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ABSTRACT 
 

REGULATION OF THE GLUTAMATE/GLUTAMINE CYCLE BY NITRIC OXIDE IN THE 

CENTRAL NERVOUS SYSTEM  

Karthik Anderson Raju 

Harry Ischiropoulos 

 

Nitric oxide (˙NO) is a critical contributor to glutamatergic neurotransmission in the central 

nervous system (CNS).  Much of its influence is due to the ability of this molecule to regulate 

protein structure and function through its posttranslational modification of cysteine residues, a 

process known as S-nitrosylation.  However, little is known about the extent of this modification 

and its associated functional effects in the brain under physiological conditions.  We employed 

mass spectrometry (MS)-based methodologies to interrogate the S-nitrosocysteine proteome in 

wild-type (WT), neuronal nitric oxide synthase-deficient (nNOS-/-), and endothelial nitric oxide 

synthase-deficient (eNOS-/-) mouse brain.  These approaches identified 269 sites from 136 

proteins in the WT brain, with notable reductions in the number of sites detected in either eNOS-/- 

(50% of WT) or nNOS-/- brain (26% of WT).  Gene ontology analysis revealed a cluster of S-

nitrosylated proteins participating in the glutamate/glutamine cycle in wild-type and eNOS-/- mice 

that was underrepresented in nNOS-/- animals, suggesting a role for nNOS-derived ˙NO in the 

regulation of glutamate utilization in the CNS.  Functional profiling of this pathway using 15N-

glutamine based metabolomic analyses and enzymatic activity assays uncovered decreased 

conversion of glutamate to glutamine and increased glutamate oxidation in nNOS-/- mice relative 

to the other genotypes.  Furthermore, site-directed mutagenesis of the rat sodium-dependent 

excitatory amino acid transporter 2 at Cys373 and Cys562 (Cys561 in mouse sequence), the two 

sites of S-nitrosylation observed in wild-type and eNOS-/- mice, revealed inhibition of glutamate 

transport through reversible S-nitrosylation.  The selective, nNOS-dependent S-nitrosylation of 
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proteins that govern glutamate transport and metabolism identifies a previously unknown function 

for ˙NO in glutamatergic neurotransmission. 
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1.1  Introduction 

Since its initial discovery and characterization in the 1980s, nitric oxide (˙NO) 

has become widely accepted as a critical signaling molecule in biological 

function.  Indeed, the field of ˙NO biology owes much to the pioneering work of 

Furchgott, Ignarro, Murad, Moncada, and Hibbs, among others who identified 

roles for ˙NO in vasodilation and immune responses to bacterial infection.  The 

significance of this research was further emphasized by the 1998 Nobel Prize in 

Medicine and Physiology, which recognized ˙NO as a vital signaling intermediate 

in the cardiovascular system (though it was appreciated in other systems as 

well).  ˙NO was initially thought to achieve its effects by binding to the heme iron 

of soluble guanylate cyclase (sGC), resulting in the increased conversion of 

guanosine-5’-triphosphate (GTP) to cyclic guanosine monophosphate (cGMP).  

The ensuing activation of downstream cGMP-dependent signaling cascades 

ultimately lead to physiological changes, such as smooth muscle relaxation.  

However, an alternative mechanism of ˙NO-based regulation was discovered in 

the early 1990s, in which ˙NO could form stable adducts with protein cysteine 

residues to produce S-nitrosocysteine.  The generation of such protein S-

nitrosocysteines was also found to result in physiological changes, including 

vasodilation and platelet inhibition1.  Subsequent studies have reinforced the 

importance of this posttranslational modification (known as S-nitrosylation) as an 

effector of ˙NO-dependent signaling2. 
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Since that initial study in 1992, over 1100 S-nitrosocysteine residues have 

been identified in more than 640 proteins across several cell and organ systems3-

6.  These proteins are involved in a wide array of cellular processes, with S-

nitrosylation implicated as a direct regulator of protein function and subcellular 

localization in multiple targets7-9.  In particular, its physiological and 

pathophysiological contributions to central nervous system (CNS) function have 

elicited intense interest.  Several studies have investigated the regulatory roles of 

S-nitrosylation on specific proteins involved in neurogenesis10, synaptic 

transmission11, and neurodegeneration12.  However, such rigid focus on specific 

targets has led to broader questions concerning the global coordination of 

cellular processes by S-nitrosylation in the brain, especially under physiological 

conditions.  By employing an array of methodologies, ranging from mass 

spectrometry (MS)-based proteomic identification of S-nitrosoproteins to more 

conventional molecular biology and enzymatic approaches, one can start to 

answer at least some of these questions.  In doing so, a greater understanding of 

˙NO’s role in both CNS development and dysfunction can be achieved, while also 

providing valuable preliminary information for future studies. 

1.2  Chemical Properties of Nitric Oxide 

Nitric oxide (also known as nitrogen monoxide) is a gas that was first 

described in 1774 by Joseph Priestly in his Experiments and Observations on 

Different Kinds of Air, Vol. 1.  A diatomic free radical, ˙NO consists of one 

nitrogen and one oxygen atom, with an unpaired valence electron.  Due to both 
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its low solubility in water13 (1.9 mM at 20°C) and liposome/water partition 

coefficient14 of 4.4, ˙NO can diffuse readily through hydrophobic environments 

(including the plasma membrane).  Additionally, it can react with several targets 

to generate a variety of end products15. 

The reactive nature of ˙NO contributes to variations in its half-life, particularly 

through its interactions with oxygen species.  In aqueous solution, ˙NO reacts 

with O2 and possesses a half-life inversely proportional to its concentration16-17.  

In plasma and other physiological buffers, ˙NO oxidation to both nitrite (NO2
-) and 

nitrate (NO3
-) is facilitated by hemoglobin and other proteins through heme and/or 

other metal chemistries.  The resulting ˙NO metabolites possess an extended 

half-life18-19.  Furthermore, nitric oxide can react with the free radical superoxide 

(O2
-) to produce the oxidant peroxynitrite (ONOO-), a reaction that is essentially 

diffusion-rate limited20. 

Metals and lipid-derived radicals can also act as targets of nitric oxide.  Metal 

nitrosyl (M-NO) complexes are readily formed through the coordination of nitric 

oxide to transition metals such as iron and copper21-23, and are important in the 

regulation of a number of enzymes24-25.  Lipid peroxidation is also inhibited by the 

interaction of ˙NO with lipid peroxyl radicals, which can occur at a rate near the 

diffusion limit26-28.  

Taken together, evidence suggests that the biological availability of ˙NO 

(especially as a signaling molecule) is highly dependent on its local environment.  
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Given this information, it is necessary to understand three principles about nitric 

oxide in vivo: how, when, and where it is produced.  Fortunately, these questions 

were answered by a number of landmark studies performed between the 1980s 

and 1990s. 

1.3  Biosynthesis of Nitric Oxide 

The endogenous synthesis of ˙NO was first proposed in a study from 1916, 

which noted a higher nitrate and nitrite concentration in human urine than could 

be accounted for by dietary intake alone29.  This finding was further confirmed by 

isotopic balance experiments utilizing 15NO3
-, which revealed that endogenous 

production of nitrate (in this case, without 15N) was the source of excess nitrate in 

urine30.  However, the source of these metabolites remained elusive until 1987, 

when the precursor to both nitrate and nitrate was demonstrated to be L-

arginine31-32.  Specifically, 15N-labeling studies found that the nitrogen in both 

NO2
- and NO3

- was derived from one of the two guanidino nitrogens in L-arginine, 

while 14C-labeling studies identified L-citrulline as the other product32.  This 

mechanism was further characterized in later reports, with converging lines of 

evidence suggesting ˙NO as an intermediate in the formation of nitrate and 

nitrate33-34. 

Nitric oxide is generated from L-arginine and oxygen, with L-citrulline 

produced as a by-product.  The reaction is catalyzed by three isoforms of the 

enzyme nitric oxide synthase (NOS): NOS1 (neuronal NOS: nNOS), NOS2 
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(inducible NOS: iNOS), and NOS3 (endothelial NOS: eNOS).  Of the three 

isoforms, nNOS was the first to be purified and cloned35-36, with iNOS37 and 

eNOS38-40 following soon afterwards.  Each isoform is a homodimer assembly of 

two 110-150 kDa monomers, composed of an N-terminal oxygenase domain and 

a C-terminal reductase domain linked by a calmodulin recognition site41-42.  The 

oxygenase domain includes binding sites for the cofactors tetrahydrobiopterin 

(BH4) and iron protoporphyrin IX, as well as a binding site for the substrate L-

arginine.  The reductase domain contains binding sites for electron carriers flavin 

mononucleotide (FMN) and flavin adenine dinucleotide (FAD), as well as a site 

for the electron donor NADPH (the reduced form of nicotinamide adenine 

dinucleotide phosphate).  Electrons supplied by NADPH are transported across 

the reductase domain by FAD and FMN to the heme group of iron protoporphyrin 

IX in the oxygenase domain, where they can oxidize L-arginine.  One of the 

guanidino nitrogens in L-arginine undergoes a 5-electron oxidation through two 

mono-oxygenation steps: the first producing Nω-hydroxyarginine (NOHA), which 

is then oxidized to produce L-citrulline and ˙NO43-44.  Calmodulin binding at its 

cognate recognition site is thought to stabilize electron transfer between the 

reductase FMN and the oxygenase heme45. 

All three NOS isoforms are expressed in the brain, and catalyze the 

production of ˙NO from L-arginine and oxygen.  However, they differ in several 

key respects, including functional regulation and levels of ˙NO production.  Both 

nNOS and eNOS are constitutively-expressed NOS isoforms and rely on calcium 



7 

 

(Ca2+) to initiate transient bursts of ˙NO synthesis: elevation of intracellular Ca2+ 

stimulates increased binding of calmodulin to both NOS isoforms, leading to the 

generation of ˙NO46-48.  The function of both isoforms is also subject to regulation 

by multiple posttranslational modifications (PTMs), including palmitoylation, 

phosphorylation, S-glutathionylation, and S-nitrosylation49-52.  In contrast, iNOS 

activity is less sensitive to changes in intracellular Ca2+, since the enzyme is far 

more tightly bound to calmodulin to than either nNOS or eNOS37, 53.  Expression 

of this isoform is induced by inflammatory stimuli and results in prolonged periods 

of ˙NO synthesis54-55.  Much less is known regarding its functionally relevant 

PTMs, though it has been found to be S-nitrosylated56.  Of the three isoforms, 

iNOS is thought to generate the highest amounts of ˙NO, with both nNOS and 

eNOS producing orders of magnitude less57-58.   

In addition to the dissimilarities already outlined, the NOS isoforms also differ 

in sequence conservation and localization in the brain.  Analysis of primary 

amino acid sequences for the human NOS enzymes revealed only 51-60% 

homology between the isoforms59.  However, greater sequence homology for 

specific isoforms was conserved between multiple species (>80% for iNOS 

between mouse, rat, dog, and human), suggesting that ˙NO synthesis may be of 

importance in mammalian evolution60.  Given the functional and structural 

diversity of the NOS isoforms, it is interesting to note their restricted expression 

patterns in distinct cell types in the brain. nNOS is primarily expressed in defined 

populations of neurons in the CNS, and associates with specific postsynaptic 
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complexes due to its PDZ domain61-62.  iNOS, on the other hand, is mainly 

expressed in the cytoplasm of astrocytes and microglia during inflammation63-64.  

Finally, eNOS is chiefly expressed in the cytoplasm of both astrocytes and 

vascular endothelial cells in the brain65-67. 

1.4  Nitric Oxide in Physiology 

1.4.1 Identification of Endothelial Nitric Oxide Synthesis 

The long journey in characterizing endogenous biological synthesis of ˙NO 

began in the latter half of the 17th century, with the discoveries of amyl nitrite and 

nitroglycerin as potent vasodilators68-70.  Despite these early studies, the actual 

mechanism of action for these molecules (through the release of ˙NO or ˙NO 

equivalent molecules) remained unknown for close to a century.  In 1977, Ferid 

Murad and colleagues realized that nitrite-containing compounds (including 

nitroglycerin) and ˙NO gas had similar effects in stimulating sGC activity and 

subsequent vascular dilation71, a finding reaffirmed in 1979 by Louis Ignarro’s 

group72.  Robert Furchgott and John Zawadzki made a parallel observation on 

vasodilation in 1980, demonstrating that endothelial cells contributed toward the 

relaxation of smooth muscle73.  By 1982, Furchgott’s team speculated that this 

action was achieved through release of an unstable relaxing substance, referred 

to as endothelial relaxing factor74 (EDRF).  Four years later, both Furchgott and 

Ignarro presented independent findings at a vasodilation symposium suggesting 

that EDRF was actually ˙NO.  In the following year, this hypothesis was 

confirmed by additional findings from Salvador Moncada’s group, who found that 
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endothelium-produced ˙NO derived from L-arginine accounted for EDRF’s 

effects75-76.  Ultimately, the source of endothelial ˙NO was shown to be eNOS38-

40.  Recognition of ˙NO’s importance in vasodilation came in 1998, with the 

awarding of the 1998 Nobel Prize in Medicine and Physiology to Furchgott, 

Ignarro, and Murad. 

In the twenty years since those initial studies, multiple biological 

processes have been found to be regulated by eNOS-derived ˙NO.  Mice with a 

genetic deletion of eNOS (eNOS-/-) exhibit hypertension, hypercoagulability, and 

increased proliferation of vascular smooth muscle cells after vessel injury77-79.  

Additionally, they demonstrate greater leukocyte/endothelium interaction, 

increased infarct size after middle cerebral artery occlusion (MCAO), and 

decreased beta-oxidation of fatty acids through very long chain acyl-CoA 

dehydrogenase8, 80-81.  Modulation of eNOS activity through phosphorylation at 

serine 1176 has been shown to affect insulin sensitivity, regulation of insulin 

levels, adiposity, and vascular reactivity82-83.  Considered as a whole, the data 

implicates eNOS-derived ˙NO in the global coordination of vascular and 

metabolic function.   

1.4.2 Nitric Oxide Synthesis and the Immune Response 

Prior to Moncada’s findings, John Hibbs and colleagues identified L-

arginine as an essential substrate for nitrite synthesis following macrophage 

activation31.  In doing so, they provided one of the first examples for endogenous 
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biosynthesis of nitric oxide (though this was not recognized until later).  

Metabolism of L-arginine by macrophages was necessary for their cytotoxic 

activity against target tumor cells84.  However, the generation of ˙NO as an 

intermediate in this process was not established until a series of studies 

published between 1988 and 198933, 85-86.  Consequently, the involvement of ˙NO 

in several inflammatory cascades has been described87-90.  Nitric oxide has been 

shown to decrease cellular respiration through disruption of iron-sulfur clusters in 

the electron transport chain91.  Moreover, it can affect membrane potential 

maintenance, DNA repair, lipid peroxidation, and other critical functions in target 

cells92-94. 

Eventually, the chief source of ˙NO in macrophages and other immune 

cells was found to be iNOS37, which is upregulated in response to inflammatory 

cytokines and other stimuli.  Mice with a genetic deletion of iNOS (iNOS-/-) are 

phenotypically similar to wild-type (WT) mice under normal conditions.  However, 

they are more susceptible to parasitic infection, bacterial proliferation, and 

intestinal tumorigenesis95-98.  Concomitantly, they are resistant to sepsis-induced 

hypotension, inflammation-induced osteoporosis, and ischemia-induced 

neurodegeneration in the brain96, 99-101.  Taken together, the evidence suggests 

iNOS-derived ˙NO as a local inducible regulator of the immune response to 

pathogens and cellular damage. 
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1.4.3 Nitric Oxide and the Central Nervous System 

Given its systemic nature as a signaling molecule, it is no surprise that 

nitric oxide also influences brain physiology.  Early studies in the cerebellum 

implicated ˙NO synthesis as an intermediate step between N-methyl-D-aspartate 

(NMDA) receptor stimulation by glutamate and cGMP synthesis102-103.  In doing 

so, they provided a first glimpse into nitric oxide’s role in neurotransmitter signal 

transduction. These findings were later followed up by multiple observations of 

˙NO’s contribution to long-term potentiation (LTP), a measure of synaptic 

plasticity104-108.   

 Subsequent investigations have identified nitric oxide as a critical 

participant in several biological processes in the CNS.  Presynaptic vesicular 

release and recycling is potentiated by nitric oxide through increased SNARE 

complex assembly and regulation of phosphatidylinositol 4, 5-biphosphate 

(PIP2)-dependent processes109-111.  Exoendocytic coupling and glutamate/GABA 

release during neurotransmission is facilitated by ˙NO-based activation of 

presynaptic hyperpolarization-activated cyclic nucleotide-gated (HCN) channels 

and protein kinase G112-116 (PKG).  Similarly, presynaptic remodeling is 

accomplished through ˙NO-dependent kainate receptor recruitment and activity-

dependent synaptogenesis117-119.  On the postsynaptic side, ˙NO has been 

shown to modulate target neuron excitability through regulation of Kv2/Kv3 

potassium channel activity and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptor trafficking120-122.  Finally, ˙NO-dependent upregulation of 
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glycolysis in astrocytes has been shown to be important in supporting changes in 

neuronal activity123-124. 

Much of the work documenting ˙NO’s effects on the CNS was only made 

possible by the initial purification and characterization of nNOS, the first NOS 

isoform to be isolated35-36.  In particular, discovery of postsynaptic tethering 

between the NMDA receptor, PSD-95, and nNOS provided a molecular 

explanation for the association between synaptic transmission and ˙NO 

production/activity62, 125.  Upon presynaptic release of glutamate into the synaptic 

cleft, it is free to bind to the postsynaptic NMDA receptor (along with a receptor 

co-agonist, either glycine or D-serine).  Once activated, the NMDA receptor 

allows Ca2+ to enter the neuron.  Due to the close proximity of the NMDA 

receptor to nNOS afforded by the PSD-95 scaffold, this Ca2+ influx subsequently 

leads to ˙NO synthesis.   

Predictably, loss of nNOS has profound effects on CNS function.  Mice 

with a genetic deletion of this isoform (nNOS-/-) demonstrate substantially 

decreased NO production (>90%) relative to WT mice126.  Consequently, they 

exhibit a number of phenotypic deficits, including impairments in various forms of 

recognition, fear conditioning, working memory, and other cognitive functions127-

130.  Many, if not all, of these insufficiencies may be symptomatic of widespread 

synaptic dysfunction across the brain: several reports have documented 

decreases in both synaptic potentiation and depression in these mice relative to 

WT animals131-132.  Correspondingly, nNOS-/- mice also demonstrate an 
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attenuated cerebral blood flow response to increased synaptic activity, 

suggesting a local influence for nNOS-derived ˙NO beyond the specific 

coordination of presynaptic and postsynaptic neurons133. 

 In addition to the physiological effects of nNOS-derived ˙NO observed in 

the CNS, a number of pathophysiological effects have also been identified in 

recent years.  Most prominently, dysfunctional ˙NO production by nNOS is 

heavily implicated in the pathological progression of cerebral ischemia.  

Disruption of PSD-95/nNOS coupling has been shown to be neuroprotective after 

MCAO in rodents, a finding consistent with the reduced cell death seen in nNOS-

/- mice after MCAO134-135.  Similarly, in an MPP+ model of dopaminergic 

neurodegeneration, genetic deletion or pharmacological inhibition of nNOS 

proved effective in preserving neuronal viability136-137.  Indeed, excessive nNOS 

activity is implicated in the abnormal regulation of a number of different proteins 

that contribute to neurodegeneration, including peroxiredoxin-2138 (Prx2), X-

linked inhibitor of apoptosis12 (XIAP), glyceraldehyde-3-phosphate 

dehydrogenase7 (GAPDH), and parkin139.  Much of this disproportionate 

synthesis of ˙NO may be due to the high levels of extracellular glutamate present 

after initial cellular degeneration the CNS: the resultant stimulation of surrounding 

neuronal NMDA receptors could activate nNOS into producing 

supraphysiological levels of ˙NO in response140.  Considered as a whole, the 

evidence indicates that the difference between physiological and 
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pathophysiological function in the CNS may be regulated, at least in part, through 

nNOS-derived ˙NO. 

1.5  Mechanisms of Nitric Oxide-Based Signaling 

1.5.1 Activation of sGC/cGMP Cascades 

Soluble guanylate cyclase (sGC) is one of two main subtypes of the 

guanylyl cyclase enzyme, which is responsible for catalyzing the production of 

cGMP and pyrophosphate from GTP.  Three subunits of the enzyme have been 

identified: α1, α2, and β1.  A functional complex of the enzyme consists of a 

heterodimer of α and β subunits, resulting in two isoforms of sGC: α1β1 and α2β1.  

Both isoforms are expressed in the brain, and exhibit regional differences in 

expression: α1β1 is more prominent in the caudate/putamen and nucleus 

accumbens, while α2β1 is expressed at higher levels in the hippocampus and 

olfactory bulb141-142. 

Nitric oxide acts on sGC through direct binding to the N-terminal heme-

containing domain of the enzyme’s β1 subunit.  The heme group of sGC shows 

exquisite sensitivity for ˙NO over O2, with the ability to detect ˙NO in the presence 

of a 10,000-fold excess of O2 and an EC50 for ˙NO between 1-2 nM143-144.  One of 

the current models postulates that binding of ˙NO to the heme group leads to the 

release of an Fe2+-ligated histidine residue from the heme group, leading to 

conformational changes in the enzyme that are transduced to the catalytic 

domain.  Subsequently, this allows for the binding of other ˙NO molecules to 
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lower-affinity sites on the protein, and results in significantly upregulated cGMP 

production145.  Presynaptically, ˙NO synthesis and subsequent sGC activity is 

primarily initiated by action potential-dependent Ca2+ flux through N-type 

channels146.  Postsynaptic sGC activity is chiefly dependent on NMDA receptor-

mediated Ca2+ flux, due to its association through PSD-95 to both the NMDA 

receptor and nNOS147.   

˙NO-dependent changes in cGMP production are vital in mediating 

downstream biological processes in the CNS.  For example, they can regulate 

Na+, Ca2+, and K+ flux though CNG and HCN channels, thereby modulating 

neuronal excitability147-148.  Additionally, they can lead to autoregulation of cyclic 

nucleotide levels through the activation of specific phosphodiesterases (including 

PDE2, PDE5, and PDE6), leading to reductions in cAMP/cGMP signaling149.  

Alternatively, ˙NO can exert its effects on cGMP signaling cascades through the 

regulation of cGMP-dependent protein kinase (PKG) activity.  This process has 

been implicated in a variety of different functions in the CNS, including vesicular 

GABA release112, K+ flux through Kv1.1/1.2 channels150, ryanodine receptor 

(RyR)-dependent Ca2+ release from internal stores151, and other pathways152. 

Despite the evidence supporting cGMP signaling as a relevant ˙NO 

effector, it was soon recognized that it was not the only pathway available for 

˙NO-dependent regulation of biological function.  Inhibition of cGMP synthesis did 

not completely block many of the ˙NO-dependent effects observed in brain 

physiology, indicating a yet-undiscovered regulatory avenue by ˙NO that 



16 

 

extended beyond phosphorylation-dependent signaling cascades153-156. 

Eventually, this led to the identification of S-nitrosylation as another mechanism 

through which ˙NO could influence protein structure and function. 

1.5.2 Protein S-Nitrosylation 

S-nitrosothiols were first identified by Tasker and Jones in 1909, after 

treatment of ethane-thiol with nitrosyl chloride157.  The biological utility of this 

chemical species was not noted until a series of studies by Ignarro and 

colleagues in the 1980s, which demonstrated novel properties for S-nitrosothiols 

in smooth muscle relaxation and anti-platelet aggregation158-159.  These effects 

were initially attributed to the activation of sGC by ˙NO released from the thiol.  

However, by 1990 Kowaluk and Fung concluded that a number of the bioactive 

effects of S-nitrosothiols could not be solely accounted for by decomposition to 

˙NO160.  These findings were soon extended by Stamler and colleagues in 1992, 

who found that protein thiols could undergo the transformation to S-nitrosothiols 

under physiological conditions and thereby extend the half-life of ˙NO: the 

resultant S-nitrosoproteins also possessed vasodilatory and platelet aggregation 

effects1, similar to EDRF/˙NO.  Subsequent identification of endogenous S-

nitrosoalbumin in blood plasma confirmed the in vivo biosynthesis of S-

nitrosoproteins, and opened up a new field of ˙NO biology for further study161. 
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1.5.2.1 Mechanisms of Protein S-Nitrosylation and De-Nitrosylation 

Several biochemical mechanisms of protein S-nitrosocysteine formation (Prot-

SNO) have been proposed, both nonenzymatic and enzymatic.  The first involves 

the autooxidation of ˙NO through its reaction with O2, resulting in the generation 

of a series of nitrogen oxides162. 

1) ˙NO + O2 � ONOO 

2) ONOO + ˙NO � N2O4 

3) N2O4 � 2˙NO2 

4) ˙NO2 + ˙NO � N2O3 

5) N2O3 + Prot-SH � Prot-SNO + H+ + NO2
- 

N2O3 is considered a potent nitrosating agent, and is thought to react with protein 

thiols (Prot-SH) to generate protein S-nitrosocysteine.  The rate constant for 

N2O3 formation in aqueous environments (2-5 x 106 M-2 s-1) is thought to render it 

impractical under physiological conditions, due to the rate-limiting formation of 

NO2
17, 163-166.  Despite this limitation, it may be favored in localized cellular 

compartments, due to a few key factors.  The reaction rate for N2O3 generation is 

very sensitive to reactant concentration, especially that of ˙NO.  Additionally, the 

rate constant for the reaction can increase up to 300-fold in hydrophobic 

environments such as biological membranes167-169.  Given the lipophilic nature of 

˙NO, both of these requirements may be met at sufficient enough levels in 

compartmentalized membrane environments to generate local nitrosating 
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species170.  Alternatively, another mechanism for S-nitrosylation relies on the 

generation of protein thiyl radical (Prot-S˙) from the reaction between NO2 and a 

cysteine thiol171. 

1) NO2 + Prot-SH � Prot-S˙ + H+ + NO2
- 

2) ˙NO + Prot-S˙ � Prot-SNO 

However, this process still relies on the rate-limiting formation of NO2, leaving it 

with the same restrictions as N2O3. 

 A second demonstrated mechanism for protein S-nitrosylation depends on 

the direct reaction of ˙NO with a transition metal (Me(n+1)+), such as Fe3+ or Cu2+.  

This results in the reduction of the metal, as well as the generation of a 

nitrosonium (NO+) ion, at rates more physiologically relevant than those observed 

for NO2/N2O3 formation.  The nitrosonium, subsequently, is free to react with 

local cysteine thiols172-174. 

1) Me(n+1)+ + ˙NO � Me(n)-NO+ 

2) Me(n)+-NO+ + Prot-SH � Prot-SNO + Me(n)+ + H+ 

Another related mechanism for protein S-nitrosylation relies on the generation of 

dinitrosyl-iron complexes from ˙NO and free iron pools, which can then lead to 

subsequent protein S-nitrosylation175-177. 

 A third mechanism of protein S-nitrosylation involves the reversible 

transfer of a nitrosonium group between cysteine thiols, referred to as trans-
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nitrosylation.  The source of the nitrosonium can be either a low molecular weight 

S-nitrosothiol, such as S-nitrosoglutathione (GSNO), or another protein S-

nitrosocysteine (the second scenario is referred to as protein-assisted trans-

nitrosylation: this includes protein de-nitrosylation as well). 

1) Prot-SH + GSNO ↔ GSH + Prot-SNO 

2) Prot1-SNO + Prot2-SH ↔ Prot1-SH + Prot2-SNO 

Intracellular pools of glutathione (GSH) and GSNO are major endogenous 

sources of nitrosonium acceptors and donors, respectively161, 178-181.  Together 

with existing protein thiols and S-nitrosothiols, they provide the substrates 

necessary for the regulation of cellular processes. 

The biosynthetic mechanisms underlying intracellular GSNO formation under 

aerobic conditions remain unclear, although it may require either ˙NO 

autooxidation to N2O3 or the reaction of ˙NO with a glutathionyl radical (GS˙).  

Alternatively, it may be generated through the generation of a thionitroxide 

intermediate182 (GSNO-H), which can then reduce molecular oxygen and result in 

superoxide (O2
-) and GSNO. 

1) GSH + ˙NO � GSNO-H 

2) GSNO-H + O2 � GSNO + O2
- 

GSNO levels are maintained by several different enzymes, such as S-

nitrosoglutathione reductase (GSNO-R), carbonyl reductase 1 (CR1), thioredoxin 
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(Trx), and γ-glutamyl transpeptidase (γ-GT).  In doing so, they may indirectly 

influence protein S-nitrosylation in a number of different tissues through the 

regulation of available nitrosonium from GSNO183-186. 

 Protein-assisted trans-nitrosylation represents an additional avenue of 

˙NO-dependent signal transduction, though one that remains relatively 

unexplored.  One of the first trans-nitrosylation-dependent “cascades” described 

involves the regulation of caspase-dependent cell death by thioredoxin.  

Thioredoxin modulates the Fas-induced activation of caspase-3 through trans-

nitrosylation/de-nitrosylation of caspase-3, with caspase de-nitrosylation a 

prerequisite for apoptosis185, 187.  Similarly, GAPDH-mediated trans-nitrosylation 

of Siah has been identified as a key contributor to neuronal apoptosis7, 188.  A 

third recently elucidated pathway involves the assembly of proteins in the 

interferon-gamma (IFN-γ)-activated inhibitor of translation (GAIT) complex, a 

process dependent on S100A9-mediated trans-nitrosylation189.  Additional 

studies have identified candidate de-nitrosylases in the regulation of cellular S-

nitrosothiol levels, including protein disulfide isomerase, xanthine oxidase, 

superoxide dismutase, and glutathione peroxidase190-193.  Given the large 

number of S-nitrosoproteins already identified, these pathways may only 

represent a small fraction of the trans-nitrosylation-dependent processes 

involved in physiological function. 
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1.5.2.2 Selectivity of S-Nitrosylation 

  Although significant progress has been made in identifying the protein 

substrates of S-nitrosylation, the selectivity behind the endogenous modification 

of specific cysteine residues is not as well-described.  Several attempts have 

been made to decipher the biophysical and biochemical requirements behind in 

vivo S-nitrosylation of cysteine residues with mixed results.  Analysis of protein 

S-nitrosocysteines identified in the WT mouse liver found them to be 

overrepresented in α-helical structures, with locations in larger surface-

accessible areas and proximal (within a 6-A radius) to charged amino acids194.  

However, these structural characteristics could not account for all S-

nitrosocysteines identified, a finding confirmed in a later survey of S-

nitrosocysteines identified in multiple mouse organs4-5.  Additional studies have 

indicated that charged residues distal to specific cysteine residues could 

participate in protein-protein interactions that may facilitate S-nitrosylation of 

those cysteine residues, with proximal acid/base motifs thought to play a role in 

this process as well195-196.  S-nitrosocysteines have also been found near metal 

centers of proteins176, 197-198, a fact that may be important given the known ability 

of certain transition metals to coordinate to ˙NO.  Recently, a I/L-X-C-X2-D/E 

motif for protein trans-nitrosylation has been discovered in members of the GAIT 

complex189, which become S-nitrosylated by iNOS-derived ˙NO in response to 

IFN-γ and oxidized low-density lipoprotein (LDLOX).  When considered as a 

whole, the evidence suggests that multiple mechanisms may be involved in the 
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selectivity of S-nitrosocysteine formation in proteins.  This, in turn, would result in 

the diverse subset of S-nitrosoproteins detected thus far. 

1.5.2.3 S-Nitrosylation and Protein Function in the CNS 

 As an alternative pathway for ˙NO-dependent cell signaling, S-nitrosylation 

has garnered intense interest in the CNS.  A survey of prior reports has yielded 

more than 170 proteins with 323 S-nitrosocysteine residues in vivo in rodent 

brain.  Of these proteins and sites, only 120 proteins with 181 sites were found 

under physiological conditions, suggesting a biased association in the literature 

between S-nitrosylation and cell death in the brain.  On the other hand, additional 

roles have also been observed for protein S-nitrosylation in neuronal 

development and synaptic transmission.  Collectively, the existing information 

suggests a functional pleiotropy for this modification during both normal 

physiology and disease in the CNS, similar to phosphorylation or acetylation199-

200. 

 Several groups have focused on the contributions of S-nitrosylation of 

specific protein targets to neurodegeneration.  These include, among others, the 

inhibition of parkin E3 ubiquitin ligase activity139, GAPDH-induced apoptosis7, 201, 

caspase activation via XIAP inhibition12, PTEN-dependent regulation of PI3/Akt 

signaling202, and MEF2-mediated transcriptional regulation10.  The widespread 

effects of S-nitrosylation in multiple processes, ranging from transcriptional 

repression of specific genes to perturbations in numerous cell survival pathways, 

imply a large contribution from ˙NO to the pathological effects observed in many 
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chronic neurological disorders (such as Alzheimer’s or Parkinson’s disease).  

Despite such findings, however, it is the effects of endogenous S-nitrosylation on 

physiological function that are gaining recognition for their importance in refining 

and maintaining critical biological processes within the brain. 

  In recent years, the significance of this modification in normal CNS 

development has become increasingly apparent.  S-nitrosylation of transcription 

factor MEF2A prevents it from binding to specific promoters, leading to 

decreased expression of the nuclear receptor tailless and subsequent 

impairments in neurogenesis and neuronal differentiation10.  Transduction of the 

BDNF/CREB-dependent signaling cascade is achieved through the S-

nitrosylation of effector molecules, including sirtuin-1 (SIRT1) and histone 

deacetylase 2 (HDAC2), resulting in gene expression changes that affect 

neuronal differentiation and axodendritic morphology201, 203-204.  Furthermore, 

axonal retraction is partly guided via S-nitrosylation of the light chain of 

microtubule-associated protein 1B (MAP1B), thereby affecting growth cone 

dynamics during CNS maturation205.  Given this evidence, a case can be made 

for protein S-nitrosylation as a “synaptic tag”, linking neuronal signaling (via 

glutamate and postsynaptic ˙NO production by nNOS) to longstanding changes 

in synaptic plasticity206. 

Perhaps most interesting are the documented effects of S-nitrosylation on 

protein function at the synapse itself.  It regulates cation flux through NMDA207 

and AMPA208 receptors, as well as the attachment of scaffold protein PSD-95 to 
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the postsynaptic plasma membrane11.  Additionally, it governs postsynaptic 

AMPA receptor trafficking209-210 and gephyrin clustering211 in response to 

glutamatergic and GABAergic activity, respectively.  Finally, D-serine production 

is decreased by S-nitrosylation of serine racemase212, leading to its reduced 

availability as a coagonist for synaptic NMDA receptor activation213.  Taken 

together, these data suggest S-nitrosylation as a potent coordinator of both short-

term and long-term responses to synaptic transmission.  However, since 

previous reports of the modification in the CNS primarily focused on analyses of 

single proteins, investigation of this hypothesis may be better aided by large-

scale in vivo proteomic identification of endogenously S-nitrosylated proteins 

from the brain.  Most of the approaches developed thus far for such studies are 

outlined in the next chapter.  Moreover, it leads to the central questions of our 

study in Chapter 3, namely: 

1) Which targets of S-nitrosylation in the brain are involved in the regulation 

of synaptic function? 

2) What is the source of ˙NO utilized for the modification of these proteins 

(this may also contribute to spatial localization/modification of these 

proteins)? 

3) What are the functional effects of this modification in these proteins, and 

how do they contribute to neurotransmission as a whole?  
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Abstract 

A biochemical pathway by which nitric oxide accomplishes functional diversity is 
the specific modification of protein cysteine residues to form S-nitrosocysteine.  
This post-translational modification, S-nitrosylation, impacts protein function and 
location.  Despite considerable advances with individual proteins, the biological 
chemistry and the structural elements that govern the modification of specific 
cysteine residues in vivo are vastly unknown.  Moreover comprehensive studies 
exploring protein signaling pathways or interrelated protein clusters that are 
regulated by S-nitrosylation have not been performed on a global scale.  To 
provide insights to these important biological questions, sensitive, validated and 
quantitative proteomic approaches are required.  This review summarizes current 
approaches for the global identification of S-nitrosylated proteins.    
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Highlights 

• S-nitrosylation of cysteine residues an important regulator of protein 
function 

• Description of methods to identify S-nitrosylated proteins 
• Mass spectrometry-based proteomics essential for further studies of S-

nitrosylation biology 
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2.1 Introduction 

Since its discovery nitric oxide has become increasingly evident as a 

major regulator of physiological function.  The effects of nitric oxide on physiology 

are exerted primarily through two molecular mechanisms, comprised of cyclic 

GMP (cGMP)-dependent signaling cascades and post-translational modification 

(PTM) of proteins.  Initially, nitrosylation of the heme iron in soluble guanylate 

cyclase was found to activate the enzyme to generate cGMP, thereby regulating 

the function of a number of cGMP-dependent signaling pathways.  However, in 

recent years the importance of nitric oxide-derived post-translational 

modifications of proteins has gained recognition as mediators of protein function. 

One of these modifications, S-nitrosylation, is defined as the covalent 

addition of a nitric oxide equivalent to the thiol side chain of cysteine [1].  This 

modification has been shown to alter protein activity, protein-protein interactions, 

and sub-cellular localization under physiological and pathological conditions [2, 3, 

4, 5].  Additionally, evidence indicates that S-nitrosylation is reversible and is 

regulated in a temporal and spatial sense, reminiscent of other post-translational 

modifications such as phosphorylation [6, 7, 8].  Despite these indications of the 

emerging significance of S-nitrosylation, little is known regarding the proximal 

mechanisms of in vivo formation as well as how selectivity, in terms of directing 

modification to specific cysteine residues, is achieved.  To improve our 

understanding of the formation and selectivity of this post-translational 

modification in vivo, global interrogation of S-nitrosoproteomes can be 

exceptionally valuable.  Below we review the methodologies for the global 

identification of S-nitrosylated proteins (Table 2.1), and discuss potential utilities 

of proteomic-derived data.   
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2.2   The Biotin Switch and Its Variations 

2.2.1   The Biotin Switch 

The biotin switch [9] was the first and is the most commonly used 

technique for identifying S-nitrosylated proteins.  Three steps constitute the basic 

principles of the method: 1) initially, proteins in a purified preparation or complex 

mixture are denatured by SDS (or urea, which is more amenable to downstream 

mass spectrometry analysis, 10); to expose protein cysteine residues.  

Subsequently, the reduced thiols in these proteins are blocked by reaction with 

reagents such as methyl methanethiosulfonate (MMTS), N-ethylmaleimide 

(NEM), or iodoacetic acid (IAA).  2) Following this blocking step, S-nitrosylated -

cysteine residues are selectively reduced by treatment with ascorbate.  3) The 

ascorbate-reduced cysteine residues are then reacted with biotin-HPDP (N-[6-

(biotinamido)hexyl]-3’-(2’-pyridyldithio)-propionamide).  The conjugation of these 

protein cysteine residues to biotin permits enrichment of the modified targets 

from a complex mixture using avidin-based affinity capture.  The affinity enriched 

preparations can be probed with antibodies, if the protein targets of interest are 

known, or digested with trypsin and subjected to liquid chromatography tandem 

mass spectrometry (LC-MS/MS).  One added benefit of this method is that it is 

amenable to stable isotope labeling with amino acids in cell culture (SILAC) in 

order to quantitatively determine the levels of S-nitrosylation for specific cysteine 

residues via mass spectrometry-based approaches [11]. 

 

2.2.2   Biotin Switch-based Peptide Identification 

The original biotin-switch method did not provide the means to identify the 

site(s) of modification in S-nitrosylated proteins.  Identification of these sites is 
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the ultimate qualifier for the unambiguous assignment of S-nitrosylated proteins.  

Site-specific identification enables mutational analysis to explore the functional 

role of this modification.  Two similar approaches to achieve site-specific 

identification of modified cysteine residues have been developed based on the 

biotin switch [12, 13].  For both methods, proteins are first digested with trypsin 

and the resultant peptides are incubated with avidin or its derivatives.  These 

peptides are then eluted and subjected to LC-MS/MS to determine the site of 

modification. 

 

2.2.3   The His-Tag Switch 

Since the original description of the biotin switch methods, several 

variations have been developed.  One of these variants, the His-Tag switch, [14] 

begins with the blocking of free thiols by NEM, followed by ascorbate reduction of 

S-nitrosylated cysteine residues.  It diverges from the biotin switch, however, by 

treating these ascorbate-reduced cysteines with a conjugate of iodoacetate and a 

His-containing peptide.  Proteins containing this “His-tag” are then enriched 

through affinity chromatography in a nickel column, after which they are eluted 

and subjected to 1-dimensional (1D) gel electrophoresis.  In-gel digestion with 

trypsin is then performed.  Trypsin, in addition to cleaving the peptide backbone 

also facilitates cleavage of part of the alkylating agent, resulting in a mass 

increase of the cysteine residue by 271.12 Da, which is used to identify the 

modified peptide by LC-MS/MS.  This method thus provides another approach for 

identifying the site(s) of modification in S-nitrosylated proteins. 
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2.2.4   Fluorescence-based Detection (DyLight, Cyanine, and AMCA-based 

Methods) 

Another method based on the biotin switch relies on 2-dimensional 

differential gel electrophoresis (2D-DIGE, 15).  The initial steps of this approach 

are identical to the biotin switch.  After blocking by MMTS (or NEM) S-

nitrosylated-cysteine residues are reduced by ascorbate.  However, instead of 

biotin-HPDP, a set of DyLight maleimide sulfhydryl reactive fluorescent 

compounds are used to react with the newly reduced cysteine residues.  

Individual samples labeled with a DyLight fluorescent compound are separated 

on a 2D gel.  By comparing the fluorescent intensity of a single spot in the gel, a 

relative assessment of protein S-nitrosylation levels can be made.  Another 

variation of this method employs fluorescent cyanine maleimide sulfhydryl 

reactive compounds instead of the DyLight compounds [16]. 

An additional iteration of this “fluorescence switch” utilizes 7-amino-4-

methyl coumarin-3-acetic-acid (AMCA)-HPDP to label S-nitrosylated cysteine 

residues after ascorbate reduction [17].  In this method, samples are resolved on 

either 1D or 2D gels after labeling.  Subsequently, the gel is subjected to UV 

illumination, which activates the AMCA fluorophore and allows it to be directly 

visualized.  All three versions of the “fluorescence switch” method allow for 

relative quantification of S-nitrosylation levels of proteins between samples 

through comparison of fluorescent intensities.  However, in each case the site(s) 

of S-nitrosylation in specific proteins remains elusive, thereby rendering further 

studies of the functional impact of this modification challenging. 
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2.2.5   d-Switch 

In addition to the capabilities offered by a combination of SILAC labeling 

and the biotin switch, another quantitative method was developed and tested in a 

purified protein preparation [18].  In this technique, reduced cysteine residues in 

recombinant glutathione S-transferase P1 (GST-P1) are labeled with NEM.  S-

nitrosylated cysteine residues in GST-P1 are then subjected to ascorbate 

reduction, followed by treatment with deuterated (d5)-NEM and in-gel trypsin 

digestion.  Mass spectrometry is then used to determine the relative amounts of 

peptides containing only d5-NEM versus those containing both d5-NEM and NEM, 

providing a quantitative assessment of S-nitrosylation. 

 

2.2.6   SNO-RAC 

Recently, another approach was developed by Stamler and colleagues to 

enrich for S-nitrosylated proteins from a complex mixture [19].  Referred to as 

“SNO-RAC,” this method relies on the conjugation of reduced cysteine residues 

to a solid support, such as thiopropyl sepharose.  The first two steps of the 

protocol are identical to the biotin switch.  However, the ascorbate-reduced 

cysteine residues are incubated with thiol-reactive resins, resulting in a covalent 

disulfide linkage.  At this point, the proteins can be eluted and analyzed by 

western blotting.  Alternatively, the disulfide linkage allows for on-resin trypsin 

digestion of bound proteins, resulting in site-specific identification of modified 

cysteine residues by LC-MS/MS.  Compared to the traditional biotin switch, SNO-

RAC has a better sensitivity for proteins with higher mass (>100 KDa).  When 

combined with iTRAQ labeling, it can also report on the S-nitrosylation/de-

nitrosylation of specific cysteine residues on a global scale [20].   
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2.2.7   Overview of the Biotin Switch-based Methods 

Application of the biotin switch method and its various iterations to the 

identification of endogenously S-nitrosylated proteins (defined here as proteins in 

cell lysate or tissue homogenate without nitric oxide or trans-nitrosylating donor 

treatment) has yielded 135 targets from multiple organs and cell types.  Within 

this subset of proteins, 82 sites have been reported from 63 proteins, illustrating 

the importance of the biotin switch in exploring the S-nitrosoproteome.  However, 

three potential issues have been discussed with regard to these methods.  First, 

the efficiency/sensitivity of this assay relies on complete blocking of reduced 

cysteine residues.  Incomplete blocking will result in false identification, which 

can be minimized by the inclusion of negative controls such as pretreatment with 

ultraviolet (UV) photolysis or dithiothreitol (DTT).  Second, the efficiency of 

ascorbate reduction has been questioned [21, 22, 23], suggesting decreased 

sensitivity of the method.  The concerns over ascorbate reduction are 

compounded by its potential ability to reduce disulfides [24, 25], leading to false 

identification.  Again, the inclusion of negative controls (listed above) as well as 

samples not treated with ascorbate can be employed.  Alternatively, sinapinic 

acid has been used to treat cell lysates in place of ascorbate as a more selective 

method of reducing S-nitrosylated cysteine residues [26].  Third, there is the 

possibility of disulfide exchange after ascorbate reduction, leading to false 

identification of modified cysteine residues [20].  The use of methods that rely on 

a direct reaction with S-nitrosylated residues without requiring ascorbate 

reduction may overcome this concern.  Taken together, these potential 

methodological challenges stimulated the development of alternative approaches 

for exploring the S-nitrosoproteome.   



48 

 

2.3   Direct Detection of S-nitrosylation by Mass Spectrometry 

Theoretically, many of the concerns noted with the biotin switch and other 

chemical derivatizations can be avoided by direct detection of S-nitrosocysteine 

by mass spectrometry.  In practice, such an approach remains challenging and 

has been possible primarily for isolated proteins.  Certain MS approaches such 

as matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS, 

where the energy needed for peptide ionization also causes the loss of nitric 

oxide from the cysteine residues, can be employed.  The reduction in mass by 29 

Da in peptides after ionization is then diagnostic of S-nitrosylated sites.  Within 

the last five years, a few groups [27, 28] have been able to directly identify S-

nitrosylated cysteine residues by electrospray ionization quadrupole time-of-flight 

(ESI-QTOF) MS.  However, such investigations were limited to synthetic proteins 

and/or peptides, or were only able to identify a few sites of S-nitrosylation from a 

complex mixture, rendering them unsuitable in their current form to proteome-

wide identification of S-nitrosylated protein targets. 

 

2.4   Gold Nanoparticle-based Enrichment 

A method that relies on a direct reaction of S-nitrosocysteine residues with 

gold nanoparticles (AuNPs) has been developed for identifying sites of S-

nitrosylation in purified protein preparations [29].  In this method, reduced 

cysteine residues are initially alkylated by iodoacetamide (IAM), after which the 

protein is subjected to proteolysis.  Following this digestion, peptides are 

incubated with AuNPs to selectively react with the S-nitrosylated cysteine 

residues, generating free nitric oxide and peptides conjugated to the AuNPs.  

The nanoparticles are then treated with DTT to elute bound peptides, which are 
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subsequently analyzed by mass spectrometry to identify sites of modification.  

Despite the potential advantages offered by this method, two drawbacks exist.  

First, the AuNPs react with both S-nitrosylated and S-glutathionylated cysteines, 

providing a challenge for absolute assignment of specific post-translational 

modifications to these residues.  Second, this approach has not yet been applied 

to complex mixtures.  Nonetheless, it holds excellent promise for site-specific 

identification of modified cysteine residues in S-nitrosylated proteins.    

 

2.5   Phosphine-based Direct Labeling of S-Nitrosylated Proteins 

To overcome the reliance of previous methods on the complete blocking 

of reduced cysteine residues (either by MMTS, NEM, or other reagents), Zhang 

and colleagues [30] introduced another approach to directly label S-nitrosylated 

cysteine residues in cell extracts.  For this particular method, S-nitrosylated 

cysteine residues are reductively ligated (in the presence of water) with a biotin-

labeled phosphine substrate, resulting in the generation of a sulfenamide product 

and thiolate.  The sulfenamide and thiolate then spontaneously react to provide a 

stable disulfide (conjugated to biotin) at the formerly S-nitrosylated cysteine 

residue.  Avidin-based enrichment of these labeled proteins is performed, and 

captured proteins are then resolved on a 1D gel.  This particular approach is 

advantageous in its reactive specificity toward S-nitrosylated cysteine residues in 

the absence of blocking.  Following the introduction of this method, a number of 

phosphine-based compounds have been developed that directly react with S-

nitrosylated -cysteine residues [31, 32, 33].  Although these approaches have yet 

to identify endogenously modified sites, these compounds offer intriguing 

possibilities to explore protein S-nitrosylation in vivo. 



50 

 

2.6  Organomercury-Based Capture 

After considering some of the limitations inherent in the biotin switch 

technique and its successors, we introduced novel complementary methods for 

capturing S-nitrosylated proteins and identifying their sites of modification [34].  In 

this protocol, phenylmercury compounds (either conjugated to an agarose solid 

support or to polyethylene glycol-biotin) react directly with S-nitrosocysteine 

residues to form a stable thiol-mercury bond [35].  The first step of this procedure 

is the same as that of the biotin switch.  Following the blocking step, proteins are 

incubated with either the organomercury-conjugated resin (MRC) or a soluble 

phenylmercury-polyethyleneglycol-biotin (mPEGb) compound.  After formation of 

the thiol-mercury bond, a number of options are available.  S-nitrosylated 

proteins can be enriched by either the MRC approach or by avidin-based affinity 

capture (for mPEGb), and eluted using beta-mercaptoethanol to reduce the thiol-

mercury bond.  Eluted proteins are then subjected to 1D gel electrophoresis, in-

gel trypsin digestion, and LC-MS/MS analysis.  In order to identify the specific 

cysteine residues modified by S-nitrosylation, a slightly altered protocol is 

applied.  After incubation of blocked proteins with the phenylmercury-based 

reagents, proteins are then digested with trypsin on-resin or in-solution.  The 

resultant peptides are either eluted with mild performic acid to oxidize the 

cysteine in the thiol-mercury bond to cysteic acid (for the MRC approach), or 

subjected to a combination of avidin-based affinity capture and performic acid 

oxidation.  In both cases, the cysteic acid generated in captured peptides is used 

as the MS signature to identify the cysteine modified by S-nitrosylation.  

Application of these methods yielded 328 endogenous sites of S-nitrosylation in 

192 proteins in the wild-type mouse liver [34].  The method relies on the inclusion 
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of negative controls and the reporting of the percentage of peptides identified as 

false positives (those shared between negative controls and experimental 

samples).   

Advantages of this approach include the fact that it circumvents the 

ascorbate reduction step.  Additionally, it provides an opportunity to pinpoint the 

modified cysteine residue using the MS/MS signature of the cysteic acid (C+48).  

Since both proteins and peptides are identified independently, the peptides can 

be matched to the proteins and thus not rely on a single peptide for protein 

identification, as in previous methods [12, 13]. 

 

2.7   Overview of mass-spectrometry-based methodologies for detection of 

S-nitrosylated proteins 

As with any other PTM-based proteomic studies, there are some potential 

caveats associated with global analyses of in vivo S-nitrosylated proteins.  (1) Up 

to this point, only a few methods afford sensitivity for in vivo detection, and often 

investigators rely on the induction of S-nitrosylation by applying exogenous nitric 

oxide donors or trans-nitrosylating agents to cells and protein preparations.  

Unfortunately, such studies provide only putative sites of modification, not 

necessarily those modified in vivo [36]. (2) Some methods, but not all, do not 

provide the site of modification.  The identification of the site not only provides 

confidence for the correct identification of the protein but also enables follow-up 

studies, such as mutational analysis, to explore biological function.  (3)  Negative 

controls and the reporting of false identification rate (FIR) must be routinely 

evaluated.  (4) We must also consider the possibility that even a method which 

identifies the sites of modification, with appropriate negative controls and low 
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FIR, may still only report a subset of the modified proteins that are either most 

abundant or more stable.  Despite these limitations, it is still worthwhile to pursue 

inquiries into the S-nitrosoproteome, if only to provide more information about the 

structural and functional importance of this modification in vivo. 

 

2.8 Conclusions 

Compared to widespread studies of PTMs such as protein 

phosphorylation, glycosylation, or even acetylation, the field of S-nitrosylation 

represents relatively uncharted territory.  Within the last few years, however, this 

area of research has become quite prominent due to improvements in the 

detection of S-nitrosylated cysteine residues.  By applying mass spectrometry-

based proteomics, a greater appreciation of the biological significance of this 

modification is emerging.  Additional work is needed to improve the sensitivity of 

these methods.  Armed with sensitive and specific techniques, the S-

nitrosoproteome of multiple organs and/or cell types can be investigated.  The 

rich data from such studies can be analyzed in a variety of ways.  Structurally, it 

can reveal significant new insights on elements that guide the selectivity of the 

modification.  Additionally, it can also provide clues to potential biochemical 

reactions that derive the modification as well as explore the relative stability of 

different sites of modification.  Functional analyses can uncover pathways and 

functional clusters of S-nitrosylated proteins, as well as their cellular location(s) 

[37], allowing for development of novel hypotheses that can be tested using more 

targeted approaches.  
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Table 2.1 

Method Principles Comments 

1) Biotin Switch Technique 
(BST): 

The original method and 
several variations 
thereafter:  

-Detergent-free BST 

-SNOSID 

-d-Switch 

-His-Tag Switch 

-Fluorescent Switch/2D-DIGE 

-SNO-RAC 

1) Blockage of free thiols with 
thiosulfonate MMTS 

2) Ascorbate reduction of S-
nitrosocysteine. 

3) Reaction of ascorbate-
generated free cysteine with 
biotin-HPDP (or other thiol-
reactive compounds). 

4) Enrichment of labeled proteins 
or peptides.  

2D-DIGE to assess relative 
changes in S- nitrosylation levels. 

5) Western blot or LC-MS/MS to 
identify protein targets.  

6) Peptide enrichment allows site-
specific identification of modified 
cysteine residues. 

Collectively 135 
endogenously-modified 
protein targets have 
identified. 

82 endogenous sites on 63 
proteins were also identified 
Proteomics applicability. 

Reliance on selective 
reduction of SNO moiety 
prior to labeling, which has 
been discussed previously 
(20-26). 

2) Direct Detection by ESI-
QTOF Mass Spectrometry  

Direct detection of SNO moiety 
on modified proteins. 

Site-specific identification 

Limited to isolated proteins 
or peptides. 

3) Phosphine-based 
derivatization 

Specific reaction of SNO moiety 
on proteins with phosphine-based 
compounds without blocking free 
thiols. 

Direct reaction of phosphine 
compounds with S -
nitrosocysteine provides 
selective one-step labeling 
of modified residues. 

Potential applicability for 
mass-spectrometry-based 
proteomics needs to be 
explored.  

4) Gold Nanoparticles 
(AuNPs) 

1) Blockage of free thiols with 
IAM. 

2) Enrichment of SNO-proteins 
via reaction of S-nitrosocysteine 
with AuNPs. 

3) Trypsin digestion and elution of 
bound peptides. 

4) LC-MS/MS to identify sites of 
modification. 

Site-specific identification.  

AuNP reactivity toward S-
nitrosocysteine and S-
glutathionylated cysteine 
residues prevents absolute 
assignment of correct PTM. 

Applied only to purified 
protein preparations, not 
complex mixtures. 

5) Organomercury-based 
Affinity Enrichment  

1) Blockage of free thiols with 
MMTS. 

2) Reaction with organomercury 
reagents. 

3) LC-MS/MS to identify 
independently protein targets and 
sites of modification. 

Site-specific identification of 
328 endogenous S-
nitrosylated peptides in 192 
proteins in a single 
experiment.  

Reliance on 
organomercury-SNO 
chemistry; requires negative 
controls. 
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3.1 Introduction 

 Nitric oxide (NO) is an important physiological regulator of biological 

function in multiple tissues.  NO-mediated signaling contributes to synaptic 

transmission and cerebrovascular coupling in the CNS (1-4).  The biological 

effects of NO are primarily achieved through two molecular mechanisms: (i) the 

activation of soluble guanylate cyclase and downstream cGMP-dependent 

signaling cascades and (ii) S-nitrosylation, the post-translational modification of 

reduced cysteine residues in proteins to generate S-nitrosocysteine.  Protein S-

nitrosylation has emerged as a vital mediator of protein function and signaling. 

The neuronal isoform of nitric oxide synthase (nNOS) produces NO in the 

brain.  Mice with a genetic deletion of nNOS (nNOS-/-) demonstrate various 

phenotypic insufficiencies (5), including deficits in several forms of memory (6-9).  

Furthermore, these mice have decreased presynaptic/postsynaptic excitability 

(10-11) and synaptic plasticity (12-14), effects that may be due to impaired 

glutamatergic neurotransmission. Additionally, nNOS-/- mice exhibit reduced 

neurodegeneration after cerebral ischemia, which may be because of reduced 

glutamate excitotoxicity (15-16).  Therefore nNOS-derived NO could affect 

synaptic activity by regulating glutamate availability.  Many of the effects of NO 

on neurotransmission occur independently of cGMP activation (17-19), 

suggesting another mechanism for NO-dependent regulation of 

neurotransmission. 

Protein S-nitrosylation is an alternative biochemical and molecular 

pathway by which NO could influence neurotransmission in the CNS (20).  

Selective protein S-nitrosylation has been linked to a few postsynaptic processes 

including the regulation of NMDA receptor and AMPA receptor activity, synaptic 
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targeting of PSD-95, gephyrin clustering at GABAergic synapses, surface 

expression of AMPA receptors, and D-serine production (21-27).  However, the 

biological functions of protein S-nitrosylation in the tripartite glutamatergic 

synapse remain mostly unknown.  Here, we used mass spectrometry (MS)-

based proteomic methodologies to identify protein S-nitrosocysteine residues in 

brain homogenates from wild-type, nNOS-/- and eNOS-/- mice.  When coupled 

with metabolomic profiling, enzyme activity measurements, and site-directed 

mutagenesis, the proteomic data indicates that reversible protein S-nitrosylation 

regulates glutamate uptake, metabolism, conversion to glutamine, and 

glutamatergic transmission.    

 

3.2 Results 

Ontological analysis of brain S-nitrosylated proteins  

Mass spectrometric analysis of endogenous S-nitrosylated proteins using 

organomercury-based enrichment approaches (28-30) unearthed 269 sites in 

136 proteins in wild-type mouse brain, 135 sites in 95 proteins in eNOS-/- brain, 

and 71 sites in 53 proteins in nNOS-/- brain (Fig. 1A and Table 3.1).  The 

reduction in the S-nitrosylation of residues and proteins in nNOS-/- (74%) and 

eNOS-/- mice (50%) implied that both NOS isoforms contributed substantially to 

endogenous protein S-nitrosylation (Fig. 2).  To place these observations in 

biological context, we performed gene ontology analysis.  First we constructed a 

reference mouse brain proteome consisting of 7,025 proteins curated from 

previously published reports (31-34) and our experimental data.  Using this 

reference proteome as a background, we performed computational analysis 

using WebGestalt (35) and identified several molecular pathways and cellular 
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processes in which S-nitrosylated proteins were significantly enriched in the wild-

type brain (Fig. 1B and 3).  The computed ratio of enrichment for the top five 

pathways was similar between wild-type and eNOS-/- brains but was reduced in 

nNOS-/- brains (Fig. 1B).  For example, the molecular processes associated with 

the regulation of neurotransmitter levels showed a 67% reduction in nNOS-/- 

brains, a finding consistent with previous descriptions of synaptic deficits in the 

nNOS-/- mice (6-14).  Within the regulation of neurotransmitter level pathway we 

mapped S-nitrosocysteine residues in four proteins: excitatory amino acid 

transporter 2, glutamate dehydrogenase, mitochondrial aspartate 

aminotransferase, and glutamine synthetase (Fig. 1C).   The first three proteins 

were S-nitrosylated in wild-type and eNOS-/-mice, but not in nNOS-/-mice, 

whereas glutamine synthetase showed reduced S-nitrosylation in nNOS-/- mice 

as compared to wild-type and eNOS-/- mice (Fig. 1D and Table 3.1).  We 

confirmed the mass spectrometric-based identification of these S-nitrosylated 

proteins by Western blotting (Fig. 1D), and quantified the fraction of each protein 

modified by S-nitrosylation in wild-type brain (Fig. 1E).  These four proteins are 

major contributors in the glutamate/glutamine cycle (36-39), the biological 

process responsible for managing the metabolic fate and availability of glutamate 

in the synapse.  Overall, the proteomic and ontological analysis indicates that 

proteins involved in the glutamate/glutamine cycle are selectively S-nitrosylated 

by nNOS, implying a role for nitric oxide in the regulation of glutamate 

metabolism. 

 

 

   



62 

 

 

 

Figure 3.1. Proteomic Identification of Protein S-Nitrosocysteine residues and Gene Ontology Analysis of 
Modified Proteins in wild-type, eNOS

-/-, and nNOS
-/- Mouse Brain.  A) Identification of S-nitrosylated proteins and their 

corresponding sites of modification in mouse brain (N = 6 mice per genotype).  B) Gene ontology-based functional 
clustering of S-nitrosylated proteins in each genotype.  The Ratio of Enrichment (R) score is calculated as the ratio of the 
observed number (O) of S-nitrosylated proteins with a specific gene ontology (GO) annotation in the WebGestalt database 
to the number of annotated proteins expected (E) to be in the S-nitrosocysteine proteome.  Only the top five pathways in 
the wild-type mouse with the lowest p-values were considered (p < 0.01).  NT = Neurotransmitter.  C) Schematic of 
glutamate metabolism.  Proteins are denoted by their short protein names, as assigned by Uniprot: GLT1 (excitatory 
amino acid transporter 2), GDH (glutamate dehydrogenase), mAspAT (mitochondrial aspartate aminotransferase), and 
GS (glutamine synthetase).  S-nitrosylated proteins are italicized, with the associated sites of modification indicated.  Gln 
= Glutamine, Glu = Glutamate, Asp = Aspartate, Ala = Alanine, α-KG = α-ketoglutarate, Cys = Cysteine.  D) NOS-based 
dependence of S-nitrosylation of glutamate/glutamine cycle effectors.  Modified proteins (denoted as the “SNO-Fraction”) 
within the aforementioned pathway were confirmed by Western blot against specific targets in all genotypes.  The total 
abundance of the indicated protein targets in 30 µg of total homogenate did not obviously differ between genotypes.  (N = 
2 mice per genotype).  E) Quantification of the relative S-nitrosylated fraction for each glutamate/glutamine cycle protein in 
wild-type mouse brain.  Bars represent mean ± SEM (N = 3 mice). 
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Figure 3.2. Reduction in the enrichment of S-nitrosylated proteins in eNOS
-/- and nNOS

-/- mice.  Representative 
colloidal blue-stained gel showing the enrichment for S-nitrosylated proteins in forebrains from wild-type (WT), eNOS-/-, 
and nNOS-/- mice.  Proteins were resolved by SDS-PAGE over  a 4-cm distance on the gel, visualized by colloidal blue 
staining and scanned using the Odyssey Infrared Imaging System.  The reduced intensity of protein staining in the lanes 
corresponding to eNOS-/- and nNOS-/- brain homogenates relatively to wild-type homogenate, reflects the lower number of 
S-nitrosylated proteins in the brain of knockouts as compared to wild-type mice.  This experiment was repeated twice with 
similar results (N=2 mice per genotype).  

 

 

Figure 3.3. Additional biological processes and cellular functions identified for S-nitrosylated proteins in the 
mouse brain.  Pathways identified by gene ontology analysis are involved in metabolic functions, including NAD/NADH 
metabolism, glucose metabolism and ATP synthesis/consumption.  All pathways described were among the top ten 
pathways enriched in S-nitrosylated proteins (p < 0.01). 
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Regulation of Glutamate/Glutamine Metabolism by Nitric Oxide 

To study the effects of nNOS-derived NO and protein S-nitrosylation on 

the glutamate/glutamine cycle we quantified the fractional isotopic enrichment of 

glutamate-associated metabolites in acutely-isolated hippocampal slices 

following treatment with [2-15N] L-glutamine (Fig. 4).  Steady-state amounts of 

labeled glutamate-associated metabolites were quantified by HPLC and GS-MS 

approaches (40-41) under stimulatory (Mg2+-free) conditions in wild-type, eNOS-/-

, and nNOS-/- mice.  The three genotypes showed similar total amounts of 

glutamate, glutamine, aspartate, alanine and GABA (Fig. 5A), indicating a lack of 

gross metabolic dysfunction.  However, the ratio of intracellular glutamine to 

glutamate was 30% higher in nNOS-/- mice, reflecting potential perturbations in 

glutamate handling (Fig. 5B).  15N-fractional isotopic enrichment for alanine, 

aspartate, and glutamate ranging between 20-30% was significantly decreased in 

nNOS-/- brain slices relative to the other two genotypes, confirming altered 

glutamate allocation in nNOS-/- mice (Fig. 5C).   

To further explore the influence of nNOS-derived NO on the 

glutamate/glutamine cycle, we performed enzymatic assays for glutamate 

dehydrogenase, mitochondrial aspartate aminotransferase and glutamine 

synthetase in mitochondrial extracts and brain homogenates (Fig. 5D).  The 

activities of glutamate dehydrogenase and mitochondrial aspartate 

aminotransferase were significantly increased in nNOS-/- mitochondrial extracts 

as compared to wild-type and eNOS-/- mice (Fig. 5D).  Trans-illumination of wild-

type mitochondrial extracts with ultraviolet (UV) light, a treatment that effectively 

eliminates NO from S-nitrosocysteine residues (42-43), increased the enzymatic 

activities of glutamate dehydrogenase and mitochondrial aspartate 
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aminotransferase in wild-type extracts similar to that measured in nNOS-/- 

extracts (Fig. 5D).  We used selective inhibitors GTP (for glutamate 

dehydrogenase) and aminooxyacetic acid (for mitochondrial aspartate 

aminotransferase) to validate the specificity of the assays.  Each inhibitor 

resulted in >95% loss of activity (Fig. 5D).  Relative to wild-type homogenate, 

glutamine synthetase activity was decreased slightly in nNOS-/- but not in eNOS-/- 

brain homogenate (Fig. 5D).  UV trans-illumination decreased the activity of GS 

in wild-type homogenate (Fig. 5D).  The difference in the reduction of GS activity 

between nNOS-/- mice and wild-type mice exposed to UV light most likely reflects 

contributions from additional nitric oxide synthase isoforms to the S-nitrosylation 

of GS in vivo (Fig. 1D and Table 3.1).  Exposing wild-type homogenate to the 

glutamine synthetase inhibitor L-methionine sulfoximine (MSO) (44) resulted in a 

>95% loss of activity (Fig. 5D).  Together, metabolomic profiling and enzymatic 

activity assays imply that selective nNOS-dependent S-nitrosylation of key 

proteins in the glutamate/glutamine cycle regulates glutamate metabolism. 



66 

 

 

Figure 3.4. Identification of 15N isotopic label in glutamate-associated metabolites. The 15N isotopic label is 
transferred between metabolites during specific enzymatic reactions, as depicted above.  Enzymes indicated in bold 
denote those identified as being S-nitrosylated. 
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Figure 3.5.  Analysis of the Glutamate/Glutamine Cycle in WT, eNOS
-/-, and nNOS

-/- Mouse Brain.  A) Glutamate-
associated metabolite quantification.  Total metabolite concentrations were determined by HPLC and normalized to 
protein content (N = 3 mice per genotype).  B) Intracellular glutamine/glutamate ratios.  ** P<0.01 as determined by one-
way ANOVA with Tukey post-hoc analysis (N = 3 mice per genotype).  C) Genotypic differences in steady-state glutamate 
metabolism.  15N-based enrichment of glutamate and its associated derivatives was calculated as a percentage of total 
metabolite content  using GC-MS and corrected for natural 15N abundance (15N+1 MPE: molar percent excess of M+1 
metabolite isotopomer).  * P<0.05 compared to wild-type by one-way ANOVA with Tukey post-hoc analysis between 
genotypes (N = 3 mice per genotype).  D) Enzymatic activity of glutamate/glutamine effectors.  Bars represent mean ± 
SEM (N = 3 mice per genotype), and indicate enzymatic activity relative to that measured in untreated extracts from wild-
type mice.  Activities in untreated wild-type extracts: GS = 1259 ± 94 nmol/mg/hr, GDH = 120 ± 15 nmol/mg/min, mAspAT 
= 238 ± 12 nmol/mg/min.  WT + UV denotes extracts exposed to UV trans-illumination before assessing enzymatic 
activity. WT + Inhibitor denotes extracts pre-treated with specific enzymatic inhibitors (GS = 0.5 mM MSO, GDH = 20 μM 
GTP, mAspAT = 1 mM AOAA).  N.D. Not detectable.  *P<0.05, **P<0.01, ***P<0.001 as compared to wild-type by one-
way ANOVA with Tukey post-hoc analysis. 
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Regulation of intracellular transport of glutamate by the S-Nitrosylation of 

excitatory amino acid transporter 2. 

Excitatory amino acid transporter 2 is the primary transporter responsible 

for glutamate uptake in astrocytes of the cerebral cortex (45).  Genetic deletion of 

the transporter results in lethal epileptic seizures in mice, and eventually leads to 

limited postnatal viability (46-47).  Due to its importance in physiological synaptic 

function (48), as well as its identification in the brain S-nitrosocysteine proteome, 

we explored the functional consequences of excitatory amino acid transporter 2 

S-nitrosylation in mouse brain synaptosomal preparations, as well as in a cell 

model.  We quantified sodium (Na+)-dependent glutamate uptake in freshly 

prepared synaptosomes from wild-type, nNOS-/-, and eNOS-/- forebrain in the 

presence or the absence of the excitatory amino acid transporter 2 inhibitor 

dihydrokainate (DHK) (49).  The resulting difference in uptake activity between 

the two treatments (DHK-sensitive) is the glutamate uptake mediated by GLT1.  

Synaptosomal DHK-sensitive glutamate uptake was increased in nNOS-/-

synaptosomes as compared to wild-type synaptosomes (Fig. 6A).  Elimination of 

NO from S-nitrosocysteine residues by pre-treatment of wild-type synaptosomes 

with copper plus ascorbate (50) increased DHK-sensitive glutamate uptake, 

indicating a functional regulatory role for S-nitrosylation.  On the other hand, 

DHK-insensitive Na+-dependent glutamate was similar in synaptosomes 

prepared from the three genotypes, or in synaptosomes prepared from wild-type 

mice after treatment with copper and ascorbate, suggesting that non-GLT1-

mediated uptake was unaffected by the altered concentrations of NO or the 

elimination of S-nitrosylation (Fig. 7A).  We further explored the functional effect 
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of S-nitrosylation in HEK-293T cells that were transiently transfected with 

plasmids expressing either the wild-type rat transporter or a double point mutant 

(C373S/C562S) of the two in vivo S-nitrosylated cysteine residues.  The cysteine 

residue at position 562 in the rat sequence corresponds to cysteine 561 in the 

mouse sequence, because rat GLT1 is one amino acid longer than the mouse 

protein.  To induce protein S-nitrosylation, we treated cells with a non-

physiological concentration of S-nitrosocysteine, which is taken up through the L-

amino acid transport system.  S-nitrosocysteine is an S-nitrosylating agent that 

can transfer an NO equivalent to reduced cysteine residues in proteins (51).  As 

a control, cells were treated with the same concentration of cysteine.  Treatment 

of cells with S-nitrosocysteine resulted in S-nitrosylation of the wild-type 

transporter (Fig. 6B), which correlated with decreased glutamate uptake (Fig. 

6C).  The C373S/C562S transporter was not S-nitrosylated in S-nitrosocysteine-

treated cells (Fig. 6B), and its activity was similar to that of wild-type transporter 

and was unaffected by S-nitrosocysteine treatment (Fig. 6C).  Mutation of one 

cysteine residue (either 373 or 562) to serine resulted in transporter activity 

sensitive to S-nitrosocysteine treatment, indicating that the modification of both 

cysteine residues is required for S-nitrosylation-mediated inhibition of glutamate 

transport (Fig. 7B).  Relative to L-cysteine treatment, exposure of cells to S-

nitrosocysteine did not alter the protein abundance of the wild-type or the 

C373S/C562S mutant transporter (Fig. 6D-6F), but decreased the surface 

abundance of both transporters by 20-25% (Fig. 6G).  Kinetic analysis of GLT1-

mediated glutamate uptake (Fig. 7C) revealed an 81% decrease in the Km of the 

wild-type transporter after S-nitrosocysteine treatment and an 84% decrease in 

Vmax.  Removal of S-nitrosocysteine from the media led to a gradual decrease in 



70 

 

the S-nitrosylation of wild-type GLT1 that correlated with a recovery in glutamate 

uptake activity (Figure 6H-6I).  Overall, these data suggest that specific and 

reversible S-nitrosylation of GLT1 at Cys373 and Cys562 regulates the activity of 

the transporter.   
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Figure 3.6. Regulation of GLT1 Function by S-Nitrosylation.  All results are summarized from three mice per genotype 
(A) or three independent experiments in cells (B-I), and plotted as mean ± SEM.  Cells were treated with L-Cysteine (Cys) 
or S-nitrosocysteine (CysNO).  A) The fraction of total Na+-dependent glutamate uptake that was DHK-sensitive was 
greater in synaptosomes from nNOS-/- mice or synaptosomes pre-treated with copper and ascorbate (WT + Cu/Asc) than 
in untreated wild-type synaptosomes.  Na+-dependent uptake in untreated synaptosomes of the indicated genotype: wild-
type = 0.24 ± 0.03 nmol/mg/min, nNOS-/- = 0.26 ± 0.06 nmol/mg/min, eNOS-/- = 0.25 ± 0.04 nmol/mg/min, and WT + 
Cu/Asc = 0.29 ± 0.03 nmol/mg/min.  *P < 0.05 after one-way ANOVA followed by Dunnett post-hoc analysis. B-C) S-
nitrosylation of wild-type GLT1 in HEK-293T cells following CysNO treatment (B) correlated with decreased glutamate 
uptake (C).  Cys-treated wild-type GLT1 = 0.27 ± 0.03 nmol/mg/min, Cys-treated C373S/C562S GLT1 = 0.26 ± 0.04 
nmol/mg/min.  ****P < 0.0001 after two-way ANOVA followed by Bonferroni post-hoc analysis. D-E) Representative blots 
from cell surface biotinylation assays of cells expressing wild-type GLT1 (D) and C373S/C562S GLT1 (E). L, lysate; I, 
intracellular fraction; C, cell surface fraction. 5 μg of total lysate and equivalent dilutions of the other fractions were used.  
T, D, and M refer to trimeric, dimeric, and monomeric GLT1 respectively.  The intracellular fraction of both forms of GLT1 
was increased after CysNO treatment.  F) Quantification of total GLT1 abundance in cell lysate.  G) Quantification of 
plasma membrane abundance of GLT1 after Cys/CysNO treatment.  *P<0.05, **P<0.01 as determined by ANOVA with 
Bonferroni post hoc analysis.  H-I) S-nitrosylation of wild-type GLT1 was reversible (H), and correlated with a recovery in 
glutamate uptake (I).  Wild-type GLT1 cells were exposed to Cys (CTRL) or CysNO, then to fresh media.  Glutamate 
uptake and S-nitrosylation of GLT1 were assessed between after CysNO exposure.  *P < 0.05 after one-way ANOVA 
followed by Bonferroni post-hoc analysis. 
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Figure 3.7. Characterization of GLT1-independent uptake in synaptosomes and GLT1-dependent uptake in cells. 
(A) DHK-insensitive Na+-dependent glutamate uptake does not differ in brain synaptosomes prepared from the three 
genotypes, or in synaptosomes treated with 50 µM copper plus 500 µM ascorbate, suggesting that non-GLT1-mediated 
uptake is unaffected by the altered concentrations of NO or the elimination of S-nitrosylation (N=3 mice per genotype).  
(B) Glutamate uptake is inhibited by CysNO treatment in cells expressing single-cysteine mutants of GLT1 (C373S or 
C562S).  Cells were treated with 0.4 mM of L-Cysteine (Cys) or 0.4 mM S-nitrosocysteine (CysNO) and GLT1 mediated 
update was assessed in the presence of 5 nM 3H-gluatamate. Cys-treated WT GLT1 = 0.27 ± 0.03 nmol/mg/min, Cys-
treated C373S GLT1 = 0.24 ± 0.04 nmol/mg/min, Cys-treated C562S GLT1 = 0.25 ± 0.02 nmol/mg/min (N=3 independent 
experiments). (C) CysNO treatment of the WT transporter leads to altered kinetic parameters of GLT1-mediated 
glutamate uptake.  A saturation curve of Na+-dependent glutamate uptake was determined for 10-1000 μM glutamate in 
cells ectopically expressing the wild-type GLT1 protein. Kinetic parameters were calculated using non-linear regression 
analysis of GLT1-mediated glutamate uptake and plotted as mean ± SEM (N=3 independent experiments).  Km for 
glutamate for Cys-treated WT GLT1 = 293 ± 27 uM, CysNO-treated WT GLT1 = 55 ± 64 uM.  Vmax for Cys-treated WT 
GLT1 = 11.8 ± 0.4 nmol/mg/min, CysNO-treated WT GLT1 = 1.8 ± 0.5 nmol/mg/min. 

 

Molecular Modeling of the Effects of S-nitrosylation   

We used the crystal structure of mouse mitochondrial aspartate 

aminotransferase (PDB 3PD6), human glutamate dehydrogenase (PDB 1L1F) 

and human glutamine synthetase (PDB 2QC8) as templates and generated 

protein structures with the specific S-nitrosylated cysteine residues.  Electrostatic 
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potentials and partial atomic charges were calculated for S-nitrosylated and 

unmodified cysteine residues.  All three proteins are large multimeric enzymes in 

which pairs of equivalent modifiable cysteine residues from different monomers 

are arranged with their side chains in an antiparallel fashion across from each 

other.  In mitochondrial aspartate aminotransferase each cysteine residue at 

position 106 between chains A and B and C and D are 26Å apart.  In glutamate 

dehydrogenase, each cysteine residue at position 112 between chains A and E, 

B & E and C & F are 20Å apart, whereas cysteine residues 99 and 183 in GS 

between the side chains are about 23Å apart.  S-nitrosylation of the cysteine 

residue makes the side chain significantly more polar, increasing the dipole 

moment from 1.7 Debye to 5.4 Debye.  This increase in polarity results in an 

augmented electrostatic potential which, because of the antiparallel dipole 

arrangement and the effective propagation of electrostatic potentials inside large 

proteins (52-61), produces a repulsive electrostatic 'wedge' between subunits 

(Fig. 8).  This wedge could drive changes in the quaternary structure and provide 

a plausible allosteric mechanism by which S-nitrosylation of cysteine residues 

distant from substrate and cofactor binding sites modulates enzyme activity. 
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Figure 3.8. S-nitrosylation augments electrostatic potential. The crystal structure of mouse mAspAT (PDB 3PD6), 
human GDH (PDB 1L1F) and human GS (PDB 2QC8) were used as templates and protein structures with the specific S-
nitrosylated cysteine residues were generated.  Electrostatic potentials and partial atomic charges were calculated for S-
nitrosylated (shown as SNC) and unmodified (shown as C) cysteine residues. Potential in GDH produced by unmodified 
Cys112 (A) and S-nitrosyl-Cys112 (B). Potential in mAspAT from Cys106/Cys295 (C) and S-nitrosyl-Cys106/ S-nitrosyl-Cys295 

(D). Potential in GS from Cys99, Cys183, Cys269, and Cys346 (E) and S-nitrosyl-Cys99, S-nitrosyl-Cys183, S-nitrosyl-Cys269, 
and S-nitrosyl-Cys346 (F). Isopotential contours are shown at -1kT/e in red and +1kT/e in blue.  Positions of key cysteine 
residues, S-nitrosyl-cysteine residues, and binding site residues are indicated. 
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3.3 Discussion 

S-nitrosylation of cysteine residues represents an alternative signaling 

mechanism through which nitric oxide can expand the functional diversity and 

biological utility of proteins.  We applied a combination of chemical enrichment 

and mass spectrometric technologies to specifically map endogenous sites of S-

nitrosylation in wild-type, nNOS-/-, and eNOS-/- mouse forebrain.  In wild-type 

brain 45 sites of S-nitrosylation in 44 proteins identified by our method have been 

previously reported with various biochemical and proteomic approaches.  The 

current study contributed 225 additional S-nitrosylation sites as well as 92 

additional protein targets, expanding the known endogenous S-nitrosylated 

proteins in the mouse brain.  As with any enrichment method, the identification of 

the endogenous sites of S-nitrosylation is limited by the relative abundance and 

biological stability of S-nitrosocysteine.  Despite these limitations, interrogation of 

the proteomic data coupled with biochemical approaches provided evidence that 

protein S-nitrosylation participates in the coordination of glutamate metabolism 

and neurotransmission.  Specifically, four proteins that regulate glutamate 

uptake, metabolism and conversion to glutamine are functionally regulated by S-

nitrosylation.   

Glutamate uptake through excitatory amino acid transporter 2, the major 

astrocytic transporter of glutamate in the CNS, was reversibly inhibited by S-

nitrosylation at Cys373 and Cys562.  Irreversible alkylation of Cys373 inhibits 

transporter activity (62), whereas the functional role of Cys562 in the rat or Cys561 

in the mouse has not been studied.  Because permissive mutation of these two 

cysteine residues to serine did not alter excitatory amino acid transporter 2 

activity, these data suggest that both cysteine residues are not critical for function 
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but that posttranslational modifications at these residues are important for 

functional regulation.  We speculate that the transient inhibition of the transporter 

may allow for an extended period of increased glutamate concentration within the 

synaptic cleft, promoting neurotransmission and synaptic strengthening.  The 

absence of nNOS-dependent S-nitrosylation of excitatory amino acid transporter 

2 may prevent nNOS-/- mice from achieving this regulation and thereby contribute 

to their phenotype of dysregulated glutamatergic transmission, synaptic plasticity 

and memory (6-14).   

Metabolic studies have indicated that once in astrocytes, a fraction of 

glutamate (estimates vary from 50-70%) is converted to glutamine by glutamine 

synthetase (63-64).  The remaining glutamate in astrocytes is oxidized by 

glutamate dehydrogenase and mitochondrial aspartate aminotransferase to α-

ketoglutarate, which can then enter the TCA cycle (65-66).  The metabolic 

demands placed on astrocytes and neurons may determine the fraction of 

glutamate that is oxidized in the TCA cycle.  Our data indicate that S-nitrosylation 

inhibited glutamate oxidation by glutamate dehydrogenase and mitochondrial 

aspartate aminotransferase, and promoted conversion to glutamine by glutamine 

synthetase (Fig. 5D).  Moreover, the absence of S-nitrosylation of these enzymes 

in nNOS-/- mice resulted in a higher ratio of glutamine to glutamate, consistent 

with increased glutamate oxidation (Fig. 5B - 5C).  The lower fraction of 

glutamate converted to glutamine may contribute to the phenotype of the nNOS-/- 

mice.  Although there are disagreements on the fraction of the re-cycled 

glutamate that participates in neurotransmission, genetic ablation of enzymes in 

the glutamate/glutamine cycle underscore the importance of maintaining this 

cycle in the CNS (67).  Specifically, glutamine synthetase haploinsufficiency 
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leads to increased seizure susceptibility in vivo (68), with complete deletion of the 

gene associated with decreased cortical glutamine and severely limited postnatal 

viability (69).  Glutamate dehydrogenase deletion in vivo leads to increased 

glutamine concentrations in the brain (70), whereas overexpression of the 

enzyme leads to decreased synaptic plasticity and age-dependent loss of 

synaptic and dendritic architecture (71).  During periods of increased synaptic 

activity, the effect of S-nitrosylation on the reallocation of glutamate from 

oxidation to regeneration of glutamine (and subsequent glutamate) provides an 

explanation for how sustained neurotransmission may be achieved in wild-type 

mice but not in nNOS-/- mice.  The S-nitrosylation induced   alteration in 

glutamate metabolism could also explain why nNOS-/- mice are protected from 

cerebral ischemia (15).  Our data suggests that neurons in the nNOS-/- brain 

would avidly oxidize glutamate and consequently exhibit attenuation of the 

ischemia-induced increase in intra-synaptic glutamate (15-17, 72) while providing 

ATP for metabolic processes.  The partial loss of glutamine synthetase activity in 

nNOS-/- brain would hinder glutamate conversion to glutamine (an important 

mechanism of glutamate disposal) but would also spare limited reserves of ATP 

during an ischemic episode, since the glutamine synthetase pathway normally 

consumes considerable energy (73).  Collectively, S-nitrosylation of these 

proteins may provide a regulatory switch between glutamate oxidation and 

glutamine generation to support synaptic maintenance and glutamatergic 

neurotransmission.   

Finally, it is interesting to note that of the 136 proteins identified as targets 

of S-nitrosylation in the wild-type mouse brain, 23 have been identified as part of 

macromolecular complexes implicated in glutamate metabolism at synapses 
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(74).  The association of glutamate uptake and mitochondrial mobility (75), the 

functional interaction between glutamate dehydrogenase-mediated glutamate 

oxidation and excitatory amino acid transporter 2-mediated glutamate uptake 

(76), and the data presented in figures 2 and 3 indicate that selective protein S-

nitrosylation may function as a synapse-specific gatekeeper of glutamate fate 

during neurotransmission. 
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Table 3.1: S-Nitrosocysteine Sites Identified in wild-type, eNOS -/-, and  
nNOS -/- Mouse Brain 

Protein name 
Uniprot 

ID 
Peptide sequence WT 

eNOS 
-/- 

nNOS  
-/- 

10-formyltetrahydrofolate 
dehydrogenase 

Q8R0Y6 AVQMGMSSVFFNKGENC707IAAGR X 
  

14-3-3 protein theta P68254 YLAEVAC134GDDRK X 
  

2',3'-cyclic-nucleotide 3'-
phosphodiesterase 

P16330 
LDEDLAGYC111RR X 

 
X 

LELVSYFGKRPPGVLHC251TTK X 
 

X 

2-oxoglutarate 
dehydrogenase E1 
component, mitochondrial 

Q60597 

TKAEQFYC395GDTEGKK X 
  

SMTC604PSTGLEEDVLFHIGK X X 
 

NTFHKDVVVDLVC497YRR X 
  

4-aminobutyrate 
aminotransferase, 
mitochondrial* 

P61922 

TMGC224LATTHSK X 
  

C269LEEVEDLIVKYR# X X 
 

NKGVVLGGC467GDK X 
 

X 

Acetyl-CoA 
acetyltransferase, 
mitochondrial 

Q8QZT1 IHMGNC193AENTAK X X X 

Aconitate hydratase, 
mitochondrial 

Q99KI0 

VAVPSTIHC126DHLIEAQVGGEK X X 
 

C410KSQFTITPGSEQIR X X X 

C592TTDHISAAGPWLK X 
  

Actin, cytoplasmic 1* P60710 
C285DVDIRKDLYANTVLSGGTTMYPGI
ADR 

X X 
 

Actin-related protein 10 Q9QZB7 C27GFAGETGPR 
 

X 
 

ADP/ATP translocase 1 P48962 EFNGLGDC160LTK X 
  

AP-1 complex subunit 
beta-1 

O35643 AIGRC380AIKVEQSAER X X 
 

AP-2 complex subunit 
alpha-1 

P17426 AC331NQLGQFLQHR X 
  

AP-2 complex subunit 
beta 

Q9DBG3 
C129LKDEDPYVRK X 

  

C380AIKVEQSAER X 
  

AP-2 complex subunit mu P84091 
SGKQSIAIDDC246TFHQC251VR X 

  

YIGRSGIYETRC435 X 
  

Aspartate 
aminotransferase, 
cytoplasmic 

P05201 IANDNSLNHEYLPILGLAEFRSC83ASR X 
  

Aspartate 
aminotransferase, 
mitochondrial* 

P05202 
NLDKEYLPIGGLAEFC106K# X 

  

VGAFTVVC295K# X 
  

ATP synthase subunit 
alpha, mitochondrial 

Q03265 LYC244IYVAIGQKR X 
  

ATP synthase subunit 
gamma, mitochondrial 

Q91VR2 HLIIGVSSDRGLC103GAIHSSVAK X X 
 

ATP-citrate synthase* Q91V92 GVTIIGPATVGGIKPGC623FK X 
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Calcium/calmodulin-
dependent protein kinase 
type II alpha chain 

P11798 

C30VKVLAGQEYAAK X X 
 

QETVDC290LKKFNAR X 
  

Calcium/calmodulin-
dependent protein kinase 
type II beta chain* 

P28652 

C31VKLC35TGHEYAAK X X X 

STVASMMHRQETVEC290LKK# X X 
 

Citrate synthase, 
mitochondrial* 

Q9CZU6 

GYSIPEC101QKMLPK# X 
 

X 

LPC211VAAK X 
 

X 

YSC359QREFALK X X 
 

Clathrin heavy chain 1* Q68FD5 

HSSLAGC151QIINYR X 
 

X 

AHIAQLC617EK X 
  

IHEGC870EEPATHNALAK X X 
 

YC909EKRDPHLAC918VAYER X X 
 

C1205YDEKMYDAAK X X 
 

CLIP-associating protein 2 Q8BRT1 IPRPSVSQGC534SR 
 

X 
 

Creatine kinase B-type 
 

Q04447 
 

SIRGFC141LPPHC146SR X X X 

FC254TGLTQIETLFK X X 
 

LGYILTC282PSNLGTGLR X X X 

Creatine kinase, 
ubiquitous mitochondrial* 

P30275 
KHNNC63MASHLTPAVYAR X X X 

LGYILTC317PSNLGTGLR X X X 

Cullin-associated NEDD8-
dissociated protein 1 

Q6ZQ38 LDRLVEPLRATC1153TTK X 
  

Cysteine and glycine-rich 
protein 1 

P97315 

TVYFAEEVQC25EGNSFHK X 
  

NLDSTTVAVHGEEIYC58KSC61YGKK X 
  

C122SQAVYAAEK X X 
 

Cysteine-rich protein 2 Q9DCT8 C8DKTVYFAEK X X X 

Cytochrome b-c1 complex 
subunit 6, mitochondrial* 

P99028 
ERLELC51DNRVSSR X X 

 

DHC79VAHKLFK X 
  

Cytochrome c oxidase 
subunit 5B, mitochondrial* 

P19536 C112PNC115GTHYKLVPHQMAH# X X X 

Cytochrome c, somatic P62897 IFVQKC15AQCHTVEKGGK X 
  

Cytochrome c1, heme 
protein, mitochondrial 

Q9D0M3 
 
ARHGGEDYVFSLLTGYC219EPPTGVS
LR 

 
X   

Cytosolic 5'-nucleotidase 
III-like protein 

Q3UFY7 
C48PSSHNILDNSK X 

  

AHSLLC106QQR X 
  

D-3-phosphoglycerate 
dehydrogenase 

Q61753 ALVDHENVISC281PHLGASTK X X X 
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D-beta-hydroxybutyrate 
dehydrogenase, 
mitochondrial 

Q80XN0 

GFLVFAGC86LMK X 
  

SPYC209ITK X 
  

TIQLNVC115NSEEVEKAVETIR X 
  

D-dopachrome 
decarboxylase 

O35215 LC24AATATILDKPEDR X 
  

Destrin Q9R0P5 
C23STPEEIK X X 

 

AVIFC39LSADKK X X 
 

Dihydrolipoyl 
dehydrogenase, 
mitochondrial* 

O08749 VC484HAHPTLSEAFR X X 
 

Dihydropyrimidinase-
related protein 1 

P97427 
SHKSTVEYNIFEGMEC439HGSPLVVIS
QGK 

X 
  

Dihydropyrimidinase-
related protein 2* 

O08553 

SITIANQTNC248PLYVTK# X X 
 

THNSALEYNIFEGMEC439R# X X 
 

GVPRGLYDGPVC504EVSVTPK# X X 
 

Dihydropyrimidinase-
related protein 3 

Q62188 FIPC471SPFSDYVYKR X X 
 

Dihydropyrimidinase-
related protein 5 

Q9EQF6 
DSELYQVFHAC181R X X 

 

C432HGVPLVTISR X X 
 

DmX-like protein 2* Q8BPN8 

HGNIQVSC62VEC65SNQHGR X 
  

C1373IAGEVAIVRDPDAGEGTKR X 
  

VINLSQYGPAC1504FGQEHAR# X 
  

LHTC1577LLTSLPPLYR X 
  

SC1832NPVVFSFYNYLR X 
  

VGC1896PVLALEVLSKIPK X 
  

Dpys protein (Fragment) Q8K0X3 C433HGVPLVTISR 
  

X 

Electron transfer 
flavoprotein-ubiquinone 
oxidoreductase, 
mitochondrial 

Q921G7 

VTVFAEGC247HGHLAK X 
  

LQINAQNC585VHC588K X 
  

Elongation factor Tu, 
mitochondrial 

Q8BFR5 KGDEC290ELLGHNK X 
  

ES1 protein homolog, 
mitochondrial 

Q9D172 

KPIGLC174C175IAPVLAAK X X 
 

HC219VKGVTEAHVDQK X X 
 

NKVVTTPAFMC242ETALHHIHDGIGAM
VK 

X X 
 

Excitatory amino acid 
transporter 2 

P43006 
C373LEDNLGIDKR X X 

 

SADC561SVEEEPWKR X X 
 

Fascin (Fragment) 
D3YWW

3 
LINRPIIVFRGEHGFIGC397R 

  
X 

Fatty acid synthase* P19096 
C1084LGITVSGGIHISR X 

  

C1464ILLSNLSNTSHAPK X 
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Fructose-bisphosphate 
aldolase A 

P05064 

QLLLTADDRVNPC73IGGVILFHETLYQ
K 

X 
 

X 

C150VLKIGEHTPSALAIMENANVLAR X 
  

YASIC178QQNGIVPIVEPEILPDGDHDL
KR 

X 
  

C202QYVTEK X 
 

X 

ALANSLAC339QGK X X  

Fructose-bisphosphate 
aldolase C 

P05063 

KC73IGGVIFFHETLYQKDDNGVPFVR X 
  

C150VLKISDRTPSALAILENANVLAR X 
  

YASIC178QQNGIVPIVEPEILPDGDHDL
KR 

X 
  

C202QYVTEKVLAAVYK X 
  

Fructose-bisphosphate 
aldolase 

Q9CPQ9 

QLLLTADDRVNPC73IGGVILFHETLYE
K 

X X X 

C202QYVTEKVLAAVYK X X X 

ALANSLAC339QGK X X X 

Galectin-related protein A Q8VED9 LIVPFC41GHIK 
 

X 
 

Glutamate decarboxylase 
1 

P48318 
LGLKIC47GFLQR X X 

 

QSSKNLLSC78ENSDQGAR X X 
 

Glutamate dehydrogenase 
1, mitochondrial 

P26443 IIKPC112NHVLSLSFPIR X X 
 

Glutamine synthetase* P15105 

LVLC99EVFK X 
 

X 

AC183LYAGVK X X 
 

C269IEEAIDKLSK# X X 
 

RPSANC346DPYAVTEAIVR# X X 
 

Glyceraldehyde-3-
phosphate 
dehydrogenase* 

P16858 
IVSNASC150TTNC154LAPLAK# X X 

 

VPTPNVSVVDLTC245R X X 
 

Glycerol-3-phosphate 
dehydrogenase, 
mitochondrial 

Q64521 
C270KDVLTGQEFDVR X X 

 

C285VINASGPFTDSVR X X 
 

Glycogen phosphorylase, 
brain form* 

Q8CI94 
FGC319RDPVR X 

 
X 

QLLNC581LHIITLYNR X 
 

X 

Guanine nucleotide-
binding protein G(i), 
alpha-2 subunit 

P08752 EIYTHFTC326ATDTK X 
  

Guanine nucleotide-
binding protein 
G(I)/G(S)/G(T) subunit 
beta-1* 

P62874 

KAC25ADATLSQITNNIDPVGR# X X 
 

ELAGHTGYLSC148C149R# X X X 

LFVSGAC204DASAK# X X 
 

ADQELMTYSHDNIIC271GITSVSFSK X X 
 

Heat shock protein 105 
kDa 

Q61699 
FIC659EQEHEK X X 

 

VKELNNVC797EPVVTQPKPK X X 
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Hexokinase-1* P17710 
ATDC684VGHDVATLLR X 

 
X 

KLPVGFTFSFPC214R X 
 

X 

Histidine triad nucleotide-
binding protein 1 

P70349 C84AADLGLKR X X 
 

Huntingtin P42859 
LRGGGGNVTLGEC1706SEGK X 

  

C1940ENLSTPTTLKK X 
  

Hypoxanthine-guanine 
phosphoribosyltransferase 

P00493 DLNHVC206VISETGK X 
  

Inositol monophosphatase O55023 LC183SIPIHGIR X X 
 

Inositol-3-phosphate 
synthase 1 

Q9JHU9 

 
SSVVDDMVHSNHVLYAPGERPDHC38

0VVIK 
 

X 
 

X 
  

Isocitrate dehydrogenase 
[NAD] subunit alpha, 
mitocondrial* 

Q9D6R2 
KTFDLYANVRPC49VSIEGYK X 

  

DLGGNAKC351SDFTEEIC359RR# X 
  

Isocitrate dehydrogenase 
[NAD] subunit gamma, 
mitochondrial 

P70404 
TSLDLYANVIHC148K X X X 

NIANPTATLLASC333MMLDHLK X X X 

Isoform 11 of Myelin basic 
protein 

P04370-
11 

SRPGLC79HMYKDSHTR 
 

X 
 

Isoform M1 of Pyruvate 
kinase isozymes M1/M2 

P52480 

NTGIIC49TIGPASR X 
  

AGKPVIC326ATQMLESMIK X 
  

C423LAAALIVLTESGRSAHQVAR X 
  

L-asparaginase Q8C0M9 
C114IANPVKLAR X X 

 

TPHC132FLTGHGAEK X X 
 

LIM and SH3 domain 
protein 1 

Q61792 KPYC53NAHYPK X X X 

L-lactate dehydrogenase 
A chain 

P06151 
IVSSKDYC84VTANSK X X 

 

VIGSGC163NLDSAR X X 
 

L-lactate dehydrogenase 
B chain 

P16125 HRVIGSGC164NLDSAR X X 
 

Long-chain-fatty-acid--
CoA ligase 6 

Q91WC3 VIQSVVYC336HGGR X X 
 

Malate dehydrogenase, 
cytoplasmic* 

P14152 
VIVVGNPANTNC137LTASK# X 

 
X 

SAPSIPKENFSC154LTR# X X X 

Malate dehydrogenase, 
mitochondrial 

P08249 
VNVPVIGGHAGKTIIPLISQC212TPK X X X 

ETEC285TYFSTPLLLGKK X 
  

Microtubule-associated 
protein 1A* 

Q9QYR6 
SIEEAC160LTLQHLNR X X 

 

SAPC2165GSLAFSGDR# X X 
 

Microtubule-associated 
protein 1B 

P14873 
SALRDAYC1224SEEKELK X X 

 

TIKSPC1913DSGYSYETIEK X 
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Microtubule-associated 
protein 2 

P20357 
YTRPTHLSC1506VK X 

  

KIDLSHVTSKC1709GSLK X 
  

Microtubule-associated 
protein RP/EB family 
member 3 

Q6PER3 LSNVAPPC182ILRK X 
 

X 

Microtubule-associated 
protein tau 

P10637 C614GSLGNIHHKPGGGQVEVK X X 
 

Mitochondrial carrier 
homolog 2 

Q791V5 
QVC49QLPGLFC56YAQHIASIDGRR X X 

 

LC79SGVLGTVVHGK X X X 

Mitochondrial glutamate 
carrier 1 

Q9D6M3 GVNEDTYSGFLDC271ARK X 
  

Myelin proteolipid protein* P60202 
TTIC109GKGLSATVTGGQK X X X 

TSASIGSLC201ADAR# X X X 

NAD-dependent protein 
deacetylase sirtuin-2 

Q8VDQ8 C164YTQNIDTLER X 
 

X 

NADH dehydrogenase 
[ubiquinone] iron-sulfur 
protein 6, mitochondrial 

P52503 
IIAC79DGGGGALGHPK X X X 

TGTC104GYCGLQFKQHHH X X 
 

Non-POU domain-
containing octamer-
binding protein 

Q99K48 FAC147HSASLTVR X X X 

Peptidyl-prolyl cis-trans 
isomerase A* 

P17742 

IIPGFMC62QGGDFTR X X X 

HTGPGILSMANAGPNTNGSQFFIC115T
AK 

X 
  

KITISDC161GQL# X X X 

Peroxiredoxin-5, 
mitochondrial* 

P99029 KGVLFGVPGAFTPGC96SK X 
  

Phytanoyl-CoA 
hydroxylase-interacting-
like protein 

Q8BGT8 KDPSC321KTC324NISVGR X X 
 

Plexin-A1 P70206 

IQSC374YRGEGK X 
 

X 

GYEC742LFHIPGSPAR X X X 

C1011LTPPGHTPGSAPIVININR X X X 

Profilin-1 P62962 C128YEMASHLR X X 
 

Protein DJ-1 Q99LX0 
VTVAGLAGKDPVQC46SR X X 

 

KGLIAAIC106AGPTALLAHEVGFGC121K X X 
 

Protein kinase C and 
casein kinase substrate in 
neurons protein 1 

Q61644 AYHLAC161KEER X X 
 

Protein kinase C beta 
type* 

P68404 
C132DTC135MMNVHKR X X 

 

C143VMNVPSLC151GTDHTERR X X 
 

Protein phosphatase 1 
regulatory subunit 1B 

Q60829 RPNPC72AYTPPSLK X 
  

Putative uncharacterized 
protein 

Q3ULN6 SVSC218LKPVPIVGTK 
  

X 

Pyridoxal kinase Q8K183 C273AKAEAGEGQKPSPAQLELR X X 
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Pyruvate dehydrogenase 
E1 component subunit 
alpha, somatic form, 
mitochondrial*  

P35486 

C41DLHRLEEGPPVTTVLTR X X X 

EATKFAAAYC273R X X X 

Pyruvate dehydrogenase 
E1 component subunit 
beta, mitochondrial 

Q9D051 
QGTHITVVAHSRPVGHC249LEAAAVL
SK 

X 
  

Pyruvate kinase isozymes 
M1/M2 

P52480 

NTGIIC49TIGPASR X X X 

AGKPVIC326ATQMLESMIK 
 

X 
 

X 
  

Rab GDP dissociation 
inhibitor alpha 

P50396 
IIC302ILSHPIK X X X 

KSDIYVC335MISFAHNVAAQGK X X X 

Rab GDP dissociation 
inhibitor beta 

Q61598 
VGQVIRVIC302ILSHPIK X X 

 

KSDIYVC335MISFAHNVAAQGK X X X 

Ras-related C3 botulinum 
toxin substrate 1 

P63001 
HHC105PNTPIILVGTK X X X 

AVLC178PPPVKK X X X 

Ras-related protein Rab-
14 

Q91V41 
SC26LLHQFTEK X X 

 

FMADC40PHTIGVEFGTR X X 
 

Sarcoplasmic/endoplasmi
c reticulum calcium 
ATPase 2 

O55143 

SMSVYC498TPNKPSR X 
  

GAPEGVIDRC524THIR X 
  

C560LALATHDNPLKR X 
  

NYLEQPGKEC998VQPATK X X X 

Secernin-1 Q9CZC8 
C186IC188NHLSLATKLDEEHPELR X X X 

SSPC290IHYFTGTPDPSR X X X 

Septin-5 Q9Z2Q6 DVTC300DVHYENYR X X X 

Serum albumin P07724 LQTC302C303DKPLLKK X 
  

S-methyl-5'-thioadenosine 
phosphorylase 

Q9CQ65 

TSLRPQTFYDGSHC130SAR X 
  

C163HSKGTIVTIEGPR X 
  

Sodium- and chloride-
dependent GABA 
transporter 3 

P31650 TVTVNDC607EAKVKGDGTISAITEK X 
  

Sodium/potassium-
transporting ATPase 
subunit alpha-1 

Q8VDN2 

C518SSILLHGK X X X 

AAVPDAVGKC606R X 
  

DAKAC663VVHGSDLK X 
  

LIIVEGC705QRQGAIVAVTGDGVNDSP
ALKK 

X 
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Sodium/potassium-
transporting ATPase 
subunit alpha-2* 

Q6PIE5 

IISSHGC209KVDNSSLTGESEPQTR X X 
 

ILDRC515STILVQGK X X 
 

VLGFC553QLNLPSGKFPR X 
 

X 

AAVPDAVGKC603R X 
  

LIIVEGC702QRQGAIVAVTGDGVNDSP
ALKK# 

X 
  

Sodium/potassium-
transporting ATPase 
subunit alpha-3* 

Q6PIC6 

YNTDC49VQGLTHSKAQEILAR# X X X 

IISAHGC201KVDNSSLTGESEPQTR# X X X 

SPDC221THDNPLETR X X 
 

DVAGDASESALLKC449IELSSGSVK# X 
  

ILDRC508ATILLQGK# X 
  

VLGFC546HYYLPEEQFPK X 
  

AAVPDAVGKC596R X 
 

X 

AC653VIHGTDLK# X 
  

LIIVEGC695QRQGAIVAVTGDGVNDSP
ALKK# 

X 
  

Sodium/potassium-
transporting ATPase 
subunit beta-1* 

P14094 YNPNVLPVQC214TGKR# X 
  

Succinate dehydrogenase 
[ubiquinone] flavoprotein 
subunit, mitochondrial 

Q8K2B3 
TYFSC266TSAHTSTGDGTAMVTR X 

  

AC467ALSIAESC475RPGDKVPSIK X X X 

Superoxide dismutase 
[Cu-Zn]* 

P08228 AVC7VLKGDGPVQGTIHFEQK# X X 
 

Synaptophysin* Q62277 LHQVYFDAPSC87VK# X 
  

Syntaxin-binding protein 1 O08599 
AAHVFFTDSC110PDALFNELVK X X 

 

LAEQIATLC180ATLKEYPAVR X X 
 

TAR DNA-binding protein 
43 

E9Q830 YRNPVSQC50MR 
 

X 
 

Transketolase P40142 DRTVPFC386STFAAFFTR X 
 

X 

Tubulin alpha-1A chain* P68369 

AYHEQLSVAEITNAC295FEPANQMVK
# 

X 
  

YMAC315C316LLYRGDVVPK X X 
 

TIQFVDWC347PTGFK X 
  

Tubulin alpha-1B chain P05213 C305DPRHGKYMAC315C316LLYR X X X 

Tubulin alpha-4A chain* P68368 
C305DPRHGKYMAC315C316LLYR X X 

 

SIQFVDWC347PTGFK# X 
 

X 

Tubulin beta-2A chain Q7TMM9 

MREIVHIQAGQC12GNQIGAK X 
  

NMMAAC303DPRHGRYLTVAAIFR X 
  

TAVC354DIPPRGLK X 
  

Tubulin beta-2B chain* Q9CWF2 
EIVHIQAGQC12GNQIGAK X 

 
X 

NMMAAC303DPRHGR X 
 

X 
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Tubulin beta-2C chain* P68372 

EIVHIQAGQC12GNQIGAK# X 
  

TLKLTTPTYGDLNHLVSATMSGVTTC2

39LR 
X 

  

NMMAAC303DPRHGRYLTVAAVFR X X X 

TAVC354DIPPRGLK X 
  

Tubulin beta-3 chain Q9ERD7 
MREIVHIQAGQC12GNQIGAK X 

  

VAVC354DIPPRGLK X 
  

Tubulin beta-4 chain* Q9D6F9 EIVHLQAGQC12GNQIGAK# X 
  

Tubulin beta-5 chain P99024 

MREIVHIQAGQC12GNQIGAK X 
  

NMMAAC303DPRHGRYLTVAAVFR X 
  

TAVC354DIPPRGLK X 
  

Tubulin polymerization-
promoting protein 

Q7TQD2 LC79KDC82HVIDGK X X 
 

Ubiquitin carboxyl-terminal 
hydrolase isozyme L1* 

Q9R0P9 
NEAIQAAHDSVAQEGQC152R X 

  

FSAVALC220K X X X 

Ubiquitin thioesterase 
OTUB1 

Q7TQI3 TRPDGNC91FYR X X 
 

Ubiquitin-conjugating 
enzyme E2 O 

Q6ZPJ3 

LGC336FDHAQR X 
  

C348LYVFPAKVEPAK X X 
 

Ubiquitin-like modifier-
activating enzyme 1 

Q02053 

YSRPAQLHIGFQALHQFC340ALHNQP
PRPR 

X 
  

C588VYYRKPLLESGTLGTK X X 
 

Uncharacterized protein E9QM90 
LSPAFHQALLSFC497R X 

  

C526LPHIVPNVLLAK X 
  

Vesicle-fusing ATPase* P46460 

C11PTDELSLSNC21AVVNEKDFQSGQ
HVMVR 

X 
  

THPSVVPGC59IAFSLPQRK X X 
 

GILLYGPPGC264GK X 
 

X 

Voltage-dependent anion-
selective channel protein 
3* 

Q60931 
YKVC65NYGLTFTQK# X X 

 

YKLDC229RTSLSAK X 
  

V-type proton ATPase 
subunit B, brain isoform 

P62814 
KTSC112EFTGDILR X 

  

GQKIPIFSAAGLPHNEIAAQIC207R X 
  

Zinc transporter ZIP6 Q8C145 
KAFC153PDLDSDNSGKNPR X X 

 

AC312LIHTASEK X X 
 

X denotes identification of peptide in a given genotype. The peptides corresponding to wild-type 
mice have been identified in at least three biological replicates.  
* denotes proteins identified in previously published studies as endogenously S-nitrosylated in 
mouse brain 
# denotes peptides identified in previously published studies as endogenously S-nitrosylated in 
mouse brain 
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3.4 Materials and Methods 

Chemicals and Reagents 

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO), unless 

otherwise indicated.  Rabbit polyclonal antibody against GLT1 was a gift from Dr. 

Jeffrey Rothstein (Johns Hopkins University School of Medicine, Baltimore, MD).  

Goat polyclonal antibodies against mAspAT and GDH were purchased from 

Abcam (Cambridge, MA).  Mouse monoclonal antibody against GS was 

purchased from Millipore (Bedford, MA).  L-[3,4-3H] glutamic acid was purchased 

from Perkin-Elmer (Waltham, MA).  Affigel-10 was purchased from Bio-Rad 

(Hercules, CA). EZLink Sulfo-NHS-Biotin and UltraLink monomeric avidin beads 

were purchased from Pierce (Rockford, IL). 

Animals 

All procedures were performed in strict accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals and were 

approved by the Children’s Hospital of Philadelphia Animal Care and Use 

Committee.  Male mice between 10-12 weeks old were used for proteomic 

studies, enzymatic assays and synaptosomal uptake, while those between 8-10 

weeks old were used for 15N stable isotopic profiling.  Wild-type C57BL/6J 

(#000664), Nos1tm1Unc C57BL/6J (nNOS–/–: #002986), and Nos3tm1Unc C57BL/6J 

(eNOS-/-: #002684) mice were obtained from Jackson Laboratories (Bar Harbor, 

ME).  For experiments except those involving isotopic profiling, mice were 

anesthetized by CO2 and perfused through the left ventricle with ice-cold PBS.  

Intact organs were collected, immediately frozen in liquid nitrogen, and stored at -

80 °C until use.  

Identification of Protein S-Nitrosocysteine Sites 
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A detailed experimental procedure for the preparation and activation of 

columns, as well homogenate preparation for reaction with organic mercury 

resin, has been previously published (30).  Six biological replicates from each 

genotype were analyzed. Each sample had a corresponding UV-pretreated 

negative control analyzed under identical conditions. The number of peptides 

identified in both untreated and UV-pretreated homogenates was used to 

calculate the false identification rate (FIR).  The FIR was calculated 

independently for each biological replicate and the average value is reported.  

Overall, the FIR across the six biological replicates was 5.2 ± 0.7 %, which is 

within the range of FIR reported for site specific identification of other post-

translational modifications using enrichment approaches (77-78).  Columns were 

initially washed with 50 bed volumes of 50 mM Tris-HCl, pH 7.4, containing 0.3 M 

NaCl, 0.5% SDS, followed by 50 bed volumes of the same buffer containing 

0.05% SDS.  Columns were then washed with 50 bed volumes of 50 mM Tris-

HCl pH 7.4, containing 0.3 M NaCl, 1% Triton X-100, 1M Urea.  This was 

followed by 50 bed volumes of the same buffer containing 0.1% Triton X-100, 0.1 

M urea.  Finally, columns were washed with 200 bed volumes of water before 

proteins were eluted with 10 mL of 50 mM β-mercaptoethanol in water.  Samples 

were concentrated and resolved by one-dimensional SDS-PAGE, followed by 

either western blot analysis or in-gel trypsinization and subsequent LC-MS/MS 

analysis (28-30, 79).   

 For quantification of S-nitrosylated GLT1, GDH, mAspAT, and GS from 

wild-type mouse brain, the same protein capture protocol described above was 

followed.  The eluted bound proteins, representing the S-nitrosylated fraction, 30 

µg of input homogenate (total protein) and different dilutions of recombinant 
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standard proteins were resolved by one-dimensional SDS-PAGE and transferred 

to Immobilon-FL PVDF membranes (Millipore, Bedford, MA).  After probing with 

appropriate antibodies, blots were scanned by the Odyssey Infrared Imaging 

System (LI-COR, Lincoln, NE).   

To identify sites of S-nitrosocysteines, columns were washed with 10 bed 

volumes of 0.1 M ammonium bicarbonate after the final wash with water in the 

previously described method.  Bound proteins were subjected to digestion by the 

addition of 1 μg/mL of trypsin gold (Promega, Madison, WI) in one bed volume of 

0.1 M ammonium in the dark for 16 hours at room temperature. The resin was 

next washed with 40 bed volumes of 1 M ammonium bicarbonate, pH 7.4, 

containing 300 mM NaCl, followed by 40 volumes of the same buffer without 

NaCl.  Columns were then washed with 40 volumes of 0.1 M ammonium 

bicarbonate followed by 200 volumes of deionized water.  Performic acid was 

synthesized by reacting 1% formic acid and 0.5% hydrogen peroxide for at least 

60 minutes at room temperature (with rocking) in a glass vial shielded from light.  

To elute bound peptides, the resin was incubated with one bed volume of 

performic acid in water for 30 minutes at room temperature (28-30).  Eluted 

peptides were recovered by washing the resin with one bed volume of deionized 

water.  Eluates were stored at -80 °C overnight followed by lyophilization and re-

suspension into 300 μL of 0.1% formic acid. Peptide suspensions were 

transferred to low retention tubes (Axygen, Union City, CA) and the volume was 

reduced to 30 μL by speed vacuum. Twenty μL of peptide suspension was 

transferred to an HPLC vial and submitted for LC-MS/MS analysis.  The details 

for MS/MS analysis have been provided previously (28-30, 79).  Post-MS 

analysis to generate the S-nitrosocysteine proteomes (Table S1) was performed 
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as described previously (28-30). The peptides that are reported for the wild-type 

mice had been identified in at least three biological replicates.  

Gene Ontology Analysis 

Proteins in supplemental table S1 were mapped to UniprotIDs and only 

reviewed, non-fragment proteins were retained in the final proteome.  A mouse 

brain reference brain proteome consisting of 7025 proteins was generated from 

the literature (31-34) and our experimental data.  For gene ontology (GO) 

analysis, the Ratio of Enrichment (R) score was calculated by WebGestalt (35) 

as the ratio (O/E) of the observed number (O) of proteins with a specific GO 

annotation in the S-nitrosocysteine proteome vs. the number of annotated 

proteins expected (E) to be in the S-nitrosocysteine proteome.  E is derived from 

the number of proteins annotated as part of a specific molecular pathway in the 

whole brain proteome normalized to the number of total proteins in the whole 

brain protein proteome (and multiplied by the total number of S-nitrosylated 

proteins).  Significant enrichment was evaluated at an adjusted cutoff of 0.01, 

with the top ten enriched pathways considered for further analysis. 

Glutamate/Glutamine Metabolism Studies 

For isotopic profiling studies, three mice per genotype were analyzed. 

Each day samples from one mouse per genotype were prepared and analyzed.  

Animals were anesthetized with isoflurane and decapitated.  The brain was then 

rapidly removed and coronal hippocampal slices (400 μm) cut with a vibratome 

(Vibratome 1000 Plus, Vibratome, St. Louis, MO) in an ice-cold artificial 

cerebrospinal fluid solution (ACSF) of the following composition: 202 mM 

sucrose, 3 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM glucose, 1 mM 

MgCl2, 2 mM CaCl2, pH 7.2–7.4 (when saturated with 95% O2-5% CO2).  Slices 
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were then equilibrated for 2 hours at 34°C in ACSF containing 130 mM NaCl 

instead of sucrose.  Following equilibration, hippocampal slices were transferred 

into cell culture inserts and incubated in a 24-well plate for 45 minutes at 34°C in 

1 mL depolarizing artificial cerebrospinal fluid (dACSF) containing the following: 

130 mM NaCl, 3 mM KCl, 1.25 mM NaH2PO4, 26 mM NaHCO3, 10 mM glucose, 

2 mM CaCl2, 1 mM [2-15N] L-glutamine, and 0.3 mM NH4Cl.  Medium was then 

collected from each sample and frozen at -80°C, and slices were washed with 2 

mL chilled D-PBS.  Slices were homogenized in 4% perchloric acid and 

subjected to two freeze/thaw cycles, with a subsequent centrifugation step at 

10000 x g for 15 minutes.  Supernatant was collected from each slice, which 

contained the metabolites of interest, and protein pellets were separately 

resuspended in 1 M NaOH.  Protein content per slice was determined using the 

Bio-Rad Protein Assay (Bio-Rad, Hercules, CA).  Supernatant from each sample 

was neutralized with KOH and used for metabolite determination and 

measurement of 15N enrichment by GC-MS (40-41). 

Enzymatic Assays 

For enzymatic activities three mice per genotype were analyzed.  Each 

day, three mice (one mouse per genotype) were analyzed. Enzymatic activities 

were quantified in triplicates with technical reproducibility greater than 90%. 

Following, the average raw values were normalized to those of untreated wild-

type homogenate analyzed in the same day.  

For glutamine synthetase activity, frozen tissue from mouse brain cortex 

were processed as described previously (80) with minor modifications.  Briefly, 

cortices were homogenized in 5 volumes of 0.1 M imidazole pH 7.2 using an 

Ultra-Turax homogenizer.  Homogenates were centrifuged at 10000 x g for 10 
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min at 4°C, and the clarified supernatant used for assessing glutamine 

synthetase activity (with protein concentration determined using the Bio-Rad 

Protein Assay).  For UV light exposure to eliminate NO from S-nitrosocysteine, 

part of each sample from wild-type mice was trans-illuminated by UV light while 

on ice for 3 minutes.  Activity was determined in triplicate using 90 μg of clarified 

homogenate in a total volume of 70 μL of reaction buffer (1 mM L-glutamate, 20 

mM ATP, 40 mM MgCl2, 0.1 M hydroxylamine, 0.1 M imidazole pH 7.2), after 

incubation for 20 minutes at 37°C.  The reaction was stopped by the addition of 

190 μL of 0.37 M FeCl3 in 0.67 M HCl/0.2 M TCA, and samples were incubated 

on ice for 5 minutes.  Sample mixtures were then centrifuged at 4 °C for 5 

minutes at 10000 x g, and the absorbance of the resulting supernatant was 

measured at 535 nm and compared to a standard curve of authentic L-

glutamylhydroxamate.  GS activity was expressed as nmol of L-

glutamylhydroxamate per mg of protein per hour. Enzymatic specificity of the 

assay was determined using 0.5 mM L-methionine sulfoximine (MSO) as a 

selective GS inhibitor. 

 For glutamate dehydrogenase activity, frozen forebrain was processed 

using the Mitochondrial Isolation Kit from Sigma-Aldrich.  The final mitochondrial 

pellet was resuspended in mitochondrial resuspension buffer containing 0.32 M 

sucrose, 10 mM Tris-HCI pH 7.4, 0.5 mM EDTA, 0.1% Triton X-100, and protein 

concentration was determined using the Bio-Rad Protein Assay.  Glutamate 

dehydrogenase activity was determined as described previously (81). Briefly, 

activity in the direction of oxidative deamination was assayed in a UV/Vis 

spectrophotometer (HP 8452A, GMI-Inc., Ramsey, MN) at 25°C using 15 μg of 

mitochondrial protein in a final volume of 200 μL of assay buffer (150 mM KCl, 



95 

 

0.1 mM rotenone, 20 mM Tris-HCl pH 7.6, 2 mM EGTA, 1 mM NAD+, 2.5 mM 

glutamate).  The velocity of each reaction was calculated from the linear portion 

of the change in NADH absorbance measured at 340 nm.  Enzymatic specificity 

of the assay was determined using 20 μM GTP as a selective GDH inhibitor. 

 For mitochondrial aspartate aminotransferase activity, mitochondrial 

extracts were prepared exactly as described for GDH activity.  Enzymatic activity 

was determined as described previously (82), with minor modifications.  Briefly, 

activity in the direction of α-ketoglutarate production was assayed 

spectrophotometrically using 15 μg of mitochondrial protein in a final volume of 

200 μL of assay buffer (0.02% BSA, 0.1 mM rotenone, 100 mM ADP, 30 mM 

NH4Cl, 120 μM NADPH, 5 mM Glu, 2.5 mM oxaloacetic acid, and 15 μg of 

purified bovine GDH).  The decrease in NADPH absorbance at 340 nm at room 

temperature was followed over 15 minutes and used to calculate the velocity of 

mAspAT activity.  Enzymatic specificity of the assay was determined using 1 mM 

aminooxyacetic acid (AOAA) as a selective mAspAT inhibitor.  

For synaptosomal glutamate uptake, crude synaptosomes were prepared 

from forebrain as previously described (49, 83) with minor modifications.  Briefly, 

animals between 10-12 weeks of age were anesthetized with isoflurane and 

decapitated.  Forebrains from wild-type, nNOS -/-, and eNOS -/- mice was 

dissected and homogenized on ice in 20 volumes of sucrose buffer (0.32 M 

sucrose, 0.1 mM DTPA pH 5.3), while protected from light.  Homogenates were 

centrifuged at 800 x g for 10 minutes at 4°C, and the supernatants were isolated 

for further processing.  Samples from wild-type mice homogenized in sucrose 

buffer without DTPA were also pre-treated at 4°C with 50 μM CuSO4/500 μM 

ascorbate for 30 minutes in the dark to remove NO from  S-nitrosocysteine.  All 
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samples were then centrifuged at 20,000 x g for 20 minutes at 4 °C, and the 

pellets were resuspended in 0.32 M sucrose, 0.1 mM DTPA (pH 5.3).  Samples 

were then centrifuged a final time at 4 °C at 20,000 x g for 20 minutes, with 

pellets finally resuspended in 0.32 M sucrose (pH 5.3).  Sodium-dependent 

transport of L-3[H]glutamate was then measured as described previously (49, 83) 

in the presence or absence of 0.3 mM dihydrokainate (DHK) in order to 

determine DHK-sensitive glutamate uptake (as a measure of excitatory amino 

acid transporter 2 activity). 

Plasmid Constructs 

 Plasmid expressing rat excitatory amino acid transporter 2 was obtained 

from Dr. Baruch Kanner (Hebrew University, Hadassah Medical School, 

Jerusalem, Israel).  The Quikchange Lightning Site-Directed Mutagenesis Kit 

(Agilent Technologies, Santa Clara, CA) was used to introduce single amino acid 

mutations in the transporter as follows.  Cysteine-to-serine mutations were 

introduced using the forward/reverse primer pairs: for Cys373, 5’-

TTGCCTGTCACCTTCCGTAGCTTGGAAGATAATC-3’ and 

5’-GATTATCTTCCAAGCTACGGAAGGTGACAGGCAA-3; and for Cys562,  

5’- ATGGAAAGTCAGCTGACAGCAGTGTTGAGGAAGAA-3’ and 5’- 

TTCTTCCTCAACACTGCTGTCAGCTGACTTTCCAT-3’, resulting in the 

C373S/C562S construct.  All plasmid constructs were verified by sequencing 

prior to use. 

Cell Culture, Transfection, and CysNO Treatment 

 HEK-293T cells were grown in Dulbecco's Modified Eagle Medium 

(DMEM) with Glutamax from Life Technologies (Carlsbad, CA) containing 10% 

fetal bovine serum (FBS), 100 U/mL penicillin, and 100 ng/mL streptomycin, at 
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37°C in air with 5% CO2. Cells were plated at a density of 1.25 × 105 cells/cm2 

and cultured under normal conditions for 24 hours. Cells were transfected with 

wild-type excitatory amino acid transporter 2 (WT GLT1) or the double mutant 

C373S/C562S transporter using the Clontech CalPhos transfection kit (Clontech, 

Mountain View, CA) according to manufacturer’s protocol. At eighteen hours 

post-transfection the growth medium was replaced with serum-free DMEM and 

equilibrated for 2 hours at 37°C.  Afterwards, freshly prepared S-nitrosocysteine 

(CysNO) or cysteine (Cys) was added up to a final concentration of 0.4 mM, and 

cells were incubated for 2 hours.  Cells were extensively washed with PBS, and 

used for measuring glutamate uptake as described previously (84).  Lysates 

were assayed for protein concentration using the Lowry assay and used to 

determine excitatory amino acid transporter 2-mediated glutamate uptake initial 

velocity, described in nmol/mg/min.  For cell surface biotinylation studies, cells 

were processed as described previously (84).  Briefly, after Cys or CysNO 

treatment cell monolayers were washed twice with ice-cold DPBS (pH 7.4) 

containing 0.1 mM CaCl2 and 1.0 mM MgCl2.  Cells were then incubated in 2 mL 

of biotinylation solution (1 mg/mL EZLink Sulfo-NHS-Biotin in DPBS with 0.1 mM 

CaCl2 and 1.0 mM MgCl2) for 30 minutes at 4°C.  The biotinylation solution was 

then aspirated, and excess biotin was quenched by incubating cells with DPBS 

containing 100 mM glycine for 30 minutes at 4°C.  Cells were then lysed in 1 mL 

RIPA buffer with protease inhibitors (1 μg/mL leupeptin, 250 μM 

phenylmethanesulfonyl fluoride, 1 μg/mL aprotinin, and 1 mM iodoacetamide).  

Lysates were then centrifuged to remove cellular debris, and biotinylated proteins 

were batch extracted from the supernatant using UltraLink monomeric avidin 

beads. LDS sample buffer was added to fractions containing total cell lysate, 
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biotinylated proteins (cell surface proteins), and nonbiotinylated proteins 

(intracellular proteins).  Each fraction was diluted and loaded such that the sum 

of immunoreactivity in the nonbiotinylated and biotinylated fractions should equal 

the immunoreactivity found in the lysate, assuming avidin extraction of 

biotinylated proteins is 100%.  For reversibility studies, uptake was studied in 

cells at 0, 60, 120 and 240 minutes after the removal of CysNO.  Additionally, 

lysates from each treatment condition were processed in parallel as previously 

described (28-30) for S-nitrosoprotein enrichment and subsequent Western blot 

detection of S-nitrosylated excitatory amino acid transporter 2. 

Molecular Modeling of the Effects of S-nitrosylation 

The 2.4Å resolution crystal structure of mitochondrial aspartate 

aminotransferase was taken from PDB 3PD6 (53). The 2.7Å resolution crystal 

structure of human glutamate dehydrogenase was taken from PDB 1L1F (54). 

The 2.6Å resolution crystal structure of human glutamine synthetase was taken 

from PDB 2QC8 (55).  Structures of mAspAT with S-nitrosyl modified cysteine 

(SNC) at positions 106 and 295, GDH with SNC at position 59 (equivalent to 

position 112 in the mouse sequence) and GS with SNC at positions 99, 183, 269 

and 346 were built using VMD and a custom SNC residue template (56). 

Electrostatic potentials from the cysteine or SNC residues were calculated using 

the finite difference Poisson-Boltzmann method as described previously (57-58). 

The solvent was assigned a dielectric of 78.6 and an ionic strength of 145 mM. 

The protein was assigned a dielectric of 2. Partial atomic charges for the 

unmodified cysteine residue were taken from the CHARMM27 molecular 

mechanics forcefield (59). Atomic charges for SNC were obtained from 

electronegativity neutralization using the program QEQUIL (60), giving +0.35 
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(CβH2), -0.17 (Sγ), +0.06 (Nδ), and -0.24 (Oε), in atomic charge units. Structures 

and potentials were visualized using PyMol (61). 

Statistical analysis 

Data were analyzed with GraphPad Prism 5.0d software. All normally 

distributed data were displayed as means ± SE. Groups were analyzed by one- 

or two-way analysis of variance (ANOVA), with appropriate post-hoc tests. 
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4.1 Summary 

 S-nitrosylation has gained prominence in recent years as a major 

mechanism for the˙NO-dependent regulation of structure and function for 

individual proteins.  However, much is still unknown regarding how this 

posttranslational modification may coordinate diverse biological processes in 

response to specific stimuli.  For this thesis, we uncovered multiple protein 

targets of physiological S-nitrosylation in the mouse that rely on either nNOS-

derived or eNOS-derived ˙NO for detection, and demonstrate a role for nNOS in 

the regulation of the glutamate/glutamine cycle during excitatory 

neurotransmission.  In the process, we took advantage of the plethora of data 

available from our proteomic studies to generate hypotheses that were tested 

using a variety of metabolomic, biochemical, and molecular biology approaches. 

4.2 The necessity of mass spectrometry-based proteomic approaches 

in comprehensively studying biological change 

 Proteomic methodologies represent a powerful addition to other global 

interrogations of cellular response, including genomic and transcriptomic 

screens.  In particular, their ability to identify proteins from complex mixtures 

(when coupled to upstream chromatographic separation techniques) makes MS-

based proteomics a toolset of choice for many cell signaling studies.  The value 

of this work can be further enhanced with the use of various complementary 

approaches, including stable isotopic labeling-based protein quantification and/or 

selective enrichment techniques available for specific posttranslational 
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modifications.  Despite these advances, the depth of proteomic analysis is still 

limited in comparison to published genomic screens: in humans, only ~84% of 

protein-coding genes identified in the genome have been matched to proteins 

detected by MS1.  This gap will narrow in the coming years, however, with 

refinements in both genome annotation and proteomic methodologies.  

Regardless of this caveat, MS-based proteome analysis still represents the most 

useful route for investigating global changes in protein homeostasis that 

accompany given physiological stimuli, and can generate the preliminary 

information needed for more targeted hypotheses of biological function. 

 Application of our protocol for S-nitrosoprotein enrichment and subsequent 

LC-MS/MS analysis to the wild-type mouse brain yielded the most 

comprehensive physiological S-nitrosoproteome currently available for this 

organ, with an improvement of 225 additional sites and 92 additional protein 

targets over previous reports.  Comparison of this dataset to those we obtained 

from nNOS-/- and eNOS-/- brain allowed us to make hypotheses about the 

contributions of nNOS-derived ˙NO to normal CNS function, and afforded the 

opportunity to explore them in more detail using traditional biochemistry and 

molecular biology approaches.  In doing so, we provided evidence for S-

nitrosylation as a global regulator of synaptic transmission through its regulation 

of glutamate availability, and offered a prime example for the importance of MS-

based proteomics in leading to focused mechanistic studies. 
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4.3 Systemic regulation of brain physiology by S-nitrosylation 

 Our work uncovered 136 protein targets of S-nitrosylation in the wild-type 

mouse brain.  Subsequent gene ontology analysis revealed 6 of these proteins to 

be directly involved in glutamate/GABA metabolism and the glutamate/glutamine 

cycle, with 4 proteins further scrutinized for S-nitrosylation-dependent regulation 

of glutamate oxidation/transport/recycling to glutamine.  Intriguingly, we also 

found an additional 29 proteins that participate in various stages of cellular 

metabolism, including glycolysis (Figure 1), the tricarboxylic acid (TCA) cycle 

(Figure 2), and oxidative phosphorylation (Table 1).  Each of these processes 

indirectly contributes to steady-state levels of glutamate, principally through 

regulation of the synthesis or consumption of its 5-carbon backbone.  Curiously, 

some proteins from each pathway were found to be S-nitrosylated in WT, eNOS-/-

, and nNOS-/- brain, suggesting one or both of the following possibilities: 1) 

redundancy between eNOS- and nNOS-derived ˙NO in modifying said protein(s), 

or 2) ˙NO from another source common to all genotypes (such as iNOS) was 

utilized instead.  Conversely, a few proteins from each pathway were only 

observed in the WT brain, suggesting that for them both eNOS- and nNOS-

derived ˙NO may be necessary to modify enough protein to be detected by our 

method.  Regardless, given the significant convergence between S-nitrosylation, 

metabolism, and excitatory neurotransmission, a role for eNOS- and/or nNOS-

derived ˙NO in coordinating the latter two processes is a strong possibility.  
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Figure 4.1: S-Nitrosylation in Glycolysis.  Multiple enzymes involved in the synthesis and metabolism of glycolytic 
substrates are modified by cysteine S-nitrosylation.  1) Enzymes denoted in blue had detectable S-nitrosocysteine 
residues in wild-type and nNOS-/- brain, but not eNOS-/- (eNOS-dependent).  2) Those denoted in red had detectable S-
nitrosocysteine residues in wild-type and eNOS-/- brain, but not nNOS-/- (nNOS-dependent).  3) Those denoted in green 
had detectable S-nitrosocysteines in wild-type, nNOS-/-, and eNOS-/- brain (suggesting redundancy between nNOS and 
eNOS, or possibly iNOS dependence).  4) Those denoted in yellow were only found to be modified in wild-type brain, not 
nNOS-/- or eNOS-/- (require both isoforms).  5) Those denoted in black were not detectable as S-nitrosylated in any 
genotype. 
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Figure 4.2: S-Nitrosylation in the Tricarboxylic Acid Cycle.  Several enzymes in the TCA cycle are modified by 
cysteine S-nitrosylation.  1) Enzymes denoted in blue had detectable S-nitrosocysteine residues in wild-type and nNOS-/- 
brain, but not eNOS-/- (eNOS-dependent).  2) Those denoted in red had detectable S-nitrosocysteine residues in wild-type 
and eNOS-/- brain, but not nNOS-/- (nNOS-dependent).  3) Those denoted in green had detectable S-nitrosocysteines in 
wild-type, nNOS-/-, and eNOS-/- brain.  4) Those denoted in yellow were only found to be modified in wild-type brain, not 
nNOS-/- or eNOS-/- (suggesting redundancy between nNOS and eNOS, or possibly iNOS-dependent ).  5) Those denoted 
in black were not detectable as S-nitrosylated in any genotype. 
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Table 4.1: S-Nitrosylated Proteins in Oxidative Phosphorylation.  At least one protein in each of the 4 major 
complexes of the electron transport chain contains S-nitrosocysteines that were detected in the wild-type mouse brain.  S-
nitrosoprotein targets are denoted above, along with the genotypes in which they were observed. 

Protein Name Uniprot ID WT eNOS-/- nNOS-/- 

NADH 
dehydrogenase 
[ubiquinone] iron-
sulfur protein 6, 
mitocondrial 
(Complex I) 

P52503 X X X 

Succinate 
dehydrogenase 
[ubiquinone] 
flavoprotein 
subunit, 
mitochondrial 
(Complex II) 

Q8K2B3 X X X 

Electron transfer 
flavoprotein-
ubiquinone 
oxidoreductase, 
mitocondrial 
(Complex II) 

Q921G7 X   

Cytochrome b-c1 
complex subunit 6, 
mitochondrial* 
(Complex III) 

P99028 X X  

Cytochrome c1, 
heme protein, 
mitochondrial 
(Complex III) 

Q9D0M3 X   

Cytochrome c 
oxidase subunit 5B, 
mitochondrial* 
(Complex IV) 

P19536 X X X 

ADP/ATP 
translocase 1 

P48962 X   

ATP synthase 
subunit alpha, 
mitochondrial 

Q03265 X   

ATP synthase 
subunit gamma, 
mitochondrial 

Q91VR2 X X  
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 Many of the emergent concepts of ˙NO-dependent metabolic control found 

in our work are supported by previous reports. eNOS-derived ˙NO from 

endothelial cells has been shown to increase aerobic glycolysis and lactate 

production in astrocytes in co-cultures via HIF-1α-mediated transcription2, a 

result reinforced by earlier studies documenting elevated astrocytic glycolysis 

after treatment with ˙NO donors3-4.  Such effects on glucose metabolism may at 

least in part be explained by our proteomic analyses, which found eNOS-

dependent S-nitrosylation of enzymes responsible for the first steps of glucose 

phosphorylation (Figure 1).  Our identification of nNOS-dependent S-nitrosylation 

of inositol-3-phosphate synthase 1 and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) in the brain (Figure 1) also suggests an a role for 

nNOS-derived ˙NO in the regulation of glycolysis, with nNOS-dependent GAPDH 

S-nitrosylation validated by previous studies5-6.  Additionally, NMDA receptor-

dependent activation of nNOS has been associated with inhibition of the TCA 

cycle in rat striatum7, an observation consistent with both the increased 

glutamate oxidation8 and reduced numbers of S-nitrosocysteine residues in TCA 

cycle enzymes we identified in nNOS-/- brain (Figure 2).  However, though 

differences exist between eNOS-derived and nNOS-derived S-nitrosylation in 

their respective protein targets, it may very be that both NOS isoforms are used 

to coordinate the large-scale shifts in metabolism necessary to support changes 

in synaptic plasticity. 



121 

 

 Taking into account the intimate links that we and others have established 

between the glutamate/glutamine cycle8, glucose metabolism9, and synaptic 

plasticity10, one can appreciate the metabolic support necessary for long-term 

changes in excitatory neurotransmission.  Based on the data presented herein, 

nitric oxide may act as a mediator between these biological processes via 

specific NOS isoform-dependent S-nitrosylation of key effector proteins in each 

cellular pathway.  Moreover, in lieu of the regulatory contributions of this 

posttranslational modification to glutamate availability, the developmental 

significance of nNOS-derived ˙NO11-16 can be better understood. 

4.4 Implications and future directions 

 The results of this study, as well as those of other groups17-21, reinforce 

the vital influence of nNOS-derived ˙NO in glutamatergic transmission.  Our data 

suggests that at least part of this ˙NO-dependent regulation is achieved through 

the S-nitrosylation of key proteins involved in glutamate transport, oxidation, and 

recycling to glutamine.  Still, the relevance of this phenomenon to multiple 

aspects of neurobiology, including plasticity, development and 

neurodegeneration, is yet to be explored. 

4.4.1 Stoichiometry 

 Our findings revealed that roughly 8-25% of all molecules for each of the 

four proteins studied (GLT1, GDH, mAspAT, and GS) were modified by S-

nitrosylation8, values that are in line with those described for other enzymes22.  At 
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first glance, these numbers appear incongruous with the changes in protein 

activity observed between wild-type and nNOS-/- brain (or after S-nitrosothiol 

elimination in wild-type extracts): GLT1, GDH, and mAspAT function was 

inhibited by 20-80% when S-nitrosylated in vivo, while GS activity was decreased 

by 40% upon S-nitrosothiol elimination8.  However, each of the four proteins in 

question assemble into multimeric complexes: GLT1 as a trimer23 , GDH as a 

hexamer24 , mAspAT as a tetramer25 , and GS as a decamer26 .  Given this 

information, S-nitrosylation of one or more monomers in each multimer may act 

in a dominant-negative (for GLT1, GDH, and mAspAT) or dominant-positive 

manner (for GS) in regulating protein function.  Such a concept is further 

reinforced by our molecular modeling studies of the modification for GDH, 

mAspAT, and GS, which revealed that S-nitrosylation of the cysteines identified 

in vivo generates a repulsive electrostatic wedge between subunits that could 

plausibly drive allosteric regulation of protein function8. 

Stoichiometric studies of posttranslational modifications traditionally rely 

on the substitution of modified amino acids in proteins with “mimetics,” such as 

aspartate/glutamate (for phosphoserine/phosphothreonine27) or glutamine (for 

acetyllysine28).  On the other hand, such an approach has not been as robustly 

validated for protein S-nitrosocysteine residues: several groups have attempted 

to do so through replacement of cysteine residues with alanine29 or tryptophan30  

in order to recapitulate the effects of S-nitrosylation, with mixed results.  Still, 

coexpression of “nitrosomimetic” Cys-to-Ala/Cys-to-Trp mutant proteins with non-
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nitrosylatable Cys-to-Ser mutants (which, at least for GLT1, have been shown to 

have comparable basal activity to the wild-type protein8) may be worth 

investigating in order to ask how the stoichiometry of S-nitrosylation relates to its 

effects on protein function in vitro and in vivo. 

4.4.2 Spatiotemporal Regulation of Nitric Oxide and S-Nitrosylation in 

Synaptic Plasticity 

 Most of our analyses of S-nitrosylation and its effects on protein function 

were performed in samples from 8-12 week old mice of WT, nNOS-/-, and eNOS-/- 

genotypes.  In doing so, we measured enzyme and transporter activity in the 

presence of steady-state levels of S-nitrosylation established during CNS 

development in these animals.  Because of this, it is natural to wonder about the 

on/off kinetics of the modification and its effects on glutamate/glutamine 

metabolism, particularly within time scales used for monitoring acute changes in 

synaptic function (milliseconds to seconds) and synaptic plasticity (minutes to 

hours).  Unfortunately, it is not currently possible to detect changes in protein S-

nitrosylation within the short periods of time used for measuring acute changes in 

synaptic function.  Despite this limitation, however, conclusions can still be made 

about the roles of ˙NO and S-nitrosylation in supporting synaptic plasticity. 

 Several long-term changes in plasticity (i.e. in long-term potentiation) 

occur minutes to hours after the initial paired presynaptic/postsynaptic tetanic 

stimuli31. ˙NO-dependent signaling is thought to augment this process, rather 
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than acting alone as a retrograde neurotransmitter32.  Moreover, within a similar 

period of time following stimulation, ˙NO diffuses over a radius of 100-200 μm 

from its postsynaptic source19,33, allowing it to reach multiple cellular 

compartments of the tripartite synapse. Given that our analyses8 of 

glutamine/glutamate utilization (via metabolomics) and S-nitrosylation reversibility 

(in vitro) was performed within similarly relevant time periods (minutes to hours 

following chemical stimulation or S-nitrosocysteine treatment), the data we 

obtained points toward S-nitrosylation as more of a long-term regulator of 

synaptic plasticity rather than a short-term affector of synaptic function.  This 

finding is reinforced by previous reports from other groups, which have 

documented differences in S-nitrosylation and function of specific proteins within 

a period of minutes to hours following stimulation34-36. 

4.4.3 Therapeutic Implications in Neurological Disorders 

 Neuronal nitric oxide participates in several processes during CNS 

maturation, including neurogenesis37-41, excitatory synapse development42-43, 

neuronal migration44 and differentiation37.  In light of the reciprocity between 

glutamate metabolism and synaptic activity10, as well as our own data, it may be 

that nNOS-derived protein S-nitrosylation contributes to the synapse-pruning 

events underlying the developmental transition between the juvenile and adult 

brain45-46.  Mechanistically, this may be accomplished by facilitating spatially 

restricted elevations of extracellular glutamate to strengthen specific synapses, 

while weakening others by allowing astrocytic glutamate removal and 
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subsequent oxidation.  Additionally, alterations in these events could play a role 

in aberrant neurological disorders such as schizophrenia, autism spectrum 

disorder (ASD), and epilepsy due to changes in nNOS expression and its 

associated synthesis of ˙NO47-51.  The study of these processes in a 

developmental context is worthy of further inquiry, and may lead to novel 

therapeutic avenues for specific diseases in the CNS. 

 Several forms of neurodegeneration exhibit evidence of glutamate-

dependent excitotoxicity, including Alzheimer’s disease52 (AD), Parkinson’s 

disease53 (PD), stroke54, and traumatic brain injury55 (TBI).  One common 

component of pathological progression in these diseases is the increased 

synthesis of ˙NO by nNOS, which in some cases is subsequently followed by the 

S-nitrosylation of specific proteins that contribute to cell death56.  In particular, 

genetic deletion or inhibition of nNOS in rodents is neuroprotective following 

cerebral ischemia, MPTP treatment, or TBI11,57-61.  Our results may provide an 

explanation for this effect, by implicating nNOS-derived protein S-nitrosylation in 

generating the excessive synaptic glutamate concentrations necessary for 

downstream excitotoxic events.  If this is the case, one way to potentially 

ameliorate these deleterious effects is to administer branched-chain amino acids 

(BCAAs): these supplements can allosterically activate glutamate 

dehydrogenase62, leading to increased glutamate oxidation and, as a corollary, 

decreased glutamate availability for excitotoxic processes.  BCAA administration 

has already been shown promote cognitive rehabilitation after TBI in rodents63-64, 
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and may promote a similar recovery following ischemia or other forms of 

neurodegeneration.  However, the perturbation of this pathway under such 

conditions needs to be confirmed before alternative therapeutic options are 

considered.  

The data presented in this work provides compelling evidence for nNOS-

derived protein S-nitrosylation in the regulation of synaptic glutamate levels 

during normal function in the CNS.   By extending its findings to additional 

physiological and non-physiological paradigms, we can ask more detailed 

questions about the functional relevance in synaptic activity, as well as whether 

aberrant ˙NO-dependent regulation of glutamate metabolism plays a role in the 

pathological progression of different neurological disorders.  Furthermore, in 

doing so we can explore opportunities for therapeutic intervention that focus on 

either nNOS (as has been done for ischemia65) or specific steps of 

glutamate/glutamine metabolism.  
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