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ABSTRACT
We study the problem of characterizing the behavior of lossy
and data corrupting communication channels in a networked
control setting, where the channel’s behavior exhibits tem-
poral correlation. We propose a behavior characterization
mechanism based on a hidden Markov model (HMM). The
use of a HMM in this regard presents multiple challenges in-
cluding dealing with incomplete observation sequences (due
to data losses and corruptions) and the lack of a priori in-
formation about the model complexity (number of states in
the model). We address the first challenges by using the
plant state information and history of received/applied con-
trol inputs to fill in the gaps in the observation sequences,
and by enhancing the HMM learning algorithm to deal with
missing observations . Further, we adopt two model qual-
ity criteria for determining behavior model complexity. The
contributions of this paper include: (1) an enhanced learning
algorithm for refining the HMM model parameters to han-
dle missing observations, and (2) simultaneous use of two
well-defined model quality criteria to determine the model
complexity. Simulation results demonstrate over 90% accu-
racy in predicting the output of a channel at a given time
step, when compared to a traditional HMM based model
that requires complete knowledge of the model complexity
and observation sequence.

Categories and Subject Descriptors
B.4.5 [Reliability, Testing, and Fault-Tolerance]: Re-
dundant Design; G.3 [Probability AND Statistics]: Markov
Process; K.6.m [Miscellaneous]: Security

General Terms
Algorithms, Design, Reliability, Security

Keywords
Networked Control System, Majority Voting, Hidden Markov
Model

1. INTRODUCTION
Networked control systems (NCS) are spatially distributed

control systems where the communication between the plant
sensors, plant actuators, and controllers takes place through
a network [9]. However, the presence of a network within the
control loop can adversely affect the performance of the sys-
tem due to the inherent unreliability (e.g., packet drops or
transmission latency) of the communication channel. Such
anomalies have direct consequences on the stability of the
plant, as shown in previous studies [1, 2, 7, 8, 11, 17, 19].

As NCS have become more pervasive in large-scale indus-
trial networks [22], the potential for data corruption due to
unmitigated faults or malicious attacks increases consider-
ably. However, an investigation of the combined effects of
packet drops and data corruptions in the network in NCS has
received limited attention. Our previous paper [24] studied
a NCS with lossy and faulty (i.e., data-corrupting) commu-
nication channels, and examined the use of a triple-modular-
redundant channels. We use a majority voting scheme aug-
mented with a simple channel behavior model to determine
which channel inputs to apply to a plant within a given
time-step. The goal is to tolerate a single data-corrupting
channel and achieve mean square stability, assuming that
the behavior of each communication channel can be mod-
eled as an independent and identically distributed (i.i.d.)
random variable.

This assumption of channel behavior being modeled as an
i.i.d. random variable may not often hold in practice, es-
pecially in the case of wireless channels where burst errors
or faults often persist over multiple time-steps [16]. Con-
sequently, in this paper we focus on studying the scenar-
ios where the behavior of each channel at the current time-
step is correlated with its behavior in the previous t time-
steps (for some unknown t). To this end, we adopt a hid-
den Markov model (HMM) framework to design a channel
behavior characterization mechanism. The idea is to con-
struct an HMM-based behavior model for each communica-
tion channel in the NCS. Given a channel’s observed behav-



ior sequence over time, the parameters of the corresponding
HMM are computed and progressively refined. This HMM-
based approach provides a probabilistic characterization of
the channel’s tendency to correctly or incorrectly transmit
data at a given time-step. Using this behavior model, for an
input received over a specific communication channel, one
can make well-informed decisions about whether it should
be applied to stabilize the plant. This is particularly use-
ful in the event majority voting fails in a time-step due to
the lossy and data corrupting nature of the channels (result-
ing in insufficient information to make a decision). Previous
studies have focused on using HMMs as the reasoning en-
gine to identify root causes of faults or erroneous states of
the system [6, 10, 14, 21, 26–28]. In contrast, we adopt a
black-box view that only focuses on identifying the correla-
tion between a channel’s current behavior and its behavior
history. This allows us to propose a more general solution to
the problem of dealing with unreliable channels in an NCS
setting.

Designing an effective channel behavior characterization
mechanism using HMMs (in the context of NCS) presents
two important challenges: (1) Incomplete and Uncertain Ob-
servations: Due to the presence of data loss and corruption,
existing majority voting schemes cannot always accurately
discern the behavior of the communication channels at every
time step. This introduces considerable incompleteness and
uncertainty in the observation sequence and the channel’s
behavior model. (2) Unknown Model Complexity: It is crit-
ical to identify the number of states of the HMM behavior
model (henceforth referred to as model complexity), which
accurately captures a channel’s behavior pattern. However,
such information is often unknown a priori.

In addressing these challenges, we make two main con-
tributions: (1) We design an enhanced learning algorithm
for refining the HMM model parameters, which can han-
dle missing observations. Additionally, we simultaneously
reduce the missing observations by using the history of re-
ceived and applied control inputs and the knowledge of the
current plant state to fill the gaps in the observation se-
quences, with the benefit of hindsight. (2) We adopt two
well-defined model quality criteria to determine the HMM
complexity.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss the system model and problem statement.
In Section 3 we present the HMM-based channel behavior
characterization mechanism followed by Section 4 where we
present the enhanced HMM learning algorithm that can deal
with missing data. In Section 5 we present our approach to
determine the model complexity. In Section 6 we present the
evaluation results and in Section 7, we conclude the paper.

2. SYSTEM MODEL AND PROBLEM STATE-
MENT

Consider the networked control system shown in Figure
1. The plant P is given by the dynamical system

x[k + 1] = Ax[k] + Bu[k] , (1)

where the matrices A and B are real-valued matrices of
appropriate dimensions. x ∈ Rn is the system state vector,
u ∈ Rm is the system input vector, and k denotes the time-
step of the system.

To obtain the desired behavior from the plant, the state

Figure 1: System Model

x[k] is sent to a controller CTL. Based on x[k] (or perhaps
the entire history of past states), the controller computes
an input û[k] to apply to the plant. This value is then sent
through an imperfect communication channel. In this paper,
we consider three types of behaviors that a channel can ex-
hibit at any given time-step: (1) correct behavior (denoted
as C): the data is faithfully transmitted; (2) faulty (data-
corrupting) behavior (denoted as I): the data being trans-
mitted is modified due to unmitigated faults or malicious
attacks; (3) lossy (data-dropping) behavior (denoted as D):
the data is lost during the transmission.

To compensate for the faulty and lossy nature of the chan-
nels, we consider a triple-modular redundant scheme (see
Figure 1). This scheme consists of three disjoint communi-
cation channels between the controller and the plant. The
channels are used to send the control input û[k] along with
system state measurement x[k] to keep track of the plant
dynamics based on the inputs applied over time. A man-
ager component M receives values ûi[k] (i ∈ {1, 2, 3}) sent
through the three different channels and makes a decision on
what input ûi[k] to apply. To apply correct control inputs
to the plant and to avoid corrupted ones, the manager M
needs to properly discern a channel’s behavior. By default,
the manager implements a majority voting scheme for this
purpose. With triple-modular redundancy, majority voting
can be effective in the identification of the faulty channel
when only one channel exhibits such behavior in a given
time-step, and there are no packet losses. On the other
hand, majority voting with lossy and faulty channels works
as follows:

• The reception of at least two matching inputs at the
manager in a given time-step results in its acceptance
as a correct input (C) and its consequent application
to the plant. Any channel whose value does not match
this correct input is deemed as producing an incorrect
input (I). Similarly, channels that drop the control in-
put in a time-step are classified as dropped (D).

• If in a given time-step, two inputs are received and
they do not match, or only one input is received then
majority voting fails to find an appropriate input. In
this case we use X to denote the behavior of such chan-
nels in that time-step (Example 1).

Example 1 The true behaviors of the three input channels



and the behavior types discerned using the majority voting
scheme (X denotes the unknown behavior) is demonstrated.

• True behavior sequences:

Channel 1 C C C C C C I D

Channel 2 C I C I I D I D

Channel 3 C C D D I D I D

• Discerned behavior sequences using majority voting:

Channel 1 C C C X X X X D

Channel 2 C I C X X D X D

Channel 3 C C D D X D X D

Due to the ambiguity introduced by packet drops and
corruptions, we showed in [24] that a simple majority vot-
ing scheme may actually not provide stability if the chan-
nels drop packets with a sufficiently high probability (even
when a single fault-free channel with the same probability
of packet drop would be able to provide stability). We went
on to demonstrate the use of a simple Bayesian estimator
to improve the performance of majority voting by assuming
that the behavior (both correct and incorrect) of each chan-
nel can be modeled as an i.i.d. random variable. We relax
this assumption in this paper, since it is restrictive and may
not hold in many practical situations.

Example 2 For the Bernoulli packet-drop behavior model
studied in previous works [8, 9, 20, 24], the probability dis-
tribution of possible behavior types is given below, where p is
the data drop probability. D with probability p

C with probability 1− p
I with probability 0

This model represents a case where the behavior at the cur-
rent time-step is independent from the behavior type of the
previous time-steps. In other words, its current behavior is
correlated with behavior over the previous zero time-steps.

Example 3 Consider a scenario where a channel alterna-
tively exhibits the three types of behaviors described above.
The observed behavior sequence ΩS of this channel is:

ΩS = C I D C I D C I D C I . . .

In the above example, it is clear that the behavior type
at the current time-step is correlated with (and actually
completely specified by) the behavior in the previous one
time-step. This behavior model is more general than the
i.i.d. assumption made by previous works studying NCS
[8, 9, 20, 24].

Problem 1 In this paper, we study the problem of develop-
ing a robust and effective behavior characterization mecha-
nism in the context of NCS, which focuses on the scenarios
where a channel’s behavior at the current time-step is corre-
lated with its behavior in the previous t time-steps, for some
unknown integer t.

Remark: Note that we do not focus on the issue of stability
in this paper. We assume that the system is designed in such
a way that stability (in an appropriate sense) is attained de-
spite the presence of packet drops (e.g., if the conditions
provided in works such as [7, 9, 15, 24], etc. are satisfied).
Instead, our main goal is to design a monitoring mechanism
to characterize the behavior and quality of the various chan-
nels, which can then be used by the plant operator to take
appropriate actions, such as shutting down a severely mal-
functioning channel. We will show how the hidden Markov
model and its standard learning algorithms can be adapted
and modified for effective channel behavior modeling, and to
handle the particular complexities in the networked control
context.

3. CHANNEL BEHAVIOR CHARACTERI-
ZATION

In this section, we present the design of an effective be-
havior characterization mechanism for NCS using the hid-
den Markov model (HMM). Before delving into the details,
we make the following important assumptions regarding the
channels in our system model :

1. We consider a setup with three channels and assume
each channel operates independently of the others; that
is, there is no correlation between their behaviors at
any time-step. Each of the channels can exhibit cor-
rect, faulty and lossy behavior.

2. We assume I inputs received from two or more chan-
nels at the same time-step will not agree under the
majority voting scheme; only C (correct) inputs will
match with each other.

3. There exists an appropriate Lyapunov function for the
system that decreases whenever correct (C) inputs are
applied; we assume that incorrect (I) inputs will not
decrease this function.

3.1 Hidden Markov Model
To formally represent the class of behavior patterns dis-

cussed in Section 2, we adopt a hidden Markov model (HMM)
framework [18]. A HMM consists of N states, denoted by
the set ΩX = {q1, . . . , qN}, and M outputs, denoted by the
set ΩO = {v1, . . . , vM}. The relationships between a fixed
set of states and set of outputs is specified by two stochas-
tic processes Λ = {E,F}. The first stochastic process de-
scribes the transition between states, whose parameters are
encoded in the transition probability matrix E = {eij},
where eij = P (ΩX(t + 1) = qj |ΩX(t) = qi). The second
stochastic process describes the relationship between each
state and all the possible outputs, whose parameters are en-
coded in the emission probability matrix F = {fi}, where
fi = {P (ΩO = v1|ΩX = qi), . . . , P (ΩO = vM |ΩX = qi)}.
In a HMM, only the outputs (which are dependent on the
states) are visible; the states and transitions between them
are not directly observable, and are therefore hidden.



Figure 2: Examples of HMM Fault Model

The HMM is an ideal modeling choice in our setting, since
the temporal correlation between a channel’s current behav-
ior and its behavior history can be considered to be Marko-
vian. As a result, we model the three possible behavior types
of the channels as the output of the HMM. Furthermore, the
behavior sequences with length t can be modeled using N
states in the HMM, where N = 3t (this corresponds to the
combination of all possible behavior sequences with length
t). For instance, as illustrated in Figure 2(a),1 the HMM of
Example 3 has 31 = 3 states, to model the correlation be-
tween its current behavior and its behavior in the previous
t = 1 time-step. Similarly, for Example 2, the corresponding
HMM has 30 = 1 state to model the correlation between its
current behavior and behavior of the previous t = 0 time-
steps, as shown in Figure 2(b).

HMMs have traditionally been used to answer two main
questions: (1) given the observed sequence, estimate the
most likely model parameters of the hidden model Λ; and (2)
given the model parameters Λ and the observed sequence,
find the most likely state sequence up to the current time-
step and the most likely output at a given time-step. The
Baum-Welch algorithm [25] is used as a means to achieve
the former, efficiently estimating the model parameters in
two passes, iteratively. The first pass goes forward in time
and computes a conditional probability P (qi|ΩS

1:k) of ending
up in any particular state qi given the first k outputs in the
observation sequence ΩS ; while the second goes backward
in time and computes the conditional probability P (ΩS

k:t|qi)
of seeing the remaining observations in the sequence given
any state qi as the starting point. These two types of condi-
tional probabilities can then be combined to obtain the dis-
tribution over states at any specific point in time given the
entire observation sequence. Similarly, the latter question,
studied in [12], is addressed by computing the conditional
probability P (qi|ΩS

1:k) to find the most likely state sequence.
By combining this conditional probability with the emission
probability matrix, one can further obtain the most likely
output at a given time-step.

3.2 Overview of Behavior Characterization
In this paper, we use hidden Markov Model as the basis

for characterizing the channel’s behavior, given the obser-
vation sequence. Applying this established technique in our
setting is, however, non-trivial. There are two major chal-
lenges: (1) the behavior history may contain missing entries

1The state transitions and output emissions with 0 probability
are omitted.

Algorithm 1 Behavior Characterization Scheme

1: Set value of the variable ModelC for each channel, based
on a priori over-estimation of the number of states in the
HMM

2: if The majority voting scheme finds matching inputs
then

3: Correctly identify the behavior type for each channel
4: Append the observed behavior to the behavior history

of channels
5: Refine missing observations in the behavior history

with hindsight
6: if Sufficient observations are accumulated for a chan-

nel then
7: Execute the model complexity estimation algorithm

to update the value of variable ModelC for that
channel

8: end if
9: Update each channel’s behavior model based on the

ModelC value and apply traditional HMM learning
algorithm

10: else
11: Use each channel’s behavior model to predict its be-

havior type at this time-step
12: Update each channel’s behavior model using an en-

hanced HMM learning algorithm
13: end if

(which are denoted as X) due to the limitation of the major-
ity voting scheme. Since this unknown behavior type X is not
contained in the output set ΩO = {C, I, D} of the HMM, the
classic learning algorithm for HMMs cannot properly learn
the channel behavior; and (2) the number of the HMM states
is also not known a priori in our setting.

A skeletal picture of our channel behavior characterization
mechanism is shown in Algorithm 1. The behavior charac-
terization is implemented as a part of the manager block M
in the NCS and operates in six steps:

• Line 1: Start with an estimate of the complexity of
each channel’s behavior model (i.e., the number of
states in the HMM required to describe the channel’s
behavior pattern) as its input. Such an estimate can
be obtained based on application-specific knowledge,
or from experience2. During the early phase of our be-
havior characterization mechanism (when only limited
observations of channel behavior are available), this
model complexity estimate will be used as the basis
for constructing the behavior model for each channel.

• Lines 2-4: Observe the data received from the chan-
nels at the current time-step k and discern the corre-
sponding behavior types (i.e., C, I, or D) using majority
voting.

• Line 5: If majority voting succeeds at time-step k,
then for all time-steps j, 0 < j ≤ k − 1, where major-
ity voting was not successful in assessing the channels’
behavior (i.e., due to incomplete information), use the

2It is important to note that an accurate estimation of such model
complexity may not be easy to obtain in some applications, so one
would prefer to have an over-estimated the value, trading-off com-
putational expense for model expressiveness.



current state information (which has been correctly in-
ferred via majority voting), and the history of received
and applied control inputs to infer the behavior of the
channels up to time-step j. (see Section 4)

• Lines 6-8: Once sufficient observations of channel be-
haviors are accumulated, use the model complexity es-
timation algorithm to update the estimate of the model
complexity (ModelC) (see Section 5).

• Line 9: Use the observed channels’ behavior sequence
to refine the correspond HMM-based behavior model
using the estimated ModelC value as its parameter.

• Lines 11-12: If the majority voting scheme fails to
make a decision at time-step k, we use the behavior
model of each channel to predict its behavior in that
time-step. An enhanced HMM learning algorithm is
used, which considers the true behavior types of the
corresponding channels as unknown at this time step,
and updates the corresponding behavior models appro-
priately, as we shall see in the Section 4. This continues
until a future time-step k+l, when the majority voting
scheme succeeds (restart at Line 2)

4. HANDLING INCOMPLETE OBSERVATION
SEQUENCE

We propose two countermeasures to address the limita-
tions of majority voting in providing a complete observation
sequence: (1) We design a scheme to reduce the number of
time-steps in which the behavior is unknown. (2) We adopt
a modified version of the Baum-Welch algorithm as our en-
hanced HMM learning algorithm, similar to the approach
proposed in [29], for handling the missing data in the obser-
vation sequence.

4.1 Reducing Incompleteness of Observation
Sequence

The reducing of incomplete observation sequence is a five
step process. They include: (1) the controller C sends both
the control input û[k] and the system state measurement
x[k] over the network ; (2) the manager keeps the history of
all the control inputs received from the channels and the ones
applied to the plant; (3) if the majority voting scheme has
matching data at time-step k, we obtain the correct system
state x[k]; (4) the dynamical model shown in Equation (1)
is then used to recover the state of the plant at the previous
points in time when the state was unknown due to lack of
information for majority voting; and (5) for every X before
time k, the manager uses the recovered state to determine
whether the inputs provided by the channels at that time
step would have decreased the Lyapunov function — if so,
the input will be labeled as C (under the assumption that I

inputs won’t drive the plant state towards stability).
Step (5) in the above sequence can be accomplished if

the plant dynamics satisfy certain conditions. For instance,
since

x[k] = ATx[k − T ] +
[
B AB · · · AT−1B

]


u[k − 1]
u[k − 2]

...
u[k − T ]


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Figure 3: Condition Number Variability

for any nonnegative integer T , one can recover x[k−T ] from
the above expression if AT is invertible (or equivalently, if
A is invertible).

Remark: The aforementioned improved mechanism can
also be applied to a system with nonlinear dynamics

x[k + 1] = f(x[k],u[k]) (2)

as well, where the goal is to determine the state x[k − T ]
given x[k]. Inspired by [13, 23], the extraction of a previous
state given the current state can be done by simultaneously
solving a set of nonlinear equations, provided that the non-
linear dynamics (2) satisfy certain properties.

4.2 Learning with Incomplete Observation Se-
quence

In the absence of a successful majority voting in a time-
step, it is possible that observation sequence from a chan-
nel has missing elements. In [29], the authors propose an
enhanced model parameter learning algorithm for hidden
semi-Markov models with missing data in the observation
sequence, and use it for mobility tracking applications. In
this paper, we adopt a similar approach and design an algo-
rithm that handles missing observations for HMM by mod-
ifying the Baum-Welch algorithm. In the original Baum-
Welch algorithm, the iterative computation of the forward
and backward probabilities require the use of the emission
probability matrix. However, the emission probability for
unknown behavior type X is not defined. To mitigate this
issue, the idea is to consider all possible behaviors that can
be exhibited while updating the model parameters when the
unknown feedback X is encountered. In this paper, we con-
sider X to be either C or I with equivalent probability values.3

Therefore, the emission probability for X can be interpreted
as the combination of the emission probability of C and I.
The rest of the Baum-Welch algorithm remains unchanged.

5. MODEL COMPLEXITY ESTIMATION
Initially, we use an over-estimation of the number of states

in the HMM for modeling a channel’s behavior pattern. We

3Since feedback type D can always be confidently discerned, we
do not need to consider it as a possibility.



-300

-250

-200

-150

-100

-50

 0

 50

 2  4  6  8  10  12  14  16

O
b

s
e

rv
a

ti
o

n
 P

ro
b

a
b

lit
y
 C

ri
te

ri
o

n

ModelC State Number

ModelT with 2 States
ModelT with 5 States

ModelT with 10 States

Figure 4: Observation Probability Variability

then use a model complexity estimation algorithm to ac-
curately determine the actual number of states with lim-
ited observation of channel behavior. In the algorithm, we
adopt two model quality criterion: (1) Condition number
γ, which is defined as γ = σmin(E|F )/σmax(E|F ), where
σmin and σmax are the smallest and largest singular values
of the HMM parameter concatenation matrix E|F , respec-
tively [3]; and (2) Observation probability, which is defined
as the probability for the learned HMM model to generate
the observed behavior sequence.

5.1 Condition Number
The condition number criterion determines whether cer-

tain states in the model are redundant or unnecessary. Fig-
ure 3 shows the variation in the condition number with re-
spect to candidate model complexity (referred to asModelC).
The figure shows the results for three scenarios where the
ground truth for actual number of states in the model (re-
ferred to as ModelT ) are 2, 5 and 10 respectively. Irrespec-
tive of the ModelT value, the pattern observed hold consis-
tently:

• When theModelC ≤ModelT , the condition number of
the candidate model first decreases and then increases,
with a local maxima at ModelC = ModelT . However,
the condition number values are still relatively high,
even at local minimas. The reason here is that when
the model is not expressive enough, it can only cap-
ture certain sub-patterns within the entire underlying
behavior pattern, until ModelC = ModelT .

• When ModelC > ModelT , the condition number of
the candidate model drastically decreases and tends
toward 0. This reflects the fact that certain states in
the candidate model are redundant (i.e., unnecessary
for capturing the ground truth behavior pattern).

5.2 Observation Probability
The observation probability criterion indicates how well

the learned HMM model captures the observed behavior se-
quence. We illustrate this criterion in Figure 4. Similar to
the condition number criterion, Figure 4 shows variation in
the observation probability with respect to ModelC . The

Algorithm 2 Model Complexity Estimation Algorithm

1: Initialize variable i to be 1
2: while TRUE do
3: Set the lower bound (LB) and upper bound (UB) of

candidate model state number to be 2i and 2(i+1),
respectively

4: Learn two HMM models with state number to be the
lower bound and upper bound, respectively

5: Compute the condition number and observation prob-
ability criterion for the two models, denote these val-
ues as CNLB , OPLB , and CNUB , OPUB , respectively

6: if CNLB >> CNUB then
7: Record the observation probability value OPUB

8: Output LB, UB
9: Break
10: else
11: i = i+ 1
12: Continue
13: end if
14: end while
15:
16: Set variable s = b((LB + UB)/2)c, that is the largest

integer value smaller than or equal to (LB + UB)/2
17: while TRUE do
18: Learn a candidate HMM model with state number s,

and compute observation probability of it, denote as
OPS

19: if OPS ' OPUB then
20: Set LB = s;
21: Set s = d((LB + UB)/2)e, that is the smallest in-

teger value larger than or equal to (LB + UB)/2
22: else
23: Set UB = s;
24: Set s = b((LB + UB)/2)c;
25: end if
26: if LB ≡ UB then
27: Output s
28: Break
29: else
30: Continue
31: end if
32: end while

figure shows the results for three scenarios where ModelT is
set to 2, 5, and 10, respectively. Irrespective of the ModelT
value, again the patterns we observed hold consistently:

• When the ModelC ≤ ModelT , the observation prob-
ability of the candidate model monotonically increases,
and reach its maximum value whenModelC = ModelT .

• When ModelC > ModelT , the observation probability
value remains mostly unchanged. The reason here is
that as the value ModelC increases, the behavior pat-
tern captured by the candidate behavior model is in-
creasingly closer to the ground truth, until ModelC =
ModelT when the observation probability criterion reach
its maximum value. And when ModelC > ModelT ,
the candidate model complexity is an over-kill for mod-
eling the ground truth behavior pattern, and the ob-
servation probability value cannot increase further.

In other words, using a candidate model with ModelC >
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ModelT (i.e., an over-estimation of the behavior model com-
plexity), the expressiveness of candidate model is good enough
to capture the underlying behavior pattern, the only draw-
back is that it requires additional computational resources
and potentially more observation data to train the candidate
model, compared to the ideal ground truth.

5.3 Combined Criterion
By combining these two criterion, we can design a model

complexity estimation algorithm that achieves two goals: (1)
output an accurate estimation for ModelT ; (2) achieve the
first goal with “limited” tries of different candidate models.
A pseudocode description of our model complexity estima-
tion algorithm is shown in Algorithm 2. The overall algo-
rithm consists of two stages. In the first stage, we attempt
to identify a proper lower and upper bound of candidate
model complexity by utilizing the condition number crite-
rion (line 2 - 13). The idea is to exponentially increase the
lower and upper bound for every iteration (line 4 and line
11), until we successful detect the drastic change of the con-
dition number value between the two bounds (line 7). As we
discussed previously, such a pattern indicates that the true
model complexity lies between the lower bound and upper
bound value. We record these bounds, as well as the ob-
servation probability value of the upper bound model to be
used in the later stage (line 8-9). In the second stage, we at-
tempt to find the smallest value for ModelC that can achieve
the highest observation probability value (i.e., as the upper
bound model) using a binary search scheme [4] (line 16-30).
Let the range between the two bounds be n, then the best,
worst and average time complexity of the algorithm is O(1),
O(logn), and O(logn), respectively.

6. EVALUATION
It has been proved in the literature that the HMM learn-

ing algorithm will converge to the ground truth with infinite
observations of the behavior sequence [5]. In practice, one
needs to train the model with “sufficient” observation data
to achieve good convergence. Similarly, one requires suffi-
cient data for our model complexity estimation algorithm
to work effectively. The sufficiency of observation data is
highly dependent on the model complexity and often needs
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Figure 6: Effectiveness of Model Complexity Esti-
mation

to be determined empirically. In Figure 5, we present our re-
sults from numerical experiments. We run the HMM learn-
ing algorithm 20 times for different ModelT values (i.e., as
shown by the x-axis in Figure 5). For each run, we gradually
increase the length of the observation sequence and record
the length when the candidate model complexity converges
to ModelT . The median, minimum and maximum value of
the training sequence length for different model complex-
ity values are illustrated in Figure 5. As a result, to ob-
tain an accurate model complexity estimation (line 6-8 in
Algorithm 1), the observation sequence length should be
greater than some minimum threshold value of the train-
ing sequence length required for the chosen candidate model
complexity. In practice, to obtain such threshold values for
different model complexities requires conducting empirical
experiments as we discuss above.

In Figure 6, we show the effectiveness of our model com-
plexity estimation algorithm. We ran the algorithm 20 times
for different ModelT values (as shown as the x-axis in Fig-
ure 6) with sufficient data (i.e., more than the minimum
value for each complexity level, as shown in Figure 5). The
Median, Min, and Max value of the model complexity esti-
mation results are reported. We can see that the algorithm
never under-estimates the model complexity, which is de-
sirable for maintaining the accuracy of the overall behavior
characterization scheme. Further, the algorithm only occa-
sionally over-estimates the model complexity, and the dif-
ference between the over-estimated model and the ground
truth model is acceptably small (often only one state more
for the over-estimated model).

We then evaluated the effectiveness of our proposed scheme
(as described in Algorithm 1) using simulation. In the ex-
periment, we have two communication channels with their
behavior modeled with a Bernoulli distribution with packet
drop rate pd and data-corruption rate pi. Additionally, we
have a third channel whose behavior model is temporally
correlated. We set the steady-state probability of packet-
drop and data-corruption rates for the third channel to be
33%, respectively. The goal is to vary the values pd and pi
of the two Bernoulli channels (from 10% to 40% as shown
by different curves in Figure 7 and Figure 8), and control
the percentage of unknown observations in the behavior se-
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Figure 7: Proposed Approach Effectiveness (Median
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quence when applying the majority voting scheme. Then,
we vary the model complexity of the third channel (from 2
to 15 states as shown by the x-axis in Figure 7 and Figure 8)
and apply our model complexity estimation algorithm, after
accumulating enough observations (as discussed in Section
5). By running the simulation 20 times with 1000 time-steps
each, we measured the predication accuracy of the learned
behavior model for the third channel at each time-step the
majority voting scheme failed. For comparison purposes, we
run a classic HMM learning algorithm in parallel. The algo-
rithm is aware of the true model complexity value and has
access to complete channel behavior observations (without
unknown observations).

Figure 7 and 8 show the results of this experiment. Over-
all, our proposed scheme can achieve very high predication
accuracy when compared to the classic HMM algorithm with
complete observation sequence. We observe median predic-
tion accuracy to be greater than 90% for most cases (see
Figure 7), and minimum values greater than 80% (see Fig-
ure 8). The overall downward trend of the graph is because
as the model complexity increases, the differences between
the learned model and the true model increases as well.

7. CONCLUSION
We studied the problem of characterizing the behavior

of communication channels in a networked control system,
where the channel’s behavior exhibits temporal correlation.
We proposed a behavior characterization mechanism based
on the hidden Markov model. We showed that there are
many challenges in adopting this approach due to incom-
plete observations and the lack of a priori information about
the model complexity. Further, we demonstrated that these
challenges can be addressed by: 1) designing an enhanced
learning algorithm for refining the HMM model parameters,
which can handle missing observations. Additionally, we si-
multaneously reduce the missing observations by using the
history of received and applied control inputs and the knowl-
edge of the current plant state to fill the gaps in the observa-
tion sequences, with the benefit of hindsight; and (2) using
two well-defined model quality criteria simultaneously to de-
termine the HMM complexity. In the future, we intend to
study and characterize stability of the system as the man-
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ager M in Fig. 1 switches between different (correct and
incorrect) channels to apply a control input to the plant, as
it learns their behavior model.
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