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Enhanced peculiar velocities in brane-induced gravity
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The mounting evidence for anomalously large peculiar velocities in our Universe presents a challenge
for the ACDM paradigm. The recent estimates of the large-scale bulk flow by Watkins et al. are
inconsistent at the nearly 3o level with ACDM predictions. Meanwhile, Lee and Komatsu have recently
estimated that the occurrence of high-velocity merging systems such as the bullet cluster (1IE0657-57) is
unlikely at a 6.5-5.8¢ level, with an estimated probability between 3.3 X 107! and 3.6 X 107 in
ACDM cosmology. We show that these anomalies are alleviated in a broad class of infrared-modifed
gravity theories, called brane-induced gravity, in which gravity becomes higher-dimensional at ultralarge
distances. These theories include additional scalar forces that enhance gravitational attraction and
therefore speed up structure formation at late times and on sufficiently large scales. The peculiar velocities
are enhanced by 24-34% compared to standard gravity, with the maximal enhancement nearly consistent
at the 2¢ level with bulk flow observations. The occurrence of the bullet cluster in these theories is =~ 10*

times more probable than in ACDM cosmology.
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I. INTRODUCTION

A striking discrepancy with ACDM predictions has
emerged in recent estimates of the local large-scale bulk
flow. Using a compilation of peculiar velocity surveys,
Watkins et al. [1,2] finds a bulk flow of 407 + 81 kms™!
on 50h~! Mpc scales, which is inconsistent at the = 3¢
level with the ACDM rms expectation of ~180 km/s.

Evidence for this anomaly on larger scales, though less
reliable, comes from measurements of cluster peculiar
velocities using the kinetic Sunyaev-Zel’dovich effect.
These indicate a coherent bulk motion of 600-
1000 kms™! out to = 300h~! Mpc [3,4]. These results
match the direction of the flow found by [1] on the length
scales where they overlap. See also [5] for recent efforts in
reconstructing the local group peculiar velocity. In the
future, observations beyond our local area will offer better
statistics on bulk flows [6].

Independent evidence that structure is evolving more
rapidly than expected is the “bullet custer” 1E0657-57
[7]. A key input in hydrodynamical simulations of this
system [8—10] is the initial subcluster velocity. Recent
simulations have shown that an initial velocity of
3000 km/s at 5 Mpc separation is required to explain the
data [11]. Using horizon scale N-body simulations, Lee
and Komatsu [12] have estimated that the probability of
having such large velocities in ACDM cosmology is be-
tween 3.3 X 107! and 3.6 X 107°—that is, the bullet
system is between 6.5 and 5.80 away from the mean
velocity for colliding clusters. A previous estimate of this
likelihood has been interpreted as evidence for a new
attractive force in the dark sector [13]. See [14,15] for
examples of other violent merging systems.

These anomalies motivate us to study peculiar velocities
in a broad class of infrared (IR) modified gravity theories
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called brane-induced gravity [16-26]. See [27] for a useful
parametrization of modified peculiar velocities, and [28]
for related work. The theories of interest involve extra
scalar degrees of freedom in 4D, which are inherited
from the higher-dimensional massless graviton. These de-
grees of freedom couple to the trace of the matter stress-
energy tensor and therefore enhance the effective gravita-
tional attraction compared to Newtonian gravity at late
times and on large scales. Large-scale structure is more
developed and is currently evolving faster on large scales
than in the ACDM model, both of which lead to larger bulk
flows [29,30].

While we focus on higher-dimensional theories for con-
creteness, enhanced peculiar velocities are also expected in
any theory with a long range extra scalar force, such as
Galileon scalar-tensor theories [31-37], interacting dark
sector models [38—44], and symmetron theories [45,46]. In
chameleon/f(R) [47-53] models, however, the scalar fifth
force has a range < Mpc and hence cannot explain the
large-scale anomalies discussed here. It would be interest-
ing to study whether our results also apply to the recent IR-
modified theory proposed by [54].

A. Brane-induced gravity

The principal motivation for modifying general relativ-
ity (GR) at ultralarge distances is the cosmological con-
stant problem [55]. (See [56] for a recent review of
cosmological tests of gravity.) Vacuum energy is the
zero-momentum component of stress energy and hence
its backreaction depends sensitively on the nature of grav-
ity in the far infrared. A compelling approach is degravi-
tation, in which gravity acts as a high-pass filter [57-59]:
the cosmological term is in fact large, in accordance with
field theory expectations, but gravitates very weakly.
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A perennial challenge in devising consistent IR-
modified theories of gravity is quantum stability, i.e.,
avoidance of ghostlike (negative energy) instabilities.
Giving the graviton a hard mass a la Pauli-Fiertz [60], for
instance, unavoidably leads to instabilities [61-63]. A
more promising approach is brane-induced gravity [16—
26,64—-68], which relies on branes and extra dimensions.
The most widely known example is the Dvali-Gabadadze-
Porrati (DGP) brane-world model [16-18]. The normal
branch of the DGP model is perturbatively ghost free, in
contrast to the self-accelerating branch [69-71], and thus
represents a perturbatively consistent IR modification of
gravity.

The cascading gravity framework [21-24,67] extends
the DGP model to D = 6 space-time dimensions. In the
simplest version with a 6D bulk space-time, our 3-brane is
embedded in a 4-brane, each with their own induced
gravity terms. The upshot of this generalization is twofold.
First, the soft mass term for the graviton is a more slowly
varying function of momentum than in DGP, which is a
necessary condition for degravitation [59]. Thus, cascading
gravity is a promising framework for realizing this phe-
nomenon [23]. Furthermore, the cascading graviton mass
term results in an expansion history that closely resembles
ACDM cosmology and is therefore less constrained by
observations [29,72].

What about perturbative stability? Perturbing around
6D Minkowski space with empty branes reveals a ghost
scalar mode. Early work [21] revealed, however, that the
ghost is excised by including a sufficiently large tension on
the 3-brane or, alternatively, by considering a higher-
dimensional Einstein-Hilbert term localized on the brane
[22,66,73,74]. While the original derivation of [21] was
restricted to a particular decoupling limit of the theory,
recently the absence of perturbative ghosts has been proven
rigorously by perturbing the full 6D solution in the pres-
ence of brane tension [24]. These results establish the
cascading gravity framework as a perturbatively consistent
IR modification of gravity.

B. Summary of results

In this paper we show that the observational bulk flow
anomaly is alleviated in brane-induced gravity theories.
The bulk flow enhancement depends on the number D of
bulk space-time dimensions and the crossover scale r,
beyond which gravity on the brane becomes higher dimen-
sional. Our bulk flow results can be summarized in a fitting
formula for the rms of the 1-dimensional velocity on
50h~! Mpc scales, which is valid for D =4 and r, <
1.5H, "

3v (9 —(y=(2/3)
le_dim =~ 102 X %(— rCHO) 7

5 km/s, (1)

where
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The superscript “G” indicates the use of a Gaussian win-
dow function. In particular, for D = 4 (i.e., v = 2/3), this
matches the ACDM prediction: v§ ;= 102 km/s for
our fiducial parameter choices. In Sec. IV B we generalize
(1) to a fitting formula valid on a range of scales—see (23).
Our fiducial cosmology is consistent with WMAP 7-year
data [75] and assumes a spatially flat universe with (), =
0.24, Q) = 0.042, a primordial power spectrum with tilt
ny = 0.96, and a primordial amplitude chosen to yield a
present-day normalization of og = 0.8 for a ACDM
growth history.

The bulk flow enhancement (1) grows with increasing
D, since more extra dimensions imply more scalar fields on
the brane contributing to the gravitational attraction. It also
grows with decreasing r., since smaller r, implies that
departures from standard 4D gravity turn on at earlier
times. Because bulk flows measure today’s evolution,
higher-D models generate bigger departures from ACDM
for fixed late-time normalization, since the force enhance-
ment grows with D.

The enhanced gravitational attraction in cascading grav-
ity also boosts the amplitude of density perturbations,
resulting in a larger oy at late times versus standard gravity
for fixed primordial normalization. The late-time oy is
constrained by various observables, such as cluster abun-
dance [76,77], the weak lensing power spectrum [78] and
galaxy clustering [79]. We discuss these constraints in
Sec. V. The tightest constraint comes from X-ray galaxy
cluster counts from the ROSAT All-Sky Survey [76], which
for ACDM growth history imposes oz < 0.88 at the 95%
C.L. We therefore require that the late-time amplitude in
our models approximately satisfies this bound. For a given
D, this gives a lower bound on the allowed 7. On one hand,
this is conservative: because our additional scalar force
turns off in high-density environments, like galaxy clus-
ters, the amplitude of the late-time linear power spectrum,
when compared with data using ACDM methods, over-
estimates the cluster abundance [80]. On the other hand,
the additional scalar force, if not completely screened, may
increase the dynamical mass of any given cluster; this
could increase the expected number of clusters at a fixed
dynamical mass, thereby tightening constraints. See [81]
for a careful study of dynamical effects in a variety of
models. A similar treatment in our class of theories is work
in progress [80].

Figure 1 shows the 1-dimensional rms velocity v{ ;.
(the variance from the zero mean of the theoretical distri-
bution) as a function of scale for standard gravity and
brane-induced/cascading gravity with D =5, 6, 7, and
10, derived from the linear theory using a Gaussian win-
dow function. For each D, we choose the minimum al-
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FIG. 1 (color online). The 1-dimensional rms velocity as a
function of scale for standard gravity (black line) and brane-
induced gravity, derived from linear analysis. The dashed (blue),
dash-dotted (red), dotted (green), and top dashed (orange) lines
show the maximum velocity allowed in our model with D =5,
6, 7, and 10, respectively, for late-time power spectra with og =
0.88, consistent with observational constraints. The expansion
history and primordial normalization are identical in all cases.

lowed value of r,, so each of the modified gravity curves
have a similar late-time og.

To compare with data from the peculiar velocity surveys
analyzed by Watkins ef al. [1], we use a window function
that includes observational effects but is only valid on
50h~! Mpc scales. Velocities obtained with this window
function are denoted with superscript “W.” In practice, this
results in a ~1% increase compared to the Gaussian win-
dow function, through the inclusion of some higher-k
modes. Over the range 5 = D < oo, we find

220 < v¥ . <237 km/s. 3)

This is compared with the ACDM value, 179 km/s. The
upper end of this range is nearly consistent at the 20 level
with the observed bulk flow of 407 * 81 km/s [1]. While
we have used linear theory to derive these results, we also
perform N-body simulations of the nonlinear evolution;
these are in excellent agreement with the linear analysis for
the scales of interest (cf. Sec. VI).

The stronger effective gravitational attraction in our
models also makes the occurrence of a high-velocity merg-
ing system like the bullet cluster much more probable.
Assuming that the majority of the infall velocity is caused
by the = 103 M, main cluster, we treat the clusters as point
particles released from rest from a large initial separation
(30 Mpc) and calculate the resulting velocity at 5 Mpc, the
initial separation for gas collision simulations. To include
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the rest of large-scale structure, we add a bulk flow com-
ponent to the infall velocity in quadrature.

We find that the resulting velocity at 5 Mpc separation is
14% (D =5) to 27% (D = 10) larger in our theories,
where we again take the minimum allowed r. for each
D.For D = 10 (and r. = 2750 Mpc), an initial velocity of
3000 km/s at z =0 is a 4.80 event, as compared with
6.50 in ACDM; or, in terms of probability, 6.6 X 1077
versus 3.3 X 107! a boost of over 10*. Meanwhile, at z =
0.5, closer to the actual merger redshift of z = 0.296, the
modified gravity result is 3.90 from the mean versus 5.8
in standard gravity. The probability of achieving that ve-
locity is thus increased to 5.1 X 1072, compared to 3.6 X
107%, again a ~10* probability enhancement. If the re-
quired initial velocity is reduced to 2000 km/s, the proba-
bility of such an occurrence in our model becomes ~0.8%
at z=0 and 14.2% at z = 0.5, respectively, 257 and
65 times more likely than the ACDM expectation (that
is, respectively, 2.4 and 1o in modified gravity, versus 4
and 2.9¢ in standard gravity).

C. Modeling cascading cosmology

Extracting exact cosmological predictions from a
higher-dimensional setup, such as cascading gravity, is
technically very challenging; even the precise form of the
modified Friedmann equation is not yet known. Hence our
results must rely on some phenomenological input.

Fortunately, the scales of interest for this study are well
within the Newtonian regime. In this regime, the theory
admits a local description on the 3-brane, which arises
through a certain decoupling limit. In this limit, the com-
plexities of the full higher-dimensional theory that are
irrelevant to 4D physics are left out. The result is an
effective theory in 4D with new degrees of freedom. The
relevant degrees of freedom are weak-field gravity and
D — 4 scalar fields coupled to the trace of the matter stress
tensor, describing brane bending along each extra dimen-
sion. Whereas gravity is weakly coupled in this limit, the
scalars have nonlinear derivative interactions that are re-
sponsible for the Vainshtein effect, a phenomenon generic
to this kind of theory that leads to the approximate recov-
ery of standard gravity in high-density regions. While the
precise form of the decoupling theory for Cascading
Gravity is not known, we draw upon known results in
DGP to infer the nonlinear interactions of the scalars.

For the background, meanwhile, we assume a ACDM
expansion history. As mentioned earlier, the form of the
modified graviton propagator in cascading gravity suggests
that brane-world corrections to the Friedmann equation
[82-85] are more slowly varying functions of Hr, than
in standard DGP [86]; they should closely resemble vac-
uum energy contributions. Furthermore, by assuming a
ACDM expansion history, our analysis isolates the effects
of the modified growth history [87]. We describe this
approach in detail in Sec. II.
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Finally, we wish to emphasize that, although our analy-
sis does not constitute a fully rigorous derivation of cos-
mological predictions in cascading gravity, our results
should most likely capture the essence of the predictions
of the complete theory. Because the observables of interest
are in the Newtonian regime, the description in terms of
conformally coupled scalar fields with nonlinear interac-
tions should be accurate. The details of the Vainshtein
screening mechanism may vary, but the corrections to
our predictions—which lie on scales where linear theory
is valid—are expected to be small. In short, our approach is
not merely a toy model of cascading cosmology, but a first
iteration in extracting predictions from a broad class of IR-
modified gravity theories.

II. MASSIVE/RESONANCE GRAVITY

The defining feature of theories with infinite-volume
extra dimensions, such as DGP and cascading gravity, is
that 4D gravity is mediated by a resonance graviton—a
continuum of massive states—with general propagator

1

K? 4+ m*(k)’ @

In DGP, for instance, m?*(k) = r. 'k. In real space, this
gives a gravitational potential that interpolates from the
4D scaling, 1/r, at short distances to the 5D scaling, 1/r2,
at large distances, with a crossover scale set by r.. In
cascading gravity, the soft mass term m?(k) is a more
complicated function of k, involving multiple crossover
scales [21,22]. For simplicity, we shall assume that all
crossover scales are comparable and denote this common
scale by r..

Because 4D gravity is massive, each graviton has 5
polarizations: the usual 2 helicity-2 states of GR, 2
helicity-1 states, and 1 helicity-0 degree of freedom. At
distances r < r,., only the helicity-2 and helicity-0 degrees
of freedom are relevant—the helicity-1 states are very
weakly coupled to matter and can be safely ignored. In
the DGP model, the helicity-0 mode has a nice geometrical
interpretation. It measures the extrinsic curvature of the
brane in the extra dimension and is thus referred to as a
brane-bending mode. Cascading gravity theories have D —
5 additional helicity-0 or scalar modes, accounting for the
higher number of extra dimensions in which the brane can
bend. This counting of degrees of freedom can alterna-
tively be understood from a decomposition of the
D-dimensional massless spin-2 representation [21,65].

These scalar modes couple to the trace of the stress-
energy tensor of matter on the brane and, combined with
the helicity-2 states, result in a one-graviton exchange
amplitude between conserved sources having the tensor
structure of D-dimensional massless gravity [22]:

- 1

1 -
AT Ty = s Th g T )
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where we have neglected the graviton mass term for the
scales of interest [88]. For nonrelativistic sources, this
corresponds to the modified Poisson equation

D—4
Wy, = —47TG(1 — 2>p. (6)

In other words, the gravitational attraction is a factor of
1+ g—:g stronger than in standard Newtonian gravity.

If (5) were valid in the solar system, the theory would
already be ruled out by post-Newtonian constraints, for
arbitrarily small m—this is the famous van Dam-Veltman-
Zhakarov discontinuity [89]. The resolution, first proposed
by Vainshtein for massive gravity [90], is that the weak-
field/linear assumption implicit in (5) is actually a poor
approximation for the scalar modes in the vicinity of
astrophysical bodies or in the early universe. Instead, as
shown explicitly in the DGP model [91,92], nonlinearities
in these modes in high-density regions result in them
decoupling from matter, leading to an approximate recov-
ery of Einstein gravity in, e.g., the solar system.

Let us start with the DGP case. On scales << H~! (and
thus < r.), we can neglect time derivatives relative to
gradients of the graviton helicity-0 mode. This mode,
denoted by y, satisfies the approximate equation [93-95]

l"2 R
Vix + o [(Vx)* = (V,V,)(V'V/ x)]

3Bpcpa”
87Ga’d
3Bpar
where the V’s denote spatial derivatives, and where
Bpgp =1+ 2H <1+—H) (8
= T .
DGP c 3H2

The overdot denotes a derivative with respect to proper
time. The Vainshtein effect appears in two guises in the
above. First, in the early universe when Hr.>> 1, the
coupling to matter density becomes vanishingly small
since Bpgp >> 1. Second, even at late times when Hr,. <
1 and Bpgp = 1, sufficiently large overdensities trigger
nonlinearities in y and result in its decoupling.

The analogue of (7) is not yet known for cascading
gravity. There are multiple scalars in this case, each of
which is expected to exhibit Vainshtein screening. There
have not yet been any successful calculations that keep the
nonlinearities of all scalar modes. For the purpose of this
paper, we shall take a phenomenological approach and
assume that all cascading scalar degrees of freedom obey
an equation of the form (7). This is consistent with our
earlier assumption of a single crossover scale r... In other
words, we collectively denote the scalars by y and assume
that they satisfy
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87Ga’Sp

2
v2X + #[(Vz/\/)z - (vivj/\/)(vlvj/\/)] = 33

()]

In particular, the nonlinear y term has been chosen to
match the DGP result (7). In actual cascading gravity
models, however, it likely takes a more complicated form
[96], arising, for instance, from generalized Galileon
Lagrangians [31]. We expect that our results are insensitive
to the detailed form of the nonlinear terms.

Using the scaling of the resulting deviation from GR in
the solar system [59], we can infer that the cosmological
deviation scales as 8 ~ H?r2 for Hr, > 1. We then gen-
eralize (8) to

H

Although the precise H dependence in cascading gravity
models is likely much more complicated than (10), this
modification realizes the expectation that in D > 5 the
transition from strong to weak coupling is sharper than in
DGP, as seen from (8). This is related to the fact that
gravity rapidly weakens on long length scales in models
that can successfully degravitate the cosmological con-
stant. This also means that whatever replaces (9) in cascad-
ing gravity will likely exhibit even more efficient
Vainshtein screening within collapsed objects.

The effect of the y field on matter is through its con-
tribution to the actual potential Wgy, that moves particles:

3(D—4
= + (=
\I,dyn \I}N 2(D — 2>/\/, (11)

where Wy is the usual Newtonian potential. The D depen-
dence here is chosen to recover (6) in the linearized limit
and accounts for the additional scalar polarizations of the
higher-dimensional graviton. At the linearized level and in
the limit H — 0, (9) and (11) coincide with the weak-field
results of DGP and cascading gravity models [16—
18,21,22]. When performing N-body simulations, we solve
(9) using a multigrid relaxation scheme similar to the one
described in [94]. Our N-body code is an updated version
of the one used in previous work [30], revised to solve (9)
exactly and without resorting to the approximation of
spherical symmetry. Meanwhile, we solve for Wy in the
usual way through Fourier transforms on a particle mesh.
The code and further numerical results will be described in
more detail elsewhere [80].

Most of our results are derived within linear theory,
since this is a valid approximation for bulk flows over the
scales of interest. In this regime, we can obtain a modified
evolution equation for the density perturbations & =
8p/p. Using the fact that the energy-momentum tensor
on the brane is covariantly conserved, density and velocity
perturbations evolve as usual via
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. k
6 =——v, v+ Hv =—Vy,. (12)
a

a
These can be combined with the linearized version of (7) to
yield

5 +2HS = 477G,b(1 + B! D—4)5. (13)
D—2

Note that this is consistent with (6) in the flat space limit
B — 1. As another quick check, letting 8 — Bpgp and
setting D =5, this agrees with explicit cosmological re-
sults in DGP [93]. In this paper, we will solve for peculiar
velocities using linear theory and cross-check the results
with simulations.

III. REVIEW OF BULK FLOW FORMALISM

Since matter responds simply to gravitational gradients
at the linear level, it is straightforward to estimate the
expected bulk flows on length scales where matter over-
densities are in the linear regime. See Sec. 11.14 of [97] for
an introductory exposition.

The root-mean-square of the one-dimensional (1-dim)
velocity, o2 = (v}_ ), on a scale R is given by [98]

2oy L. HG
ao(R) =353
where P(k) is the power spectrum of matter density fluc-
tuations, and W(k) is a window function with scale R (To
get the three-dimensional answer, we simply remove the
1/3.) Similarly to [98], we choose the window function to
be a Gaussian for the majority of our analysis:

WS (k) = exp(—k>R?). (15)

[ Y POWAk, R f2(k)dk,  (14)
0

This is designed to capture only the small-k/long-distance
behavior of the power spectrum, i.e., the bulk flow. Note
that the window function used for determining the bulk
flow from peculiar velocity surveys [1] is slightly different
from this, including some higher-k/smaller-R modes. We
present this observational window function in Sec. VII and
use it when comparing with the results of [1]. In practice,
however, it gives very similar results to the Gaussian
window function. See Fig. 2 for a sneak preview of these
window functions.

The velocity also depends on the growth rate f(k) of
perturbations,

dlIng(a, k)
dlna a=a

flk) = (16)
where g is the growth function, and ay, is the present scale
factor. In the gravity theories of interest (as well as in
theories with clustering dark energy) both g and f are
generically scale dependent.

This formalism is similar to that used to set the normal-
ization of the matter power spectrum. The parameter most
commonly used for this purpose is oy, the matter fluctua-
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Comparison of Gaussian and Watkins et al. Window Functions
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FIG. 2. Comparison of the Watkins et al. window function
from [1] (squares), the fitting function given in (32) (solid
line), and the Gaussian window function (dashed line) with R =
50h~! Mpc, normalized such that their value is unity for k — 0.
The difference between the results for the two different window
functions is very small, of order ~1%.

tion within 842~! Mpc spheres:

2 =
Tg =

L [ ertowitoar (17)
27 Jo
where Wg(k) = 3j,(kRg)/kRg, with Ry = 8h~! Mpc and
J1 1s a spherical Bessel function. Note that the window
function for oy is a shallower function of & than that for o,,.
Hence, oy folds in more higher-k modes, whereas peculiar
velocities are a direct probe of low-k power.
The long-distance modifications of gravity of interest
boost peculiar velocities in two ways:
(1) Faster development of structure at late times, en-
coded in the growth rate f;
(ii) Greater buildup of structure due to the integrated
influence of stronger gravity, resulting in a larger
amplitude of the power spectrum (i.e., larger o).

As mentioned earlier, however, the amplitude of the late-
time matter power spectrum cannot be too drastically
altered, as it is constrained by large-scale structure obser-
vations. These will be taken into account in Sec. V to
constrain our model parameters. Nevertheless, the boost
in the bulk flow can be substantial because of the growth
rate effect. In other words, whereas the power spectrum is
the integrated result of the entire growth history, peculiar
velocities are also sensitive to the present growth rate.
Bulk flows are often discussed in a variety of different
ways, which can be confusing. The bulk flows that are
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measured using peculiar velocity surveys and other tech-
niques are reconstructions of a full three-dimensional bulk
flow of our region of space, but they are based on mea-
surements that are separately only one-dimensional—our
line-of-sight measurements always project the velocity of
each object onto the radial direction. What is measured,
then, is a 1-dimensional velocity for each object in the
survey. By collecting and averaging over a large number of
objects, however, we are able to reconstruct the full 3D
bulk flow [1], albeit with a small residual contribution from
some smaller scales. This can be seen in the difference
between our window function (15) and the ideal experi-
mental window function for surveys (32), shown in Fig. 2,
which includes a “bump” at around k ~ 0.054 Mpc~!.
Present observational techniques only allow a reliable
measurement of our local bulk flow. Thus, we have three
independent measurements to compare with the expected
variance in the local velocity calculated in (14). After
reviewing the results of our determination of the variance
in Secs. IV, V, and VI, we compare those theoretical
expectations with the current best local bulk flow data in
Sec. VII. Although it is an effect on a different length scale,
we also discuss how our model change expectations for
bullet cluster initial velocities in light of [12] in Sec. VII.

IV. ANALYTICAL ESTIMATES

In this section, we estimate the expected bulk flows in
cascading gravity, first through analytical methods assum-
ing matter-dominated cosmology (Sec. IVA) and through
fitting formulas of linear theory integration for ACDM
expansion history (Sec. IV B).

A. Enhancement in matter-dominated cosmology

In the linear regime and on scales much smaller than r,
density perturbations evolve according to (13). To get a
rough estimate of the expected bulk flow enhancement
analytically, we first ignore dark energy and consider an
Einstein-de Sitter ({),, = 1) universe.

At early times (Hr, > 1), the cosmological Vainshtein
effect results in 8 >> 1, and density perturbations evolve as
in standard gravity, with growing mode solution 6 ~ a.
Once Hr, = 1, however, the extra scalar modes of cascad-

TABLE I. Minimum values for r. in Mpc allowed by obser-
vational constraints on the power spectrum amplitude. This
contains the same information as Fig. 3.

r. (in Mpc)

1665
2250
2486
2614
2694
0 2750

— O 00 1 O\ W\
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ing gravity become effective and 8 = 1. Equation (13)
then reduces to

. 4. 4 D —4
0t+t—06——|1+——=])6 =0, 18
3t 3z2< D — 2) (18)
with growing mode solution
o ~1, (19)

where vy is given by (2). As a quick check, since y = 2/3
for D =4, this reproduces the usual matter-dominated
growth 6 ~ a.

Since H ~ t~! in matter-dominated cosmology, the ex-
cess growth from the onset of the modified gravity phase
(when H = 1/r,) until the present time is

§ = 5T 3 (Hor,) VO, (20)

Through the continuity equation, (19) translates into v ~
8 = 38/t for the peculiar velocity. The enhancement rela-
tive to standard gravity is thus

v = pstdenay x 377 . (HOrc)_Y+(2/3)' 21)

This expression neatly captures the two contributions to the
bulk flow excess described in Sec. III: the larger growth
rate, through the 3y/2 factor, and the boost in the power
spectrum amplitude through (20). The above derivation,
which crudely assumes a sharp onset of the modified
growth when H = r_ !, actually agrees to within a few
percent with the exact integration of (13) for matter-
dominated cosmology. This illustrates the rapid turn-on
of the scalar force for cascading gravity, (10).

B. Corrections from including dark energy

The above analytic estimate, while useful in guiding our
thinking, does not capture the weakening of growth trig-
gered by the onset of cosmic acceleration. Using a ACDM
expansion history in (13) is straightforward but requires
numerical integration. The resulting growth rate, f(a, k),
and power spectrum, P(k), are then substituted back into
(14) to obtain the velocity dispersion o, as a function of
scale R. In comparing modified and standard gravity, we
keep other cosmological parameters fixed at their fiducial
values: Q,, = 0.24, Qp, = 0.042, h = 0.73, n, = 0.96,
and a primordial amplitude chosen to yield og = 0.80
for ACDM growth history, consistent with WMAP 7 yr
data.

In a similar spirit to Peebles’ famous expression for the
growth rate in the presence of dark energy, facpm = Qm’®,
we use the results of numerically solving the linear pertur-
bation equations to derive a fitting formula for the effect of
our modifications to gravity on the amplitude of clustering
today. For D = 5,...10 and over the range 500 <r, <
7000 Mpc, we find that a reasonable fit is given by

PHYSICAL REVIEW D 82, 044032 (2010)

2 )0-71(—7+(2/3))

og = oyt T X (§ Hyr, (22)

We can also use a fitting technique to extend the expression
for the peculiar velocity on 504! Mpc scales given by (1)
to a formula valid over a range of scales R < r,:

3y (9 ~(-/3)
v§ 4 (R) = 102 X %(5 rCHO) 7

X ¢~ 23({(50n~" Mpe)/(R[A™" Mpe])}*! 1)

50h~" Mpc \4/5
(—PC) km/s,
R[h~! Mpc]

with 7y defined in (2).

(23)

V. CONSTRAINTS ON THE AMPLITUDE

The boost in the amplitude of density perturbations
translates into a larger value for og compared to standard
gravity, for fixed primordial amplitude. It is important to
emphasize that the precise, early-time WMAP limit on oy
applies only to the primordial amplitude as evolved to
today using standard growth history; our choice of this
amplitude, og = 0.8, is consistent with WMAP 7 yr results
[75]. The amplitude of the late-time power spectrum is
measured by various observations discussed below, con-
straining our models.

Notable omissions in our discussion are large-scale tests,
such as the cosmic microwave background temperature
anisotropy and the integrated Sachs-Wolfe galaxy cross
correlation. In DGP, these observables are the most con-
straining for r. [99]. However, analysis of these effects
requires evolving perturbations on horizon scales; this is
beyond our Newtonian treatment. Though our decoupling-
limit arguments (as in Sec. II) should give robust predic-
tions on Newtonian scales, horizon-scale observables re-
quire a relativistic treatment of cosmological perturbation
theory in cascading gravity.

A. X-ray clusters

The tightest constraint comes from cluster counts using
X-ray observations of the ROSAT All-Sky Survey [76]:

Q,, \047
0'8(—) = 0.829 = 0.0275 (clusters),  (24)
0.24

where the error bar includes a 9% systematic uncertainty in
the mass calibration [76]. For our fiducial (), = 0.24, this
implies og < 0.88 at the 95% C.L. The translation from
cluster abundance observations to og assumes standard
gravity, while in our theories the dependence of the mass
function on the linear power spectrum amplitude is modi-
fied. We will come back to this point shortly. In this work
we take the o constraint at face value and, with our
fiducial choice oy ®™ = 0.8, impose o7g/oy" =™ < 1.1.
Using (22), this translates into a constraint on r. and D:
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Allowed region assuming amplitude enhancement < 10%
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FIG. 3. The shaded region of the D — r. parameter space
shows the values allowed by observational constraints on the
power spectrum amplitude. See also Table I.

2 0.71(=y+(2/3))
(E§]¥0rc> = 1.1. (25)

The allowed region of the D — r, parameter space is
shown in Fig. 3. Note that for a given number of space-
time dimensions D, this translates into a lower bound on r,..
In particular, we find r. = 1665 and 2750 Mpc for D = 5
and 10, respectively.

The above constraint is, on the one hand, conservative.
Because our scalar force turns off in regions of high
density, such as galaxy clusters, we expect fewer and
smaller nonlinear structures in our model as compared
with a ACDM model with identical present-day power
spectrum normalization. On the other hand, the additional
scalar force in our model leads to systematically higher
dynamical masses in clusters [81]. This implies an increase
in the number of clusters of fixed dynamical mass as
compared with ACDM with the same late-time og. The
bound we use (25) assumes that these opposing effects
approximately cancel. These considerations have been
studied in detail by [100] for chameleon/f(R) cosmology.
A similar treatment in cascading gravity is work in
progress [80].

Substituting the minimum allowed value of r, for each D
in (23), we obtain the maximum allowed bulk flow as a
function of scale. The result is shown in Fig. 1 for D =5,
6, 7 and 10. On scales 50h~! Mpc probed by [1], using the
appropriate observational window function (see Sec. VII),
we find the range (3):

220 < vV . <237 km/s. (26)
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This should be contrasted with the ACDM prediction of
179 km/s. The upper range of (26) is therefore almost
consistent at the 2o level with the observed bulk flow of
407 = 81 km/s [1]. In Sec. VII we present a more careful
comparison with the data.

B. Weak lensing

The Canadian France Hawaii Telescope weak lensing
survey [78] finds

ag<ﬁ)0'53 —0.855+0.086  (weak lensing). (27)
0.24

This is a much weaker constraint than (24) and is auto-
matically satisfied for the range of late-time values for oy
considered here. As a side remark, note that the constraint
on our modified gravity theories from weak lensing is
actually weaker than implied by (27) because of the cos-
mological Vainshtein effect. The lensing kernel for
Canadian France Hawaii Telescope sources spans the red-
shift range 0.25 = z = 1, where the effect of modifications
to gravity is somewhat muted: for D =10 and r. =
2750 Mpc, the case that yields the largest deviation from
standard gravity, the difference from standard gravity
varies from < 5% at z =1 to = 7.5% at z = 0.5. Hence
the average enhancement of og for observations made in
this redshift range is less than the z = 0 result suggests.

C. Galaxy clustering

The amplitude of the late-time matter power spectrum is
also constrained by the clustering of galaxies measured by
redshift surveys, such as the Sloan Digital Sky Survey
[101] and the 2 Degree Field Galaxy Redshift Survey
(2dFGRS) [102]. However, an immediate comparison of
these observations is not straightforward due to the uncer-
tainty in the galaxy bias. Over the mass range of interest,
though, preliminary results using N-body simulations
show little difference in halo bias in our model compared
with the standard gravity prediction [80]. Marginalizing
over bias, Seljak et al. [79] found

og = 0.88 +0.06 (galaxies). (28)

Again this is a much less restrictive result than the X-ray
cluster observations. It is worth noting that the value of oy
that we use in our modified gravity results, which is in
considerably better agreement with the peculiar velocity
data than ACDM, coincides with the central value of (28).

D. E, parameter

The expectation value of the ratio of galaxy-galaxy
lensing to galaxy-velocity cross correlations has been pro-
posed as an observational test of gravity [103]. In linear
theory, this combination, denoted by E,, is independent of
bias and initial power spectrum normalization. Using Sloan
Digital Sky Survey luminous red galaxies at z = 0.32,
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[104] recently obtained
E, = 0.392 = 0.065. (29)

In both ACDM cosmology and cascading gravity, this
parameter is given by
Qp,

E, = 7 (30)
where (), is the present-day matter density, and f =
dlIng/d Ina is the growth rate at the redshift of observation.
With our fiducial value of (), = 0.24, the ACDM result is
E, = 0.387. Our IR-modified gravity theories predict
0.333 < E, = 0.346 for 10 = D = 5, assuming as before
the minimum allowed r, for each D. Values in this range
are consistent with (29).

VI. NUMERICAL SIMULATIONS

While the linear theory analysis should be applicable to
calculate bulk flows on scales = 504! Mpc, in this sec-
tion we explicitly check this against N-body simulations to
include nonlinear effects. Note that for the sole purpose of
this comparison, we use a slightly higher primordial nor-
malization for which o3[ ACDM] = 0.85.

The N-body results presented here are obtained by in-
tegrating the y equation of motion (7) exactly, using a
particle-mesh approach. This is a notable improvement
over earlier simulations presented in [30], where a spheri-
cal approximation was employed. Although the exact evo-
lution agrees with the approximate results reported in [30]
to within =< 5% for the power spectrum over the relevant
scales, we nonetheless use the full code in the present
work; a detailed comparison of the two approaches will
be discussed elsewhere [80].

We performed a series of particle-mesh simulations of
400h~" Mpc boxes on a 512° grid with 5123 particles. To
determine bulk flow statistics, we perform a real-space
average of velocities over a large number of spheres cen-
tered on points randomly placed throughout our simulation
output, randomizing and rerunning each 400h~! Mpc box
2 or 3 times for each choice of parameters to gather better
statistics. However, it is worth noting that each box gives
highly consistent results with each of the other boxes and
with the ensemble. We also use identical initial conditions
across different parameter choices to isolate the effects of
the new gravitational physics from random fluctuations.

For each sphere, we calculate a Gaussian-weighted av-
erage velocity,

(w(R)[one sphere)) = v, expl—~(r/RF]L (1)

where r; is the distance from the i-th point from the
randomly-selected center, and N = ¥, exp[—(r;/R)?] is a
normalization factor. This gives 3 independent 1-
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Dependence on D, with fixed r.= 1000 Mpc
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FIG. 4 (color online). The expected 1-dimensional peculiar
velocity as a function of scale, using the Gaussian window
function (15). The curves are from linear theory whereas points
(with bootstrap-estimated error bars) are from N-body simula-
tions. The black curve/points are the standard gravity results.
The long-dashed (blue), dash-dotted (red) and dotted (green)
curves/points are, respectively, the D =15, 6 and 7 results,
keeping r. = 1000 Mpc fixed. The points at a given scale are
slightly offset from one another for readability. For this com-
parison, o3[ ACDM] = 0.85.

dimensional velocities for each sphere. All together, we
average over 12004500 different velocities for each pa-
rameter pair. We then calculate the standard deviation of all
the sphere-averaged 1-dimensional velocities to obtain the
rms velocity.

Figs. 4 and 5 compare linear theory integration (lines)
with N-body results (points). Figure 4 explores the sensi-
tivity to the number of extra dimensions, keeping r. fixed
at 1000 Mpc. (For this value of r,, only the D = 5 case
satisfies the observational constraints discussed in Sec. V;
these plots are made only to illustrate the sensitivity to D.)
Figure. 5 shows the dependence on r, fixing the number of
dimensions at D = 5. In each case, we performed the
calculations for R = 10, 25, and 50h~! Mpc. We gener-
ated the error bars by bootstrap resampling subsets of the
measured velocities, computing the rms for each subset,
and using this as a dataset for constructing an error
estimate.

The upshot is that these figures show excellent agree-
ment between linear theory and N-body simulations over
the scales of interest. For bulk flows, the effects of non-
linearities are basically absent, as hoped. This is in contrast
with other velocity-related phenomena studied in [105],
where the effects of nonlinearities persist to scales
~50h~" Mpc.
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Dependence on r, between 500 and 3000 Mpc, for fixed D=5
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FIG. 5 (color online). The expected 1-dimensional peculiar
velocity as a function of scale, using the Gaussian window
function (15), for D =5 and, from top to bottom, r. = 500,
1000, 1500, and 3000 Mpc, respectively, in long-dashed (blue),
dash-dotted (red), dotted (green), and short dashed (orange)
curves (linear theory), and circle, diamond, upright triangle,
and inverted triangle points (simulations, with bootstrap-
estimated error bars). The standard gravity results are plotted
as a solid (black) curve and square points. The points at a given
scale are slightly offset from one another for readability. For this
comparison, ag[ ACDM] = 0.85.

VII. COMPARISON WITH DATA
A. Bulk flows

Figure 6 compares the range of expected 1-dimensional
velocity variances with the three local flow components
reported in [1]. Our task in this section is to quantify the
extent to which these data are more likely in cascading
gravity as compared to GR. We focus on the largest scales

(501/171 M C) to minimize the influence of nonlinear struc-
p
|

(186 c0s(93.5k) + 0.0004 cosh(114.1k) — 11.58 sin(2k) + 1.35 sinh(46k)
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Allowed flow variance versus local data
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FIG. 6 (color online). Comparison of the data from [1] (points)
with the range of bulk flows achievable in cascading gravity
models [shaded region, using Gaussian window function (15)].
The heavy curve defining the bottom of the shaded region is the
result for standard gravity for our fiducial cosmology. Note that
the 202! and 50h~' Mpc data points are not independent.
Using only the 50h~! Mpc data points and comparing their fit
to standard gravity to the fit to the maximum allowed velocity
(which is reached for D = 10, r. = 2750 Mpc), we find a
Ax? = —4.6.

tures. Moreover, the data on different scales are correlated
and would require a careful treatment of covariances. Note
that all cosmological parameters are kept fixed in this
analysis. We leave a comprehensive parameter likelihood
analysis to future study.

As mentioned earlier, for the comparison with data on
50h~! Mpc scales we use the same window function as
determined in [1] to analyze peculiar velocity surveys. This
window function, shown in Fig. 2, is well-fitted by

W2V (k) = 3

4.89 cos(0.0012k) + 0.73 cosh(121.3k) + 1.45 sinh(66.6k)

Figure 2 compares this fitting function with the actual
window function of [1] and with our Gaussian window
function. [In Fig. 6, we instead use the Gaussian window
function, since (32) only applies on 502! Mpc scales.]
The local bulk flow has three velocity components v;,
i € (1,2, 3), measured by [1]. Their measurements have
observational uncertainties ¢;, which we assume represent
independent Gaussian error bars. Although these compo-
nents are in truth related by a covariance matrix, for
simplicity we assume that the data points are independent.

(32)

[
This assumption has only a small effect on the statistics

[106]. We compare these measurements with the expected
distribution of 1-dimensional velocities, which has vanish-
ing mean and variance v\¥ ;. . Assuming a Gaussian proba-
bility distribution, we can compare the different
likelihoods through a simple y? statistic:

2
(33)

At

Ul d1m> + (f
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Recall that for our fiducial cosmology the standard
gravity peculiar velocity variance is v}, [std grav] =
104 km/s. We wish to compare this with the maximum
allowed variance in our cascading gravity models,
v)Y ..[mod grav] = 137 km/s, achieved with D = 10
and r, = 2750 Mpc. Comparing the y? values, we obtain

A2y = —4.6 (34)

in favor of the cascading gravity model, or —1.54 per
degree of freedom.

We should emphasize that we have not performed a
complete multiparameter fit to all the relevant data.
Instead we have fixed the cosmology and amplitude of
the late-time power spectrum, the latter of which sets r..
for each D. A full reanalysis would be necessary for us to
quantify how changes in r. (and hence late-time ampli-
tude) would affect the goodness of the fit. The improve-
ment in the fit that we find with our simple analysis does
not by itself warrant the inclusion of two new parameters
(r. and D) in a strict sense. However, such parameter
counting is often misleading. The underlying goal of
long-distance modification of gravity is to relate these
parameters to an existing one, A. In a self-consistent
analysis of cosmological predictions in cascading gravity,
it is conceivable that these parameters are in fact related to
one another. For the purpose of this work, we can state
conservatively that current peculiar velocity data tantaliz-
ingly hint at gravitational physics beyond ACDM but do
not require it.

Meanwhile, on the very large, 3002~ ! Mpc scales rele-
vant to the result of [3], our modifications to gravity cannot
account for the observed bulk flow. For our D = 10 and
r. =2750 Mpc model, we find v{ ; [modgrav] =
29 km/s, versus 24 km/s for ACDM.

B. Bullet cluster

As mentioned in the Introduction, recent hydronamical
simulations of the bullet cluster have shown that an initial
velocity of v = 3000 km/s is required when the cluster and
subcluster are ~5 Mpc apart to best reproduce X-ray ob-
servations. Lee and Komatsu [12] have recently estimated
that the probability of such an initial velocity in the stan-
dard ACDM framework is between 3.3 X 107'! and
3.6 X 10~ ?—respectively 6.5 and 5.8¢ from the mean of
cluster velocities—where the uncertainty comes from the
evolution of velocities with redshift.

Most of the infall velocity is caused by the gravitational
attraction of the main cluster, which is estimated to have a
mass of 10M, (That this is a good approximation for
such massive clusters is established in [12]). We therefore
compute the infall velocity in our models by treating the
clusters as point particles released from rest from some
large initial separation ~30 Mpc and integrate their dy-
namics down to a separation of 5 Mpc as in [12]. For
simplicity, we assume a head-on collision. The gravita-
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tional potential due to the large cluster is obtained by
solving (9) for y and the standard Poisson equation for
W for a point particle of mass 10'3 M. The motion of the
subcluster is then obtained from the full gravitational
potential given by (11). We also include in quadrature the
effect of the enhanced bulk flow on 5 Mpc scales; however,
the final velocity is almost entirely determined by the infall
calculation.

We should expect the enhancement to scale as G;{fz,
where G is the effective Newton’s constant enhanced
by the additional scalar forces in our models—see (13). In
the last stages of infall, however, the enhancement is some-
what tamed by the Vainshtein mechanism. A related point
is that the enhanced force in modified gravity does not
substantially reduce the velocity at 5 Mpc necessary to
explain the merger velocity. Because of Vainshtein screen-
ing, the final velocity of a particle falling from 5 Mpc to the
center of a 10> M, cluster differs by at most 1% compared
with the infall in standard gravity.

We find that initial velocities are 14% to 27% larger in
our framework, with the smallest difference coming from
D =5 and the largest for D = 10, again assuming the
minimal value of r. allowed by constraints on og: r, =
1665 and 2750 Mpc, respectively. These enhancements
shift the mean of the probability density function for initial
velocities calculated in [12], which is a function of logv.
The larger bulk flow component at 5 Mpc also slightly
widens the variance of the distribution.

The end result is that the required initial velocities for
the bullet cluster merger are much more likely in our
model. Focusing on the D = 10, r. = 2750 Mpc case,
the probability of an initial velocity of 3000 km/s at z =
0 is increased to 6.6 X 1077-2.0 X 10* times more likely
than the ACDM value; in other words, a change from a
6.50 to a 4.80 event. The probability of that initial velocity
at z = 0.5, closer to the actual merger redshift of z =
0.296, is increased to 5.1 X 107, again more than 10*
times as probable as the ACDM result—a shift from
5.80 to 3.9¢0. If we follow [12] and also consider the
probability of finding an initial velocity of 2000 km/s,
the probability of such an occurrence in our model be-
comes 0.8% at z = 0 and 14.2% at z = 0.5, respectively,
257 and 65 times more likely than the ACDM expectation
(that is, respectively, 2.4 and 1o in modified gravity, versus
4 and 2.9¢ in standard gravity). This significant increase in
probability is another tantalizing hint of new gravitational
physics.

VIII. CONCLUSIONS

In this paper, we have explored how peculiar velocities
are affected in a broad class of IR-modified gravity theories
called brane-induced gravity. On the scales of interest,
these theories admit a local 4D description in terms of
weak-field gravity plus D — 4 scalar fields coupled to the
trace of the matter stress tensor. These scalar degrees of
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freedom effectively strengthen the gravitational attraction
at late times and speed up structure formation. As a result,
peculiar velocities are systematically larger than those
expected in standard gravity. Comparisons between
N-body simulations and linear theory calculations show
that linear theory gives an excellent description of the
physics of bulk flows.

We have found that large-scale bulk flows can be en-
hanced up to ~40% relative to ACDM cosmology. The
enhancement is limited by observational constraints on o,
the tightest limit coming from X-ray cluster abundance.
The predicted peculiar velocities alleviate the tension with
recent observations of the bulk flow on 504! Mpc scales
by Watkins et al. [1,2], from a = 30 discrepancy in
ACDM gravity to a = 20 difference in cascading gravity.
The agreement between theory and data is improved by
A x? = —4.6 in our model. Although modest, this improve-
ment offers further motivation for more accurate bulk flow
observations. Peculiar velocities are also enhanced on
much larger scales (~ 300h~! Mpc) probed by kinetic
Sunyaev-Zel’dovich observations, but this is insufficient
to explain the enormous bulk flow inferred by [3,4].

Violent merging systems, such as the bullet cluster, are
much more probable in cascading gravity. Drawing on the
recent analysis of [12], we have found that the occurrence
of the bullet cluster in our theories is = 10* times more
likely than in standard gravity.

We are pursuing various parallel tracks to improve upon
the preliminary analysis presented here. As mentioned
above, the tightest constraint on our models comes from
cluster counts. Through N-body simulations and various
semianalytical techniques, we are currently determining
the halo mass function in cascading gravity as a function
of D and r,. [80]. This will allow a more accurate com-
parison with X-ray data. With regards to the bullet cluster,
we can use similar simulations to calculate the distribution
of initial velocities for subclusters, following the standard
gravity analysis of [12].
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On the theoretical side, the calculations presented here
rely on some phenomenological input. While we are con-
fident that our results capture the essence of cascading
cosmology predictions, they do not derive from a rigorous
cosmological analysis of the complete higher-dimensional
theory. An important first step in this direction would be to
obtain the decoupling limit of cascading gravity while
keeping the nonlinearities in all scalar degrees of freedom.
This would allow a derivation of the modified Friedmann
equation, as in [31] for DGP, as well as the perturbation
equations in the Newtonian regime. This is work in
progress [96].

The observations of large bulk flows and violent cluster
mergers offer tantalizing evidence that structure is evolv-
ing more rapidly than predicted by ACDM cosmology. As
we extend our measurements of large-scale bulk flows
beyond our local region and discover an increasing number
of merging systems, it will become clear whether these are
statistical flukes or the first indication of a new realm of
gravitational physics on cosmological distances in the late
universe.

ACKNOWLEDGMENTS

The authors would like to thank N. Afshordi, M.
Hudson, L. Hui, B. Jain, E. Komatsu, M. Lima, R. Sheth,
C. Springob, M. Trodden, W. Percival, and R. Watkins for
helpful discussions, F. Schmidt for helpful comments and
coding advice, and especially H. Feldman for providing his
window function and for invaluable help with peculiar
velocity calculations. The work of M. W. was supported
by the Perimeter Institute for Theoretical Physics.
Research at the Perimeter Institute is supported by the
Government of Canada through Industry Canada and by
the Province of Ontario through the Ministry of Research
& Innovation. M. W. is grateful to the Center for Particle
Cosmology for its hospitality while part of this work was
completed. The work of J. K. was supported by NSERC of
Canada and funds from the University of Pennsylvania.

[1] R. Watkins, H. A. Feldman, and M. J. Hudson, Mon. Not.
R. Astron. Soc. 392, 743 (2009).

[2] H.A. Feldman, R. Watkins, and M. J. Hudson, Mon. Not.
R. Astron. Soc. 392 756 (2010).

[3] A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, and H.
Ebeling, Astrophys. J. 686, L49 (2008).

[4] A. Kashlinsky, F. Atrio-Barandela, H. Ebeling, A. Edge,
and D. Kocevski, Astrophys. J. 712, L81 (2010).

[5] G. Lavaux, R.B. Tully, R. Mohayaee, and S. Colombi,
Astrophys. J. 709, 483 (2010).

[6] Y.S. Song, C.G. Sabiu, R.C. Nichol, and C.J. Miller, J.
Cosmol. Astropart. Phys. 01 (2010) 025.

[7] R. Barrena, A. Biviano, M. Ramella, E. E. Falco, and S.
Seitz, Astron. Astrophys. 386, 816 (2002); D. Clowe, A.
Gonzalez, and M. Markevitch, Astrophys. J. 604, 596
(2004); D. Clowe, M. Bradac, A.H. Gonzalez, M.
Markevitch, S.W. Randall, C. Jones, and D. Zaritsky,
Astrophys. J. 648, L109 (2006).

[8] M. Takizawa, Astrophys. J. 629, 791 (2005); Publ. Astron.
Soc. Jpn. 58, 925 (2006).

[9] M. Milosavljevic, J. Koda, D. Nagai, E. Nakar, and P.R.
Shapiro, Astrophys. J. 661, L131 (2007).

[10] V. Springel and G. Farrar, Mon. Not. R. Astron. Soc. 380,
911 (2007).

044032-12


http://dx.doi.org/10.1111/j.1365-2966.2008.14089.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14089.x
http://dx.doi.org/10.1086/592947
http://dx.doi.org/10.1088/2041-8205/712/1/L81
http://dx.doi.org/10.1088/0004-637X/709/1/483
http://dx.doi.org/10.1088/1475-7516/2010/01/025
http://dx.doi.org/10.1088/1475-7516/2010/01/025
http://dx.doi.org/10.1051/0004-6361:20020244
http://dx.doi.org/10.1086/381970
http://dx.doi.org/10.1086/381970
http://dx.doi.org/10.1086/508162
http://dx.doi.org/10.1086/431927
http://dx.doi.org/10.1086/518960
http://dx.doi.org/10.1111/j.1365-2966.2007.12159.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12159.x

ENHANCED PECULIAR VELOCITIES IN BRANE-INDUCED ...

[11]

[12]
[13]

[14]

[15]
[16]

[17]
(18]

[19]

C. Mastropietro and A. Burkert, Mon. Not. R. Astron. Soc.
389, 967 (2008).

J. Lee and E. Komatsu, Astrophys. J. 718, 60 (2010).
G.R. Farrar and R. A. Rosen, Phys. Rev. Lett. 98, 171302
(2007).

M. Markevitch, F. Govoni, G. Brunetti, and D. Jerius,
Astrophys. J. 627, 733 (2005).

M. Bradac et al., Astrophys. J. 687, 959 (2008).

G.R. Dvali, G. Gabadadze, and M. Porrati, Phys. Lett. B
485, 208 (2000).

G.R. Dvali and G. Gabadadze, Phys. Rev. D 63, 065007
(2001).

G.R. Dvali, G. Gabadadze, M. Kolanovic, and F. Nitti,
Phys. Rev. D 64, 084004 (2001).

G.R. Dvali, G. Gabadadze, M. Kolanovic, and F. Nitti,
Phys. Rev. D 65, 024031 (2001).

G. Dvali, G. Gabadadze, X.r. Hou, and E. Sefusatti, Phys.
Rev. D 67, 044019 (2003).

C. de Rham, G. Dvali, S. Hofmann, J. Khoury, O. Pujolas,
M. Redi, and A.J. Tolley, Phys. Rev. Lett. 100, 251603
(2008).

C. de Rham, S. Hofmann, J. Khoury, and A.J. Tolley, J.
Cosmol. Astropart. Phys. 02 (2008) 011.

C. de Rham, J. Khoury, and A.J. Tolley, Phys. Rev. Lett.
103, 161601 (2009).

C. de Rham, J. Khoury, and A.J. Tolley, Phys. Rev. D 81,
124027 (2010).

G. Gabadadze, Phys. Lett. B 681, 89 (2009).

C. de Rham, Phys. Lett. B 688, 137 (2010).

Y. Ayaita, M. Weber, and C. Wetterich, arXiv:0908.2903.
A.C. Crook, A. Silvestri, and P. Zukin, Mon. Not. R.
Astron. Soc. 401, 1219 (2010).

N. Afshordi, G. Geshnizjani, and J. Khoury, J. Cosmol.
Astropart. Phys. 08 (2009) 030.

J. Khoury and M. Wyman, Phys. Rev. D 80, 064023
(2009).

A. Nicolis, R. Rattazzi, and E. Trincherini, Phys. Rev. D
79, 064036 (2009).

C. Deffayet, G. Esposito-Farese, and A. Vikman, Phys.
Rev. D 79, 084003 (2009).

N. Chow and J. Khoury, Phys. Rev. D 80, 024037 (2009).
C. Deffayet, S. Deser, and G. Esposito-Farese, Phys. Rev.
D 80, 064015 (2009).

F.P. Silva and K. Koyama, Phys. Rev. D 80, 121301
(2009).

T. Kobayashi, H. Tashiro, and D. Suzuki, Phys. Rev. D 81,
063513 (2010).

T. Kobayashi, Phys. Rev. D 81, 103533 (2010).

T. Damour, G. W. Gibbons, and C. Gundlach, Phys. Rev.
Lett. 64, 123 (1990).

L. Amendola, Phys. Rev. D 62, 043511 (2000).

G.R. Farrar and P.J.E. Peebles, Astrophys. J. 604, 1
(2004).

G. Huey and B.D. Wandelt, Phys. Rev. D 74, 023519
(2000).

S. Das, P.S. Corasaniti, and J. Khoury, Phys. Rev. D 73,
083509 (2006).

G. Caldera-Cabral, R. Maartens, and B. M. Schaefer, J.
Cosmol. Astropart. Phys. 07 (2009) 027.

M. C. Martino, H. F. Stabenau, and R. K. Sheth, Phys. Rev.
D 79, 084013 (2009); M.C. Martino and R.K. Sheth,

[52]

[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
(61]
[62]
[63]

[64]
[65]

[66]
[67]
[68]
[69]
[70]

[71]

[72]
(73]

[74]

[75]

044032-13

PHYSICAL REVIEW D 82, 044032 (2010)

arXiv:0911.1829.

K. Hinterbichler and J. Khoury, Phys. Rev. Lett. 104,
231301 (2010).

K. Hinterbichler, J. Khoury, and L. Hui (unpublished).

S. M. Carroll, V. Duvvuri, M. Trodden, and M. S. Turner,
Phys. Rev. D 70, 043528 (2004).

S. Capozziello, S. Carloni, and A. Troisi, Recent Res. Deyv.
Astron. Astrophys. 1, 625 (2003).

S. Nojiri and S.D. Odintsov, Phys. Rev. D 68, 123512
(2003).

J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104
(2004); Phys. Rev. D 69, 044026 (2004).

P. Brax, C. van de Bruck, A.C. Davis, J. Khoury, and A.
Weltman, Phys. Rev. D 70, 123518 (2004); AIP Conf.
Proc. 736, 105 (2004).

S.S. Gubser and J. Khoury, Phys. Rev. D 70, 104001
(2004); A. Upadhye, S.S. Gubser, and J. Khoury, Phys.
Rev. D 74, 104024 (20006).

D.F Mota and D.J. Shaw, Phys. Rev. Lett. 97, 151102
(2006); Phys. Rev. D 75, 063501 (2007).

F. Piazza, New J. Phys. 11, 113050 (2009); S. Nesseris, F.
Piazza, and S. Tsujikawa, Phys. Lett. B 689, 122 (2010).
S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

B. Jain and J. Khoury, Ann. Phys. (N.Y.) 325, 1479 (2010).
G. Dvali, G. Gabadadze, and M. Shifman, Phys. Rev. D
67, 044020 (2003).

N. Arkani-Hamed, S. Dimopoulos, G. Dvali, and G.
Gabadadze, arXiv:hep-th/0209227.

G. Dvali, S. Hofmann, and J. Khoury, Phys. Rev. D 76,
084006 (2007).

M. Fierz and W. Pauli, Proc. R. Soc. A 173, 211 (1939).
D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).
N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Ann.
Phys. (N.Y.) 305, 96 (2003).

P. Creminelli, A. Nicolis, M. Papucci, and E. Trincherini,
J. High Energy Phys. 09 (2005) 003.

C. de Rham, Can. J. Phys. 87, 201 (2009).

G. Dvali, O. Pujolas, and M. Redi, Phys. Rev. Lett. 101,
171303 (2008).

G. Gabadadze and M. Shifman, Phys. Rev. D 69, 124032
(2004).

0. Corradini, K. Koyama, and G. Tasinato, Phys. Rev. D
77, 084006 (2008); 78, 124002 (2008).

N. Agarwal, R. Bean, J. Khoury, and M. Trodden, Phys.
Rev. D 81, 084020 (2010).

M. A. Luty, M. Porrati, and R. Rattazzi, J. High Energy
Phys. 09 (2003) 029.

A. Nicolis and R. Rattazzi, J. High Energy Phys. 06 (2004)
059.

K. Koyama, Phys. Rev. D 72, 123511 (2005); D.
Gorbunov, K. Koyama, and S. Sibiryakov, Phys. Rev. D
73, 044016 (2006); C. Charmousis, R. Gregory, N.
Kaloper, and A. Padilla, J. High Energy Phys. 10 (2006)
066; G. Dvali, G. Gabadadze, O. Pujolas, and R. Rahman,
Phys. Rev. D 75, 124013 (2007).

C. de Rham and A.J. Tolley (private communication).
M. Kolanovic, M. Porrati, and J. W. Rombouts, Phys. Rev.
D 68, 064018 (2003).

M. Porrati and J. W. Rombouts, Phys. Rev. D 69, 122003
(2004).

D. Larson et al., arXiv:1001.4635.


http://dx.doi.org/10.1111/j.1365-2966.2008.13626.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13626.x
http://dx.doi.org/10.1088/0004-637X/718/1/60
http://dx.doi.org/10.1103/PhysRevLett.98.171302
http://dx.doi.org/10.1103/PhysRevLett.98.171302
http://dx.doi.org/10.1086/430695
http://dx.doi.org/10.1086/591246
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://dx.doi.org/10.1103/PhysRevD.63.065007
http://dx.doi.org/10.1103/PhysRevD.63.065007
http://dx.doi.org/10.1103/PhysRevD.64.084004
http://dx.doi.org/10.1103/PhysRevD.65.024031
http://dx.doi.org/10.1103/PhysRevD.67.044019
http://dx.doi.org/10.1103/PhysRevD.67.044019
http://dx.doi.org/10.1103/PhysRevLett.100.251603
http://dx.doi.org/10.1103/PhysRevLett.100.251603
http://dx.doi.org/10.1088/1475-7516/2008/02/011
http://dx.doi.org/10.1088/1475-7516/2008/02/011
http://dx.doi.org/10.1103/PhysRevLett.103.161601
http://dx.doi.org/10.1103/PhysRevLett.103.161601
http://dx.doi.org/10.1103/PhysRevD.81.124027
http://dx.doi.org/10.1103/PhysRevD.81.124027
http://dx.doi.org/10.1016/j.physletb.2009.10.002
http://dx.doi.org/10.1016/j.physletb.2010.04.005
http://arXiv.org/abs/0908.2903
http://dx.doi.org/10.1111/j.1365-2966.2009.15713.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15713.x
http://dx.doi.org/10.1088/1475-7516/2009/08/030
http://dx.doi.org/10.1088/1475-7516/2009/08/030
http://dx.doi.org/10.1103/PhysRevD.80.064023
http://dx.doi.org/10.1103/PhysRevD.80.064023
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://dx.doi.org/10.1103/PhysRevD.79.084003
http://dx.doi.org/10.1103/PhysRevD.79.084003
http://dx.doi.org/10.1103/PhysRevD.80.024037
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1103/PhysRevD.80.064015
http://dx.doi.org/10.1103/PhysRevD.80.121301
http://dx.doi.org/10.1103/PhysRevD.80.121301
http://dx.doi.org/10.1103/PhysRevD.81.063513
http://dx.doi.org/10.1103/PhysRevD.81.063513
http://dx.doi.org/10.1103/PhysRevD.81.103533
http://dx.doi.org/10.1103/PhysRevLett.64.123
http://dx.doi.org/10.1103/PhysRevLett.64.123
http://dx.doi.org/10.1103/PhysRevD.62.043511
http://dx.doi.org/10.1086/381728
http://dx.doi.org/10.1086/381728
http://dx.doi.org/10.1103/PhysRevD.74.023519
http://dx.doi.org/10.1103/PhysRevD.74.023519
http://dx.doi.org/10.1103/PhysRevD.73.083509
http://dx.doi.org/10.1103/PhysRevD.73.083509
http://dx.doi.org/10.1088/1475-7516/2009/07/027
http://dx.doi.org/10.1088/1475-7516/2009/07/027
http://dx.doi.org/10.1103/PhysRevD.79.084013
http://dx.doi.org/10.1103/PhysRevD.79.084013
http://dx.doi.org/10.1103/PhysRevD.79.084013
http://dx.doi.org/10.1103/PhysRevD.79.084013
http://dx.doi.org/10.1103/PhysRevD.79.084013
http://arXiv.org/abs/0911.1829
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://dx.doi.org/10.1103/PhysRevLett.104.231301
http://dx.doi.org/10.1103/PhysRevD.70.043528
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1103/PhysRevD.68.123512
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevLett.93.171104
http://dx.doi.org/10.1103/PhysRevD.69.044026
http://dx.doi.org/10.1103/PhysRevD.70.123518
http://dx.doi.org/10.1063/1.1835177
http://dx.doi.org/10.1063/1.1835177
http://dx.doi.org/10.1103/PhysRevD.70.104001
http://dx.doi.org/10.1103/PhysRevD.70.104001
http://dx.doi.org/10.1103/PhysRevD.74.104024
http://dx.doi.org/10.1103/PhysRevD.74.104024
http://dx.doi.org/10.1103/PhysRevLett.97.151102
http://dx.doi.org/10.1103/PhysRevLett.97.151102
http://dx.doi.org/10.1103/PhysRevD.75.063501
http://dx.doi.org/10.1088/1367-2630/11/11/113050
http://dx.doi.org/10.1016/j.physletb.2010.04.061
http://dx.doi.org/10.1103/RevModPhys.61.1
http://dx.doi.org/10.1016/j.aop.2010.04.002
http://dx.doi.org/10.1103/PhysRevD.67.044020
http://dx.doi.org/10.1103/PhysRevD.67.044020
http://arXiv.org/abs/hep-th/0209227
http://dx.doi.org/10.1103/PhysRevD.76.084006
http://dx.doi.org/10.1103/PhysRevD.76.084006
http://dx.doi.org/10.1098/rspa.1939.0140
http://dx.doi.org/10.1103/PhysRevD.6.3368
http://dx.doi.org/10.1088/1126-6708/2005/09/003
http://dx.doi.org/10.1139/P08-087
http://dx.doi.org/10.1103/PhysRevLett.101.171303
http://dx.doi.org/10.1103/PhysRevLett.101.171303
http://dx.doi.org/10.1103/PhysRevD.69.124032
http://dx.doi.org/10.1103/PhysRevD.69.124032
http://dx.doi.org/10.1103/PhysRevD.77.084006
http://dx.doi.org/10.1103/PhysRevD.77.084006
http://dx.doi.org/10.1103/PhysRevD.78.124002
http://dx.doi.org/10.1103/PhysRevD.81.084020
http://dx.doi.org/10.1103/PhysRevD.81.084020
http://dx.doi.org/10.1088/1126-6708/2003/09/029
http://dx.doi.org/10.1088/1126-6708/2003/09/029
http://dx.doi.org/10.1088/1126-6708/2004/06/059
http://dx.doi.org/10.1088/1126-6708/2004/06/059
http://dx.doi.org/10.1103/PhysRevD.72.123511
http://dx.doi.org/10.1103/PhysRevD.73.044016
http://dx.doi.org/10.1103/PhysRevD.73.044016
http://dx.doi.org/10.1088/1126-6708/2006/10/066
http://dx.doi.org/10.1088/1126-6708/2006/10/066
http://dx.doi.org/10.1103/PhysRevD.75.124013
http://dx.doi.org/10.1103/PhysRevD.68.064018
http://dx.doi.org/10.1103/PhysRevD.68.064018
http://dx.doi.org/10.1103/PhysRevD.69.122003
http://dx.doi.org/10.1103/PhysRevD.69.122003
http://arXiv.org/abs/1001.4635

MARK WYMAN AND JUSTIN KHOURY

[76]
(77]
(78]
[79]

(80]
[81]
[82]
[83]
[84]
[85]
[86]

[87]
[88]

[89]

[90]
[91]

A. Vikhlinin et al., Astrophys. J. 692, 1060 (2009).

M. Lueker et al., Astrophys. J. 719, 1045 (2010).

L. Fu et al., Astron. Astrophys. 479, 9 (2008).

U. Seljak et al. (SDSS Collaboration), Phys. Rev. D 71,
043511 (2005).

J. Khoury, M. Lima, and M. Wyman (unpublished).

F. Schmidt, Phys. Rev. D 81, 103002 (2010).

P. Binetruy, C. Deffayet, and D. Langlois, Nucl. Phys.
B565, 269 (2000).

J.M. Cline, C. Grojean, and G. Servant, Phys. Rev. Lett.
83, 4245 (1999).

P. Brax, C. van de Bruck, and A.C. Davis, Rep. Prog.
Phys. 67, 2183 (2004).

J. Khoury and R.J. Zhang, Phys. Rev. Lett. 89, 061302
(2002).

C. Deffayet, Phys. Lett. B 502, 199 (2001).

B. Jain and P. Zhang, Phys. Rev. D 78, 063503 (2008).
As a technical remark, the tensor structure in (5) arises
when one adds higher-dimensional Einstein-Hilbert terms
localized on the brane to excise the ghost mode discussed
in the Introduction [22]. If one also adds a tension on the
3-brane, then at least in the D = 6 case the exchange
amplitude around this solution becomes tension dependent
[21].

H. van Dam and M.J. G. Veltman, Nucl. Phys. B22, 397
(1970); V.1. Zakharov, JETP Lett. 12, 312 (1970).

A.1. Vainshtein, Phys. Lett. B 39, 393 (1972).

C. Deffayet, G.R. Dvali, G. Gabadadze, and A.lL
Vainshtein, Phys. Rev. D 65, 044026 (2002); A.
Gruzinov, New Astron. Rev. 10, 311 (2005); M. Porrati,
Phys. Lett. B 534, 209 (2002).

[92]
(93]
[94]

[95]

[96]
(971

(98]
[99]

[100]
[101]
[102]
[103]

[104]

[105]

[106]

044032-14

PHYSICAL REVIEW D 82, 044032 (2010)

E. Babichev, C. Deffayet, and R. Ziour, J. High Energy
Phys. 05 (2009) 098; Phys. Rev. Lett. 103, 201102 (2009).
A. Lue, R. Scoccimarro, and G. D. Starkman, Phys. Rev. D
69, 124015 (2004).

F. Schmidt, Phys. Rev. D 80, 043001 (2009); 80, 123003
(2009).

R. Scoccimarro, Phys. Rev. D 80, 104006 (2009); K. C.
Chan and R. Scoccimarro, Phys. Rev. D 80, 104005
(2009).

K. Hinterbichler, M. Trodden, and D. Wesley (unpub-
lished).

P.J.E. Peebles, The Large Scale Structure of the Universe
(Princeton University Press, Princeton, 1980).

R. Watkins, Mon. Not. R. Astron. Soc. 292, L59 (1997).
W. Fang, S. Wang, W. Hu, Z. Haiman, L. Hui, and M.
May, Phys. Rev. D 78, 103509 (2008).

F. Schmidt, A. Vikhlinin, and W. Hu, Phys. Rev. D 80,
083505 (2009).

K. N. Abazajian et al. (SDSS Collaboration), Astrophys. J.
Suppl. Ser. 182, 543 (2009).

W.J. Percival et al. (The 2dFGRS Team Collaboration),
Mon. Not. R. Astron. Soc. 337, 1068 (2002).

P. Zhang, M. Liguori, R. Bean, and S. Dodelson, Phys.
Rev. Lett. 99, 141302 (2007).

R. Reyes, R. Mandelbaum, U. Seljak, T. Baldauf, J.E.
Gunn, L. Lombriser, and R.E. Smith, Nature (London)
464, 256 (2010).

W.J. Percival and M. White, Mon. Not. R. Astron. Soc.
393, 297 (2009).

M. Hudson (private communication).


http://dx.doi.org/10.1088/0004-637X/692/2/1060
http://dx.doi.org/10.1051/0004-6361:20078522
http://dx.doi.org/10.1103/PhysRevD.71.043511
http://dx.doi.org/10.1103/PhysRevD.71.043511
http://dx.doi.org/10.1103/PhysRevD.81.103002
http://dx.doi.org/10.1016/S0550-3213(99)00696-3
http://dx.doi.org/10.1016/S0550-3213(99)00696-3
http://dx.doi.org/10.1103/PhysRevLett.83.4245
http://dx.doi.org/10.1103/PhysRevLett.83.4245
http://dx.doi.org/10.1088/0034-4885/67/12/R02
http://dx.doi.org/10.1088/0034-4885/67/12/R02
http://dx.doi.org/10.1103/PhysRevLett.89.061302
http://dx.doi.org/10.1103/PhysRevLett.89.061302
http://dx.doi.org/10.1016/S0370-2693(01)00160-5
http://dx.doi.org/10.1103/PhysRevD.78.063503
http://dx.doi.org/10.1016/0370-2693(72)90147-5
http://dx.doi.org/10.1103/PhysRevD.65.044026
http://dx.doi.org/10.1016/j.newast.2004.12.001
http://dx.doi.org/10.1016/S0370-2693(02)01656-8
http://dx.doi.org/10.1088/1126-6708/2009/05/098
http://dx.doi.org/10.1088/1126-6708/2009/05/098
http://dx.doi.org/10.1103/PhysRevLett.103.201102
http://dx.doi.org/10.1103/PhysRevD.69.124015
http://dx.doi.org/10.1103/PhysRevD.69.124015
http://dx.doi.org/10.1103/PhysRevD.80.043001
http://dx.doi.org/10.1103/PhysRevD.80.123003
http://dx.doi.org/10.1103/PhysRevD.80.123003
http://dx.doi.org/10.1103/PhysRevD.80.104006
http://dx.doi.org/10.1103/PhysRevD.80.104005
http://dx.doi.org/10.1103/PhysRevD.80.104005
http://dx.doi.org/10.1103/PhysRevD.78.103509
http://dx.doi.org/10.1103/PhysRevD.80.083505
http://dx.doi.org/10.1103/PhysRevD.80.083505
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1046/j.1365-8711.2002.06001.x
http://dx.doi.org/10.1103/PhysRevLett.99.141302
http://dx.doi.org/10.1103/PhysRevLett.99.141302
http://dx.doi.org/10.1038/nature08857
http://dx.doi.org/10.1038/nature08857
http://dx.doi.org/10.1111/j.1365-2966.2008.14211.x
http://dx.doi.org/10.1111/j.1365-2966.2008.14211.x

