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ABSTRACT 
 

MULTISCALE MODELING AND SIMULATIONS OF DEFECT 

CLUSTERS IN CRYSTALLINE SILICON 

Sumeet S. Kapur 

Supervisor: Professor Talid R. Sinno 

 

As the device dimension in semiconductor silicon transistors reach sub-20nm, it   

significantly enhances the tolerance limits on the size and concentration of defects in the 

underlying crystalline silicon wafer. Understanding the evolution of defect clusters is 

critical for controlling the defect density and size distribution within crystalline silicon. 

The objective of this thesis is to develop the computational methodology that 

quantitatively describes the evolution of defect clusters in crystalline solids at an 

atomistic level, and provide a mechanistic understanding of underlying physics behind 

the defect aggregation process.  

 In first part of the thesis we develop a novel computational method for probing 

the thermodynamics of defects in solids. We use this to estimate the configurational 

entropy of vacancy clusters which is shown to substantially alter the thermodynamic 

properties of vacancy clusters in crystals at high temperature. The modified 

thermodynamic properties of vacancy clusters at high temperature are found to explain a 

longstanding discrepancy between simulation predictions and experimental 

measurements of vacancy aggregation dynamics in silicon. 



 iv

 In the next part, a comprehensive atomistic study of self-interstitial aggregation in 

crystalline silicon is presented. The effects of temperature and pressure on the 

aggregation process are studied in detail and found to generate a variety of qualitatively 

different interstitial cluster morphologies and growth behavior. A detailed 

thermodynamic analysis of various cluster configurations shows that both vibrational and 

configurational entropies are potentially important in setting the properties of small 

silicon interstitial clusters. The results suggest that a competition between formation 

energy and entropy of small clusters could be linked to the selection process between 

various self-interstitial precipitate morphologies observed in ion-implanted crystalline 

silicon.  

Finally in the last section, we investigate the effect of carbon on self-interstitial 

aggregation. The presence of carbon in the silicon dramatically reduces cluster 

coalescence, with almost no direct effect on the single self-interstitials. This suggests that 

suppression of transient enhanced diffusion of boron (in presence of carbon), could be 

due to the direct interaction between carbon atoms and self-interstitial clusters. 
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1 Introduction and Motivation 

Equation Section (Next) 

It is difficult to imagine today’s world without an electronic gadget, be it your cell phone, 

computer, or other electronic devices. At the core of all these electronic devices is an 

integrated circuit (Figure 1.1) or a chip consisting of millions of transistors.  

 

 

 

Figure 1.1: Schematic description of the Integrate Circuit (right image) – heart of all 
electronic devices. [1, 2]  

 

 

The integrated circuit is most often built on a substrate or a wafer made of single-

crystalline silicon using a series of chemical and physical processes. The process of 

manufacturing integrated circuits can be split into two stages, the wafer preparation and 

the chip making. During wafer preparation, long cylindrical ingots of high-purity single-

crystalline silicon are most often grown using the Czochralski (CZ) crystal growth 

technique [40]. The cylindrical ingots are sliced into thin wafers which are polished to 
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create a smooth wafer surface. The polished wafers undergo the next stage of processing, 

i.e. chip making, which makes use of processes like oxidation, photo-lithography, 

etching, ion-implantation/doping, annealing etc, to grow millions of transistors and other 

electronic components on the silicon substrate.  

Two trends have dominated the semiconductor silicon industry: increasing wafer size 

and doubling the transistor count per unit area. Since many integrated circuits are 

simultaneously built on a single wafer, increasing the wafer size leads to higher number 

of integrated circuits per wafer, and hence leads to lower production cost per chip, while 

diminishing the overall use of resources.  Keeping in with the trend, today most of silicon 

wafers are mainly 300mm in diameter, while the next generation of wafers will be 

450mm.   

In 1965, Gordon Moore predicted that the numbers of transistors on a silicon wafer 

of a given area will double every 18-24 months (Figure 1.2: ). Doubling the transistor 

count on a given area has traditionally been achieved by decreasing the device 

dimensions, which is a very strong driving force behind today’s faster electronic devices. 

Today’s integrated circuits have an average device length of 35-65 nm, and are quickly 

approaching the sub-20nm regime (see Figure 1.3). However, a decrease in average 

device dimensions puts additional tolerance limits on the size and concentration of 

defects in the single-crystalline silicon. Defects in crystalline silicon can exist in different 

forms and are introduced into the wafer during various stages of integrated circuit 

manufacturing. For example, voids are known to form during the growth of single-crystal 

silicon using commercially available Czochralski method [63], whereas large dislocation 
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loops are observed under high temperature annealing following the ion-implantation 

process[43]. The concentration of such defects for a 65nm feature-length device,  should 

be less than 0.022/cm2 for 32nm or larger defects, whereas for the 18nm average length 

devices (sub-20nm), the maximum allowable defect concentration is 0.017/cm2 

corresponding to 9.0 nm or longer defects [6]. To achieve the device scaling goals it 

becomes critical to control the quality and quantity of the large crystalline defects formed 

during the various stages of integrated circuit manufacturing. 

 

 

 
Figure 1.2: Moore’s Law (dotted curve) predicts doubling transistor count every two 
years, Solid point/line: actual Data from Intel Processors, closely following Moore’s law 
for almost 3 decades. [5] 
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Figure 1.3: Feature length Time Line from Intel [5]. Numbers on curve indicate the 
transistor gate oxide thickness in nm. 

 

 

In this thesis, we develop a range of computational and theoretical tools to 

understand quantitatively the thermodynamics of certain types of crystalline silicon 

defects. In particular, we study the thermodynamic and structural properties of aggregates 

of vacancies and self-interstitials which can form during silicon crystal growth and also 

during the device processing steps such as ion-implantation.  

 

1.1 Defects in Crystalline Semiconductor Silicon 

Nothing in the world is perfect. The same is true for crystalline silicon, i.e. silicon 

crystals inherently possess imperfections in the form of crystalline defects. Crystalline 

defects can be broadly classified into four types based on their geometry. These are listed 

in Table 1.1 and are schematically described in Figure 1.4. 
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Table 1.1: Examples of Crystalline Defects [54] 

Defect Type Examples 
Point Defects (zero dimensional) Intrinsic Defects 

Vacancy g 
Self-interstitial c 

Extrinsic Defects 
Substitutional impurity atoms f,i 
Interstitial impurity atoms a 

Line Defects (one dimensional) Dislocation 
Edge dislocation b 
Screw dislocation 

Dislocation Loops 
Extrinsice and Intrinsich 

Planar (two dimensional) Stacking Faults  
Twin Grain boundary 

Volume (three dimensional) Voids 
Precipitates 
Interstitial Agglomerates 

 

 

The most basic of these defects are point defects, which involve misplacement of 

one atom in the crystal, e.g. a defect where a silicon atom is missing from its lattice 

position is called a vacancy. If an additional silicon atom is introduced onto a non-lattice 

position it is called a self-interstitial defect. Vacancy and self-interstitial are an example 

of silicon atom based defects and are called as intrinsic point defects. Point defects 

involving foreign atoms are known as extrinsic point defects. , e.g., when a foreign atom 

occupies a silicon lattice position it is called a substitutional impurity. If a non-silicon 

atom occupies a non-lattice position it is referred to as an interstitial impurity. The 

intrinsic point defects do not adversely affect the electronic properties of crystalline 

silicon if they exist in concentrations below the solubility limit [66]. Indeed, they are 
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always present at finite temperature because their presence minimizes the free energy of 

the system. 

 

 

 
 

Figure 1.4: Examples of Defects in Crystalline Lattice (a) Impurity Interstitial  (b) 
Dislocation Line (c) Self-Interstitial (d) Cluster of Impurity Atoms (e) Extrinsic 
Dislocation Loop (f) Small Substitutional Impurity (g) Vacancy (h) Intrinsic Dislocation 
Loop (i) Large Substitutional Impurity. [54] 

 

 

  However, when present in super-saturation, intrinsic point defects can cluster to 

form large aggregates, which can be of the same size as microelectronic circuit features 

and therefore pose problems. These include planar defects and three-dimensional 
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aggregates (voids, precipitates). Examples are shown schematically in Figure 1.4. A 

dislocation loop is an example of planar defect wherein an extra plane of atoms (or 

missing plane of atoms) is created within a crystal. The dislocation loops could be 

extrinsic or intrinsic in nature, depending upon whether an additional plane of atoms is 

inserted or removed from the perfect lattice (see Figure 1.4 (e) and Figure 1.4 (h)). Self-

interstitials when present in high degree of supersaturation typically form dislocation 

loops during high temperature annealing. Vacancy aggregates (voids) and small 

interstitial aggregates ((see Figure 1.4 (e)) are some of the examples of three-dimensional 

or volume defects. In the following sections, we focus on the two defects that are 

typically formed during the commercially viable silicon wafer manufacturing and 

processing steps. The void formation during the Czochralski crystal growth is discussed 

in Section 1.2 and the self-interstitial aggregation during the post ion-implantation 

annealing in Section 1.3. 

 

1.2 Void Formation during Czochralski Crystal Growth 

Single crystal silicon is commercially grown most often using the Czochralski 

(CZ) crystal growth process from high-purity poly-crystalline silicon.[63] In the CZ 

process (see Figure 1.5), the polycrystalline silicon is first melted in a quartz crucible and 

a seed of single crystal silicon is then dipped into the molten poly-crystalline silicon, and 

pulled upwards to form long single crystal cylindrical ingots. During the pulling of 

crystal, individual point defects (vacancies and self-interstitials) are incorporated into the 

crystal at equilibrium concentrations (~ 10–6 atomic fraction) at the melt-solid interface. 
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Due to high temperature in the vicinity of the melt-solid interface, the vacancies and self-

interstitials are very mobile and hence most of them disappear via the so-called IV 

recombination reaction,  

 

 IVKI V Si+ ←⎯⎯→  (1.1) 
 

where I and V represent the self-interstitial and vacancy, respectively, and Si represents a 

silicon atom at a lattice site. The recombination reaction typically leaves one species 

(vacancy or self-interstitial) to become dominant beyond the thin boundary layer adjacent 

to the melt/crystal interface- which species survives depends upon the process parameters 

(crystal pull rate and axial thermal gradients).[48, 152] 

 

 

 
Figure 1.5: Schematic Representation of Czochralski Crystal Growth Process, (a) 
Czochralski Furnish (b) poly-crystalline silicon in quartz crucible (c)  single-crystal seed 
is dipped into the molten poly-crystalline silicon (d,e) single-crystal silicon is grown by 
rotating and pulling the seed up. [4] 
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The native point defects that result from this initial dynamics near melt/crystal 

interface will then become increasingly supersaturated as the crystal cools, leading to the 

formation of the relevant type of aggregate. For example voids form by vacancy 

clustering in the vacancy-rich cluster growth regime whereas stacking faults and 

dislocation loops form in the interstitial-rich crystal growth regime. 

Almost all the CZ-crystals grown today are in the vacancy rich regime, which 

makes voids as the only major extended defects that form in silicon crystals grown using 

commercial CZ process. The large vacancy clusters or voids are essentially three 

dimensional octahedral structures faceted along the (111) plane [81] with sizes typically 

in the range of 50-120nm. Figure 1.6 shows a transmission electron microscopy (TEM) 

image of an octahedral void faceted along (111) plane.  

The presence of voids in a silicon wafer has detrimental effects on a property 

known as the Gate Oxide Integrity (GOI) of electronic devices [98]. As a result, the 

crystal growth conditions should be tailored to minimize the formation of voids during 

CZ crystal growth process. 
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Figure 1.6: TEM Images of an octahedral void. [154] 

 

1.3 Interstitial Aggregation during post Ion-Implant Annealing 

Silicon wafers grown using the Czochralski crystal growth process undergo various 

processing stages during the device manufacturing process. One such step is the 

implantation of dopant atoms (such as boron/phosphorous) to create electrically active 

areas within the semiconductor silicon wafer, that eventually governs the performance of 

electronic devices. Implantation is typically carried out using high energy targeted dopant 

ion beams at a preset energy level such that ions comes to rest beneath the surface as 

shown in Figure 1.7 below.  
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Figure 1.7: Schematic representation of ion implantation and annealing process in silicon 
wafers. Dopant(B) implantation on a given area is carried out to achieve the desired 
electronic characteristics.  Implantation damages the underlying silicon lattice, which is 
treated by annealing. Annealing leads to spreading of dopant profiles as these diffuse 
outwards. [123] 

 

 

As the high-energy dopant atoms travel through the silicon lattice they create a lot 

of point defects (interstitials and vacancies) along their path before finally coming to rest. 

This results in a highly non-equilibrium distribution of point defects (self-interstitials and 

vacancies) and their clusters[87, 145]. While many of these defects recombine almost 

instantly, a large supersaturation of self-interstitials is typically left behind because of the 

net excess atoms present within the lattice following implantation, creating a distribution 

of interstitial clusters.[87, 145] This causes significant damage to the underlying 

crystalline silicon lattice. In order to heal the lattice damage as well as move the dopants 

to the substitutional position (active position), the silicon wafer is annealed at high-

temperature following implantation. During annealing, the dopant atoms move to 

substitutional positions, creating additional self- interstitials in the silicon lattice. The 
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excess self-interstitial atoms present in supersaturated quantities are thermodynamically 

unstable and tend to form large interstitial clusters to release the free energy of the 

system. These interstitial clusters can exist in various sizes and shapes ranging from di-

interstitial clusters to large three dimensional and planar interstitial clusters. Apart from 

forming these extended interstitial clusters, annealing also leads to the spreading of 

dopants (like Boron) profile beyond the implanted region (Figure 1.8). The spread of 

boron profile is due to well known phenomenon of transient enhanced diffusion (TED) of 

boron in presence of excess self-interstitials.[23, 29, 32, 44, 109, 142, 158] Qualitatively, 

TED is observed because excess self-interstitials effectively increase the mobility of 

dopant atoms via the “kick-out” mechanism by increasing the fraction of time the latter 

spend in the mobile interstitial state rather than the immobile substitutional one. However 

this phenomenon is transient in nature and enhanced diffusion of boron quickly saturates 

out (Figure 1.8). 
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Figure 1.8: Boron concentration profile spreads outwards post implantation anneal at 
800oC.[109]  

 

 

Earlier studies [44] suggested that the source of these excess self-interstitials are 

the planar interstitial defect clusters  named {113} defects (named {113} defects because 

the <113> crystallographic direction is normal to plane of the defect – see Figure 1.9 ) 

formed during the post-implant annealing, which grow to some maximum size and then 

dissolve during high temperature anneal to release Si self-interstitials. Only recently a 

conclusive picture has emerged[28], which shows that the supersaturation of self-

interstitials present during TED resulted from a complex combination Ostwald ripening 

of clusters, out-diffusion of self-interstitials to the wafer surface, and a thermodynamic 

competition between the various possible cluster morphologies.  It is this supersaturation 

of self-interstitials that is responsible for the TED of boron and not the release of self-

interstitials from the {113} defects as suggested earlier. 
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Figure 1.9: HRTEM image of {113} defect in (a), enlarged picture of marked line in (a) 
is shown in (b). The small open and solid circles represent the interstitials, separated by 
large open circles (8 membered rings) [34] 

 

 

Although the model of Claverie et al[28], does explain the source of self-

interstitials responsible for the TED of born, but a complete evolution of the extended 

interstitial clusters involved during the high temperature annealing is still missing. In 

particular self-interstitial clusters have been observed in a variety of different sizes and 

morphologies (see Figure 1.10). [36, 44, 74, 88, 89, 106, 107, 116-118, 142, 158] These 

include small magic clusters like 4 interstitial cluster, 8 interstitial cluster, 12 interstitial 

cluster etc, rod like line interstitial defects, planar {111}, and {113} defects, large 

dislocation loops which includes frank partial and perfect dislocation loops and finally 

the large three dimensional amorphous clusters. It has been a challenge to connect, 

quantitatively the implantation and annealing conditions to the observed morphologies, 
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several of which may be present simultaneously.  However, in order to control the defect 

evolution during the post ion-implantation annealing, it is imperative that we understand 

the structure, formation mechanism and evolution of these extended defects. It must be 

pointed out that experimental techniques or continuum level models alone cannot provide 

a conclusive picture, as the later doesn’t give any structural details, whereas the former is 

limited by the minimum image size. We seek to address some of these issues in our work.  

 

 

 

Figure 1.10: Different types of extended interstitial defects after post implant 
annealing.[28] 

 

 

1.3.1 Effect of Impurities (Carbon) on Self-Interstitial Clustering in Silicon 

Almost all the studies involving self-interstitial clustering in silicon assumes that it 

doesn’t contain any external impurities. This is however rarely true, as the impurities like 

carbon, oxygen can easily creep into the wafer during the Czochralski crystal growth 
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process. There has been conscious effort to decrease the impurities concentration in the 

wafer through various ways.  

Until recently carbon was one such impurity which was avoided in silicon, but this 

changed after Stolk, et al [141] observed a drastic reduction of transient enhanced 

diffusion (TED) of boron incorporation of carbon above certain concentrations. Figure 

1.11 shows boron concentration profiles before (solid line) and after the Si ion implant 

anneal (dotted line) for two background carbon concentrations ((a): 18 31 10 /x cm  and (b): 

19 32 10 /x cm ). In the sample with low carbon concentration ( 18 31 10 /x cm ), boron profile are 

observed to spread out post implant annealing (see dotted line in Figure 1.11(a)) due to 

enhanced diffusion of boron, whereas in the sample with higher carbon concentration 

( 19 32 10 /x cm ), (see Figure 1.11(b)), boron profiles stay pinned  to their as implanted state – 

signifying the absence of boron diffusion. 
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Figure 1.11: Impact of carbon on boron diffusion: (a) Boron concentration profile spreads 
out post Si implantation anneal for a background carbon concentration of 18 310 / cm , (b) 
No spreading in boron concentration profile is observed when the carbon concentration is 
increased to 19 32 10 /x cm . [141] 

 

 

In an alternate experiment, Simpson et al [131], have studied the effect of carbon 

directly on dislocation formation during high temperature anneal following silicon ion 

implantation onto silicon. They observed that carbon when incorporated onto the 

substitutional sites leads to complete suppression of dislocation formation in silicon 

during the anneal stage but has no effect when it occupies non-substitutional sites. In an 

another study Cacciato et al[21], have observed both the suppression of TED of boron 

and suppression of dislocation formation during post implant annealing by co-implanting 

carbon with silicon at 900 oC. This could be due to the carbon atoms occupying the non-

substitutional lattice position as pointed out by Simpson et al[131]. 
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Although it’s been postulated that inhibition of TED of boron is due to the 

interaction of carbon with self-interstitial clusters in silicon, a complete mechanistic 

picture is missing. Understanding the physics of how carbon interacts with self-interstitial 

point defects and aggregates in silicon would result in better control over the boron 

dopant profiles. This is particularly useful as the device dimensions continue to shrink.  

 

1.4 Overall Computational Framework 

Our aim is to understand the evolution of defects and defect clusters in silicon and 

estimate the thermophysical properties for defect clusters under external conditions of 

stress and temperature. Since the defects are very small in size (less than nm), a direct 

measurement of the thermophysical properties of defect clusters is not possible using the 

current experimental techniques. Fortunately a few simulation and modeling 

methodologies have been developed over the last two decades that have captured the 

physics under a physical phenomenon reasonably well. These techniques in turn have 

been used extensively to model the material behavior under a given set of external 

conditions and have resulted in significant gains in terms of product quality and safety of 

processes. Depending upon the level of detail and accuracy one wants to achieve with 

these simulations, the techniques can be broadly divided into four types.  

At the most fundamental level is the ab initio approach that takes into consideration 

both the atomic and electronic degrees of freedom. Electronic structure calculations have 

been used extensively for estimating the defect structures, thermodynamic and transport 

properties and provide a reasonably accurate estimate in the absence of experimental 
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data.[7, 18, 47, 104] However the current computing power limit the ability of ab initio 

simulations to O(100) atoms over timescale of O(10-12) sec.[55, 73, 156]  and as a result, 

it is almost difficult to study the dynamic aggregation of defects using this approach.  

At the next level are the molecular dynamics and Monte Carlo techniques, which 

use the empirical potentials to describe the interactions between the atoms. Within this 

approach, the electronic degrees of freedom are averaged out and the behavior of atoms is 

described using classical mechanics. This results in extending the computing limits to 

O(106) atoms over time scales of O(10-9) sec. Various studies have been carried out using 

the classical empirical atomic potentials to estimate various thermo physical properties of 

defect and defect clusters, including formation energies and diffusivity , crystal structure, 

and other transport properties.[8] This approach, based on classical empirical potential 

offers the most versatile option; and has recently been extended by Manish and Sinno 

[120-123] to develop a mechanistically consistent picture for aggregation physics of 

vacancy clusters in Silicon wafer manufacturing.  

Instead of simulating the interaction among all the atoms, coarse grained Kinetic 

Monte Carlo (KMC), offers an alternate technique, where in only the interaction amongst 

the defects (vacancies and interstitials) is simulated in the form of random sequence of 

discrete diffusive and reactive events. This offers significant timescale advantage over 

molecular dynamic and Monte Carlo techniques as the details of atomic vibrations are 

coarse-grained while retaining the microscopic morphological information. The principal 

drawback for KMC is that mechanistic information regarding rates for various events has 

to supplied externally (using either of the approaches mentioned above). The KMC 

method has been applied extensively in various forms to the study of microstructural 
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evolution in crystalline materials such as metals and semiconductors. [13, 41, 75, 84, 

103] Length scales of the order of 10-9 to 10-6 m and time scales of the order of 10-10 to 

100 sec can be achieved using this technique. 

If electronic calculations offer the most accurate description of the interaction 

between atoms, then at the other end of spectrum is the continuum modeling approach, 

which offers the most practical method in terms of computing time and length scale. 

Continuum approach is based on conservation of mass, energy and momentum and is 

numerically modeled using a series of finite difference and finite elements techniques. 

Although the most practical from computing time perspective, but it suffers from the 

same deficiency as KMC, in that the atomistic level of detail is lost and is only indirectly 

captured in terms of parameters estimation.  

Depending upon the objective, each of the approach offers an insight at different 

level of detail. Past two decades of research, have in fact combined used two or more 

methodologies to arrive at consistent picture of the physical phenomenon. For most of the 

work done in this thesis we have used the molecular dynamics approach with empirical 

interatomic potential, as it offers the best option for developing mechanistically 

consistent picture for estimating the properties of small defect clusters and at the same 

time helps us understand the evolution of aggregation process of defect clusters using the 

same empirical interatomic potential and large scale parallel molecular dynamic 

approach. 
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1.5 Thesis Objective and Outline 

The objective of this work is two fold; the first is to develop computational tools to 

extract the detailed atomistic information that can used to parameterize the continuum 

models, and at the same time be able to directly simulate the physical phenomenon at the 

atomistic level using large scale molecular dynamic simulations.  

The second objective is to apply the computational tools we develop, to study the 

physical phenomenon of aggregation of vacancy and interstitial aggregates in silicon, and 

make a direct connection between the experiments and simulations.  

The remainder of the thesis is organized as follows. In chapter 2 we introduce a 

novel computational approach for probing the thermodynamics of defects in solids. We 

use it to estimate the properties of vacancy clusters. The thermo-physical and 

morphological properties of vacancy clusters evaluated from detailed atomistic 

simulations are fed into the continuum model and a direct comparison is made to 

experimentally observed properties like void nucleation temperature, void density, void 

size distribution etc. Thus detailed atomistic parameters not just specify the parameters 

for the continuum level simulations but also provide atomistic level details (mechanistic 

information) about the physics of void aggregation. In chapter 3 we introduce the large 

scale parallel molecular dynamics simulations approach to study the atomistic evolution 

of interstitial clusters from small magic clusters to rod like defects to planar {113}, {111} 

to large dislocation loops (FDL and PDL). A detailed aggregation landscape is proposed 

as a function of external hydrostatic pressure and temperature. In chapter 4, we use the 

computational approach for probing the thermodynamics of defects in solids we 
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developed in chapter 2 for vacancy clusters for studying individual interstitial clusters. 

Using this method, a comprehensive picture for interstitial aggregation is proposed to 

explain the evolution of dislocation loops, planar clusters and rod like large interstitial 

clusters from small magic clusters, under given conditions of external pressure and 

temperature. In chapter 5, we present a detailed quantitative model to describe the effect 

of carbon on interstitial aggregation, by using large-scale atomistic simulations. Finally in 

chapter 6, we summarize the conclusions of this work and suggest directions for future 

work. 
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2 Thermodynamic and Structural 

Properties of Vacancy Clusters  

Equation Section (Next) 

Clustering of point defects and impurity atoms in crystalline materials is a ubiquitous 

phenomenon that affects a host of material properties. The growth and processing of 

crystalline semiconductor materials such as silicon, silicon alloys, and gallium arsenide, 

for example, is almost completely dominated by rules aimed at minimizing the number of 

defects such as point defect clusters  [53, 132, 133], dislocations [36] and stacking 

faults[126].  Similarly, in metal alloy systems, the microscopic distribution of the 

component species can often critically affect the mechanical and chemical properties of 

the alloy [151].  Given the importance of nucleation and growth of clusters in materials 

processing, there has been much effort aimed at the development of simulation tools for 

predicting the relationship between processing conditions and the resultant properties (i.e. 

cluster size distribution) of a material [134].  Most such tools require as input the 

thermodynamic properties of the various species in a system as a function of temperature 

and cluster size and composition.   

The properties of small atomic clusters, however, are extremely difficult to measure 

experimentally.  As a result, there has been substantial effort aimed at the structural and 

thermodynamic characterization of clusters using atomistic simulations; for example self-

interstitial and vacancy clusters in silicon have been studied extensively with empirical 
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potentials [39, 120], tight-binding potentials [18, 19] and density functional theory [46, 

96].  Much of the atomistic simulation work on cluster characterization has focused 

exclusively on minimum energy configurations in order to make a thermodynamic and 

structural description tractable.  On the other hand, processing in both metallic and 

semiconductor systems is often accomplished at elevated temperature where entropy can 

be important, particularly vibrational and configurational entropy. In this work we 

describe a novel framework (that inherently includes the vibrational and configurational 

entropy) for estimating the free energy of point defect clusters in crystalline silicon, at 

finite temperature based on an analysis of potential energy landscapes[68, 140] created 

by clusters. We focus primarily on vacancy clusters in silicon using the Environment-

Dependent Interatomic Potential (EDIP)[14, 90] but show that our results and 

conclusions are applicable to other types of clusters and (classical) potential systems and 

therefore could have broad implications for the thermodynamic analysis of defects in 

solids.  

 

2.1 Thermodynamics of Cluster Aggregation Process 

Single species aggregation is generally described by a series of coupled, reversible 

interactions between clusters of different sizes. 

 

 
( , )

( , )

K i j

i j i jF i j
X X X ++ ↔  (2.1) 
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where, iX  is the concentration of clusters of size i , and ),( jiK  and ),( jiF  are the 

coalescence and fragmentation kernels, respectively. Coalescence and fragmentation rates 

depend on both kinetic and thermodynamic factors and the coalescence rate of clusters of 

size i, and j. The coalescence kernel is given by 

 

 ( )( , ) ( ) exp i j i j
ij i j

B

G
K i j A D D

k T
+ → +⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠

 (2.2) 

  
 

where ijA  is a size and morphology dependent geometric factor, iD  is the mobility of 

cluster i, and ( )i j i jG + → +  is the free energy barrier associated with the coalescence of 

clusters i and j. The latter is usually expressed as [121] 
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where iGΔ  is the formation free energy of a cluster of size i, relative to the perfect 

crystal state. The last term in eq. (2.3) represents the change in the translational entropy 

of the system  associated with the coalescence event, where 1Ω  and 2Ω  are the initial and 

final numbers of distinguishable ways of distributing clusters in a lattice containing N 

sites for a given cluster size distribution [122]. As defined here, the translational entropy 

only includes configuration space associated with the cluster centers-of-mass. Note that 

for most systems of interest, the cluster size distribution is very dilute and spatial overlap 

can be neglected, although analytic corrections for overlap can be applied [86].  
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The free energy of formation of an atomic cluster of size i in a crystal can contain 

several thermodynamic contributions, 

 

 i i i i
vib confG E T S TSΔ = Δ − Δ −  (2.4) 

 

where iEΔ  is the formation enthalpy, i
vibSΔ the vibrational entropy of formation, and i

confS  

the cluster configurational entropy. The  indicate averaging over all the individual 

configurations that the cluster can possess. The vibrational entropy of formation arises 

because of the extra vibrational modes that are introduced as a result of the cluster. This 

quantity can be computed directly with normal mode (quasi-harmonic) analysis [76] 

and/or thermodynamic integration [57, 58].  

The cluster configurational entropy is the number of distinguishable configurations 

that a particular cluster can possess per lattice site. Note that the cluster configurational 

entropy is fully excluded from the translational entropy as defined above and therefore 

the total number of ways of distributing clusters in a lattice is given by 

∏ΩΩ=Ω
i

conf
itranstot , where the product index is over all clusters in the system.  While 

the (ground state) vibrational entropy contribution in eq. (2.4) is usually accounted for in 

calculations of the formation free energy of a solid cluster, the configurational entropy is 

often neglected because it is difficult to estimate analytically except for very simple 

structures.  The concept of configurational entropy is described in more detail in the next 

section. 



 27

2.2 Vacancy Cluster in Silicon  

Most continuum models for aggregation that require cluster thermodynamics as input 

assume that the ground state morphology is a good approximation for describing the 

properties of clusters as a function of size.  For vacancies in silicon the ground state 

morphology is the so-called Hexagonal Ring Cluster (HRC) configuration, which is 

formed by maximizing the number of complete hexagonal vacancy rings [56].  Examples 

of HRC structures are shown in Figure 2.1 for several cluster sizes.  The HRC 

morphology naturally evolves into regular octahedral structures with (111)-oriented 

surfaces at larger sizes, and in this case the cluster configurational entropy can be 

assumed to be negligible. These octahedral structures are frequently observed 

experimentally with TEM in commercial crystalline silicon [82]. 

 
 

 

Figure 2.1: Hexagonal ring clusters (HRC) containing (a) 6, (b) 10, and (c) 14 vacancies. 

 

 

While the HRC morphology is a reasonable representation of large clusters at low 

temperatures, much of semiconductor processing (and obviously crystal growth) takes 

place at high temperatures. Previous atomistic simulations by Prasad and Sinno, [121, 

(a)    (b)    (c) 
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122] employing the classical EDIP potential [14] demonstrate clearly that vacancy 

clusters at elevated temperature spend a majority of the time in spatially extended 

configurations that are much higher in energy than the ground state. The fact that vacancy 

clusters can assume these extended configurations arises from the large vacancy-vacancy 

interaction distance, which has been shown to extend up to about 7.8 Ǻ, which 

corresponds to the 4th neighbor shell along the (110) direction (4NN-110) or the 8th-

nearest neighbor shell overall [122]. The driving force for this behavior is now known to 

be a combination of vibrational and configurational entropy. Only the former has been 

considered in previous thermodynamic models and it is shown in the following sections 

that the configurational entropy at high temperature not only dramatically influences the 

thermodynamics of clusters, but also the aggregation kinetics through a modification of 

the effective capture radius.  

 

2.2.1 Configurational Entropy 

As pointed out in section 2.1, the configurational entropy of a system consists of two 

terms, the translational and (internal) configurational part, with total number of 

configurational states given by i
tot trans conf

i

Ω =Ω Ω∏ .   The nature of these terms is 

demonstrated in Figure 2.2 for the case of a dimer (two vacancies located next to each 

other) on a two-dimensional (9x9) cubic lattice.  For such a system consisting of only the 

dimer, the total number of states reduces to tot trans confΩ = Ω Ω , with 81 2tot xΩ =  being the 

total number ways of putting the dimer on a 9x9 lattice, where as 81transΩ = . The dimer 
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therefore has 2 distinct (energetically degenerate) configurations per lattice site; i.e. 

2=Ωconf . 

 

 

Figure 2.2: (a) Centres of mass of several dimmers on a two dimensional lattice (left). (b) 
Full center-of-mass lattice for dimmers is twice as dense as that of actual lattice (right). 

 
 

 

The situation is far more complex for “real” vacancy clusters in the tetrahedral 

silicon lattice for several reasons. The first is that long-ranged vacancy-vacancy 

interactions (up to the 4th nearest neighbor along the (110) directions, or about 7.8 Å) The 

effect of long-ranged interactions on the cluster configurational entropy is shown in 

Figure 2.3 in which the schematic dimer shown in Figure 2.2 can now exist in 2nd-nearest 

neighbor (2NN) configurations as well as the 1NN configuration.  The center-of-mass 

lattice now contains three sites for each of the actual lattice sites and 3=Ωconf  for this 

case.  Note that the energy of the dimer in the 2NN configuration is generally not equal to 
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that of the 1NN configuration and the microcanonical expression for the entropy is no 

longer valid because the system has different energy states. 

 

 

Figure 2.3: (a) Centers of mass of 1NN and 2NN dimers on a two-dimensional lattice 
(left). (b) Full center-of-mass lattice for 1NN and 2NN dimmers (right). 

 

 

A second source of large configurational entropy is that cluster configurations in 

the silicon lattice are not limited to on-lattice structures because lattice atoms can relax 

around the cluster in a variety of configurations.  Both these issues will be discussed 

further below.  
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2.3 Cluster Formation Thermodynamics from Potential Energy 

Landscape  

In the following discussion we employ the concept of inherent structures (IS) in a 

potential energy landscape (PEL) in order to describe the thermodynamics of defect 

clusters in a crystal.  Inherent structures, as introduced by Stillinger and Weber [138], are 

local minimum configurations in the 3N-dimensional potential energy surface [68] 

defined by the coordinates of an N-atom system.  A basin is defined as the set of points in 

phase space that map to the same IS when the system is quenched using local energy 

minimization.  The basin construct is useful because it partitions the total phase space of 

the system into a set of non-overlapping local minima connected by saddle points which 

permit basin-to-basin hopping.  At sufficiently low temperature, the system will spend the 

majority of time in any given basin and only occasionally be able to pass through to 

another basin (i.e. the basin-to-basin motion is a rare event).  

The concepts of inherent structures and potential energy landscapes have existed for a 

long time [68] and have recently been successfully applied to the study of configurational 

entropy in supercooled liquids and glasses [128, 129].  In these studies, long equilibrium 

MD trajectories were periodically quenched to locate the potential energy basins, which 

were then used to compute thermodynamic properties as shown below.  Because of their 

disordered nature, supercooled liquids and glasses possess a large number of inherent 

structures, and at sufficiently low temperatures, the basin-hopping picture has been shown 

to be a good thermodynamic description. 



 32

On the other hand, the IS/PEL framework has not yet been applied to the study of 

defect formation properties in crystals principally because small defect clusters in crystals 

are generally not associated with substantial configurational entropy.  This is especially 

true for structures that are assumed to primarily exist in on-lattice conformations, such as 

vacancy clusters.  In the following discussion, we briefly outline the IS/PEL 

thermodynamic framework as applied to the formation properties of defect clusters in 

crystals.  In the following pressure is assumed to be zero, and no distinction is made 

between the Helmholtz and Gibbs free energies. 

 In general, the free energy of a system in the canonical ensemble is given by  

 

 lnBG k T Z= −  (2.5) 
 
 

where Z is the canonical partition function: 

 

 ( )3

1 1 exp ( ) /
!

N
BNZ V r k T dr

N
= −

Λ ∫  (2.6) 

 

In eq.(2.6), 2/12 )2/( Tmkh Bπ=Λ  is the thermal de Broglie wavelength that arises from 

integration of the kinetic portion of the partition function, and )(rV  is the potential 

energy of the system, which depends only on the 3N-dimensional position vector, r .  

Applying the IS picture introduced above, the partition function can be rewritten as 
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 ( ) ( )3

1 exp exp ( ) N
N

R

Z V V r dr
α

α α
α

β β= − −
Λ ∑ ∫  (2.7) 

 

where TkB/1=β , αV  is the minimum potential energy in basin α , )( αrV  is the 

potential energy relative to the minimum for a particular configuration in basin α , and 

αR  is the set of configurational phase space points contained in basin α .  Further 

assuming that basins are uniquely characterized by their minimum energy, αV , eq. (2.7) 

can be rewritten as [129, 138] 

 

 ( ) ( )3

1 ( ) exp exp ( , )vibNZ g V V G V dVα α α αβ β β= − −
Λ ∫  (2.8) 

 

where )( αVg  is the density-of-states function (DOS) for the distribution of basin energy 

minima.  The temperature-dependent quantity ),( αβ VGvib  represents the (vibrational) 

free energy of a basin with minimum energy αV , i.e. ( ))()(),( αα ββ VTSEVG vibvib −≡ , 

and vibBvib NkVS ln)( ≡α , where vibN  is the number of vibrational states in a basin. 

Therefore, eq. (2.8) can be rewritten as 

 

 ( ) ( )3

1 ( ) exp expNZ G V V E dVα α αβ β= − −
Λ ∫  (2.9) 
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The DOS function )( αVG  represents the distribution of both configurational and 

vibrational states, i.e. )()( αα VgNVG vib= .  Assuming that in a perfect crystal system only 

a single configurational state exists, the free energy is then given by, 

 

 ( )3ln / exp ( 3 lnp N p
p B vib B vibG k T N E Nk T E TSβ⎡ ⎤= − Λ − = Λ + −⎣ ⎦  (2.10) 

 

For a system containing a feature such as a vacancy cluster, a similar approach can be 

used but this time the density-of-states function also must account for multiple 

configurational states: 

 

 ( )3ln ( ) / exp exp( )ref ref N
d B vib confG k T G V N N V E dVα α αβ β= − Λ − −∫ %  (2.11) 

 

where the superscript “ref” indicates a reference configuration for each cluster (to be 

defined) and the “tilde” notation indicates that the density-of-states is normalized so that 

it is unity at the reference state, i.e. )(/)()(~ refVGVGVG ααα = . Employing the definition of 

vibrational entropy given above, eq. (2.11) can be rewritten as 

 

 ( )3ln ( ) / exp exp( )ref ref N
d vib B confG TS k T G V N V E dVα α αβ β= − − Λ − −∫ %  (2.12) 

 

For the specific case of vacancy clusters, the formation free energy of a cluster containing 

VN  vacancies is 
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 h V
d p

h

N NG G G
N

⎛ ⎞−
Δ ≡ − ⎜ ⎟

⎝ ⎠
 (2.13) 

 

where hN  is the number of atoms in the perfect crystal reference system. Combining eqs. 

(2.10), (2.12) and(2.13), the formation free energy for a vacancy cluster is given by 

 

 ( )ln ( ) exp ( )ref ref
vib B confG T S k T G E N E d EβΔ = − Δ − Δ − Δ Δ∫ %  (2.14) 

 

where EΔ  is the formation enthalpy of a cluster and is approximately independent of 

temperature.  Note that the momentum and thermal contributions to the total partition 

function cancel in eq. (2.14), which is now fully based on formation properties.  A similar 

expression can be written for any type of cluster and eq. (2.14) is the fundamental starting 

point for our free energy calculations. The probability distribution function 

( )EEGEp Δ−Δ≡Δ βexp)()(  in eq. (2.14) can be directly sampled with equilibrium 

molecular dynamics, whereas for discrete, on-lattice systems, )( Eg Δ  can be computed 

directly as shown below in section 2.4. 

 

2.4 On-Lattice Calculations of Cluster Free Energy 

The IS/PEL framework generally has been applied to continuous space systems.  Here, 

we extend its application to a discrete on-lattice model for vacancy clusters.  On-lattice 
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vacancy clusters are defined as clusters that are formed by removing a set of atoms from a 

perfect crystal lattice, followed by lattice relaxation with molecular statics.  The PEL in 

discrete space is similar to one in continuous space at zero-temperature and consists of a 

collection of infinitely narrow basins separated by inaccessible phase space.  Sampling of 

this space must be accomplished by moves designed to hop directly (athermally) from 

basin to basin.  Equation (2.14) from previous section is directly applicable to this 

situation except that the vibrational entropy contribution associated with each discrete 

configuration must be computed separately. 

 

2.4.1 Wang-Landau Monte Carlo (WLMC) Method 

The recently developed Wang-Landau Monte Carlo (WLMC) [155] method was used to 

investigate the thermodynamics of on-lattice vacancy clusters and generate a density-of-

states function for each cluster.  The WLMC approach was used because of the large 

energy differences between the various cluster configurations, which would lead to severe 

sampling bottlenecks in a standard Metropolis Monte Carlo simulation.  Although 

vacancies in a silicon lattice were considered in this particular study, this approach is 

applicable to any on-lattice cluster.  First, an n-vacancy cluster was generated by 

removing n atoms from a perfect crystal lattice.  The configurational density-of-states 

function for the formation energy, )( Eg Δ , and the visit histogram, )( Eh Δ , were 

initialized to unity and zero, respectively.  Both )( Eg Δ  and )( Eh Δ  were discretized 

using 0.1eV energy bins.  A cluster was defined as connected based on the Stillinger 

criterion [137] and an interaction range of up to 7.8 Ǻ was assumed.  The vacancy 
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positions were identified by comparison of the quenched lattice to a reference perfect 

lattice at the same density.  The positions of reference atoms that were unmatched by 

corresponding atoms in the actual lattice were assigned to vacancies. 

Monte Carlo (MC) moves were performed by moving a single randomly selected 

atom (vacancy) to another location picked at random from all sites that were within the 

interaction distance to at least one of the other atoms (vacancies).  Moves that led to 

fragmented cluster configurations (based on the Stillinger definition) were automatically 

rejected.  For the remaining cases, the formation energy of the cluster configuration was 

calculated by relaxing the lattice statically at constant volume using a conjugate gradient 

energy minimization scheme [64] and then applying eq. (2.10).  

The WLMC acceptance/rejection criterion for accepting a move from formation 

energy level 1EΔ  to 2EΔ  is given by 

 

 ( ) 1
1 2

2

( )min ,1
( )

g Ep E E
g E

⎡ ⎤Δ
Δ → Δ = ⎢ ⎥Δ⎣ ⎦

 (2.15) 

 

Each time a formation energy level EΔ  is visited the current density-of-states value is 

multiplied by a factor f>1 so that fEgEg )()( Δ=Δ . The multiplicative factor f is initially 

set to a value of )1exp(  in our simulations, i.e. 718282.21 =f . Concurrently, the visit 

histogram is updated by adding one to the value at that energy level so 

that 1)()( +Δ=Δ EhEh . The simulation proceeds until a minimum flatness criterion is 

achieved in the function )( Eh Δ , which is taken here to be 85%. Once this flatness 
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criterion is achieved, the value of f is reduced according to the schedule ii ff =+1 , 

where, i represents the number of simulation “stages” and )( Eh Δ  is reset to zero for all 

energy values. Our simulations were executed until 000001.11 =f . 

The WLMC simulation only provides the density-of-states function up to an arbitrary 

multiplicative constant. In order to compute an absolute free energy from eq. (2.11) it is 

necessary to specify the absolute number of states in at least a single energy interval and 

thereby anchor the )( Eg Δ  function. The reference state used in all the ensuing 

calculations in this Chapter is the HRC configuration because it is relatively easy to 

isolate and possesses relatively few configurations, which can be counted directly. 

 

2.4.2 Validation of WLMC Approach 

The WLMC algorithm was validated by comparison to a direct counting approach. The 

latter simply generates a sequence of configurations using single vacancy hops and counts 

the number of new configurations by comparison to a stored list of previously observed 

configurations.  Obviously, the direct counting approach is highly limited because of the 

relatively small number of configurations that can be stored in memory.  A comparison 

between the direct counting and WLMC predictions for the DOS of a nearest-neighbor-

connected 6-vacancy (6V) cluster (i.e. the Stillinger interaction distance is set to the 1st-

nearest neighbor distance) is shown in Figure 2.4.  Both approaches show a three state 

DOS function where the lowest energy state is the HRC configuration (6-atom ring) that 
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has two orientations per lattice site.  The other two states are substantially higher in 

energy but possess about 103 equivalent orientations. 

 

 

 

Figure 2.4: DOS for a 1st-nearest neighbor connected 6-vacancy cluster calculated using 
(a) WLMC (diamonds) and (b) direct counting (circles). Also shown are the results from 
a corrected-bias WLMC (squares). 

 

 

A systematic discrepancy is apparent between the results of the direct counting and 

WLMC calculations, which does not disappear as the visit histogram flatness criterion is 

increased.  The discrepancy arises because of an inherent violation of detailed balance in 

the simulation move basis set due to the implied constraint imposed by maintaining 
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cluster connectivity.  The constraint that cluster connectivity be preserved before a move 

can be considered by the WLMC acceptance criterion implies that the number of 

transitions possible from any given configuration is not uniform. For example, a linear 

cluster with all monomers arranged at maximum interaction distance can only 

accommodate moves through its end atoms.  On the other hand, a more spherical cluster 

has many more redundant connections and therefore many more possible “outbound” 

transitions. In other words, the system can be viewed as a non-uniformly connected 

graph.  A simple example is shown in Figure 2.5 for a 4-state system; the fully connected 

network is shown in Figure 2.5(a), while a non-uniformly connected version is shown in 

Figure 2.5(b).  

 

 

 

Figure 2.5: Network connectivity and transition probabilities for an energetically 
degenerate four-state system – (a) Uniformly connected, (b) Non-uniformly connected. 
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Assuming in both cases that all four states are energetically degenerate, a proper 

MC algorithm should sample all states equally often.  In Figure 2.5(a), each state has 

three incoming and three outgoing transitions of equal probability (0.33) and using eq. 

(2.14) would lead to a uniform DOS function.  In Figure 2.5(b) however, state 4 has three 

outgoing transitions (probability of each is 0.33) but the outer states have only one. The 

outer states could, for example, correspond to cluster configurations that are more 

extended, and the missing connections therefore represent moves that would lead to 

fragmentation.   Therefore for each of these states, the incoming transition has probability 

0.33 of being selected, while the outgoing one has probability 1 of being selected, which 

clearly leads to a violation of detailed balance.  The deviation from detailed balance 

increases with increasing unevenness in the network connectivity. Using this observation, 

a bias-corrected WLMC algorithm is generated by modifying the acceptance probability 

of a transition (eq. (2.14)) so that  

 

 ( ) 1 1
1 2

max 2

( )min ,1
( )

C g Ep E E
C g E

⎡ ⎤Δ
Δ → Δ = ⎢ ⎥Δ⎣ ⎦

 (2.16) 

 

  where C1 is the number of possible outbound transitions from the state “1” and Cmax is 

the maximum number of outbound transitions for any state in the system.   

The number of possible transitions is computed by looping over each atom in the 

cluster and finding the number of locations that it can be moved to while preserving the 

cluster connectivity. The maximum is estimated at the beginning of the simulation – note 

that overestimation of this number does not affect the results but only reduces the 
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efficiency of the simulation by leading to more rejections.  The bias-corrected WLMC 

simulation results for the 6V-1NN cluster are also shown in Figure 2.4 and show 

excellent agreement with the direct counting results.  It should be noted that this issue 

could generally arise whenever Monte Carlo moves are performed on a non-uniformly 

connected network, which in this case was due to the cluster connectivity constraint. 

 

2.4.3 Dependence of Density of States on Interaction Distance 

As mentioned before, the vacancy-vacancy interaction distance extends substantially 

beyond the 1st-nearest neighbor distance. The effect of increasing the interaction range 

between vacancies on the DOS function for the 6V cluster is shown in Figure 2.6. The 

DOS function is seen to rise dramatically with increasing interaction range and for the 8th-

nearest neighbor case has a value of 8103x at 19.5 eV, which is 10 eV higher than the 

ground state! Obviously, it is not practical to use the direct counting approach for this 

case. Also note that as the interaction distance increases the form of the DOS function 

becomes more easily discernable as an exponentially increasing function. The periodic 

peaks are due to the sudden increase in states as each additional particle is moved away 

from the cluster core. Also note that as the interaction distance increases, the DOS 

exponent also increases – the significance of this feature will be discussed in more detail 

in Section 2.5.  Finally, the decay in the DOS at the end is due to the fact that fewer states 

are available for stretched configurations. 

 

 



 43

 

 

Figure 2.6: DOS for 6V cluster as a function of vacancy-vacancy interaction distance. 
Lower Dash – 2NN, Thin Solid – 3NN, Upper Dash – 6NN, Thick Solid – 8NN. 

 

 

2.4.4 Probability Distribution Functions for On-Lattice Vacancy Clusters 

The probability distribution function (PDF) for the on-lattice system is given by 

 

 ( ) ( )( ) ( ) exp ( ) exp exp( ( ) / )vibp E G E E g E E S E kβ βΔ = Δ − Δ = Δ − Δ Δ  (2.17) 

 

Note that the vibrational entropy dependence has to be incorporated explicitly because the 
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on-lattice WLMC simulations.  Calculations of the vibrational entropy of formation as a 

function of cluster configuration and energy are discussed further in Section 2.5.  The 

distribution function in eq. (2.17) can be interpreted as the probability distribution of 

states obtained from a molecular dynamics simulation that is restricted to only sample on-

lattice cluster configurations. The probability distribution, )( Ep Δ , for the 6V cluster at 

1000K, 1300K, and 1600K is shown in Figure 2.7.   

 

 

 

Figure 2.7: Probability distribution functions for the 6V cluster at (a) 1600K (squares), 
(b) 1300K (circles) and (c) 1000K (triangles) and the 10V cluster (diamonds) at 1600K. 
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All distributions are arbitrarily anchored so that the probability distribution function is 

unity at the ground state.  While the relative importance of higher energy states increases 

with increasing temperature, the ground state (corresponding to the HRC configuration) is 

dominant even at 1600K, which is close to the melting temperature of silicon.  The 2nd-

lowest energy state (~11eV) is about 100 times less probable at 1600K and 1x105 times 

less probable at 1000K.  States with higher energies are progressively less represented.  In 

other words, even the combination of both the vibrational and on-lattice configurational 

entropy near the melting temperature is still not sufficient to compensate for the higher 

energy of any state relative to the HRC configuration. Also shown in Figure 2.7 is the 

probability distribution for the 10V cluster at 1600 K, which leads to a similar picture, 

although the decay of the probability distribution function is slower than that for the 6V 

case, reflecting the faster exponential increase in the DOS function for the 10V cluster.  

Simulations for clusters up to size 30V fail to show any appreciable impact from non-

ground state configurations at all temperatures up to 1600K.  Based on these results the 

total free energy of formation for EDIP vacancy clusters is adequately represented by the 

free energy of the HRC configuration for all cluster sizes and at all temperatures.  In other 

words, while the on-lattice potential energy landscape does contain a large number of 

states, the density is not high enough to appreciably contribute to the free energy. 

 

2.5 Off-Lattice Calculations of Cluster Free Energy 

Extended EDIP molecular dynamics simulations at 1600K (and to a lesser extent at lower 

temperatures) show that vacancy clusters spend a majority of time in states that are of 
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much higher energy than the HRC configuration.  This is particularly significant given 

the predicted high binding energy of the HRC configuration for the 6V vacancy cluster in 

silicon.  Very long NVT-ensemble (zero pressure) MD trajectories of a 1000-lattice site 

cell containing a 6V cluster were periodically quenched (approx. every 100-200 time 

steps) to the local energy minimum and the formation energies collected into bins as in 

the on-lattice WLMC calculation described in the previous section.  The resulting PDF is 

shown in Figure 2.8 and exhibits several fundamental differences relative to the on-lattice 

MC case.   

 

 

 

Figure 2.8: Probability distribution function for a 6-vacancy cluster at 1600 K obtained 
directly from MD. Inset: Spheres represent atoms displaced by more than 10% of a bond 
length. 
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Most importantly, the dominant states are now located at approximately 12eV while the 

HRC ground state is never observed during the simulation which was run for about 8x107 

time steps or about 50 ns of real time.  The distribution also is now much shallower than 

for the discrete case, which implies that a larger number of configurations contribute to 

the average thermodynamic properties.  Finally, many of the unoccupied bins in the on-

lattice case (e.g. states between 9.5eV and 11.0eV) are now populated and the distribution 

appears to be almost continuous.  In fact, the energy spacing between states is less than 

0.01eV in some regions of probability distribution function.  

An example (quenched) configuration of the simulation lattice in the neighborhood of 

the 6V cluster is shown in the inset of Figure 2.8.  The configuration possesses formation 

energy in the region of the peak of the distribution (11.8 eV).  Several neighboring atoms 

are significantly displaced from their lattice positions to the extent that it is no longer 

possible to definitively assign vacancies to particular lattice sites.  Other configurations 

found in the MD simulation show similar off-lattice character and spatial extension, with 

the higher energy structures becoming increasingly disordered and extended.  The 

increased stability of higher energy structures arises from the tremendous number of 

possible configurations if substantial off-lattice rearrangements are allowed.  Although 

off-lattice relaxations were permitted in the WLMC calculations during the energy 

minimizations, these were only sufficient to sample the local minimum in the potential 

energy surface near an on-lattice configuration. 

The fact that each configuration sampled using the above procedure corresponds to a 

well-defined local minimum in the potential energy surface was confirmed by repeated 

coordinate perturbation followed by re-minimization.  Even states that were separated by 
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less than 0.01eV (the tolerance of our CG minimizations) were reproducibly isolated by 

energy minimization following coordinate perturbation.  Of course, this robustness was 

observed only if the perturbations did not exceed a certain critical value (about 2-3% of a 

bond-length) – perturbation magnitudes above this value led to relaxations into different 

local minima.  In general, these local minima possessed substantially different energies 

(up to ~ 1eV) from the original value. Conversely, states with adjacent formation energies 

were generally found to correspond to substantially different atomic configurations. 

The results above indicate that the potential energy surface contains a large enough 

density of local minima to substantially alter the thermodynamics of vacancy clusters.  

This view is schematically represented in Figure 2.9, which contrasts the conventional 

view (a) of a smooth potential surface experienced by a hopping point defect in a crystal 

and the present picture (b).   The situation in (b) is not unlike the potential energy surface 

expected in an amorphous solid or supercooled liquid, but here is localized to the vicinity 

of the defect.  Note that these states are introduced into the system by the presence of the 

point defect and would not otherwise exist in the perfect lattice.  In other words they are a 

property of the defect and therefore modify its thermodynamic properties.  The defect 

clusters therefore act as strong sources of amorphization within the lattice, an idea that 

has been qualitatively suggested in the literature for many years [130] but has not yet 

been quantitatively analyzed.  
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Figure 2.9: Potential energy surface experienced by a single hopping atom in a crystal. (a) 
without lattice rearrangements, and (b) with lattice rearrangements. 

 

 

2.5.1 Absolute Probability Distribution and Density of States Functions 

The PDFs for several other vacancy clusters containing 2-35 vacancies were also 

generated using direct MD; examples are shown in Figure 2.10.  All distributions have 

been arbitrarily normalized to unit area.  As the cluster size increases, the range of 

energies sampled by the cluster also increases and, for the 35-vacancy cluster, the 

difference between the energy at the distribution peak and the HRC structure is about 10 

eV or 75 kBT.  Except for dimers and trimers, the distributions are observed to be almost 

continuous across the entire range of sampled formation energies, with well-defined 
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peaks at intermediate values.  For clusters containing more than 4 vacancies, the HRC 

configuration was never observed at 1600K, while in the dimer and trimer cases the 

clusters were observed to revisit the HRC configuration multiple times.    

 

 

 

Figure 2.10: Probability distribution functions for vacancy clusters at 1600 K obtained 
directly from MD. 
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used for this purpose.  While the HRC configuration is still a natural anchor for the off-

lattice distributions, it is more difficult to utilize it because the 1600K MD simulations do 

not visit this state as discussed above.  

This difficulty was resolved using a second MD simulation at lower temperature in 

which the HRC structure was sampled adequately while maintaining sufficient overlap 

with the 1600K distribution.  This approach is conceptually similar to umbrella sampling 

[8] in which distributions across different energy sub-intervals are overlapped to create a 

complete one.  The optimal temperature for the second simulation was determined by 

balancing the requirement that the HRC configuration be sampled adequately with the 

need to maximize the overall transition rates to produce a distribution with sufficient 

statistics in a reasonable amount of CPU time.  In fact, the low temperature “anchor” 

simulations accounted for most the overall computational effort in this study.  The high 

temperature simulations are still required because they sample the cluster configurations 

much more rapidly and provide better overall statistics over most of the energy range. 

Examples of the two-temperature approach are shown in Figure 2.11 for the 6V and 

18V clusters.  In the 6V case, the low temperature simulation was performed at 1400K 

while for the 18V cluster a temperature of 1050K was used.  Note that for both the 6V 

and 18V clusters, the distributions are plotted at the low temperature; i.e. the 6V 

distributions are shown at 1400K and the 18V distributions at 1050K.  While almost full 

overlap between the low and high temperature distributions could be achieved in the 6V 

case, the large temperature difference between the two simulations used for the 18V case 

implied that only a relatively small part of the distributions overlapped (~3-4 eV in the 

formation energy range) and could be used for anchoring the 1600K data. 
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Figure 2.11: Overlap between probability distributions sampled at two different 
temperatures for the 6V and 18V clusters. Solid symbols – low T, Open symbols – high 
T. All data shown is scaled to the lower temperature (1400K for 6V, 1050K for 18V). 
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distributions in Figure 2.10 are bounded.  In other words, even though DOS functions 

grow exponentially, the Boltzmann factor decreases with a higher exponent.  Physically, 

the unbounded DOS functions point to the fact that each cluster can spawn an infinite 

number of higher energy states – in fact, the states near the tail end of the DOS functions 

in Figure 2.12 possess energies that are higher than a completely dissociated cluster, even 

though they represent valid Stillinger clusters.   

 

 
Figure 2.12: Absolute density-of-states functions. Small squares – data derived from 
sampling at 1600K; Solid circles – directly counted HRC degeneracy; Large open circles 
– DOS sampled at 1400K (6V) and 1050K (18V); solid lines – exponential fits. 
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These configurations correspond to the formation of additional defect structures such 

as Frenkel pairs (interstitial-vacancy pairs) [157] and other types of disordered states, and 

suggest a mechanism for amorphization and even crystal melting.  

A plot of the DOS exponents as a function of cluster size is shown in Figure 2.13 in 

which the exponents have been expressed as effective temperatures, i.e. 

)exp(~)( EEG eff ΔΔ β , where effeff kT/1≡β  is the fitted exponent for a given DOS.  For 

effective temperatures above the crystal melting temperature (~1520K), the probability 

distribution, )exp()()( EEGEp Δ−Δ=Δ β  is bounded and the crystal is stable.   

 

 

 

Figure 2.13: DOS exponent dependence on cluster size. Line is a power-law fit. 
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As shown in Figure 2.13, the effective temperature appears to approach this limit as a 

power-law in the cluster size over the range studied, although larger cluster sizes would 

be required to completely determine the limiting behavior.  In other words, the additional 

states introduced by clusters provide a path for crystal melting to occur, and larger 

clusters produce a higher state density.  More work is needed to develop a conclusive 

relationship between the crystal melting and the effective temperature. 

 

2.5.2 Total Cluster Free Energy Calculations 

The distribution functions shown in Figure 2.10 and Figure 2.12 were used to compute 

free energies of formation for each of the clusters, which are a critical ingredient in 

continuum simulations of aggregation.  The formation free energies were computed as a 

function of cluster size and temperature using eq. (2.14).  Details of the vibrational 

entropy calculation for the various configurations are given below in Section 2.5.4. 

The temperature and size dependence of ),( TnGΔ  is shown explicitly in Figure 2.14 

(lower plane) by defining an effective surface free energy as 32),( nTnG ασ Δ= , where 

224.2=α  for a sphere (α  increases by about 10% for an octahedron).  Also shown is the 

surface free energy obtained using conventional ground state calculations in which the 

enthalpy and vibrational entropy of formation for the HRC are computed as functions of 

temperature (upper plane).  Several observations can be made.  First, the surface energies 

computed using both approaches converge at low temperature where the configurational 

entropy is negligible.   
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Figure 2.14: Temperature and size dependence of the total effective surface free energy 
(σ ) of vacancy clusters predicted using the EDIP potential. Lower surface: current 
results including configurational entropy, Upper surface: HRC calculations with 
vibrational entropy only. 
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Interestingly, at high temperatures the effective surface energy predicted in the 

present work is approximately constant over the size interval 2<n<35, implying that the 

free energy of formation scales as n2/3 for all cluster sizes considered.  In addition, based 

on previous analyses, the 35-vacancy cluster is fully representative of the continuum limit 

because it is the smallest structure that can assume a perfect (111) faceted octahedral 

shape [122].  As a result, the present calculations indicate that the surface free energy 

scales as n2/3 for all sizes at elevated temperatures.  At lower temperatures, however, the 

smallest clusters clearly possess higher effective surface free energy and deviate from the 

n2/3 scaling law (for both sets of calculations).  The observed deviation for small clusters 

arises because at low temperatures the effect of configurational entropy is negligible and 

the atomistic (discrete) nature of the clusters leads to a higher effective surface free 

energy as observed in previous thermodynamic analyses [122]. By contrast, in the HRC 

calculations, the increase in effective surface energy for small clusters is present at all 

temperatures because the atomic discreteness of the HRC structure is preserved (by 

construction).   

A more direct comparison between the present calculations and the HRC results is 

shown in Figure 2.15(a).  The contour lines represent the difference between the ground 

state HRC and total free energy calculations from this work, defined as 

FULLFULLHRC σσσ /)( − .  At low temperatures the configurational entropy is negligible for 

all but the smallest cluster sizes and a ground state analysis is appropriate, i.e. the error is 

less than 2%.  At temperatures above about 1100K, the deviation between the two 

approaches increases especially for small clusters: the difference is larger than 20% for 

2<n<6 at 1600K!  A persistent error of about 12% appears for larger sizes at about 
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1600K.  As mentioned earlier, because the 35-vacancy cluster is a perfect octahedron 

(comprised entirely of (111) surfaces) this difference is expected to apply to all 

subsequent sizes. 

The “phase” plot in Figure 2.15(b) provides a comprehensive view of the effect of 

configurational entropy in size and temperature space.  The maximum discrepancy for 

small clusters at high temperature is critically important because small clusters are the 

primary species present during the early, high temperature stages of nucleation and 

growth of aggregates during silicon crystal growth.  Thus, a ground state analysis of the 

thermodynamics of these species is incorrect at the temperatures relevant to nucleation.   

At temperatures above about 1300K the difference between the ground state analysis 

and the present one persists at all sizes as mentioned above.  The reason for this 

discrepancy is due to surface melting.  Larger vacancy clusters are well approximated by 

internal (111) surfaces, which melt at a temperature substantially below the bulk melting 

temperature of 1685K.  The (111) surface melting temperature predicted by the EDIP is 

approximately 1200-1300K, and above this temperature, a vacancy cluster at any size will 

exhibit some surface melting because of the extremely high density-of-states associated 

with off-lattice disorder created by this process.  Surface melting at temperatures below 

the bulk melting temperature has important implications during the processing of the 

silicon wafers because it provides a pathway for cluster dissolution during wafer thermal 

annealing. 
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Figure 2.15: Difference ratio, FULLFULLHRC σσσ /)( − , between current ( FULLσ ) and HRC 
( HRCσ ) surface free energy calculations. 
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2.5.3 Connections to Experimental Data 

The heretofore-neglected contribution of the configurational entropy to vacancy 

cluster free energy is obviously important in the context of modeling microvoid formation 

during Czochralski (CZ) crystal growth.  During this process, vacancy aggregation is 

initiated at high temperature because of vacancy supersaturation that results from crystal 

cooling.  Continuum models for void formation have shown unequivocally that low (i.e. 

~0.75-0.85 J/m2) values of σ  are necessary to predict the correct nucleation onset 

temperature (approx. 1350-1400K [112]).  On the other hand it has been difficult to 

reconcile this range of values for the cluster surface free energy with experimental 

measurements of the (111) surface energy at 77 K, which are clustered around 1.25 J/m2 

[39, 65, 83]. As mentioned earlier, the (111) surface is widely considered as a good basis 

for estimating the free energy of experimentally observed octahedral voids, which consist 

almost entirely of (111)-oriented surfaces [82].  Our prediction for the effective surface 

free energy of the 35V cluster, which is entirely comprised of (111) surfaces, decreases 

from about 1.24 J/m2 at 77 K to 0.82 J/m2 at the experimental melting temperature of 

silicon, 1685 K.   

Based on the present results, it is now possible to consolidate both values with a single 

result.  The large clusters that are experimentally observed in commercial single-crystal 

silicon after cooling are unaffected by configurational entropy, and are well described by 

the (111) surface energy model (upper left region in Figure 2.15).  However, early during 

the nucleation process, small clusters at high temperature are spatially extended due to a 

combination of configurational and vibrational entropy and are therefore characterized by 
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a much smaller surface free energy (lower right region in Figure 2.15).  A single 

experimental data point available at 1685 K [153] provides a lowered (111) surface free 

energy (0.89 J/m2) at high temperature (upper right region in, and further supports the 

validity of the present picture.   

Finally, it should be noted that the excellent quantitative agreement between EDIP 

predictions and the experimental measurements in refs. [39, 65, 83, 153] is likely to be 

partially fortuitous. For example, EDIP under-predicts the melting temperature of silicon 

by about 10%, which may lead to comparable uncertainty in the predicted temperature 

dependence. 

 

2.5.4 Explicit Configurational Entropy Calculations 
 
While the configurational entropy is intrinsically taken into account in eq. (2.14), it is not 

possible to directly compute it from the total free energy. Rearranging eq. (2.4), the 

configurational entropy for a cluster is given by  

 

 conf vibTS E T S G= Δ − Δ −Δ  (2.18) 
 

 
which requires that the configurationally averaged formation energy and vibrational 

entropy be calculated.  The former is directly obtained from the probability distribution 

functions.  As mentioned in Section 2.1, the vibrational entropy of a given configuration 

was determined using the Quasi-Harmonic Approximation [76] following static 

relaxation at constant volume.  The QHA was performed at 1000K for all configurations, 
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although it was determined that the QHA computed vibrational entropy did not depend on 

temperature over a large range. 

The configurationally averaged vibrational entropy of formation was computed by 

repeated QHA analysis for a wide range of configurations (and formation energies) at 

each cluster size.  Figure 2.16 shows the plot of vibrational entropy for 10V and 18V as a 

function of formation energy of different configurations spanned by each cluster.  

 

 
Figure 2.16: Vibrational Entropy as a function of formation energy of various 
configurations for 10V (circles), 18V (squares) clusters.  Lines represent the linear fit to 
the data. 
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The resulting formation entropies for each cluster size were then fitted to linear 

functions of formation energy and the configurational average computed as 

 

 ( ) ( )i
vib vib i iS S E p E′Δ = Δ Δ × Δ∑  (2.19) 

 
 

where )( iEp Δ′  is the normalized probability distribution function for the formation 

energies and )( i
i
vib ES ΔΔ  represents the functional dependence of the formation 

vibrational entropy on the formation energy.  The final average contribution of 

vibrational entropy to the free energy, i.e. vibT SΔ  was fitted as a power law,  

 

 2 3
vibT S a n bΔ = +  (2.20) 

 
 

for different cluster sizes n, where coefficients a and b are function of temperature, and 

are listed in Table 2.1 
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Table 2.1: Power law coefficients a and b as a function of temperature for average 
vibrational entropy contribution to the total free energy 

T (K) a b 

500 0.28 -0.28
600 0.31 -0.31 
700 0.36 -0.36 
800 0.43 -0.43 
900 0.52 -0.52 
1000 0.54 -0.54 
1100 0.65 -0.65 
1200 0.715 -0.715 
1300 0.79 -0.79 
1400 0.88 -0.88 
1500 0.99 -0.99 
1600 1.13 -1.13 

 

 

The temperature dependence of the configurational entropy contribution to the 

free energy is shown in Figure 2.17 for several cluster sizes.  As the cluster size increases, 

the temperature dependence becomes stronger.  Note that at low temperatures, the total 

configurational entropy for the smaller clusters is larger than that of the larger clusters, 

but the trend is reversed at high temperature because of the stronger temperature 

dependence.  In fact, in the case of the 35V clusters the entropic contribution to the free 

energy is negligible below about 1000K.  These trends can be explained by the fact that 

although larger clusters require more thermal energy to substantially fragment because 

they are more tightly bonded they have a much larger configurational space to explore 

once sufficient energy is provided.   
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Figure 2.17: Configurational entropy contribution to the free energy of formation as a 
function of temperature for various cluster sizes. Dash line – limiting behavior for (111) 
surface melting. 

 

 

Also shown in Figure 2.17 is the expected limiting behavior for large clusters. The 
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the internal (111) surfaces.  This picture further supports the hypothesis presented in 
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2.5.5 Effect of Off-Lattice States on Single Vacancy 

The thermodynamics of the single silicon vacancy have been studied numerous times 

using a wide variety of computational methods.  Here we demonstrate that the 

configurational entropy picture presented in the previous sections can even influence the 

properties of single point defects.  This is a surprising result because the single vacancy 

thermodynamic properties are generally assumed to be well described by a single ground 

state.  The single-vacancy probability distribution and density-of-states functions for the 

formation energy are shown in Figure 2.18.   

 

 

Figure 2.18: DOS (circles) and PDF at 1600K (squares) for the single vacancy. 
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As in the cluster case, a distribution of formation energies are found, ranging from the 

ground state value of 3.25 eV found in earlier work with the EDIP potential [122], to 

values as high as 8 eV which correspond to the additional formation of an interstitial-

vacancy complex.  While the probability distribution is strongly peaked at the ground 

state configuration, the total contribution of the first few higher energy states is about 

20% of the ground state free energy!  This corresponds to a temperature dependent shift 

in the predicted equilibrium concentration of about 100% at 1600K.  Given that the 

contributing excited states are at only slightly higher energy relative to the ground state, 

this effect persists as the temperature is lowered. 

These results suggest that many defects at high temperature should be characterized 

thermodynamically as a collection of non-degenerate states, rather than a single ground-

state structure.  The dense PEL induced by larger structures leads to substantial 

amorphization, but even single point defects introduce enough states to cause deviation 

from ground state thermodynamics.  In fact, the present approach even can be applied to 

the perfect crystal, which can be considered to be the ground state configuration in a 

sequence of progressively higher energy states.  This was examined by performing 

extended MD simulations of a perfect crystal with periodic minimizations.  The DOS for 

the perfect crystal (not shown) indicates that at least one excited state (2.5eV above the 

ground state) is accessible by direct MD at 1600K.  Inspection of the lattice 

corresponding to this configuration shows that the local minimum corresponds closely to 

the so-called four-fold coordinated defect recently identified with DFT calculations [67], 

which was also found to have formation energy of 2.5eV.  This correspondence serves to 
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highlight the generality of the physical picture presented here as well as ability of the 

EDIP potential to accurately identify and model bulk defects in silicon. 

 

2.5.6 Comparison to Tersoff Empirical Potential 

A final test of the generality of our results was performed using the Tersoff potential 

for silicon.  The probability distribution functions for the 6V and 10V clusters at 2700K 

in Tersoff silicon are shown in Figure 2.19.  

 

 

Figure 2.19: Probability distribution function for the 10V cluster. (a) Solid squares – 
Tersoff potential at 2700K, (b) open diamonds – Tersoff potential at 2650K, and (c) open 
circles – EDIP potential at 1600K.. 
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This temperature corresponds very roughly to 1600K within the EDIP framework as 

determined by matching single vacancy diffusion coefficients.  A similar picture is 

obtained in which both clusters are characterized by a distribution of states that are 

significantly higher in energy than the ground state configuration.   

Also shown in Figure 2.19, (open symbols) is the EDIP probability distribution 

function at 1600K and the Tersoff distribution rescaled to a temperature of 2650K. Note 

how the small temperature shift leads to a large change in the probability distribution 

function and the Tersoff distribution function at 2650K is now very close to EDIP curve 

confirming the reproducibility of the physics across interatomic potentials. On the other 

hand it is difficult to resolve vacancy diffusion coefficients at 2650K and 2700K because 

of scatter in experiments. In other words temperature matching using single vacancy 

diffusion coefficient essentially gives the same result as matching the probability 

distribution curves and in fact demonstrates the universality of the present results with 

respect to choice of interatomic potentials.. 

 

2.6 Cluster Capture Radius 

The only other piece of information that is required to make direct correlation to 

experiments using a process scale model is the capture radii of vacancy clusters. It has 

been shown by Prasad and Sinno [121], that the traditional definition based on compact 

cluster morphology grossly underestimates the cluster evolution at high temperature. In 

this section we use the detailed large scale MD simulation to estimate the high 
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temperature cluster morphology as a function of size, and is compared directly to 

compact cluster morphology. 

 

2.6.1 Cluster Morphological Estimation 

In all the crystal growth process models, the radius of each cluster is estimated by 

assuming that the cluster was a compact sphere (or a regular octahedron) with volume 

equal to the total number of vacancies in the cluster, n, multiplied by atomic volume, 

vacV .  The total capture radius of this “compact” cluster, )(nRtot , included one additional 

bond-length, δ , so that  

 

 
1
33( )

4compact vacR n nV δ
π

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 (2.21) 

 
 

While this capture radius model is reasonable for large (i.e. mesoscopic) clusters at low 

temperature, it provides a substantial underestimation of the effective size of small, high-

temperature clusters [122] such as the one shown in the inset of Figure 2.8. 

 An effective capture radius for each cluster size was calculated using extended 

MD simulations for a series of clusters in the size interval 1<n<500.  During each 

simulation, cluster size information was sampled periodically using the following 

approach.  First the atomic coordinates were quenched to the local minimum energy 

configuration to remove thermal fluctuations.  The (zero temperature) displacement of 

each atom from its nearest equilibrium position was then computed by comparing the 
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quenched lattice to a reference lattice.  The cluster was defined as the union of all atoms 

that were displaced from their lattice sites by more than a threshold distance, β  which is 

discussed further below.  Note that only configurations that led to a topologically 

connected displacement field were counted.  An effective cluster radius was computed 

from this data by assuming that each cluster configuration is spherical and then taking the 

average of the sampled radii so that 

 

 
1

33 ( )
4avg

VR β
π

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.22) 

 
 

where )(βV  is the volume of all atoms displaced by at least β  from their equilibrium 

positions.  
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Figure 2.20: (a) Effective Cluster capture radius as a function of number of vacancies for 
various displacement threshold values: 1780.=β Å (diamonds), 1360.=β Å (squares), 
and 080.=β Å (circles).  
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Figure 2.21: Temperature dependence of the cluster capture radius for 1360.=β Å : 
T=1600K (squares) and T=1300K (circles). Solid line represents the capture radius 
assuming compact spherical morphology (eq. ((2.21)). 
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temperature lies somewhere in between 1300K and 1600K – in the latter case, even large 

clusters (which are essentially internal (111) surfaces) are extended because their surfaces 

are destabilized.  A schematic summary of the morphological evolution of clusters as a 

function of size for temperatures below the surface melting point is shown in Figure 2.22. 

 

 

 
Figure 2.22: Morphological evolution of vacancy clusters as a function of size for 
temperatures below the surface melting point. 
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collection of non-degenerate states, in which the ground state may or may not be relevant 

at high temperature, which is a fundamentally different view than the traditional approach 

of basing finite temperature property calculations on the minimum energy structure.   

The thermodynamics and structural properties of vacancy clusters, estimated in this 

work have been incorporated into the process scale models by Freewen et. al.[60, 61] The 

process scale model is able to reproduce the correct void size distribution, density and 

nucleation temperature for numerous crystal ingots of different radii grown under a wide 

range of cooling conditions. The previously neglected configurational entropy is 

demonstrated to qualitatively alter the nature of small clusters at the high temperatures 

where nucleation and growth are important.  In addition to accurately modeling void 

formation, the EDIP-derived thermodynamic properties used for vacancy clusters in this 

work are, for the first time, shown to be entirely consistent with experimental 

measurements of the silicon (111) surface free energy without the need for adjustable 

parameters.   

The overall picture presented here for the crystalline silicon system is shown to be 

independent of the empirical potential or the type of defect cluster, and suggests that the 

computational approach and results presented here should be generally applicable to other 

solid-state systems.  Our results also have implications for multiscale modeling 

approaches in which molecular dynamics simulations are used to compute properties for 

coarser models such as on-lattice kinetic Monte Carlo.  The loss of degrees of freedom in 

the latter implies that the configurational entropy associated with the off-lattice states is 

lost and will substantially alter the thermodynamic properties of the system. Using the 

inputs from high temperature MD simulations (as carried out in this work), Dai et al [42] 
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have constructed a lattice kinetic Monte Carlo model that implicitly captures the 

configurational entropy associated with off-lattice defect configurations. 
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3 Atomistic Simulations of Self-

Interstitial Aggregation  

Equation Section (Next) 
 
The ion-implantation process, which is used to introduce dopants (e.g. boron or 

phosphorous) into a silicon wafer, results in a highly non-equilibrium distribution of 

point defects (self-interstitials and vacancies) and their clusters.[87, 145] While many of 

these defects recombine almost instantly, a large supersaturation of self-interstitials is 

typically left behind because of the net excess atoms present within the lattice following 

implantation, creating a distribution of interstitial clusters.[87, 89, 145]  These clusters 

are now well known to strongly affect the diffusion behavior of the implanted dopant 

atoms during the subsequent implant damage annealing[23, 25, 29, 32, 44, 88, 142, 158] 

that is required to heal lattice damage and electrically activate dopant atoms. The 

diffusion effect is commonly referred to as transient-enhanced diffusion, or TED, because 

of its strongly non-linear and time-dependent features.[33] Qualitatively, TED is 

observed because excess self-interstitials effectively increase the mobility of dopant 

atoms via the “kick-out” mechanism by increasing the fraction of time the latter spend in 

the mobile interstitial state rather than the immobile substitutional one. 

Self-interstitial clusters have been somewhat more difficult to fully characterize than their 

vacancy-related counterparts, which are commonly found in vacancy-rich Czochralski-

grown silicon crystals.[59, 61, 62, 134]  While the latter tend to form predominantly 
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octahedral structures bounded by {111}-oriented planes and with 50-200 nm length 

scales,[81, 120] self-interstitial clusters have been observed in a variety of different sizes 

and morphologies. In particular, it has been challenging to connect quantitatively the 

implantation and annealing conditions to the observed morphologies, several of which 

may be present simultaneously.[44, 74, 88, 89, 106, 107, 116-118, 142, 158] As a result, 

there have been numerous studies aimed at experimentally and computationally 

characterizing the structure, thermodynamics, and dynamical evolution of self-interstitial 

clusters in crystalline silicon. 

The Ion Implantation Group at CNRS[28], in perhaps the most comprehensive 

publications on the subject, have summarized much of the phenomenology associated 

with self-interstitial clusters and TED in silicon. An important contribution of the work in 

refs.[26-28] was to unambiguously demonstrate that the supersaturation of self-

interstitials present during TED resulted from a complex combination Ostwald ripening 

of clusters, out-diffusion of self-interstitials to the wafer surface, and a thermodynamic 

competition between the various possible cluster morphologies. Earlier studies suggested 

that the sole source of the excess silicon self-interstitials are dissolving {113}-oriented 

planar defects formed during the post-implant annealing, which first grow to some 

maximum size then dissolve during annealing to release mobile Si self-interstitials.  The 

work in refs.[26-28], however, shows that TED is operational even during cluster 

ripening (growth), and that it is the supersaturation of single self-interstitials in the 

vicinity of the clusters that is maintained by the Gibbs-Thompson effect which is 

responsible for TED. Moreover, it was demonstrated that a quantitative description of the 
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ripening dynamics required that several different cluster morphologies be considered, all 

of which have been observed experimentally in ion-implanted silicon wafers. 

 

3.1 A Brief Overview of Observed Self-Interstitial Cluster 

Morphologies in Silicon 

In the following section, we briefly summarize the salient features of the various self-

interstitial cluster morphologies that have been observed experimentally to date. It should 

be emphasized once again that the dominant self-interstitial cluster structure found in a 

particular sample depends strongly on the implant type (i.e. silicon or boron ions, electron 

irradiation), implant energy and dose, and length and temperature of the post-damage 

anneal.  There are two classes of planar defects commonly found in ion-implanted Si; 

those that lie on planes normal to the <113> directions, and those that are normal to 

<111>.  These defects are commonly referred to as {113} and {111} defects, 

respectively, and are often visible simultaneously.[24, 50, 51, 70]. Figure 3.1 shows high-

resolution transmission electron microscopy (HRTEM) image of interstitial aggregates 

created in silicon during in situ-electron irradiation at room temperature.  
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Figure 3.1: HRTEM image of interstitial aggregates created in silicon during in situ-
electron irradiation at room temperature. The {113} and {111} defect are marked with 
single and double arrow [50]. 

 

 

The {113} and {111} defect are marked with single and double arrow. The {113} defects 

have been the subject of intense investigation because of their uniqueness to Si and Ge, as 

well as the difficulty associated with their complete atomistic characterization.  Their 

atomistic structure was deduced by Takeda,[143] who showed using HRTEM in Figure 

3.2 that these defects are comprised of <110>-oriented interstitial chains aligned in the 

{113} habit plane.[70, 143] 
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Figure 3.2: HRTEM image of {113} defect in (a), enlarged picture of marked line in (a) 
is shown in (b). The small open and solid circles represent the interstitials, separated by 
large open circles (8 membered rings) [34] 

 

 

Images taken during the early stages of {113} defect (see Figure 3.3) formation indeed 

show the presence of line interstitial defects (LIDs), which correspond to chains of di-

interstitials aligned along the <110> directions.[96, 100, 143] LIDs are surrounded by 

five, six and seven-membered silicon atom rings. It is believed that these LIDs are the 

building blocks for planar {113} defects.[70, 96]  Growth of LIDs along <110> is 

energetically favorable relative to assembly in the {113} plane because of the lack of 

dangling bonds at the LID ends. As a result, ion-implanted Si samples often exhibit a 

preponderance of rod-like {113} defect morphology but both the rod-like and planar 

structures are believed to originate from the same process.  
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Figure 3.3: A HRTEM observation of single LID (a) HRTEM Image (b) atomic 
simulated image (c) atomic model superimposed on the HRTEM image. The middle 
arrowheads represent single LID. Also shown in (c) are two double-LID (two side-by-
side single LID)[46] 

 

 

One complicating factor in the analysis of {113} defects is that the spacing between LID 

building blocks is not necessarily regular, leading to non-periodicity in the {113} plane 

and a variable interstitial density.[96]  The notation /I/, /IO/, /IIO/, etc. is commonly 

employed to represent the presence (I) and absence (O) of di-interstitial rows (I) in a 

particular {113} defect (see Figure 3.4). As expected, the formation energetic and 

interstitial density of a {113} defect are functions of the specific configuration.[24, 70, 

96]  
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Figure 3.4: Schematic representation of various configurations of {113} based on 
different arrangements of /I/ and /0/ repeat units. (a): shows /I/ structure where the I chain 
occurs repeatedly, (b): shows /IO/ structure, where the every   I chain is separated by an 
empty   ‘O’ chain.; (c) /IIO/ structure where ‘O’ chain separates a pair of ‘I’ chains. 
Asterisks or eight membered rings represent ‘O’ chains in above figure. [48] 

  

 

The most common {111} planar defects observed in implanted silicon are the 

Frank partial (FDL) and the perfect dislocation loops (PDL).[116-118] Both planar 

defects are surrounded by dislocation loops, while the Frank partials also include a 

stacking-fault comprised of two additional (111) planes of atoms.  Under TEM, these 

defects often appear as either filled (Frank partial) or open (perfect) oval-shaped 

structures.  FDLs are characterized by a dislocation with a {111}-oriented burgers vector, 

while the PDLs possess dislocations with a [110] burgers vector (see Figure 3.5 ). These 
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defects are acknowledged to be the most energetically stable interstitial aggregates in the 

limit of large sizes; after long time annealing of post-implanted wafers they are generally 

the only defects remaining.[28] 

 

 

 

Figure 3.5: TEM of Frank Dislocation Loop (left), and Perfect Dislocation Loop (right). 
[116-118] 

 

 

Another type of {111}-oriented defect are the so-called {111} rod-like defects.  

These structures are significantly less common than the {113} rods (LIDs) but have been 

experimentally observed in silicon following irradiation.[50, 51]  They are characterized 

by a {111}-oriented chain of interstitials surrounded by alternating five and eight-

membered atomic rings as shown in Figure 3.6. Interestingly, electronic structure 

calculations based on density functional theory (DFT) predict them to be more 
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energetically favorable than the {113}-oriented rods [70, 72] and additional factors 

beyond simple energetic are thought to be responsible for their relative scarcity.  

 

 

 

Figure 3.6: HRTEM image of {111}-defect after (a) 30, (b) 35 min irradiation (c) 
HRTEM superimposed atomic image based on rectangle in (b). [33] 
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Figure 3.7: A {100} defect based on Humble/Arai 4I structure [52]. 

 
Finally, we mention briefly {100}-oriented planar defects.[70, 78] These defects 

are comprised of {100} planar arrays of the well-known Humble/Arai[9, 31, 78, 102] 

four-interstitial cluster structure (see Figure 3.7). They are generally not observed in 

silicon, although have been extensively studied in diamond [78] and germanium.[111] 

Some evidence for their presence in silicon has been gathered following high-dose boron 

implantation,[38] but it is thought that the boron may play an important role in this case 

and that the observed {100} defects are examples of boron-interstitial clusters, or BICs 

(see Figure 3.8 ). Once again, it is not clear why pure {100} interstitial defects are not 

generally observed during damage annealing of silicon given that DFT calculations show 

them to be at least as energetically favorable as {113} defects.[70] 

 



 87

 

Figure 3.8: HRTEM image of {100} loop under high Boron implant. Vertical Axis is 
[100]. [55, 56] 

 

 

 Our goal is to first apply the large-scale atomistic simulations based on empirical 

interatomic potentials in order to directly study the aggregation and growth of self-

interstitial clusters under highly supersaturated conditions. Then, we aim to study the 

thermodynamic properties of individual clusters in order to explain mechanistically the 

observations in the direct aggregation simulations. We seek to address issues related to 

how the various cluster morphologies are related, and what the effects of temperature and 

hydrostatic pressure on these relationships are. These questions are posed with two 
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primary computational approaches. In this chapter, direct large-scale molecular dynamics 

simulations of self-interstitial aggregation are performed under prescribed temperature 

and stress conditions. These simulations provide a detailed transient view of the 

aggregation process and the resulting aggregate morphologies as a function of 

temperature and pressure.  The results from the large-scale simulations are analyzed in 

Chapter 4 by studying the thermodynamics and morphology of single clusters using a 

computational method that we have recently developed in Chapter 2 and applied to the 

characterization of vacancy aggregates.[92] In this approach, the cluster configurations 

generated by lengthy molecular dynamics (or equivalently Monte Carlo) simulations are 

sampled periodically to generate a probability distribution for the formation energies. The 

formation energy distribution function is directly related to the total classical formation 

free energy of the cluster, and provides a comprehensive view of cluster thermodynamics 

at finite temperature and stress.  In aggregate, the results of both simulation approaches 

are combined to infer a comprehensive picture for self-interstitial aggregation. 

 The remainder of this chapter is structured as follows. In the section 3.2, we 

discuss the methodological details of the large-scale direct aggregation simulations. In 

section 3.3, the results of simulations based on the Environment-Dependent Interatomic 

Potential (EDIP)[14] are presented and discussed in detail. Both temperature and pressure 

effects are considered. In Section 3.4, additional results are presented using other 

interatomic potential functions for silicon. These are compared and contrasted to the 

EDIP results to generate a consistent qualitative picture of the self-interstitial aggregation 

process. Conclusions are presented in Section 3.5. In Chapter 4, single cluster 

thermodynamics are probed in detail using techniques for sampling the potential energy 
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landscape associated with the clusters. These calculations provide a detailed mechanistic 

view of the effects of temperature and pressure on self-interstitial aggregation and 

suggest possible explanations for experimental observations. 

 

3.2 Simulation Methodology for Large-Scale Simulations of Interstitial 

Aggregation 

A sequence of parallel molecular dynamics (PMD) simulations were performed using 

large cubic simulation cells consisting of 39,304-1,000,000 silicon lattice atoms along 

with 216-1,000 silicon self-interstitials, initially placed in uniformly-spaced tetrahedral 

positions. While this initialization procedure obviously does not correspond directly to a 

post-implantation configuration, it does provide a highly supersaturated environment that 

leads to rapid aggregation. Variations in the initial interstitial positions were not found to 

provide appreciable effects in the evolution of aggregates, except at extremely short 

simulation times. The codes and simulation initialization approaches used in these 

simulations have been adapted from Prasad and Sinno.[121, 122]  

The empirical EDIP potential[14] was used in most of the simulations discussed below, 

but a subset of the runs also were carried out with the Stillinger-Weber (SW)[139] and 

Tersoff[147] potentials for silicon. Constant-pressure/constant temperature (NPT) PMD 

simulations at various temperatures and pressures were carried for several nanoseconds 

(3.8 ns to 38 ns), using the Parrinello-Rahman method[119] to control pressure, and 

velocity rescaling to control temperature. NPT simulations were performed with 

hydrostatic pressures ranging from -3GPa to +3GPa and temperatures raging from 1000K 
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to 1400K (for the EDIP runs – other temperatures ranges were employed for the SW and 

Tersoff potentials as discussed later in section 3.4). The 5th-order Gear predictor-

corrector method with time steps of 1.0-3.2 fs was used to integrate the particle 

trajectories; convergence of the simulation results with respect to the time step size was 

checked in each case using short test simulations. 

During the course of the PMD simulations, the entire system was quenched 

periodically to the local minimum energy configuration using a conjugate gradient 

minimization technique[64] and compared to a reference perfect crystal in order to 

identify the locations of self-interstitials as a function of time.  The unambiguous 

assignment of self-interstitials within a cluster is difficult because of the substantial local 

lattice distortion that involves many more atoms than the actual number of self-

interstitials.[19] An approach introduced previously[91] is used to identify “defective 

atoms” (DAs) as those that are more than 0.2Å away from the nearest lattice site in the 

reference crystal. Once all DAs are identified, they are grouped into clusters based on the 

Stillinger criterion[137] with a connectivity distance equivalent to the 1st-nearest 

neighbor distance in the perfect silicon lattice. In each cluster, therefore, the total number 

of self-interstitials, is known, but the particular atoms that represent these interstitials is 

not; the self-interstitials are arbitrarily identified as the most displaced atoms. As will be 

shown, unique assignment of atoms as self-interstitials is not required to analyze cluster 

morphologies. 
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3.3 Direct MD Simulation of Self-Interstitial Aggregation – EDIP 

Results 

Throughout the following discussion of direct aggregation simulations, simulation cells 

initialized with 216,000 lattice atoms and 1,000 self-interstitials were employed unless 

otherwise noted. Our base case simulation conditions were chosen to be T=1200K and 

P=0 and the PMD run was allowed to evolve up to 19.2 ns. Snapshots of quenched 

atomic coordinates at several times are shown in Figure 3.9. Large, dark (red) spheres 

represent self-interstitials as defined in Section 3.2, while the small, light (green) spheres 

are lattice atoms that are displaced from their ideal (i.e. perfect crystal) positions by more 

than 0.2Å. The latter represent a qualitative measure of the strain-field surrounding the 

self-interstitial clusters. All other atoms are deleted for clarity.  

Several interesting features are apparent during the clustering process. First, small 

three-dimensional aggregates are quickly formed throughout the simulation domain 

(Figure 3.9a). These clusters grow by ripening (monomer exchange between clusters) and 

some coalescence due to small cluster mobility at this temperature. Note that at this stage, 

most of the atoms represent actual self-interstitials; i.e. relatively few atoms beyond the 

self-interstitials themselves are appreciably displaced from their ideal lattice positions. At 

time t~3.7 ns (Figure 3.9b), the largest of the three-dimensional clusters exhibits a rapid 

morphological transformation into a planar configuration oriented along the [111] 

directions. At even later times, more of the growing cluster transform to planar 

configurations and both {111} and {100}-oriented platelets are observed; Figure 3.9c. 
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Figure 3.9: (a)-(c) System-wide evolution of interstitial cluster distribution at 1200K and 
zero pressure; (a) t=0.2ns, (b) t=3.7 ns, and (c) t=19.2 ns.  Large (red) spheres denote 
self-interstitials; small (green) spheres show lattice atoms that are displaced by more than 
0.2Å from their equilibrium positions.  All other atoms are deleted for clarity. (d)-(g) 
Detailed view of cluster structures; (d) {111} RLD, (e) {111} PDL, (f) {111} FDL, and 
(g) {100} planar defect.  All panels are oriented so that the horizontal direction is [110]. 
For figures (a)-(c) and (g), vertical direction is [001], for figures (d)-(e) vertical direction 
is [111]. 

 

 

Close-up views of the different platelet configurations generated during the 

simulation also are shown in Figure 3.9d-g. All three types of {111} defects discussed in 

Section 3.1 are observed: {111}-RLD (Figure 3.9d), a perfect dislocation loop (Figure 

3.9e), a Frank partial dislocation loop (Figure 3.9f). In each case, the structure of the 

planar defect is in excellent agreement with previous literature models obtained by 

interpretation of TEM images.[24, 27, 28, 50, 51, 70, 77]  The {100} planar defects 

(Figure 3.9g) are also in structural agreement with literature models [70, 78], although as 

noted earlier, {100} defects are not typically observed in implanted silicon samples. Note 

 

(a ) (b ) ( c )

(d ) (e ) (f) (g )
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that the strain field around the planar defects is three-dimensional and elongated in the 

direction normal to the plane of the defect. It is likely, therefore, that the capture volume 

is similarly shaped, and that the coarsening dynamics of these defects would be best 

described on the basis of spheres rather than two-dimensional plates. Evidence for this 

type of behavior has in fact been observed in previous experiments.[117] Although the 

progression is not obvious from the limited number of snapshots shown in Figure 3.9, we 

find direct evidence that the {111}-RLDs generally form first by direct collapse of three-

dimensional aggregates and then grow to form FDLs and PDLs. It is also worth 

mentioning here that no evidence of other common defect structures, particularly {113} 

defects are observed at any stage of the evolution under the prescribed conditions. 

Additional simulations performed at higher temperatures show that the collapse 

from three-dimensional to planar defect structures takes place at increasing sizes as the 

temperature is increased. Shown in Figure 3.10 and Figure 3.11 are snapshots from 

simulations performed at 1300K and 1400K, respectively. At 1300K, very large FDLs 

and PDLs are observed at a t=13.4 ns, while at 1400K no planar defects are apparent by 

the time the simulation is terminated at t=8.0 ns.  
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Figure 3.10: System-wide evolution of interstitial cluster distribution at 1300K and zero 
pressure. Total simulation time is 13.4 ns.  Large (red) spheres denote self-interstitials; 
small (green) spheres show lattice atoms that are displaced by more than 0.2Å from their 
equilibrium positions.  All other atoms are deleted for clarity.  Horizontal direction is 
[110] and vertical [001]. 
 

 

 

 

Figure 3.11 : System-wide evolution of interstitial cluster distribution at 1400K and zero 
pressure. Total simulation time is 8.0 ns.  Large (red) spheres denote self-interstitials, 
small (green) spheres show lattice atoms that are displaced by more than 0.2Å from their 
equilibrium positions.  All other atoms are deleted for clarity.  Horizontal direction is 
[110] and vertical [001]. 
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Using the data at several simulation temperatures (1000K-1400K), we can determine 

approximately the temperature dependence of the transition size at which amorphous 

three-dimensional structures collapse to any of the planar configurations; see Figure 3.12. 

 

 

 

Figure 3.12: Average number of interstitials in clusters transitioning from three-
dimensional to two-dimensional morphology as a function of temperature (zero pressure). 

 

 

As will be discussed in more detail in the following section, the morphological transition 

from three-dimensional to two-dimensional structures is driven by a balance between the 

high stress and configurational entropy of the three-dimensional aggregates and the 
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relatively low energy of the planar defects.  Note that the data in Figure 3.12 is 

approximate because additional interstitials are being incorporated into clusters during 

the period during which the 2D-3D is taking place.  Finally, the lack of any {113} defects 

is notable; these are not predicted to form by the EDIP potential at any temperature in the 

range investigated. Test simulations with smaller systems at lower temperatures confirm 

this finding all the way to about 900K.  Even lower temperature simulations were not 

feasible due to the slow mobility of interstitials. 
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3.3.1 Effect of Hydrostatic Pressure on the Aggregation Behavior of Self-

Interstitials  

Next, the effect of hydrostatic pressure on the self-interstitial aggregation behavior was 

investigated. Although substantial hydrostatic stress is not commonly present in silicon 

wafer processing, our purpose here is to study the generic influence of stress on defect 

thermodynamics and aggregation kinetics. Moreover, the transient evolution of the stress 

state in a wafer during and after ion-implantation is not fully understood; literature 

evidence exists for the presence of both tensile and compressive stresses that evolve in 

time, and these are strongly coupled to the dose, type and energy of the 

bombardment.[11, 12, 45, 124] Future studies will consider the effects of more complex 

stress distributions including biaxial and uniaxial fields, although some recent atomistic 

work has addressed the static effects of biaxial and uniaxial stress on individual 

defects.[17]  Further discussion of these results in the context of the present calculations 

is presented in Chapter 4. 

 We begin by considering the effect of hydrostatic compressive stress on self-

interstitial clustering at 1200K.  A pressure of +3 GPa was applied to the simulation box, 

which produces a compressive (uniformly distributed) strain of approximately -1% in a 

perfect EDIP silicon crystal. As shown in Figure 3.13, the transformation between three-

dimensional and planar defects is essentially inhibited over the time interval accessed by 

the PMD simulation (~10 ns).  Although the transformation size from three-dimensional 

to planar morphology is about nI ~ 42 at 1200K, several clusters larger than this size are 

observed to remain in the amorphous three-dimensional state.  Otherwise, the three-
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dimensional aggregates observed under compression are qualitatively similar to those 

observed at zero strain. 

 

 

 

Figure 3.13: System-wide evolution of interstitial cluster distribution at 1200K and 3GPa 
pressure (approx. 1% compressive strain).  Total simulation time is 9.6 ns.  Large (red) 
spheres denote self-interstitials; small (green) spheres show lattice atoms that are 
displaced by more than 0.2Å from their equilibrium positions.  All other atoms are 
deleted for clarity.  Horizontal direction is [100] and vertical is [001]. 
 
 

 
The effect of tensile stress on the clustering process is much more profound and 

complex, as shown in Figure 3.14.  In this simulation, a tensile hydrostatic pressure of -

3GPa was applied at 1200K, resulting in a tensile strain of about +1%.  Under these 

conditions, no {111}-oriented defects are observed to form throughout the entire 

simulation (~23 ns), although some small {100} defects are still formed.   
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Figure 3.14: (a)-(c) (a)-(c) System-wide evolution of interstitial cluster distribution at 
1200K and -3GPa pressure; (a) t=0.2ns, (b) t=4.3 ns, and (c) t=23.2 ns.  Large (red) 
spheres denote self-interstitials; small (green) spheres show lattice atoms that are 
displaced by more than 0.2Å from their equilibrium positions.  All other atoms are 
deleted for clarity. (d)-(g) Detailed view of individual cluster structures; (d) 4-intersitial 
Humble/Arai configuration, (e) partially reconstructed LID, a precursor to {113} defects, 
(f) {113} planar defect comprised of three <110>-oriented interstitial chains (shown), and 
(g) two Humble/Arai 4-interstitial clusters arranged to form a {100} planar defect.  All 
panels except (f) are oriented so that the horizontal direction is [110] and vertical is [001].  
In (f), vertical is [113], horizontal is [332 ]. 
 

 

Notable qualitative changes relative to the corresponding zero pressure simulation are 

that the average cluster size is significantly smaller at all times, and that at early and 

intermediate times (Figure 3.14a,b), a large number of 4-interstitial complexes are present 

throughout the simulation domain. Closer inspection of the 4-interstitial complexes 

(a) (b) (c)

(d) (e) (f) (g)
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(Figure 3.14d) shows that they are exclusively in the well known cage-like configuration 

that has been identified as the energetic ground state for the 4-intersitial cluster in several 

previous theoretical studies[15, 104]; we henceforth refer to this configuration as the 

Humble/Arai structure following refs.[9, 78], 

 Most interestingly, several instances of {113} defects and their rod-like 

precursors (the so-called LIDs) are now found in the simulation. In Figure 3.14e, a 

partially reconstructed LID structure is shown which is surrounded by five- and seven-

membered rings. This structure is a precursor to the (110)-oriented interstitial chains that 

lead to the formation of {113} defects [144]. An example of the latter is shown in Figure 

3.14f, which shows how three of the interstitial chains shown in Figure 3.14e can 

aggregate to form a {113} planar defect. Comparison of the {113} defect shown in 

Figure 3.14f to literature models (see Figure 3.14) indicates that it is of the type /I/, which 

has the highest density of self-interstitials[70, 97], relative to /IO/ and /IIO/. In the 

preceding notation, /I/ represents a sequence of adjacent self-interstitial chains, while /IO/ 

and /IIO/ represent sequences in which some chains are missing (a missing chain is 

denoted by “O”); see ref.[100] for more details regarding {113} defect classification. The 

predicted aggregate is in excellent structural agreement with the results of previous 

calculations and experimentally derived models. Although the formation energies of the 

various types of {113} defects are slightly different according to previous 

calculations,[96, 97, 99-101] it is difficult to extend those conclusions to the present 

results because the defects formed in the present simulations are finite in size and are 

likely to be affected by entropic contributions (mainly vibrational). Both of these factors 

could easily affect the favorability order of the various {113} defect types.  Finally, in 
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Figure 3.14g, two Humble/Arai 4-interstitial clusters are shown in a side-by-side 

configuration (surrounding an eight-membered ring) that represents the building block for 

{100} planar defects.  In other words, {100} planar defects can be found in both zero 

pressure and tensilely strained simulations, while {111} and {113} defects are observed 

only in the absence and presence of tension, respectively. 

 The effect of temperature on interstitial aggregation under tensile stress is shown 

in Figure 3.15, which is a snapshot of a system annealed at 1400K and 1% tensile strain 

for 7.4 ns. Now, large {100} platelets are the predominant clusters throughout the 

simulation domain. It is therefore clear that the formation of {100} defects is somehow 

more robust than that of {113} defects, at least with respect to elevated temperature. In 

fact, out of all the defect structures observed in the preceding simulations, {100} planar 

defects appear under the widest range of operating conditions; for example, they are the 

only type of defect to exist both at zero pressure and under applied tension.  The reasons 

for this are not obvious from the present simulations but will be addressed with the 

thermodynamic analysis presented in Chapter 4.  
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Figure 3.15: System-wide evolution of interstitial cluster distribution at 1400K and -3GPa 
pressure (approx. 1% tensile strain).  Total simulation time is 7.4 ns.  Large (red) spheres 
denote self-interstitials; small (green) spheres show lattice atoms that are displaced by 
more than 0.2Å from their equilibrium positions.  All other atoms are deleted for clarity.  
Horizontal direction is [100] and vertical is [001]. 
 

3.3.2 Kinetic Considerations for the 3D-2D Morphological Transformation 

The morphological transformation size data in Figure 3.12 does not lend insight into the 

kinetics of transformation between the three-dimensional and planar cluster 

morphologies. In the following simulation, we probe the transformation kinetics by 

creating large three-dimensional clusters under +3GPa compression and 1200K and then 

subjecting the system to a rapid decrease in the applied pressure in order to drive the 

transformation to planar defects. In the results shown in Figure 3.16, an MD simulation 

of self-interstitial aggregation was carried out at 1200K and +3GPa for 10.0 ns. No 

transformation into a planar structure was observed for any cluster as expected due to the 

compression applied to the system. At 10.0 ns, the simulation box was gradually 

expanded to remove the compressive stress over a time period of 0.3 ns and the 
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simulation further continued at zero pressure for 6.9 ns. As shown in Figure 3.16, clusters 

larger than nI=42, which is the critical size at 1200K (and zero applied pressure), 

immediately begin to undergo morphological evolution towards the planar {111} 

configuration (denoted by arrows in Figure 3.16b). The speed of the transformation 

indicates that any kinetic barrier for the collapse is low, and that the transition sizes 

reported in Figure 3.12 are equilibrium quantities. 

 

 

 

Figure 3.16: Evolution of self-interstitial clusters during strain relaxation at 1200K.(a) 
After 10 ns at +3 GPa, (b) 0.3 ns later as the pressure was reduced from +3 GPa to 0, and 
(c) after a further 6.9 ns at zero pressure. Large (red) spheres denote self-interstitials; 
small (green) spheres show lattice atoms that are displaced by more than 0.2Å from their 
equilibrium positions. All other atoms are deleted for clarity. Arrows denote onset of 3d-
2d transition following pressure drop to zero.  For all frames, horizontal direction is [100] 
and vertical is [001]. 

 

 

There are two key questions that arise from the preceding results of self-

interstitial aggregation as a function of temperature and pressure. The first question is one 

that is generally associated with the use of empirical potentials: are the EDIP predictions 

(a) (b) (c)
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consistent with those from other commonly employed empirical potentials for silicon 

such as Tersoff and/or Stillinger-Weber? In particular, is the strong effect of lattice strain 

qualitatively reproducible with another potential model, or is it a peculiarity of the EDIP 

potential? We address this question in the following section. The second question is: 

precisely what are the mechanistic roles of strain and temperature in the selection of self-

interstitial cluster morphology, and can our results help explain some of the outstanding 

questions related to morphological selection in implantation experiments? This question 

is addressed in detail in Chapter 4 by considering in detail the thermodynamics of single 

clusters under different temperatures and applied pressures. 

 

3.4 Direct MD Simulation of Self-Interstitial Aggregation – Other 

Potentials 

3.4.1 Tersoff Potential Simulations 

Several of the large-scale MD aggregation simulations discussed in the previous section 

were repeated using the Tersoff potential. Similar cell sizes, self-interstitial 

concentrations, and applied strain were used. One well known limitation of the Tersoff 

potential for silicon is the very high melting temperature prediction (approx. 2650 K for 

the parameters given in ref.[147]). The results from the EDIP and Tersoff calculations 

were thus compared using the ratio of the EDIP and Tersoff melting temperatures, i.e. 

/ ~ 0.58EDIP TERS
m mT T , so that the temperature interval 1900 2250K T K≤ ≤  in the Tersoff 

calculations was approximately mapped onto the interval 1100 1300K T K≤ ≤  for EDIP. 
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First, a sequence of zero pressure simulations was performed at 1900K, 2100K, and 

2250K. Snapshots of the atomic distributions at the end of each simulation (total 

simulated time in each case was approximately 6-7 ns) are shown in Figure 3.17.  

 At 2250K (Figure 3.17c), the interstitial clusters appear to retain their three-

dimensional morphology up to fairly large sizes and do not exhibit a collapse into any 

type of planar structure during the course of the simulation (the maximum cluster size 

observed in this simulation is about 90). This result is qualitatively consistent with the 

EDIP predictions (at 1300K). Unfortunately, shorter Tersoff simulations were 

necessitated by the fact that the Tersoff potential is computationally more expensive to 

evaluate than EDIP. However, the Tersoff results at 2100K (Figure 3.17b) confirm that 

{111} planar defects are in fact predicted by the Tersoff potential at higher temperatures 

and the 3D-2D transition size appears to be in line with that predicted by EDIP (see 

Figure 3.12). A more significant deviation in the predictions of the two potentials appears 

at 1900K (Figure 3.17a). Here, the Tersoff simulations predict an environment quite 

similar to that observed under tensile conditions (and moderate temperatures) with EDIP. 

A large number of 4-interstitial clusters in the Humble/Arai configuration are observed, 

and as expected from the preceding considerations, these are accompanied by the 

formation of one or two (very small) LID precursors and several small {100}-oriented 

platelets. Most importantly, no {111}-oriented planar defects are observed by the time 

the simulation is terminated. In other words, at zero pressure, the Tersoff potential 

appears to be capable of producing both types of defect morphologies, {111} and 

{113}/{100}, with variations in the temperature alone. By contrast, tensile conditions 

were required to stabilize the {113}-related defects within the EDIP simulations. 
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Nonetheless, it is worth noting that all defect configurations obtained with Tersoff are in 

very good agreement with those predicted in the EDIP simulations, irrespective of the 

simulation conditions that were employed to obtain them. 

 

 

 

Figure 3.17: System-wide evolution of interstitial cluster distribution at zero pressure and 
(a) 1900K, (b) 2100K, and (c) 2250K using the Tersoff potential.  Large (red) spheres 
denote self-interstitials; small (green) spheres show lattice atoms that are displaced by 
more than 0.2Å from their equilibrium positions.  All other atoms are deleted for clarity.  
Horizontal direction is [110] and vertical is [001]. 
 

In order to establish whether the 1900K Tersoff results indicate a qualitative 

discrepancy between the two potentials, which would cast some doubt on the validity of 

the EDIP predictions discussed above, an additional simulation was performed at 1900K 

and +3GPa of applied pressure; see Figure 3.18. As with the EDIP simulations, the 

interstitial aggregation process is again found to be highly sensitive to lattice strain. 

Under compression, {311}-defect precursor LIDs or {100} platelets are no longer 

generated and almost no Humble/Arai 4-interstitial clusters are observed. Although most 

clusters are still three-dimensional at 6.1 ns, transitions to small {111} platelets are 

(a) (b) (c)
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already evident. Qualitatively, at 1900K and 1% compressive strain the Tersoff potential 

predicts an environment that is similar to that of EDIP at 1100K and zero strain, while the 

zero strain Tersoff prediction is roughly consistent with that of EDIP under tension. One 

possibility that has not been addressed directly in our simulations here is that EDIP 

simulations at zero pressure may indeed also predict the formation of {113} defects but 

require even lower temperatures than those considered here. However, the reduced 

mobility of interstitials below about 1000K makes it difficult to access this regime 

without substantial computational expense.  

 

 

 

Figure 3.18: Tersoff simulation at 1900 K and +3GPa after 6.1 ns of simulation; no 2-
dimensional structures are present for the current cluster size distribution.  Large (red) 
spheres denote self-interstitials; small (green) spheres show lattice atoms that are 
displaced by more than 0.2Å from their equilibrium positions. All other atoms are deleted 
for clarity. Horizontal direction is [100] and vertical is [001]. 
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3.4.2 Stillinger-Weber Potential Simulations 

The Stillinger-Weber (SW) potential was used to carry out some exploratory simulations 

to further determine whether the general trends observed with EDIP and Tersoff are 

reproduced. In Figure 3.19, snapshots from smaller simulations (39,304 host particles and 

216 self-interstitials) are shown at two different temperatures, 1330 K and 1500 K, and 

pressures, zero and -3GPa. A primary reason for employing smaller cells was the 

additional computational cost associated with evaluating forces with the SW potential. 

The two temperatures correspond roughly to 1200 K and 1350K, respectively, in the 

EDIP simulations. In the zero pressure simulations, clear evidence for the formation of 

{111} planar defects is apparent, with the 1500 K simulation generating a large {111} 

RLD defect in the center of Figure 3.19 (b). The application of 1% tensile strain at 1500 

K (Figure 3.19 (c)) inhibits the formation of {111} defects, and although the system 

studied is small and the simulation time short, some reorganization into a {100} planar 

structure is apparent for the defect denoted by the arrow. Again, these trends are 

qualitatively in agreement with the predictions of the other potentials, demonstrating a 

remarkable consistency across the three potentials. 

 

 



 109

 

Figure 3.19: Stillinger-Weber simulations at: (a) 1330 K and zero pressure at 3.3 ns, (b) 
1500 K and zero pressure at 2.8 ns, and (c) 1500 K and -3GPa at 1.9 ns.  Horizontal 
direction is [110] and vertical is [001]. 

 

 

3.5 Conclusions 

The aggregation of silicon self-interstitials into various cluster morphologies has been 

studied using multiple commonly-employed empirical interatomic potentials for silicon. 

Overall, the different potentials provide a coherent picture for self-interstitial clustering, 

although some differences are apparent. The effects of both temperature and hydrostatic 

pressure on the self-interstitial aggregation process were considered in the present 

studies. All three potentials demonstrate similar overall temperature dependence. At high 

temperature and zero pressure, self-interstitial clusters assume disordered, three-

dimensional configurations until they reach large sizes. At lower temperatures, clusters 

undergo a morphological transition from the three-dimensional state to planar 

configurations. The critical size for this transition is temperature dependent and becomes 

smaller as the temperature is decreased, presumably because of reduced entropic 

favorability of the three-dimensional configurations at low temperatures. Moreover, the 

(a) (b) (c)
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transition appears to be kinetically favorable and no apparent barriers are observed in our 

simulations. 

Both the EDIP and SW potentials predict that {111}-oriented planar defects are 

dominant at zero pressure. The {111} defects are observed in one or more of three 

configurations: rod-like defects (RLDs), partial (Frank) dislocation loops (FDLs), and 

perfect dislocation loops (PDLs). The structures of the various planar defects predicted in 

the simulations are in excellent agreement with TEM reconstructions and the results of 

electronic structure calculations. Generally, the EDIP simulations show that RLDs form 

first, followed by FDLs and then PDLs; these trends are consistent with experimental 

observations. Also seen in the EDIP simulations at zero pressure are {100}-oriented 

plate-like defects, which are not commonly observed in real samples, but have been 

predicted theoretically to be quite favorable relative to other planar defect structures. 

A somewhat more complicated picture appears with the Tersoff potential, 

particularly at lower temperatures. Once again, high temperatures lead to the formation of 

large three-dimensional clusters, in which the transition to planar morphology is delayed. 

As the temperature is lowered, {111} planar defects are formed by 3D-2D collapse as 

seen in the EDIP simulations. However, at the lowest temperature considered (1900 K, or 

about 1100 K on the EDIP scale), the {111} morphology is no longer observed; instead 

{100} defects and {113} defect precursors are observed. The latter consist of {110}-

oriented interstitial chains that are also commonly observed experimentally in ion-

implanted silicon. Associated with this qualitatively different aggregation morphology is 

a preponderance of four-interstitial clusters, with the majority assuming the well-known 

ground-state “Humble-Arai” configuration [9, 78]. 
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The apparent difference between the Tersoff and EDIP/SW results can be bridged 

by considering the effect of hydrostatic pressure on the interstitial aggregation process. In 

general, it is found that compression, like temperature, stabilizes the three-dimensional 

morphology relative to any of the planar structures and shifts the transition size to larger 

clusters. This is observed for all potentials. However, the application of hydrostatic 

tension in the EDIP and SW simulations at moderate temperature (1100 K - 1200 K) 

leads to the disappearance of {111} planar defects and favors the formation of {100} and 

{113} defects, along with the stabilization of the four-interstitial Humble-Arai clusters. 

As the temperature is increased under tension, the {113} defects tend to be replaced by 

large {100} planar defects, which is also observed in the Tersoff case. In other words, it 

is generally observed that the results of the EDIP and Tersoff calculations are essentially 

equivalent up to a shift in the applied strain – a 1% strain environment in the EDIP (and 

SW) simulations shows similar behavior to the zero strain Tersoff simulation.   

The results in this work suggest an intriguing connection between the strain state 

of the lattice and the morphology of the self-interstitial defect population, in addition to 

the expected role of temperature. First, we find that under some conditions, a direct path 

to the formation of {111} defects is possible, without the previously supposed role of 

{113} clusters. Here, interstitials aggregate to form three-dimensional structures which 

spontaneously collapse to form the {111} configurations. Whether this happens or not in 

the simulations depends strongly on both the temperature and local strain. Under some 

tension, or at least in the absence of compression (for Tersoff), the formation of {113} 

defects does indeed appear to be the primary aggregation mode. Under these conditions, 

previous studies suggest that these defects later transform to {111} structures at larger 
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sizes, but the size range for this transformation is beyond the scope of the present 

simulations.  In the chapter 4, we study the thermodynamics of the various structures 

obtained here and provide a detailed mechanistic picture for self-interstitial aggregation 

and its dependence on temperature and hydrostatic stress. 
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4 Thermodynamics Analysis of Self-

Interstitial Clusters  

Equation Section (Next) 

In Chapter 3 it was shown that direct, large-scale molecular dynamics simulations based 

on empirical interatomic potentials were able to spontaneously generate many of the 

complex self-interstitial cluster morphologies found in ion-implanted silicon samples. 

The various predicted structures were found to be in excellent structural agreement with 

microscopy observations and electronic structure calculations.[24, 28, 35, 36, 70, 96, 

104] Overall, the three different potentials employed, namely the environment-dependent 

interatomic potential (EDIP)[14], Tersoff[147], and Stillinger-Weber (SW)[139], all 

predicted consistent overall trends, leading to a qualitatively coherent picture for some 

aspects of self-interstitial clustering in silicon. In particular, it was found that cluster 

morphology is sensitively dependent on both the temperature and stress within the lattice. 

At high temperature (>0.85 Tm) and in the absence of stress, self-interstitial clusters tend 

to assume three-dimensional disordered structures that grow to large sizes (i.e. hundreds 

of interstitials) before suddenly transforming to planar defects aligned along the {111} 

directions. The {111} defects observed include rod-like defects (RLDs), partial 

dislocation loops (FLDs) and perfect dislocation loops (PDLs); these structures have all 

been observed in experiment under various annealing conditions. The 3D-2D 

transformation appears to be facile and proceeds rapidly without being subject to 
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significant kinetic barriers. In the EDIP and SW simulations, lowering the temperature 

reduces the transition size but maintains the overall morphological evolution. 

Under uniform tension for the EDIP and SW models, and at zero stress/low temperature 

for Tersoff, the {111} structures are no longer favored; instead, planar structures oriented 

along the {113} and {100} directions are found, with the {100} defects becoming 

increasingly favorable at higher temperatures. Although the {113} morphology is 

commonly observed in silicon samples, the {100} is not, even though it has been found to 

be about as stable as the other morphologies. Moreover, {100} platelets are common in 

germanium[111] and carbon.[71, 78] In aggregate, our results appear be in good 

agreement with many trends found in implantation experiments, but also suggest that 

self-interstitial clustering may be somewhat complicated by the presence of multiple 

aggregation pathways that depend on both temperature and stress. 

 

4.1 Formation Thermodynamics for Self-Interstitial Clusters 

In this chapter, we attempt to shed light on the various observations discussed in Chapter 

3 by studying in detail the thermodynamics of individual clusters. Previously reported 

analyses of self-interstitial cluster thermodynamics generally have focused on cluster 

energetics at zero temperature.[9, 15-17, 19, 24, 70, 95-97, 100-102] These studies have 

employed a broad range of theory to describe interatomic interactions, ranging from 

empirical potentials (EP), [15, 24, 100] to tight-binding (TB),[9, 97, 101] to electronic 

density-functional theory (DFT).[16, 17, 70, 95, 96, 102] While there are some 

discrepancies between the various studies regarding the precise values and ordering of the 
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predicted formation energies, some general conclusions can be drawn. First, it is clear 

that on a per-interstitial basis, and in the limit of infinite size, the formation energy of all 

{111} planar defects is lower than either {100} or {113} defects.[24, 70] Moreover, for 

clusters larger than some transition size, PDLs are the most stable of the {111}-oriented 

planar defects because of a lack of a stacking-fault. Both of these results are consistent 

with the experimental observation that self-interstitial clusters eventually tend to coarsen 

into FDLs and then PDLs under most annealing conditions.[28, 38, 88, 105, 116-118] On 

the other hand, the absence of {100} planar defects in silicon wafer annealing 

experiments cannot be explained on the basis of simple energetics as these are found to 

possess formation energies that are very similar to the various configurations of {113} 

defects. For example, Goss[70] employed DFT within the local density approximation 

(LDA) to compute the formation energies of infinite {100} and {113} defects and found 

that the {100} defect was in fact slightly favored over the {113}. Chou et al.[24], using 

SW, find the reverse trend but again the difference is too small to explain the consistent 

lack of {100}-oriented planar structures in ion-implanted silicon wafers. 

Using a combination of experimental observations, kinetic model regression to 

experimental data, and analytical models for defect energetics, the work in refs.[25-28, 

37, 38] built a comprehensive picture for the formation energies of the various self-

interstitial cluster morphologies that is largely consistent with atomistic simulation 

results. Overall, a sequential process was described, which begins with the formation of 

small compact clusters of self-interstitials. These grow to form LIDs and {113} planar 

defects, the latter being the most energetically favorable up to cluster sizes of several 

hundred interstitials. At even larger sizes, the {113} defects transform into the more 
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favorable {111} planar defects; first FDLs are formed and then PDLs. No explicit 

consideration of {111} RLD defects was given in the energetic picture of ref.[27, 28]; all 

rod-like defects were assumed to be of the {113} type. 

One important feature that emerged from ref.[36] was that the model regression of 

compact cluster energies in the size interval 1 15In< <  strongly suggested that the 

formation energies per interstitial are non-monotonic in size. In particular, certain cluster 

sizes (nI=4, and 8) were found to possess substantially lower formation energies per 

interstitial than neighboring sizes. Recently, Lee and Hwang[104] performed a 

comprehensive series of density functional theory (DFT) calculations, which provide 

some indication of energetic favorability at n=4 and n=8, but the effect shown was quite 

weak relative to the strong trends observed in ref.[36], particularly at n=8. The building 

block responsible for the apparent energetic stability at n=4 and n=8 is a fully fourfold 

coordinated four interstitial cluster with D2d symmetry, which has been identified in 

previous studies on Si (ref.[9]) and diamond;[78] we henceforth refer to this building 

block as the “compact”Humble/Arai structure. Thus, the ground-state eight interstitial 

cluster identified in Ref. [104] is comprised of two adjacent Humble/Arai four-interstitial 

units. However, it is well known that there exist multiple structural motifs for building 

self-interstitial clusters. In addition to the compact four-interstitial building block, various 

types of elongated (110)-oriented chainlike structures are also favorable. These appear to 

be nearly degenerate with the compact structures in the size range of 5 12n< < .[96, 104] 

In fact, Kim et al.[96] found, also using DFT, that at n=8 an elongated chainlike structure  

is slightly more favorable than the compact structure, which is in contrast to the 

predictions in ref. [104]. In either case, it is difficult to infer any significant special 
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energetic stability at n=8, especially given the strong apparent stability inferred 

experimentally in ref.[36]. Other calculations with tight binding and empirical potentials 

have also not demonstrated evidence of special energetic stability at these sizes.[19, 96] 

In this section, we attempt to explain this discrepancy with molecular dynamics (MD) 

simulations based on the empirical environment-dependent interatomic potential 

(EDIP).[14] 

 

 

4.1.1 Formation Energy Calculations for Self-Interstitial Clusters – Ground 

State Configurations 

We first computed formation energies for the structures identified in refs. [96, 

104] by periodically quenching (with a conjugate gradient method) atomic coordinates 

generated by long NVT-ensemble MD simulations at 1100 K and selecting those that 

matched the structures shown in ref. [104]. The formation energy of an interstitial cluster 

was defined as ( / )f
d d p pE E N N E= − , where d represents the system with the cluster and 

p represents the perfect reference crystal. The MD simulations were performed using fifth 

order Gear predictor-corrector integration with a time step of 0.8 fs. Note that numerous 

structures corresponding to different local minima in the overall potential energy 

landscape (PEL) were found at each cluster size, but here we focus on the particular 

structures identified in refs.[96, 104]. The overall energetic trends predicted by the EDIP 

potential are in excellent agreement with the previous DFT results, although the absolute 
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values are somewhat higher; note that similar differences exist between the two sets of 

DFT results (Figure 4.1).  
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Figure 4.1: Formation energies (Ef) per interstitial as a function of cluster size (nI). 
Squares: EDIP results for the structures corresponding to those identified in refs. [96] and 
[104].; for 6In ≥ , formation energies for both compact (open squares) and elongated 
(filled squares) are shown (see text for definitions). Circles: DFT results from ref. [104]. 
Diamonds: DFT results from ref. [96]. 

 

 

For 6n ≥ , formation energies for both the compact and elongated chainlike 

structures were calculated. The elongated structures were found to be slightly more 

energetically favorable, in qualitative agreement with the results of Kim et al., [96] 
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whereas Lee and Hwang [104] found the compact structure to be at least as favorable 

until n=9. All three sets of calculations show the same overall trend: some special 

stability at n=4 but very little to none at n=8, which are in qualitative contrast to the 

experimentally regressed energies obtained in ref.[36]. The above analyses, however, all 

neglect the role of entropy, which we suggest here can be significant especially in light of 

the fact that the experimental data in ref.[36] were obtained at moderately high 

temperatures 900 1100K T K< < .  

 

 

4.1.2 Formation Free Energy Calculations for Self-Interstitial Clusters – 

Ground State Configurations 

We consider first the vibrational entropy associated with the individual structures 

discussed in Figure 4.1. Formation free energies, defined as ( ) ( ) ( )f f f
vibG n E n TS n= − , 

were computed at 1100 K within the quasiharmonic approximation (QHA)[76] and are 

shown on a per interstitial basis in Figure 4.2. Increased special stability is now observed 

at both n=4 and n=8 for the compact structures (open squares). Note that the free energy 

of the compact eight-interstitial cluster is significantly lower than that of the 

corresponding elongated structure (filled squares), while the free energies of the two 

configurations at the other sizes are comparable. The vibrational entropy is shown 

explicitly in the inset of Figure 4.2 and is substantially higher for the compact clusters 

(open circles), relative to the corresponding elongated structures (filled circles) for 6n ≥ . 
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Moreover, the peaks at n=4 and n =8 show that the perfect Humble/Arai structure is the 

source of this entropy.  
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Figure 4.2: EDIP formation free energies (Gf) as a function of interstitial cluster size at 
1100 K. Open squares: compact structures. Filled squares ( 6In ≥ ): elongated structures. 
Diamond symbol shows free energy including the estimated configurational entropy (see 
text). Inset: QHA-EDIP formation vibrational entropies as a function of cluster size at 
1100 K. Open circles: compact structures. Filled circles: elongated structures.  

 

 

It is difficult to precisely identify the features of the compact four-interstitial 

building block that lead to the increased vibrational entropy, but the unique nature of the 

near-ideal bond angles associated with the cluster is likely to play a role. Previous 
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electronic structure calculations [31] identified additional vibrational modes that are 

associated with the compact four-interstitial cluster. In summary, these variations in 

vibrational entropy imply that selection between compact and elongated morphology 

during self-interstitial cluster growth at finite temperature cannot be determined solely 

based on the formation energy. 

Vibrational entropy is not the only possible source of entropy for self-interstitial 

clusters. Configurational entropy may arise from the presence of numerous mechanically 

stable configurations of the defect cluster, each of which corresponds to a distinct local 

minimum in the multidimensional PEL. The notion that a crystal defect can exist in 

several (not necessarily degenerate) configurations is not surprising, but whether there are 

enough of these configurations to imply a significant contribution to the defect entropy 

has only recently been suggested.[92] The rotational symmetry of the D2d 

Humble/Arai[9, 78] four-interstitial building block is 4, leading to 16 degenerate 

(rotational) configurations per pair for the eight-interstitial cluster in the compact 

configuration. Additionally, there are many nearly degenerate ways in which the second 

Humble/Arai[9, 78] four-interstitial cluster can be placed relative to the first; some of the 

configurations obtained within our MD simulations are shown in Figure 4.3. This large 

number of translational degrees of freedom is unique to compact structures comprised of 

multiple Humble/Arai[9, 78] clusters. Clearly, the strong binding between the two 

Humble/Arai four-interstitial building blocks is preserved over several neighbor shells. It 

is difficult to count manually the total number of nearly degenerate possible 
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configurations confN , which increase the entropy of any cluster according to the 

relation ln( )conf B confS K N= .  

 

 

 

Figure 4.3: Nearly degenerate configurations for the compact eight-interstitial cluster 
based on combinations of two Humble/Arai four-interstitial building blocks. Left-hand 
panels are projections normal to [100], right-hand panels are projections normal to [110]: 
(a) Ef =16.23 eV, (b) Ef =15.95 eV, and (c) Ef =15.86 eV. 
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Nonetheless, based on the configurations in Figure 4.3, the eight-interstitial 

cluster appears to be strongly bound up to the fourth or fifth neighbor shells defined 

within the (100) projection. Moreover, additional degeneracy is obtained by varying the 

relative vertical positions of the two four-interstitial clusters (see right-hand panels in 

Figure 4.3). Every 400–500 such configurations (of approximately equal formation 

energy and vibrational entropy) would lead to a reduction of about 0.1 eV in the per 

interstitial formation free energy of the compact eight-interstitial cluster at 1100 K (see 

diamond symbol in Figure 4.2). Note that the special degeneracy for compact eight-

interstitial cluster is uniquely large because of high symmetry of the four-interstitial 

building block and the degeneracy of neighboring sizes is likely to be much lower. The 

combination of vibrational and configurational entropies favors the compact over the 

elongated configuration of the eight-interstitial cluster for temperatures above 600–700 

K, i.e., the compact structure is likely to be dominant at typical annealing temperatures. 

In summary, the two sources of entropy, vibrational and configurational, appear to 

substantially affect the thermodynamics of small self-interstitial clusters at finite 

temperature. Both entropic sources are particularly large for structures comprised of the 

Humble/Arai four interstitial building block, which is the building block for self-

interstitial clusters in the compact configuration, and provide a compelling explanation as 

why very strong stability at n=8 has been extracted from experiments at moderate 

annealing temperatures but not yet confirmed by literature calculations of formation 

energies to date. It should be stressed that the extracted parameters in ref.[36] are 

effective free energies rather than simple energies because they are a measure of the 

overall probability of observing each size. As such, all entropic sources should be 
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considered in calculations attempting to make a direct connection to these data. The 

temperature dependence introduced by entropic contributions suggests a possible 

mechanism for explaining the different morphologies that have been observed in self-

interstitial clusters at different annealing temperatures. We analyze this hypothesis further 

in the following sections using a more general thermodynamic framework, and also 

investigate how these features tie into the temperature and strain response of the 

aggregate morphology observed in Chapter 3. 

In the section 4.2, we briefly review the methodological details of a computational 

approach for analyzing the total (classical) free energy of defect clusters; we developed in 

Chapter 2 for estimating the thermodynamics propertied of vacancy clusters.  In Section 

4.3, the results of calculations based on the EDIP are presented and discussed in detail.  

We place special emphasis on the analysis of entropic contributions, which have been 

largely ignored in the literature to date, but which can be extremely important in setting 

defect behavior at high temperature.[92, 93] We also make mechanistic connections to 

the results obtained in Chapter 3.  Some of the calculations are repeated in Section 4.4 

using the enthalpy rather than the energy to define the distributions.  In Section 4.5, 

additional results obtained with other silicon empirical potentials are presented; these are 

primarily used to validate some of the principal conclusions drawn from the EDIP 

simulations.  Finally, conclusions and a mechanistic picture for self-interstitial 

aggregation are presented in Section 4.6. 
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4.2 Computational Framework for Single Cluster Thermodynamic 

Analysis 

We have recently demonstrated in Chapter 2 that the total (classical) free energy of defect 

clusters in crystals can be modified substantially by configurational and vibrational 

entropy, particularly at elevated temperature.[61, 92] Configurational entropy arises from 

the presence of numerous mechanically stable configurations that a given defect cluster 

can assume within the lattice.  Each of these configurations, α , (so called inherent 

structures) can be identified by a local energy minimum, αV , in the multidimensional 

potential energy landscape (PEL) that defines the overall system.[68, 137] For solids and 

certain fluid states, the system can be assumed to spend the majority of its time in one of 

the local minima, only occasionally making excursions over the saddles separating the 

minima.  Based on these ideas, as applied in previous work on supercooled liquids and 

glasses,[128, 129] a direct computational approach for measuring the total (classical) free 

energy of a defect cluster has been developed; a brief discussion of the method is 

provided here and further details are given in ref.[92] 

In general, the total (classical) Helmholtz free energy of a system is given by 

ln( )BG k T Z= − , where Z is the canonical partition function.  Assuming that the system of 

interest satisfies the assumptions described above, the partition function can be expressed 

as 

 

( ) ααα β dVVVg
Tk

GZ N
B

∫ −′
Λ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= exp)(1exp 3 ,   (4.1) 
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where 2/12 )2/( Tmkh Bπ=Λ  is the thermal de Broglie wavelength.  The quantity )( αVg ′  

represents the density-of-states (DOS) or degeneracy of minima with an energy αV  and 

includes both configurational and vibrational states, i.e. )()( α
α

α VgNVg vib≡′ , where )( αVg  

is the configurational DOS and α
vibN  is the number of vibrational states in basins with 

energy αV , i.e. αα
vibvib NkS ln= .  Knowledge of the function )( αVg ′  therefore directly 

leads to the free energy of the system; note that )( αVg ′  is independent of temperature and 

can be used to compute free energies for all temperatures with application of eq.(4.1). 

In order to enumerate the local minima in the PEL, lengthy MD simulations of the 

system of interest (i.e. a bulk crystal containing a defect cluster) are performed.  The local 

minima are found by periodically quenching the atomic coordinates generated by MD to 

the local minima; intervals of 100-200 time steps were used throughout the present work.  

Only configurations corresponding to connected clusters, as defined by the Stillinger 

criterion[137] are considered in the analysis.  The occurrences are histogrammed into 

energy bins of width 0.1eV.  The resulting histogram is in fact the probability distribution 

function for the states of the system, i.e.  

 

( )ααα β VVgVp −′= exp)()( ,    (4.2)  

 

from which the DOS can be obtained directly.   

As shown in Chapter 2 (ref.[92]), the above procedure can be applied to systems 

with and without defects and the formation energy for a particular defect configuration is 
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then given as p
pd

d VNNVE )/(−≡Δ αα , where pV  is the energy of the perfect crystal, and 

pN  and dN  are the numbers of atoms in the perfect and defective systems, respectively.  

Finally, the total formation free energy of the defect is given by 

 

           ( ) ( ) )(exp/)(exp)(ln ααβ EdEkESEgTkSTG BvibB
ref
vib ΔΔ−ΔΔ−Δ−=Δ ∫ ,     (4.3) 

 

where “ref” denotes some reference configuration for the defect and 

( / )ref ref
vib d d P pS S N N SΔ = − . A reference configuration is only required for computing 

absolute free energies.[92] 

MD simulations for PEL sampling were carried out in either the NVT or NPT 

ensembles. In the former case, the system volume was chosen (using short NPT 

simulations) to provide the desired value of the hydrostatic pressure. Unless otherwise 

explicitly stated, the NVT ensemble was used as the default ensemble. Depending on the 

cluster size of interest (1 20In≤ ≤ ), simulation cells containing up to 8000 silicon lattice 

atoms were used. The 5th-order Gear predictor-corrector method[8] with time steps of 

1.0-3.2 fs was used to integrate the particle trajectories; convergence of the simulation 

results with respect to the time step size was checked in each case using short test 

simulations. 
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4.3 Thermodynamic Analysis of Single Self-Interstitial Clusters – 

EDIP Results 

4.3.1 Probability Distribution Functions for Small Clusters at Zero Pressure 

The probability distribution functions (PDFs) of cluster formation energies were 

computed for several small interstitial clusters (3 8In≤ ≤ ) at 1100K and zero pressure 

using NVT simulations; these are shown in Figure 4.4 (a).  It is important to emphasize 

once again, that the probability of observing any given configuration includes all entropic 

and enthalpic contributions, and that the total (classical) free energy of the defect cluster 

is proportional to the integral of the PDF.  In general, the formation energy distributions 

are fairly broad, spanning several eV, and peak at some intermediate value demonstrating 

that at 1100K, the most likely configurations are not necessarily those with the lowest 

formation energy.  The general form of the PDFs is similar to that for vacancy clusters, 

which was discussed in detail in our previous work.[92]   

The origin of the broad peak at intermediate formation energies in each case is 

best understood by considering eqs. (4.2) and;(4.3) it is simply the point at which the 

exponential decay of the Boltzmann factor is balanced by the exponential growth of the 

degeneracy (i.e. the density-of-states, or DOS) as the formation energy increases.  The 

exponential growth of degeneracy with increasing formation energy (see Figure 4.4 (b)) 

arises from the fact that higher formation energy configurations are increasingly spatially 

extended and therefore can generate more local minima in the potential energy 

landscape.[68, 137] 
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Figure 4.4: (a) Formation energy PDFs (at 1100 K), and (b) DOS for small interstitial 
clusters in the size range 3 8In≤ ≤  computed with the EDIP potential.  For both panels, 
squares represent 3In = , circles 4In = , gradients 5In = , deltas 6In = , diamonds 7In = , and 
left triangles 8In = .  Insets in (a) show two configurations for the 4-interstitial cluster; 
upper – Humble/Arai configuration, lower – extended, higher energy configuration. 
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Several of the relaxed configurations for a given cluster were manually verified to 

correspond to well-defined local minima within the energy landscape. These 

configurations were perturbed by introducing small random atomic displacements, and 

subsequently re-relaxed to the same local minimum. Obviously, sufficiently large 

disturbances were able to move the system away from a given configuration. 

The PDF for the 4-interstitial cluster in Figure 4.4 (a), however, exhibits an 

unusual feature – a sharp spike in the probability at 8.75EΔ =  eV that dominates the 

entire distribution. In other words, under the conditions of 1100K and zero stress, the 

equilibrium 4-interstitial cluster spends over 80% of its time in configuration(s) with 

formation energy that lie in the interval 8.7 8.8E≤ Δ ≤  eV. In fact, the single configuration 

that resides in this energy interval is the Humble/Arai configuration discussed in Chapter 

3 and ref.[93]; see the upper inset in Figure 4.4(a). Other inherent structures for the 4-

interstitial cluster predicted by the EDIP potential are more disorganized; an example is 

shown in the lower inset in Figure 4.4(a). Note that the anomalous spike corresponding to 

the Humble/Arai configuration in the 4-interstitial probability distribution is not energetic 

in nature; neighboring configurations with almost the same formation energy are much 

less likely (by about a factor of 100) to be observed. Moreover, the EDIP potential 

actually identifies a few (low probability) configurations that have slightly lower 

formation energies than the Humble/Arai structure, a fact that is at odds with recent DFT 

results that predict this to be the energetic ground state structure[104]; this issue will be 

addressed in more detail later.   

One possible reason for the very high probability of observing the Humble/Arai 

configuration is that it possesses larger formation entropy (which may be vibrational 
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and/or configurational in origin) than any other configuration of the 4-interstitial cluster.  

In order to test this hypothesis, the vibrational formation entropy, defined as 

( ) ( ) /f
vib BS k E A T= Δ − Δ , was computed within the Quasi-Harmonic Approximation[76] for 

a large number of energy-minimized configurations for the 4- and 5-interstitial clusters; 

see Figure 4.5. Two vacancy clusters (nV=6 and nV=10) also were considered for 

comparison. As shown in Figure 4.5, all four clusters exhibit qualitatively similar 

behavior; overall the vibrational entropy of formation increases approximately linearly 

with formation energy, reflecting the tendency of more extended defects to produce a 

larger number of additional vibrational states into the crystal. The variability in the trend 

is somewhat larger for the self-interstitial clusters, which could arise because of their 

more complex morphologies. Closer inspection of the 4-interstitial case, however, does 

confirm the suggestion that vibrational entropy is responsible for the special stability of 

the Humble/Arai configuration. The Humble/Arai configuration, denoted by the single 

large circle possesses vibrational entropy of formation that is at least 5-6 kB higher than 

neighboring configurations, which readily accounts for the 100-fold increase in 

probability for this particular configuration, i.e. 2exp(5) ~ (10 )O . In the remaining cases, 

no single configuration exhibits this anomaly, and as a result the PDF varies relatively 

smoothly across the entire formation energy range. 

It is notable that the 8-interstitial cluster, which can assume configurations 

corresponding to two adjacent Humble/Arai building blocks, does not exhibit the sharp 

spike structure in its PDF (see Figure 4.4(a)), even though these configurations also are 
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expected to possess large vibrational entropy.  The reason for this apparent anomaly will 

be discussed in the following section. 
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Figure 4.5: Vibrational entropy of formation for (a) 6-vacancy, (b) 10-vacancy, (c) 4-
interstitial, and (d) 5-interstitial clusters as a function of formation energy.  Each symbol 
represents a QHA calculation for a single configuration of a given cluster.  Large circle 
(purple) in (c) represents the Humble/Arai configuration.  Dashed lines are guides only. 
 

 

 The entropic nature of the stabilization of the Humble/Arai configuration of the 4-

interstitial cluster would suggest that it is insensitive to the effect of temperature.  Indeed, 

the probability spike in the 4-interstitial PDF persists as the temperature is increased, as 



 133

shown in Figure 4.6. Although the overall PDF for the 4-interstitial cluster shifts to the 

right with increasing temperature, the Humble/Arai spike remains due to the increasing 

importance of its high vibrational entropy of formation. As a result, it is expected that the 

Humble/Arai configuration should play an important role in self-interstitial clustering 

kinetics, even at the elevated temperatures typically employed in damage annealing. This 

conclusion can be contrasted starkly with the more common case of energetic 

stabilization of “magic” cluster sizes, such as for vacancy clusters.[120] In the energetic 

stabilization case, clusters of particular sizes are favored relative to others at low 

temperature because certain configurations minimize the formation energy (e.g. by the 

minimization of dangling bonds). However, at elevated temperature, this effect is 

obscured by entropic contributions and the formation free energy per vacancy is found to 

decrease almost monotonically with cluster size.[92, 122] Stated another way, magic 

sizes of silicon vacancy clusters (and any other energetically stabilized cluster) are not 

important at the high temperatures relevant to crystal growth and wafer annealing, 

whereas in the case of self-interstitials, such “magicness” appears to be largely 

entropically driven and therefore can be relevant at any temperature.  
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Figure 4.6: 4-interstitial cluster PDFs as a function of temperature.  Squares – 1100K, 
circles – 1200K, diamonds – 1300K. 

 

 

4.3.2 The Effect of Hydrostatic Lattice Strain on the Thermodynamics of 

Small Interstitial Clusters 

While the entropic stabilization of the 4-interstitial cluster renders it relatively insensitive 

to temperature, it is surprisingly sensitive to lattice strain. Shown in Figure 4.7 (a) are the 

area-normalized PDFs at 1100K for the 4-interstitial cluster at zero pressure (zero strain), 

+3 GPa hydrostatic compression (-1% strain), and -3 GPa hydrostatic tension (1% strain). 

The peak related to the Humble/Arai configuration is seen to become even more 

pronounced under tension, and is now predicted to be the absolute lowest energy 

structure, i.e. the few (low-probability) local minima in the PEL to the left of the 

Humble/Arai peak observed at zero pressure disappear under applied tension. 
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Conversely, under compression, the Humble/Arai peak completely disappears and the 4-

interstitial PDF becomes smoothly varying as for the other cluster sizes shown in Figure 

4.4 (a).  

 

 

 

Figure 4.7: (a) PDF for the 4-interstitial cluster as a function of hydrostatic pressure 
(lattice strain): squares – zero stress; circles – -3GPa applied pressure (1% tension); 
diamonds – +3GPa applied pressure (1% compression). Inset: formation thermodynamics 
for the 4-interstitial Humble/Arai configuration as a function of strain (diamonds – free 
energy, circles – energy, squares – vibrational entropy). (b) 4-interstitial DOS as a 
function of hydrostatic pressure (lattice strain) anchored to the Humble/Arai 
configuration (see text): squares – zero strain; circles – 1% tension; diamonds – 1% 
compression. 

 

 

 At first glance, it would seem that these results indicate that the formation 

thermodynamics of the Humble/Arai structure for the 4-interstitial cluster depend 

strongly on hydrostatic pressure (lattice strain). The formation enthalpy, vibrational 

entropy and total free energy were computed for the Humble/Arai structure as a function 
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of lattice strain and are shown in the inset of Figure 4.7(a). Clearly, the formation 

thermodynamics of the Humble/Arai configuration are essentially independent of lattice 

strain. The slight apparent increase in the formation entropy under compression is mostly 

a result of scatter in the data, and in any case, would predict that the Humble/Arai 

structure is increasingly dominant under compression, i.e. opposite to the trend in Figure 

4.7(a).   

 The interesting effect of strain on the stability of the Humble/Arai configuration 

observed here instead arises from the density-of-states function for the 4-interstitial 

cluster, ( )g E′ Δ  shown in Figure 4.7 (b), where ( )EEpEg ΔΔ=Δ′ βexp)()( . The three curves 

shown represent the DOS at each of the three strain conditions and have been anchored to 

each other on the basis of the formation energy interval containing the Humble/Arai 

structure. Assuming that the formation energy bin containing the Humble/Arai 

configuration (centered at 8.75EΔ =  eV) is entirely comprised of that single state, the 

DOS functions for the three curves must be equal at that value of formation energy. 

Further assuming that the configurational degeneracy of the Humble/Arai configuration is 

O(1) based on the D2d symmetry of the structure, the total number of states in that 

energy interval must arise entirely from vibrational contributions, i.e. ( ) ~ vibg E N′ Δ , 

where 11exp( / ) ~ 1 10vib vib BN S k= ×  ( 25vib BS k: ) for the Humble/Arai configuration. These 

considerations allow us to anchor the three DOS curves to absolute values and make 

quantitative comparisons between them. Further details regarding the anchoring of DOS 

curves is provided in ref. [92] 
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 Comparison of the three DOS functions in Figure 4.7(b) shows clearly that the 

overall density of states increases with increasing hydrostatic pressure. The apparent 

decreased stability of the Humble/Arai structure under compression therefore arises 

because additional states (i.e. local minima in the PEL) are introduced by the 

compression, reducing the probability of observing that particular configuration.  

Conversely, tension appears to lower the overall density of states and increases the 

dominance of the Humble/Arai configuration relative to all others. Interestingly, all local 

minima with energies below that of the Humble/Arai structure become mechanically 

unstable under 1% tensile strain and the Humble/Arai structure now is predicted to the be 

ground state structure. Thus, we find that it is not the formation thermodynamics of the 

Humble/Arai configuration that depend strongly on strain, but rather the density of all 

other configurations that collectively compete with this special configuration.   

 The mechanism by which the overall DOS is affected by lattice strain is not 

immediately obvious. It is plausible to suppose that as atoms are brought into closer 

contact by compression, increasing the number of neighbors-per-particle, the PEL 

predicted by the EDIP interatomic potential becomes more complex (i.e. rougher) and the 

number of local minima in a given energy interval increases. Whether this is generally 

true for other interatomic potentials such as Tersoff will be addressed in Section 4.5. 

The effect of isotropic hydrostatic pressure (lattice strain) on other cluster sizes 

(nI=5, 8, 12) is shown in Figure 4.8 for comparison. For each cluster size the formation 

energy PDF is shown for zero pressure/strain (small filled squares) and at -3GPa 

hydrostatic tension (1% tensile strain- large open circles); all PDFs are normalized to unit 

area.  
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Figure 4.8: Effect of isotropic tensile strain on the probability distribution functions for 
the 5-, 8-, and 12-interstitial clusters (shown left to right, respectively).  Filled squares 
denote zero strain, open circles denote 1% tensile strain (-3GPa applied pressure). 

 

 

For the 8-interstitial and 12-interstitial clusters, a significant change is observed in 

which a spike similar to that observed for the 4-interstitial case appears under tension. By 

contrast, the 5-interstitial distribution is essentially unresponsive to strain. Once again, 

the effect of tension on the 8-interstitial and 12-interstitial PDFs arises from a reduction 

in the overall DOS, thereby increasing the significance of a few cluster configurations 

that possess increased stability relative to the rest within the distribution. The 8- and 12-

interstitial clusters are expected to possess similar behavior to that of the 4-interstitial 

cluster because they are able to assume configurations that are comprised of integer 

multiples of the Humble/Arai building block.  Because these special structures are absent 

in the 5-interstitial case, no effect is observed on the overall PDF. Thus, even though the 
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overall density of states may be reduced by tensile hydrostatic pressure (lattice strain), the 

DOS is reduced evenly across the energy spectrum and the areal normalization maps 

them onto each other. 

Examples of the special configurations for the 8-interstitial cluster that become 

dominant under lattice tension are shown in Figure 4.9, along with their assignments to 

various locations in the 8-interstitial PDF at -3GPa hydrostatic pressure (1% tensile 

strain).  

  

 

 

Figure 4.9: Formation energy PDF for the 8-interstitial cluster at 1100K and -3GPa 
applied pressure (1% tensile strain) highlighting the distribution at low values of 
formation energy.  The 8-interstitial configurations that correspond to the various 
numbered locations on the PDF are shown in the insets on the right-hand side of the 
figure. 
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The two peaks located at formation energies 15.86E eVΔ =  and 16.05E eVΔ = , 

labeled by (i) and (ii) in Figure 4.9, respectively, correspond to configurations comprised 

of two adjacent Humble/Arai 4-interstitial blocks (see insets). Another such configuration 

(iii) appears at formation energy 16.23E eVΔ = . Note that the configuration (ii) is 

essentially a very small {100} defect showing clearly the alternating 5 and 8-membered 

ring structure found in our PMD simulations in Chapter 3 and section 4.1. Each of these 

three configurations is stabilized by the high vibrational entropy associated with the 

Humble/Arai structure, which explains their high probability of being observed in the 

PDF for the 8-interstitial cluster. Collectively, they also suggest yet another source of 

entropy which is configurational in nature. As discussed in section 4.1, there are in fact a 

large number of possible (and nearly degenerate) ways to arrange two Humble/Arai 4-

interstitial building blocks to form a cluster of size 8.  Based on a very rough estimation, 

this configurational entropic source can additionally lower the free energy of the 8-

interstitial cluster by a few tenths of an electron volt per interstitial.[93] 

Configurations labeled (iv) ( 15.56E eVΔ = ) and (v) ( 16.26E eVΔ = ) in Figure 4.9 

represent a fundamentally different arrangement of the 8 interstitials within the cluster.  

Both of these configurations are comprised of a single row of interstitials aligned in the 

{110} direction and are in fact LIDs that have not yet fully reconstructed.[144] In other 

words, structures (iv) and (v) are building block for planar {113} defects. Configuration 

(v) is higher in energy due to rearrangement in the atomic position surrounding the 

interstitial row, but is otherwise essentially the same structure as (iv). Although the LID 
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configuration is approximately energetically degenerate to the Humble/Arai 

configurations, they appear at substantially lower probabilities; in fact, structure (iv), 

although lowest in formation energy, possesses very low probability.  The difference in 

probability of observing the {100} precursors (i.e. (i), (ii), or (iii)) versus the {113} 

precursors (i.e. (iv) or (v)) is entirely attributable to the special vibrational entropy of 

configurations based on the Humble/Arai motif. As shown in Figure 4.2, configuration (i) 

possesses up to 2 kB of additional vibrational entropy per interstitial relative to 

configuration (iv), which is amply sufficient to explain the almost 1000-fold increase in 

probability associated with the former structure relative to the latter. Similar vibrational 

entropy enhancement is attributable to the various different arrangements of two 

Humble/Arai building blocks. These arguments are expected also to apply to the case of 

12-interstitial (and larger) clusters, which simply include additional Humble/Arai 

building blocks.   

The interplay between energetic and entropic stabilization of the {100} and {113} 

precursors suggests an explanation for some of the observations in chapter 3. There, it 

was found that {100} and {113} were generally found together, but that {100} defects 

were more likely to form at higher temperatures and {113} were only found at lower 

simulation temperature. The above considerations indicate that in order to observe these 

special structures, the overall density-of-states must be low enough to allow them to be 

dominant; for the EDIP potential at least, this is accomplished by presenting a tensile 

environment within the lattice. The propensity for forming {100} defects at higher 

temperatures arises because of the additional vibrational entropy associated with the 

Humble/Arai motif. On the other hand, at lower temperatures, the lower formation energy 
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of the {113} precursor could dominate. The one thing our results do not appear to resolve 

is why the {100} planar defects are not more frequently observed in experiment – these 

structures are both energetically and entropically favorable. 

Finally, we note that as the cluster size increase, the overall density-of-states should 

increase, reducing the dominance of the {100} and {113} precursors relative to the 

disordered configurations. This is in fact why the 8-interstitial cluster requires tension to 

present structure in the DOS, while the 4-intersitial cluster does not. As shown previously 

in Figure 4.8, the spikes in the PDF corresponding to {113} and {100} precursors for the 

12-interstitial cluster are seen to be relatively small compared to the remainder of the 

distribution at -3GPa hydrostatic pressure (1% tensile strain). In other words, as the 

cluster size increases the possible dominance of single configurations becomes 

increasingly unlikely. However, as the cluster size increases, the morphology of the 

cluster is likely to already be well-established and further growth would be directed 

within the {100} or {113} motifs. 

 

4.4 Calculation of Formation Enthalpy PDFs 

In the preceding sections, NVT MD calculations were employed to compute the 

probability distribution functions for the cluster formation energies.  Although the system 

volume was chosen to correspond to a desired applied pressure, this condition is 

generally not achieved in an NVT simulation unless the formation volume[10] of all 

cluster configurations, defined as  

 



 143

( / )d p
d pV V N N Vα αΔ = − ,    (4.4) 

 

is equal.  In eq.(4.4)), the “d” and “p” superscripts denote the defective and perfect 

systems respectively, which are both held at the same pressure.  For the general case 

where the formation volumes are variable, configurations that have large formation 

volume magnitudes may be subject to tension or compression, altering their formation 

enthalpies; this effect would not be captured in the formation energy distributions 

calculated in the prior sections. Moreover, the energy minimization for each 

configuration also was performed at constant volume, which generally leads to the 

generation of additional tension in the final structures because the average lattice 

parameter is larger at high temperature than it is at zero temperature.[20, 30]   

In order to assess whether these assumptions materially affect the results 

presented in the previous sections, we repeated the calculations of the PDF for the 4-

interstitial cluster at 1100 K within the NPT ensemble. NPT simulations also provide 

direct access to formation enthalpy distributions. In these calculations, all energy 

minimizations also were performed at constant pressure (i.e. the simulation box was 

allowed to change size during energy minimization) in order to ensure that the final 

formation enthalpy was defined at the intended pressure. The LAMMPS code [3] with 

our implementation of the EDIP potential was used for these calculations. Shown in 

Figure 4.10 are the formation energy PDFs for the 4-interstitial cluster at zero pressure 

using both the NVT and NPT ensembles. The excellent agreement between the two 

simulations suggests that the effect of induced tension during energy minimization at 
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constant volume is negligible, and also that the formation volume change across the PDF 

is not large. The slight deviation of the two distributions at higher energies may be the 

result of bias introduced by the constant volume calculations, but the absolute value of 

the probabilities are small in this region. 
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Figure 4.10: Formation energy PDF for the 4-interstitial cluster at 1100K and zero 
applied stress/strain: squares – NPT MD with constant-pressure energy minimization; 
circles – NVT MD with constant-volume energy minimization. 

 

 

Next, formation energy PDFs were computed at three different pressures (-3GPa, 

0, and +3GPa) using the NPT ensemble; see Figure 4.11. The location of the peak related 

to the Humble/Arai configuration is clearly unaffected by pressure, although the overall 

distributions are modified by the introduction (or removal) of states as discussed earlier 

in Section 4.3.2.  Again, these results are in excellent agreement with those obtained 
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using the constant volume calculations in Section 4.3.2.  We note here that recent DFT 

calculations[16] appear, in contrast to our present findings, to demonstrate very 

significant dependence of the formation energy on hydrostatic strain for the Humble/Arai 

configuration of the 4-interstitial (at zero temperature). The apparent discrepancy can be 

resolved simply by noting that the formation properties computed in ref.[16] were 

defined so that the reference and defective simulation cells were held at the same strain, 

rather than stress.  In general, the introduction of a defect into the simulation cell alters 

the effective elastic coefficients within the cell (in a size-dependent manner).  Therefore, 

the application of equal strains in the reference and defective cells leads to a pressure 

differential that in turn modifies the calculated formation energy in a cell size-dependent 

manner. 
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Figure 4.11: Formation energy PDFs for the 4-interstitial cluster at 1100K as a function 
of applied pressure (NPT MD): squares – zero pressure, circles – -3GPa (approx 1% 
tensile strain), diamonds – +3GPa (approx. 1% compressive strain). 
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To further clarify this issue, the formation enthalpy distributions at three different 

pressures were computed using our NPT framework at 1100K.  Here, the formation 

enthalpies for a particular configuration,α  like the corresponding formation energies, 

were computed based on the relationship 

 

                                        )()/()()( PHNNPHPH p
pd

d −≡Δ αα .            (4.5) 
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Figure 4.12: Formation enthalpy PDFs (NPT MD) for the 4-interstitial cluster at 1100K 
as a function of applied pressure: squares – zero pressure, circles – -3GPa (approx 1% 
tensile strain), diamonds – +3GPa (approx. 1% compressive strain).  The arrows indicate 
the location of the enthalpy bin containing the Humble/Arai configuration. 

 

 

As shown in Figure 4.12, the formation enthalpy of the Humble/Arai 

configuration shifts by about 0.5 eV in either direction when 3GPa of pressure (approx. 
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1% strain) is applied.  Since the formation energy is constant, this shift is entirely 

attributable to the PV contribution arising from the non-zero formation volume of the 

defect.  Thus, for the Humble/Arai configuration, the formation volume is approximately 

20 A3.  A plot of the formation volume as a function of formation energy for numerous 

configurations of the 4-interstitial cluster is shown in Figure 4.13; these values were 

computed at 1100K and zero pressure.  

 

 

                                   

Figure 4.13: Formation volume as a function of formation energy for 4-interstitial 
configurations at zero pressure. 

 

 

Although the formation volumes tend to increase with formation energy, they are 

generally small across the range of formation energies accessed in the calculation. 

Interestingly, many configurations exhibit negative formation energy, i.e. they occupy 
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less space than the perfect crystal on a per-atom basis. This is not unexpected given the 

relative openness of the diamond lattice, as compared to close-packed lattices such as fcc. 

A consequence of our results is that the formation enthalpy of the various 4-interstitial 

configurations, including the Humble/Arai one, are only weakly dependent on stress. 

 

4.5 Tersoff Potential Results 

In chapter 3 it was shown that the overall self-interstitial cluster morphological evolutions 

predicted by EDIP, Tersoff, and to a lesser extent SW, were essentially consistent. The 

primary discrepancy that was noted between the EDIP and Tersoff results was that 

Tersoff appeared to favor the formation of {100} and some {113} defects at zero applied 

strain and low temperature, while EDIP requires applied tension before stabilizing any 

{113} defect precursors (i.e. LIDs). Here we compare the formation energy probability 

distributions for the 4- and 8-interstitial clusters in order to explain this difference. 

The Tersoff-generated formation energy PDFs for the 4- and 8-interstitial clusters 

at 1900K are shown in Figure 4.14. Both zero and +3GPa applied pressure (1% 

compressive strain) cases are considered. In the 4-interstitial case, the compressive strain 

does not appear to substantially reduce the probability of observing the Humble/Arai 

configuration ( 8E eVΔ = ), although small shifts in the probabilities of higher energy 

configurations are observed. This is in contrast to the EDIP case (Figure 4.7) where 1% 

compression led to the disappearance of the Humble/Arai peak in the PDF. On the other 

hand, the 8-interstitial cluster behavior is qualitatively similar to that of the EDIP case, 

whereby the peaks associated with Humble/Arai configurations and (110)-oriented 
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interstitial chains (LID precursors) are substantially reduced by the application of 

compression. 
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Figure 4.14: Tersoff generated (NVT MD) formation energy PDFs for the 4-interstitial 
(left) and 8-interstitial (right) clusters at 1900K as a function of applied strain: open 
circles – zero pressure, small filled squares –  +3GPa applied pressure (approx. 1% 
compressive strain). 

 

 

Overall, the effect of hydrostatic pressure (strain) on the density-of-states 

observed in the EDIP case is reproduced in the Tersoff calculations indicating that this is 

a general phenomenon.  However, the dominance of the Humble/Arai configuration for 

the 4-interstitial cluster in the Tersoff model appears to be more pronounced than that in 

EDIP, which explains the increased propensity to observe {100} and {113} related 

structures in the 1900K Tersoff simulations reported in chapter 3. These observations 
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suggest a qualitative difference in the potential energy landscape roughness predicted by 

the two models, although a more quantitative analysis of this statement would require 

more detailed calculations that are beyond the scope of the present study. In other words, 

the EDIP potential landscape associated with self-interstitial clusters may be rougher that 

that of the Tersoff one, thereby making it more difficult for a single configuration to 

dominate even if it possesses uniquely favorable properties such as high vibrational 

entropy. In both cases, compression appears to increase the roughness of the landscape, 

eventually drowning out peaks associated with special structures. 

 

4.6 A Mechanistic Summary and Conclusions 

The results presented here and in chapter 3 suggest an intriguing mechanistic picture for 

morphology selection in self-interstitial clustering in which lattice strain, and its effect on 

entropy rather than energy, potentially plays an important role. We identify two broad 

situations that are largely consistent across both the EDIP and Tersoff potentials: 

 

4.6.1 Low temperature and/or tensile lattice strain  

Under these conditions, special configurations of certain cluster sizes such as nI=4,8,12 

are favored over other possible rearrangements by a combination of low formation energy 

and large vibrational entropy. For nI=8 and 12, two main types of distinguishable 

configurations are possible, which are directly related to the formation of {113} and 

{100} planar defects. The former is an elongated chainlike structure aligned along the 
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(110) direction and has been discussed at length in previous experimental and theoretical 

studies.[27, 28, 36, 96, 97, 100, 101, 143, 144] The latter is much less well studied within 

the silicon literature because of the scarcity of {100} planar defect observations in ion-

implanted silicon, although these are commonly observed in diamond and 

germanium.[78, 111] This configuration is particularly favored by its high vibrational 

entropy because it is comprised of an integer number of Humble/Arai building blocks. 

The growth of both types of structures leads to the eventual formation of {113} and 

{100} planar defects, both of which were directly observed in the large-scale simulations 

presented in chapter 3. It is not possible to extend our simulations to the point at which 

{113} defects evolve by unfaulting into lower energy {111} defects, but previous work 

shows that this transition is expected at around nI=500.[22, 28, 38]  

 

4.6.2 Higher temperatures with no compression 

Here, the overall density of states associated with interstitial clusters at most sizes (except 

nI=4) is sufficiently large so as to “drown out” the special configurations that lead to the 

{100} and {113} planar defects. As a result, most small clusters assume three-

dimensional amorphous configurations up to a certain (temperature and pressure 

dependent) critical size at which point they collapse into {111}-oriented planar defects of 

various types including RLDs, FDLs, and PDLs, all of which have been observed 

experimentally. In this growth mode, the transition to {111} defects is much earlier than 

that associated with the {113}-{111} transition suggested in ref. [22, 28, 38], and {113} 

defects are never formed. However, note that even at zero strain, {100} defects are still 
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observed because of the large vibrational entropy associated with the Humble/Arai 

configuration.  

 Our results therefore suggest that lattice strain can dramatically alter the pathway 

by which self-interstitials aggregate to form the various types of cluster morphologies 

observed in the literature. A key aspect of this mechanism is that lattice strain acts by 

modifying the overall density of states distribution of formation energies associated with 

a cluster, rather than by strongly modifying the formation thermodynamics of a particular 

cluster structure. Thus, although the particular cluster configurations responsible for 

{113} and {100} motif formation are entropically stabilized relative to other 

configurations, this stabilization can become overwhelmed by the large number of other 

possible (usually higher energy) configurations. Unfortunately, our results do not explain 

the apparent dearth of {100}-oriented defects in damaged, interstitial-rich silicon; in 

agreement with previous calculations, these are found to be both energetically and now, 

also entropically, favorable. A temperature-size evolution map for the morphology of 

self-interstitial clusters is shown in Figure 4.15 that summarizes much of the results 

obtained in the present work. 
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Figure 4.15: Evolution map for self-interstitial aggregation as a function of cluster size 
and temperature.  In most cases, the effect of hydrostatic pressure is qualitatively similar 
to increasing the temperature. 
 

 

 The speculation on the possible role of strain/stress will require further study. 

Although hydrostatic stress is generally not engineered into the systems of interest, the 

implantation process itself can generate complex and transiently varying stress fields that 

depend in a complex fashion on the implant dose, type and energy.[87-89] Future work in 

this area might be required to determine whether the stresses arising from implantation 

and damage annealing can influence the clustering process. On the other hand, biaxial 

and uniaxial stress fields are more common and further work will be required to 

characterize the effect of these fields on self-interstitial clustering. Recent DFT 

calculations show that in some cases the differences may be important and may lead to 

additional heterogeneities in the cluster distribution.[16] 
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 Finally, we note once again that the preceding conclusions depend substantially 

on the validity of the empirical EDIP and Tersoff potentials. It should be emphasized that 

all defect structures that were generated spontaneously in the simulations in chapter 3 are 

largely consistent with structures that have been verified by high resolution TEM as well 

as DFT calculations. This includes the small compact clusters (e.g. nI=4, 8), the 

elongated, rod-like clusters (nI=8, 12), and the various planar structures formed in the 

large-scale aggregation simulations. Comparing the formation energies of small, compact 

clusters to DFT estimates in ref.[104] further demonstrate that these empirical potentials 

are able to at least qualitatively capture much of the general picture associated with self-

interstitial clustering, if not the precise thermodynamic properties.  
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5 Carbon Mediated Self-Interstitial Clustering in 

Silicon 

Equation Section (Next) 

 

The growth and dissolution of silicon self-interstitial clusters in the presence of carbon 

have attracted much attention recently because of the role of self-interstitials in the 

transient-enhanced diffusion (TED) of boron during post-implantation annealing and 

activation.[33, 127] The occurrence of TED has been unambiguously attributed to the 

presence of supersaturated self-interstitials, which are formed during ion-implantation of 

dopants such as boron. The supersaturated self-interstitials are stored in clusters, which 

can possess a variety of morphologies, depending on the processing conditions. The most 

commonly observed structures are typically {311} defects[136] and dislocation-loop 

networks,[44] but three-dimensional clusters are also possible, especially if clustering 

occurs at high temperatures, such as during crystal growth from the melt.[53] 

Once formed, these clusters can become thermodynamically unstable during wafer 

thermal annealing, which is required to anneal the lattice damage produced by boron ion-

implantation and also to activate the boron atoms (i.e. allow them to occupy substitutional 

sites within the lattice). Cluster dissolution then leads to the observed temporary boron 

diffusion enhancement via the kick-out reaction i sB B I↔ + , where iB  and sB  represent 

interstitial and substitutional boron atoms, respectively, and I is a silicon self-
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interstitial.[34, 115] This TED effect leads to broadening of implanted boron profiles and 

poses a challenge for future CMOS device scaling goals. 

The presence of high carbon atom concentrations (> 1019 cm3) in the region of the 

self-interstitial supersaturation has been shown to greatly inhibit TED in several 

experimental studies, either using highly C-doped layers grown by molecular beam 

epitaxy (MBE)[110] or carbon co-implantation with the boron.[21] While the use of 

carbon to inhibit TED continues to be plagued by technological difficulties [110], 

promising new approaches currently are being evaluated that make a fundamental 

understanding of carbon-mediated TED of immediate importance [113]. A recent 

example is to implant carbon atoms and create an embedded layer that does not interact 

with the surface device-active region, alleviating the previously reported detrimental 

effects of carbon on the electrical properties of microelectronic devices.  

As pointed out in section 1.3.1, numerous simulations of TED-related phenomena 

have been reported in the literature. These studies have employed approaches ranging 

from macroscopic rate equation simulations [110], to kinetic Monte Carlo calculations 

(KMC),[85] to detailed atomistic studies of the energetics and structure of various 

carbon-silicon complexes [108]. A lot of assumptions have gone into these models, 

however still no conclusive quantitative picture has emerged on the effect of carbon on 

self-interstitial clustering in silicon.  

In this work, an alternative approach based on parallel molecular dynamics (PMD) 

is presented that allows for a detailed analysis of the effect of carbon on self-interstitial 

aggregation without the need to consider every cluster composition or configuration 

individually. In essence, the averaging over composition and configuration space is 
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automatically performed within the MD simulation assuming that a sufficient number of 

atoms are considered for a long enough time. Concurrently, full atomic resolution is 

provided throughout the entire simulation, and no assumptions, other than the validity of 

the interatomic potential, are needed. The remainder of the Chapter is organized as 

follows. The details of the MD simulations and basic results are described first in Section 

5.1. Also discussed in this section are the major assumptions of the approach, with 

emphasis on the choice of the multicomponent Tersoff interatomic potential.[148-

150].The results of the atomistic aggregation simulations are presented and discussed in 

Section 5.2. In Section 5.3, the parallel MD results and additional atomistic simulations 

of cluster mobility are interpreted in the context of a mean-field model which suggests 

that it might be possible to treat the carbon-in-silicon system as a quasi-single component 

system where the carbon atoms are considered implicitly through their effects on the 

properties of the self-interstitial clusters. Sensitivity analysis of our predictions with 

respect to the choice of empirical potential and the identification method of interstitial 

clusters is presented in section 5.4. In Section 5.5, the continuum rate equation 

methodology developed by Prasad and Sinno[121] is extended to study the aggregation of 

self-interstitial in presence of carbon. Finally, conclusions are presented in Section 5.5. 

 

5.1 Large Scale Parallel MD Simulation of Carbon and Silicon Self-

Interstitial Aggregation 

Two large-scale parallel MD (PMD) simulations were carried out using systems of 

216,000 silicon atoms, each containing an additional 1,000 self-interstitials initially 
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placed in uniformly spaced (and therefore initially isolated) tetrahedral sites. In the 

second simulation cell, 2,000 randomly selected silicon lattice atoms were replaced with 

substitutional carbon atoms, corresponding to a 0.9% carbon concentration or 20106.4 ×  

cm-3. These large concentrations of self-interstitials and carbon atoms were chosen to 

allow the systems to exhibit sufficient aggregation in the short MD time scale 

(nanoseconds). While the high concentrations do affect the overall rate of aggregation, it 

should be noted that there is no reason to expect that the fundamental micro-processes 

predicted by the interatomic potential should be altered in a qualitative way. As a result, 

we expect that to within the accuracy of the empirical potential, our results are directly 

applicable to the more dilute conditions typically realized in experiments. This issue is 

addressed further in a later section. 

 

5.1.1 Simulation conditions 

In both NVT simulations, the temperature and pressure were fixed at 2650 K and zero, 

respectively. The Tersoff set of empirical potentials for silicon are well-known to greatly 

overestimate the melting temperature, and 2650 K was found to be about 600-800 K 

below the mechanical melting point of pure Tersoff silicon.[147] A direct comparison of 

this temperature to experimental annealing temperatures (typically around 900 ºC) is not 

possible, but a consistent estimate can be made based on the self-interstitial diffusion 

coefficient. A very good estimate for the self-interstitial diffusivity recently has been 

provided by model regression to several experimental observations including the 

diffusion of zinc into Si wafers at various temperatures and the formation of the so-called 
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interstitial-vacancy boundary during Czochralski crystal growth.[59] Comparison of this 

value to the Tersoff prediction indicates that 2650 K is approximately equivalent to an 

actual temperature of 1000 ºC, which is in the neighborhood of typical annealing 

temperatures in TED experiments. Note that this is not a unique assignment of the 

simulation temperature, but is a relevant one for a study of self-interstitial diffusion and 

aggregation phenomena. 

A time step of 0.38 fs was used in all MD simulations and time integration was 

performed using the Gear 5thorder predictor-corrector method. The small time step was 

required to ensure energy conservation in the presence of relatively light carbon atoms 

and very high temperatures. 

 

5.1.2 Validity of the Tersoff multi-component empirical potential 

The multi-component Tersoff potential[148] was used for all simulations, along with the 

potential parameters specified by Tang and Yip[146]. This potential is one of very few 

available for multicomponent Group IV systems, and, given the relatively small number 

of studies of multicomponent systems (relative to pure silicon, for example), it is 

somewhat difficult to estimate the uncertainties in the following simulations.  

However, several previous studies employing this empirical potential have shown 

that it is surprisingly accurate at predicting structure and properties of silicon-carbon 

complexes. In an excellent recent study of carbon-silicon defect complex formation, 

Mattoni et al,[108] used a combination of empirical potential MD and DFT (in the Local 

Density Approximation - LDA) calculations to investigate energetics and reaction 
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pathways. Steps of the reaction sequence S I S S I I IC I C C C C I C C+ → + → + →  were 

analyzed in detail by computing system energies as each pair of species were brought 

together. In each case, the energy profile for the reaction path obtained with LDA-DFT 

and the empirical Tersoff potential were qualitatively similar, and in some cases almost 

quantitatively identical. Local energy minima in the first and third reactions shown above 

predicted by the LDA-DFT calculations also were captured by the Tersoff potential. 

These results indicate that this empirical potential should be suitable for use in the current 

study. Additional evidence supporting the qualitative accuracy of the multicomponent 

Tersoff potential was suggested by the calculations of Tersoff,[149] in which the 

formation energies and diffusivity of carbon complexes in silicon were found to be in 

excellent agreement with experimental solubility data.  

 

5.2 Characterization of Interstitial Clusters 
 

5.2.1 Identification of interstitial clusters 

Aggregation during the two PMD simulations was monitored periodically using 

snapshots of the entire configuration of each system. For each snapshot, the 

configurations were first quenched using conjugate gradient energy minimization in order 

to make identification of the defect clusters easier. The quenched coordinates were then 

used to identify individual clusters and generate a size distribution at each time point. A 

substantial difficulty in the identification of interstitial clusters arises because of the 

extent of lattice distortion in the vicinity of interstitial atoms. In fact, up to several atoms 
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can be substantially displaced from their equilibrium positions in the presence of a single 

silicon self-interstitial [19] and, for the compact structures that were generated in our 

simulations, the displacements do not follow a regular pattern. Furthermore, it was readily 

apparent that these displacements were equal in magnitude to the distance of a self-

interstitial from the nearest lattice site – i.e. in a cluster of self-interstitials; it is not 

possible to uniquely identify which atoms are interstitials and which ones are simply 

displaced atoms. 

This issue was addressed by the identification of Defective Atoms (DAs), defined 

as Si or C atoms that are at least 27%θ = of a bond length (the latter is about 2.35 Å) 

from the nearest lattice position. For a given value of the parameterθ , DAs were 

identified by comparison of the quenched simulation coordinates to a perfect lattice at the 

same density. Subsequently, the DAs were assigned to individual clusters using a 

recursive algorithm that determines the connectivity between each DA in the system. The 

assignment of atoms to individual clusters requires that an interaction distance, β  be 

defined; i.e. sets of atoms that are connected by β  belong to the same cluster. For given 

values of θ  andβ , a cluster size distribution based on defective atoms can be defined – 

note that this is not equivalent to the interstitial cluster size distribution. The latter was 

computed by isolating each defective atom cluster and comparing its atomic coordinates 

to a reference lattice. The number of excess atoms in the cluster gave the number of 

interstitials contained within the cluster. This number was then used to recompute the 

interstitial cluster size distribution. Finally, note that this method of identification is 
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similar to the one presented in Chapter 4 for detecting the interstitial, except that no 

distinction was made between carbon and silicon interstitials in the carbon-doped case.  

Previous atomistic investigations [108] have suggested that the interaction 

distance between a silicon self-interstitials and a substitutional carbon extends to the 3rd-

nearest neighbor (3NN) distance. In the present case, however, this interaction distance is 

not directly applicable because of the ambiguity in defining interstitial atoms. Note, 

however, that once the DA interaction distance,β  is specified and a cluster identified, the 

interstitial interaction distance is no longer relevant because all the interstitials in that 

cluster are automatically assumed to be connected.  We have performed a detailed 

sensitivity analysis of the effect of β  and θ  on the resulting size distribution that will be 

presented in Section 0. Here, we simply note that the resulting distribution is only weakly 

dependent on the choice of these parameters, at least within physically reasonable 

bounds. 

 

5.2.2 Structure of interstitial clusters 

The quenched configurations at 3.46 ns for the pure silicon and 0.9 % carbon-in-silicon 

simulations are shown in Figure 5.1(a) and Figure 5.1(b), respectively. Shown are 

Defective Atoms (DAs), as defined by 0.63
o
Aθ =  and 4.82

o
Aβ = , corresponding to the 

3NN distance. The pure silicon case shows substantially greater cluster size evolution 

with fewer, but much larger, clusters as compared to the 0.9% C-doped case. This result 

is consistent with the notion that carbon reduces the effective diffusivity of self-
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interstitials and therefore inhibits the cluster ripening (or dissolution) process. This effect 

also has been observed in the float-zone growth of silicon crystals, where carbon doping 

was observed to increase the density, but decrease the size, of interstitial-type 

aggregates[52].  For a better perspective, three dimensional snapshots of the interstitial 

clusters at 3.46 ns for both with and without carbon are also shown in Figure 5.2 and 

Figure 5.3. 
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Figure 5.1: Distribution of Defective Atoms (DAs) at 3.46t = ns. (a) pure Si (4337 DAs), 
and (b) 0.9% C-doped Si (3164 DAs). Note that the number of DAs is much greater than 
the number of interstitials (1000) because of lattice strain effects. 

(a) 

(b) 
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Figure 5.2: Defective atom distribution in pure Silicon at 3.46 ns. 
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Figure 5.3: Defective Atom Distribution in 0.9% C-doped Silicon at 3.46 ns. 
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The structure of the DA clusters in Figure 5.1 appears to be different in the two 

simulations, with the clusters in the pure Si case appearing to be more spherical. The 

radius of gyration for each cluster about the 3 principal axes[69] was computed. The 

ratios of the maximum to the minimum radius of gyration (i.e. the aspect ratio) are 

plotted in Figure 5.4 for both cases.  

 

 

 

Figure 5.4: Aspect Ratio, maximum to minimum Radius of Gyration about the two 
principal axes for pure Si (triangles), 0.9% carbon-doped (circles). 

 

 

The data for each cluster was averaged over all occurrences of a given cluster size 

and then binned into cluster size intervals of width five. It is clearly seen that the pure Si 
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clusters are indeed more spherical (i.e. lower aspect ratio) than in the carbon-doped case, 

particularly for clusters containing more that 15 interstitials. While the larger clusters in 

the pure-Si case become increasingly spherical with size, the carbon doping leads to 

increasingly elongated structures. A possible explanation, which will be verified later in 

this Chapter, is that the carbon atoms locally pin regions of a cluster and prevent it from 

rearranging to minimize its surface area, at least in the timescales accessible to MD 

simulation.  

The number of DAs in each simulation is not a conserved quantity and can evolve 

in time. The number of DAs per cluster DAn  is shown below in Figure 5.5 as a function of 

interstitial cluster size, In  for both carbon concentrations. In both cases, DAn  is well 

represented by a power-law evolution across the entire interstitial cluster size range 

(1 120In< < ) but interestingly, has an exponent larger than one: approximately 1.17 for 

the pure Si case, and 1.07 for the carbon-doped case. The slightly lower exponent for 

larger clusters in the carbon-doped case is likely due to the compressive strain relief that 

carbon atoms provide because of their smaller size. The non-linear increase of DAn  with 

cluster size implies that as the size distribution coarsens, the total number of DAs 

increases and therefore should provide a driving force against coarsening at later times, 

which could eventually lead to self-limiting of the coarsening process. It is possible that 

this process might provide a driving force for the hypothesized morphological 

transformation of compact clusters to dislocation loop networks – the latter are the only 

observed structures in interstitial-rich silicon grown from the melt [52, 53], but longer 

simulations will be needed to further investigate this effect. 
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Figure 5.5: Number of defective atoms ( DAn ) as a function of number of interstitials in a 
cluster ( In ): pure Si (circles with thick solid line), 0.9% carbon-doped (squares with dash 
line). The thin solid line shows linear evolution for reference. 

 

 

5.3 Mean Field Scaling Analysis  

5.3.1 Size Distribution Evolution  

The time evolution of the average interstitial cluster size for the pure silicon and carbon-

doped MD simulations are shown in Figure 5.6.  The average cluster size is defined here 

as 2 1/M M , where q
q n

n
M n X=∑ and nX  is the number of clusters of size n.  
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Figure 5.6: Evolution of the average interstitial cluster size, 2 1/M M , for pure Si (solid 
squares) and 0.9% C-doped Si (open squares). Exponents of the power-law fits are 0.81 
for pure Si (solid line) and 0.37 for 0.9% C-doped Si (dashed line). 

 

 

Both evolutions show an initial lag followed by the establishment of power-law 

scaling, ~ zt  with the pure silicon case clearly exhibiting much faster evolution than the 

C-doped system (exponents, z, are 0.81 and 0.37, respectively). As in previous studies of 

vacancy aggregation in silicon,[121, 122] these evolutions indicate that it should be 

possible to interpret the interstitial aggregation profiles in the context of a mean-field 

model, which is outlined below. The individual distributions of small clusters ( 4n ≤ ) for 

both cases are plotted in Figure 5.7. 
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.  

 

 

Figure 5.7: Evolution profiles for interstitial clusters of size 1, 2 and 4. Pure Si - filled 
symbols, 0.9% C-doped Si - open symbols. Tetramer profile is based on the right-hand 
side axis for clarity. 

 

 

Interestingly, the single self-interstitial profiles are essentially identical 

throughout the simulation, indicating that the presence of carbon does not substantially 

affect the transport of single self-interstitials. However, for dimers and tetramers (and for 

larger clusters not shown in the figure), substantial divergence between the pure Si and 

C-doped simulations can be observed after 200 ps of simulation time. The extent of the 

divergence appears to increase with cluster size – in fact, for the duration of the 

simulation, the tetramer concentration in the carbon-doped case is essentially constant 
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and only begins to drop at the end of the simulation after reaching a maximum at 100 ps. 

In contrast the tetramer profile in the pure Si case rapidly decreases, indicating growth to 

larger sizes. Note that both dimers and tetramers form at the same rate in both 

simulations, and it is their growth to larger sizes which is most influenced by the presence 

of carbon. 

 

5.3.2 A. Mean-field scaling approximation for aggregation 

The power-law scaling of the average cluster sizes in Figure 5.6 suggest that a mean-field 

scaling analysis might be appropriate for compactly describing the carbon effect at the 

continuum scale. As discussed earlier, the co-existence of carbon and silicon atoms 

generally implies that a two-dimensional cluster representation is necessary to describe 

the evolution profiles. However, here we show that an effective medium formulation is 

appropriate, in which the carbon atoms simply modify the properties of self-interstitial 

clusters. The successful application of mean-field scaling theory to (single-component) 

defect aggregation has already been demonstrated by Prasad and Sinno in previous 

work.[121, 122]  

A transformation proposed by Family et al.,[49] and later by Sorensen et al,[135] 

leads to the collapse of the Smoluchowski equation for a one-dimensional (single 

component) cluster system, 
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into a single ordinary differential equation for the scaled average size, n*:  

 

 
*

* *( 2)
*

dn n n
dt

λ α+= −  (5.2) 

 

In eq. (5.1), K (i, j) is the coagulation rate between two clusters of size i and j, and F 

(i, j) is the rate of dissociation of a cluster of size i+j into two clusters of size i and j. 

Implicit in the derivation of eq. (5.2) is that the coagulation and fragmentation kernels, K 

(i, j) and F (i, j), are homogeneous, i.e. ),(),( jiKaajaiK λ=  and ),(),( jiFaajaiF α= .  

In eq. (5.2), n*=n(t)/n0 and t*=t/t0, where n0 and t0 are the equilibrium average cluster 

size, and the characteristic time to reach this equilibrium, respectively. For very small 

times, i.e. when n*<<1, and assuming that fragmentation is not important at this stage of 

the evolution, the solution of eq. (5.2) is given by  

 

 * * *(1 )(1 ) in t n λλ −⎡ ⎤= − +⎣ ⎦  (5.3) 

 

where 0
* /)0( ntnni ==  is the scaled initial value of the mean cluster size, and 

)1/(1 λ−=z . Equation (5.3) implies that the average size should evolve as ztn ~* , once 

the first term becomes sufficiently large.[122] Now, assuming that the entire aggregation 

process is diffusion-limited, the coagulation kernel, K (i, j), is proportional to 
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 2( , ) ~ ( )( )i j i jK i j D D r r+ +  (5.4) 

 

where rx and Dx (x=i, j) are the capture radius and diffusivity, respectively, of a cluster of 

size x. Requiring that this kernel be homogenous is equivalent to requiring that both the 

capture radius and diffusivities also be homogenous in the cluster size.  

 

5.3.3 Capture radius model for interstitial clusters and scaling predictions 

The capture radius of a cluster is usually closely related to its size assuming that there are 

no long-range effects transmitted through the lattice. Here, we assume that the capture 

zone of an interstitial cluster scales with size as the cube root of the number of DAs 

contained within the cluster. The data in Figure 5.5 gives 39.0~)( IIcap nnr  and 

36.0~)( IIcap nnr  for the pure silicon and carbon-doped cases, respectively, where In  is the 

number of interstitials in a cluster. Note that the actual capture radius of the cluster is not 

required and only the scaling behavior is needed for the present mean-field analysis. 

Further assuming that i
p

i DD γγ = , and using eq. (5.4), the homogeneity condition for 

each case can be written as, 

 

 0.78( , ) ( , ), ( 0%)pK i j K i j Cγ γ γ += =  (5.5) 

 

 0.72( , ) ( , ), ( 0.9%)pK i j K i j Cγ γ γ += =  (5.6) 
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The exponents for 12 / MM  from Figure 5.4 can now be used to determine p, which 

represents the decay rate of the effective cluster diffusion coefficient as a function of the 

number of interstitials in the cluster as predicted by the mean-field scaling 

approximation: 

 

 1.01( 0%) ~
In ID C n−=  (5.7) 

 

 2.42( 0.9%) ~
I

eff
n ID C n−=  (5.8) 

 

The mean-field model therefore indicates that power-law evolution of the average 

cluster size, 12 / MM , with exponents 0.81 and 0.37 (Figure 5.6), requires that the cluster 

diffusivity must decay with cluster size as stated in eqs. (5.7) and (5.8), respectively. In 

other words, the observed carbon effect can be explained purely on the basis of cluster 

diffusion inhibition. Note that the mean-field scaling analysis does not require that single 

interstitial diffusion be altered, a result that is consistent with the profiles shown in  

Figure 5.7. 

 

5.3.4 Atomistic Studies of Cluster Diffusion 

In order to test the hypothesis that carbon acts via cluster pinning as well as the overall 

validity of the scaling analysis presented in the previous section, a sequence of detailed 

cluster diffusion measurements was performed using lengthy (7-20 million time steps) 
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MD simulations. One to nine self-interstitials were placed in a host lattice containing up 

to 1,728 lattice atoms, depending on the size of the cluster and the desired carbon 

concentration. For each case, zero to seven silicon lattice atoms were replaced by carbon 

atoms. Between 4 and 8 simulations were performed for every situation in order to 

increase the statistical accuracy of the results.  The mean-square displacement (MSD) of 

each cluster center-of-mass was computed by periodically quenching the simulation cell 

and locating DAs as described in Section 5.2.1. 

Interstitial cluster diffusivity in the presence of carbon must be defined carefully. 

Implicit within the mean-field modeling presented in Section 5.3 was that the carbon 

atoms simply modified the diffusion and geometric properties of a cluster containing a 

given number of (self or carbon) interstitial atoms. In other words, the carbon atoms were 

considered as part of an effective medium that changes as the carbon concentration is 

varied, and the number of carbon atoms contained in a given cluster is not an explicit 

variable. Therefore, in the diffusion runs, we do not make a distinction between various 

cluster configurations and compositions, but rather, only monitor the overall diffusivity of 

the cluster averaged over all possible configurations. In all cases, time intervals in which 

the cluster was observed to fragment into two or more sub-clusters were discarded from 

the overall MSD calculation. 

In order to demonstrate that the effect of carbon atoms on interstitial cluster diffusion 

can be described on a concentration basis, even when only a few carbon atoms are 

present, several diffusion runs were performed for each interstitial cluster size in which 

the total system size was varied but the carbon concentration was fixed. For example, the 

diffusivity of a cluster of three interstitials in a 0.4% carbon-doped system was measured 
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in host systems containing 512,1000, and 1728 silicon atoms with 2,4, and 7 carbon 

atoms, respectively, each corresponding to approximately 0.4% carbon concentration. A 

summary of the diffusion measurement simulation conditions used in this work is given 

in Table 5.1. The choice of interstitial cluster sizes considered at each carbon 

concentration was based purely on computational limitations – cluster diffusivity 

decreases with increasing carbon concentration and cluster size. Therefore, at the highest 

carbon concentration (~0.9%), the largest interstitial cluster size considered was four.  

 

 

Table 5.1: System size and interstitial cluster size used for cluster diffusivity 
measurements as a function of carbon concentration (%C). 

% C System Size Cluster Size 
   
0 512,1000,1728 1,2,3,4,5,6,9 
0.2 512,1000,1728 1,2,3,6 
0.4 512,1000,1728 1,2,3,6 
0.8,0.9 512,1000 1,2,3,4 

 

 

Diffusion coefficients for clusters containing up to nine self-interstitials in varying 

background carbon concentrations are shown in Figure 5.8, along with power-law fits. 

Several immediate observations can be made.  
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Figure 5.8: Self-interstitial diffusivities as a function of size with varying carbon 
concentrations. (a) 0% C (squares), (b) 0.2 % C (Triangles), (c) 0.4 % C (Circles), and (d) 
0.9 % C (Diamonds). 

 

 

First, at all carbon concentrations, the decay of cluster diffusivity with size is well 

represented by a single power law. Furthermore, the power law exponent is seen to 

become more negative as the carbon concentration is increased, as predicted by the mean-

field scaling analysis in the previous section. Interestingly, we find once again that the 

effect of carbon on the diffusivity of a single self-interstitial is quite small compared to 

the large reduction observed in the case of the larger clusters. This finding is consistent 

with the monomer evolution profile in Figure 5.7 and further suggests that carbon-

inhibition of interstitial aggregation (and dissolution) arises from the pinning of 
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interstitial clusters, rather than single self-interstitials. It should be emphasized that 

carbon does reduce single interstitial diffusivity to some degree, but to an extent that is 

much less than predicted by continuum models that assume that this is the dominant TED 

reduction mechanism.[85]  Figure 5.9 shows the predicted diffusion coefficient for the 3-

interstitial cluster in 0.4% carbon-doped silicon using three different simulation system 

sizes. The estimated diffusion coefficient is constant to within the uncertainty in the 

measurements, confirming that the carbon effect on cluster diffusion can be interpreted 

using the continuum concept of concentration, even in these very small discrete systems. 

 

 

 
Figure 5.9: Effect of system size on estimation of 3-interstitial cluster diffusivity for a 
0.4% carbon-doped silicon. 
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The exponents of the power-law fits for the diffusion coefficients as a function of cluster 

size are shown in Table 5.2 as a function of background carbon concentrations for both 

the atomistic simulation data and the mean-field fits. The diffusivity decay exponents for 

0.9% carbon doping and the pure Si case, -2.36 and –1.03, respectively, are in excellent 

quantitative agreement with the mean-field scaling predictions (-2.42, and –1.02, 

respectively). 

 

 

Table 5.2: Power law exponent, p, for cluster diffusivity ( peff
n nCD ~)(% ) as a function 

of carbon concentration (%C), n represents interstitial cluster size. 

%C  p 
(Direct MD) 

p 
(Mean-Field) 

0.0 -1.03 -1.01 
0.2 -1.75 - 
0.4 -1.96 - 
0.9 -2.36 -2.42 

 

 

This agreement indicates that the mean-field analysis is appropriate for this case, at 

least for the range of cluster sizes encountered in the PMD simulations. Note that even 

though only small clusters containing up to nine interstitials were considered in the 

diffusion runs, the fact that the PMD simulations predict a single power-law exponent 

until 3.46 ns of simulation time is evidence that the diffusion of larger clusters will 

continue to exhibit the behavior shown in Figure 5.8. After 3.46 ns of evolution, clusters 



 181

containing up to 120 interstitials (4337 DAs) were observed in the pure Si simulation and 

35 interstitials (3164 DAs) in the 0.9% carbon doped simulation. 

 

5.4 Sensitivity Analysis 

5.4.1 Sensitivity to Empirical Potential Model 

The analyses presented in the previous sections depend on the validity of several 

assumptions. The aim of this section is to address some of these and determine the 

sensitivity of our conclusions to various uncertainties. The most fundamental of these is 

the choice of the Tersoff multicomponent potential. As mentioned previously, few 

empirical potentials exist for the carbon-silicon system. We believe that the evidence 

cited in Section 5.1.2 is sufficient to give us reasonable confidence in the applicability of 

the multicomponent potential to the present problem, assuming that the overall interstitial 

aggregation picture is at least qualitatively captured by the potential. In order to test the 

latter assumption, another empirical potential for silicon, the Environment-Dependent 

Interatomic Potential (EDIP)[14, 90] was used to simulate interstitial aggregation in pure 

silicon. The temperature of the EDIP simulation was chosen to be 1600 K, which is the 

temperature at which the single self-interstitial diffusivity matched the Tersoff value at 

2650 K.  

The predicted evolutions of the average cluster size ),( 12 MM  the total cluster 

number ),( 0M  and the number of tetramers ),( 4X  is shown in Figure 5.10, along with the 

Tersoff predictions.   
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Figure 5.10: Evolution of the average cluster size (squares), total cluster number 
(diamonds), and tetramers (triangles) using the Tersoff (solid symbols), and EDIP (open 
symbols) potentials. 

 

 

In all cases, the evolutions are qualitatively similar and only deviate (quantitatively) at 

later times. The EDIP potential appears to predict slightly more rapid evolution, with the 

largest difference appearing in 0M . This difference is due to a more rapid consumption of 

single interstitials in the EDIP case. The differences can be attributed to differences in the 

relative energies of each cluster size as well as the cluster diffusivities, most likely 

indicating that EDIP cluster diffuse slightly faster than Tersoff ones. 
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5.4.2 Sensitivity to Defective Atom Identification 

The threshold displacement for identifying a defective atom in all previous results was set 

to
o
A63.0=θ  along with an interaction distance of

o
Ann 82.4)3( =β  for identifying DA 

clusters. Here we demonstrate that while the number of DAs per cluster, DAn , is quite 

sensitive to changes in θ , the resulting interstitial cluster size distribution is only weakly 

affected. The number of DAs per cluster for different displacement thresholds is shown in  

Figure 5.11, and demonstrates the sensitivity of the presumed cluster size (on a DA basis) 

to this parameter. Note however, that the power-law scaling of DAn  is unchanged, which 

implies that the mean-field analysis in Section IV would, in any case, be unaffected by 

this variability.  
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Figure 5.11: Number of defective atoms ( DAn ) as a function of interstitial cluster size for 

different values of the threshold parameter,θ : (a)
o
A21.0=θ  (squares), (b) 

o
A42.0=θ  

(circles), (c) 
o
A63.0=θ  (triangles). 

 

 

Another important point is that for all θ  values considered in Figure 5.11, all 

1,000 of the excess atoms in the system were located at every time snapshot. Obviously, 

for very large values ofθ , some of the interstitial atoms would be missed, and this sets a 

(weak) upper bound onθ . Values of θ  lower than
o
A21.0  led to most of the atoms in the 

simulation cell being tagged as defective. Physically, this percolation observation is not 

consistent with the mean-field interpretation and therefore 
o
A21.0=θ  can be taken as a 

strict lower bound. 
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The question of how the choice of θ  affects the predicted interstitial cluster size 

distribution was addressed next. The sensitivity of the average cluster size and total 

cluster number with respect to θ  is shown in Figure 5.12. The predicted cluster size 

distribution is seen to depend only weakly on the choice ofθ , and even then, only for 

small times. In fact, the exponent of the power-law evolution of 2 1/M M  varies from the 

base value by only 2-3% when 0.23
o
Aθ =  and the mean-field scaling analysis therefore is 

seen to be unaffected by the inherent arbitrariness in the choice ofθ .  

 

 

 

Figure 5.12: Sensitivity of the computed size distribution to the threshold parameter, θ . 
o
A63.0=θ  (squares), (b) 

o
A42.0=θ  (triangles), (c) 

o
A21.0=θ  (circles). 
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Similarly, for a fixed value of θ , DA distribution but not the interstitial cluster 

distribution (see Figure 5.13) was sensitive to interaction distance, β , in the range 

2NN< β <5NN. 

 

 

 

 

Figure 5.13: Sensitivity of the computed size distribution to the interaction distance,  β . 
2NNβ =  (squares), (b) 3NNβ = (triangles), (c) 4NNβ =  (circles). 
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5.5 Continuum Rate Equation Modeling 

The detailed atomistic analysis presented in previous sections gives a mechanistically 

correct picture of the self-interstitial aggregation process. Unfortunately following the 

evolution of self-interstitial clusters using the detailed atomistic calculations is limited to 

few nanoseconds, as it becomes computationally expensive to carry out the large scale 

parallel MD simulations beyond a few nanoseconds.   In order to extend the scope of 

atomistic simulations to realistic processing environments such as post implant annealing, 

a coupled rate equation based continuum model is being used to describe the interstitial 

cluster aggregation in silicon. Such a model has been developed by Prasad and Sinno 

[121] for vacancy aggregation process and is shown to reproduce an atomistic 

representation for vacancy cluster aggregation during crystal growth. Here we extend the 

continuum model for vacancy aggregation to silicon self-interstitial aggregation process, 

and come up with a mechanistically consistent picture of input parameters (free energy 

and cluster capture radii as a function of size), that accurately describe the self-interstitial 

aggregation process. The detailed model is described below. 

An interstitial cluster of size i reacts with a cluster of size j  to evolve onto a bigger 

cluster of size ( )i j+ , 

 

 ( , )
( , )

K i j
i j i jF i jI I I ++ ←⎯⎯→  (5.9) 

 

Following Prasad and Sinno [121], evolution of self-interstitials via above reaction can be 

represented by sequence of coupled rate equations, 
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max1

1

, 1
N ii

j j i ii
i j i i j d

j j i

dX J J J J i N
dt

−−

−
= ≥

⎡ ⎤= − − − ≤ ≤⎣ ⎦∑ ∑  (5.10) 

 

 max
1

, 1
dN

j ji
i j i d

j

dX J J N i N
dt −

=

⎡ ⎤= − ≤ ≤ −⎣ ⎦∑  (5.11) 

 

 max
1

,
dN

ji
i j

j

dX J i N
dt −

=

⎡ ⎤= =⎣ ⎦∑  (5.12) 

 

 0,j
iJ i j= <  (5.13) 

 

where, dN  represents the number of diffusing clusters and j
iJ  is defined as the net 

forward flux at size i  due to reaction enabled by a diffuser of size j , and is given by, 

 

 ( ), ( , )j
i i j i jJ K i j X X F i j X += −  (5.14) 

 

where, iX  represents the concentration of interstitial clusters of size i , and ( , )K i j  and 

( , )F i j  represents the forward and fragmentation rate constants, and are given by, 

 

 ( ) ( )24( , ) ( , ) exp i j i j
i j cap

G
K i j D D r i j

V KT
π
δ

+ → +⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 (5.15) 
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where, V is the system volume, which is known, and δ is the single self-interstitial hop 

distance, taken here as one bond distance, i.e. 0.235nmδ = . iD  is the diffusivity of 

interstitial cluster of size i , as determined above in section 5.3.4. ( , )capr i j  represents the 

capture radii for two clusters of size i and j , within an interaction range of each other. 

( )i j i jG + → +  is defined as the free energy barrier associated with reaction (5.9), and is given 

by, 

 

 2
( )

1

ln( )i j i j i j i jG G G G kT+ → + +

Ω
= Δ −Δ −Δ − ⋅

Ω
 (5.16) 

 

where, iGΔ  is the free energy of formation of interstitial clusters of size i , and for a 

system consisting of N possible positions for single self-interstitial atoms, 

 

 
1 1

2

1
1 ( 1)

( 1). . .
( 1)

. 1 .( 1).( 1)

i i

i i

Ni X X X
i

Ni X N X X
i

+

+

⎛ ⎞
+ −⎜ ⎟+Ω ⎝ ⎠=

Ω ⎛ ⎞− + − + +⎜ ⎟
⎝ ⎠

 (5.17) 

 

Thus to completely solve the system of equations (5.10)-(5.13), all we need to 

specify is the set of input parameters (formation free energy, iGΔ  of interstitial cluster of 

size i , and the capture radii).  
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Figure 5.14: Continuum rate equation fit (dotted curves) to the MD size-distribution 
(solid data points) for interstitial clusters with 0% carbon content 

 

 

These parameters are obtained by continuously regressing the size-distribution 

from the continuum model to the one obtained from large scale parallel MD simulations 

using a combination of simulated annealing and genetic algorithm. The best fit size-

distribution from the continuum model is shown in Figure 5.14, along with data from the 

large scale parallel MD simulations.   
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Figure 5.15: Formation free energy for interstitial clusters as a function of size, (open 
squares) from detailed MD calculations, (solid squares) from the best fit continuum rate 
equation model. 

 

 

Figure 5.15 shows the corresponding formation free energy iGΔ   from the best fit 

size distribution. Also shown in the Figure 5.15, is the iGΔ  value obtained directly from 

detailed atomistic simulations, and is consistently higher than the best fit estimate. This 

can be attributed to the effect of internal configurational entropy, which is neglected in 

detailed atomistic simulations but is inherently included in the fitted value. Finally an 

estimate of capture radii ( , )capr i j  is plotted in Figure 5.16 and is shown to lie within the 

average spherical cluster radii and maximum cluster radii.  This is consistent with the 
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picture for vacancy cluster that also shows enhanced capture radii to account for the non-

spherical shape of the vacancy clusters [121].  

 

 

 
Figure 5.16: Cluster Radii based on the number of defective atom count as determined by 
fitting the continuum rate equation model to the MD (squares), is compared to average 
(circles) and max cluster radii (triangles) as obtained from the direct MD calculations. 
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correlate the and CRE and MD model for interstitial clustering in presence of carbon, 

didn’t yield a good fit.   

 

5.6 Conclusions 

The results in this work provide new insight into the technologically and scientifically 

interesting TED inhibition effect of carbon doping. No assumptions are made other than 

the validity of the multicomponent Tersoff potential which has been tested extensively 

for this system.[108] Carbon is shown to inhibit cluster diffusion rather than single self-

interstitial transport and the overall effect on aggregation can be described well by a 

quasi-one component mean-field representation. The results should be useful for 

constructing robust, but simple, rate equation models for carbon mediated self-interstitial 

aggregation/dissolution, and therefore increasing the robustness of TED models. 
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6 Conclusions 

 

The objective of this thesis is to develop the computational methodology that 

quantitatively describes the evolution of defect clusters in crystalline solids at atomic 

level, and provide a mechanistic understanding of underlying physics behind the defect 

aggregation process. Although in this thesis, we have applied the methodology to 

understand the vacancy and self-interstitial aggregation phenomenon in Silicon, but the 

methodology is fairly general and can be applied to study aggregation phenomenon at 

atomic level in other crystalline solids.  

In the first part of the thesis, a novel approach is proposed for probing the 

thermodynamics of defect and defect clusters in solids that inherently take care of the 

internal configuration entropy of point defect clusters. Contrary to the traditional practice 

of assuming ground state structure to be the lowest energy structure for all temperatures, 

the methodology inherently captures configurational entropy for all the possible 

structures dynamically at a given temperature. This has been successfully applied to 

estimate the thermo physical properties of vacancy clusters in crystalline silicon. In 

particular it is shown that configurational entropy at high temperature not only 

dramatically influences the thermodynamics of clusters, but also the aggregation kinetics 

through a modification of the effective capture radius. At high temperatures the effective 

surface energy for vacancy clusters is approximately constant over the size interval 

2<n<35, implying that the free energy of formation scales as n2/3 for all cluster sizes 
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considered.  In addition, since the 35-vacancy cluster is fully representative of the 

continuum limit because it is the smallest structure that can assume a perfect (111) 

faceted octahedral shape[125], as a result, the surface free energy scales as n2/3 for all 

sizes at elevated temperatures. At lower temperatures, however, the smallest clusters 

clearly possess higher effective surface free energy and deviate from the n2/3 scaling law.  

The observed deviation for small clusters arises because at low temperatures the effect of 

configurational entropy is negligible and the atomistic (discrete) nature of the clusters 

leads to a higher effective surface free energy. 

The heretofore-neglected contribution of the configurational entropy to vacancy 

cluster free energy is obviously important in the context of modeling microvoid formation 

during Czochralski (CZ) crystal growth.  During this process, vacancy aggregation is 

initiated at high temperature because of vacancy supersaturation that results from crystal 

cooling.  Continuum models for void formation have shown unequivocally that low (i.e. 

~0.75-0.85 J/m2) values of σ  are necessary to predict the correct nucleation onset 

temperature (approx. 1350-1400K [112]).  On the other hand it has been difficult to 

reconcile this range of values for the cluster surface free energy with experimental 

measurements of the (111) surface energy at 77 K, which are clustered around 1.25 J/m2 

[39, 65, 83].  Since the (111) surface is widely considered as a good basis for estimating 

the free energy of experimentally observed octahedral voids, our prediction for the 

effective surface free energy of the 35V cluster, which is entirely comprised of (111) 

surfaces, decreases from about 1.24 J/m2 at 77 K to 0.82 J/m2 at the experimental melting 

temperature of silicon, 1685 K.  Based on the present results, it is now possible to 

consolidate both values with a single result.  The large clusters that are experimentally 
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observed in commercial single-crystal silicon after cooling are unaffected by 

configurational entropy, and are well described by the (111) surface energy model.  

However, early during the nucleation process, small clusters at high temperature are 

spatially extended due to a combination of configurational and vibrational entropy and 

are therefore characterized by a much smaller surface free energy.  

In the second part of the thesis, a comprehensive picture of self –interstitial 

aggregation in silicon under the external conditions of temperature and constant 

hydrostatic pressure is presented. At high temperature and compressive pressure, self-

interstitial clusters assume disordered, three-dimensional configurations (amorphous) 

until they reach large sizes.  At lower temperatures and tensile pressure, clusters undergo 

a morphological transition from the three-dimensional state to planar configurations 

which includes RLD {111}, RLD {113} and planar PDL {111} and FDL {111}. The 

critical size for this transition is temperature dependent and becomes smaller as the 

temperature is decreased, presumably because of reduced entropic favorability of the 

three-dimensional configurations at low temperatures.  Moreover, the transition appears 

to be kinetically favorable and no apparent barriers are observed in our simulations. 

Figure 6.1, shows an evolution map for self-interstitial aggregation as a function of 

cluster size and temperature. In most cases the effect of hydrostatic pressure is 

qualitatively similar to increasing the temperature.  
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In Chapter 4, a detailed thermodynamics analysis (by extending the approach developed 

for vacancy clusters) of various cluster configurations is employed to probe the 

mechanistic origins of these observations. At low temperature and/or tensile lattice strain, 

compact configurations for certain cluster sizes nI=4, 8, 12 are observed in special 

“magic” configurations and are favored over other possible rearrangements by a 

combination of low formation energy and large vibrational and configurational entropy. It 

must be noted that while there is only one magic configuration for nI=4, the Humble/Arai 

configuration, whereas for nI=8 and 12, two main types of distinguishable configurations 

are possible, which are directly related to the formation of {113} and {100} planar 

defects The entropic sources are particularly large for structures comprised of the 

Figure 6.1: Evolution map for self-interstitial aggregation as a function of cluster size and
temperature. In most cases, the effect of hydrostatic pressure is qualitatively similar to
increasing the temperature. 
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Humble/Arai four interstitial building block, which is the building block for self-

interstitial clusters in the compact configuration, and provide a compelling explanation as 

why very strong stability at n=8 has been extracted from experiments at moderate 

annealing temperature but not yet confirmed by literature calculations of formation 

energies to date. Note it is not possible to extend our simulations to the point at which 

{113} defects evolve by unfaulting into lower energy {111} defects, but previous work 

shows that this transition is expected at around nI = 500. At higher temperatures (with 

zero or compressive strain), the density of states associated with interstitial clusters for 

most sizes, except nI=4, is sufficiently large so as to “drown out” the special 

configurations that lead to {100} and {113} planar defects. As a result, most small 

clusters assume three-dimensional amorphous configurations up to a certain (temperature 

and pressure dependent) critical size at which point they collapse into {111}-oriented 

planar defects of various types including RLDs, FDLs, and PDLs, all of which have been 

observed experimentally.  In this growth mode, the transition to {111} defects is much 

earlier than that associated with the {113}-{111} transition, and {113} defects are never 

formed.  However, note that even at zero strain, {100} defects are still observed because 

of the large vibrational entropy associated with the Humble/Arai configuration.  

Lattice strain can dramatically alter the pathway by which self-interstitials 

aggregate to form the various types of cluster morphologies observed in the literature.  A 

key aspect of this mechanism is that lattice strain acts by modifying the overall density of 

states distribution of formation energies associated with a cluster, rather than by strongly 

modifying the formation thermodynamics of a particular cluster structure.  Thus, 

although the particular cluster configurations responsible for {113} and {100} motif 
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formation are entropically stabilized relative to other configurations, this stabilization can 

become overwhelmed by the large number of other possible (usually higher energy) 

configurations.  Unfortunately, our results do not explain the apparent dearth of {100}-

oriented defects in damaged, interstitial-rich silicon; in agreement with previous 

calculations, these are found to be both energetically and now, also entropically, 

favorable. 

Finally in the Chapter 5, we investigate the effect of carbon on self-interstitial 

aggregation. The presence of carbon in the silicon dramatically reduces cluster 

coalescence, with almost no direct effect on the single self-interstitials. This suggests that 

suppression of transient enhanced diffusion of boron (in presence of carbon), could be 

due to the direct interaction between carbon atoms and self-interstitial clusters. 

 

6.1 Future Work 

The following discussion proposes extensions to the work done in this dissertation. 

6.1.1 Effect of Non-Hydrostatic (Biaxial and Uniaxial Stress) on defect 

clustering  

Although in this thesis, we only studied the impact of constant hydrostatic pressure, the 

quantitative approach we have developed here can be easily extended to study the defect 

dynamics in biaxial and uniaxial stress/strain systems. Biaxial and uniaxial stress fields 

are becoming more common with use of SiGe over Si technology, and further work will 

be required to characterize the effect of these fields on self-interstitial clustering.[10]  
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Recent DFT calculations show that in some cases the differences may be important and 

may lead to additional heterogeneities in the cluster distribution.[16] 

 

6.1.2 Cluster Patterning in Multi-Component Systems 

As the device dimension continues to shrink down to sub 20nm, it will bring a marked 

shift in micro-electronic device manufacturing processes, which may no longer apply to 

nanoscale device production. Many efforts have been made to fabricate nanoscale devices 

using so-called “bottom up” approaches, in which devices are built atom by atom. The 

most common approach is to use some kind of self-assembly, which refers to a broad 

class of systems in which there exists a natural driving force for atomic aggregation into 

distinct clusters. Two key challenges arise in the application of self-assembly to device 

fabrication: (1) How can self-assembly be driven to create “perfect” (i.e. defect-free) 

phases, even in the presence of strong entropic forces, and (2) How can the spatial 

distribution of these clusters be controlled to create structures that are useful?   

Directed aggregation under stress is one such potential approach which takes 

advantage of the inherent coupling between mechanical and chemical potential fields. In 

other words, the thermodynamic (and transport) properties of solid solutions depend 

(sometimes strongly) on the local stress environment in a solid. Thus by controlling the 

mechanical environment in the solid, aggregation potentially can be directed spatially.   

 Consider an alloy AB, containing an excess of chemical species A, in the 

interstitial positions. The excess A will tend to diffuse, and form large 

aggregates/precipitates of A in the surrounding AB (substrate) matrix. Rather than letting 
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excess ‘A’ particles to diffuse randomly, and coalesce into randomly distributed clusters, 

it has been shown that it is possible to modulate (using external stress, for example) the 

motion of ‘A’ particles to form uniformly distributed ‘A’ precipitates in the AB matrix. A 

schematic description of external stress modulated precipitation is shown in Figure 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Arsenic precipitation in GaAs is an example of one such system that has been 

experimentally realized in which uniformly distributed precipitates of arsenic were 

formed in a GaAs matrix. This system has a potential application in fabrication of nano-

electronic circuitry; based on single-electron tunneling devices, where small arsenic 

 Precipitates 

Substrate Matrix 

External Stressors 

Figure 6.2: Selective precipitation using external stress 



 202

precipitates would act as a metallic islands and the GaAs (semiconductor) matrix would 

serve as insulating tunnelling barriers between the islands[79, 80] Recent experiments on 

selective arsenic precipitation in GaAs[94, 114, 125] have demonstrated that directed 

self-assembly using external stress is a indeed a feasible option. Another potential system 

where this technique can be applied is the aggregation of Si nano-crystallites in silicon 

dioxide matrix under an externally applied stress field. Note that even though we have 

used an alloy AB to explain the process of directed aggregation, it applies equally well in 

case of single element matrix say M, containing vacancies, self-interstitials, or 

substitutional and interstitial impurities. 

Directed assembly using external strain offers a tremendous opportunity, however 

challenges remain to take these technologies to a manufacturing level. This is only 

possible by first developing a through understanding of thermodynamics of defects and 

defect clusters. The quantitative approach we have developed can be extended to study 

the atomic scale mechanisms that couple mechanical and thermodynamic driving forces 

for directed aggregation of a multi component system.  
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