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Abstract

CONTINUOUS METHODS FOR MOTION PLANNING

Milo�s �Zefran

Vijay Kumar

Motion planning for a robotic system addresses the problem of �nding a trajectory and
actuator forces that are consistent with a given set of constraints and perform a desired
task� In general� the problem is under�determined and admits a large number of solutions�
The main claim of this dissertation is that a natural way to resolve the indeterminacy is to
de�ne performance of a motion and �nd a solution with the best performance� The motion
planning problem is thus formulated as a variational problem� The proposed approach is
continuous in the sense that the motion planning problem is not discretized�
A distinction is made between dynamic and kinematic motion planning� Dynamic

motion planning provides the actuator forces as part of the motion plan and requires
�nding a motion that is consistent with the dynamic equations of the system� satis�es a
given set of equality and inequality constraints� and minimizes a chosen cost functional� In
kinematic motion planning� dynamic equations of the system are not taken into account
and it is therefore simpler�

For dynamic motion planning� a novel numerical method for solving variational prob�
lems is developed� The continuous problem is discretized by �nite�element methods and
techniques from nonlinear programming are used to solve the resulting �nite�dimensional
optimization problem� The method is employed to �nd smooth trajectories and actuator
forces for two planar cooperating manipulators holding an object� The computed trajecto�
ries are used to model human motions in a two�armmanipulation task� The method is then
extended for systems that change the dynamic equations as they move� An example of a
simple grasping task illustrates that for such systems variational approach uni�es motion
planning and task planning�

Kinematic motion planning is formulated as a variational problem on the group of
spatial rigid body displacements� SE�
�� A Riemannian metric and an a�ne connection
are introduced to de�ne cost functionals that measure smoothness of trajectories� Metrics
and connections that are important for kinematic analysis are identi�ed� It is then shown
how the group structure of SE�
� can be used to �nd smooth trajectories that satisfy
boundary conditions on positions� orientations� velocities or their derivatives� and have
certain invariance properties with respect to the choice of the inertial and body �xed
frames�
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Chapter �

Introduction

In a basic robotic task� the robot has to move from a given initial con�guration to a desired
�nal con�guration� Except for some degenerate cases� there will be in�nitely many motions
that achieve the desired transition� More complex tasks impose additional requirements on
the motion� but in general the set of all possible motions will still be very large� A robotic
task typically also entails manipulation of an object and interactions with the environment�
To prevent damage to the manipulated object or to the robot� the manipulation and
interaction forces have to be controlled� The purpose of motion planning is to select
one motion from the set of all possible motions and to assure that the manipulation and
interaction forces remain within given bounds�

The relation between a �kinematic� trajectory of a physical system and the actuator�

forces that generate the motion along this trajectory is given by dynamic equations� In
general� a motion plan thus consists of the kinematic trajectory for the system as well as
the actuator forces that move the system along the trajectory� The actuator forces can
be sometimes obtained from the given kinematic trajectory in a particularly simple way�
In other instances we use the kinematic description of the system because the dynamic
equations are di�cult to derive� There are also cases when we employ the kinematic model
of the system to abstract the details of the actuation scheme� In all these situations� we only
need to plan the kinematic trajectory for the system� We will thus use the term dynamic
motion planning when the actuator forces are part of the computed motion plan and
kinematic motion planning when only the kinematic trajectory for the system is computed�

We say that motion planning is explicit� if the motion plan is computed before the mo�
tion is executed� and implicit� if the trajectory and the actuator forces are computed while
the system moves� Explicit schemes must be used if we want to optimize the performance
of the motion or guarantee certain properties of the trajectory� If it only matters that a
desired con�guration is reached� implicit schemes are su�cient�

Motion of a physical system can be observed in three di�erent spaces� The task is
speci�ed in the task space� The representation for this space is usually chosen to simplify
the e�ort of the human in describing the task� In most applications� Cartesian coordinates
are used to specify the position in space and some form of Euler angles is used to specify
the orientation� Task space description is convenient for humans� but to properly represent

�Throughout the dissertation� the term actuator force will be used to denote the generalized force
consisting of forces and torques produced by the actuators�
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a motion of a system with multiple degrees of freedom� it is more appropriate to specify
the motion in the joint space �in dynamics� the term used is con�guration space�� The joint
space is the Cartesian product of the intervals describing the allowable range of motion for
each degree of freedom� To achieve the motion� some degrees of freedom must be actuated�
We must therefore compute the actuator forces that achieve the desired motion and these
forces belong to the actuator space� An actuator is usually controlled by a single input
�current or voltage in the case of electro�mechanical actuators�� so the actuator space will
be typically a subset of IRm� where m is the number of actuators�
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Figure ���� Spaces in which motion can be observed and mappings between them�

Mappings between the task space� the joint space and the actuator space �Figure ����
may not be invertible� For example� in the case of a kinematically redundant robot� there
is a mapping from the joint space to the task space� but not vice�versa� a trajectory in
the task space does not specify a unique trajectory in the joint space� Similarly� if the
manipulator has actuator redundancy� the mapping from the actuator space to the joint
space exists� but it does not in the other direction� In general� a curve in the actuator
space can always be mapped to a curve in the joint space and a curve in the joint space
can always be mapped to a curve in the task space� The mapping from the actuator space
to the joint space is given by the equations of motion of the system and thus involves
integration of a set of di�erential equations� In contrast� the mapping from the joint space
to the task space is algebraic� although it might be still di�cult to obtain �if the mechanism
involves parallel modules�� This implies that a trajectory in the actuator space completely
characterizes the motion� However� for applications we usually also need the task space
and the joint space trajectories and we require that they are part of the motion plan� It is
also clear that with the exception of special cases in which the mappings between di�erent
spaces are invertible� the planner must provide the trajectory in the actuator space to
completely specify the motion�

Motion planning has received much attention in the past� A short review of the liter�
ature is provided in the next two sections� Since humans seem to move in a very e�cient
way and since we often try to imitate humans by robots� we start with the models of
motion planning in humans� We then discuss algorithms that were developed for solving
the discretized motion planning problem� Discretization reduces the in�nite�dimensional
space of possible solutions to a �nite�dimensional search space� One of the advantages of
discrete algorithms is that they can address the question of completeness� if a solution in
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the reduced space exists� the algorithm will �nd one� if there is no solution� the algorithm
will return the negative answer� For continuous methods� that we describe next� the ques�
tion of completeness is much more di�cult and in general completeness can not be proved�
Many continuous motion planning methods are based on optimal control� However� these
methods were used to address very speci�c motion planning problems� At the end of the
chapter� we argue that optimal control and variational methods represent a natural frame�
work for motion planning and we propose them as a general method� We then formally
de�ne the dynamic and the kinematic motion planning problems that are addressed in the
dissertation�

��� Motion planning in humans

Fascinating photographs by Muybridge� originally published at the end of last century
���� ���� are one of the earliest attempts to systematically study human and animal mo�
tion� In the ���s� developments in control theory sparked interest in modeling the organiz�
ing principles of human motor control� The models that were developed in the subsequent
years can be divided into two major groups ���� ��� �
��� Models in the �rst group assume
that the motion is generated through a feedback control law ���� �

�� Since the trajectory
for the motion is not computed in advance� these models are examples of implicit planning�
In contrast� models in the second group propose explicit schemes for motion planning and
assume that the trajectory is planned in advance and then executed �
�� ��� ��
�� Exper�
imental evidence exists for the feedback mechanisms as well as for the explicit trajectory
planning� and none of the existing models seems to be able to account for all the character�
istics of human motion� Nonetheless� there is enough evidence to believe that mechanisms
for explicit motion planning do exist in the central nervous system�

The human body can be modeled as an articulated linkage of rigid bodies� This is also
how we usually model robots� Principles that govern human motion planning therefore
directly bear on motion planning for robotic systems� Redundancies that make the map�
pings between task� joint� and actuator spaces non�invertible are abundant in the human
body �as well as other biological systems� suggesting that humans posses mechanisms for
resolving these redundancies� Studies of human motion therefore represent an important
source of ideas for robot motion planning schemes� Of particular relevance to robotic
applications are studies of human arm motions�

An important quantitative property of human target directed motions was discovered
by Fitts ����� Known as Fitts� Law� it relates the movement time to the traveled distance
and the size of the target� Invariant properties of human arm trajectories were studied by
Soechting and Lacquanity ��

� and Viviani et al� ������ In ��

�� it was observed that
the trajectory for spatial motions is independent of movement velocity and that ratios
of velocities of elbow and shoulder joints are �xed in the acceleratory and decceleratory
phases� Two�thirds power law was formulated in ����� to describe the relation between the
radius of curvature of the trajectory and the tangential velocity� Morasso ���� showed that
the shape of the velocity pro�les for human arm trajectories is invariant in the extracorporal
�task� space but not in the joint space and concluded that planning takes place in the
extracorporal space�

Feldman �
�� focussed on motions involving only the elbow joint� He treated the muscles






as nonlinear springs and showed that humans are able to modulate a parameter that cor�
responds to the zero�length �equilibrium point� of the spring� Based on these observations�
he postulated the so called equilibrium point hypothesis for the generation of voluntary
arm motions� According to this hypothesis� to reach a goal con�guration the equilibrium
point of the system of springs representing muscles of the human arm is instantaneously
shifted to the goal con�guration� The arm subsequently moves because of the sti�ness of
the system�

The hypothesis that the system only speci�es the target equilibrium point was refuted
by Bizzi et al� ����� They showed that if the arm of a dea�erented monkey is displaced
from the initial position� it moves towards the initial position when the target at the �nal
position is illuminated and only then changes the direction of motion and moves towards
the target� This shows that a series of intermediate positions is planned and implies that
the �nal�position control �according to which the motion is driven by the error between
the current position and the goal position� and the equilibrium point hypotheses are not
su�cient to describe goal directed motions� This study provides the strongest evidence for
explicit trajectory planning�

The results of Bizzi et al� and the apparent �ease� and �e�ciency� of human movements
prompted Flash and Hogan ���� to suggest that trajectories for human planar reaching
motions are chosen so that they minimize the integral of the square norm of jerk �jerk is
the derivative of acceleration��

J �
�

�

Z t�

t�

�
���
x
�
 
���
y
�
� dt� �����

In the equation� t� and t� are the �xed initial and �nal times while x and y are the
Cartesian coordinates of the hand in the plane of motion� The minimum�jerk model� as
it was called by the authors� agreed with the measured human arm trajectories during
medium speed� large amplitude� unconstrained motions in a horizontal plane� Hogan ����
used the minimum�jerk model to postulate the equilibrium trajectory hypothesis for the
formation of human motions� In contrast to Feldman�s equilibrium point hypothesis� Hogan
suggests that the equilibrium point of the system of springs representing the muscles is
gradually shifted along a prescribed trajectory and not simply switched between the initial
and the �nal con�guration� The trajectory along which the equilibrium point moves is a
minimum�jerk trajectory�
In parallel with the work of Flash and Hogan� Nelson ���� also speculated that motions

are planned so that they minimize some global cost functional� He discussed how cost
functionals such as time� energy� integral of impulse and integral of jerk can be used to
model trajectories for violin bowing and jaw movements�
Following these ideas� Uno et al� ���
� suggested another cost functional to model gen�

eration of human single arm reaching motions� They suggested that the motions minimize
the integral of the squared norm of the vector of torque derivatives�

J �
�

�

Z t�

t�

nX
i��

���i dt� �����

As before� t� and t� are the �xed initial and �nal time while � is the vector of the joint
torques� The authors presented experiments in which the minimum torque�change model�
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as it is usually called� �tted the data better than the minimum�jerk model� The model
also predicted kinematic features of the unrestrained vertical arm motions for which the
minimum�jerk hypothesis failed ���� In addition� they showed that the minimum torque�
change trajectories can be computed with a layered neural network and argued that such
mechanism could be implemented in the central nervous system �����

The minimum�jerk ���� and minimum torque�change ���
� models agree quite well with
the experimental data� it is still an open question which paradigm best describes the pro�
cesses that take place in the central nervous system during motion planning� Although both
models are based on the idea of minimizing an integral cost functional� the implications
of the models for the generation of human motion are quite di�erent� The minimum�jerk
model suggests that only the task space trajectory is planned� This trajectory is indepen�
dent of the physical structure �dynamics� of the system that performs the motion� The
equilibrium trajectory paradigm complements the minimum�jerk model and explains how
the motion along the planned trajectory is generated� One of the main claims of this
model is that the trajectory is planned separately at the kinematic �task� level and it is
subsequently transformed into joint trajectories and actuator activations according to the
equilibrium trajectory hypothesis �see also ������ Unfortunately� the equilibrium trajec�
tory hypothesis is very di�cult to verify since the dynamic parameters of the human arm
�damping� sti�ness� during motion are di�cult to measure reliably�

In contrast� the premise of the minimum torque�change model is that an explicit plan
is computed in the joint space and the actuator space and that the planning process is
performed in a single step thereby making the joint level and actuator level planning depen�
dent� This is because the cost functional depends on the actuator forces and incorporates
the dynamics of the human arm into the planning process� The minimum torque�change
model provides an explicit trajectory for the actuator forces and is easier to verify with
experiments� However� it is computationally more intensive than the minimum�jerk model
since the dynamics of the system enters into the planning process and has to be modeled�

��� Trajectory generation in robotics

The division into explicit and implicit schemes for motion planning also applies to robotics�
In most cases� explicit schemes are used for kinematic motion planning while implicit
schemes are usually employed for dynamic motion planning�

An important concept that evolved through the study of kinematic motion planning
in robotics is the notion of con�guration space� Although well�known in mechanics ����� it
was �rst de�ned in the robotics literature by Lozano�P
erez and Wesley ����� The basic idea
is to represent the robot by a point in an appropriate space� Each element of this space
corresponds to a di�erent con�guration of the robot� from which the name con�guration
space� In this space� an obstacle Obsi maps to a set of con�gurations CObsi in which the
robot touches or penetrates the obstacle� Finding a collision�free path for a robot thus
corresponds to �nding a trajectory in the con�guration space that does not intersect any
of the sets CObsi � Although the computation of sets CObsi is very time consuming� it is
usually only performed once and a path between any arbitrary two con�gurations can be
computed very e�ciently afterwards�
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����� Implicit schemes

Implicit schemes only use the information about the current state of the robot and the
environment to compute how to move and can be interpreted as feedback mechanisms�
They are very attractive from a computational point of view since no processing is required
prior to the motion� The simplest scheme� corresponding to the �nal position control in
biological systems� is to make the set�point for the joint controllers equal to the desired
�nal position in the joint space and let the error between the current position and the
set�point drive the robot� A modi�cation of this scheme where the velocity during the
motion is appropriately shaped is often provided on industrial robots as one of the possible
modes of motion� but it is hardly useful for large amplitude motions� One of the reasons
is that the shape of the trajectory in the task space depends on the location of the start
and the end con�guration within the joint space� If obstacles are present in the workspace
of a robot� it is di�cult to predict whether the robot will avoid them or not�

An approach analogous to Feldman�s equilibrium point hypothesis �
�� was developed
by Khatib ����� He de�nes a potential function with the equilibrium point at the goal
con�guration� The actuators of the robot are programmed to generate the force dictated
by the potential �eld� driving the robot towards the goal con�guration� This scheme is
much more !exible than the �nal position control since the potential �eld that guides
the motion can be chosen� It is also easy to implement obstacle avoidance by assigning a
repulsive potential to each obstacle �this is how the method was �rst used�� By making the
range of repulsive potential limited� only the obstacles that are close to the robot will a�ect
the motion� The robot thus only needs to know local information about the environment�
If the potential is de�ned in the joint space� the problem of kinematic redundancy can
be resolved as well ������ The main drawback of the potential �eld approach is that
there may exist local minima that can �trap� the robot� Koditschek ���� showed that if
obstacles are present there is no potential function with a unique equilibrium point� Rimon
and Koditschek ����� demonstrated that a potential function can be constructed �they call
it the navigation function� which has a global minimum and for which all other equilibrium
points are saddle�points �unstable equilibria� that lie in a set of measure zero� However�
constructing such a navigation function requires complete knowledge of the space topology
and many advantages of Khatib�s approach are lost� Another de�ciency of potential �elds
is that the generated trajectories are usually far from being of �minimal�length�� Finally�
it is di�cult to take into account various constraints posed by the task such as velocity
limits or nonholonomic constraints�

����� Explicit schemes

To compute a trajectory� explicit methods �we could also call them open�loop schemes�
require knowledge of the global properties of the space� The advantage of such schemes
is that task requirements can be taken into account during the planning process� The
approach is also attractive from the control point of view� once the trajectory of the
system is planned� the system can be linearized along this trajectory and methods from
linear control theory can be used to control its motion ���� ���� �����

An excellent overview of methods for kinematic motion planning can be found in
Latombe�s book ����� Latombe divides planning algorithms into three classes� roadmap�
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cell decomposition and potential �eld� We discussed the potential �eld methods above and
argued that they are basically implicit �feedback� methods� Roadmap methods ���� ���
���� ���� construct a set of curves� called roadmap� that �su�ciently connect� the space�
A path between two arbitrary points is found by choosing a curve on the roadmap and con�
necting each of the two points to this curve with a simple arc� Instead� cell decomposition
methods �
� ���� ���� divide the con�guration space into non�overlapping cells and con�
struct a connectivity graph expressing the neighborhood relations between the cells� The
cells are chosen so that a path between any two points in the cell is easily found� To �nd
a trajectory between two points in the con�guration space� a �corridor� is �rst identi�ed
by �nding a path between the cells containing the two points in the connectivity graph�
Subsequently� a path in the con�guration space is obtained by appropriately connecting
the cells that form the corridor�

Kinematic motion planning methods described in this and in the previous section have
been mainly developed for mobile robots or so�called free !ying agents� Kinematic con�
straints typical for a serial manipulator make the analysis more complicated� although in
principle the methods can be appropriately adapted� An interesting example of a more
general method is the recursive algorithm for generating trajectories for nonholonomic ve�
hicles presented in ����� The most general versions of roadmap and cell decomposition
methods work for cases in which the obstacles in the con�guration space can be described
as semi�algebraic sets ����� However� most practical implementations assume that the ob�
stacles and the robot can be described as polygons� At the price of considerably increased
complexity� it is also possible to extend some of the approaches to cases in which the
obstacles in the environment move and their position is provided by sensors�

A common feature of all the motion planning schemes described in this section is that
they are based on discrete algorithms� In one way or another the con�guration space is
discretized and represented by a graph� Subsequently� trajectory planning is reduced to
�nding a path in this graph� These methods are also purely kinematic� they only generate
a trajectory in the con�guration space� while the dynamics of the robot and the possible
constraints on the actuator forces are not taken into account� To obtain a trajectory in
the actuator space a separate mechanism must be employed� From the point of view of
hierarchical organization� they therefore assume separate planning at each of the three
levels �task space� joint space� actuator space��

����� Continuous motion planning

We are interested in solving the motion planning problem without arti�cially discretizing
the con�guration space� Such motion planning methods will be called continuous� A
good starting point is provided by studies of human arm motions �Section ����� Both� the
minimum�jerk model �Equation ���� and the minimum torque�change model �Equation ����
are continuous models for motion planning� From the mathematical point of view� both
schemes formulate motion planning as a variational problem� However� while the minimum�
jerk cost functional only depends on the task variables� the minimum torque�change cost
functional depends on the actuator torques� In turn� the dynamic equations represent
additional constraints and �nding a solution for the minimum torque�change model requires
solving an optimal control problem ������ We already noted that the minimum torque�
change model is not a hierarchical planning method� it yields a solution at joint and
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actuator levels simultaneously�

The problem of minimizing a functional on the trajectories of a dynamical system
described with a set of di�erential equations is traditionally studied in optimal control�
When the constraining equations are algebraic� it is customary to use variational calculus�
It therefore seems that optimal control corresponds to dynamic motion planning while
variational calculus is a kinematic motion planning method� We will show that such this
distinction is arti�cial and that variational calculus and optimal control are two di�erent
names for the same set of techniques� For this reason� we will use the term variational
methods to denote both� optimal control and traditional variational calculus methods�

The example of minimum�jerk and minimum torque�change models shows that vari�
ational methods can be used either for kinematic or for dynamic motion planning� the
type of planning depends on the cost functional� Variational methods have been used in
robotics in both roles long before similar ideas were used for modeling human arm motions�
After all� the idea to move the robot along straight line paths in the task space� which is
probably as old as the �rst robots �see ���� for a review of early work�� is just a special case
of variational approach where the cost functional is the Euclidean distance� Most of the
work in robotics that uses a variational approach is based on optimal control and addresses
the dynamic motion planning problem�

Optimal control has been extensively used in robotics for time�optimal control� In
time�optimal control� the objective is to minimize the duration of motion between the
initial and goal con�gurations so that constraints on the actuator forces are satis�ed� The
problem was �rst studied by Kahn and Roth ��
�� The authors were able to show that for a
three�link serial mechanism with constant limits on the torques at least one of the actuators
operates at the limit during time�optimal motion� They also proposed an approximation
scheme based on linearization of the robot dynamics to compute the optimal solution�

Time�optimal control is also an alternative for planning trajectories in the actuator
space when the path in the joint space is obtained with other methods �see above�� Bo�
brow et al� ��
� and Shin and McKay ����� independently developed similar methods for
computing the time�optimal control for a serial manipulator moving along a given path�
They showed that this problem is equivalent to time�optimal control of a double integrator
system and that the solution will thus be bang�bang �the input is always equal to one of
the limits and it instantaneously switches between the limits �nitely many times�� Based
on the de�nition of a velocity limit curve in the two�dimensional state space they developed
an algorithm to compute the switching points� Pfei�er and Johanni ����� and Slotine and
Yang ��
�� further simpli�ed this algorithm� Huang and McClamroch ���� adapted the
method to contour following and found a solution for switching between free motion and
constrained motion� Shiller and Lu ����� generalized the algorithm from ��
� to handle
singular trajectories� Dahl �
�� extended the approaches from ��
� and ����� to !exible
manipulators�

Theoretical results for time�optimal control of mechanical linkages were derived in
��� 
�� �
��� Shiller and Dubowsky ����� proposed an algorithm for computing time�optimal
inputs and trajectories for a robot moving among obstacles� They approximated the tra�
jectories with B�splines and used the algorithm from ��
� in conjunction with graph�search
techniques to �nd the time�optimal trajectory�

Time�optimal solutions require discontinuous jumps in the actuator forces� But in
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practice� motors have their own dynamics and such discontinuous jumps can not be pro�
duced� Although minimum time solutions are attractive from a theoretical perspective�
time�optimal control has limited practical applications� For this reason� some researchers
tried to combine time�optimal control with approaches that yield smooth actuator trajec�
tories� One possibility is to minimize the combination of time and the integral of the square
norm of the vector of inputs� The last integral is usually taken as a measure of the energy
consumed during the motion and the resulting problem is thus known as time�energy opti�
mal control� Singh and Leu ��
�� used dynamic programming to solve time�energy optimal
control when the robot path is speci�ed� Bessonnet and Lallemand ��� computed time�
energy optimal trajectories and inputs using Pontryagin�s minimum principle� A similar
problem was also solved by Shiller ������

In applications where time and limits on the actuator forces are not critical� other cost
functionals can be used to obtain smooth motion plans� Vukobratovi
c and Kir
canski �����
proposed minimization of energy �approximated by the integral of the square norm of the
vector of inputs� to compute optimal inputs for a � degree�of�freedom anthropomorphic
manipulator� They assumed a known path and computed velocity distribution along the
path using dynamic programming� Nakamura and Hanafusa ���� proposed optimal con�
trol to resolve kinematic redundancy� They studied several cost functionals �square norm
of the velocity� square norm of the force vector� manipulability� and used Pontryagin�s
minimum principle in conjunction with the shooting method to �nd the joint trajectories
for a � degree�of�freedom robotic arm from the task space trajectory� Similar is the work
of Suh and Hollerbach ��
�� who studied the minimization of energy as a method for re�
solving kinematic redundancy� They also compared global �variational� methods to local
optimization schemes for resolving actuator redundancy and showed that the former are
usually superior�

An application of variational calculus to kinematic motion planning is the work of
Buckley ��
�� He proposed variational calculus as an alternative to discrete algorithms for
the trajectory planning in the con�guration space� The main focus of his work was the
derivation of a distance function used to test the feasibility of the trajectories� Based on
this de�nition he derived an algorithm for trajectory planning that favorably compared
with discrete trajectory planning methods�

Variational calculus was applied to motion planning for nonholonomic systems in Fer�
nandes et al� ����� They studied motion of a falling cat� where the non�integrable �non�
holonomic� constraint is the preservation of the angular momentum� The motion planning
problem was posed as the minimization of the L� norm of the inputs and the Ritz method
was used to compute the solution�

A variational method is also proposed in ��
�� for open�loop trajectory planning for
nonlinear systems with no drift� The boundary�value problem that has to be solved to
�nd a feasible trajectory is converted into a variational problem where the error at the
boundaries is minimized� This technique has been extended in �

� for planning trajectories
for nonholonomic systems moving amidst obstacles�

A rich body of literature exists on hierarchical approaches to motion planning� In
this work� the emphasis is on the resolution of kinematic or actuator redundancy along
a given task space trajectory� The general idea is to prescribe a scalar cost functional
and �nd its minimum at each point along the task space trajectory� An example of such
approach is the use of a pseudo�inverse in velocity control of redundant manipulators ������

�



A similar approach for resolving actuator redundancy is proposed in ����� The major
di�erence between these methods and the variational approaches is that minimization in
the former case is performed locally and in �nite dimensions� while for the latter the search
is performed in functional �in�nite�dimensional� space and globally optimal solutions can
be obtained� We therefore speak about local and global methods� The advantage of local
methods is that the solution can be computed on�line during the motion� while for global
methods the motion plan must be computed in advance� But since local methods assume a
preceding stage in which the task space trajectory is planned o��line� their advantage over
global methods seems questionable� A discussion of some further shortcomings of local
optimization schemes can be found in ���� and ��
���

At the end of this review we mention a class of continuous motion planning methods
of a rather di�erent character that are an alternative to variational methods� These tech�
niques� usually known as steering� grew from research in nonlinear control ���� �
�� and can
also be viewed as constructive proofs of controllability� They have been very successfully
applied to nonholonomic systems ����� Murray and Sastry ��
� showed that a large class of
nonholonomic systems can be steered to a desired con�guration using sinusoids� A more
general theory was developed in ���� and ����� for drift�free systems� An extension of the
work of Murray and Sastry can be found in ������ An important link between trajectory
planning and control for nonholonomic systems is provided by Walsh et al� ������ who
showed how a planned trajectory can be stably tracked with a nonholonomic robot� Steer�
ing techniques were mainly developed for kinematic motion planning� Recent advances in
modeling of systems with symmetry and modeling of nonholonomic mechanical systems
���� ��
�� make some of these ideas applicable to dynamic motion planning�
An overview of the di�erent approaches to motion planning that appear in the literature

is shown in Figure ���� Speci�c methods are in the leaves of the tree� the methods that
were developed for robot motion planning are underlined while the rest of the methods can
be found in studies of human motion� The frame around the word �variational� denotes
that the focus in the dissertation will be on variational methods�

��� Approach in the dissertation

In most of the literature� motion planning is de�ned as �nding a suitable path between
two points in space� In this work� we take a much broader view so that the motion plan
includes every aspect of the motion that is necessary to perform the task� This broader
de�nition in a way combines what is traditionally understood as motion planning with task
planning that is typically performed at a more abstract level� For example� if the task is
to grasp an object with a multi��ngered hand� we are interested in how to form a grasp�
move the object� control the force so that the object is �rmly held but not crushed and
to regrasp the object when necessary� Similarly� when planning motion for a multi�legged
robot� we are concerned with the gait pattern� placement of the legs on the ground and
timing of events during walking�
The methods developed in this dissertation fall into the class of variational or optimal

control approaches� As indicated throughout the chapter� variational methods have several
advantages�

� They can be used as dynamic motion planning methods� They can therefore take
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Figure ���� Division of the approaches to motion planning found in the literature�

into account the dynamics of the system and provide the trajectories at all three
levels� task space� joint space and actuator space� Most of the other methods only
provide kinematic trajectories�

� By minimizing a cost functional we �nd a trajectory and resolve kinematic and
actuator redundancies within the same framework� In other approaches� di�erent
strategies are employed at di�erent levels�

� Variational methods provide a unifying framework for dealing with equality and
inequality constraints� In particular� since the dynamics of the system can be taken
into account� nonholonomic constraints become simply equality constraints on the
state space and can easily be treated�

� Variational methods can yield a feasible and globally optimal solution� In contrast�
kinematic motion planning is not concerned with the limitations on the actuator
capabilities and might produce solutions that are not suitable for implementation�
This is also a disadvantage of local optimization schemes�

By choosing variational methods for motion planning we make some important assump�
tions� The critical assumption is that we have a good model of the system� In this work
we also assume that the model is completely deterministic� These assumptions limit the
generality of the proposed approach� but they are satis�ed in many practical applications�
By choosing an explicit scheme for motion planning we also assume that we can synthesize
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a controller that can follow the computed trajectories� Such controllers can be readily
synthesized if the system is controllable�
We will show that variational calculus and optimal control are equivalent and can be

used for kinematic or dynamic motion planning� depending on the chosen cost functional�
In the �rst part of this dissertation we will develop a general method for planning tra�
jectories and actuator forces� Due to physical limitations of a robot and because of the
nature of interactions of a robot with the environment� a robotic task typically involves
equality and inequality constraints� The problem that we will address in the �rst part can
be therefore described as follows�

Problem ��� �Dynamic motion planning
 Let the robot be described in the state space
with the equations�

�x � f�x� u� t� ���
�

where x is the vector of state variables and u is the vector of inputs� Suppose that during
the motion� the robot must satisfy a set of equality and inequality constraints�

gi�x� u� t� � � i � �� � � � � k �����

and
hi�x� u� t� � � i � �� � � � � l� �����

and let the initial and �nal con�gurations be given by

��x� t�jt� � � �����

and
��x� t�jt� � �� �����

Choose a cost functional�

J � "�x�t��� t��  
Z t�

t�

L �x�t�� u�t�� t� dt� �����

The functions f � g� h and L are assumed to be of class C� in all variables� while the
functions �� � and " are assumed to be of class C�� The motion planning problem is to find
(a piecewise smooth) state vector x��t� and (a piecewise continuous, bounded) input vector u��t� that
satisfy equations (1.3)-(1.7) and minimize the cost functional (1.8).

We are interested in motion planning for mechanical systems� Continuity requirements
on the functions f � g and h are therefore not problematic since the dynamic equations for
mechanical systems are su�ciently well behaved� Further� we get to choose the function
L� so it can be made su�ciently smooth� However� if the task involves impacts� the
impact forces will be impulsive and the state will be discontinuous� In this work we do
not consider such cases� but the method for motion planning for systems with changing
dynamic behavior that we describe in Chapter � provides some insight in how such problems
can be addressed�

Kinematic motion planning is simpler and more e�cient than dynamic motion planning�
It is thus preferred to dynamic motion planning if there exists a suitable way to compute
the actuator forces from the kinematic trajectory� Kinematic motion planning is also the
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only feasible alternative when a dynamic model of the system is too complicated or is not
available and is abstracted with a kinematic model�

Kinematic motion planning can be performed either in the task space or in the joint
space� The task space has often more structure and the planning method must be carefully
developed to take advantage of this structure� For this reason� we concentrate in the second
part of the dissertation on variational methods for kinematic motion planning in the task
space� The developed approach can be directly applied to the kinematic planning in the
joint space� To develop a general method� we will pose kinematic motion planning as a
variational problem on a Riemannian manifold�

Problem ��� �Trajectory planning
 Let the task space be described with a manifold
# and take a Riemannian metric � �� � 	 on #� Choose the desired initial and �nal
con�gurations p� and p� for the robot in the task space �p�� p� � #� and let C� and C�

be the additional conditions that have to be satis�ed at these two points� Take the family
G of all smooth curves 
 � ��� �� � # that start at p�� end at p�� and satisfy C� and C��
G � f
 j 
��� � p�� 
��� � p�� C��
�� C��
�g� De�ne a function L � G � T# and a
functional J � G � IR of the form�

J�
� �
Z �

�
� L�
�

d


dt
�� L�
�

d


dt
� 	 dt� �����

The trajectory planning problem on # is to find a curve 
 � G that minimizes the functional (1.9).

����� Contents of the dissertation

The dissertation will be roughly divided into two parts� Chapters � to � will address �nding
a solution to Problem ��� and present some applications of dynamic motion planning�
In Chapter �� we will brie!y review the basic theory of optimal control and state the
Pontryagin�s minimum principle� We will show that a general optimal control problem
with constraints can be formulated as a problem of Bolza in the calculus of variations if
the constraints can be described with a set of equality and inequality constraints� We
will formulate the necessary conditions for the solution of the variational problem and
compare these conditions with those provided by the minimum principle for the optimal
control problem to establish the exact mapping between the two problems� We will then
show that the problem of Bolza can be transformed into an unconstrained problem in the
calculus of variations that has the same set of extremals�

We will brie!y review numerical methods for solving optimal control problems in Chap�
ter 
� We will discuss a �rst�order method for solving Problem ��� that exploits the equiva�
lence of extremals of the problem of Bolza and the corresponding unconstrained variational
problem� A detailed analysis of the method for problems with equality and inequality con�
straints that only depend on the state variables will be presented� Since this method can fail
to converge to a minimum� we will develop a direct minimization method by approximat�
ing the continuous problem with a sequence of discrete nonlinear programming problems�
Methods for solving the resulting nonlinear programming problems will also be discussed�
At the end of the chapter� we will address how an appropriate cost functional for motion
planning can be chosen� We will explain why some cost functionals are only suitable for
kinematic motion planning and discuss functionals suitable for planning smooth motions�
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In Chapter � we will demonstrate the methods from Chapter 
 on the problem of
planning trajectories and actuator forces for two planar arms cooperatively manipulating
an object� We will start with a simple case when no constraints on the contact forces
are present� A more complete treatment will follow in which frictional constraints will be
taken into account�
Chapter � will provide additional motivation for using variational methods for motion

planning� We will show that the method proposed for planning the motion for robotic
systems can be applied to modeling human arm motions� Experimental investigation of
human two�arm manipulation will be presented and a model based on the results from
Chapter � proposed for modeling the measured data� This chapter also shows that the
interaction between motion planning for biological and robotic systems goes in both di�
rections� principles discovered for biological systems can be used for motion planning in
robotics� while methods devised for generating motion plans in robotics are possible models
for biological systems�

Chapter � represents a link between our framework for motion planning and algorithmic
approaches to robot task planning� The method from Chapter 
 will be extended to
generate motion plans for a robotic system whose dynamic equations change as it evolves
in the state space� A framework for describing such systems in the state space will be
developed and we will pose the optimal control problem� We discuss the complexity of this
problem and present a partial solution that can be applied in several robotic applications�
The method will be demonstrated on an example of a two��ngered hand manipulating a
circular object�

Chapters � and � form the second part of the dissertation and will establish a general
framework for kinematic motion planning in the task space� Some background material
from Riemannian geometry will be brie!y reviewed in Chapter �� Since in most cases the
task space manifold is the Euclidean group of rigid body motions� SE�
�� we will devote the
rest of the chapter to the study of the geometric structure of this group� It will be shown
that di�erent applications in robotics demand di�erent Riemannian metrics on SE�
�� In
particular� we will look at the metrics suitable for the study of screw motions and discuss
connections that are appropriate for kinematic analysis�

The analysis from Chapter � will be used in Chapter � to study trajectory planning on
SE�
�� We will discuss the invariance of trajectories with respect to the choice of coordinate
frames and introduce a framework for variational calculus on Riemannian manifolds� We
will show how cost functionals such as minimum�jerk� that are used in studies of human arm
motions� can be extended to an arbitrary manifold� We will also show that in some special
cases the expressions for the trajectories minimizing these cost functionals are especially
simple� At the end of the chapter we will show some numerically computed trajectories
to illustrate their dependence on the choice of the metric� reference frames and boundary
conditions�

Chapter � concludes the dissertation� There� we will summarize our results and point to
the contributions of this work� We will discuss possible applications and identify directions
for future research�
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Chapter �

Relation between optimal control

and calculus of variations

The central problem of optimal control is to drive an �under�determined� dynamical sys�
tem from an initial state to the desired �nal state so that a chosen cost functional is
minimized� This problem has been already studied by Lagrange in the ��th century� Im�
portant contributions towards the solution of the problem were made by Mayer and Bolza
at the turn of the century and later by Bliss and his students� However� optimal control
is usually regarded as an outgrowth from the control theory as developed after the second
world war� The two most important formal works that established the foundations for the
subsequent research in optimal control were Bellman�s principle of optimality of dynamic
programming ��� and the minimum principle developed by Pontryagin and collaborators
���
�� Applications in aviation and aerospace have fostered rich activity in the area in the
following decade� Although it soon became apparent that almost all practical problems
are intractable analytically� advances in computer technology and numerical methods have
made numerical solutions to many optimal control problems feasible and there has been a
steady interest in the practical applications of optimal control�

The formulation by Bolza is often more convenient for describing motion planning prob�
lems than optimal control� However� most results in the control literature are derived from
the minimum principle and it is therefore not clear how they relate to the more classical
results from the calculus of variations� In this chapter we establish some of these relations
with the aim of using the Bolza formulation to develop a numerical method for solving the
motion planning problem ���� We �rst state the Pontryagin�s minimum principle for the
general case� We show that the problem can be reformulated as the problem of Bolza in
the calculus of variations if the set of admissible controls can be described by equality and
inequality constraints� We state the �rst�order necessary conditions for a solution of the
variational problem and demonstrate that these necessary conditions are a subset of the
conditions given by the minimum principle� In the process� we also �nd relations between
variables in the optimal control formulation and the variational formulation� Finally� we
show that for a variational problem with equality and inequality constraints it is possible
to formulate an unconstrained variational problem that has the same extremals �stationary
points��
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��� Optimal control problem and Pontryagin�s minimum

principle

In this section we de�ne the basic setting for study of optimal control� We consider
a dynamical system described by an underdetermined system of �rst order di�erential
equations�

�x � f�x� u� t�� �����

where the n�dimensional vector x is the state of the system and the m�dimensional vector
u represents the controls �inputs� of the system� The system ����� is underdetermined
since the controls u can be arbitrarily chosen� Once u is chosen� the system becomes
determined� The state space will be assumed to be the Euclidean space IRn and the vector
of controls u to be a function u � IR � U � IR

m� where the set U can be arbitrary�� We
de�ne the set of admissible controls� U to consist of those functions u that are bounded
and piecewise continuous� We also assume that the function f � IRn � U � IR � IR

n is C�

for all its arguments� Given a vector u� the existence and uniqueness of the solution to
����� is therefore guaranteed for arbitrary initial state x� �����

A transition of the dynamical system from one state to another is called a motion� Let
the initial and the desired �nal state for the dynamical system ����� be given by�

x�t�� � x� and x�t�� � x�� �����

and de�ne the cost of a motion to be the value of the functional�

J � " �x�t��� t��  
Z t�

t�

L�x� u� t�dt� ���
�

Here t� and t� are the initial and �nal time� respectively� The function L is assumed to be
of the same class as the function f � The optimal control problem is�

Problem ��� �Optimal control
 Consider the dynamical system described by Equation
����� and a functional J of the form ���	�� The optimal control problem is to find among all the
admissible controls u � U the control which moves the system (2.1) from the initial state x� to the desired
final state x� and minimizes the functional (2.3).

In the rest of this work� we will assume that given a certain topology� on the set of piecewise
smooth functions� there exists an open set of functions u�t� that can bring the system �����
from the initial state x� to the �nal state x�� If this were not the case� it would not make
sense to talk about the minimization of the functional J � Problems where this assumption
is satis�ed are also called normal ������

Without further assumptions� we can not say whether the optimal solution exists and
whether it is unique� However� Pontryagin et al� ���
� showed that if the optimal solu�
tion exists it must satisfy the necessary conditions known as the Pontryagin
s minimum
principle�

�See ����� for a more general setting of the problem�
�The choice is usually between so called strong and weak topologies ������
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Theorem ��� �Pontryagin�s minimum principle
 De�ne the Hamiltonian�

H�x� u� �� t� � L�x� u� t�  �Tf�x� u� t�� �����

If a control u��t� is optimal and it generates a trajectory x��t�� then there exists a nonzero
solution ���t� of the �vector� adjoint equation�

�� � ���H
�x
�T �����

such that for every t � �t�� t�� and for every admissible u � U �

H�x�� u�� ��� t� � H�x�� u� ��� t�� �����

Pontryagin�s minimum principle therefore identi�es the set of inputs that could minimize
the cost functional ���
�� The vector ��t� has dimension n and its components are called
the adjoint variables� Note also that the system equations ����� can be rewritten as�

�x �
�H

��
� �����

The minimum principle is very general and places no restrictions on the set U ������
However� Equation ����� is di�cult to convert to an e�cient numerical procedure� A more
convenient expression can be obtained if the set U is open� In this case� Equation �����
implies that the optimal input u� satis�es�

�H�x� u� �� t�

�u
� �� �����

Remark ��� The optimality condition ����� is just the �rst�order necessary condition for
����� and is therefore weaker�

Minima of the cost functional ���
� belong to a broader class of curves that render this
cost functional stationary� Such curves are called extremals and play the central role in
the theory of optimal control and the calculus of variations� When the set U is open� the
stationary points of the functional ���
� are exactly the curves that satisfy Equation ������
In this case� the extremals are therefore given by the following set of di�erential equations�

�x �
�H�x� u� �� t�

��

�� � �
�
�H�x� u� �� t�

�x

�T
� �����

where the input u is calculated from ������ If the initial state x� and the �nal state x�
are given� they provide all the necessary boundary conditions for the system ������ If the
value xk��� is not speci�ed� the missing condition must be replaced by �see ������

�k��� � �� ������

Similarly� if a component xk��� is missing� the boundary condition becomes�

�k��� �
�"

�xk

����
t�

� ������
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Equations ������������� are also called the natural boundary conditions and are a special
case of so called transversality conditions�

In general� it is hard to obtain results about the existence and uniqueness of the so�
lutions of the boundary value problem ����� and this is the main reason that such results
are also di�cult to state for optimal control problems� Another question is how realistic
is the assumption that the set U is open� We will show that when the boundaries of the
set U can be expressed analytically� the machinery of Lagrange multipliers can be used
to convert the problem with constrained set U into one where U is the whole space and
therefore open� Since this is the case in most applications� the minimum principle has
found widespread use�

Suppose therefore that the set of admissible controls consists of all bounded� piecewise
continuous functions u � IR� IR

m that satisfy a set of equality and inequality constraints�

gi�x� u� t� � � i � �� � � � � k ������

and

hi�x� u� t�� � i � �� � � � � l� ����
�

For the problem to be meaningful� we require that k � m� The minimum principle in this
case can be restated in the unconstrained form �����

Proposition ��� �Unconstrained formulation
 De�ne the Hamiltonian�

H � L �Tf  
T g  �Th� ������

where the vectors 
 and � have dimensions k and l� respectively� If the optimal control
problem has a solution then there exists a nonzero solution ���t� of the adjoint equation�

�� � ���H
�x
�T ������

and the optimal input u��t� satis�es the equation�

�H�x� u� �� 
� �� t�

�u
�

�L

�u
 �T

�f

�u
 
T

�g

�u
 �T

�h

�u
� �� ������

The optimal solution x��t� and the optimal input u��t� must satisfy Equations ������ and
����	�� and� in addition� the following complementarity conditions must hold�

�i

�
� � if hi � �
� � if hi � ��

������

We note that when the set of admissible controls is given by the Equations �����������
��
the optimal control problem ��� is exactly the same as the motion planning problem ����
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��� Variational reformulation of the optimal control prob�

lem

An alternative approach to solve Problem ��� is to observe that it can be converted into a
problem in the calculus of variations known as the problem of Bolza ���� The problem of
Bolza was de�ned at the beginning of the century by Bolza and is the closest in formulation
to the optimal control problem� However� it can be shown to be equivalent to problems of
Lagrange and Mayer which were de�ned much earlier ����� These problems were extensively
studied by Bliss and his students at the University of Chicago in the �
�s and ���s and the
results are described in ����� Formally� the problem of Bolza is de�ned as�

Problem ��� �Bolza
 Find a piecewise smooth (r-dimensional vector) function X�t� that mini-
mizes the functional:

J � �" �X�t��� t��  

Z t�

t�

�L�X� u� t�dt ������

subject to the side constraints:

�i�X� �X� t� � � i � �� � � � � p �p � r�� ������

the initial condition
X�t�� � X�� ������

and the final condition
X�t�� � X�� ������

We again assume that the problem is normal� that is� that there exists an open set �in
an appropriate topology� of functions X�t� that solve the boundary value problem �������
������� If this were not the case� this boundary value problem would only have isolated
solutions and it would not make sense to talk about a variation of the functional J �

To establish the relation between the optimal control problem and the problem of Bolza
we �rst prove the following�

Lemma ��� If the set of admissible controls for the optimal control problem 2.1 can be described with
a set of equality and inequality constraints, the optimal control problem can be formulated as a problem
of Bolza 2.5.

Proof: Conversion of Problem ��� into a problem of Bolza involves � steps�

�� Introduce a vector of slack variables � of dimension l and de�ne�

$i � hi�x� u� t�  �i
� i � �� � � � � l� ������

where the functions hi are those from ����
�� It is easy to see that the inequality
constraints ����
� are equivalent to the equality constraints�

$i�x� u� t� �� � � i � �� � � � � l� ����
�

This conversion of inequality constraints into equality constraints was proposed by
Valentine ������ The slack variables can be interpreted as additional inputs to the
system�
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�� Let r � n  m l and let

xi � Xi i � �� � � � � n

ui � �Xn�i i � �� � � � � m

�i � �Xn�m�i i � �� � � � � l� ������

Note that the inputs and the slack variables are integrated when converted to the
variables of the problem of Bolza� The unknowns for the variational problem are
therefore smoother�


� De�ne

�i � fi � �Xi i � �� � � � � n

�n�i � gi i � �� � � � � k

�n�k�i � $i i � �� � � � � l� ������

where the functions fi and gi are those from Equations ����� and ������� while the
functions $i were de�ned in ������� For the problem to be meaningful we assume
k � m�

�� The last step consists of renaming the parameters of the functions " and L in the
functional ���
� to re!ect de�nitions �������

�"�X� �X� t� � "�x� t�

�L�X� �X� t� � L�x� u� t�� ������

�

The above reduction was �rst proposed by Hestenes ���� and was later used in ��� and ����
to study optimal control problems through the theory of the calculus of variations�

Remark ��	 The reduction of the optimal control problem to a well understood problem
in the calculus of variations �that was known before the minimum principle was published
����� suggests that optimal control could be studied within the classical theory of the
calculus of variations� When Pontryagin and his coworkers derived the minimum principle�
the classical theory was derived for �piecewise� smooth functions de�ned over some open
set in the appropriate space� Instead� the minimum principle was derived for admissible
controls being measurable and for arbitrary choice of the range space U of controls ���
��
At the time� the theory of optimal control was therefore more advanced than the classical
theory of the calculus of variations �at least as far as necessary conditions are concerned��

The necessary conditions for the solution of Problem ��� can be obtained using classical
results from the calculus of variations ����� A study of the �rst variation of the functional
������ yields the following ��rst�order� necessary condition�

Proposition ��� De�ne an admissible variation� Z�t�� to be a piecewise smooth function
such that Z�t�� � Z�t�� � �� If a piecewise smooth function X�t� is a solution of Problem
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���� then there exists a nonzero vector of Lagrange multipliers % � �%�� � � � �%n�k�l� and a
function �H de�ned by�

�H � �L 
n�k�lX
i��

%i�i ������

such that� Z t�

t�

��� �H
�X

T

Z  
� �H

� �X

T

�Z

�� dt � �� ������

for any admissible variation Z� In addition� the side constraints

� � � ������

must hold�

With some further manipulation� we can eliminate the need for explicitly considering ad�
missible variations in the above theorem� The necessary conditions for the solution of the
problem of Bolza thus become�

Theorem ��� �Euler�Lagrange equations
 If a piecewise smooth function X�t� is a
solution of Problem ��� then there exists a nonzero vector of Lagrange multipliers % �
�%�� � � � �%n�k�l� and a function �H de�ned by�

�H � �L 
n�k�lX
i��

%i�i ���
��

such that at every point where the vector X�t� is smooth� the following Euler-Lagrange
equations hold�

d

dt

� �H

� �X
� � �H

�X
� �� ���
��

At a point t where �X�t� has jump discontinuity� the so called Weierstrass-Erdmann corner
conditions must hold�

� �H

� �X

�����
t�

�
� �H

� �X

�����
t��

�X
� �H

� �X
� �H

	�����
t�

�

�
�X
� �H

� �X
� �H

	�����
t�

� ���
��

In addition� the n  k  l side constraints

� � � ���

�

must hold everywhere�

Since the �rst order necessary conditions are exactly the conditions that the functional
������ is made stationary� the functions that satisfy the Euler�Lagrange equations are
precisely the extremals�
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��� Equivalence of the extremals

In this section we �nd the relation between the extremals of the optimal control problem
and the extremals of the corresponding variational problem� The main result is�

Proposition ���
 Suppose that the set U in the statement of Problem ��� can be described
with a set of equalities and inequalities� Then the following statements hold�

�a� If a piecewise smooth function X�t� satis�es the �rst order necessary conditions for
the optimal control problem stated in Proposition ���� it also satis�es the �rst order
necessary conditions of the equivalent problem of Bolza given by Theorem ��
�

�b� If X�t� satis�es the �rst order necessary conditions for the Bolza problem given in
Theorem ��
 and if the Lagrange multipliers corresponding to the inequality con�
straints are everywhere non�negative� then X�t� also satis�es the �rst order necessary
conditions in Proposition ��� for the optimal control problem�

Proof: The �rst�order necessary conditions for the optimal control problem with equality
and inequality constraints were stated in Proposition ���� Following the proposition� we
de�ne�

H � L �Tf  
T g  �Th� ���
��

The equations for the extremals are therefore the system equations�

�x � f� ���
��

the adjoint equations�

��T � �
�
�L

�x
 �T

�f

�x
 
T

�g

�x
 �T

�h

�x

�
� ���
��

the equality constraints�
g � �� ���
��

the optimality conditions�

�L

�u
 �T

�f

�u
 
T

�g

�u
 �T

�h

�u
� � ���
��

and the complementarity conditions�

�i

�
� � if hi � �
� � if hi � ��

���
��

Note that the complementarity conditions can be rewritten as�

�Th � �� � � �� ������

We now derive the equations for the extremals of the equivalent problem of Bolza�
Following the four steps from the proof of Lemma ���� we de�ne X � �XT

� X
T
� X

T
� �

T � where�

X�i � xi i � �� � � � � n
�X�i � ui i � �� � � � � m
�X�i � �i i � �� � � � � l�

������

��



We partition the vector of Lagrange multipliers from Theorem ��� into % � �%T�%
T
�%

T
� �

T �
where the dimension of %� is n� the dimension of %� is k and the dimension of %� is l�
Analogously� we de�ne the vector of side constraints � � ��T��

T
� �

T
� �

T by�

��i � fi � �X�i � � i � �� � � � � n
��i � gi � � i � �� � � � � k
��i � hi  ��i � � i � �� � � � � l�

������

Following Theorem ���� we de�ne�

�H � �L  %T���  %
T
���  %

T
���� ����
�

Note that the function �H does not depend onX� andX� but only on their time derivatives�
Since the side constraints must hold� we �rst obtain�

�� � f � �X� � �
�� � g � ��

������

which are Equations ���
�� and ���
��� Further� according to the de�nition ������ the
equation�

d

dt

� �H

� �X�

� � �H

�X�
� �� ������

leads to�

� d

dt
%T� �

�
� �L

�X�
 %T�

���

�X�
 %T�

���

�X�
 %T�

���

�X�

	
� �� ������

It is not di�cult to see that this is exactly Equation ���
��� if we put %� � �� %� � 
 and
%� � �� Next� take the equation�

d

dt

� �H

� �X�

� � �H

�X�
� �� ������

Since �H does not depend on X�� the equation becomes�

d

dt

� �H

� �X�

� �� ������

and after integration�
� �H

� �X�

� const� ������

There are no boundary conditions speci�ed for X�� We are only interested in u � �X��
which means that an arbitrary constant can be added to X� without changing the value
of u� so we can set�

X�jt� � �� ������

On the other boundary� we must enforce the so called natural boundary condition ������

� �H

� �X�

�����
t�

� �� ������

�




From Proposition ���� it can also be seen that the function �H

� �X
is continuous along the

extremal� We therefore conclude�
� �H

� �X�

� �� ������

which becomes�
� �L

� �X�

 %T�
���

� �X�

 %T�
���

� �X�

 %T�
���

� �X�

� �� ����
�

This equation is the same as the optimality condition ���
��� Finally� we consider the
equation�

d

dt

� �H

� �X�

� � �H

�X�
� �� ������

Following similar reasoning as above� this equation yields�

� �H

� �X�

� �� ������

Using the de�nitions for �H and ��� the equation becomes�

�%�i�i � � i � �� � � � � l� ������

This equation can be rewritten as�

%�i�
�
i � � i � �� � � � � l� ������

and �nally by expressing � from �������

%�ihi � � i � �� � � � � l� ������

Since %�i � �i� the last equation will be satis�ed if the complementarity condition ������ is
satis�ed� which proves �a�� Further� if %� � �� this equation is exactly the complementarity
condition ������ which also proves �b��

�

Remark ���� We could prove a stronger claim that the minimizing extremals of both
problems are the same by using second�order necessary conditions� In this case� the con�
dition %� � � would follow from the Legendre condition H �X �X � ��

Corollary ���� If the optimal control problem is reformulated as the problem of Bolza�
the following relations hold between the Lagrange multipliers of the two problems�

� � %�


 � %� ������

� � %��

��



This relations will be important when we discuss the case in which the functions h and g
do not depend explicitly on the inputs u�
The next observation is that the Lagrange multipliers % in the variational formulation

can be replaced with new functions &� where�

% � �&� ������

With this substitution� it is not di�cult to see from Equation ����
� that�

� �
� �H

� �&
� ������

Further� if a natural boundary conditions are enforced on �& at t�� the side constraint is
equivalent to the equation�

d

dt

� �H

� �&
� �� ������

Since the function �H does not depend on &� the last equation has the form of the Euler�
Lagrange equation for the variable &� This leads to�

Proposition ���� The extremal X�t� and the set of Lagrange multipliers %�t� for the
problem of minimizing the cost function�

J � �" �X�t��� t��  
Z t�

t�

�L�X� �X� t�dt ����
�

subject to the side constraints
��X� �X� t� � �� ������

correspond to the extremal Y �t� �


XT �t��&T �t�

�T
of the problem of minimizing the cost

function�

'J � �" �X�t��� t��  
Z t�

t�



�L�X� �X� t�  �&T��X� �X� t�

�
dt ������

where % � �&�

This proposition shows that to �nd the extremals �not necessarily minimizing�� the varia�
tional calculus problem with side constraints can be converted into an equivalent problem
without side constraints if the Lagrange multipliers &i are treated in the same way as the
unknown functions� In other words�

Formulation �
Critical point X of�

J � �" �X�t��� t��  
Z t�

t�

�L�X� �X�dt

subject to

��X� �X� � ��

�	

Formulation �

Critical point Y �


XT �&T

�T
of�

'J � �" �X�t��� t��  
Z t�

t�

H�Y� �Y �dt

where

H�Y� �Y � � �L�X� �X�  �&T��X� �X��

��



It is important to note that the �rst order necessary conditions do not distinguish
between maxima� minima and in!ection points� This implies that it would be wrong to
conclude on the basis of Proposition ���
 that a critical point that is a minimum for
Formulation � must also be a minimum for Formulation �� To check if an extremal is a
minimum� we must employ second order necessary conditions� The second order necessary
condition �also known as the Legendre�Clebsch necessary condition� for X to minimize the
cost functional J in Formulation � is that the matrix G �X �X � where

G � �L �T��

is positive de�nite ������ For Formulation �� the necessary condition that �X�&� minimizes
the cost functional 'J is that the matrix H �Y �Y is positive de�nite ��
�� where Y is the vector�

Y �

�
X

&



�

Now assume that the only constraints are the system equations� The function � is thus
given by�

�i�X� �X� � fi�X� �X� i � �� � � � � n�

In this case� the Legendre�Clebsch necessary condition for Formulation � becomes Huu � ��
We also have�

Y �

��� x

Yu
Y�

��� �
where

u � �Yu

� � �Y��

A short calculation shows that the matrix H �Y �Y has the following form�

H �Y �Y �

��� �n�n �n�m �In�n
�m�n

��H
�u�

�m�n
�In�n �n�m �n�n

��� � ������

This matrix is inde�nite regardless of the value of the matrix Huu �which depends on x� u
and ��� This implies that for Formulation � no critical point is a minimum for 'J � Lagrange
multipliers can therefore not be used to convert a constrained minimization problem to
an unconstrained minimization problem�

Remark ���� If the variational problem is convex� the cost functional in the Formulation
� must be actually maximized over the Lagrange multipliers & ����

��



����� Regular and singular extremals

Take the Bolza problem ��� with r unknown functions �the dimension of the vector X�t��
and s side constraints �the dimension of the vector ��� An extremal X�t� for the problem
of Bolza is called regular� if�

det
�� �H �X�

� � � � � �H �Xr
� ��� � � � � �s�

�� �X�� � � � � �Xr�%�� � � � �%s�

�����
X � X�t�
� � ��t�


� � for all t � �t�� t��� ������

where % is the vector of Lagrange multipliers corresponding to the extremal X�t�� An
extremal which is not regular is called singular ������ An analogous de�nition exists for
the optimal control problems ��
��
If an extremal is regular� it is possible to reduce the Euler�Lagrange equations and the

side constraints to a system of � r �rst order di�erential equations �see ����� pp� 

����
In other words� the �eld of extremals �all the solutions of the Euler�Lagrange di�erential
equation with no boundary conditions imposed� can be embedded into a � r parameter
family of curves� This is a good indication that we can satisfy � r boundary conditions
�but it is not su�cient�� On the other hand� even if the extremal is singular� we might
be able to satisfy the boundary conditions in some special cases� A singular extremal can
be compared to an over�constrained system of linear equations� In general� such a system
does not admit a solution� but if the rank of the system matrix is the same as the rank of
the extended system matrix� a solution exists�

Numerical methods often produce oscillatory solutions along singular extremals� This
can be explained by the fact that the �rst non�zero term in the Taylor series expansion
of the cost functional along a singular arc is of the fourth order �at a minimum� the �rst
non�zero term in the Taylor series must be of the even order� otherwise the variation would
change sign�� The in!uence of the solution on the value of the cost functional is therefore
very �weak� and as a result the numerical methods are ill�conditioned� The common
practice in such cases is to add a term to the cost functional that makes the problem
non�singular and then gradually decrease this term to zero�

��



Chapter �

Numerical method

In this chapter� we present two methods for �nding extremals of the motion planning
problem ��� numerically� We start with a short overview of numerical methods for optimal
control� We next present a numerical method for computing the extremals of the problem
of Bolza that was proposed by Gregory and Lin ����� The method �nds a solution that
satis�es the ��rst order� necessary conditions for the extremal� but can not distinguish
between a local minimum or a local maximum� We point to some shortcomings of the
method if it is applied to problems with equality and inequality constraints and propose
appropriate modi�cations� Next� we describe a novel method for direct minimization of a
cost functional� The continuous problem is discretized by using ideas from �nite�element
analysis� techniques from nonlinear programming are used to solve the resulting �nite�
dimensional optimization problem� We review the method of augmented Lagrangian for
solving constraint problems and Newton�s method for minimization� We show that the
expressions for the gradients that are used in minimization can be easily computed if the
proposed scheme is used to discretize the continuous problem� Finally� we discuss the
choice of cost functionals that can be used to formulate the motion planning problem and
demonstrate that the cost functional determines whether a motion planning or a trajectory
planning problem is solved�

��� Numerical methods for solving optimal control prob�

lems

A number of numerical methods have been developed over the years for solving optimal
control problems� Most methods were developed for speci�c applications and there is no
consensus on a good general method� The main classes of methods are�

� Indirect methods� The extremals are computed from the minimum principle ��rst�
order necessary conditions� by solving a two�point boundary value problem� The
most popular technique for solving boundary value problems is to guess the missing
initial values and improve the guess until the boundary values are matched� If the
initial guess is close to the exact solution� this method can be shown to converge� For
obvious reason� the technique is also called the method of neighboring extremals �����
The main drawback of the method is that it is very sensitive to the initial guess�

��



� Direct methods� The cost functional ���
� is minimized with respect to u directly by
computing the gradient �J

�u
� In analogy with the minimization of functions in �nite

dimensions� �rst order and second order gradient methods can be formulated� as well
as conjugate gradient algorithms� In the earlier methods ���� �
�� the gradient of
���
� with respect to u was computed by a procedure known as backward sweep and
the methods were conceptually very similar to the method of neighboring extremals�
More recent algorithms ��
� ��� ��� approximate the gradient directions of the original
problem by approximating it with a simpler optimal control problem� These methods
are robust and globally convergent� They usually deal with constraints by adjoining
them to the cost functional in the form of penalty functions�

� Discretization methods� The continuous problem is discretized and transformed into
a �nite�dimensional problem� In this way� the integral in ���
� becomes a �nite sum
and methods of �nite�dimensional mathematical programming can be used to �nd a
solution� Some methods only discretize the vector of controls ������ while the others
discretize both� the state and controls ������ Another possibility is to interpolate the
unknown functions with a set of basis functions �collocation methods� ����� As with
the direct methods� the constraints are often adjoined to the cost functional with the
penalty functions�

� Dynamic programming� The idea is to discretize the state space and compute the op�
timal value of the cost functional for each grid point taken as the initial state for the
optimization� This value is called the optimal return function ���� and is computed by
a recursive algorithm ���� Given the values of the optimal return function� it is easy
to construct an extremal starting at an arbitrary initial point� Dynamic program�
ming always produces a global minimum� but the computation becomes prohibitively
expensive as the dimension of the state space increases�

� An indirect method alternative to the neighboring extremals method is to solve the
two point boundary value problem resulting from the �rst�order necessary conditions
with a �nite di�erence methods ������ By its nature� it is a combination of the indirect
methods and discretization methods� the unknowns and the �rst�order necessary
conditions are discretized� so that a two�point boundary value problem is converted
into a system of algebraic equations�

In deciding which numerical method to use for our work� we were guided by a number
of criteria� Any realistic motion planning problem contains inequality constraints� The
method should therefore be able to easily handle such constraints� preferably without any
extra computations� Further� the method must be applicable to a wide variety of dynamical
systems that appear in robotic applications �redundant and over�actuated manipulators�
multiple cooperating manipulators� walking machines� etc��� It is also desirable that equal�
ity constraints �apart from the dynamic equations� can be handled without elimination of
variables� This is especially important when the system contains closed kinematic loops
resulting in kinematic closure equations that can not be solved analytically� Similarly� it
is advantageous if the dynamic equations can be implicit� Implicit equations are typically
obtained after elimination of Lagrange multipliers� which are used to derive dynamic equa�
tions for systems with constraints� Since most of these requirements can be met if the

��



motion planning problem is formulated as the problem of Bolza� we concentrate on the
methods that are appropriate for solving problems in this form�

��� First�order method for �nding the extremals

The aim of �rst�order methods is to �nd an extremal of the variational problem � that is� a
curve that satis�es the �rst�order optimality conditions� Since an extremal is not necessary
a minimum for the variational problem� these methods are usually used when we can get a
good initial guess for a minimizing extremal or in combination with a direct method after
this has approached the minimum�

Traditionally� the extremals are obtained by solving the Euler�Lagrange equations
���
��� However� the Euler�Lagrange equations only hold at points where the extremal�
X�t�� is smooth� At points where �X�t� has jumps �these points are called corners�� the
Weierstrass�Erdmann corner conditions ���
�� must be met� The location of the corners�
their number and the amplitudes of the jumps in �X are not known in advance so it is di��
cult to obtain a numerical method for a general problem using Euler�Lagrange equations�

An alternative way of computing the extremals was suggested by Gregory and Lin
����� They based their numerical method on the necessary conditions in the integral form�
Theorem ���� which says that if X�t� is an extremal� the �rst variation of the functional
������ must vanish for every piecewise smooth admissible variation Z�t��

Z t�

t�

���� �H
�X

	T

Z  

�
� �H

� �X

	T

�Z

�� dt � �� �
���

Since the Euler�Lagrange equations and the Weierstrass�Erdmann corner conditions are
derived from Equation �
���� no information is lost by proceeding this way�

In Proposition ���
 we showed that for any problem with side constraints we can
construct a problem with no side constraints that has the same extremals� In deriving
numerical method we therefore assume that we have to �nd an extremal for the variational
problem�

J � �" �X�t��� t��  
Z t�

t�

�L�X� u� t�dt� �
���

and there are no side constraints� Let the number of the unknown functions �dimension
of X� be M � To compute the solution numerically� we discretize the interval �t�� t�� with
a sequence of points t� � a� � a� � � � � � aN � t�� For simplicity� we assume that
ai � ai�� � h for i � �� � � � � N � Next� for k � �� � � � � N � � we introduce a set of piecewise
linear shape functions

�k�t� �

�����
t�ak��

h
if ak�� � t � ak �

ak���t

h
if ak � t � ak���

� otherwise�

�
�
�

A graph of the shape function �k�t� is shown in Figure 
���
Since Equation �
��� must hold for any admissible variation Z�t�� it must also hold if

the ith component of Z�t� equals �k and all the other components equal �� In this way� we
obtain a total of M �N � �� equations of the form�


�
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Figure 
��� Shape functions used in the numerical method�

Z ak��

ak��

�
� �Hi

�X
�k  

� �Hi

� �X
��k



dt � �� �
���

The integral can be split into two integrals�Z ak

ak��

�
� �Hi

�X
�k  

� �Hi

� �X
��k



dt  

Z ak��

ak

�
� �Hi

�X
�k  

� �Hi

� �X
��k



dt � �� �
���

These expressions can be approximated using only the values of the unknown function
X�t� at the mesh points� We approximate the integrals using the mean�value theorem ��
�
and replace the derivatives �X with �nite di�erence approximations�

�X

�
ak��  ak

�

�
�

X�ak��X�ak���

ak � ak��
� �
���

If the equations for all the components of X at point ak are assembled into a vector� we
obtain the following �vector� algebraic equation�

� �
h

�
�HX�

ak  ak��
�

�
Xk  Xk��

�
�
Xk �Xk��

h
� 

�H �X�
ak  ak��

�
�
Xk  Xk��

�
�
Xk �Xk��

h
�  

h

�
�HX�

ak��  ak
�

�
Xk��  Xk

�
�
Xk�� �Xk

h
��

�H �X�
ak��  ak

�
�
Xk��  Xk

�
�
Xk�� �Xk

h
�� �
���

where �HX and �H �X stand for
� �H
�X

and � �H
� �X
� respectively� But to use the mean value theorem�

functions �HX and �H �X must be continuous� While this is true for �H �X � function
�HX could

exhibit a jump discontinuity at the corners �points where �X is discontinuous�� However�
we can still argue that the approximation in �
��� is su�cient� There are only �nitely many
corner points and if the mesh is dense enough� we can show that the error we make in the
approximation is small�


�



If the values X�ak� are the unknowns� the above procedure yields M �N � �� equations
to compute them� For the variational problem� we also have �M boundary conditions�
either given as part of the problem or obtained from the transversality conditions ������ At
least formally� we thus have enough equations to compute all the unknowns� The following
�plausible� argument shows why these equations should also be su�cient to compute all
the unknowns� The variation Z�t� is piecewise smooth and each of its components can be
approximated with a sum �Zi �

PN
j�� zij�j�t�� As N increases� this approximation can be

arbitrarily accurate� Equation �
��� is linear in every component of Z�t�� so any equation
that can be obtained from this equation through the above discretization will be just a
linear combination of the equations of the form �
���� This indicates that if the original
integral equation completely speci�es the extremal� the algebraic equations �
��� specify
its values at the chosen discrete points�
The �nal outcome of the above process will be a set of M N nonlinear algebraic equa�

tions� We chose the Newton�Raphson method ����� to solve this system of equations� but
any suitable method could be used� An important property of the system of equations �
���
is that any equation only depends on the values of the unknown variables at three consec�
utive mesh points� The linearized system that has to be solved with the Newton�Raphson
method thus has a block�tridiagonal structure and the computational cost of �nding the
solution is signi�cantly reduced �see Section ��
��

����� State dependent equality constraints

Consider an optimal control problem with equality constraints� Without loss of generality�
we assume that inequality constraints are not present and that none of the equality con�
straints explicitly depends on the input� We also assume that the equality constraints are
independent� In other words�

rank
��g�� � � � � gk�

��x�� � � � � xn�
� k� �
���

but
��g�� � � � � gk�

��u�� � � � � um�
� �� �
���

As in the proof of Lemma ���� the optimal control problem is converted into the equivalent
problem of Bolza by de�ning�

x � X� �� � f � �X�

u � �X� �� � g�
�
����

The Hamiltonian is de�ned by�

�H � �L %T���  %
T
���� �
����

The matrix from Equation ������ can be therefore partitioned in the following way�

R �
�� �H �X�

� �H �X�
� ��� ���

�� �X�� �X��%��%��
�

���
�	 �H �X�

� �H �X�
���


�	 �X�� �X���� ���


���

�	 �X�� �X���� ���


��� � �
����


�



with the obvious understanding of the notation �	F�G

�	X�Y 
 when F � G� X and Y are vectors�

Clearly� the lower part of the matrix R is identically �� which means that the problem is
singular�

We conclude that equality constraints that only depend on the state can not be ad�
joined to the Hamiltonian �H directly� One way to overcome this problem is to replace the
constraint�

gi�x� t� � �� �
��
�

with the equivalent constraint�

�gi�x� �x� t� �
nX
j��

�gi
�xj

�xj � � and gi�x� t�jt� � �� �
����

If the matrix R in �
���� is still singular� we replace �x with the system function f�x� u� t�
�Equation ���� and repeat the same procedure until we arrive at an equation that explicitly
depends on the input� For the motion planning problems considered in this work� the
procedure always led to a regular problem�

Another complication that arises with the equality constraints that do not explicitly
depend on the inputs concerns the number of boundary conditions that can be speci�ed
for the problem� If k constraints do not depend on the inputs� these constraints completely
determine k states as a function of the remaining n � k states� assuming that �
��� holds�
Consequently� we only have n�k independent variables and we can specify at most � �n�k�
boundary conditions� On the other hand� each time a constraint is di�erentiated� we
obtain an additional boundary condition� Clearly� this new boundary conditions must be
consistent with the existing ones� otherwise the problem will not have a solution�

����� State dependent inequality constraints

In Section 
�
�� we mentioned that extremals for the problems with inequality constraints
typically contain corner points� At these points the extremals are not smooth and the
Lagrange multipliers can be discontinuous� According to Corollary ���� and Proposition
���
� the relation between the Lagrange multipliers corresponding to inequality constraints
for the optimal control problem and the variational problem is given by�

� � �&� �
����

where � is the multiplier for the optimal control problem and & the equivalent multiplier for
the problem of Bolza� If � has a jump discontinuity� �& will also have a jump discontinuity�
which means that & is continuous� Jump discontinuities in the multipliers � thus get
eliminated through integration when the optimal control problem is transformed into the
equivalent variational problem�
But if the inequality constraints do not depend on inputs� the problem gets more

complicated� Assume that there is a single inequality constraint�

h�x� t� � �� �
����

�It is straight forward to generalize our discussion to more than one constraint�� Jacobson et
al� ���� showed that when such inequality constraint is directly adjoined to the Hamiltonian







of the optimal control problem with a multiplier � �Equation ������ the integral of � can
have jump discontinuity where the constraint becomes active or ceases to be active� Since
the integral of � is equal to &� the later will be discontinuous� This violates the assumption
that the solutions of the variational problem are piecewise smooth which was used in
derivation of the numerical method in Section 
���
It appears that this problem can be avoided using an idea suggested by Jacobson and

Lele ����� We assume that h � Cp�� and that�

� dph
dtp

�u

� � and

� dih
dui

�u
� � for i � p� �
����

The number p� indicating how many times the constraint has to be di�erentiated before the
inputs explicitly appear� is called the order of the inequality constraint ����� The inequality
constraint �
���� is �rst transformed into an equality constraint�

h�x� t�  �� � �� �
����

with a slack variable �� Jacobson and Lele then took the sequence�

h �� � �

dh

dt
 
d ��

dt
� �

���
dph

dtp
 
dp��

dtp
� � �
����

and de�ned new state variables�

y� � �

y� � ��
���

yp�� �
dp���

dtp��
�
����

and a new input�

v �
dp�

dtp
� �
����

The initial values for the state variables y�� � � � � yp�� can be computed from the sequence
�
����� We will denote these initial values by y��� � � � � y

�
p��� We can therefore write the state

equations�
�y� � y� y��t�� � y��
�y� � y� y��t�� � y��
���

���
�yp�� � yp�� yp���t�� � y�p��
�yp�� � v yp���t�� � y�p��

�
����


�



If the state variables yi and the input v are substituted into the last equation in �
�����
the equation can be rewritten as�

dph

dtp
 
dp��

dtp
� G�x� u� y� v� t� � �� �
��
�

It is not di�cult to see that Equation �
��
�� together with the state equations and initial
conditions �
����� is equivalent to the original inequality constraint �
����� Further� the
equality constraint �
��
� explicitly depends on the new input v� It therefore appears that
we were able to avoid the problem of discontinuities of the unknown functions�
Further analysis of the resulting system shows that the problem is still there� We can

verify that y� is given by�

y� �
p
�h� �
����

Since y� � �y�� it follows that�

y� � �
�h

�
p�h� �
����

But on the constrained arc� y� is identically �� which implies that at point tc where the
system switches between the unconstrained arc h � � and the constrained arc h � �� the
values of y� are�

y�jt�c � lim
t�t

�

c

�
�h

�
p�h y�jt�c � � �
����

Clearly� in general the two values will not be the same and y� will have a discontinuity�
The method by Jacobson and Lele can be modi�ed to avoid the discontinuity of y��

We replace the equation de�ning y� in �
���� by�

y� �
d����

dt
�

d�y���

dt
� �
����

With this de�nition� the sequence of equations �
���� becomes�

h y�� � �

dh

dt
 y� � �

���
dph

dtp
 v � �� �
����

so that�

y� � �dh
dt
� �
����

Since we assumed that h � Cp�IR�� y� is continuous� It is also clear from Equation �
����
that all the other states yi are continuous� We can proceed in the same way as above to
formulate the optimal control problem�
Unfortunately� this derivation hides yet another problem� If we expand Equation �
�����

we obtain�

y� � �y� �y�� �
�
��


�



This is clearly a singular di�erential equation at y� � � hence the optimal control problem
derived with the above method is singular� The singularity is not a product of our method
and Jacobson and Lele point to it in ����� Intuitively� the singularity is the result of the
nature of the state inequality constraint� At the time the constraint becomes active� all
higher derivatives of the slack variable instantaneously become �� The method of slack
variables therefore invariably leads to singular problems� In numerical computations� the
singularity results in oscillations of the slack variable � at the junction of constrained and
unconstrained arcs� Because of the oscillations� the convergence of the Newton�Raphson
method becomes quite slow�

��� A direct method for solving the Bolza problem

The method from the previous section can deal with a general type of optimization problem
and is relatively easy to implement� However� as all indirect methods� it can not distinguish
between minima� maxima and in!ection points� In other words� even when the method
converges� the critical point might not be a local minimum� Furthermore� if we determine
that the resulting critical point is not a minimum� the only way to �nd a di�erent extremal
is to change the initial guess� This is clearly not a good way of solving optimization
problems� In this section� we develop a direct method for solving the Bolza problem that
always converges to a �local� minimum�

As we saw at the end of Section ��
� unconstrained formulation of the variational
problem de�ned in Proposition ���
 can not be a basis for an algorithm that directly
minimizes a cost functional� We have to deal with the constraints in some other way� There
exists a number of techniques in �nite�dimensional nonlinear programming for dealing with
constraints� Examples include penalty function methods� methods of feasible directions and
gradient projection methods ������ The basic idea is to build a sequence of approximate
solutions that converges to the exact solution� Most of the methods rely on the fact that
the space over which the function is minimized is closed and bounded� A closed and
bounded subset of a �nite�dimensional space is compact which implies the existence of an
accumulation point for the sequence� These methods can be usually also formulated in
an abstract setting and subsequently applied to the in�nite�dimensional case� However� in
passing to an in�nite�dimensional domain� even if the domain is closed and bounded it is
not necessarily compact� The existence of an accumulation point and convergence of the
method is thus not assured�

We follow an alternative approach to deal with the in�nite�dimensional domain� we
approximate the in�nite�dimensional problem with a sequence of �nite�dimensional non�
linear programming problems� Formally� one must show that the sequence of the solutions
of the approximate problems converges to the solution of the original problem �su�cient
conditions for this to be true are derived in �������

We defer the discussion on how to approximate an in�nite�dimensional problem with a
�nite�dimensional nonlinear programming problem until Section 
�
�
 and �rst concentrate
on methods for solving �nite�dimensional nonlinear programming problems�


�



����� Penalty functions and augmented Lagrangian

Suppose that we have a nonlinear programming problem�

min
x

L�x� subject to g�x� � �� �
�
��

where x belongs to a subset of a �nite�dimensional vector space� To convert this nonlinear
programming problem into an unconstrained problem we use the method of augmented
Lagrangian� The method was independently proposed by Hestenes ���� and Powell �����
and combines the features of the penalty function methods and Lagrangian methods ����
Its main advantage is that it is relatively simple to implement and that it can handle
nonlinear constraints� The main idea is to adjoin the constraint with a penalty function
to the Lagrangian to obtain the augmented Lagrangian�

Hc�x� �� � L�x�  �g�x�  
c

�
g�x��� �
�
��

It is not di�cult to see that�

inf
x
lim
c��

Hc�x� �� � inf
x
L�x�� �
�

�

An iterative scheme is obtained by exchanging inf and lim to compute�

lim
c��

inf
x
Hc�x� ��� �
�
��

It can be shown that under weak assumptions we can indeed exchange the minimization
and the limit process ���� We can then perform a sequence of minimizations�

min
x

Hck�x� �k�� �
�
��

by using a non�decreasing sequence of positive penalty parameters fckg� Let xk be a
solution to this minimization problem for the value ck� If the Lagrange multiplier � is �xed�
the penalty parameter c has to be increased to in�nity for the sequence xk to converge
to the solution of �
�
��� Further� we can show that the minimization �
�
�� becomes
increasingly ill�conditioned as c increases� However� if after each step �k is augmented by�

�k�� � �k  ckg�xk�� �
�
��

where xk is the solution of �
�
��� we can show that the method converges to the solution
of the original constrained problem for a �nite value of the penalty parameter ck� An
iteration consisting of a minimization step �
�
�� followed by augmentation of the Lagrange
multiplier �
�
�� thus represents a feasible numerical algorithm and can be shown to have
good convergence properties ����
If we have to satisfy an inequality constraint�

h�x� � �� �
�
��

we can use exactly the same procedure after converting the inequality constraint to an
equality constraint with a slack variable�

h�x� � � � �h�x� �� � h �� � �� �
�
��


�



At each step we then have to minimize�

min
x��

Hc�x� �� � min
x��

L�x�  ��h�x� ��  
c

�
�h�x� ���� �
�
��

But for any given x� the above minimization can be performed explicitly with respect to
�� By writing �� � z� we have�

min
z��

��h z�  
c

�
�h z��� �
����

The above function is quadratic in z with positive leading coe�cient� Its minimum� z�� on
the positive half�plane is attained at�

z� � maxf�����
c
 h�x��g� �
����

By writing�

p�x� �� c�
def
� h�x�  z� � maxfh�x����

c
g� �
����

the cost function becomes�

�Hc�x� � L�x�  � p�x� �� c� 
c

�
p�x� �� c��� �
��
�

The update rule for the Lagrange multiplier is therefore�

�k�� � �k  ck p�x� �� c� � maxf�� �k  ckh�xk�g� �
����

An advantage of this derivation is that by using �Hc�x� the slack variable � is completely
eliminated� �
In the case of two�sided constraints of the form�

� � h�x� � �� �
����

a similar procedure �see ��� pp� �������� for derivation� leads to the following expression
for the augmented Lagrangian�

�Hc � L�x�  p�h�x�� �� c�� �
����

where the penalty function p�h�x�� �� c� is given by�

p�h�x�� �� c� �

�����
�h�x�� ��

�
� c

��h�x�� ��
�

if � c�h�x�� �� � ��
�h�x�� ��

�
� c

��h�x�� ��
�

if � c�h�x�� �� � ��
���

�c otherwise�

�
����

The corresponding multiplier iteration is given by�

�k�� �

�����
�k  ck�h�xk�� �� if �k  ck�h�xk�� �� � ��
�k  ck�h�xk�� �� if �k  ck�h�xk�� �� � ��
� otherwise�

�
����

�The derivation is taken from ����
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����� Minimization by Newton�s method

Each iteration of the method of augmented Lagrangian requires minimization of a scalar
function� Consider the following minimization problem�

min
x

f�x�� �
����

The general scheme for any iterative minimization method is to �nd a direction of descent�
dk� and update the current solution by�

xk�� � xk  �kdk� �
����

The most popular methods include gradient method� conjugate�gradient method� New�
ton�s method and quasi�Newton�s method� The last three methods can achieve quadratic
convergence near the solution� All these methods are globally convergent� that is� they will
converge to a local minimum if one exists�
Di�erent methods di�er in the way how the descent direction dk is computed� For

the Newton�s method� the descent direction is computed by scaling the gradient with the
inverse of the Hessian�

dk � ��r�f�xk��
��rf�xk�� �
����

The motivation for this choice of dk is that it minimizes the second�order Taylor expansion
of the function f�x� around x � xk� Obviously� the Hessian must be invertible in order to
compute dk� Further� dk will be a descent direction only if the Hessian is positive�de�nite�
A practical scheme that avoids these problems is ����

Modi�ed Newton�s method� Choose�

dk � ��r�f�xk��
��rf�xk�� �
����

if �r�f�xk���� exists and the following tests are satis�ed�

rf�xk�T �r�f�xk����rf�xk� � c�jrf�xk�jp� � c� 	 �� p� 	 �

c�jrf�xk�j � j�r�f�xk��
��rf�xk�jp� c� 	 �� p� 	 ��

�
��
�

Otherwise� set�
dk � �Drf�xk�� �
����

where D is a positive de�nite scaling matrix and c�� c�� p� and p� are chosen constants �in
���� the suggested choice is c� � ����� c� � ��

�� p� � 
� p� � ���
The coe�cient �k in Equation �
���� can be chosen in a number of ways� One possibility

is�
�k � argmin

t
f�xk  tdk�� �
����

Another method which is often used in practice is the Armijo rule ����

Armijo rule� Choose scalars s 	 �� � � ��� �� and � � ��� ��� and set ak � �is� where i
is the smallest non�negative integer that satis�es�

f�xk�� f�xk  �isdk� � ���isrf�xk�Tdk� �
����

It is shown in ��� that the described scheme for choosing the descent direction dk combined
with the Armijo rule for choosing the coe�cient �k results in a globally convergent method�


�



����� Discretization

To approximate the in�nite�dimensional� continuous optimal control problem with a se�
quence of �nite�dimensional� nonlinear programming problems� we employ collocation tech�
niques complemented by the ideas from the �nite�element analysis� Collocation methods
treat the state variables and the inputs as unknowns and therefore produce larger systems
of equations than iterative integration schemes ���
�� which eliminate the state variables
by substituting the function of the input obtained through the numerical integration of
the system equations� However� in collocation� the constraints can be easily expressed and
we will demonstrate that it is easy to compute the gradient of the cost functional with re�
spect to the unknowns� In robotic tasks� state dependent constraints are practically always
present in the form of kinematic closure equations or as bounds on the range of motion of
individual joints� Collocation methods are thus well suited for discretizing motion planning
problems�

Take the Bolza form of the motion planning problem��

min
x

Z t�

t�

L �x� �x� dt�

subject to

��x� �x� � ��

g�x� � �� �
����

If the inequality constraints are present� they can be dealt with using methods from Section

�
���The problem is discretized by assuming that the unknown �vector� function can be
approximated with a set of basis functions�

xi�t� 

NX
j��

pji�j�t�� �
����

�xi�t� 

NX
j��

pji
��j�t�� �
����

The approximation of the function is required to be exact on the chosen set of grid points
t� � a� � a� � � � � � aN�� � aN � t��

xi�aj� �
NX
j��

pji�j�aj�� �
����

For simplicity� we assume that aj � aj�� � h for all j � �� � � � � N �
The approximating functions �j�t� form a subset of the basis for the space C��t�� t�� and

are assumed to be piecewise smooth on the interval �t�� t�� and smooth on each subinterval
�aj��� aj�� Let the values of the unknown xi at the grid points be fxjigNj�� and let (x be
the collection of these values� Further� let �x denote the approximation of the function x

�If the time t explicitly occurs it can be taken to be an additional state variable so that the system
becomes autonomous�

��



in Equation �
����� If the set f�jg is properly chosen� there will be a ��� correspondence
between the coe�cients pji and the values x

j
i and therefore between �x and (x� In this case�

the discretization of the unknown functions leads to the following approximation of the
optimization problem �
�����

min

x

Z t�

t�

L


�x� ��x� t

�
dt�

subject to Z aj

aj��

���x� ��x� dt � �� j � �� � � � � N

g��x�aj�� � �� j � �� � � � � N�

�
����

This is now a �nite�dimensional problem so we can use the augmented Lagrangian method
to deal with the constraints� As a result� we have to solve a sequence of optimization
problems�

min

x

Hc�(x� �� 
� �
����

where

Hc �
Z t�

t�

L


�x� ��x

�
dt

 
NX
j��

�
�j

T
Z aj

aj��

���x� ��x� dt 
c

�
k
Z aj

aj��

���x� ��x� dtk�
�

 
NX
j��

�

j

T
g��x�aj��  

c

�
kg��x�aj��k�

�
� �
��
�

and k�k is the usual Euclidean norm�

Choice of functions �j� A necessary condition for solutions of the discretized problems
to converge to a solution of the continuous problem is that�

lim
h��

�x� x� �
����

where the convergence is assumed to be in the norm�

kxkS � max
�t��t��

kx�t�k sup
�t��t��

k �x�t�k� �
����

In other words� as the discretization gets �ner� functions �j must approximate x arbitrarily
well� There are many possible choices for the appropriate set of functions� As we shall
see below� it is advantageous for the computation of the gradient if the shape functions
have localized support�� For our computations� we choose the triangular shape functions
described by Equation �
�
� and shown in Figure 
�� that were also used in the derivation
of the method in Section 
��� In this way� the function x is approximated by a piecewise
linear function� while �x is approximated by a piecewise constant function �Figure 
����
One of the properties of the triangular shape functions is that �j�ak� � �kj � where �

k
j

is the Kronecker symbol� As a result� the coe�cients pji in the approximation �
���� are

exactly the functional values at the grid points� pji � xji �

	Support of a function is the set suppf � Clfxjf	x
 �� �g� where Cl stands for closure�

��
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Figure 
��� Approximation of the state �a� and its derivative �b��

����� Computation of the gradient rHc

To simplify the computations� we will assume that the support of the approximating func�
tions �j is a subset of the interval �aj��� aj���� This is obviously the case for the triangular
shape functions �
�
�� We can rewrite Hc as�

Hc�(x� �
NX
j��

�
Ij�(x�  F j�(x�T

�
�j  

c

�
F j�(x�

�
 Gj�(x�T

�

j  

c

�
Gj�(x�

��
� �
����

where we have denoted�

Ij�(x� �
Z aj

aj��

L


�x� ��x

�
dt�

F j�(x� �
Z aj

aj��

���x� ��x� dt�

Gj�(x� � g ��x�aj�� � �
����

Further� let &j�(x� denote the function under the summation sign in �
�����

&j�(x� � Ij�(x�  F j�(x�T
�
�j  

c

�
F j�(x�

�
 Gj�(x�T

�

j  

c

�
Gj�(x�

�
� �
����

The assumption that the support of the function �j is a subset of �aj��� aj��� implies that
&j only depends on the values of �x at the grid points aj�� and aj � Therefore�

�Hc

�xji
�

�&j

�xji
 
�&j��

�xji
� �
����

We also have�

�&j

�xji
�

�Ij

�xji
 
n
�j  cF j

oT �F j

�xji
 

�

j  

c

�
Gj

�T �Gj

�xji
� �
����

Expressions �Ij

�x
j
i

� �F j

�x
j
i

and �Gj

�x
j
i

are matrices of partial derivatives� These matrices can be

computed directly except for the derivatives of the integrals Ij and F j � We therefore focus
on di�erentiation of a term of the form�

&j�(x� �

Z aj

aj��

�


�x� ��x

�
dt� �
����

��



Changing the order of di�erentiation and integration� we have�

�&j

�xji
�

Z ak

ak��

�
��

�xi
�j  

��

� �xi
��j

�
dt� �
����

Since � is in general nonlinear� this integral can not be evaluated analytically� The �rst�
order approximation is obtained by using the midpoint rule for the integration�

�&j

�xji

 h

�

��

�xi

�
xj��  xj

�
�
xj � xj��

h

	
 

��

� �xi

�
xj��  xj

�
�
xj � xj��

h

	
� �
��
�

The �rst�order approximation for ��j��

�x
j
i

is obtained in an analogous way�

�&j��

�xji

 h

�

��

�xi

�
xj  xj��

�
�
xj�� � xj

h

	
 

��

� �xi

�
xj  xj��

�
�
xj�� � xj

h

	
� �
����

Note the similarity of these expressions to the equation �
���� Derivation in this section
can thus be used as an alternative to the derivation in Section 
���

����� Computation of the Hessian r�Hc

We have the expressions for the gradient rHc� For the Newton�s method� we also need to
compute the Hessian r�Hc� Because of the large number of unknowns� it is not practical to
derive the analytical expressions for the entries of the Hessian� We therefore use a simple
forward di�erentiation scheme to compute these entries�

��Hc

�xji�x
l
k



�Hc	x��e

j
i



�xl
k

� �Hc	x
j
i



�xl
k

)
� �
����

In the equation� eji represents a matrix that has zeroes everywhere except in the component
�i� j��

����� Discussion

The main di�culty in �nding solutions of the optimal control problems is due to the
presence of corners� that is� points where the derivatives of the unknown function x�t�
exhibit jumps� It can be shown that at the corners the Lagrange multipliers can also
become discontinuous ������ Proposition ���� established that the minimum principle
is closely related to the �rst�order necessary conditions in the form of Euler�Lagrange
equations� Consequently� corners will represent the same problem for the optimal control
formulation as for the Bolza formulation�

Corners typically occur for problems with inequality constraints because the dimension
of the manifold on which the system evolves changes as the system passes between the
unconstrained motion and the constrained motion� If multiple constraints are present� the
dimension of the manifold will change each time one of the constraints becomes active or
ceases to be active� As the system passes between manifolds of di�erent dimensions� the
derivatives of the state typically change discontinuously�

�




Indirect methods implicitly assume smoothness of the extremals and solve the equa�
tions obtained from the �rst�order necessary conditions� These methods are therefore not
directly applicable to problems with inequality constraints� Similarly� direct methods in�
tegrate the system equations and the adjoint equations to compute the gradient directions
of the cost functional and are therefore sensitive to corners� too� In contrast� discretization
methods solve a �nite�dimensional problem and problems with corners do not arise�
We argued that the Bolza formulation is convenient for describing motion planning

problems� Consequently� we developed a numerical method that can solve the problem
in this form� The conversion of the optimal control problem into a variational problem is
fairly formal and can be easily automated� In this conversion� integrals of the inputs from
the optimal control problem become the unknown functions� These unknowns are thus
continuous� enhancing the numerical stability of the method�
The main disadvantage of the presented method is that it requires solving a sequence

of nonlinear programming problems� We described one possible technique for solving the
nonlinear programming problem to illustrate how a complete numerical algorithm for solv�
ing the motion planning problem can be implemented� By choosing a more sophisticated
method for dealing with constraints �for example� exact penalty functions� it is possible to
solve the nonlinear programming problem in one step� The presented framework for dis�
cretization of the continuous problem is thus independent of the method chosen for solving
the resulting nonlinear programming problem�

��� Choice of the cost functional

Choice of the cost functional depends on the nature of the task for which the motion is
planned� Quite often� requirements of the task are contradictory and the cost functional
represents a tradeo� between di�erent types of criteria� An example is time�optimal control
in robotics� while we wish to minimize the time for the robot motion� we also look for
smooth actuator forces so that the stress on the actuators and the mechanism is reduced�
These two requirements are contradictory since the time�optimal solution is typically bang�
bang� In this example� we have to trade between minimizing the time and maximizing the
smoothness of the actuator forces �see ��� ���� �
����

In the introduction we argued that methods based on minimizing a cost functional
are suitable for motion planning because they provide a uni�ed framework for resolving
kinematic and actuator redundancies� But we also saw that in certain cases the solution of
the variational problem was purely kinematic �for the cost functional ������ while in other
instances the solution depended on the dynamic equations �for cost functional ������� We
would therefore like to establish what properties the cost functional must possess to yield
an unambiguous solution for the actuator forces�

In this dissertation� we are mainly concerned with motion planning for rigid mechanical
linkages� The Lagrange equations for such systems can be written in the form�

I�q�*q  C�q� �q�  G�q� � B�q��  +�q�T�� �
����

where q is the vector of generalized coordinates of the system� � is the vector of actuator
forces� � the vector of constraint forces� I�q� the inertia matrix� C�q� �q� the vector of Coriolis
and centripetal forces� G�q� the vector of gravity terms� B�q� is the matrix that describes

��



how the actuators act on the system� and +�q� is the matrix describing the constraints�

+�q� �q � �� �
����

The inertia matrix I�q� is positive de�nite� so we can rewrite the dynamic equations for a
rigid linkage in the state space form� We de�ne�

x� � q u� � �

x� � �q u� � ��
�
����

and rewrite Equation�
���� as�

�x� � x� �
����

�x� � I�x��
����C�x�� x��� G�x��  B�x��u�  +�x��

Tu��� �
����

We must also satisfy the constraint equations�

+�x��x� � �� �
����

In Chapter � we saw that when the optimal control problem is reformulated as a varia�
tional problem� the actuator inputs become additional unknowns that have to be computed
as part of the optimization� We mentioned in Section ��
�� that the Euler�Lagrange equa�
tions for regular problems can be rewritten as a system of �rst order di�erential equations
in the unknown functions and so called canonical variables ������ and in general will yield
an extremal� For regular problems� the actuator forces can be therefore computed from
the Euler�Lagrange equations�
In many cases� the system function f depends on the inputs linearly� When there are

no additional equality or inequality constraints and the cost functional is de�ned as�

J �
Z t�

t�

uTu dt� �
����

then Huu � �I � where I is the m�m identity matrix and the problem is regular ��
��
This is one of the reasons that the cost functional �
���� is popular in the optimal control
community� The inputs in robotic systems are actuator forces and the cost functional
�
���� is often taken for a measure of energy consumed during the motion� The intuition
behind such interpretation is that torques produced with an electro�mechanical actuator
are approximately proportional to the current !owing through the motor and that the rate
of energy consumption is approximately proportional to the square of the current�

The minimum torque�change criterion�

J �
�

�

Z t�

t�

��T �� dt� �
��
�

used by Uno et al� ���
� to model human arm motion� also has the form of �
���� if we
de�ne�

u � �� �
����

and extend the state of the system with the actuator torques � � On the other hand� for
the minimum�jerk criterion�

J �
�

�

Z t�

t�

���
x
T ���
x dt� �
����

��



where x is the position vector� the state equations can be de�ned as�

x� � x
x� � �x
x� � *x

�x� � x�
�x� � x�
�x� � u�

�
����

This is a purely kinematic problem and is singular if the inputs are the actuator forces�
Therefore� it can not be used to compute the actuator trajectory�
It appears that also time�optimal control problems are singular since the cost functional

does not depend on the inputs�

J �
Z t�

t�

dt� �
����

However� for the time�optimal control we have to satisfy the constraints�

Umin � u � Umax� �
����

which become part of the side constraints �� It is not di�cult to check that because of the
constraints this problem is regular�
In many motion planning problems it is desirable to obtain motion plans that are

smooth� Smooth trajectories prevent jerky motions that can excite structural resonances
of the system and damage the mechanical structure or the actuators� It is customary to
take the L� norm of the derivative of a curve for a measure of its smoothness� At �rst it
seems that minimizing the L� norm of higher derivatives should produce a curve that is
even smoother� The following simple example shows that such conclusion would be wrong�
Suppose we are interested in smooth curves in IR

� between points ��� �� and ��� ��� It
is not di�cult to see that the curve x�t� that minimizes�

J� �

Z �

�
�x�dt� �
����

is the straight line x��t� � t� We would like to see which curve minimizes the integral�

J� �

Z �

�
*x�dt� �
����

On the straight line x��t� � t� the value of this cost functional is � and this is the global
minimum� Now suppose that the initial and �nal velocities for the curve are speci�ed to
be �� In this case� the curve that minimizes J� is the cubic x��t� � �� t�  
 t�� Because
we imposed additional boundary conditions on the curve� the value of the cost functional
J� increased� Of course� also the value of J� for the curve x��t� is higher than the value
for the curve x��t�� This example illustrates that it would be wrong to take L

� norm
of higher derivatives of a curve as a measure of smoothness� In deciding what order of
derivatives to use as a measure of the smoothness of a curve� we must be guided by the
boundary conditions that the curve has to match �in general� we must also consider other
constraints� and use the derivatives of the smallest possible order�

Minimum energy �
����� minimum torque�change ����� and minimum�jerk ����� func�
tionals can all be interpreted as measures of smoothness� the �rst two of the actuator
trajectories and the last of the kinematic trajectories� As demonstrated above� the �rst

��



two criteria are suitable for dynamic motion planning while the last can only be used for
kinematic motion planning� According to the above example� the criterion for measuring
the smoothness should be inferred from the boundary conditions that need to be satis�ed�
For robotic systems� we often want to assure that the actuator torques do not exhibit jumps
as we switch from one motion to another� This is the same as saying that the accelerations
at the junction points of di�erent arcs are the same� In general� if a boundary condition
for a variable needs to be speci�ed� the cost functional should depend on the derivatives of
the variable� If we need to specify the accelerations� the cost functional should either de�
pend on the derivative of the acceleration or if we wish to use the dynamics� the derivative
of the torques� Minimum�jerk and minimum torque�change functionals depend on these
derivatives� hence they can be very useful in robotics� Which of the two we pick depends
on whether we are interested in kinematic or dynamic motion planning�

��



Chapter �

Motion planning for two

cooperating robots

In this chapter� we study two manipulators cooperatively manipulating an object� We
wish to �nd smooth trajectories for the actuator torques hence the minimum torque�
change cost functional is used to formulate the motion planning problem� Motion plans
are computed for two cases� When the object is rigidly grasped� the manipulators can
exert arbitrary grasp forces and the motion planning problem is unconstrained� But when
the two manipulators hold the object with a friction assisted grasp� frictional inequality
constraints that only depend on the state must be satis�ed�

��� Dynamicmodel for two manipulators holding an object

We start by deriving the dynamic model for two manipulators holding a rigid object� Both
manipulators are assumed to have n links and n actuated degrees of freedom� but we
could easily extend the derivations to more general case� The interaction between each
manipulator and the object is assumed to be rigid� no relative motion between the object
and the manipulator is allowed� All degrees of freedom in the system thus correspond to
the degrees of freedom of the two manipulators� The motion of the object is described in
a m�dimensional con�guration space� where m � 
 for the planar case and m � � in the
spatial case� �See Figure ��� for a case when n � 
 and m � 
��

Dynamics of the two manipulators is described by the following equations�

I�����*��  C����� ����  G����� � �� � +�����TF�
I�����*��  C����� ����  G����� � �� � +�����TF� �����

where �i is the n� � vector of the joint coordinates of the ith �i � �� �� manipulator� Ii��i�
is the n � n inertia matrix� Ci��i� ��i� is the n � � vector of nonlinear terms �Coriolis and
centrifugal forces�� Gi��i� is the n� � vector of gravity terms� �i is the n� � vector of the
joint torques� +i��i� is the n�m Jacobian matrix relating the velocity of the center of mass
of the object in the con�guration space to the joint velocities of the manipulator i and Fi
is the m�� generalized force vector in the con�guration space� consisting of the forces and
the moments about the center of mass exerted on the object by the manipulator i�

��



The dynamics of the object in the con�guration space is given by�

M *p � F�  F� �����

where M is the m�m inertia matrix of the object and p is the m� � vector representing
the position,orientation of the object in the con�guration space�
The two manipulators completely restrain the motion of the object� forming a closed

kinematic chain� The kinematic closure equations can be obtained by expressing the posi�
tion of the center of mass of the object �which is �xed with respect to the robot end�e�ector�
as a function of the joint coordinates of each robot� If p����� is the position vector of the
center of mass of the object expressed as a function of the joint coordinates of the �rst
robot and p����� the position vector of the center of mass of the object expressed as a
function of the joint coordinates of the second robot� then the kinematic closure equations
can be written as�

p������ p����� � �� ���
�

By de�ning�

g���� ��� � p������ p������ �����

it is easy to see that�

+� �
�g

���

+� � � �g

���
� �����

The closed kinematic chain has �n�m degrees of freedom� If r degrees of freedom are
required to perform the task� the task can be performed as long as r � ��n�m�� If strict
inequality holds� the linkage is kinematically redundant for the given task� There are also
�n actuators at our disposal for moving the joints� The system is therefore over�constrained
and m actuators are redundant�
In dynamics� the interaction forces F� and F� due to the holonomic constraint ���
�

are also called the Lagrange multipliers� The fact that the closed chain is over�constrained
and possesses m surplus actuators implies that the interaction forces that do not a�ect
motion of the linkage can be exerted on the object� Such forces are called the internal
or preload forces and are typical in tasks such as walking� grasping and multiple�arm
coordination during which closed kinematic chains are formed� Internal forces can be
understood through an example where two force sources act on a rigid object �Figure �����
For the case of manipulation with two arms� the two sources are the two arms� Assume
that the object is a point mass and that the two sources exert forces F� and F� on the
object� The object moves according to the equation�

m*p � F�  F� �����

where m and p denote the mass and the position of the object� respectively� Now assume
that the exerted forces are changed to F �� � F�  % and F �� � F� � %� Obviously� the sum
of the forces does not change�

F ��  F �� � F�  F��

��



so the motion of the object will not be a�ected by the force %� The force % is thus an
internal force� Assuming that each source contributes the same share to the motion of the
object� we can write�

F� �
F

�
 %

F� �
F

�
� % �����

and the internal force is given by�

% �
�

�
�F� � F��� �����

When we have n actuators operating in a linkage with r degrees of freedom� r � n� the set
of internal forces is in general a vector space of dimension n � r�

F2

F1

Figure ���� Internal force in an over�actuated system�

In robotics� kinematic and actuator redundancies are typically resolved with some sort
of local optimization ���� ���� The advantage of such schemes is that they can be used
on�line as the motion is executed� However� they require a separate trajectory planning
phase� Instead� by choosing a suitable cost functional and solving the resulting variational
problem� trajectory planning and redundancy resolution are performed at the same time�
The resulting motion plan is globally optimal and can be subsequently used to simplify
the control �����

��� Motion planning for two planar cooperating arms

We turn our attention to the case of two 
�R manipulators moving an object in the hori�
zontal plane as shown in Figure ���� Each manipulator has three actuators �n � 
�� The
object moves in the plane and m � 
� hence the system has �n �m � 
 degrees of free�
dom� The task is to arbitrary position and orient the object in the plane� Three degrees
of freedom are required to perform the task� so r � 
 and we have no kinematic redun�
dancy� All joints of the robots are actuated� yielding a total of � actuators� In general�
only 
 are required to move the linkage� which leaves 
 surplus actuators and gives rise to
a three�dimensional space of internal forces�

Since the closed kinematic chain is not kinematically redundant� the matrices +� and +�
in equations ����� are invertible and the forces F� and F� can be expressed from Equation
������ In the planar case� these forces have the form�
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Figure ���� Two planar 
�R arms holding an object�

Fi �

��� Fix
Fiy
T

��� � �����

where Fix and Fiy are the x and y components of the Cartesian force and T is the moment
that the contact force produces around the center of mass of the object� Similarly� the
object inertia matrix becomes�

M �

��� m � �
� m �
� � Ic

��� ������

where m is the mass of the object and Ic the moment of inertia of the body around the
center of mass� By replacing the forces F� and F� in Equation ����� with the expressions
obtained from Equation ����� and expressing the position of the center of mass of the
object as a function of the joint variables of the �rst robot� p � p������ a single equation
describing the dynamics of the closed chain is obtained�

M�+�*��  �+� ���� � +
�T
� ��� � I�����*�� � C����� �����  +

�T
� ��� � I�����*�� � C����� ������

������

We neglected the gravity terms given that the system moves in the horizontal plane�
Next� we de�ne the cost functional� We consider the task of moving the object from

an initial position to a �nal position along smooth trajectories so that the initial and �nal
accelerations are �� As discussed in Section 
��� to satisfy boundary conditions on the
acceleration� the cost functional must depend on the derivative of the position variables of
the order 
 or more� One possible choice is the minimum�jerk functional�

J �

Z t�

t�

�
���
p
T ���
p �dt� ������

��



The vector p denotes the position of the object in the task�space� Analytic expressions for
the kinematic trajectories that minimize the minimum�jerk cost functional can be readily
calculated and are �fth�order polynomials �����
The system of the two manipulators holding an object is over�actuated� Therefore�

�nding the kinematic trajectories is not enough to uniquely determine the actuator forces�
To compute the actuator forces through the optimization we have to use� loosely speaking�
a dynamical equivalent of the minimum�jerk cost functional� In this way� we obtain the
minimum torque�change functional�

J �
�

�

Z t�

t�

��T �� dt� ����
�

where � is the vector of the actuator forces �see Equation ������ Since the equation for the
acceleration depends on � � the minimum torque�change functional can be intuitively un�
derstood as replacing the jerk with �� to make the cost functional depend on the dynamics�
We therefore require smoothness of the actuator forces and not directly smoothness of the
trajectory of the object�

����� No constraints on the interaction forces

When no constraints are imposed on the interaction forces Fi� the optimal control problem
is completely de�ned by the dynamic equations ������� constraints ���
� and the cost
functional ����
�� However� the dynamic equations ������ have to be rewritten as a system
of �rst order di�erential equations� We introduce a vector of unknowns�

�
X�

X�



�

�����
��
��
���
���

����� ������

which implies�
�X� � X�� ������

We further de�ne�

X� �

�
��
��



� ������

With this de�nitions� Equation ������ can be rewritten as�

I�X�� �X�  C�X�� X��  B�X��X� � �� ������

where

I�X�� �
h
M+�  +

�T
� I��+

�T
� I�

i
C�X�� X�� � M �+� ���  +

�T
� C�  +

�T
� C�

B�X�� �
h
�+�T� ��+�T�

i
� ������

With the de�nition ������� the cost functional ����
� becomes�

J �
�

�

Z t�

t�

�XT
�
�X� dt� ������

��



Note that the matrix I in Equation ������ is not a square matrix and is therefore not
invertible� However� for the Bolza formulation of the optimal control problem the dynamic
equations need not be explicit so we can directly apply the methods from Chapter 
�
Finally� as discussed in Section 
����� the holonomic constraints ���
��

g���� ��� � ��

must be di�erentiated to obtain a regular problem� After di�erentiation and using Equation
������ the constraint becomes�

+� ���  +� ��� � �� ������

In addition� we have to enforce the initial condition�

g���� ���jt� � �� ������

The optimal control problem is not completely speci�ed without the boundary con�
ditions� The initial and the �nal positions of the object are speci�ed� Furthermore� we
require that the object is at rest at the beginning and end of the motion� Therefore�

X��t�� � X�� X��t�� � ��
X��t�� � X� X��t�� � ��

������

For the manipulation task we require that the initial and �nal accelerations of the object
are �� Hence� there are three ways to specify the boundary conditions for the torques�

�� The actuator forces at the initial and the �nal time are arbitrarily speci�ed subject
to the requirement that the initial and the �nal accelerations are ��

�� The internal force at the initial time is speci�ed while the object�s initial acceleration
is �� The object�s acceleration at the �nal time must be � but the internal force is
not speci�ed� Alternatively� the acceleration at the initial time could be set to zero
and the forces and the accelerations speci�ed at the �nal time�


� The acceleration of the object at the initial and at the �nal time must be �� No
internal forces are speci�ed�

The �rst case is the easiest to implement� the other two cases require some additional
work to determine the transversality conditions �see ����� pp� 
����� When the boundary
values for the actuator forces are not directly speci�ed� they are computed from these
transversality conditions as part of the optimization�
We have not speci�ed whether the �nal time t� is given in advance or has to be com�

puted� For simplicity� take t� � � and assume that we computed the extremal for the �nal
time t�� Suppose we want to compute the extremal for the �nal time �t�� where � � t���t�� It
can be veri�ed that if ��t�� ��t� � ���t� and ��t� satisfy the side constraints and the bound�
ary conditions on the interval ��� t��� then ���t� � ���t�� ���t� � � ���t� and ���t� � �� ���t�
is a solution on the interval ��� �t��� Further� if�

J �
�

�

Z t�

�
��T �� dt� ����
�

�




where � is the input computed for the extremal� the value of the cost functional for the
new time �t� � t��� is�

�J �
�

�

Z �t�

�

���
T ��� d�t �

�
�

��

Z t�

�
��� ���T ��� ��� dt � ��J� ������

Therefore� as the time t� increases� the cost decreases with factor �
� �� � ��� It follows

that�

lim
t���

J � �� ������

In summary� the �nal time t� has to be �xed for the problem to be well�posed� For any
other �nal time �t�� the solution can be obtained by appropriate scaling of the solution for
the �nal time t��

Another interesting observation that follows from the above is that if X��t� is an
extremal for the boundary values X�t�� � X� and X�t�� � X�� then the extremal for the
boundary values X�t�� � X� and X�t�� � X� is given by X��t� � t�� This can be useful
in verifying the correctness of the numerical solutions�

����� Frictional constraints on the interaction forces

The situation where the object is completely restrained by the two robots so that arbitrary
forces can be exerted on the object seldom occurs in the cooperating task� If the object
is to be grasped rigidly� special grippers have to used and such grippers can not grasp
objects of arbitrary shape� Instead� it is more common to restrain the motion of the object
with frictional forces� With such grasp� the normal forces must be positive and they must
produce su�ciently large frictional forces to completely immobilize the object�

We perform the analysis of the frictional contact in the contact frame� The origin of this
frame corresponds to the point of contact of the robot with the object �or the centroid of
the contact area if this area is not a point�� the x axis corresponds to the inward normal to
the surface of the object and the y axis to the tangent� The contact force Fi is transformed
to the force cFi in the contact frame according to�

cFi � R��i�Fi� ������

where the 
 � 
 screw transformation R��i� transforms the forces from the coordinate
frame at the center of mass of the object �with the axes parallel to the inertial frame�
to the contact frame at the contact point i� Contact forces are computed from Equation
������

Fi � +
�T
i



�i � Ii��i�*�i � Ci��i� ��i�

�
� ������

We denote the normal and tangential components of the contact force cFi by
cFin and

cFit � respectively�

cFi �

��� cFin
cFit
cT

��� � ������

��



Normal force must be positive in order to produce the frictional force� The �rst constraint
is therefore�

cFin � �� ������

Tangential forces are frictional forces� If 
 is the coe�cient of friction� the tangential forces
hence satisfy�

jcFit j � 
F�n � ���
��

The last inequality can be rewritten as a pair of constraints��

cFit � 
Fin � �
Fin �cFit � ���
��

We can rewrite the frictional contact constraints in a matrix form�

D cFi � �� ���
��

where D is a constant 
� 
 matrix�

D �

��� �� � �
�
 � �
�
 �� �

��� � ���

�

Therefore� in their �nal form� the inequality constraints describing a frictional contact� are�

DR��i�+
�T
i



�i � Ii��i�*�i � Ci��i� ��i�

�
� �� i � �� �� ���
��

Note that because of the choice of the cost functional� the torques � are part of the state
and the inequality constraints do not depend explicitly on the inputs�

��� Numerical results

To solve the optimal control problem� we follow the method from Section 
��� In this
example� the method produced a local minimum �we established this by checking the
second order necessary conditions� so we did not use the more sophisticated method from
Section 
�
� We de�ne the Hamiltonian �H according to Equation ����
� and Proposition
���
� Subsequently� a system of algebraic equations of the form �
��� is obtained� The
vector of unknown functions X has dimension ��� The dynamic equations ������� ������
and the constraints ������ de�ne �� side constraints which are adjoined to �H with ��
multipliers� A total of 
� unknown functions must be therefore computed to obtain an
extremal�

When the contact forces are constrained� we proceed as before except that the con�
straints ���
�� are transformed into equality constraints with the slack variables and ad�
joined to the Hamiltonian with the Lagrange multipliers� The number of unknown func�
tions when the inequality frictional constraints have to be taken into account thus increases
to ���

Any suitable numerical method can be used to �nd a solution of the system of algebraic
equations �
���� We decided to use the Newton�Raphson method� The idea of the method

�In the spatial case we can write cF �
it � ��F �

in �

��



is quite simple� We want to �nd a zero of the �vector� function F �x�� If x� is the current
approximation of the solution� we are looking for a correction )x such that�

F �x�  )x� � �� ���
��

The �rst�order Taylor expansion yields�

F �x�  )x� 
 F �x��  
�F

�x

����
x�

)x� ���
��

which implies that a good approximation to the desired vector of corrections is�

)x 
 � �F

�x

��
�����
x�

F �x��� ���
��

In each iteration we have to compute and invert the matrix of gradients E � �F
�x
� Since

the number of unknowns �dimension of the system of algebraic equations� is MN � where
M is the number of unknown functions and N the number of mesh points� inversion of
the matrix E is a time consuming process� However� Equation �
��� only depends on the
values of the unknown functions at three adjacent mesh points� Matrix E is therefore
block�tridiagonal and can be inverted in time O�NM�� instead of O�N�M���
The second simpli�cation in our numerical scheme involves computation of the entries of

E� This entries should be computed analytically� For any problem of practical signi�cance�
Equations �
��� are already quite complicated and computation of the partial derivatives
would be a laborious process� The entries in E are therefore computed numerically using
forward di�erence scheme ������

For the simulation� the twomanipulators were assumed identical and they were modeled
by the human arm� The dimensions of the manipulators were�

Link Length Mass Inertia
m kg ���� kg m�

� ���� ��� ����

� ���� ��� ���


 ���� ��� ��


The object was a rectangle of length ���m� width ���m� mass ��
kg and moment of inertia
��� ���� kg m�� The coe�cient of friction was 
 � ��� when frictional constraints were
taken into account� Duration of motion was �s�
As discussed in Section ������ boundary conditions for the actuator forces can be de�

termined in di�erent ways� For numerical simulations� we speci�ed the initial preload
�compressive� force and enforced zero acceleration at the beginning and end of the motion
�case � on page �
��

Figure ��
 compares the trajectories of the unconstrained motion �dotted� with two
constrained motions� one with the normal preload force of ���N �solid� and the other ���N
�dashed�� The �gure shows that the trajectory is curved for the unconstrained case and
it is almost a straight line for the two constrained cases� Varying the preload force only
slightly changes the trajectory�

��
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Figure ���� Optimal distribution of the
torques for the preload force of ���N�

The calculated optimal distribution of the torques for the constrained case with the
preload force of ���N is shown in Figure ���� The numbers denote the joints of the robots�
the �rst three corresponding to the �rst robot and the last three to the second robot� The
�gure indicates that because of the constraints on the contact forces� the torques do not
change smoothly at the junctions of constrained and unconstrained arcs �compare with
Figure ����� The inputs �torque derivatives� are continuous but not smooth� Analysis
of the normal forces �not presented on the �gure� shows that the constraint ������ never
becomes active� the normal force is always strictly greater than ��
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Figures ��� and ��� show the ratios of the frictional and normal forces for the two
constrained motions� The ratios clearly show when the constraints are active� On Figure
��� we can see that the tangential force at the right contact has two constrained portions�
with unconstrained parts at both endpoints and in the middle� There are four points at
which the unconstrained and the constrained arcs are joined together implying that there
are � corner points� Similar analysis shows that � additional corner points occur because
of the frictional constraint for the left arm� We can also see that both arms simultaneously
move along constrained arcs for a period of time in the �rst half of motion� The system as a
whole thus exhibits quite complicated behavior as the number of active constraints changes
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throughout the motion� Figure ��� shows that the behavior of the system changes when
the preload force increases� Increased preload force results in a considerable normal force�
giving �more room� to the frictional component� Consequently� there are fewer regions
where the constraints are active and each tangential contact force only saturates once�
The comparison of the two constrained motions also shows that it is di�cult to predict
the structure of the solution and the number of corner points�

��� Discussion

We studied the example of two arms manipulating an object through frictional point
contacts� The task was to �nd a dynamically smooth trajectory for the system while
optimally distributing forces between the actuators� To satisfy boundary conditions on
the accelerations� inputs to the system had to be the derivatives of the actuator forces� As
a result� inequalities representing the frictional constraints only depended on the state�
This example is representative of tasks such as multi�ngered grasping� multiarm ma�

nipulation� walking and running� In the past� such problems have been typically solved
using local optimization schemes in which the task space trajectory is determined inde�
pendently� often in an ad hoc fashion� In contrast� our method provides globally optimal
solutions for the force distribution �actuator forces� as well as for the joint trajectories�

Several advantages of solving the optimal control problem by converting it into a vari�
ational calculus problem are apparent from the example� The variational formulation
allowed us to use Equation ������ directly� without rewriting it in the state�space form�
Such implicit di�erential equations are obtained whenever the Lagrange multipliers are
eliminated from the dynamic equations� To transform the system into the state�space
form� we would also have to eliminate the extra state variables using the kinematic clo�
sure equations� Such elimination is not feasible unless the robot kinematics is analytically
invertible�
In the variational calculus problems� Hamiltonian is allowed to depend on the deriva�

tives of the unknowns� For this reason we did not eliminate the accelerations *�� and *��
from the constraint equations ���
��� This again simpli�es the formulation of the problem�

We conclude this chapter with a brief note about the computational e�ciency of the
numerical method� For quite arbitrary initial guess �straight lines between the boundary
values where these are known� zero functions otherwise� about �� steps of Newton�Raphson
method were performed to obtain the solution with the accuracy ����� The number of
iterations did not vary with the number of discretization points� For ��� points� each
Newton�Raphson iteration involved calculating the coe�cients and solving a system of
���� � ��� � �� linear equations� This computation takes approximately ��s on Silicon
Graphics Indigo ��
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Chapter �

Modeling of human two�arm

motion planning

Motion planning for robotic systems and modeling of principles that govern motion plan�
ning in humans are complementary problems� in the �rst case we try to generate the
trajectories for the system� while in the second case we measure the trajectories and try to
discover how they were generated� A principle that governs human trajectory generation
can be used for robot trajectory planning� In this chapter we proceed in the other direc�
tion� we try to model human trajectory generation using principles that were developed
for robot motion planning�

Based on studies of single arm reaching in humans� Flash and Hogan ���� suggested
that the central nervous system uses an optimality criterion to plan the trajectory� They
observed that medium speed� large amplitude� unconstrained planar motions for a single
arm can be well described with trajectories minimizing the integral of the jerk� These
minimum�jerk trajectories ���� depend only on the kinematics of the task� Kawato et al�
���
� ��� proposed an alternative cost functional to model human trajectory generation�
the integral of the norm of the vector of derivatives of the actuator torques� This cost
functional� called the minimum torque�change criterion� takes into account the dynamics
of the system� According to the studies of coordinated manipulation with two arms by
humans ����� the success of the minimum�jerk model in accounting for two�arm trajectories
is limited� In this chapter we investigate if the minimum torque�change criterion better
describes trajectories for human two�arm manipulation� We present experimental obser�
vations for the task of positioning and orienting an object �rmly grasped by two hands�
Three types of motions are analyzed and it is demonstrated that during these motions the
force distribution between the two arms is asymmetric and depends on the con�guration�
The model developed in the previous chapter for planning the motion for two cooperating
manipulators is proposed for modeling of the data� Because of the asymmetry of the force
distribution� the model is only applied when the manipulation task is symmetric for the
two arms� For such motions� kinematic features of the trajectories and force distribution
between the two arms observed in humans are well predicted by the model�
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��� Experimental results

Two�arm planar motions of human subjects were recorded using the three degree of freedom
planar passive manipulandum shown in Figure ���� The apparatus consists of three links�
connected by revolute joints� The third link is a handlebar that can rotate around its center�
Three optical encoders mounted at each joint are used to record the manipulandum joint
angles� Six axis force sensors are mounted underneath each handle� allowing measurement
of the forces and torques exerted on the handles by the subject� The encoders and the
force sensors are sampled at ��� Hz�
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Figure ���� Experimental setup�

The subject is seated in front of a transparent Plexiglas plate and �rmly grasps the
two handles of the handlebar �Figure ���a�� The plate lies horizontally at the level of the
subject�s chin� Four target sets are mounted on the plate as shown in Figure ����d� Target
� is 
�cm in front of the subject�s chest� Target � �Target 
� is displaced by ���cm forward
and ��cm to the left �right� of Target �� and Target � is displaced ����cm forward with
respect to Target �� Each target set consists of arrays of light emitting diodes �LED�s�
that can specify target positions and orientations �Figure ���c�� For detailed description
of the experimental setup we refer the reader to �����

During the experiment� the room was darkened and a computer generated sequence of
target con�gurations was displayed� Subjects were instructed to move the handlebar at
their preferred velocity to the position and orientation speci�ed by the lit targets� They
were instructed to prevent slippage between the hands and the handles and to keep the
elbows in the shoulder plane �so that a ��� correspondence between the manipulandum
joint angles and the shoulder� elbow and wrist angles of the human arms was established��
In all the experiments reported here� the subjects were instructed to keep the handlebar
parallel to the frontal plane� Four subjects participated in the study� two right�handed�
one left�handed and one ambidextrous� Three types of motions were studied� a� motions
parallel to the frontal plane �� � 
 and 
 � � in Figure ���a�� b� motions in the sagittal
plane ��� � and �� ��� and c� oblique motions ��� � and �� 
�� Velocities and forces
exerted on the handles by the left and the right arm were studied for each motion�

All quantities are expressed in a coordinate frame located at the �rst target with the
x�axis normal to the sagittal plane and pointing to the left and y�axis normal to the frontal
plane and pointing forward� Only those components for which the prescribed amplitudes
were non�zero are considered �e�g�� the y components of motions parallel to the frontal
plane are disregarded�� These components will be referred to as �signi�cant components��
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Because of the large number of measured trajectories� we only present some representative
plots to give an idea of the experiments and the data that was collected�

����� General observations

Velocity pro�les� Some examples of normalized velocity pro�les are shown in Figure
��� for di�erent subjects� Only the signi�cant components are shown� The velocity pro�les
are bell�shaped but the shape is not symmetric and the peak occurs on average at around
�
- of the duration of motion� The rise to the peak is steeper than the fall to zero� Since
the subjects did not have visual �end�point� feedback of the handle� it is not clear whether
this e�ect can be attributed to a slowing down in order to achieve accurate positioning�
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Figure ���� Sample plots of normalized velocity pro�les measured during the experiments�

Force pro�les� Some representative plots of the normalized signi�cant components of
the total force acting on the handle are shown in Figure ��
a� The forces exerted on
the object are roughly sinusoidal� The force pro�le for a particular subject is in general
invariant with respect to the direction of motion� but it varies from person to person�
In part� this di�erence can be attributed to di�erent speeds at which di�erent subjects
performed the motions� At higher speeds �solid line in Figure ��
a�� the pro�le is roughly
symmetric with the peak and the following valley having approximately the same duration
and amplitude� At lower speeds� the peak was considerably sharper and higher than the
valley�

Force distribution� Representative trajectories showing the axial component of the
internal forces �Fa� are shown in Figure ��
b� During motions with components in the x
direction� the internal force component was nonzero� In other words� the distribution of
forces between the two arms in the x direction is asymmetric� In contrast� the arm forces
in the y direction were roughly equal�
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Figure ��
� Sample plots of the measured forces� a� Total force acting on the object� b�
Internal forces in the axial direction�

Remark ��� Some of these observations are a natural consequence of the physics of the
task and are not surprising� If the object is at rest at the beginning and at the end of
motion� and the manipulation task is otherwise unconstrained� one can expect to see a
bell�shaped velocity pro�le� The shape of the force pro�le is linked to the shape of the
velocity pro�le because the total force is proportional to the acceleration� If the velocity is
bell�shaped� the acceleration will be sinusoidal� The symmetry of the force distribution in
the y direction can also be explained� The subjects did not exert large torsional moments
at the handles which implies that it is not possible to exert internal forces with signi�cant
components in the y direction�

����� Motions in the sagittal plane

The Cartesian trajectories of the object for motions that are nominally in the sagittal
plane are shown in Figure ���a� Inward trajectories �solid� are shown shifted to the left so
that they can be compared to the outward trajectories �dotted�� An interesting observation
is that the trajectories are always curved� Further� outward trajectories ��� �� curve in
the opposite direction as inward trajectories �� � ��� For both� left and right�handed
subjects� outward trajectories curve to the right while inward trajectories curve to the
left� The corresponding internal forces �axial component only� are shown in Figure ���b�
The axial component of the internal forces a�ects the forces in the x direction� When the
subjects moved inwards� they exerted compressive forces �positive internal forces� on the
handle� while on the way outwards the handle was in tension �negative internal forces��
This appears to be due to the natural tendency of the arms to move closer together on the
inward path� while on the way outward they tend to move apart� Analysis of the individual
arm forces �not shown� indicates that in all cases the force exerted by the right arm had
slightly higher amplitude �this was also true for the left�handed subject�� Thus� for the
inward motion� when the arms compress the handle� we can expect the trajectory to curve
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Figure ���� Motions in the sagittal plane� a� Trajectories for inward �solid� and outward
�dotted� motions� b� Internal forces in the axial direction�

toward the left as corroborated by our observations� A similar argument can be made for
the outward motion�

����� Other motions

For motions parallel to the frontal plane and oblique motions� the amplitude of motion in
the x direction is large� Common to all motions with large amplitude in the x direction
is the asymmetry of the forces in the x direction and presence of relatively large internal
forces �the axial component�� Figure ��
b shows that the internal forces tend to start at
zero� become compressive �positive� for a short period and are afterwards tensile �negative��
This behavior can be observed for left and right�handed subjects� Hence there is no ground
to believe that the dominance of one arm over the other plays an important role in the
distribution of forces� It is also interesting that the total force exerted on the object does
not vary much from subject to subject� but the distribution of the forces between the two
arms varies greatly�

��� Optimal forces and trajectories predicted by the model

Human two�arm manipulation task is modeled by two 
�R planar manipulators holding a
rigid object� Motion planning for this system was studied in Chapter �� During the exper�
iments� the subjects �rmly grasped the handle of the manipulandum� No constraints on
the contact forces are thus assumed in the model �this case was described in Section �������
We have seen in the previous section that the force distribution in the x direction varies
from subject to subject� Only for the motions in the sagittal plane the variability is small
so we limit the comparison of the model with the experimental data only to this case� We
chose a typical data set for a sagittal plane motion� �� �� From this data set we obtained
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the boundary values for the optimization and then calculated the minimum torque�change
trajectories� The physical dimensions of the arms for the optimization were taken from the
measurements of the subject� Dynamic parameters �mass and moments of inertia� of the
human arm were calculated from the normalized anthropometric measurements reported
by Winter ���
��

Velocity vs. normalized time
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Figure ���� Comparison of the measured velocity pro�les �solid� with the velocity pro�le
predicted by the model �dashed��

Figure ��� compares the velocity pro�les predicted by the simulation �dashed� with
the measured ones �solid�� As expected� the simulation predicts that the velocity in the
x direction will be close to �� It is slightly curved because the measured initial and �nal
points did not have the same x coordinate� The measured x velocity pro�le� on the other
hand� considerably deviates from � because the measured trajectories are curved �Figure
���a�� The predicted and observed y�velocity pro�les have similar shapes� but there is also
some discrepancy between the two� the measured trajectory reaches the valley at �
-
of movement duration� while the computed trajectory attains its minimum at �
-� This
disparity is also re!ected in the amplitudes�

The comparison of the measured forces with those predicted by the simulation is shown
in Figs� ���a and ���b� The agreement between the simulated and the measured forces is
reasonable except for the force exerted by the right arm in the x direction where it is poor
�Figure ���b�� This discrepancy is due to an apparent dominance of the right arm over
the left arm which was observed for both� left and right�handed subjects� The optimality
criterion� on the other hand� does not incorporate such dominance� The discrepancy in the
y force component is consistent with the di�erences of the velocity pro�les in the y direction�
The measured force pro�le exhibits a valley that is sharper than the ensuing peak� The
two extrema �the valley and the peak� are also not symmetric about the midpoint� In
contrast� the optimization results are fairly symmetric�
Comparison of the computed and measured trajectories shows that the minimum

torque�change model correctly predicts some features of the motion� at least when the
e�ects causing asymmetric distribution of the load between the two arms are small� These
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Figure ���� Comparison of the measured forces �solid� with the predictions of the model
�dashed�� a� Left�arm forces� b� Right�arm forces�

features include the general shape of the trajectories� velocities and force distributions�
While we have only presented results for one instance of motion� this set of data is typical
of what we have observed with other subjects as well� On the other hand� there are impor�
tant di�erences between the model predictions and the data� Most notably� the calculated
velocity pro�le is quite symmetric while all the measured velocity pro�les are consistently
asymmetric� At the force level� the major discrepancy is in the x component� There is an
apparent dominance of the right arm over the left arm� and neither our dynamic model
nor the minimum torque�change criterion incorporates this e�ect� It is worth noting� how�
ever� that this dominance appears to be independent of whether the subject is left�handed�
right�handed or ambidextrous� Finally� we have not attempted to compare the predicted
results with the measurements for the other motions �when the amplitude of motion in the
x direction is signi�cant�� because of the variability of the force data across subjects�

��� Discussion

In this chapter� the objective was to study and model human two�arm motions� We
reported on experiments of human subjects performing a planar manipulation task with
two arms and attempted to explain the observed behavior with a model based on the
minimum torque�change criterion�

The observed trajectories were approximately straight lines with bell�shaped velocity
pro�les �along the x and y directions� and they were quite repeatable� The measured
force distributions among the two arms were markedly asymmetric in the x direction and
symmetric in the y direction� However� no consistent pattern could be observed among
di�erent subjects except in sagittal plane movements� where the right arm appeared to be
dominant �regardless of whether the subjects were left or right�handed��

In the minimum torque�change model� the objective function is the integral of the
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vector of derivatives of the actuator forces� Unlike other models� the minimum torque�
change criterion predicts the internal forces in addition to the trajectories of the system�
and thus resolves indeterminacies in the task space� joint space and actuator space� This
is especially important in the two�arm manipulation task where the internal forces can be
seen as a measure of the interaction between the two hands� The minimum torque�change
model seemed to reasonably predict the kinematic characteristics of the experimentally
observed motions and the total force histories� However� it was unable to account for the
observed dominance of the right arm over the left arm in sagittal plane motions�
While single joint movements and single arm movements have been studied extensively�

this work �see also ����� is the �rst quantitative study of human manipulation using two
arms� The initial motivation for this study was to understand human motion planning
with the aim of improving control and planning for multiple�arm robotic systems� The
experimental data was subsequently used to investigate if the method developed for motion
planning in robotics can be used to model human trajectory generation�
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Chapter �

Motion planning for systems with

discrete and continuous state

When we stated the motion planning problem we implicitly assumed that the dynamic
description of the system does not change during the task� In many robotic applications
this assumption does not hold and the dynamic equations change as the system moves�
Take for example a multi��ngered hand holding an object� If the set of �ngers which
are in contact with the object does not change the motion of the object relative to the
wrist is described by a set of ordinary di�erential equations ���� and a motion plan for
such a system can be generated by �traditional� techniques� Now consider regrasping of
the object where another �nger comes in contact or one of the �ngers is withdrawn from
the object� The occurrence of any such events causes a change in the system of ordinary
di�erential equations describing the state of the system� and a change in the algebraic
constraints ����� For systems of this type� the state space can be therefore partitioned into
regions so that the motion of the system in each of the regions is governed by a di�erent
set of ordinary di�erential equations� These regions can be viewed as separate discrete
states with the di�erential equations within each discrete state describing the evolution of
the continuous state� Successful completion of a task necessitates transitions between the
discrete states and a motion plan therefore consists of a sequence of discrete states as well
as a continuous trajectory of the system within each discrete state� In the example of a
multi��ngered hand holding an object� the sequence of discrete states corresponds to the
grasp gait ���� ���� for a walking machine� di�erent sequences represent di�erent gaits�

The systems described above fall into the general class of hybrid systems� These are
control systems that involve continuous dynamics� discrete phenomena that may change the
behavior of the system� as well as continuous or discrete control laws� There are di�erent
approaches to modeling of hybrid systems ����� The most general model was proposed by
Branicky et al� ����� Suitable for modeling the systems described above are also models
of Brockett ����� and of Kohn and Nerode ����� Motion planning for a hybrid systems is
di�cult and is subject of much research� The hybrid systems framework of Branicky et al�
���� is used to prove the existence of optimal motion plans� Computational techniques for
�nding optimal hybrid control based on dynamic programming are proposed in ����� but
they have prohibitive complexity and are thus not practical for solving complex motion
planning problems�
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This chapter describes a method for generating continuous motion plans for a restricted
class of hybrid systems that are encountered in robotics� In robotic tasks� we require that
the state variables� such as positions and velocities �and in some applications� accelera�
tions and forces� must vary �smoothly� �precise de�nition of smoothness depends on the
application and the model chosen to describe a task�� We are therefore interested in gen�
erating smooth motion plans that allow transitions between discrete states� Part of the
motion plan should be a sequence of discrete states �for example� the walking or grasp
gait�� According to the underlying idea of this dissertation� the motion planning problem
is formulated as an optimal control problem and we achieve smoothness by specifying an
appropriate cost function� We can also prescribe constraints at the points where the system
switches between discrete states� The resulting optimal control problem is very complex�
so we simplify it by assuming that the sequence of discrete states is known� We argue that
in many robotic applications this sequence can be obtained separately� We develop a tech�
nique that uses the given sequence of discrete states to convert a problem with unknown
switching points to a problem in the standard form �����

We illustrate the method by computing smooth motion plans for �ne manipulation of
a circular object with a two��ngered hand� In this case� the discrete states correspond to
di�erent grasp con�gurations and the motion plan consists of a sequence of grasp con�gu�
rations �discrete states� as well as a trajectory �evolution of the continuous state� within
each grasp con�guration� Given a sequence of grasp con�gurations �grasp gait�� we gener�
ate a smooth motion plan for moving the system through these con�gurations� The motion
plan also speci�es when to switch between di�erent con�gurations�

	�� Problem formulation

Let the continuous state space X of the dynamical system with n states be given by�

X �
p�

j��

Dj � �����

where Dj are pairwise disjoint� connected subsets of IR
n� On each subset Dj � the system

is described with system equations�

�x � Fj�x� u� t�� �����

end algebraic constraints�

Gj�x� u� t� � ��

Hj�x� u� t� � ��

The vector x � X � IR
n is the �continuous� state of the system� u � IR

m� Fj is a �smooth�
vector �eld and Gj and Hj are smooth �vector� functions� The sets Dj are called discrete
states and they partition the state space into regions so that on each region the evolution
of the system is governed by a �di�erent� vector �eld Fj and is subject to a di�erent set of
algebraic constraints� We require that the continuous state changes continuously �but not
smoothly� between the regions�
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Since the sets Dj are disjoint� given a continuous state x� there is a unique set Dj	x


such that x � Dj	x
� We can therefore rewrite ����� as�

�x � f�x� u� t�� ���
�

subject to�

g�x� u� t� � ��

h�x� u� t� � ��

where f�x� u� t� � Fj	x
�x� u� t�� g�x� u� t� � Gj	x
�x� u� t�� and h�x� u� t� � Hj	x
�x� u� t��
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Figure ���� A schematic of a system with changing dynamic behavior�

Figure ��� schematically illustrates such a system� The continuous state space is parti�
tioned into eight discrete states �regions�� The shaded areas in the state space are regions
which are not accessible �for example� where the robot would penetrate an obstacle�� Three
sample trajectories� denoted by a� b� and c� are shown� Given a starting point A� and an
end point B� it may be possible to go from A to B without changing the discrete state
�system equations� following the trajectory a� Alternatively� the trajectory b exhibits a
change from D� to D� and then a transition back to D�� The optimal path between A

and C may follow a straight line in D� until it hits a boundary� travel along the boundary
until a state transition to D� occurs and then follow a straight line in D�� Since along a
the continuous state evolves within the same discrete state� the trajectory is smooth� On
the other hand� b and c are only piecewise smooth�

We now de�ne the motion planning problem for the system ���
�� Our premise is that
the task provides a way to evaluate the performance of di�erent motion plans� where the
performance can be formally described with a cost functional� We can therefore regard the
motion planning problem as an optimal control problem�

Problem ��� Given a system described by ���	�� an initial state x� and a �nal state x��
�nd a set of inputs� u� that minimizes the cost functional�

J �
Z T�

T�

L�x� u� t�dt� �����
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To each trajectory 
�x� u� t� of ���
� that connects state x� with x�� there corresponds
a sequence of points T� � t� � t� � � � � � tN�� � T� and a sequence of indices j�� � � � � jN
such that on the interval �ti� ti���� the trajectory belongs to the set Dji and at the time
ti�� it switches from the region Dji to Dji�� � �Times ti thus correspond to switches in the
discrete state of the system�� This implies that a solution of the optimal control problem
consists of four components�

�a� The number of switches� N � between discrete states�

�b� The sequence� fDjigNi��� of discrete states �regions� that the system traverses as it
moves along the optimal trajectory�

�c� The sequence� ftigNi��� of times when the switches occur�

�d� The trajectories for the continuous state and the inputs on each interval �ti� ti����

It is di�cult to �nd all four components of the optimal solution �see also ���� ����� One
of the reasons is that in general the optimal solution depends on the sequence of discrete
states in very complicated way� even if two sequences are almost identical� trajectories of
the continuous state can be very di�erent� For this reason� we can not use minimization
methods to �nd the best sequence and we must perform an exhaustive search of the space of
all sequences �assuming that we can limit the length of the sequence�� To �nd a suboptimal
solution� we can solve the problem hierarchically� we �rst �nd a sequence of discrete states
and then compute the trajectory for the continuous state which is optimal for the chosen
sequence� The sequence of discrete states can be� for example� the shortest path in a
weighted graph that approximates the optimization problem� We develop a method for
computing the optimal continuous trajectory for a given sequence of discrete states in the
next section�

	�� Method for computing switching times

In tasks such as grasping with a multi��ngered hand or moving a legged mechanism on the
ground� the sequence of discrete states is usually known a priori� For the grasping task it
can be obtained by investigating feasible grasp gaits ����� In walking� the gait is usually
computed in advance to avoid regions that are unsuitable for foot placement ���� ����
Another instance where the sequence of discrete states is a priori known is planning open�
loop trajectories for transition between a free motion and position control to a constrained
motion and force control ���� �����
When the sequence of discrete states is given� the optimal control problem ��� reduces

to �nding the optimal switching times and the optimal trajectories for the continuous state�
This problem is still di�cult to solve� but we show that it can be reduced to a simpler
problem� The main idea is to make the unknown switching times part of the state and
introduce a new independent variable with respect to which the switching times are �xed�
The resulting optimal control problem can then be solved using available methods�

Assume that the number N and the sequence of discrete states fDjigNi�� through which
the system evolves are known� Without loss of generality� we can assume that T� � t� � �
and T� � tN�� � �� We can proceed in a similar way as in solving boundary value
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problems with unknown terminal time ������ The �rst step is to introduce new state
variables xn��� � � � � xn�N corresponding to the switching times ti with

xn�i � ti

�xn�i � �� �����

We next introduce a new independent variable� s� The relation between s and t is linear�
but the slope of the curve changes on each interval �ti� ti���� We establish piecewise linear
correspondence between time t and the new independent variable s so that at every chosen
�xed point si� where i � �� � � � � N  �� t equals ti� For convenience we set si � i��N  ���
but any monotonically increasing sequence of N numbers on interval ��� �� could be used�
Figure ��� illustrates this idea� As a result we obtain the following expressions�

t �

�����������������������

�N  ��xn��s� � � s � �
N��

� � �
�N  ���xn�i�� � xn�i�s
 �i ��xn�i � ixn�i���

i
N�� � s � i��

N��

� � �
�N  ����� xn�N �s

 �N  ��xn�N �N� N
N�� � s � ��
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Figure ���� A new independent variable has �xed values at the switching times ti�

With the new independent variable� the evolution equation on the interval �ti� ti��� that
was given by�

�x � Fji�x� u� t�� �����

becomes�

x� � �N  ���xn�i�� � xn�i� �Fji�x� u� s�� �����

where ���� denotes the derivative of ��� with respect to the new independent variable s and

�F �x� u� s� � F �x� u� t�s���

��



If we denote by �x the extended state vector�

�x � �x�� � � � � xn� xn��� � � � � xn�N �
T �

we can de�ne on each interval i
N�� � s � i��

N�� �

�L��x� u� s� � �N  ���xn�i�� � xn�i�L�x� u� t�s��� �����

Finally� we can rewrite the functional ����� as�

J �
Z �

�

�L��x� u� s�ds� �����

and the task is to minimize J in the extended state space� Points si at which the system
described by the function �F switches between the discrete states are known� In the optimal
solution� �x�� the last N components will be the optimal switching times ftigNi�� for the
original problem�

	�� Illustrative example

We study an example of two �ngers with limited workspace rotating a circular object in
a horizontal plane� In ����� a similar example is used to study grasp gaits� Our approach
is also in line with the conceptual framework proposed in ���� for motion planning for
dextrous manipulation� For our task we require that exactly one �nger is on the object
during any �nite time interval �an example of such task would be a driver turning a steering
wheel�� This e�ectively partitions the continuous state space into two discrete states� each
representing the case when one �nger is in contact with the object and the other freely
moves in the plane� There is also an intermediate third state when both �ngers are in
contact with the object� through which the system passes instantaneously at each switch�
We assume that the object can rotate around a �xed axis passing through the center of
the object and that the �ngers can exert arbitrary forces on the object� The motion of
each �nger is restricted to a cone in the plane of the object� We can easily generalize
the example to the case of a multi��ngered hand manipulating a planar object or include
frictional constraints�

����� Mathematical formulation

The position of the object is given by its turning angle � �Figure ��
�� The center of the
object �and thus the pivot point� is at the origin of the global coordinate system and the
radius of the object is equal to R� Positions of the two �ngers in the plane are expressed
in polar coordinates and are �r�� ��� and �r�� ���� The dynamics of the object is given by�

I *� � �F�xR sin ��  F�yR cos ��

�F�xR sin ��  F�yR cos ��� ������

where I is the moment of inertia of the object around the axis of rotation while F� and F�
are the forces� expressed in the global coordinate frame� that the �ngers � and � exert on
the object�
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Figure ��
� Two �ngers rotating a circular object in a plane�

The dynamic equations of the two �ngers can be expressed in Cartesian coordinates�
For simplicity� we assume that the �ngers behave like point masses �located at the �nger
tip�� The dynamics of the �nger i is thus given by�

mi�*ri cos �i � � �ri ��i sin �i � ri ��i
�
cos �i � ri *�i sin �i� � �Fix  uix

mi�*ri sin �i  � �ri ��i cos �i � ri ��i
�
sin �i  ri *�i cos �i� � �Fiy  uiy� ������

where mi is the e�ective mass of the �nger i� and ui is the � � � vector of driving forces
for �nger i� By de�ning a state vector�

x � ��� ��� r�� ��� �r�� ���� r�� ��� �r�� ����
T ������

the dynamic equations of the object and the two �ngers can be transformed into the
state�space form� The vectors u� and u� are the inputs to the system�

We assume that the workspace of the two �ngers is limited� The workspace of each
�nger is a cone of angle �� centered at the origin� The axis of the cone for the �rst �nger
corresponds to the half�line � � � while the axis of the cone for the second �nger is the
half�line � � �� The cones W� and W� representing the workspace of the �ngers � and ��
respectively� are thus given by�

W� � f � j � � � � � �g
W� � f � j � � � � � � � �g� ����
�

For our task of rotating the object we require that exactly one �nger is on the object
during any �nite time interval� It is easy to see that this requires partitioning of the state
space into three regions�

D� � f x j �� � W�� �� � W�� r� 	 R� r� � Rg
D� � f x j �� � W�� �� � W�� r� � R� r� 	 Rg
D� � f x j �� � W�� �� � W�� r� � R� r� � Rg�

�




Region D� corresponds to the case when the second �nger is in contact with the object
while the �rst �nger does not touch the object� Region D� describes the opposite situation�
In region D� both �ngers are on the object� Because of the requirement that exactly one
�nger is on the object during any �nite time interval� the system can not stay in D�� This
basically reduces the state space toD��D�� with the switch between the two corresponding
to D��
The dynamic equations are the same in all three regions� Therefore� f � f� � f��

where f is the system function obtained when the dynamic equations are rewritten in the
state space� However� in the region D�� the constraint r� � � forces �r� � �� Similarly� the
requirement r� 	 � implies F� � �� Analogous equations hold for D��
Finally� we have to choose the cost functional for the optimal control problem� The

choice depends on the desired properties of the optimal trajectories� For example� contin�
uous force pro�les can be obtained by minimizing the rate of change of forces� In this work
we chose to minimize a measure of the energy necessary to move the two �ngers�

J �
Z �

�
Ldt �

�

�

Z �

�
�u��x  u��y  u��x  u��y�dt� ������

At t � �� we have the initial conditions�

� � �� �� � �� �� � �� r� � R� r� � R�

�� � �� ��� � �� ��� � �� �r� � �� �r� � ��

and we assume that the system immediately passes into the region D�� We require the
object to be rotated through ��
� Both �ngers are prescribed to end their motion on the
object� but we are not interested where� The �nal conditions are therefore�

� � �
� � r� � R� r� � R�

�� � �� �r� � �� �r� � �� ��� � �� ��� � ��

In order to use the method from Section ���� we have to �x the number of transitions
between the two regions in the state space� Assume that the system switches only once�
we �rst rotate the object with the second �nger and then complete the rotation of the
object with the �rst �nger� We now apply the technique outlined in Section ���� Let t� be
the time when the system switches from D� to D�� We extend the state vector x with t�
and impose the state equation�

�t� � ��

Next� we de�ne a new independent variable s with the equation�

t �

�
�t�s� � � s � ���
���� t��s �t� � �� ��� � s � ���� ������

The cost function L from Equation ������ becomes�

�L��x� u� t� �

�
�t�L� � � s � ���
���� t��L� ��� � s � ���� ������

��



Similarly� if f � f� � f� is the system function for the independent variable t� the new
system functions become�

�f� � �t�f
�f� � ���� t��f� ������

In each region we also have to satisfy the following constraints�

D� � r� 	 R
r� � R

�� � ���
F� � �

D� � r� � R
r� 	 R

�� � ���
F� � �

������

Analogous expressions can be obtained if the �ngers change their roles more than once�
To solve the resulting optimal control problem we can now use one of the methods

in Chapter 
� As the �rst�order method did not converge to a minimum� we used the
direct minimization method that was developed in Section 
�
� One of the advantages
of this method is that the adjoint variables and the multipliers are not the unknowns
for the optimal control problem� they are only updated after the solution of the optimal
control problem has been found� Including state� inputs� adjoint variables and the Lagrange
multipliers there are �� unknown functions �for a single switch�� The unknowns for the
variational problem are only the state and input variables which amounts to �� unknown
functions� The variational problem that has to be solved in each iteration is therefore
signi�cantly simpler than for the method from Section 
�� and the computation time
decreases�

����� Simulation results

For the simulation� we chose R � � and m� � m� � �� The task was to rotate the object
for ��� counterclockwise� We show motion plans for di�erent choices of the workspace for
the two �ngers�
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Figure ��� shows the trajectories when the workspace is given by � � ���� We sub�
tracted � from �� to compare it with the other two angles� The new independent variable s
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is shown on the abscissa� Therefore� the switch between the two regions occurs at s � ����
For � � ���� the optimal value for the switching time is t� � �����s� In the �rst half
of the task� the �nger � rotates the object while the �nger � is not in contact with the
object� This can be clearly seen from the velocity plots� where ��� � ��� but the �nger �
moves along the surface of the object with lower speed� At s � ��� �t � �����s�� the object
is rotated for ����� and the two �ngers switch the roles� For s 	 ���� the �nger � moves
freely in space and continues its motion until it reaches the limit of the workspace� In the
meantime� the �nger � rotates the object to ��� and also reaches the limit of its workspace�
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Figure ��� shows the optimal trajectories for � � ���� This is a limiting case� since the
��� rotation can be barely achieved with a single switch �the maximal achievable rotation
is 
��� For s � ���� the �nger � is not in contact with the object and it moves to the lower
edge of the workspace� Meanwhile� the �nger � rotates the object for the entire allowable
range � � ���� At s � ��� �t � �����s�� the �nger � comes into contact with the object�
The �nger is at the lower edge of the workspace so that it can subsequently use the whole
range �� to complete the rotation of the object� The switch between the discrete states
D� and D� occurs at t � �����s� Also in this example the �ngers end their motion at the
upper edge of the workspace�
For the trajectories in Figure ���� the workspace of the �ngers was � � ���� In this

case� the rotation of the object for ��� can not be achieved with a single switch� the �ngers
change their roles twice� The switches occur at s� � ��

 and s� � ����� which correspond
to t� � 
���s and t� � ����s� In this case the pattern observed in Figure ��� is repeated
twice� while one �nger rotates the object� the other �nger moves towards the lower edge of
its workspace to have a wider range of motion once it comes into contact with the object�
During the �rst third of the maneuver� �nger � rotates the object almost for the entire
range of the allowable workspace of ���� Meanwhile� �nger � moves to the lower edge of
the workspace and subsequently it rotates the object for almost 
�� in the second third
of the task� While �nger � is rotating the object� �nger � moves back towards the middle
of its allowable workspace so that it can complete the rotation of the object in the third
stage� In the third stage �nger � stays at the upper edge of its workspace�
We also make the following observations�

� The velocities of the contact points on the object and on the �nger at the time
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of establishing or breaking the contact are equal so no impact occurs� Hence� the
continuous state is continuous across the switches between discrete states�

� The positions of the �ngers on the object at the switch are computed as part of
the motion plan� In other words� the sequence of discrete states is assumed to be
known� but the value of the continuous state at the switches is computed from the
optimization�

� The workspace constraints of the two �ngers are respected� We could further gener�
alize the task by including frictional constraints�

	�� Discussion

The existing approaches to motion planning for systems with discrete and continuous state
concentrate either on planning the sequence of discrete states to achieve the task or on
planning and control of the system within each of the discrete states� Several authors
address the problem of planning the task sequence for planar manipulation� Erdmann �
��
and Mason ���� study manipulation sequences for orienting polygonal objects in the plane�
This work is extended in ����� Similar is also the work by Goldberg ���� on �xturing for
assembly� although the manipulation sequence in this case consists of a single element�
Planning of grasp gaits is studied by Leveroni . Salisbury ����� while Donald et al� �
��
describe planar manipulation with multiple mobile robots� These studies are based on
quasi�static analysis and it is not clear whether the results can be used when the quasi�
static assumption is violated� Further� the emphasis is on the algorithmic issues of planning
the manipulation sequence� The method described in this chapter is an attempt to relax
the quasi�static assumption from the above works and replace it with dynamic analysis� In
this way� the problem of planning the manipulation sequence can be addressed in the same
framework and at the same level as planning the open�loop trajectories for the control of
the dynamical system� Although we had to assume that the sequence of the discrete states
is planned in advance� our approach guarantees that the discrete sequence is compatible
with the dynamics of the system�
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We formulated the motion planning problem for systems with continuous and discrete
states as an optimal control problem� This optimal control problem has two important
features�

�� Dynamic equations describing the system change during the task� It is di�cult to
address such changes within the framework of optimal control� We showed that the
optimal control problem can be simpli�ed if the sequence of discrete states for the
task is given�

�� Partition of the state space into regions representing di�erent discrete states can
be usually described with a set of equality and inequality constraints� The motion
planning method must be therefore capable of dealing with such constraints�

We demonstrated the approach on the example of two �ngers rotating a circular object
in a plane� In this case the �continuous� state space of the system is partitioned into
regions �discrete states� that correspond to di�erent grasp con�gurations� By choosing the
cost function appropriately we can guarantee desired level of smoothness in the velocities�
accelerations� and forces� as the system switches between discrete states�
The main limitation of the proposed approach is that the sequence of discrete states

must be known a priori� However� the value of the continuous state at the switches between
discrete states is computed as part of the optimization which is important for example in
walking� where this value corresponds to placement of the legs on the ground�

��



Chapter �

Task space and the special

Euclidean group SE���

In the next two chapters we turn our attention to kinematic motion planning� We concen�
trate on planning in the task space� but similar framework could be used to study planning
in the joint space� When the trajectories are planned in the task space� we can take ad�
vantage of the special structure of this space� In this chapter� we establish the di�erential
geometric framework for study of the task space and investigate some properties of the
space that are important for kinematic analysis and kinematic motion planning�

Position and orientation of an end�e�ector that moves in IR
� can be represented with

the rigid�body displacement between an inertial reference frame and a frame attached to
the end�e�ector� The task space can be therefore represented with the set of rigid body
displacements in IR

�� This set forms a group known as the special Euclidean group in
three dimensions� SE�
�� The structure of SE�
� is very di�erent from the structure of a
Euclidean space IR�� but locally there exists a bijection between the two� This implies that
the group SE�
� is a manifold and therefore a Lie group� Because of the non�Euclidean
structure of the group SE�
�� we study its properties within the framework of di�erential
geometry� which is a natural generalization of di�erential calculus from the Euclidean
spaces�

In motion planning and other applications we need to measure distances on SE�
��
The notion of distance on a manifold is provided by choosing a Riemannian metric� Once
we choose a metric� the manifold becomes �rigid� since the distances between the points
get �xed� A weaker structure on the manifold is obtained by introducing an a�ne connec�
tion� With an a�ne connection� we can di�erentiate vector �elds and de�ne the covariant
derivative� a generalization of di�erentiation from Euclidean space� The a�ne connection
is used to formally de�ne acceleration and higher derivatives of the velocity� For motion
planning� metrics and connections are crucial since they are used to de�ne cost functionals
for measuring smoothness of kinematic trajectories�

The tangent space to SE�
� at the identity� denoted by se�
�� has the structure of a Lie
algebra� The Lie algebra se�
� is isomorphic to the set of twists which is used for velocity
analysis in kinematics ��� ��� ��� �
��� An inner product on se�
� can be extended to a
Riemannian metric on SE�
�� It is well known that there is no inner product on the space
of twists that is invariant under the change of the inertial and body��xed reference frames

��



that are used to describe motion of a rigid body ���� ��� ���� But on se�
� there exist two
quadratic forms� the Killing form and the Klein form� which are invariant under changes of
the reference frames ���� ���� However neither form de�nes an inner product� the Killing
form is degenerate while the Klein form is inde�nite�

After a brief overview of some basic notions from di�erential geometry� we investigate
metrics and connections on SE�
� that are important for kinematic analysis� Chasles�s
theorem guarantees the existence of a screw motion� between any two points on SE�
��
Given a metric on SE�
�� we can also �nd a shortest distance curve between any two
points with respect to this metric� Such curves are called geodesics and can be considered
a generalization of straight lines from Euclidean geometry to Riemannian manifolds� A
natural question is whether there exists a metric for which geodesics are screw motions�
We show that no such Riemannian metric exists� We also identify a two�parameter family
of semi�Riemannian metrics� which consists precisely of the metrics having screw motions
for geodesics� These metrics can be obtained from the bi�invariant forms on se�
��

In the next section� we study connections that lead to physically meaningful acceler�
ation� We show that there is a unique symmetric connection that yields the acceleration
that is used for kinematic analysis� We also identify a family of Riemannian metrics that
are compatible with this connection� Any metric in this family is a product of a bi�invariant
metric on SO�
� and a Euclidean metric on IR

��


�� Kinematics� Lie groups and di�erential geometry

Consider a rigid body moving in free space� Assume any inertial reference frame fFg �xed
in space and a frame fMg �xed to the body at point O� as shown in Figure ���� At each
instance� the con�guration �position and orientation� of the rigid body can be described by
a homogeneous transformation matrix corresponding to the displacement from frame fFg
to frame fMg� The set of all such matrices is called SE�
�� the special Euclidean group of
rigid body transformations in three�dimensions�

SE�
� �

��
R d
� �



j R � IR

���� d � IR
�� RTR � I� det�R� � �

�
� �����

It is easy to show ���� that SE�
� is a group for the standard matrix multiplication and
that it is a manifold� It is therefore a Lie group ������

On any Lie group the tangent space at the group identity has the structure of a Lie
algebra� The Lie algebra of SE�
�� denoted by se�
�� is given by�

se�
� �

��
/ v

� �



j / � IR

���� v � IR
��/T � �/

�
� �����

A 
� 
 skew�symmetric matrix / can be uniquely identi�ed with a vector � � IR
� so that

for an arbitrary vector x � IR
�� /x � �� x� where � is the vector cross product operation

in IR
�� Each element S � se�
� can be thus identi�ed with a vector pair f�� vg�

�A screw motion is a rigid body motion in which the rigid body rotates about an axis while concurrently
translating along that axis� It will be formally de�ned later in the chapter�
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Figure ���� The inertial ��xed� frame and the moving frame attached to the rigid body

Given a curve A�t� � ��a� a�� SE�
�� an element S�t� of the Lie algebra se�
� can be
associated to the tangent vector �A�t� at an arbitrary point t by�

S�t� � A���t� �A�t� �

�
RT �R RT �d
� �



� ���
�

A curve on SE�
� physically represents a motion of the rigid body� If f��t�� v�t�g is the
vector pair corresponding to S�t�� then � physically corresponds to the angular velocity
of the rigid body while v is the linear velocity of the origin O� of the frame fMg� both
expressed in the frame fMg� In kinematics� elements of this form are called twists ����
and se�
� thus corresponds to the space of twists� It is easy to check that the twist S�t�
computed from Equation ���
� does not depend on the choice of the inertial frame fFg�
For this reason� S�t� is called the left invariant representation of the tangent vector �A�
Alternatively� the tangent vector �A can be identi�ed with a right invariant twist �invariant
with respect to the choice of the body��xed frame fMg��
Since se�
� is a vector space� any element can be expressed as a �� � vector of compo�

nents corresponding to a chosen basis� The standard basis for se�
� is�

L� �

�����
� � � �
� � �� �
� � � �
� � � �

����� L� �

�����
� � � �
� � � �
�� � � �
� � � �

����� L� �

�����
� �� � �
� � � �
� � � �
� � � �

�����

L� �

�����
� � � �
� � � �
� � � �
� � � �

����� L� �

�����
� � � �
� � � �
� � � �
� � � �

����� L� �

�����
� � � �
� � � �
� � � �
� � � �

�����
�����

The twists L�� L� and L� represent instantaneous rotations about and L�� L� and L� in�
stantaneous translations along the Cartesian axes x� y and z� respectively� The components
of a twist S � se�
� in this basis are given precisely by the velocity vector pair� f�� vg�
The Lie bracket of two elements S�� S� � se�
� is de�ned by�

�S�� S�� � S�S� � S�S��
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It can easily be veri�ed that if f��� v�g and f��� v�g are vector pairs corresponding to the
twists S� and S�� the vector pair f�� vg corresponding to their Lie bracket �S�� S�� is given
by

f�� vg � f�� � ��� �� � v�  v� � ��g� �����

In kinematics� this product operation is called the motor product of the two twists�
The Lie bracket of two elements of a Lie algebra is an element of the Lie algebra

and can be expressed as a linear combination of the basis vectors� The coe�cients Ck
ij

corresponding to the Lie brackets of the basis vectors are called structure constants of the
Lie algebra ������

�Li� Lj � �
X
k

Ck
ijLk� �����

The expressions ����� for se�
�� can be directly computed from Equation ����� and are
listed in Appendix E�

	���� Left invariant vector 
elds

A di�erentiable vector �eld is a smooth assignment of a tangent vector to each element
of the manifold� At each point� a vector �eld de�nes a unique integral curve to which
it is tangent �
��� Formally� a vector �eld X is a �derivation� operator which� given a
di�erentiable function f � returns its derivative �another function� along the integral curves
of X � In other words� if 
�t� is a curve tangent to a vector �eld X at point p � 
�t��� then�

X�f�jp �
df�
�t��

dt

����
t�

� �����

We will be particularly interested in left invariant vector �elds on SE�
�� From any
twist� S � se�
�� we can generate a di�erentiable vector �eld �S by assigning to all A �
SE�
� a vector� �S�A�� in the tangent space at that point by the formula�

�S�A� � AS� �����

The vector �eld generated by Equation ����� is called a left invariant vector �eld and we
use the notation �S to indicate that the vector �eld was obtained by left translating the Lie
algebra element S� Right invariant vector �elds can be de�ned analogously� In general� a
vector �eld need not be left or right invariant� By construction� the space of left invariant
vector �elds is isomorphic to the Lie algebra se�
� and vector �elds �L�� �L�� � � � � �L� are its
basis� We also have �see �
����

��Li� �Lj � � d�Li� Lj � �X
k

Ck
ij
�Lk � �����

Since the vectors L�� L�� � � � � L� are a basis for the Lie algebra se�
�� the vectors
�L��A�� � � � � �L��A� form a basis of the tangent space at any point A � SE�
�� Therefore�
any vector �eld X can be expressed as

X �
�X
i��

X i�Li� ������

��



where the coe�cients X i are real�valued functions� If the coe�cients are constant� then X
is left invariant� Equation ���
� shows that�

�A � AS � A

�
�X

i��

SiLi

	
�

�X
i��

Si�ALi� �
�X
i��

Si �Li�A�� ������

We conclude that if the velocity of the rigid body� �A� is expressed in the basis �L�� � � � � �L��
the components with respect to this basis are equal to the components of the instantaneous
twist�

� � �S�� S�� S��T �

v � �S�� S�� S��T �

We will therefore refer to the elements �L�� � � � � �L� of the basis for the left invariant vector
�elds as basis twists� Equation ���
� also implies that � is the vector corresponding to the
skew�symmetric matrix / � RT �R� while v � RT �d�

	���� Exponential map and local coordinates

A curve� A�t�� on SE�
� describes a motion of the rigid body� If V � dA
dt
is the vector �eld

tangent to A�t�� the vector pair f�� vg associated with V corresponds to the instantaneous
twist �screw axis� for the motion� In general� the twist f�� vg changes with time� Motions
for which the twist f�� vg is constant are known in kinematics as screw motions� In this
case the twist f�� vg is called the screw axis of the motion� If the vector pair f�� vg is
interpreted as Pl*ucker coordinates of a line in space� it is not di�cult to see that the screw
motion physically corresponds to rotation around this line with a constant angular velocity
and concurrent translation along the line with a constant translational velocity�

Let the twist S � se�
� be represented by a vector pair f�� vg and let A�t� be a screw
motion with the screw axis f�� vg such that A��� � I � We de�ne the exponential map
exp � se�
�� SE�
� by�

exp�tS� � A�t�� ������

Using Equation ���
� we can show that the exponential map agrees with the usual expo�
nentiation of the matrices in IR

����

exp�tS� �
�X
k��

tkSk

k�
� ����
�

where S denotes the matrix representation of the twist S� The sum of this series can be
computed explicitly and the resulting expression� when restricted to SO�
�� is known as
Rodrigues� formula� The formula for the sum in SE�
� is derived in �����

Given a twist T �t�� the motion of the rigid body is given by�

dA�t�

dt
� A�t�T �t�� ������

Since for all t� T �t� belongs to the Lie algebra se�
�� it can be expressed as a linear
combination �with varying coe�cients� of the basis vectors� According to Wei and Norman

�




������ the solution of this di�erential equation can be written as the product of exponentials
in the form�

A�t� �
�Y

i��

exp��i�t�Li�� ������

where �i�t� are analytic functions� The coe�cients �i only depend on A and can be
therefore taken as a set of local coordinates� This representation of SE�
� is valid in some
neighborhood of the identity element and is not global ����� The coordinates obtained from
������ are called the canonical coordinates of the second kind�

Although the order of taking the product in ������ is arbitrary� once chosen we must
adhere to it to get consistent values for the coordinates since� in general�

exp��iLi� exp��
jLj� 
� exp��jLj� exp��iLi�� ������

We choose the following ordering�

A�t� � exp���L�� exp��
�L�� � � �exp���L��� ������

An alternative way of de�ning a parameterization for SE�
� is to use the so called
canonical coordinates of the �rst kind ���� ��� ����

A��� � exp


��L�  ��L�  ��L�  ��L�  ��L�  ��L�

�
� ������

Also this parameterization is only valid in some neighborhood of the identity�

	���� Riemannian metrics on Lie groups

If a smoothly varying� positive de�nite� bilinear� symmetric form � �� � 	 is de�ned on
the tangent space at each point on the manifold� such form is called a Riemannian metric
and the manifold is Riemannian �
��� If the form is non�degenerate but inde�nite� the
metric is called semi�Riemannian ���� On a n�dimensional manifold� the metric is locally
characterized by a n�n matrix of C� functions gij �� Xi� Xj 	 where Xi are basis vector
�elds�� If the basis vector �elds can be de�ned globally� then the matrix �gij� completely
de�nes the metric�

On SE�
� �on any Lie group�� an inner product on the Lie algebra can be extended
to a Riemannian metric over the manifold using left �or right� translation� To see this�
consider the inner product of two elements S�� S� � se�
� de�ned by

� S�� S� 	jI � sT�Ws�� ������

where s� and s� are the � � � vectors of components of S� and S� with respect to some
basis and W is a positive de�nite matrix� If V� and V� are tangent vectors at an arbitrary
group element A � SE�
�� the inner product � V�� V� 	jA in the tangent space TASE�
�
can be de�ned by�

� V�� V� 	jA � � A��V�� A
��V� 	

���
I
� ������

The metric obtained in such a way is said to be left invariant �
�� since left translation by
any element A is an isometry�

�The basis vector �elds need not be the coordinate basis
 we only require that they are smooth�

��



	���� A�ne connection and covariant derivative

Motion of a rigid body can be represented by a curve on SE�
�� The velocity at an
arbitrary point is the tangent vector to the curve at that point� In order to obtain the
acceleration� or to engage in a dynamic analysis� we need to be able to di�erentiate a vector
�eld along the curve� At each point A � SE�
�� the value of a vector �eld belongs to the
tangent space TA SE�
� and to di�erentiate a vector �eld along a curve� we must be able to
subtract vectors from tangent spaces at di�erent points on the curve� But tangent spaces
at di�erent points are not related� We thus have to specify how to transport a vector along
the curve from one tangent space to another� This process is called parallel transport and
is formalized with the a�ne connection ������ Given any curve A�t�� a parameter value
t� and a vector V in TA	t�
 SE�
�� the tangent space at point A�t��� the a�ne connection
assigns to each other parameter value t a vector V � � TA	t
 SE�
�� By de�nition� V

� is the
parallel transport of V along the curve A�t�� Vectors V � and V are also said to be parallel
along A�t��
A derivative of a vector �eld along a curveA�t� is de�ned through the parallel transport�

Let X be a vector �eld de�ned along A�t�� and let X�t� stand for X�A�t��� Denote by
X t��t� the parallel transport of the vectorX�t� to the point A�t��� The covariant derivative
of X along A�t� is�

DX

dt

����
t�

� lim
t�t�

X t��t��X�t��

t
� ������

By taking covariant derivatives along integral curves of a vector �eld Y � we obtain a
covariant derivative of the vector �eld X with respect to the vector �eld Y � This derivative
is also denoted by rYX �

rYX jA�
�

DX

dt

����
t�

� ������

where DX
dt
is taken along the integral curve of Y passing through A� at t � t��

The notions of the covariant derivative and parallelism are equivalent� In this section
we de�ned the covariant derivative through parallel transport� However� given a covariant
derivative� we can always de�ne that a �eld X is parallel along a curve A�t� if�

r dA
dt
X � ��

The covariant derivative of a vector �eld is another vector �eld so it can be expressed
as a linear combination of the basis vector �elds� The coe�cients +kji of the covariant
derivative of a basis vector �eld along another basis vector �eld�

r�Li
�Lj �

X
k

+kji �Lk� ����
�

are called Christo�el symbols�� Note the reversed order of the indices i and j�
The velocity� V �t�� of the rigid body describing the motion A�t� is given by the tangent

vector �eld along the curve�

V �t� �
dA�t�

dt
�

	In the literature� di�erent de�nitions for the Christo�el symbols can be found� Some texts 	e�g� ����

reserve the term for the case of the coordinate basis vectors� We follow the more general de�nition from
����� in which the basis vectors can be arbitrary�

��



The acceleration� A�t�� is the covariant derivative of the velocity along the curve

A � D

dt

�
dA

dt

�
� rV V� ������

Note that the acceleration depends on the choice of the connection� We can also de�ne
jerk� J � as the covariant derivative of the acceleration�

J �
D

dt
A�t� � rVrV V� ������

Given a Riemannian manifold� there exists a unique connection �
�� which is compatible
with the metric�

X �Y� Z	��rXY� Z	  �Y�rXZ	 ������

and symmetric�

rXY � rYX � �X� Y �� ������

This connection is called the Levi�Civita or Riemannian connection� It can be shown �
��
that the compatibility condition ������ is equivalent to saying that the parallel transport
preserves the inner product� In other words� if A�t� is a curve and X and Y are two vector
�elds obtained by parallel transporting two vectors X� and Y� from TA�SE�
� along A�t��
then � X� Y 	jA	t
 � � X�� Y� 	jA�

� const�

	���� Geodesics

Given a Riemannian metric � �� � 	 on SE�
� we can de�ne the length� L�A�� of a smooth
curve A � �a� b�� SE�
� by�

L�A� �
Z b

a

�
dA

dt
�
dA

dt
	

�
� dt ������

Among all the curves connecting two points� we are usually interested in the curve of
minimal length� It is not di�cult to see �
�� that a curve of minimal length also minimizes
the energy functional�

E�A� �

Z b

a
�

dA

dt
�
dA

dt
	 dt� ������

If a curve minimizes a functional� it must also be a critical point� Critical points of the
energy functional E satisfy the following equation �
���

r dA
dt

dA

dt
� �� ���
��

where r is the Riemannian connection� and are called geodesics� From what we said about
the covariant derivative and parallel transport� it follows that a geodesic is a curve A�t�
for which the tangent vector �eld dA

dt
is parallel� from a value at a point we can obtain

its value at any other point by simply parallel transporting it along the curve A�t�� On
the other hand� According to Equation ������� the expression r dA

dt

dA
dt
is the acceleration of

motion described by A�t�� Motion along a geodesic therefore produces zero acceleration�

��




�� Metrics and screw motions

One of the fundamental results in rigid body kinematics ���� was proved by Chasles at the
beginning of the ��th century�

Theorem 	�� �Chasles
 Any rigid body displacement can be realized by a rotation about
an axis combined with a translation parallel to that axis�

Note that a displacement must be understood as an element of SE�
� while a motion
is a curve on SE�
�� If the rotation from the Chasles�s theorem is performed at constant
angular velocity and the translation at constant translational velocity� the motion leading
to the displacement clearly becomes a screw motion� Chasles�s theorem therefore says that
any rigid body displacement can be realized with a screw motion�

Another family of curves of particular interest on SE�
� are the one�parameter sub�
groups� A curve A�t� is a one�parameter subgroup� if A�t�  t�� � A�t��A�t��� The
one�parameter subgroups on SE�
� are given by �
���

A�t� � exp�t S� ���
��

where S is an element of se�
�� From our discussion in Section ����� it is clear that the
one parameter subgroups are exactly the screw motions which start at the identity� In
the Chasles�s theorem� we can obviously assume that the body �xed frame fMg is initially
aligned with the inertial frame fFg� Therefore� in the language of di�erential geometry�
the theorem can be restated as follows�

Theorem 	�� �Chasles restated
 For every element in SE�
� there is a one�parameter
subgroup �screw motion through the identity� to which that element belongs�

Except for the identity� the screw axis for every element is unique� but there are in�
�nitely many screw motions along that axis which contain the element� each characterized
by the number of rotations along the screw axis� The following corollary immediately
follows from the theorem�

Corollary 	�� If A� and A� are two distinct elements of SE�
�� then�

��� There exists a one�parameter subgroup� 
L�t� � exp�t SL�� which when left translated
by A� contains A��

AL�t� � A� exp�t SL�� A� � AL��� � A� exp�SL��

��� There exists a one�parameter subgroup� 
R�t� � exp�t SR�� which when right trans�
lated by A� contains A��

AR�t� � exp�t SR�A�� A� � AR��� � exp�SR�A��

�	� For each SL in ��� we can �nd the corresponding SR in ��� by�

SR � A�SLA
��
� �

and in this case
AL�t� � AR�t��

��



Proof: Statement ��� �respectively ���� follows from Theorem ��� if we left �right� translate
the one�parameter subgroup to which A��A� �A�A

��� belongs� To see �
�� note that�

A� exp�t SL� � A�

�X
k��

tk SkL
k�

�
�X
k��

tk�A� SLA
��
� �

k

k�
A��

�

Park and Brockett ����� proposed a left invariant Riemannian metric on SE�
� given
by�

W �

�
�I �
� �I



���
��

where � and � are positive scalars�

Park ����� derived the geodesics for the metric ���
�� and showed that they are products
of the geodesics for the bi�invariant metric on SO�
� and geodesics in the Euclidean space
IR
�� Geodesics for the bi�invariant metric on SO�
� are the restrictions of the screw motions
to SO�
�� while straight lines parameterized proportionally to the line length are the
geodesics for the Euclidean space IR

�� A geodesic between two elements�
R� d�
� �



and

�
R� d�
� �




thus physically corresponds to a translation of the origin O� of the body �xed frame fMg
with a constant translational velocity along the line connecting the points described with
the position vectors d� and d�� and concurrent rotation of the frame fMg with constant
angular velocity about an axis passing through the origin O� of the frame fMg which
translates together with the point O�� It is clear that such motion is in general not a screw
motion since the axis around which the body rotates is not �xed in space� However� if the
axis of rotation is collinear with the line between d� and d� along which the body translates�
the rotational axis does not change as the body moves and the geodesic is therefore a screw
motion� It follows that a screw motion is a geodesic if and only if it is obtained by left
translation of a one�parameter subgroup for which the screw axis passes through the origin
O of the frame fFg�

	���� Screw motions as geodesics

Given that any two elements of SE�
� can be connected with a screw motion� and given
that there exists a left invariant metric whose geodesics include certain screw motions� it
is natural to ask whether there are Riemannian metrics for which every geodesic is a screw
motion�

Before we proceed� we turn our attention back to Corollary ��
� The corollary says that
any screw motion can be obtained in two ways� either by a left or by a right translation of
a �in general di�erent� one�parameter subgroup� Now suppose that the screw motions are
geodesics� Corollary ��
 implies that a left or a right translation of a geodesic produces
another geodesic� We might therefore wrongly conclude that any metric for which the screw
motions are geodesics must be invariant under left and right translations and therefore bi�
invariant� Such reasoning is false since a map which preserves geodesics does not necessarily
preserve the metric �is not an isometry�� This is clear if we consider a�ne transformations

��



in Euclidean space� They map lines into lines� but in general they do not preserve lengths
of vectors� Therefore� we can not limit our search only to the left or right invariant metrics�

We now derive the family of metrics which have screw motions for geodesics� As we saw
in Section ������ the twist associated with a screw motion 
�t� is constant� The tangent
vector �eld V � d�

dt
is therefore a left invariant vector �eld and it has constant components

with respect to the chosen basis vector �elds� V � V i �Li� If 
 solves Equation ���
��� we
have�

� � rV V �
X
j

dV j

dt
�Lj  

X
i�j

V iV jr�Li
�Lj �

X
i�j

V iV jr�Li
�Lj �

The above equation is satis�ed for any screw motion �arbitrary choice of the components
V i� if and only if

r�Li
�Lj  r�Lj

�Li � ��

Since r is a metrical connection� it is symmetric �Equation ������

r�Li
�Lj �r�Lj

�Li � ��Li� �Lj��

It immediately follows that�

r�Li
�Lj �

�

�
��Li� �Lj�� ���

�

Further� r must be compatible with the metric �Equation ������ so we have�

�Lk � �Li� �Lj 	�� r�Lk
�Li� �Lj 	  � �Li�r�Lk

�Lj 	 � ���
��

Letting gij �� �Li� �Lj 	� the last equation implies�

�Lk�gij� �
�

�



� ��Lk� �Li�� �Lj 	  � �Li� ��Lk� �Lj� 	

�
� ���
��

By expressing the Lie brackets from Equation ������ we �nally obtain�

�Lk�gij� �
�

�

X
l

�Cl
kiglj  Cl

kjgli�� ���
��

Note that the coe�cients Ck
ij are constant over the manifold �Equation ����� The above

derivation is summarized in the following proposition�

Proposition 	�� Screw motions satisfy the geodesic equation ���	�� for a Riemannian
metric given by the matrix of coe�cients G � �gij � if and only if the coe�cients gij satisfy
Equation ���	���

The metric coe�cients gij are symmetric by de�nition� Since SE�
� is a six�dimensional
manifold� there are �� independent coe�cients fgij j � � i � j � �g� Further� there are �
basis vector �elds hence Equation ���
�� expands to a total of ��� equations� Each vector
�eld represents a derivation implying that these are partial di�erential equations� The
complete set of equations is given in Appendix C�
We need the following lemma to derive the solution for the system of equations given

by ���
���

��



Lemma 	�� Given a set of partial di�erential equations

X�f� � gx ���
��

Y �f� � gy ���
��

Z�f� � gz ���
��

where X� Y � and Z are vector �elds such that Z � �X� Y �� f is twice di�erentiable� and
gx� gy and gz are di�erentiable �real valued� functions� the solution exists only if

X�gy�� Y �gx� � gz� ������

Proof: By applying X on Equation ���
��� Y on Equation ���
�� and subtracting the two
resulting equations� we get�

X Y �f�� Y X�f� � X�gy�� Y �gx�� ������

But the left�hand side is by de�nition �X� Y ��f�� which is by assumption equal to Z�f��
Equation ������ then follows from Equation ���
���

�

We next state the �rst key theorem of this chapter�

Theorem 	�� A matrix of coe�cients G � �gij � satis�es the system of partial di�erential
equations ���	�� if and only if it has the form

G �

�
� I��� � I���
� I��� ����



� ������

where � and � are constants�

Proof: To �nd the metric coe�cients� we start with the following subset of �C����

�L��g��� � � �L��g��� � �g�� �L��g��� � g��� ����
�

First� observe that ��L�� �L�� � �L� �see Appendix E�� By application of Lemma ���� the
following equation must hold�

� �L��g��� � g��� ������

But from �C���� we have�

�L��g��� � ��
�
g���

Therefore� Equation ������ becomes�

�

�
g�� � g���

Obviously� this implies that g�� � �� We next observe that g�� � � implies �Li�g��� �
�� � � i � �� From the system �C��� we obtain�

g�� � � g�� � � g�� � g��
g�� � � g�� � � g�� � g���

������

��



From these equations and �C��� we further obtain�

g�� � � g�� � � g�� � g��
g�� � � g�� � � g�� � g��
g�� � � g�� � � g�� � �
g�� � � g�� � � g�� � ��

������

Next observation is that �Li�g��� � �� � � i � �� This� together with Equations ������ and
������ implies�

g�� � g�� � g�� � ��

where � is an arbitrary constant� Similarly� we obtain

g�� � g�� � g�� � ��

for an arbitrary constant �� In this way we have obtained all �� independent values of G�
The reader can easily check that the system of equations �C��� is satis�ed by the above
values�

�

Corollary 	�	 There is no Riemannian metric whose geodesics are screw motions�

Proof: It is easy to check that a matrix of the form

G �

�
�I��� � I���
� I��� ����



�

has two distinct real eigenvalues

�� �
�

�
�� 

q
��  ���� �� �

�

�
���

q
��  �����

which both have multiplicity 
� For any choice of � and �� the product of the eigenvalues
is ���� � ��� � �� Therefore� G is not positive de�nite as required for a Riemannian
metric�

�

	���� Invariance of the family of semi�Riemannian metrics 
	����

Metrics of the form ������ form a two�parameter family of semi�Riemannian metrics and
can be studied in a similar way as Riemannian metrics� In particular� we can investigate
their invariance properties� By de�nition� a metric is left invariant if for any A�B � SE�
�
and for any vector �elds X and Y �

� X�B�� Y �B� 	jB � � AX�B�� AY �B� 	jAB � ������

and it is right invariant if�

� X�B�� Y �B� 	jB � � X�B�A� Y �B�A 	jBA � ������

��



Lemma 	�� If S� and S� are two elements of se�
� and a metric of the form ������ is
de�ned on SE�
�� then for any A � SE�
�

� S�� S� 	jI � � AdA�S���AdA�S�� 	jI � ������

�The map Ad � se�
�� se�
� is called the adjoint map and if S is represented by a matrix�
the map is de�ned by AdA�S� � ASA����
Proof: Let S� � f��� v�g and S� � f��� v�g� By a straightforward algebraic calculation it
can be shown that for S � f�� vg � se�
� and A � SE�
�� where

A �

�
R d

� �



the value of AdA�S� is given by AdA�S� � fR��Rv � �R�� � dg where � is the usual
vector cross product� Therefore� we have�

� AdA�S���AdA�S�� 	jI
� � fR��� R v� � �R���� dg� fR��� Rv� � �R���� dg 	jI
� � �R���

T �R���  � �R���
T �Rv� � �R���� d�  � �R���

T �Rv� � �R���� d�

� � �T� ��  � ��T� v�  �T� v��� ���R���
T ��R���� d�  �R���

T ��R���� d��

� � �T� ��  � ��T� v�  �T� v�� � � f��� v�g� f��� v�g 	jI � � S�� S� 	jI
�

Proposition 	�� Any left invariant metric G that satis�es Equation ����
� is bi�invariant
�both� left and right invariant��

Proof: We have to prove that G is right invariant� Take two vector �elds X and Y � Since
the metric G is left invariant� we have�

� X�B�A� Y �B�A 	jBA

� � �BA���X�B�A� �BA���Y �B�A 	
���
I

� � A��B��X�B�A�A��B��Y �B�A 	
���
I
�

By Equation �������

� A��B��X�B�A�A��B��Y �B�A 	
���
I

������

� � B��X�B�� B��Y �B� 	
���
I
� ������

But because of the left invariance of G� the last expression is�

� B��X�B�� B��Y �B� 	
���
I
� � X�B�� Y �B� 	jB �

as required�
�

Corollary 	��
 Any metric G of the form ������ is bi�invariant�

Proof: It is obvious that a metric G of the form ������ is left invariant� since it is constant
for the basis of the left invariant vector �elds �Li� By Lemma ��� and Proposition ���� G is
bi�invariant�

�

��



	���� Geodesics of the family of semi�Riemannian metrics 
	����

Analogous to the Riemannian case� we could de�ne the length of a curve A�t� between two
points A�t�� and A�t�� on SE�
� by�

L�A� t�� t�� �

Z t�

t�

�
dA

dt
�
dA

dt
	

�
� dt� ������

But G is not positive de�nite� so the length of a curve would be in general a complex
number� Therefore� it is more useful to de�ne the measure of the energy of a curve�

E�A� t�� t�� �
Z t�

t�

�
dA

dt
�
dA

dt
	 dt� ����
�

Since G is not positive de�nite� the energy of a curve can be in general negative� There
are also non�trivial curves �that is� curves that are not identically equal to a point� which
have zero energy�

Two special cases of metric ������ are of particular interest� With � � � and � � � we
obtain the metric�

G �

�
���� I���
I��� ����



�

This metric� taken as a quadratic form on se�
�� is known as the Klein form� The eigenval�
ues for the metric are f�� �� ����������g and the form is therefore non�degenerate� For
a screw motion A�t� � A� exp�t S� where S � f�� vg � se�
�� the energy of the segment
t � ��� �� is given by E�A� � � �Tv� If � 
� �� the quantity�

h �
�T v

j�j� ������

is called the pitch of the screw motion ����� The pitch measures the amount of translation
along the screw axis during the screw motion� Zero energy screw motions therefore either
have zero pitch �the motion is pure rotation� or in�nite pitch �� � �� the motion is pure
translation�� Screw motions with positive energy are those with positive pitch� Trajectories
for such motions correspond to right�handed helices and the motions are thus called right�
handed screw motions� Analogously� screw motions with negative energy are the left�
handed screw motions� Since pure rotations and pure translations are zero�energy motions�
it is always possible to �nd a zero energy curve between two arbitrary points by breaking
the motion into a segment consisting of a pure rotation followed by a segment of a pure
translation�

By letting � � � and � � �� we get the semi�de�nite metric�

G �

�
I��� ����
���� ����



�

This metric� as a form on se�
�� is called the Killing form� Its eigenvalues are f�� �� �� �� �� �g
hence it is degenerate� The energy of a screw motion with S � f�� vg is equal to �T�
so it is always non�negative� Pure translations are zero�energy motions while any motion
involving rotation has positive energy�

�




In the general case� � 
� � and � 
� �� the energy of a unit screw motion A�t� �
A� exp�t S� where S � f�� vg and t � ��� ��� is �T ���  �� v�� Pure translations �� � ��
thus have zero energy� For a general screw motion �� 
� ��� the energy of the segment
t � ��� �� is j�j��� ��h�� The sign of the energy of a general motion therefore depends on
� and ��


�� A
ne connections on SE���

There is no natural choice of a metric on SE�
�� In the previous section� we chose a
particular family of curves and found the metric G for which these curves were geodesics�
Through the metric connection� a metric also provides a natural way to di�erentiate vector
�elds�

In this section� our primary objective is to �nd a connection which produces an acceler�
ation vector that is physically meaningful� We therefore start by introducing a connection
on SE�
� which allows us to compute the covariant derivative and obtain the acceleration�
By requiring that the acceleration computed with the covariant derivative agrees with the
acceleration as computed in kinematics� we obtain a family of possible a�ne connections�
We then show that in this family there is a unique symmetric connection� Finally� we de�
termine the class of Riemannian metrics which are compatible with this symmetric a�ne
connection�

	���� Kinematic connection

As discussed in Section ���� the Lie algebra se�
� represents the space of twists� We saw
that the basis of left invariant vector �elds �Li �Equation ����� provides a natural framework
for studying motion on SE�
�� The components of tangent vector �elds with respect to
this basis correspond to the components of the instantaneous twist associated with the
motion� expressed in the body��xed coordinate frame� To obtain the acceleration� we have
to compute the covariant derivative of the velocity �the tangent vector �eld� along the
curve describing the motion�

We now turn our attention to the acceleration vector� Let A�t� be a curve describing
motion of a rigid body� Let S�t� � f�� vg represent the instantaneous twist of the rigid
body� expressed in the moving frame fMg �xed to the rigid body� More precisely� �
represents the angular velocity of the rigid body while v is the linear velocity of the origin
O� of the body �xed reference frame fMg �see Figure ����� We would like to di�erentiate
the velocity of the point O� to obtain the acceleration� The acceleration can be represented
by a vector pair f�� ag� where � is the angular acceleration of the rigid body and a is the
acceleration of the point O�� both expressed in the frame fMg� This acceleration vector
pair can be shown �
�� to be equal to�

f�� ag � f ��� �vg f�� � � vg� ������

The �rst term in this equation is simply the derivative of the components of the angular
and linear velocity of the point O�� This term is also called the spatial acceleration �
���
However� angular and linear velocities were expressed in the body �xed frame fMg which
rotates as the body moves� We must therefore add a convective term to describe the

��



contribution of this rotation to the acceleration of the rigid body� This term is an artifact
of expressing the velocities in a frame that rotates�

On the other hand� geometrically� the acceleration of the rigid body� A� is given by the
covariant derivative of the velocity vector �eld V � dA

dt
along A�t��

A � rV V� ������

It is important to see the di�erence between the twist S�t� used to obtain Equation ������
and the velocity vector �eld V �t� � V �A�t��� the twist S�t� belongs to se�
�� while V �t�
belongs to the tangent space TA	t
SE�
��

Let V � V i �Li and let f�� vg be the corresponding vector of components� According
to Equation ������� the a�ne connection that produces physically meaningful acceleration
must satisfy�

rV V � f ��� �vg f�� � � vg� ������

In components� rV V can be rewritten as�

rV V �
X
k

dV k

dt
�Lk  

X
k

X
��i�j��

V iV j+kji �Lk� ������

where +kji are the Christo�el symbols �which de�ne the a�ne connection� for the basis
�Li� Expressions ������ and ������ will be the same if the �rst and the second term in
Equation ������ correspond to the �rst and the second term in Equation ������� respectively�
Obviously� the �rst terms are the same regardless of the choice of the a�ne connection�
However� because of the symmetry� the coe�cient for the product V iV j � � � i � j � �
is +kji  +

k
ij �for i � j� the coe�cient is +kii�� Therefore� from Equation ������ we conclude

that�

+kij  +
k
ji � akij � � i � j � � ������

where akij are constants that can be directly obtained from Equation ������� The only

non�zero values akij are�

a��� � �� a��� � � a��� � �

a��� � �� a��� � �� a��� � ��
������

The system ������ does not contain enough equations to solve for +kij if i 
� j �for i � j

we have +kij � ��� Therefore� there is a whole family of a�ne connections on SE�
� that
produce a physically meaningful acceleration�

To further restrict the choice of the connection� we might ask if any of the connections
that satisfy Equation ������ can be a Riemannian connection� Since every Riemannian
connection is symmetric� we require that in addition to Equation �D��� the connection also
satis�es Equation �������

rXY � rYX � �X� Y �� ������

It immediately follows that for the basis �Li� the symmetry of the connection implies�

+kji � +kij � Ck
ij � ������

��



Equations ������ and ������ together uniquely determine the Christo�el symbols +kji and
therefore the connection� We call this connection the kinematic connection� The non�zero
Christo�el symbols for the kinematic connection are�

+��� � +
�
�� � +

�
�� �

�
� � +��� � +

�
�� � +

�
�� � ��

�

+��� � +
�
�� � +

�
�� � �� +��� � +

�
�� � +

�
�� � ��

����
�

	���� Metrics compatible with the kinematic connection

As seen in Section ������ a connection is Riemannian if and only if it is symmetric and
compatible with the metric� Since we explicitly required that the kinematic connection
be symmetric� we can try to �nd a metric which is compatible with the connection� In
general� such metric may not exist�

If a metric is compatible with the connection� then�

Z �X� Y 	��rZX� Y 	  �X�rZY 	� ������

where X � Y and Z are arbitrary vector �elds� By substituting the basis vector �elds �Li�
�Lj and �Lk for X � Y and Z� the compatibility condition becomes�

�Lk�gij� �
X
l

�+likglj  +
l
jkgli� ������

where the Christo�el symbols +kji were computed above� Equation ������ generates a
system of ��� partial di�erential equations for metric coe�cients fgij j � � i � j � �g�
Note that for k 	 
� +jik � �� so �Lk�gij� � �� The system of equations obtained from
Equation ������ for k � 
 is given in Appendix D� The �rst step in �nding the solution of
this system of equations is represented by the following lemma�

Lemma 	��� If the coe�cients of a Riemannian metric G satisfy Equation ������� the
metric has the form�

G �

�
�I �
� Gp



� ������

where � is a constant and Gp is an arbitrary positive de�nite symmetric matrix that
smoothly varies from point to point�

Proof: We use Lemma ��� again� Take the following subset of equations of the system
�D����

�L��g��� � � �L��g��� � �g�� �L��g��� � g�� ������

According to Lemma ��� the following equality holds�

��L��g��� � g���

By substituting for �L��g��� from �D���� we obtain
�
�g�� � g��� which gives g�� � �� Substi�

tuting in the system �D���� we next obtain�

g�� � � g�� � � g�� � g�� g�� � g�� ������

��



It is easy to see that these equations imply �Li�g��� � �� � � i � �� which together with
Equation ������ results in�

g�� � g�� � g�� � ��

where � is a constant� Therefore� the upper�left 
� 
 block in the matrix G is of the form
�I���� where I is the identity matrix�

By taking equations�

�L��g��� � � �L��g��� � ��
�g�� � g�� �L��g��� �

�
�g��  g��� ������

and again using Lemma ���� we get g�� � �� By substituting this in the system �D��� it is
easy to see that all the entries in the upper�right 
� 
 block of the matrix G �and due to
the symmetry of G also in the lower�left 
� 
 block� are equal to �� The matrix G must
be positive de�nite symmetric� therefore also Gp must be positive de�nite symmetric�

�

Proposition 	��� A left invariant metric is compatible with the kinematic connection if
and only if the matrix of metric coe�cients G � �gij � is of the form�

G �

�
�I �
� �I



� ������

where � and � are arbitrary constants�

Proof: If a metric is left invariant then the matrix G is constant� But if gij � const�� then
�Li�gij� � �� It is then easy to check that the system of equations �D��� implies the form
of G in �������

�

Note that the metric ������ is exactly the same as the metric ���
�� that we investigated
earlier�

To determine whether there are other solutions of the system �D���� it helps to investi�
gate what is common to metrics which have the same metrical connection� The geometric
entity determined from the connection are geodesics �Equation ��
��� Two metrics with
the same connection thus have the same geodesics� By reasoning similar to that which
led to the kinematic connection we can prove that also the converse is true� The family
of geodesics uniquely determines the symmetric connection� To �nd other solutions of the
system �D���� we therefore try to �nd metrics which have the same geodesics as metric
������� Alternatively� this process can be viewed as the study of di�eomorphisms of SE�
�
which map geodesics to geodesics �such maps are called a�ne maps��
We saw earlier that a geodesic for the metric ������ between two points A� and A� on

SE�
� is a product of a geodesic on SO�
� equipped with a bi�invariant metric �a constant
velocity rotation around an appropriate axis� and a geodesic on Euclidean space IR

� �a
straight line�� But on IR

�� straight lines are geodesics for an arbitrary inner product �de�ned
by a positive de�nite constant matrix�� Therefore� any product metric on SO�
�� IR

� with
the bi�invariant metric on SO�
� and an inner product metric on IR

� has the same geodesics
as the metric ������� It can be shown �see Appendix A� that for the basis �Li such metric
has the form�

G�R� d� �

�
�I �
� RT W R



������

��



where W is a constant positive de�nite symmetric matrix which de�nes the inner product
on IR

�� We state this as a lemma�

Lemma 	��� If a metric G has the form ������ then it is a solution of the system of
equations �D����

Note that the form of G in Lemma ���
 is consistent with that in Lemma ����� It is also
obvious that the metric ������ can be obtained as a special case of ����� by substituting
W � �I �
Lemma ���
 identi�es a family of Riemannian metrics that are compatible with the

kinematic connection� We would like to know whether there are any other metrics which
are compatible with the kinematic connection� Before we answer this question� we prove
the following lemma�

Lemma 	��� Two metrics on SE�
� which have the same Riemannian connection and
are equal at a point� are equal everywhere�

Proof: Let G� and G� be the two metrics and let A� be the point where they are equal�
G��A�� � G��A��� If a connection is compatible with the metric then the parallel transport
preserves the inner product� Take an arbitrary point A � SE�
�� We can always �nd a
curve 
 which connects A� with A� Since at A�� G� and G� are equal� we can choose a
basis Xi for the tangent space TA�SE�
� which is orthonormal in both metrics� The two
metrics have the same connection and we can parallel transport vectors Xi at A� to vectors
X �
i at A along 
� Since both metrics are compatible with the connection and the parallel

transport preserves the inner product� vectors X �
i at A are orthonormal in both metrics�

But this means that the two metrics are equal at A�
�

Remark 	��� Parallel transport along a closed curve 
 which starts and ends at A �
SE�
�� maps an element X � TASE�
� to another element X

� � TASE�
�� The collection
of such mappings that we obtain by taking all possible closed curves that start and end at A
forms a group called the holonomy group of the connection with the reference point A� Since
the parallel transport preserves the inner product� the elements of the holonomy group are
orthogonal transformations with respect to any metric compatible with the connection�

We can now state the second major result of the chapter�

Theorem 	��� A metric G�R� d� is compatible with the kinematic connection given by
Equation ����
� and ������ if and only if it has the form�

G�R� d� �

�
�I��� ����
���� RT W R



������

where W is a constant positive de�nite symmetric matrix�

Proof: The �if� part of the Theorem is just Lemma ���
� To prove the �only if� direction�
let G be a metric compatible with the kinematic connection� According to Lemma �����
at the identity the metric G has the form�

G �

�
�I �
� M



� ����
�

��



where M is a positive de�nite� smoothly varying� symmetric matrix� But there exists a
metric G� of the form ������ with W � M which is equal to G at the identity� The two
metrics are both compatible with the kinematic connection� so according to Lemma �����
they are the same� Metric G therefore has the form �������

�

Remark 	��	 All the metrics of the form ������ are isometric� In other words� if G�

and G� are two such metrics� there is an isometry between SE�
� equipped with the
metric G� and SE�
� equipped with the metric G�� �This isometry does not preserve
the group structure on SE�
�� though�� The two manifolds are isometric because of the
product structure of the metrics and the fact that any two metrics on a Euclidean space
are isometric�


�� Discussion

In this chapter we saw how SE�
� can be endowed with additional structure so that
some well�known results in kinematics can be interpreted through the geometry of SE�
��
First� we show that a natural setting to study screw motions is SE�
� equipped with a
metric chosen from a two�parameter family of semi�Riemannian metrics� These metrics are
inde�nite and in general they are non�degenerate� Viewed as quadratic forms on se�
�� the
metrics are linear combinations of the Killing form and the Klein form� Any non�degenerate
metric in this family de�nes the unique symmetric connection for which geodesics are screw
motions� When the metric is degenerate �as a form on se�
� it is a scalar multiple of the
Killing form�� the symmetric connection compatible with the metric is no longer unique
and neither are the geodesics� However� screw motions are still one possible set of geodesics
of degenerate metrics derived from the Killing form�

To study acceleration or higher order derivatives of the velocity� SE�
� must be equip�
ped with an a�ne connection� The choice of the a�ne connection is restricted if we want
to obtain the acceleration of a rigid body by covariant di�erentiation of the velocity vector
�eld� Further� if we require that the connection is symmetric� such connection is unique�
In this case� a family of Riemannian metrics which are compatible with the symmetric
connection can be identi�ed� All of them are product metrics � as a Riemannian manifold�
SE�
� is a Cartesian product of SO�
� with the bi�invariant metric and IR

� with the inner
product metric� Alternatively� the symmetric connection studied in Section ��
 can be
viewed as the symmetric part of a general connection with non�zero torsion �asymmetric
part�� Since geodesics do not depend on torsion� the family of metrics compatible with the
symmetric part of the connection consists precisely of those metrics which have the same
geodesics as the connection�

��



Chapter �

Task space trajectory planning

For applications� kinematic motion planning is employed more frequently than dynamic
motion planning� The main reason is that it is much simpler� Kinematic motion planning
will be su�cient as long as there exists a suitable way of computing the actuator forces
from the kinematic trajectory� This is the case� for example� if there exists a ��� mapping
between the task space and the actuator space� We also use kinematic motion planning
when a dynamic model of the system is di�cult to derive� we abstract the dynamic model
with a kinematic model�

Kinematic motion planning can be performed either in the task space or in the joint
space� Since the task is speci�ed in the task space� it is natural to compute the motion plan
directly in this space� Such motion plan will be in general independent of the mechanical
structure of the robot� In robotics we are usually interested in smooth trajectories� They
are preferred because the electro�mechanical system is limited by its actuator size and its
control bandwidth so it can not produce large velocities and accelerations� and because
movements with high acceleration and,or jerk can excite the structural natural frequencies
in the system� A typical example is programming of industrial robots for tasks such
as welding and painting where a �teaching� process is employed to record intermediate
positions and the �nal trajectory is obtained by interpolation ������ Similarly� in computer
graphics� smoothness is required to obtain realistic motions or motions that �look� natural
when key frames are employed for three�dimensional animation� Each key frame represents
an intermediate position and orientation �pose� and is speci�ed by the user or programmer�
It is then necessary to automatically generate a smooth trajectory passing through the key
frames �����

When comparing di�erent methods for kinematic motion planning and trajectories that
these methods generate� we usually look for the following properties�

� The trajectories must be independent of the description of the space� In this way�
computations performed with di�erent choices of coordinates will produce consistent
results�

� The trajectories should be independent of the choice of the inertial reference frame
fFg and the body �xed frame fMg �Figure ����� That is� it should not matter where
we put the inertial frame and which frame we choose on the rigid body� the resulting
trajectory that the rigid body follows should be the same�

���



� The trajectories must have good performance for the chosen task�
Many commonly used motion planning schemes produce trajectories that depend on

the choice of the parameterization of the task space� An example is shown in Figure ����
The trajectories in the �gure were obtained by using a straight line interpolation in the
chosen coordinate space� In Figure ���a� we used the canonical coordinates of the �rst kind
de�ned by Equation ������� In Figure ���b� we used the canonical coordinates of the second
kind de�ned by Equation ������� while for Figure ���c we chose the canonical coordinates
of the second kind with the order of the basis vectors in Equation ������ reversed� The
object moves in the plane z � ��
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Figure ���� Motion of an object following a straight line in� �a� canonical coordinates of
the �rst kind� �b� canonical coordinates of the second type �ordering L�� � � � � L��� and �c�
canonical coordinates of the second type �ordering L�� � � � � L���

Coordinate independence of the trajectories is assured if the motion planning scheme is
derived within the framework of di�erential geometry� Di�erential geometry also provides
a consistent way of extending the notion of di�erentiation from Euclidean space to an
arbitrary manifold� In this way we can de�ne di�erent measures of smoothness of the
trajectories� In addition� because of the group structure of the task space manifold� we can
establish whether the trajectories are left or right invariant �see Sections ����� and ����
�
and thus independent of the choice of the reference frames�
Finding trajectories on SE�
�� that are left and right invariant and yield good per�

formance turns out to be di�cult if not impossible� From Corollary ��
 it follows that
screw motions are invariant with respect to the choice of the inertial and body �xed refer�
ence frames� However� according to Corollary ��� screw motions are not geodesics for any
Riemannian metric and are therefore not minimizing any physically meaningful distance�
Further� on SE�
� there is no bi�invariant metric ����� This implies that the invariance
of the trajectories must be sacri�ced for performance and all we can hope for is either
independence of the trajectories with respect to the choice of the inertial frame fFg or
independence with respect to the body �xed frame fMg�
There is extensive literature on trajectory generation in kinematics� robotics and com�

puter graphics� In order to generate a smooth motion for a robotic arm from an initial
to the �nal position� Whitney ����� and Pieper ����� proposed calculating the screw axis
of the end e�ector displacement� In other words� they advocated a screw motion from
the initial to the �nal position� Waldron ����� developed an algorithm that is based on a
slight variation of Pieper�s scheme and proposed a trapezoidal velocity pro�le �a constant
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acceleration phase� followed by a constant velocity phase and �nally a constant deceler�
ation phase� for the screw motion� In all these schemes� although the screw motion is
invariant with respect to rigid body transformations� it does not optimize a meaningful
cost function� Paul ����� decomposes the desired displacement into a translation and two
rotations each of which is smoothly parameterized with respect to time� The motion of
the end�e�ector is obtained by a composition of these three displacements� He employs
a fourth�order polynomial of time to obtain a smooth motion� Although there is some
justi�cation for the proposed trajectory� the approach will lead to di�erent trajectories if
di�erent parameterization is chosen for the rotation or if the coordinate frames in which
the trajectory is computed are changed� There is also no attempt to develop a measure of
smoothness for three�dimensional motions�

Shoemake ��
�� proposed a scheme for interpolating rotations �in SO�
�� with Bezier
curves� This idea was extended by Ge and Ravani ���� to SE�
� and proposed for computer�
aided geometric design� In both cases� the interpolating curves are screw motions and
therefore invariant with respect to the choice of reference frames� However� the interpolat�
ing scheme produces a motion that does not posses these invariance properties� Further�
these motions are not of minimal length for any meaningful metric� In contrast� Park
and Ravani ����� use a scale�dependent left invariant metric to design Bezier curves for
three�dimensional rigid body motion interpolation�

As in the �rst part of the dissertation� we formulate the motion planning problem as
a variational problem� in particular� we compute maximally smooth trajectories between
an initial and a �nal position and orientation� The measure of the lack of smoothness is
chosen to be the integral over the trajectory of a cost function depending on velocity or its
higher derivatives� Boundary conditions on the derivatives of desired order can be enforced
by appropriately choosing the cost function� For example� by minimizing the norm of the
velocity we obtain the shortest distance paths� The minimum�acceleration �minimum�jerk�
trajectories can be made to satisfy boundary conditions on the velocities �accelerations��
Dynamically smooth trajectories can be obtained by incorporating the inertia of the system
into the cost function� A simple extension of the ideas in this chapter allows inclusion of
intermediate positions and orientations and lends itself to motion interpolation�

Necessary conditions for smooth curves on general manifolds were derived by Noakes et
al� ������ and in parallel with our work by Camarinha et al� ���� and Crouch and Silva Leite
�
��� In ������ necessary conditions for cubic splines which correspond to our minimum�
acceleration curves are derived for an arbitrary manifold� These results are extended in �
��
to the dynamic interpolation problem� In ���� necessary conditions for curves minimizing
the integral of the norm of an arbitrary derivative of velocity are derived� None of these
works deals speci�cally with computing the trajectories on SE�
�� nor do they address the
choice of the metric for the space� Since there is no natural metric for SE�
� ���� ���� the
choice of metric for trajectory planning becomes an important issue�

The chapter is organized as follows� We start with a discussion on the choice of metric
for trajectory planning on SE�
�� We propose a left invariant metric given by the kinetic
energy of a rigid body and derive the expressions for the covariant derivative given by this
metric� We use these geometric constructs to formalize the ideas of acceleration and jerk
on SE�
�� Most of these results are presented here for the �rst time� We then describe
the variational problems that need to be solved in order to calculate the shortest distance�
minimum�acceleration and minimum�jerk trajectories� While some of these results were
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derived in ����� and ����� we present alternative proofs and specialize the results to SE�
��
We continue by deriving analytical solutions for smooth trajectories in some special cases�
At the end of the chapter� we show some numerically computed trajectories to illustrate
their dependence on the choice of the metric� reference frames and boundary conditions�

��� Choice of metric on SE��� for motion planning

To measure the length of a vector or a distance between two points on a manifold� we need
a Riemannian metric� There is no clear choice of metric on SE�
�� In the previous chapter�
we obtained two families of metrics by specifying the family of geodesics and enforcing a
particular expression for covariant derivative� In this section we are interested in metrics
that are suitable for motion planning on SE�
�� We focus on the left invariant metrics �see
Section ����
� which produce trajectories that are invariant with respect to the choice of
the inertial frame� but in general change if the body��xed frame is changed� An example
of a left invariant metric was proposed by Park and Brockett ����� and was discussed in
Section ���� The matrix W in Equation ������ for this metric is given by�

W �

�
�I �
� �I



�����

where � and � are positive scalars� This metric possesses several attractive features�

�� By construction� the metric is left invariant and does not depend on the choice of
the inertial ��xed� reference frame� This property is important for dynamic analysis
of mechanical systems�

�� When restricted to the group of rotations� SO�
�� it is bi�invariant ������


� It preserves the isotropy of IR� ������ which means that the metric properties of the
space are the same in every direction�

�� For an arbitrary choice of the positive constants � and �� the basis vector �elds �Li
are orthogonal� When � � � � �� they become orthonormal�

�� The metric is compatible with the acceleration connection �Proposition ������ The
Riemannian connection corresponding to this metric thus yields the acceleration that
is used in kinematics�

However� metric ����� depends on the choice of the two scalars� � and �� which act like
scaling factors for angular velocities and linear velocities� In kinematic analysis there is no
a priori justi�cation for choosing them�

Another metric that is attractive for trajectory planning can be obtained by considering
the dynamic properties of the rigid body� The kinetic energy of a rigid body is a scalar
that does not depend on the choice of the inertial reference frame� It thus de�nes a left
invariant metric� For this metric� the matrixW in Equation ������ is the inertia matrix and
�
� � V� V 	 corresponds to the kinetic energy of the rigid body moving with a velocity V �

��




If the body��xed reference frame is attached at the centroid and aligned with the principal
axes� then we have�

W �

�
H �
� mI



� �����

where m is the mass of the rigid body and H is the matrix�

H �

��� Hxx � �
� Hyy �
� � Hzz

��� �
with Hxx� Hyy � and Hzz denoting the moments of inertia about the x� y� and z axes�
respectively� If f�� vg is the vector pair associated with the vector V � this vector pair
represents the instantaneous twist associated with the motion� expressed in the body��xed
reference frame� The norm of the vector V thus assumes the familiar expression�

� V� V 	� �TH�  mvTv� ���
�

Now assume that the body �xed frame fMg is displaced by the matrix�

C �

�
R d

� �




to a new frame fMgC � The kinetic energy does not change if the body��xed frame is
changed� It is not di�cult to check that this implies that the matrix WC de�ning the
energy metric for the new description of the motion of the rigid body is�

WC �

�
RTHR�mRTD�R �mRTDR

mRTDR mI



� �����

where D is the skew�symmetric matrix corresponding to the vector d� This is therefore the
most general form of the inertia matrix and can be viewed as a spatial version of Steiner�s
parallel�axis theorem�

Remark ��� In the Appendix A we show that the matrix of metric coe�cients� G� for a
product metric on SO�
�� IR

� induced by a left invariant metric Q on SO�
� and a metric
W on IR

�� has the following form�

G�R� d� �

�
Q �
� RT W R



� �����

when expressed in the basis �Li� Here� Q and W are arbitrary positive�de�nite 
 � 

matrices� If we set W � 
I � the product metric becomes�

G �

�
Q �
� 
I



� �����

The metrics ����� and ����� both have this form and are therefore obtained from a product
metric� In other words� there is an isometry between SE�
� endowed with any of these

���



metrics and the product space SO�
�� IR
� with appropriately de�ned metrics on SO�
�

and IR
�� respectively� Further� since any metric of the form ����� is isometric to a metric

of the form ������ any metric induced by the kinetic energy will be isometric to a product
metric� Since none of the functionals that we later use to de�ne smoothness of a curve
depend on the group structure of SE�
�� calculations in the examples could be simpli�ed
by performing them on the product space SO�
�� IR

� instead� However� the key results
in this chapter are derived for a general metric and are not limited to product metrics�
Hence� for the derivations we do not take advantage of the product structure for SE�
��

����� Riemannian connection on SE���

In this section we �nd the Riemannian connections that correspond to the left invariant
metrics ����� and ������ We start with an elementary result relating the Christo�el symbols
and the structure constants for an arbitrary Lie group� It is not di�cult to show �
�� that
if r is the Riemannian connection then for any three vector �elds X � Y and Z�

� Z�rXY 	�
�

�
fY � X�Z 	  X � Z� Y 	 �Z � X� Y 	  

 � �Z� Y �� X 	  � �Z�X �� Y 	  � �X� Y �� Z 	g �����

This immediately implies�

Proposition ��� If r is the Riemannian connection compatible with a left invariant met�
ric described by a matrix W � �wij�� the Christo�el symbols for the basis �Li are given
by

+kji �
�

�

X
m

w��km



Cs
ijwsm  Cs

mjwsi  Cs
miwsj

�
� �����

where Ck
ij are the structure constants of the Lie algebra and w��km � �W

���km�

Note that if X � X i �Li and Y � Y i �Li are any two vector �elds
�� then

rXY � rXj �Lj
Y i �Li �

dY i

dt
�Li  X iY jr�Li

�Lj �
dY i

dt
�Li  X iY j+kji �Lk� �����

where d
dt
is the derivative along the integral curve of X and +kji are obtained from Equation

������ However� for SE�
� and the metrics ����� and ������ more compact expressions can
be obtained directly from Equation ������ First� we prove the following lemma for SE�
��

Lemma ��� Let X � X i �Li� Y � Y i �Li and Z � Zi �Li be three arbitrary vector �elds and
let the corresponding vector pairs be f�x� vxg� f�y � vyg� and f�z � vzg� respectively� If r is
the Riemannian connection corresponding to the left�invariant Riemannian metric ����
��
then

� Z�rXY 	 � � Z�X�Y i��Li 	

 
�

�
�� f��z � �y�� ��z � vy  vz � �y�g� f�x� vxg 	

 � f��z � �x�� ��z � vx  vz � �x�g� f�y� vyg 	
 � f��x � �y�� ��x � vy  vx � �y�g� f�z� vzg 	� ������

�Starting from this point we use the Einstein summation convention to simplify the notation�

���



Proof: The result of the Lemma follows directly from Equation ������ The Lie bracket of
any two vector �elds is�

�X� Y � � X iY j ��Li� �Lj�  X�Y i��Li � Y �X i��Li�

where X�f� denotes the action of the vector �eld on a scalar function f �See Section �������
Rewritten in terms of the pairs f�x� vxg and f�y � vyg� the �rst term becomes

X iY j ��Li� �Lj � � f�x � �y � �x � vy  vx � �yg

Thus� in Equation ������

� Z� �X� Y � 	 � � f�z � vzg� f��x� �y�� ��x � vy  vx � �y�g 	
 � Z�X�Y i��Li 	 � � Z� Y �X i��Li 	

Furthermore� if Wij are the entries of W in Equation �������

X � Y� Z 	 � X�Y iWijZ
j� � X�Y i�WijZ

j  Y iWijX�Z
j�

� � X�Y i��Li� Z 	  � Y�X�Zi��Li 	 ������

The result in Equation ������ follows if we similarly expand and add all the terms in
Equation ������

�

Proposition ��� Let X � X i �Li and Y � Y i �Li be two arbitrary vector �elds� If r is the
Riemannian connection corresponding to the Riemannian metric ������ then

rXY � fd�y
dt

 
�

�
�x � �y �

dvy
dt
 �x � vyg� ������

where d
dt

is the derivative along the integral curve of X� The expression is independent of
the scaling constants � and ��

Proof: We employ Lemma ��
 and use the metric ������

� Z�rXY 	 � � Z�X�Y i��Li 	

 
�

�
�� ��z � �y� � �x  � ��z � vy  vz � �y� � vx

 � ��z � �x� � �y  � ��z � vx  vz � �x� � vy
 � ��x � �y� � �z  � ��x � vy  vx � �y� � vz �

� � Z�X�Y i��Li 	  
�

�
�� ��x � �y� � �z  � � ��x � vy� � vz �

� � Z�X�Y i��Li  f�
�
��x � �y�� ��x � vy�g 	�

where ��� denotes the dot product on IR
�� Since the equation must hold for an arbitrary Z�

we can write�

rXY � X�Y i��Li  f�
�
�x � �y � �x � vyg

���



If d
dt
is the derivative along the integral curve of X �

X�Y i��Li �
dY i

dt
�Li � fd�y

dt
�
dvy
dt
g

Hence the result in Equation �������
�

Proposition ��� Let X � X i �Li and Y � Y i �Li be two arbitrary vector �elds� If r is the
Riemannian connection corresponding to the Riemannian metric ������ then

rXY �

�
d�y
dt
 �

�

�
��x � �y�  H����x � �H�y��  H����y � �H�x��

�
dvy
dt
 �x � vy



����
�

where d
dt

is the derivative along the integral curve of X� The translational component of
the expression rXY is independent of the choice of matrix H and thus independent of the
choice of the metric on SO�
��

Proof: We start with Lemma ��
 and use the metric ������

� Z�rXY 	 � � Z�X�Y i��Li 	

 
�

�
���z � �y� � �H�x�  m��z � vy  vz � �y� � vx

 ��z � �x� � �H�y�  m��z � vx  vz � �x� � vy
 ��x � �y� � �H�z�  m��x � vy  vx � �y� � vz �

� � Z�X�Y i��Li 	  
�

�
��m��x � vy� � vz

� ��H�x�� �y� � �z  ��x � �H�y�� � �z  ��x � �y� � �H�z��

� � Z�X�Y i��Li 	  
�

�

h
�m��x � vy� � vz � �H����H�x�� �y�� � �H�z�

 �H����x � �H�y��� � �H�z�  ��x � �y� � �H�z�
i

� � Z�X�Y i��Li 	  � Z� f�
�
���x � �y�

 H����x � �H�y��  H����y � �H�x��
i
� ��x � vy�g 	

Since the above is true for an arbitrary Z� this proves the proposition�
In the derivation� we have used the fact that H is symmetric and therefore for arbitrary

vectors x and y�

x � y � x � �H��Hy� � �H��Tx� � �Hy� � �H��x� � �Hy��
�

����� Curvature of SE���

In the subsequent sections we will also need the expressions for the Riemannian curvature
of SE�
�� By de�nition� the Riemannian curvature tensor R�X� Y � is �
���

R�X� Y � Z � rYrXZ �rXrY Z  r�X�Y �Z ������

The Riemannian curvature for the metric ����� can be computed directly in the com�
ponents of the corresponding vector �elds�

���



Proposition ��� If X� Y and Z are three arbitrary vector �elds on SE�
� with the asso�
ciated vector pairs f�x� vxg� f�y� vyg� and f�z � vzg� and SE�
� has the Riemannian con�
nection de�ned in Equation ������� then the Riemannian curvature R�X� Y � Z is

R�X� Y �Z � f�
�
��x � �y�� �z � �g ������

Proof: See Appendix B���
�

����� Acceleration and jerk of rigid body motions in IR
�

Knowing how to compute the covariant derivative� we are in a position to obtain formulas
for the acceleration and jerk� Here we use the scale�dependent left invariant metric from
Equation ������ Since the connection coe�cients and the covariant derivative are indepen�
dent of the choice of constants � and �� the resulting expressions for acceleration and jerk
will also be independent of these scale factors�

If V is the velocity �tangent to the curve� associated with the motion A�t� of a rigid
body� the acceleration is the covariant derivative of V along the curve A�t�� If f�� vg
is the corresponding velocity pair it immediately follows from Equation ������ that the
acceleration is given by

rV V �

�
��

�v  � � v



� ������

The resulting expression for the acceleration corresponds to the acceleration that is used
in kinematics� This is not surprising given that the metric ����� is compatible with the
acceleration connection �see Section ��
����

The third derivative of motion� jerk� can be obtained by considering the covariant
derivative of the acceleration along the curve A�t��

rVrV V �

�
d ��
dt
 �

�� � ��
d	 �v���v


dt
 � � � �v  � � v�



� ������

��� Necessary conditions for smooth trajectories

����� Variational calculus on manifolds

In this section we consider trajectories between a starting and a �nal position and ori�
entation that minimize an integral cost functions while satisfying additional boundary
conditions on the velocities and,or accelerations� The cost functions can be the kinetic
energy of the rigid body� or some other measure of smoothness involving velocity or its
higher derivatives� More speci�cally� we will be interested in curves A � �a� b� � SE�
�
that minimize integrals of the form

J �

Z b

a
� h�

dA

dt
�� h�

dA

dt
� 	 dt ������

���



where boundary conditions on A�t� and its derivatives may be speci�ed at the end points
a and b� The function h returns a vector �eld and usually involves one or more recursive
applications of the covariant derivative� We will use a left invariant metric and the cor�
responding Riemannian connection� Unless otherwise speci�ed� the scale�dependent left
invariant metric from Equation ����� will be used�
independent of the choice of the inertial reference frame fFg� we will use a left invariant

metric and the corresponding Riemannian connection�
We adapt methods from the classical calculus of variations to the di�erential geometric

setting �
��� Noakes et al� ����� use such a framework to derive expressions for cubic splines
on a general manifold and they provide the formulas for the group of rotations SO�
�� The
cubic splines correspond to our minimum�acceleration curves and we derive the results from
����� using more direct approach� The necessary conditions for minimum�jerk trajectories
were obtained in parallel with our work and using similar approach by Camarinha et al�
�����

In the calculus of variations� the �rst�order necessary conditions for the minimal solu�
tion are derived by studying variations of the optimal trajectory� These conditions take
the form of Euler�Lagrange equations� We will pursue a coordinate�free formulation of the
Euler�Lagrange equations which is independent of the particular choice of a coordinate
chart� We illustrate the basic approach with the simple example in which the cost func�
tional is the energy functional� where the solution is known to be a minimal geodesic on
SE�
��

If A � �a� b�� SE�
� is a piecewise smooth curve on the manifold� a variation of A is a
continuous mapping f � ���� ��� �a� b�� SE�
� such that

�� f��� t� � A�t�� t � �a� b�
�� f is di�erentiable on all intervals ���� �� � �ti� ti���� where �ti� ti��� is an interval on
which A is di�erentiable�

The variation is proper� if f�s� a� � A�a� and f�s� b� � A�b�� For each s� we get a
curve 
s�t� � f�s� t� which is called a curve of variation of the curve A�t� �
��� The �rst
requirement above implies that A�t� � f��t�� On the other hand� curves obtained by �xing
t� therefore �t�s� � f�s� t�� are called transversal curves of variation� The tangent vectors

to the transversal curves at s � � �that is d�t	s

ds

���
s��
� de�ne a vector �eld along A�t��

denoted by S� called the variational �eld of f � The tangent along a curve of variation of
the curve A�t� is V � �f	s�t


�t
�

Let f�s� t� be a variation of A�t�� that is f��� t� � A�t�� and let the vector �elds V and

S be de�ned by V � �f	s�t

�t

and S � �f	s�t

�s

� We also require that the curves of variation
fs�t� � f�s� t� satisfy the boundary conditions �i�e�� the variation is proper�� The value of
the cost functional ������ on a curve of variation 
s�t� is

J�s� �
Z b

a

� h�
�f�s� t�

�t
�� h�

�f�s� t�

�t
� 	 dt� s � ���� ��� ������

If the curve A�t� � f��� t� is a stationary point of the above functional then the �rst

variation dJ	s

ds

must vanish for s � �� In the next subsection we compute the �rst variation
of the energy functional and show that the critical points� as expected� are geodesics� In

���



subsequent subsections� we consider minimization of the L� norms of acceleration and jerk
along the trajectories�

����� Minimum�distance curves � geodesics

Park ����� has extensively studied geodesics on SE�
� for the left invariant metric ������
The main objective of considering geodesics here is to illustrate the generality of our
approach and to show how the approach can be used to obtain the result in ������

Consider the energy functional

J � E�s� �

Z b

a

�
�f�s� t�

�t
�
�f�s� t�

�t
	 dt ������

The minimum�distance curves between two points on the manifold are critical points of
this functional �
��� Let V � �f	s�t


�t
� The �rst variation of E�s� can be simpli�ed as follows�

�

�
E��s� �

�

�

d

ds

Z b

a

� V� V 	 dt

�
�

�

�
S

Z b

a

� V� V 	 dt

�
�

Z b

a

� rSV� V 	 dt

�
�

Z b

a

� rV S� V 	 dt

�
�

Z b

a

�V � S� V 	 � � S�rV V 	�dt

�
� � S� V 	jba �

Z b

a
� S�rV V 	 dt ������

The numbers above the equal signs correspond to the following identities that were used
in the derivation�

��� df	s

ds

� Sf

��� � rV S� U 	� V � S� U 	 � � S�rVU 	

�
� rV S � rSV �V� S� � rSV �since S and V are derivatives with respect to coordinate
curves t and s� �V� S� � ���

��� for V � �
�t
�
R b
a V �f�dt �

R b
a
df	t

dt

dt � f�t�jba
The �rst and the fourth identity explain how a vector �eld operates on a function �see
Section ������� The second and the third identity state that r is a Riemannian connection�
hence compatible with the metric ��� and symmetric �
��

If a curve is a critical point of the functional the �rst variation on that curve must
vanish for an arbitrary variational vector �eld S� Since the endpoints A�a� and A�b� are
�xed� S�a� � S�b� � �� and the �rst term in Equation ������ vanishes� Therefore� if
A�t� � f��� t� is a critical point�

rV V � �� ������

���



where V � dA	t

dt
� We thus obtain� as expected� the equation de�ning a geodesic�

So far we have only used the fact that the set of all positions and orientations is a
Riemannian manifold� To solve Equation ������ and �nd the geodesics on SE�
�� we
express V as a linear combination of left invariant vector �elds �L�� � � � � �L� according to
Equation ������ and assemble the coe�cients in the vector pair f�� vg�

Proposition ��	 A curve

A�t� �

�
R�t� d�t�
� �



is a geodesic on SE�
� equipped with the metric ����� if and only if the vector pair f�� vg
corresponding to the velocity vector �eld V � dA

dt
satis�es the equations�

d�

dt
� �

dv

dt
� �� � v� ����
�

The second equation in ����	� can be simpli�ed to the equation�

*d � ��

Proof: A curve A�t� is a geodesic if and only if Equation ������ is satis�ed� Substituting
for rV V from Equation ������� we obtain the equations in ����
�� The second equation in
����
� can be written as�

�v  � � v � ��

By writing / � RT �R and v � RT �d �see Section ������ and using the identity �RT �
�RT �RRT � we obtain

�v  � � v � �v  /v � � �RT �d RT *d�  RT �RRT �d � RT *d � ��

which proves *d � ��
�

Remark ��� It is worth noting that the above result is independent of the choice of the
scale factors � and �� The necessary conditions for minimum�acceleration and minimum�
jerk curves derived in the subsequent subsections will also have the same property�

����� Minimum�acceleration curves

We follow the same route as in the previous subsection to compute curves that minimize
the square of the L� norm of the acceleration� We derive the necessary conditions by
considering the �rst variation of the minimum�acceleration functional

Jacc �
Z b

a

� rV V�rVV 	 dt� ������

where V �t� � dA	t

dt

and A�t� is a curve on the manifold� The initial and �nal point as well
as the initial and �nal velocity along the curve are prescribed�

���



Theorem ��� Let A�t� be a curve on a Riemannian manifold that satis�es the boundary
conditions �that is� it starts and ends at the prescribed points with the prescribed velocities�
and let V � dA

dt
� If A�t� minimizes the functional Jacc� then�

rVrVrV V  R�V�rVV �V � �� ������

Proof: See Appendix B���
�

We can directly apply Theorem ��� to SE�
� with the Riemannian connection computed
from the metric ������

Proposition ���
 Let

A�t� �

�
R�t� d�t�
� �



be a curve between two prescribed points on SE�
� that has prescribed initial and �nal
velocities� If f�� vg is the vector pair corresponding to V � dA

dt
� the curve minimizes the

cost functional Jacc derived from the metric ����� only if the following equations hold�

�	�
  � � *� � �

d	�
 � ��
������

where ���	n
 denotes the nth derivative of ����
Proof: We start by using Equations ������ and ������ to compute the second term in
Equation �������

rVrVrV V  R�V�rVV �V � rVrVrV V  

�
�
��� � ���� �

�



� �� ������

By repeated application of Equation ������ the term rVrVrV V can be simpli�ed and
the rotational part of the above equation reduces to��

�	�
  � � *�  �
�
� � �� � ���

�
 

�
�

�
�� � ���� �

�
� ��

After some simpli�cation we arrive at the �rst equation in ������� To simplify the trans�
lational component� we �rst observe that the translational component of rV V can be
written as �see the proof of Proposition �����

�v  � � v � RT *d�

It follows that the translational component of rVrV V is�

d

dt
�RT *d�  RT �R�RT *d� � � �RT *d RTd	�
�  RT �RRT *d � RTd	�
�

Similarly� the translational component of rVrVrV V can be simpli�ed to get

RTd	�
 � �

from which the second equation in ������ directly follows�
�

���



Remark ���� The above result is independent of the choice of the scale factors � and ��
Further� the translational component of the necessary condition for minimum�acceleration
does not depend on the angular motion� and the rotational component is independent of
the translational motion �the latter is clear from the expressions ������ and ��������

Remark ���� As observed in ������ the �rst equation ������ can be integrated to obtain

�	�
  � � �� � constant ������

However� this equation can not be further integrated analytically for arbitrary boundary
conditions� In Section ��
�� we will show how to obtain the solution for a special choice of
initial and �nal velocities�

����� Minimum�jerk curves

The minimum�jerk curves between two points are obtained by minimizing the square of L�

norm of the Cartesian jerk� provided that the appropriate boundary conditions are given�
In particular� it is possible to solve for minimum�jerk trajectories when the initial and �nal
velocities and the initial and �nal accelerations are speci�ed� Minimum�jerk trajectories
are particularly useful in robotics where one is generally able to control the acceleration
of the robot end e�ector �and therefore the velocity and the position� but the electro�
mechanical actuators can not produce sudden changes in the acceleration� It is interesting
to note that Flash and Hogan ���� suggest that humans plan trajectories that minimize
such an integral measure of the jerk when reaching for an object in a horizontal plane and
provide experimental evidence in support of this claim�

The minimum�jerk cost functional is�

Jjerk �
Z b

a

� rVrV V�rVrV V 	 dt ������

where as usual V � dA	t

dt
� The curve must start and end at the desired points on the mani�

fold and with the desired velocities and accelerations� We arrive at the necessary conditions
for the solution by following the same approach as in the previous two subsections�

Theorem ���� Let A�t� be a curve on a Riemannian manifold that satis�es the boundary
conditions �that is� it starts and ends at the prescribed points with the prescribed velocities
and the prescribed accelerations� and let V � dA

dt
� If A�t� minimizes the functional Jjerk�

then�

r�
V V  R�V�r�

VV �V �R�rV V�r�
VV �V � �� ���
��

Proof: See Appendix B�
�
�

The expressions for minimum�jerk trajectories on SE�
� for the metric ����� immedi�
ately follow�

��




Proposition ���� Let A�t� be a curve between two prescribed points on SE�
� that has
prescribed initial and �nal velocities� and initial and �nal accelerations� If f�� vg is the
vector pair corresponding to V � dA

dt
� the curve minimizes the cost functional Jjerk for the

metric ����� only if the following equations hold�

�	�
  � � � �	�
  �
�� � �� � �	�
�  �

� �� � �	�


 �
�� � �� � �� � *���  �

�� � � �� � *��� �� � *��� ��

��
��� � ���� *� � �

�� � ��� � ���� ���� �
��� � �� � ����� �� � �

d	�
 � �� ���
��

Proof: The proof follows the same reasoning as the proof of Proposition ���� and use for�
mulas ������ and ������ to evaluate the three terms in Equation ���
��� The �rst expression
in Equation ���
�� was derived using Mathematica�

�

����� Minimum energy curves

In this subsection� we take the cost functional to be the kinetic energy of the rigid body
and determine trajectories that minimize the integral of the kinetic energy over the entire
trajectory� Critical points of this functional are the geodesics for the metric ������ Accord�
ing to Hamilton�s principle in rigid body dynamics� for holonomic systems the integral of
the Lagrangian over the entire trajectory is stationary ������ Therefore� the minimization
of the integral of the energy yields a trajectory consistent with the dynamic equations of
motion when no external forces act on the body�

Proposition ���� A curve A�t� is a geodesic on SE�
� equipped with the metric ����� if
and only if the vector pair f�� vg corresponding to the velocity vector �eld V � dA

dt
satis�es

the equations�

d�

dt
� �H���� � �H���

dv

dt
� �� � v� ���
��

The second equation in ���	�� can be simpli�ed to the equation�

*d � ��

Proof: A curve A�t� is a geodesic if and only if Equation ������ is satis�ed� Substituting
for rV V from Equation ����
�� and letting f�x� vxg � f�y � vyg � f�� vg we get Equation
���
��� Since the expression for the translational part is the same as that in Equation
����
�� to prove the second part we proceed in the same way as in the proof of Proposition
����

�

���



��� Analytical expressions for optimal trajectories

����� Shortest distance path on SE���

Using properties of the Riemannian covering maps� Park showed ����� that for the metric
����� the geodesics on SE�
� can be obtained by lifting the geodesics from SO�
� and IR

��
We come to the same result constructively using Equation ����
��

Proposition ���� Given two con�gurations

A� �

�
R� d�
� �



A� �

�
R� d�
� �




the shortest distance path �minimal geodesic�

A�t� �

�
R�t� d�t�
� �




between these con�gurations with respect to the metric ����� is given by

R�t� � R� exp�/�t� ���

�

d�t� � �d� � d�� t  d�� ���
��

where

/� � log�R
T
�R���

�See Appendix F for the de�nition of the matrix log function�� The path is unique unless
Trace�RT

�R�� � �� when there exist two geodesics of equal minimum length �see Remark
������

Proof: The result follows from Proposition ���� The �rst equation in ����
� can be readily
integrated to obtain

��t� � ��� ���
��

Let / be the matrix equivalent of the vector �� From Equation ���
� we have�

/ � RT �R� ���
��

Equation ���
�� can be thus integrated�

RT �R � /� 	 R�t� � R� exp�/�t�� ���
��

From the initial condition we get R� � R� and from the boundary condition /� �
log�RT

�R���
The expression for the vector d�t� is obtained by integrating the equation *d � � twice�

As a result� we get�

d�t� � c�t  c�

and Equation ���
�� immediately follows from the initial and �nal conditions on d�
�

���



Remark ���	 The log function on SO�
� is multi�valued� If log�R� yields a solution �u� ���
where u is a unit vector along the axis of rotation and � is the angle of rotation� then for
any integer k� �u� �  �k�� is also a solution� This indeterminacy is resolved partially by
restricting � to lie in the interval ��� �� �the interval ���� �� is covered by using the axis
�u�� The geodesic computed by restricting � to lie in the interval ��� �� can be shown to
give the unique minimal�length geodesic ����� unless � � �� If we think of SO�
� as a unit
hyper�sphere in IR

� with antipodal points identi�ed� the minimal�length geodesic is unique
between any two general points� R� and R�� except when Trace�R

T
�R�� � �� and there

exist two geodesics of equal minimum length�

The above result suggests that the traveled distance between two con�gurations of
the rigid body will be minimal only if the point O� on the rigid body translates along a
straight line with a constant linear velocity while rotating along a �xed axis with a constant
angular velocity� The geodesic is therefore obtained by combining geodesics on SO�
� and
IR
�� corroborating the result in ������
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Figure ���� Motions in a plane� �a� a screw motion� �b� a geodesic for metrics ����� and
������ and �c� a geodesic after the body��xed frame fMg is displaced�

Figure ��� shows various trajectories for a motion in the plane z � �� Figure ���a shows
a screw motion which in the planar case corresponds to rotation about a �xed point in the
plane� A geodesic for the metric ����� is shown in Figure ���b� For planar motions� the
geodesic for the metric ����� will be the same� Since the trajectory is computed by using a
left invariant metric� it does not change if the inertial reference frame fFg is moved� But
the trajectory changes if we change the body��xed frame fMg� The trajectory is shown in
Figure ���c and is di�erent from the motion in Figure ���b� We also show the motion of
the new body��xed frame� The �gure clearly shows that the new body��xed frame follows
a geodesic for metric ������

It is interesting to compare the shortest distance trajectory to the trajectory that mini�
mizes the kinetic energy� According to Hamilton�s principle� the trajectory that minimizes
the kinetic energy is obtained by solving the dynamic equations of motion� We stated the
necessary conditions for this trajectory in Equation ���
��� The rotational part of Equation
���
�� are the well known Euler equations�

H ��  � �H� � ��

which� in general� do not admit an analytical solution� However� it is trivial to compute
the translational trajectory of the rigid body� The point O� �which was chosen to coincide

���
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Figure ��
� Trajectory of an object following� �a� a screw motion� �b� a geodesic for the
metric ������ and �c� a geodesic for the metric ������

with the center of mass� travels in a straight line with a uniform velocity between the initial
and �nal position of the rigid body� This is true for an arbitrary choice of the positive�
de�nite matrix H and as a special case contains the solution for the metric ����� obtained
in Equations ���

� and ���
��� The result is also the geometric statement of Newton�s
second law� The center of mass of the rigid body �the origin O�� travels in a straight line
if no external force acts on the body�

Figures ��
��a�� �b� and �c� compare the screw motion� the shortest distance trajectory
given by Equations ���

� and ���
��� and the trajectory consistent with the dynamic
equations ���
�� for a homogeneous rectangular prism with sides �� � and 
 units between
two given con�gurations� Figure ��
��a� shows the screw motion of the rigid body between
the two con�gurations� It can be seen that the object rotates about a �xed axis while
translating along the same axis� Figure ��
��b� shows the motion along the shortest distance
path �the geodesic� given by Equations ���

� and ���
��� The center of mass of the object
moves along the straight line connecting the initial and �nal position while the body rotates
around the center of mass as during the screw motion� Figure ��
��c� shows the trajectory
that the rigid body would follow according to the principles of rigid body dynamics if it
were launched with the appropriate initial velocity and not subjected to external forces�
This is a geodesic for the metric de�ned in Equation ������ The center of mass again
travels along the straight line� but the body rotation is governed by the Euler �dynamic�
equations� The trajectory was computed numerically by solving a two�point boundary
value problem ������ Note that the shape and mass distribution of the rigid body are only
relevant to the trajectory in Figure ��
��c��
Figure ��� shows geodesics on SE��� for left�invariant metrics of the form�

W �

��� � � �
� �� �
� � ��

��� � ���
��

The rows correspond to components �z � vx and vy � respectively� When �� 
� ��� the metric
of this form is not a product metric� Figure ���a is the same as Figure ���b and shows
a geodesic for the product metric� when �� � ��� The geodesic is a product of geodesics

���



on S��� and IR
�� The other two �gures show geodesics for the cases when �� 
� �� and

the metrics are not product metrics� In this case the rotational and the translational
components of motion are coupled� In particular� the translational motion does not follow
a straight line� These geodesics were computed numerically�
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Figure ���� Geodesics for di�erent metrics on SE���� �a� product metric� �� � �� � �� �b�
a metric with �� � �� �� � ��� and �c� a metric with �� � �� �� � ��

����� Minimum�acceleration and minimum�jerk trajectories

In general� the rotational components of the minimum�acceleration curves �Equation �����
and minimum�jerk curves �Equation ��
�� can not be computed analytically� However�
when the initial velocities and accelerations are collinear with the initial velocity of the
geodesic between the two endpoints� and the �nal velocities and accelerations are collinear
with the �nal velocity of the geodesic� it is easy to obtain a solution for these trajectories
in terms of the geodesic curve� If the geodesic curve can be computed analytically� so can
minimum�acceleration and minimum�jerk curves� The results in this section are valid for
any geodesically complete manifold�

Proposition ���� Given an initial point q� and a �nal point q� on a Riemannian manifold
#� let 
 � ��� �� � # be a geodesic connecting these two points so that 
��� � q� and


��� � q�� Let V� �
d�
dt

���
t�

and V� �
d�
dt

���
t�
� If the boundary conditions for the minimum�

acceleration curve are of the form�

V �t�� � ��V� V �t�� � ��V�� ���
��

then the minimum�acceleration curve is given by 
�p�t��� where p�t� is a third degree poly�
nomial that satis�es�

p��� � �� p��� � �
p���� � ��� p���� � ���

������

where p� � dp
dt
�

Proof: Assume that the minimum�acceleration curve � has the form ��t� � 
�p�t��� where
p is an arbitrary scalar function� p � IR � IR� It is easy to see that V � d	

dt
� p� d�

dt
� Let

T � d�
dt
� Since 
 is a geodesic� rTT � �� It then follows�

rV V � V �p��T  p�p�rTT � V �p��T� ������

���



But V �p�� is a derivative of p� along �� so V �p�� � p��� It immediately follows that�

rn
V V � p	n��
T� ������

Using the linearity of the curvature� we also get�

R�V�rVV � � R�p�T� p��T � � p�p��R�T� T � � �� ����
�

Equation ���
�� therefore reduces to�

p	�
T � �� ������

and since T is a tangent vector for a geodesic and therefore never vanishes� we must have�

p	�
 � �� ������

Solution of this di�erential equation is a polynomial of degree 
 and the boundary condi�
tions transform into Equation �������

�

An analogous argument can be used to prove the following proposition�

Proposition ���� Given an initial point q� and a �nal point q� on a Riemannian man�
ifold� let 
 � ��� �� � # be a geodesic connecting these two points so that 
��� � q� and


��� � q�� Let V� �
d�
dt

���
t�
and V� �

d�
dt

���
t�
� If the boundary conditions for the minimum�jerk

curve are of the form�

V �t�� � ��V�� V �t�� � ��V��

rV V jt� � ��V�� rV V jt� � ��V��
������

then the minimum�jerk curve is given by 
�p�t��� where p�t� is a �fth degree polynomial
that satis�es�

p��� � �� p��� � �
p���� � ��� p���� � ���
p����� � ��� p����� � ���

������

For this special form of the boundary conditions� the minimum�acceleration� minimum�
jerk and minimum�distance paths are therefore the same� only the parameterization along
the path varies� The shortest distance geodesic� the minimum�acceleration trajectory and
the minimum�jerk trajectory when �� � �� � �� � �� � � and for SE�
� equipped with
the metric ����� are illustrated in Figure ���� The path followed by the rigid body in all
three cases is the same� The minimum�acceleration trajectory starts and ends with zero
velocity� so the velocity starts from zero� rises to a peak and then decreases to zero� The
rise to peak and the fall to zero are steeper in the minimum�jerk trajectory because the
starting and ending accelerations are also zero�

Figure ��� shows that for more general boundary conditions the path of the minimum�
acceleration curve does not follow a geodesic� Further� the path changes with the boundary
conditions� The �gure shows minimum�acceleration motions in plane for di�erent choices
of the initial and �nal velocities� again for SE�
� equipped with the metric ������ In Figure

���
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Figure ���� Trajectories for zero boundary conditions� �a� the shortest distance path� �b�
the minimum�acceleration motion� and �c� the minimum�jerk motion�
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Figure ���� Minimum�acceleration motions in plane for general boundary conditions� �a�
V ��� � V ��� � f�� �� �gT � �b� V ��� � f��� 
� ��gT� V ��� � f�� �� �gT � and �c� V ��� �
f�� ��� �gT� V ��� � f���������gT �

���a� the initial and �nal velocities are �� so the object follows the geodesic path shown in
Figure ���b� but with a di�erent velocity pro�le� The initial and �nal velocities for Figs�
���b�c are not collinear with the initial and �nal velocities of the geodesic in the �gure
���b and it is clear the paths are di�erent from the previous case� On the �gure� only the
components of the velocities in the plane are given� V � f�z � vx� vyg�

The next �gure� ���� shows three�dimensional minimum�acceleration motions for gen�
eral boundary conditions� Similarly to the previous example� minimum�acceleration curves
do not follow a geodesic� The �gure also demonstrates that the trajectories change con�
siderably with boundary conditions� Because of the product structure of the metric ���
which was used to compute the trajectories� the rotational motion is independent from the
translational motion� However� the translational component will depend on the rotational
component� Boundary conditions for the motion in Figure ���a are zero� so the motion fol�
lows the geodesic path� The motion in Figure ���b starts and ends with large translational
velocity and small rotational velocity� For the motion in Figure ���c� the translational
velocities at the initial and �nal points are smaller� but the rotational velocity is large�
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Figure ���� Minimum�acceleration motions in space� �a� V ���� V ��� � f�� �� �� �� �� �gT�
�b� V ��� � f�� �� �� ���������gT� V ��� � f����� �� ������ �gT� and �c� V ��� �
f�� �� ��� ���������gT � V ��� � f������ �� ������ �gT �

����� Comparison between kinematic and dynamic motion planning

We conclude the chapter with comparison between the motion plans computed with kine�
matic and dynamic motion planning� Figure ��� shows a minimum�jerk trajectory and
minimum torque�change trajectories that were computed using the model from Chap�
ter �� In all three cases� the initial and �nal velocities and accelerations were set to ��
Minimum�jerk trajectory� shown in Figure ���a� does not depend on the mechanism to
which the object �end�e�ector� is attached and follows a straight line� For the minimum
torque�change trajectory in Figure ���b� we did not impose any boundary conditions on
the preload forces� The translational trajectory of the object in this case is quite curved
and the object also rotates di�erently than in the previous case� For the trajectory in Fig�
ure ���c� the initial preload force was �N � while the �nal preload force was not speci�ed�
The translational motion of the object is now closer to the straight line� although it is still
slightly curved� Also the rotation of the object is similar to the minimum�jerk motion �see
also Figure ��
��
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Figure ���� Kinematic vs� dynamic motion planning� �a� minimum�jerk� �b� minimum
torque�change �preload forces not speci�ed�� and �c� minimum torque�change �initial
preload force �N��
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��� Discussion

This chapter addressed the problem of generating smooth trajectories for a rigid body
between an initial and a �nal position and orientation� The main idea was to de�ne a func�
tional measuring the smoothness of a trajectory and �nd a trajectory that minimizes this
cost functional� Using di�erential geometry� the problem was formulated as a variational
problem on the Lie group of rigid body displacements� SE�
�� We de�ned an inner product
on the Lie algebra se�
� leading to a left invariant Riemannian metric on SE�
�� This met�
ric gave rise to a Riemannian connection and a covariant derivative� We derived analytical
expressions for the covariant derivative and the curvature of SE�
�� The covariant deriva�
tive was used to de�ne acceleration and jerk for spatial rigid body motions� We stated
the necessary conditions for minimum�distance� minimum�acceleration and minimum�jerk
trajectories and specialized these conditions for SE�
�� We computed the analytical so�
lutions for minimum�distance trajectories by choosing an appropriate basis for the space
of the vector �elds� We also found analytical solutions for the minimum�acceleration and
minimum�jerk trajectories for a special class of boundary conditions� We provided several
numerical examples to illustrate how the generated solutions are a�ected by �a� the met�
ric� �b� the choice of the body��xed reference frame� and �c� the boundary conditions� A
simple extension of the ideas in this chapter allows the inclusion of intermediate positions
and orientations and lends itself to motion interpolation �see ������ The presented methods
also have applications in computer graphics and computer�aided design�

���



Chapter �

Concluding remarks

One of the advantages of robots over �xed automation is that they are versatile and can be
programmed for a variety of tasks� But to make a robot su�ciently dextrous to perform
di�erent tasks� it must be equipped with multiple degrees of freedom� Coordination of
these degrees of freedom requires motion planning�

The problem of �nding a suitable motion for a given task is usually under�determined�
We argued that in such cases it makes sense to de�ne the performance of a motion for
the task so that di�erent motions can be compared� This enabled us to treat motion
planning as a variational problem where the motion plan is obtained by maximizing the
chosen measure of performance� This method is continuous in the sense that the motion
planning problem is not discretized� To further motivate the chosen approach we presented
an investigation of human reaching motions� The study suggested that trajectories used
by humans minimize a certain cost functional� We de�ned dynamic and kinematic motion
planning� Dynamic motion planning is used when the actuator forces must be provided as
part of the motion plan� kinematic motion planning is simpler and is used when it su�ces
to compute the kinematic trajectory �in the task space or joint space��

The method that we proposed for dynamic motion planning consists of �nding a motion
that satis�es the dynamic equations of the system and maximizes the cost functional
measuring the performance of the motion for the task� Limits on the capabilities of the
system and task requirements restrict the set of feasible motions� The resulting set can in
general be described with equality and inequality constraints� To compute a motion plan�
we developed a novel numerical method for minimizing a given cost functional subject to
equality and inequality constraints� The method was used to �nd smooth trajectories and
actuator forces for two planar cooperating manipulators holding an object� It was then
extended for systems that change the dynamic equations as they move� The example of a
simple grasping task illustrated that for such systems variational approach uni�es motion
planning and task planning�

An important feature of the proposed method is that planning in the task space� joint
space� and actuator space is performed in one step� In this way� constraints at all three
levels can be incorporated into the motion planning process� Further� kinematic motion
planning is not separated from planning the actuator trajectory� Since it is in general
necessary to plan the kinematic as well as the actuator trajectory� �nding the trajectories
separately is unnatural and can result in poor motion plans� Finally� motion plans obtained
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with the variational methods will globally maximize performance and will thus be superior
to motion plans computed with other methods�

Kinematic motion planning is simpler and more e�cient than dynamic motion planning�
It is thus preferred to dynamic motion planning if there exists a suitable way to compute
the actuator forces from the kinematic trajectory� Kinematic motion planning is also the
only feasible alternative when a dynamic model of the system is too complicated or is
not available and is abstracted with a kinematic model� We formulated kinematic motion
planning as a variational problem on a Riemannian manifold� In this way� the computed
trajectories do not depend on the description of the space� Using an a�ne connection� we
de�ned the notions of acceleration and jerk on an arbitrary manifold� The a�ne connection
can be chosen arbitrarily which implies that there is no intrinsic notion of acceleration and
jerk� We also showed that a Riemannian metric must be introduced on the manifold to
de�ne cost functionals that measure the smoothness of a curve�

The proposed method for kinematic motion planning can be used either in the task
space or in the joint space� However� the task space has more structure and we take
advantage of this structure to �nd a Riemannian metric� In most cases� the task space is
the group of spatial rigid body motions� SE�
�� We used the group structure of SE�
�
to de�ne metrics that have certain invariance properties with respect to the choice of the
coordinate frames describing the motion in the task space� In this process we also identi�ed
metrics and connections on SE�
� that are useful for kinematic analysis�

By choosing the class of explicit methods for motion planning we assumed that con�
trollers to follow the computed trajectories can be synthesized� If the system is controllable�
such controllers can readily be obtained� We also assumed that we have a complete� de�
terministic model of the system so that variational methods can be used� Such models are
available in many robotic applications so this assumption is not overly restrictive�

��� Summary

In the �rst chapter we reviewed the literature on motion planning in humans and existing
approaches to motion planning for robotic systems� The main de�ciency of most of these
methods is their inability to provide a set of actuator forces that are consistent with the
constraints imposed by the task and limited capabilities of the robot� This motivated
formulating the motion planning problem as a variational calculus problem� In the next
chapter� we discussed optimal control and its relation to variational calculus� We showed
that when the constraints on the controls can be described with equalities and inequalities�
the optimal control problem can be transformed into a problem of Bolza in the calculus of
variations� We also constructed an unconstrained variational problem that has the same
set of extremals as the problem of Bolza�

Equality and inequality constraints will be present in any realistic motion planning
problem� The most important criterion in choosing the numerical method for solving the
motion planning problem formulated as a problem of Bolza was therefore how well the
method handles such constraints� As the inequality constraints lead to corner points� most
of the methods based on the minimum principle or Euler�Lagrange equations are di�cult
to apply� In Chapter 
 we presented two numerical methods that can deal with inequality
constraints� The �rst method was proposed by Gregory and Lin ����� This method avoids
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problems with corners by using the integral form of the necessary conditions� By a pro�
cedure that resembles �nite�element analysis� these necessary conditions are transformed
into a set of nonlinear algebraic equations in the values of the unknown functions at dis�
crete mesh points� We provided a detailed analysis of this method for the case of equality
and inequality constraints that only depend on the state� We showed that state�variable
inequality constraints lead to a singular problem which means that the numerical solutions
can exhibit oscillations� We next described a new method for �nding a �local� minimum for
the problem of Bolza� The method was based on approximating the continuous problem
with a sequence of �nite�dimensional nonlinear programming problems through collocation�
We described the method of augmented Lagrangian for dealing with the constraints of a
nonlinear programming problem and Newton�s method for minimization� We also showed
that the choice of collocating functions motivated by �nite�element analysis leads to simple
expressions for the gradients that are needed for minimization of the cost functional� We
next discussed the choice of a cost functional for the motion planning problem� We showed
that depending on the cost functional we get a kinematic or a dynamic motion planning
method� We concluded the chapter with a discussion on cost functionals that can be used
to obtain smooth motion plans�

The numerical method of Gregory and Lin was used in Chapter � to compute smooth
motion plans for two cooperating manipulators holding an object� Cooperative tasks
are characterized by closed kinematic chains and typically result in actuator redundancy�
Based on the consideration of smoothness requirements� we chose to plan trajectories that
minimize the integral of the square norm of derivatives of actuator forces� In this way� it is
possible to satisfy boundary conditions on the acceleration and obtain a smooth transition
from one motion to another� We solved the motion planning problem when the object
was grasped rigidly and when a friction�assisted grasp was used to manipulate the object�
When a friction�assisted grasp is used� the forces must satisfy frictional constraints� Us�
ing the chosen numerical method� we computed typical motion plans for both cases� The
numerical method proved to be quite robust and e�cient� Results from this chapter are
reported in ����� and ������

In Chapter �� we showed that principles used for robot motion planning can serve as a
model for motion planning in biological systems� We presented experimental measurements
of human two�arm trajectories� A qualitative analysis of these data was performed with
special focus on the internal forces� These forces indicate what coordination processes take
place between the two arms during the cooperative task� We were not able to obtain a
consistent pattern except when the motion took place in the sagittal plane and the task was
symmetric for both arms� In this case� the kinematic features of the measured trajectories
and the general shape of the interaction forces were well modeled with the trajectories that
minimize the minimum torque�change criterion� This work is described in ���� and ������

The next chapter introduced motion planning problem for systems that change the
dynamic equations as they move� In robotics� examples of such systems are a multi�ngered
hand manipulating an object or a legged machine walking on the ground� We showed that
the motion planning problem for such systems is quite complex� However� the variational
formulation of the problem uni�es motion planning and task planning� We developed a
technique for computing motion plans when the sequence of discrete states that the system
traverses is known in advance� In such case� the planning task is to determine continuous
trajectories for the system and the optimal times when the system should switch from one
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discrete state to another� We argued that the sequence of discrete states can be computed
in advance in some important robotic tasks� The method was illustrated by computing
motion plans for a two��ngered hand rotating a circular object� In this case it was essential
to use the newly developed numerical method from Chapter 
 to obtain the solution� The
main ideas from this chapter are reported in ������

The next two chapters were devoted to planning smooth trajectories in the task space�
Smooth trajectory in the task space is required for example to move through a sequence
of points that were recorded by a teaching process in the task space� Task space can be
represented with the special Euclidean group SE�
�� hence we started by investigating
the geometric properties of this group� In particular� we studied choices of metrics and
connections on SE�
�� We established that there is no Riemannian metric which has
screw motions for geodesics� We next identi�ed a symmetric connection which leads to
kinematically meaningful acceleration and found a family of Riemannian metrics which
are compatible with this connection� Publications describing the work in this chapter are
����� and ������
We developed a method for computing smooth trajectories on the task space mani�

fold in Chapter �� We argued that by using a geometric framework� trajectories that are
independent of the representation of the task space can be obtained� Consequently� the
trajectory planning problem was formulated as a variational problem on a Riemannian
manifold� We showed that a Riemannian metric �which also gives rise to a unique con�
nection� is necessary to de�ne the notions of the acceleration and jerk� Results from the
previous chapter were used to �nd the necessary conditions for trajectories that minimize
energy� square of the L� norm of the acceleration and square of the L� norm of the jerk
on SE�
�� Analytical expressions for the trajectories were derived for some special cases�
We also provided several numerical examples to illustrate how the generated trajectories
are a�ected by the metric� the choice of the body��xed reference frame� and the boundary
conditions� The results from this chapter are reported in ����� and ������

��� Contributions

Contributions of this dissertation fall into several areas�

� We propose a uni�ed framework for motion planning� The underlying idea is to use
the methods of calculus of variations� In this framework� trajectories in the task
space� joint space and actuator space are obtained in a single step while simultane�
ously taking into account limitations of robotic mechanism and task constraints� The
validity of the approach is demonstrated by solving several complex motion planning
problems�

� Central to the application of the methods of variational calculus is an e�cient numer�
ical method� We develop a new numerical method for solving variational problems
using the ideas from nonlinear programming and �nite�element analysis� An im�
portant feature of the method is that the gradient of the cost functional is easy to
compute� As a result� the method is e�cient and easy to implement� We also present
a detailed analysis of the numerical method developed by Gregory and Lin ���� and
suggest a number of improvements�

���



� A technique for solving variational problems when the dynamical system goes through
a known sequence of transitions between regions representing di�erent dynamic be�
havior is derived� Previous methods used iteration on the unknown switching times�
requiring a solution of an optimal control problem at each iteration� Instead� we solve
the optimal control problem only once by introducing additional state variables� This
method is general and does not depend on the numerical method used for solving
the optimal control problem�

� By describing tasks such grasping and walking as a system that changes dynamic
equations when it moves� we are able to unify motion planning and task planning�
We therefore establish a link between motion planning methods and algorithms for
task planning� While we do not have a complete solution for the generalized motion
planning problem� our formulation provides a framework for further investigation of
this problem�

� We present experimental investigation of human two�arm manipulation and propose
the minimum torque�change model to account for the observed trajectories� This
is the �rst attempt �see also ����� to model trajectory generation for two�arm mo�
tions� While the proposed model has considerable shortcomings� it predicts kinematic
features of the trajectories and force pro�les for sagittal plane motions� which are
characterized by a symmetric role of the two arms� The study suggests that the role
of the two arms in two�arm reaching tasks is not symmetric� This observation can
serve to formulate a criterion that better describes human motion planning�

� We develop a practical method for task space trajectory planning using the geometry
of the task space� Most other methods assume Euclidean structure of the task space
for computations or are limited to theoretical results and hard to implement� We
provide analytical solutions for optimal trajectories on SE�
� for some special but
important cases� The trajectories generated by the proposed method are indepen�
dent of the description of the task space� We also show how some further invariant
properties can be obtained by an appropriate choice of a metric for SE�
��

� We attach geometric meaning to several concepts from kinematics and present some
new results regarding the choice of metrics and connections for kinematic analysis�
In particular� we prove that there is no Riemannian metric for which screw motions
are geodesics� Further� we show that an a�ne connection must be chosen to de�ne
the acceleration and identify the connection that produces a physically meaningful
acceleration�

��� Possible applications and future work

While we have made considerable progress in applying variational methods to kinematic
and dynamic motion planning for robotic systems� the work opened several avenues for
future research� Traditional approaches to motion planning are based on discretized rep�
resentation of the con�guration manifold and graph search techniques� In contrast� the
basis for many continuous trajectory planning methods are optimization techniques� Fur�
ther advances in motion planning can be expected if partial solutions of the continuous
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problem are used as building blocks for the discrete method� In this way� it is possible to
construct quasi�optimal solutions� By employing optimization methods for local planning
there is also no need for constructive controllability algorithms that are di�cult to derive
for systems with constraints�
In the dissertation we have not addressed the problem of tracking the trajectories

produced by the planning process� While the results in the cases when the system is
controllable are well known in control literature� such methods fail for systems that are
subject to unilateral constraints and therefore need further investigation�
Design and control of hybrid systems� where continuous and discrete behaviors coex�

ist� is a rapidly growing area in control� The optimal control method developed in the
dissertation represents an attempt to design open�loop trajectories for a subset of hybrid
systems where the discrete behavior corresponds to switches between regions of the state
space characterized by di�erent sets of dynamic equations� When the discrete switches
are controlled by another process� a problem becomes one in game theory and the optimal
control method must be appropriately extended� This extension seems feasible since game
theory is a natural extension of optimal control� Manufacturing� control of interaction
between a human operator and a virtual or a mechanical environment and coordination of
multiple agents are some possible applications where such method could be used�
Another area to which this work could be extended is modeling and control of mechani�

cal systems subject to unilateral and nonholonomic constraints� Nonholonomic constraints
can be relatively easily handled in optimal control and numerical solutions for optimal tra�
jectories can be readily computed� Theoretically� such variational problems are studied in
sub�Riemannian geometry and applications of this theory to control are still rare� Through
proper extension of Hamilton�s principle� variational calculus also provides an alternative
to modeling dynamical systems subject to inequality constraints� that appear� for example�
in contact mechanics�
Study of metrics and a�ne connections on the group of rigid body motions SE�
�

provides some new insights in the theory of screws and its use in kinematics� These results
can be further formalized and have consequences for the formulation of the position,force
control schemes� An important open question is also the existence of analytical solutions
for minimum acceleration and minimum jerk trajectories� Such expressions would be of
considerable value for applications�
Initial motivation for this research have been studies of human trajectory generation�

Knowing how humans move can aid in developing motion planning algorithms� On the
other hand� methods that were primarily designed for robot trajectory planning can also
be used to model human motor behavior� The two areas therefore complement each other
and it is important to further our understanding of human motor behavior� A possible area
of application of this work is also computer animation where understanding of principles
that govern human motion and good techniques for planning actuator forces are essential
for generating a naturally looking animated �gure�
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Appendix A

Product metric in the basis f�Lig

In this section we derive the expression in the basis f�Lig for the product metric on SE�
��
obtained by taking an arbitrary left�invariant metric Q on SO�
� and an inner product
metric on IR

� given by a constant 
 � 
 positive�de�nite matrix W � If the basis �L�� �L�

and �L� is chosen for the vector �elds on SO�
� and the Euclidean basis E�� E�� E� for the
vector �elds on IR

�� the matrix G describing the metric in this basis has the form�

Gp �

�
Q��� �
� W



�A���

To compare metric �A��� with ������� we have to express the vectors E�� E�� E� in the
basis �L�� � � � � �L��
Take a point A � SE�
�� where�

A �

�
R d

� �



� �A���

Note that A� as an element of SO�
�� IR
�� is represented by a pair �R� d�� Accordingly�

SE�
� is parameterized as a product manifold SO�
�� IR
� with the usual parameterization

of IR� �any parameterization of SO�
� can be chosen�� Take a vector �eld�

X � X��L�  X��L�  X� �L� � vT

��� �L�
�L�
�L�

��� � �A�
�

where the components X�� X� and X� are constant and v � fX�� X�� X�gT � The integral
curve of this vector �eld passing through A is given by 
�t� � A exp�tS�� where S � se�
�
is the matrix representation of the vector s � f�� �� �� X�� X�� X�g� It is easy to see that�


�t� �

�
R tR v  d
� �



� �A���

The tangent vector to a curve 
�t� � f���t�� � � � � ���t�g is given by�
d


dt
�

d�i
dt

�

��i
�A���

���



We �rst note that on the curve 
�t�� the rotational part is constant which means that the
coe�cients d
i

dt
for i � �� �� 
 are all �� Further� since the parameterization of SE�
� is

induced by the parameterizations of SO�
� and IR
�� we have���� ��

��
��

��� � tR v  d� �A���

The expression for the tangent vector X�A� in the basis Ei �
�
�
i
is therefore�

vT

��� �L�
�L�
�L�

��� � �R v�T

��� E�

E�

E�

��� �A���

Since the equation must be true for arbitrary v� we get���� �L�
�L�
�L�

��� � RT

��� E�

E�

E�

��� �A���

The last expression also implies that change of the basis vector �elds on IR
� from E�� E�

and E� to �L�� �L� and �L� will only change the lower�right block of matrix G� The entries
in this block are obtained by���� �L�

�L�
�L�

��� � h �L�
�L�

�L�

i
� RT

��� E�

E�

E�

��� � h E� E� E�

i
R � RTWR� �A���

where Ei �Ej
def
�� Ei� Ej 	�

�
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Appendix B

Proofs

B�� Proof of Proposition ��	

In the proof we will use the following conventions�

X � X i �Li
def
�

�
�x
vx



�

X�Y i��Li
def
�

�
X��y�
X�vy�



�

and

�X� Y �
def
�

�
��X�Y �

v�X�Y �



�

By de�nition� the Riemannian curvature is given by

R�X� Y � Z � rYrXZ �rXrY Z  r�X�Y �Z�

Using the expressions derived in Proposition ���� one obtains�

R�X� Y � Z � rY

�
X��z�  

�
��x � �z

X�vz�  �x � vz



� rX

�
Y ��z�  

�
��y � �z

Y �vz�  �y � vz




 

�
�X� Y ���z�  

�
���X�Y � � �z

�X� Y ��vz�  ��X�Y � � vz




�

�
Y X��z�  

�
� �Y ��x�� �z  �x � Y ��z�  �y �X��z��  

�
��y � ��x � �z�

Y X�vz�  Y ��x�� vz  �x � Y �vz�  �y �X�vz�  �y � ��x � vz�




�
�
XY ��z�  

�
� �X��y�� �z  �y �X��z�  �x � Y ��z��  

�
��x � ��y � �z�

XY �vz�  X��y�� vz  �y �X�vz�  �x � Y �vz�  �x � ��y � vz�




 

�
�X� Y ���z�  

�
���x � �y  X��y�� Y ��x��� �z

�X� Y ��vz�  ��x � �y  X��y�� Y ��x��� vz




�

�
�
���x � �y�� �z

�



�B���

�
�



Note that the �nal expression only depends on the values of the vector �elds X � Y and
Z and not on their derivatives� For this reason� the Riemannian curvature can be used to
de�ne the so called curvature tensor �
���

B�� Proof of Theorem ���

The proof follows the same lines as the derivation of the geodesic equation ������� In
addition to the identities ������� from Section ����� we will use an additional identity�

��� rSrTU � rTrSU  R�T� S�U �

which is just the de�nition of the curvature operator when �S� T � � �� and one of the
symmetry properties of the curvature tensor

��� � R�X� Y �Z� T 	�� R�Z� T �X� Y 	�

In the proof below� the numbers over the equal sign indicate which identities were employed�

�

�
L�a�s� �

�

�

d

ds

Z b

a

� rV V�rVV 	 dt �B���

�
�

�

�
S

Z b

a

� rV V�rVV 	 dt

�
�

Z b

a

� rSrV V�rVV 	 dt

�
�

Z b

a
� rVrSV  R�V� S�V�rVV 	 dt

���
�

Z b

a

�� rVrV S�rV V 	  � R�V�rVV �V� S 	�dt

�
�

Z b

a

�V � rV S�rV V 	 � � rV S�rVrV V 	  � R�V�rVV �V� S 	�dt

���
� � rV S�rVV 	jba  

Z b

a

��V � S�rVrV V 	  � S�rVrVrV V 	

 � R�V�rVV �V� S 	�dt
�
� �� rV S�rV V 	 � � S�rVrV V 	�ba

 

Z b

a
�� S�rVrVrV V  R�V�rVV �V 	 dt

Every curve of variation must satisfy the boundary conditions� Since positions and
velocities are prescribed at t � a and t � b� both S and rSV � rV S vanish at the
endpoints� This implies that the integrated part �the �rst two terms� in Equation �B�
�
equals �� Furthermore� on the critical point� the integral must vanish for any admissible
variational �eld S� which means that

rVrVrV V  R�V�rVV �V � �� �B�
�

�
�



B�� Proof of Theorem ����

Once again we employ identities ������� from Section ����� and ������� from Section B���
We �rst obtain the expression for the �rst variation of the functional Lj �

�

�
L�j�s� �

�

�

d

ds

Z b

a

� r�
V V�r�

VV 	 dt �B���

�
�

�

�
S

Z b

a

� r�
V V�r�

VV 	 dt

�
�

Z b

a

� rSr�
V V�r�

VV 	 dt

�
�

Z b

a

�� rVrSrV V  R�V� S�rVV�r�
VV 	� dt

���
�

Z b

a
�V � rSrV V�r�

VV 	 � � rSrV V�r�
VV 	  � R�rV V�r�

VV �V� S 	� dt

���
� � rSrV V�r�

VV 	
���b
a
 
Z b

a

�� � rVrSV  R�V� S�V�r�
VV 	

 � R�rV V�r�
VV �V� S 	� dt

�
� � rSrV V�r�

VV 	
���b
a
 
Z b

a

�� � r�
V S�r�

VV 	 � � R�V� S�V�r�
VV 	

 � R�rV V�r�
VV �V� S 	� dt

���
� � rSrV V�r�

VV 	
���b
a
 
Z b

a

��V � rV S�r�
V V 	  � rV S�r�

V V 	

� � R�V�r�
VV �V� S 	  � R�rV V�r�

VV �V� S 	� dt
���
� �� rVrSV  R�V� S�V�r�

VV 	 � � rV S�r�
V V 	�ba

 

Z b

a
�� rV S�r�

V V 	 � � R�V�r�
VV �V� S 	  � R�rV V�r�

VV �V� S 	� dt

�����
� �� rVrV S�r�

VV 	  � R�V�r�
VV �V� S 	 � � rV S�r�

VV 	�ba

 

Z b

a
�V � S�r�

V V 	 � � S�r�
V V 	  ��R�V�r�

VV �V  R�rV V�r�
VV �V� S 	� dt

�
� �� rVrV S�r�

VV 	  � R�V�r�
VV �V� S 	 � � rV S�r�

VV 	  � S�r�
V V 	�ba

 
Z b

a

�� ��r�
V V � R�V�r�

VV �V  R�rV V�r�
VV �V �� S 	� dt

Since the initial and �nal positions� velocities and accelerations are �xed� S� rSV � rV S

and rSrV V � rVrSV  R�V� S�V � rVrV S vanish at the endpoints� Thus the integral
in the above equation must vanish for an arbitrary variation �that preserves the boundary
conditions�� But this is only possible if Equation ���
�� holds so the Theorem is proved�
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Appendix C

Metric with screw motions as

geodesics

In Section ������ we concluded that Equation ���
���

�Lk�gij� �
�

�

X
l

�Cl
kiglj  Cl

kjgli�� �C���

must be satis�ed by the metric if screw motions are geodesics� The coe�cients Ck
ij are

the structure constants of the Lie algebra se�
� �see Appendix E�� We evaluated this
equation in Mathematica to obtain a system of ��� partial di�erential equations that have
to be solved for the metric coe�cients gij � In the equations� we use the abbreviation

Gkij def
� �Lk�gij��

G��� � � G��� � �g�� G��� � g��

G��� � � G��� � �g�� G��� � g��

G��� � �
�g�� G��� � ��

�g�� G��� � �
��g��� g���

G��� � �
�g�� G��� � ��

�g�� G��� � �
��g��� g���

G��� � ��
�g�� G��� � �

��g�� � g��� G��� � �
�g��

G��� � ��
�g�� G��� � �

��g�� � g��� G��� � �
�g��

G��� � � G��� � �
���g�� � g��� G��� � �

��g�� g���

G��� � � G��� � ��
�g�� G��� � �

�g��

G��� � �
�g�� G��� � ��

�g�� G��� � �
��g��� g���

G��� � � G��� � ��
�g�� G��� � �

�g��

G��� � ��
�g�� G��� � �

��g�� � g��� G��� � �
�g��

G��� � � G��� � ��
�g�� G��� � �

�g��

G��� � g�� G��� � � G��� � �g��
G��� � g�� G��� � � G��� � �g��

�
�



G��� � �
��g�� � g��� G��� � �

�g�� G��� � ��
�g��

G��� � �
��g�� � g��� G��� � �

�g�� G��� � ��
�g��

G��� � �
�g�� G��� � ��

�g�� G��� � �
��g�� � g���

G��� � �
�g�� G��� � � G��� � ��

�g��

G��� � �
��g��  g��� G��� � � G��� � �

���g�� � g���

G��� � �
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�g��

G��� � �
��g�� � g��� G��� � �

�g�� G��� � ��
�g��

G��� � �
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Appendix D

Metric compatible with the

acceleration connection

In Section ��
� we concluded that a metric compatible with the acceleration connection
must satisfy Equation �������

�Lk�gij� �
X
l

�+likglj  +
l
jkgli�� �D���

The Christo�el symbols +kij specify the acceleration connection and are listed in ����
��

For k 	 
� the Christo�el symbols +jik are �� and therefore
�Lk�gij� � �� For this reason�

we only list equations for k � 
� The equations were generated in Mathematica and are
listed below� In the equations� Gkij stands for �Lk�gij��
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Appendix E

Lie brackets for se���

In our derivations we need to evaluate Lie brackets of the basis vector �elds �Li� According
to Equation ������ since the vector �elds �Li are left invariant� it su�ces to evaluate the
brackets on se�
�� From Equation ������ we obtain�
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Appendix F

The logarithm function on SO���
and SE���

The function log � SO�
�� so�
� is de�ned by ���� ����

logR � �$� � cos �  � � Trace�R�� $ �
�

� sin �
�R�RT � �F���

where $ is a 
� 
 skew�symmetric matrix such that the corresponding 
� � vector� �� has
unit Euclidean norm� and � is a real number� Geometrically� � corresponds to the unit
vector along the axis of rotation while � is the angle of rotation� Note that the log function
on SO�
� is multi�valued�
The log function on SE�
�� log � SE�
�� se�
� is de�ned by �����

log

�
R d

� �
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�
/ v
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� / � log�R��

and

v �

�
I � �

�
/  

� sin j�j � j�j��  cos j�j�
�� � � sin j�j //
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where in the last expression� � is the vector corresponding to the skew�symmetric matrix
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