simulations. We then derive the data which
is needed to perceptually simulate our motivating example,
and describe how this data is used. Finally, we present
the results of our simulation strategy, and describe how the
method can be adapted for various complications not given
in our motivating example.

2 Motivating example

Here we present a simple but detailed pedestrian behav-
ior model, which describes where agents go, when they go
there, and why they go there. This example is intended to
showcase various features that are difficult to model with
perceptual simulation. By itself this model is unsuitable for
actual use in a large, heavily populated world, as it requires
full simulation of out-of-view agents at all times, thereby
motivating the need for a perceptually identical real-time
simulation. We do not intend this model to be perfectly re-
alistic: it ignores certain important dimensions, like time of
day, in favor of a straightforward presentation. We describe
how some of these additional dimensions can be added in
section 7.

World schema

The world is partitioned into walkable region “cells”, which
are connected to each other by “portals”. Agents walk from
cell to cell through the portals. In a city model, a length of
sidewalk or a crosswalk will be represented as a cell.

In addition to walking between portals, agents may exit
and enter buildings. The entryways of these buildings are
known as “targets”. Targets are categorized into a dozen or
so “types”, representing what the building is used for. Exam-
ples of target types in our model are “house”, “office build-
ing”, “restaurant”, and “grocery store”. (A building with
multiple uses will be represented as several co-located tar-
gets.) The number of targets in the world is much greater
than the number of target types. Targets are additionally or-
ganized by which cell they are in.

All portals and targets in a given cell can be directly
reached from all other portals and targets in the same cell,
without passing through any other portals. In our naviga-
tion graph, portals and targets form the nodes of our world,
and any two nodes which are in the same cell have an edge

84



between them. Each portal is present in two cells, and is
connected to all other nodes in both. We refer to a directed
edge in our graph as a “segment”, a linear-shaped area along
which pedestrians may be found, walking in a particular di-
rection away from one node and towards another. We denote
by n the number of targets in the world, by m the number of
target types, and by s the number of segments in the world.

Agent behavior

An agent, at any given time, will either be inside a target, or
will be travelling from his previous target to his next one.
Agents always travel along the shortest path through the
world to their next target. (For distance calculations, portal
locations are measured as the midpoint between their edges;
for pedestrian simulation along sidewalks, this is not a sig-
nificant oversimplification.) Upon arriving at a target, an
agent spends a randomly determined amount of time there,
which we model using a normal distribution. Afterwards, he
chooses a “goal” randomly, from a distribution conditioned
on the type of the target he is currently at. A goal consists
of a type of a target to choose as a destination, as well as
instructions on how that target is determined; the agent may
have a particular preferred target for that goal which is de-
termined when the agent is created (for instance, the agent’s
own home will always be chosen for the “go home” goal),
may choose the closest target of that type (as would be ap-
propriate for grocery stores and other such fungible destina-
tions), or may uniformly randomly choose a target of that
type (for, say, a courier delivery to an office building). Cer-
tain goals may be round-trip; after leaving a target reached
by a round-trip goal, the agent will return to the target from
which he had previously departed. Other than returning
from round-trips, the agent’s choice of goals is independent
of his previous goals and the goals of other agents; a target
type therefore has an associated goal distribution, consisting
of the probability of choosing each goal next.

We simulate low-level pedestrian motion control using a
simple social forces model. The method is compatible with
other crowd motion controllers, such as the many cited in
(Pelechano, Allbeck, and Badler 2008), and in section 7 we
describe the practicalities of changing it.

3 Components of perceptual simulation

Maintaining the perceptual realism of our real-time simula-
tion requires two main tasks: Adding and removing agents
as necessary to ensure the realism of aggregate behavior
without overtaxing simulation resources, and generating al-
ibis to upgrade agents to keep their behavior realistic under
scrutiny.

Creating and deleting

Agents are created in two circumstances: in media res when
a new area of the world comes into view, and entering at
random intervals from targets or areas of the world which
are out of view.

For the first circumstance, whenever a new cell comes
partially into view, agents are generated along each of its
segments. An individual agent from among the entire popu-
lation of the world will have a particular steady-state proba-
bility of being on a given segment when that segment’s tile

comes into view, and (without knowledge of agents’ bound
targets) each agent in the world will have the same such
probability. The number of agents present on a segment
when it comes into view, therefore, can be modeled as a
binomial process, with n the population of the world not cur-
rently visible and p the probability that a given agent is on
the segment at a given time. Simple and efficient algorithms
to generate binomial variates are well-known; for several ex-
amples refer to (Devroye 1986). Because of the high pop-
ulation of the world and the high number of segments in
the world, this distribution can also be approximated by a
Poisson distribution if desired (Devroye 1986).

For the second circumstance, each segment beginning in a
target, and each segment whose starting portal is out of view,
has a given probability during each small time-step of having
an agent appear, and in the steady state of the simulation this
probability is independent of previous appearances (with the
exception of social forces, discussed later). As a result, the
random variable representing the time before the next agent
appears is exponentially distributed, with λ the inverse of
the expected time between arrivals on that segment (Devroye
1986), and can be sampled in constant time. This arrival pro-
cess is not applicable to segments whose starting node is a
portal in view of the player — that is, whose companion cell
is visible — as these segments will have already-generated
agents arriving from the companion cell.

At the moment when a new tile comes partially into view
after being completely out of view, therefore, three tasks
must be performed: The number of agents along each seg-
ment within the tile must be sampled and the resultant num-
ber of agents generated, and each segment whose starting
node is a target or a portal whose other tile is still out of
view must have a “next arrival time” sampled and remem-
bered. Arrival times for all segments of this type are placed
in a priority queue. Whenever a scheduled arrival occurs,
a new agent is generated at the beginning of that segment,
and a new exponential variate is sampled for the segment
and placed back in the priority queue. Finally, any segments
currently in the arrival priority queue whose starting node
was a portal on that cell are removed from the queue, as their
agents will henceforth arrive in already-generated form.

Cells which pass entirely out of view must continue to be
simulated for a short time, or a return to the cell may pro-
duce obvious discrepancies. The cell must continue to be
simulated for at least as long as it takes for the set of agents
in the cell to change entirely. Following (Sung, Gleicher,
and Chenney 2004), this burden may be alleviated by freez-
ing simulation of the agents, and advancing them at once
only if and when the cell comes back into view. Likewise,
agents which pass from a visible cell into an invisible cell
must continue to be simulated for some time, but can also be
simulated in a frozen manner.

Alibi generation

While the previous section suffices to distribute momentar-
ily plausible agents over the visible portion of the world, it
does not by itself give them plausible long-term behavior. A
short-term solution is to store the conditional probability ta-
ble for transitioning to a given segment given the agent’s last
few segments; this table can be stored in a compressed form

85



(Gagie 2006) but the memory requirements quickly become
intractable as the segments grow longer. If the player follows
an agent for any significant period of time, interacts with the
agent in a nontrivial manner, or inspects his behavior in any
other way (for instance, by blocking the agent’s segment and
forcing him to replan) an actual goal destination is required.

The agent’s destination, and any other information about
the agent generated some time after his creation, forms the
agent’s alibi. As far as the player is concerned, this informa-
tion had always existed but was not known to him. An alibi,
therefore, must be consistent with all previously observed
information about the agent, and the geometry of the world
and the distribution and habits of agents in the world in gen-
eral. Additionally, over time there must be no observable
patterns to alibis, even those generated for different agents
in exactly the same situation. In short, any alibi must be an
independent, fair sample from the conditional distribution
of possible alibis given observed behavior. In section 5, we
show how this may be done without explicitly storing the
conditional probability table.

4 Deriving the probabilities

We now return to the motivating example in section 2, and
show how the distribution parameters mentioned above can
be analytically determined. The general approach is to deter-
mine the different circumstances under which an agent can
have a particular alibi (source and destination), and then to
weight and sum these circumstances to determine the prior
probability of having that alibi. We then filter to determine
the posterior probability of an alibi given the agent’s ob-
served path.

First, some definitions. For a given pair of nodes i, j, we
denote the distribution of the time required for an agent to
travel from target i to target j by Dij . (Here and for the
remainder of this paper, we use i and j as target indices, and
k and l as target type indices.) We denote the type of target
i by S(i), and the number of targets of type k in the world
by ‖Sk‖. We denote the conditional probability of choosing
a goal with type l from target type k, assuming the previous
goal was not round-trip, by pG

kl; we further split this into one-
way and round-trip probabilities pO

kl and pR
kl, which are the

normalized conditional probabilities of choosing a goal with
type l given that the previous one-way goal was of type k
and that the next goal is constrained to be, respectively, one-
way or round trip. We denote the conditional probability of
picking any one-way goal from a target of type k by pR

k ,
giving the identity

∑m
l=1 pR

k pR
kl +

∑m
l=1(1 − pR

k )pO
kl = 1.

We denote the distribution of the waiting time at a target of
type k by Wk. Finally, we denote by closest(i, l) the closest
target to i of type l.

Recall that goals may be round-trip, forcing a return to
the original target after leaving the destination, or one-way,
with future goals sampled independently of past goals. Con-
sider the sequence of targets which an agent reaches as a
result of one-way goals only, disregarding for the moment
the sequence of round-trip goals which he may perform be-
tween each one-way goal. This continuous-time process
of one-way goals may be modeled as a semi-Markov pro-
cess (Ross 1996). A semi-Markov processes is a random
process which, like a standard Markov chain, moves from

state to state with transition probabilities independent of all
but the most recent state, but which will stay in a partic-
ular state for a real-valued period of time whose distribu-
tion depends on the current and/or the next state. The lim-
iting behavior of a semi-Markov process can be described
by the tuple 〈pij , Fij〉, where pij is the probability of tran-
sitioning to state j given current state i (the “jump pro-
cess”), and Fij is the distribution of the time for that tran-
sition to occur. We denote an agent’s current state in the
semi-Markov process as the last target the agent reached
by a one-way goal, irrespective of whether they are still in-
side that target as well as of whether they have performed
other round-trip goals since reaching it. For this process,
pij = pO

S(i)S(j)/ ‖S(j)‖ if S(j) is not fungible, pO
S(i)S(j)

if it is fungible and closest (i, S (j)) = j, and 0 otherwise.
(Without prior information on bound targets, there is no need
to differentiate between goals to bound targets and goals to
uniformly chosen targets.) Note that the jump process is
independent of all but the target types, because the agent
chooses from between goals directly, but the transition time
is dependent on the specific targets, because different targets
may take more or less time to transition due to their position-
ing in the world.

While pij is simple to calculate as above, the calculation
of Fij is more complex. We consider the agent’s actions
upon arriving at a target i, of type k. First he waits for a
time given by Wi. He will then carry out zero or more round
trip goals; for each goal to some target j, he walks to that
goal, taking time given by Dij , waits at that goal for time
Wj , walks back to the original target taking time Dji, and
then waits again at target i for time Wi. Finally, he walks to
his next one-way destination j for time Dij , at which point
he is in the next state and the clock stops. We denote the
round-trip travel time for a round-trip destination to a target
of type l by DR

il , remembering that this may be dependent
on whether l is a fungible target type. The number of round-
trip goals he chooses before leaving on a one-way goal is
given by a negative binomial random variable (Ross 1996)
with r = 1 and success probability p = pR

k , with expected
value p

1−p , and the proportion pR
kl of those are specifically

round-trip goals to target type l; we denote the number of
those round-trips taken by Nkl. Organizing one-way goals
by their target type, we thus have

E[Fij ]=E[Wk] +
m∑

l=1

E[Nkl]
(
E

[
DR

il

]
+E[Wl]+E[Wk]

)
+ E[Dij ] . (1)

It remains to calculate these expected values. E[Wk]
is simply the mean of the normal distribution, and
E[Nkl]=pR

kl

(
pR

k /
(
1− pR

k

))
, as above. E

[
DR

il

]
can be cal-

culated as minj,S(j)=l E[Dij ] + E[Dji] if l is fungible, and
‖Sl‖−1 ∑

j,S(j)=l E[Dij ] + E[Dji] otherwise.
This is sufficient to describe the steady-state probability

of the semi-Markov process. First, the steady state of the
jump process σ is given by the equation σj =

∑n
i=1 σipij

(recall the definition of pij as above), and can be found as the
eigenvector of [pij ] with eigenvalue 1. We can marginalize
Fij over the destination target as Fi =

∑n
j=1 pijFij , and

86



then entirely as F =
∑n

i=1 σiFi. The steady state of the
semi-Markov process itself is then σ̂i = σi

E[Fi]
E[F ] . The proba-

bility σ̂i of having last visited one-way target i at any given
time can be further broken up; for instance, the probability
of having just reached target i and being currently waiting
inside it before leaving either for the first round-trip goal or
for the next one-way goal is σi

E[Wi]
E[F ] . Additionally, σ̂i can

be used to determine the probability of being on one’s way
to, or coming back from, a particular goal. Since any agent
who is not inside a target will be on a one-way goal, going
to a round-trip goal, or coming back from a round-trip goal,
we can find the summed joint probability of being on one’s
way from target i to target j for any reason as

P (i, j) = αij + βij + γij , where (2)

αij = σ̂ipij
E[Dij ]
E[Fij ]

, (2a)

βij = σ̂iδij

E
[
NS(i)S(j)

]
E[Dij ]

E[Fi]
, (2b)

γij = βji, and (2c)

δij = pR
S(i)S(j) ·

⎧⎨
⎩
‖S (j)‖−1 if S (j)is not fungible,
1 if closest (i, S (j)) = j, or
0 otherwise.

(2d)

From here, we can easily find the joint probability of go-
ing from i to j and also being on a segment {a, b} as

P (i, j, {a, b}) = P (i, j) SPij ({a, b}) E[Dab]
E[Dij ]

, (3)

with SPij ({a, b}) equal to 1 if {a, b} is on the shortest path
from i to j and 0 otherwise, and can sum over i and j as

P ({a, b}) =
n∑

i=1

n∑
j=1

P (i, j, {a, b}) (4)

which gives us the parameter for our binomial and expo-
nential variates, to sample populations and arrival intervals.
(This can be extended to observed paths consisting of mul-
tiple segments.)

5 Alibi Sampling

In this section we demonstrate how to use the above deriva-
tions for practical alibi sampling. While it is straightforward
to find P(i, j| {a, b}) for an individual situation, sampling
from this distribution would be more difficult. It would be
possible to precompute all values and store their cumulative
sums, and sample using a binary search, but this would re-
quire O

(
n2s

)
space for single-segment observed routes and

even more for longer observed routes, far from practical for
worlds of large size. (It is important to sample both i and j,
in case the resultant alibi is the first half of a round trip.)
Instead, we express this probability with the equivalence
P(i, j| {a, b})=P(i, j, {a, b})/P({a, b}). Note from equa-
tions 1–3 that this quantity is entirely dependent on E[Dij ],
SPij ({a, b}), E[Dab], E

[
DR

il

]
, E[Wk], E[Fi], P ({a, b}),

σ̂i, closest (i, l), E[Nkl], pO
kl, and ‖Sk‖. Of these, the first

two can be determined through shortest path searches, the
third is taken directly from the world, and the remainder can
be precomputed and stored with size Θ

(
s + m2 + mn

)
in

the number of segments, target types, and targets. (Recall
that m � n.)

This approach does not, however, allow for a binary
search-based sampling. Instead we use the Metropolis-
Hastings algorithm (Hastings 1970) to sample from this dis-
tribution based only on the ability to calculate the ratio of
individual probabilities, and a function to iteratively perturb
i and j randomly in space. This algorithm uses a Markov
chain whose steady state distribution is the desired distribu-
tion, sampling from it after a burn-in period which allows
the distribution to converge. For the perturbation function,
we store at each target a table of the nearest q targets, with
one-way transitions pruned to avoid a division by zero in
the transition probability ratio. The probability ratio is cal-
culated from the two i, j pairs as in equation 3, noting that
P ({a, b}) and E[F ] cancel out. E[Dij ] and SPij ({a, b})
are iteratively maintained using A* searches from a to i,
from b to j, and from i to j; the first two change only their
goal nodes, and thus computations can be reused by keeping
the closed list and lazily recomputing the heuristic for all
nodes on the open list. For the third search, MT-Adaptive A*
search (Koenig, Likhachev, and Sun 2007) shows promise
for speeding up computation, but we have not yet imple-
mented this method.

6 Results

We have tested the perceptual simulation described using a
world with approximately 400 targets, 1200 segments, and
20,000 agents (approximately 80% of whom were inside
at any given time), on a 3.6 GHz dual-core Intel proces-
sor, with computational power roughly equivalent to current-
generation video game consoles. The persistent memory
overhead of the precomputed data, not including data about
the geometry of the world, was approximately 52 kB, scal-
ing roughly linearly with the number of targets. Sampling
the population of all segments in a cell took less than 0.1
ms. Using the reverse Kullback-Liebler divergence to mon-
itor the convergence of the Metropolis-Hastings chain to
the equilibrium, we found satisfactory convergence for al-
ibi sampling with 500 iterations and transition tables of size
q = 50. The optimum transition table size was dependent
on the number of iterations (Figure 1). Alibi sampling took
approximately 9 ms; this computational load can easily be
spread over hundreds of frames if desired, making the addi-
tional computational burden affordable for even the stingiest
of AI time-slices, and can be used as an anytime algorithm
in especially processing-intensive situations.

Alibi sampling, therefore, produces agents whose ob-
served behavior is virtually indistinguishable from those in
the original simulation model. Players would have to ana-
lyze the behavior of hundreds or thousands of agents in or-
der to determine whether the simulation they were viewing
was the original simulation or the perceptual simulation, an
activity which is not usual for video game players.

87



Figure 1: Kullback-Liebler divergence of alibi sampling ver-
sus ground-truth probabilities, under varying Metropolis-Hastings
transition table size and number of iterations.

7 Extensions

As mentioned earlier, our motivating example is deliberately
simplified for clarity of exposition. Here we discuss elabo-
rations to the agent behavior model that may be desired, and
how they can be reflected in the perceptual simulation.

Heterogeneous agents In the motivating example, all
agents have the same goal probabilities and uniformly bound
targets. In the real world, however, agents are obviously
heterogeneous: From a person’s clothes, one can often rea-
sonably infer his social status, his career, or his current goal.
This would be represented in the original simulation descrip-
tion by a separate population of each type of agent, differing
goal probabilities, and non-uniformly bound targets. In the
perceptual simulation, this would manifest itself as a distri-
bution of agent types over each segment (an agent’s type be-
ing sampled immediately after his creation) and per-agent-
type multipliers in equations 2a, 2b, and 2d. Non-uniformly
bound targets can also be used to simulate agents’ bound
targets tending to be nearby each other, as for agents who
live and work in the same neighborhood.

Time of day Agent behavior in the motivating exam-
ple is independent of time of day, but this is unrealistic
given habitual daily routines. Moving to a time-of-day-
dependent model entails replacing the semi-Markov model
with a non-homogeneous semi-Markov model, which sig-
nificantly complicates the calculation of P ({a, b} |t) (now
conditioned on the time of day) but does not make it in-
tractable. This table and certain others mentioned in section
5 can be precompiled for many times of day and linearly
interpolated, with only the bracketing two copies required to
be loaded in memory at any given time.

Crowded agent simulation In our calculation of
P (i, j, {a, b}) we have assumed that E[Dab] is independent
of the population of segment ab and proportional to the
length of the segment. For congested areas, however, this
may not be the case. For pedestrian motion models which
allow realistic simulation of congested areas, a more exact
heuristic based on cell populations must be found and used.
Since this introduces a cyclic dependency between E[Dab]
and P (i, j, {a, b}), iterative methods will be required, and

in certain contrived situations a solution may not even exist.

8 Future work
The largest portion of computation was taken by the A* path
searches, suggesting that optimizations in that area could
greatly improve performance. Additionally, it may be pos-
sible to generate partial alibis, which specify the neighbor-
hood to which the agent is headed but not the particular tar-
get. In games already using hierarchical path-planning algo-
rithms, this could reduce pathfinding time while increasing
the Metropolis-Hastings acceptance rate.

Acknowledgments

This work was supported by a Lockheed Martin Strategic
Technology Thread Grant.

References
Adzima, J. 2001. AI madness: Using AI to bring open-city racing
to life. Game Developer Magazine January 2001.
Brockington, M. 2002. Level-of-detail AI for a large role-playing
game. In AI Game Programming Wisdom. Charles River Media.
419–425.
Brom, C.; Šerỳ, O.; and Poch, T. 2007. Simulation level of detail
for virtual humans. In Proc. IVA 2007. Springer.
Carlson, D., and Hodgins, J. 1997. Simulation levels of detail for
real-time animation. In Proc. Graphics Interface 1997.
Devroye, L. 1986. Non-Uniform Random Variate Generation.
Springer-Verlag.
Gagie, T. 2006. Compressing probability distributions. Informa-
tion Processing Letters 97(4):133–137.
Haciomeroglu, M.; Laycock, R.; and Day, A. 2008. Dynamically
populating large urban environments with ambient virtual humans.
Computer Animation and Virtual Worlds 19(3-4):307–317.
Hastings, W. 1970. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika 57(1):97–109.
Koenig, S.; Likhachev, M.; and Sun, X. 2007. Speeding up
moving-target search. In Proc. AAMAS 2007.
MacNamee, B.; Dobbyn, S.; Cunningham, P.; and O’Sullivan, C.
2002. Men behaving appropriately: Integrating the role passing
technique into the ALOHA system. In Proc. AISB 2002, 59–62.
Niederberger, C., and Gross, M. 2005. Level-of-detail for cognitive
real-time characters. The Visual Computer 21(3):188–202.
Osborne, D., and Dickinson, P. 2010. Improving games AI per-
formance using grouped hierarchical level of detail. In Proc. AISB
2010.
O’Sullivan, C.; Cassell, J.; Vilhjalmsson, H.; Dingliana, J.; Dob-
byn, S.; Mcnamee, B.; Peters, C.; and Giang, T. 2002. Levels
of detail for crowds and groups. In Computer Graphics Forum,
volume 21, 733–742.
Pelechano, N.; Allbeck, J.; and Badler, N. 2008. Virtual Crowds:
Methods, Simulation, and Control. Morgan & Claypool Publishers.
Reynolds, C. 1987. Flocks, herds and schools: A distributed be-
havioral model. In Proc. SIGGRAPH 1987, 25–34.
Ross, S. 1996. Stochastic Processes. Wiley and Sons, second
edition. 213–218.
Stylianou, S.; Fyrillas, M.; and Chrysanthou, Y. 2004. Scalable
pedestrian simulation for virtual cities. In Proc. VRST 2004, 72.
Sung, M.; Gleicher, M.; and Chenney, S. 2004. Scalable behaviors
for crowd simulation. In Computer Graphics Forum, volume 23,
519–528.

88


	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010




