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We use the AdS/CFT correspondence to discuss an equivalence between a helical, strongly coupled

Luttinger liquid and a fermion propagating in the background of a topologically charged black hole in

three dimensions. The Fermi level is set by the topological charges, thus surmounting difficulties in low

dimensions of the standard approach using Coulomb charged black holes. The construction is fully

embeddable in string theory, and the microscopic Lagrangian is explicitly known. The retarded Green

function at low temperature and energy arises from the geometry very near the black hole horizon, a

structure that is universal for all cold, charged liquids with a dual R� Uð1Þs invariant description in

gravity. This explains a subtle relationship between Luttinger physics and the infrared behavior of higher

dimensional non-Fermi liquids in the AdS/CFT correspondence.
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Recent works study the physics of strongly coupled non-
Fermi liquids using the AdS/CFT correspondence [1,2]: a
fermionic operator O interacts with a strongly coupled
conformal field theory (CFT) that is represented as a
gravitating anti-de Sitter (AdS) spacetime with one extra
dimension. The correlation functions of a fermion moving
in this spacetime are related to those of O. A chemical
potential and temperature are introduced in the gravita-
tional picture by including a charged black hole.

A challenge is finding examples that can be embedded in
string theory so that the required duality with gravity
actually exists. We show how this is achieved for two-
dimensional field theories with fermions described univer-
sally in the IR by effective theories of the Luttinger form. It
has been suggested that the exact solvability of the
Luttinger model prevents its embedding into the AdS/
CFT setting. We find that because the Luttinger model is
universal at low energies, with Green functions determined
by conformal invariance, symmetries dictate that AdS/CFT
must also give this effective low-energy description.

Specifically, we show that a Dirac fermion propagating
near a three-dimensional Banados-Teitelboim-Zanelli
(BTZ) black hole [3] can be dual to a helical Luttinger
liquid [4], i.e. a liquid where fermions have fixed handed-
ness. A key obstacle is introducing a chemical potential for
fermions. The usual approach [1,2] of giving the AdS black
hole a Coulomb charge fails, because in 2 spatial dimen-
sions the Coulomb potential is ill defined at infinity. We
propose a novel approach where the black hole has topo-
logical charges—holonomies for Uð1Þ vector potentials
that surround the black hole. These Wilson lines control
the Fermi level in the dual field theory. The bulk fermion
mass controls the scaling dimension of the dual operator,
which we relate to the effective couplings of the effective
low-energy Luttinger liquid. Our construction is embed-
dable in string theory, and a Lagrangian description is

available at weak coupling. The gravitational description
helps in a regime where the field theory is strongly
coupled, and where certain properties of the liquid are
sensitive to the UV completion.
At low temperatures the three-dimensional black hole is

nearly extremal and the analytic structure of the IR Green
function is controlled by the near-horizon geometry, which
is a two-dimensional AdS space with a constant electric
field. The same geometry appears near the horizon of any
four-dimensional and five-dimensional finite extremal black
hole invariant under R� Uð1Þ and R� Uð1Þ2, respectively
[5], and controls its IR correlation functions. In this way, the
nonanalytic IR behavior of every non-Fermi liquid with a
gravitational dual is related to the IR physics of the two-
dimensional Luttinger liquid. This suggests that non-Fermi
liquids in any dimension with a realization in gravity rep-
resent different UV completions of a universal IR sector. We
show that the different UV completions involve geometriz-
ing different quantities in the theory and will not be related
to each other by local field redefinitions.
Consider the consistent truncation of Type IIB string

theory to the three-dimensional SUð1; 1j2Þ � SUð1; 1j2Þ
supergravity, with a metric and two SUð2Þ Chern-Simons
gauge fields. The action is S¼ 1
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4G is the level of the SUð2Þ currents.
The vacuum solution is AdS3. Other solutions include the
rotating BTZ black hole surrounded by Wilson lines [6]:
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The parameters r� are the outer and inner horizon radii.
Defining the left and right temperatures T� ¼ ðrþ � r�Þ=
2�‘2, the mass, angular momentum, and tempera-
ture of the black hole are M ¼ ðT2þ þ T2�Þ�2‘2=4G, J ¼
ðT2þ � T2�Þ�2‘3=4G, and 2=T ¼ 1=Tþ þ 1=T�. The elec-
tric term in the gauge fields A3� is required because regu-
larity in the (Euclidean) bulk imposes holomorphicity [7].
The winding of the gauge fields endows the black hole with
integral topological charges Q� ¼ k��. In the two-
dimensional CFT dual to AdS3, this black hole is described
as an ensemble of microstates with left and right Virasoro

levels M‘�J
2 þ k

4�
2�, or, in the canonical ensemble, left and

right temperatures T�.
Now consider a Dirac fermion charged under the two

gauge fields propagating in this background with action

S ¼ R
d3x

ffiffiffiffiffiffiffi�g
p ði ���aDa��m ���Þ, where D is a

gauge covariant derivative. According to the AdS/CFT
dictionary, this fermion is dual to a spin-1=2 operator Om

of fixed helicity in the two-dimensional dual field theory
[8]. The operator Om is left handed for masses m‘ > 0,
right handed for m‘ < 0. Specifically if �0;1 are the 2� 2
� matrices in two-dimensions and we take �3 ¼ �0�1 ¼
�3, then states created by the operatorOm are projected by
1� �3. These Weyl representations are two-dimensional
analogues of fixed helicity in four-dimensions.

The BTZ black hole is just the SLð2;RÞ group mani-
fold, up to discrete identifications. This completely deter-
mines the waves propagating in the geometry. It is then a
routine computation to take the ratios of outgoing and
incomingwaves at (conformal) infinity, with purely ingoing
boundary conditions at the horizon, to obtain the retarded
Green function for Om. For m> 0, taking c / e�i!tþin�

~c ðr;!; nÞ and assuming noninteger 2h�¼m‘þ1�1=2,
this procedure gives [9]

GRð!; nÞ ¼ � i

2

Y
s¼�

�ð1� 2hsÞ�ðhs � i !s

4�T�s
Þ

ð2�T�sÞ1�2hs�ð~hs � i !s

4�T�s
Þ (2)

with ~h� ¼ 1� h� and !s ¼ !þ sðn=‘� 2�sÞ. This ex-
pression corrects a minor error in [9] where T� were ex-
changed; though in the notation used in this reference the
latter corresponds to exchanging TL and TR. (Similar for-
mulae with opposite conformal spin (h� � hþ) follow for
m< 0 [9].) The Wilson lines in (1) shift the momenta
!� n=‘ by amounts proportional to ��, into which we
have also absorbed the charges of the fermion under the two
gauge fields. The temperatures T� are independent for left
and right movers. When 2h� ¼ 1; 2; 3; � � � (jmj‘ 1=2 inte-
gral) the ratio of Gamma functions in (2) is multiplied by a
factor involving di-Gamma functions (c ) of the momenta:

ffiffiffi
2

p ½c ðaÞ � c ðnþ 1Þ þ �E� þ 1ffiffiffi
2

p ½c ðbÞ þ c ðb� 1Þ�
(3)

with a ¼ h� � i!�=4�Tþ, b ¼ hþ � i!þ=4�T�,
n ¼ 2h� � 1 and �E is the Euler-Mascheroni constant.
(This expression is further modified for the special case
2h� ¼ 1.) The singular normalization of (2) for integer 2h�
is an artifact of neglecting these di-Gamma functions.
Below, for simplicity, we focus on the case of noninteger
2h� although the integer values are in fact realized in the
simplest string theoretic embeddings.

With �� ¼ 0, a Fourier transform gives GRðxþ; x�Þ ¼
�i�ðxþÞ�ðx�Þð �Tþ

sinh�Tþx�
Þ2hþð �T�

sinh�T�xþ
Þ2h� with support in

the forward light cone (�ðxþÞ�ðx�Þ ¼ �ðtÞ�ðt2 ��2Þ)
as expected. The overall numerical factor was determined
such that the short distance singularity (and low tempera-
ture limit) in real space takes the canonical form so that

hOmðt; �ÞOmð0; 0Þi ¼ x�2h�þ x�2hþ� . Thus (2) is the thermal
Green function of an operator with spin hþ � h� ¼ 1

2 and

conformal dimension � ¼ hþ þ h� � 1. There is a tower
of thermal poles at !s ¼ �i4�T�sðhs þ nÞ for non-
negative integer n. These poles collapse to the real line
as T� ! 0 producing nonanalytic behavior of the zero-

temperature Green function GRð!; nÞ / Q
s¼�!

2hs�1
s at

!s ¼ 0, indicating the edges of the spectral bands. At
zero temperature the Fermi sea is filled up to ! ¼ 0.
Thus !s ¼ 0 with ! ¼ 0 gives the momenta at the two
edges of the Fermi surface as n� ¼ 2��‘.
Using the Euler reflection formula we obtain the spectral

function 4Að!; nÞ ¼ �8 ImGRð!; nÞ as

cosh
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4T�s
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�ð2hsÞcos�hs
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4�T�s

���������
2

:

(4)

This level density is plotted in Fig. 1. The sum and
difference of the Wilson lines around the BTZ black
hole (�þ � ��) move the spectral bands up/down and
left/right in the !� n plane. The low temperature limit
T� ! 0 of the spectral function can be extracted

using limjyj!1 1ffiffiffiffiffi
2�

p j�ðxþ iyÞje�jyj=2jyjð1=2Þ�x ¼ 1. Taking

!�=T� � 1 this gives

Að!; nÞ 	 �2 cosh

�X
s¼�

!s

4T�s

�Y
s¼�

e�j!sj=4T�s j2�!sj2hs�1

�ð2hsÞ cos�hs :

(5)

In the region inside the spectral bands, i.e. !þ �!� > 0,
the expansion of cosh gives a power law spectral density:
Að!; nÞ / Q

s¼�j!sj2hs�1. Similarly, outside the spectral
bands (!þ �!� < 0) the spectral density vanishes expo-

nentially: Að!; nÞ / Q
s¼�j!sj2hs�1ðPse

�j!sj=2T�sÞ, which
rapidly declines with temperature. The structure near the
edges of the spectral bands is obtained by taking!� 
 T�
and using that to leading order in small y logj�ðxþ iyÞ=
�ðxÞj2 ¼ �y2

P1
n¼0ð1=ðxþ nÞ2Þ þ � � � . The right hand

side defines the Hurwitz zeta function �ð2; xÞ. Thus, for
example, close to the spectral band boundary with
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!� ¼ 0, but with !þ � T� we have Að!; nÞ /
j!þj2hþ�1 expð!�=2Tþ � ð!�=4�TþÞ2�ð2; h�ÞÞ.

The system we study can readily be embedded into
full-fledged string theory, with AdS3 appearing as a low-
energy limit and AdS2 at an even lower energy. In these
detailed constructions (for a recent review, see [10]) the
fermion appears with specific conformal weights. The
simplest embedding is the D1=D5 system in Type IIB
string theory, with black holes that have AdS3 � S3 � T4

near-horizon geometry. In this case there are fermions in
chiral primary representations with conformal weights
ðh�; hþÞ ¼ ð12 ð‘þ 2Þ; 12 ð‘þ 1ÞÞ þ c:c:; ‘¼ 0; 1; . . . . They

have degeneracy 4. Thus the fermionic operator whose
correlator we are studying is embedded in a well-defined,
UV-complete field theory—it is a particular deformation of
the (4, 4) supersymmetric � model on the target space
ðT4Þk=Sk. While the complete field theory is strongly
coupled and thus not readily solvable, it could in principle
be put on a lattice and studied numerically.

Another standard embedding (see the review [10]) is the
chiral M5-embedding in string theory, with black holes
that have AdS3 � S2 � X near-horizon geometry, where X
is a Calabi-Yau manifold. In this case the fermions in chiral
primary representations have conformal weights of speci-
fic chirality ðh�; hþÞ ¼ ð12 ð‘þ 2Þ; 12 ð‘þ 1ÞÞ, ‘ ¼ 0; 1; . . . .

Their degeneracy is 2ðh21 þ 1Þ, where h21 is a Betti num-
ber of X. It is worth noting that the simplest weights are
precisely half-integer, which is the case where response
functions acquire additional logarithmic behavior that is
not generic. This is interesting but not mandatory since,
going beyond chiral primaries, a discretuum of fermion
operators with spacings of order 1=k can also be realized
in these and more elaborate settings. Thus, fermionic

operators with the properties we assume can be realized
in UV-complete CFTs.
In the field theories we discuss, the fermion of interest

interacts stronglywith all the other excitations in the theory.
The collective effects of these interactions endow the fer-
mion with an anomalous dimension. The virtue of the AdS/
CFT correspondence is that the strong interactions are con-
veniently resummed in this setting in terms of free propa-
gation in a curved extra dimension. Consider carrying out
this resummation directly in the field theory at finite tem-
perature by integrating out all the other fields. This will
yield a complicated Lagrangian for our fermion, with many
higher order terms. However, upon running this Lagrangian
down to the IR, the physics will be dominated by the
marginal operators allowed at the interacting IR fixed point.
These operators realize an effective Luttinger theory whose
parameters we wish to relate to the dual AdS theory.
For spin-1/2 operators in two-dimensions, these have

been exhaustively studied (see the review [11]). The only
permitted marginal operators are those that preserve helic-
ity and the discrete symmetries. To write a local interaction
for a Weyl fermion we must introduce some other field.
The simplest possibility is to assume time-reversal (TR)
invariance, with a kinetic term H0 ¼ �i

R
dxðc y@xc �

�c y@x �c Þ, and a four fermion dispersive interaction cou-
pling the two directions of motion

Hint ¼ g2
Z

dxc yc �c y �c ; (6)

with spin label omitted since it is fixed by the 1� �3

projection. This is the helical Luttinger liquid. In this
realization (for which the fields exist in the TR-invariant
D1/D5 theory), the fermions of primary interest (c ) scatter
off ‘‘secondary’’ fermions moving in the opposite direction
( �c ) realized in the bulk as a Dirac fermion with negative
mass and opposite conformal spin (so the system is TR
invariant). In other realizations (including the M5 embed-
ding), the primary fermion must interact with more general
antiholomorphic currents.
The Luttinger liquid permits an exact solution by bo-

sonization. The free fermion (g2 ¼ 0) is represented as
a scalar on a circle with radius Rfree, and then interactions

are taken into account by changing the radius to R4 ¼
1þg2=2�
1�g2=2�

R4
free. Interactions modify the conformal weights

ð0; 12Þ of the free fermion to ðh�; h� þ 1
2Þ, where

h� ¼ 1

8

�
R2

R2
free

þ R2
free

R2
� 2

�
’ g22
32�2

: (7)

The latter expression is for small coupling, but the full
formula is exact. Comparing with the AdS formula

h� ¼ jmj‘
2

þ 1

4
� 1

4
; (8)

we get a relation between the mass of the fermion in the
dual three-dimensional gravity theory and the coupling

FIG. 1 (color online). Spectral density for m ¼ 1:2, T� ¼
10�4, and �� ¼ 0. The horizontal axis is n and the vertical !.
The spectral density vanishes rapidly outside the cones defined
by!� n ¼ 0. Varying �� shifts the spectral bands in the!� n
plane.

HELICAL LUTTINGER LIQUIDS AND THREE- . . . PHYSICAL REVIEW D 84, 126012 (2011)

126012-3



constant of the Luttinger liquid. Note that the free theory
(R ¼ Rfree or g2 ¼ 0) is never realized, since jmj � 0.

The nonanalytic structure in the low temperature Green
function is due to IR physics. Low temperature can be
attained by taking one or both of T� ! 0 (recall 2=T ¼
1=Tþ þ 1=T�). A limit where only one of these tempera-
tures goes to zero leaves the field theory in a state with
finite chiral momentum and corresponds in AdS3 to an
extremal, rotating BTZ black hole. The AdS/CFT corre-
spondence reorganizes energy scales in the field theory
geometrically so that IR physics in the field theory is
associated to dynamics near the black hole horizon.
Thus, we can extract the IR structure by examining the
near-horizon limit of the geometry and wave equations.

The extremal (T� ¼ 0) black hole metric is ds2 ¼
‘2d�2 þ ‘2e2�dwþdw� þ r2þðdwþÞ2, where w� ¼
�� t=‘ and r2 ¼ r2þ þ ‘2e2�. The near-horizon geo-
metry can be isolated via a scaling limit w� ! w�=�
and e2� ! �e2� as � ! 0. The form of the metric remains
invariant in this limit, but w� effectively decompactifies,
giving the ‘‘self-dual orbifold’’ of AdS3 [12]. We must pre-
serve the topological charges Q� associated to our Wilson
lines, and that is achieved by also taking �þ ! ��þ. The
Dirac equation is invariant in form under this scaling limit,
and so the T� ! 0 Green function is

GR ¼ C!2hþ�1
þ j�

�
h� � i!�

4�Tþ

���������
2

sin�

�
h� þ i

!�
4�Tþ

�
;

(9)

where C is a temperature dependent normalization con-
stant. In order to match this IR Green function with the UV
theory, we take � to be finite and small (rather than strictly
zero). Then the IR !þ in (9) is related to the UV lightcone
momentum as �!þ ¼ !UVþ , reflecting the redshift be-
tween the near-horizon and asymptotic part of the black
hole geometry. The dependence of the Green function on
the chemical potential Tþ constitutes nontrivial dynamical
information characterizing the system that the primary
fermions interact with.

It is instructive to compare our results in D ¼ 1þ 1 to
the related study of cold, non-Fermi liquids in D ¼ 2þ 1
[2]. The latter involve charged black holes in AdS4 vs our
rotating black holes in AdS3. In both studies, the IR
dynamics (a near-horizon limit in AdS space) are matched
with the UV dynamics (the asymptotic geometry) to con-
struct retarded Green functions, and the crucial part of the
near-horizon geometry is AdS2 with an electric field. The
final result (in Appendix D of [2]) for the nonanalyticity
that leads to non-Fermi liquid behavior is

GnFL
R ð!Þ ¼ C0!2	j�ð	� iqe2Þj2 sin�ð	þ iqe2Þ; (10)

where C0 is a normalization constant, q is the fermion
charge, and e2 is the electric field (parametrizing the
chemical potential). This precisely matches the form of
(9), with the identifications Tþ ¼ ð4�e2Þ�1, !þ ¼ ! and

!� ¼ q, and h� ¼ 	 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2R
2
2 � q2e22

q
. Recalling that

h� ¼ jmj‘þ 1
2 , we relate the AdS2 mass of the non-

Fermi liquid to the mass of our three-dimensional fermion.
This precise agreement between low temperature corre-

lation functions confirms that the AdS2 near-horizon ge-
ometry is responsible in both cases for the IR behavior. The
parameters of the different UV completions are then re-
lated by comparing physical quantities in the low-energy
effective theory. Despite this simple picture, the IR sector
of the 2þ 1 dimensional non-Fermi liquid in [2] cannot be
simply mapped into a Luttinger liquid. This is due to a
subtle sensitivity to the UV theory. The AdS4 black brane
in [2] is charged under an auxiliary electric field, while the
electric field in our AdS2 is geometrized as an extra di-
mension which is the direction of the momenta of the
Luttinger liquid. Thus, Luttinger modes of different mo-
menta appear inAdS2 as a tower of particles with integrally
spaced charges and masses, while the momentum modes
of the 2þ 1 dimensional field theory in [2] appear in AdS2
as a tower of particles with different masses but
fixed charge. These differences imply different spectra
for !� � q in the two cases. This feature complicates
the relationship between the two-dimensional physics of
the Luttinger liquid and of four-dimensional non-Fermi
liquids with gravity duals.
In summary, the IR structure of correlation functions in

the holographic approach to cold Fermi liquids always
derives from the omnipresent near-horizon AdS2 geometry.
The full black hole geometry is analogous to the UV com-
pletion of an IR field theory [2,13]. The BTZ black holes
presented here are the most transparent UV completion.
While convenient, our three-dimensional completion may
not capture all interesting phenomena. For example, a super-
conducting instability can usually be implemented inAdS in
terms of a charged bosonwith amass that is stable in the UV
but tachyonic in the AdS2 near-horizon geometry [14]. An
interesting feature of our AdS3 completion is that here the
stability bound is exactly the same in the UV and the IR,
since changes in AdS radius are precisely compensated by a
change in the Breitenlohner-Freedman bound. Thus con-
densation by this mechanism appears impossible. It would
be interesting to understand in more detail what features of
the UV completion drive specific low-energy phenomena in
the holographic description of condensed matter systems.
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