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Two-neutron transfer in the “island of inversion”
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Cross sections for (p,t) and (t ,p) reactions near neutron-shell closures depend sensitively on the amount of
intruder configuration in the relevant states. For several nuclei in the “island of inversion,” I present calculated
cross section ratios for the first two 0+ states as functions of the intruder-normal-state mixing.
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I. INTRODUCTION

Two-nucleon transfer reactions, especially (t ,p) and (p,t),
have long been useful tools for determining the major compo-
nents of wave functions of simple states. The coherent nature
of the process makes it particularly useful for uncovering
destructive interference. The case of 18O [1–3] is a good
example. In a simple coexistence model [1], single-neutron
transfer to and from 18O led to a complete determination
of the wave function for the ground state (g.s.) but allowed
two different solutions for the wave functions of the second
and third 0+ states. Data for the 16O(t ,p) reaction provided
a clear choice between the two [1]. This case has become a
textbook example [2] of the procedure for determining the
dominant features of wave functions from transfer reactions.
It led to a larger application [3] of using (primarily) transfer
and E2 strengths to obtain wave functions for all the low-lying
positive-parity states of 18O.

Data for the 12C(t ,p) reaction leading to the first three 0+
states of 14C provided an estimate [4] of 12% for the intensity
of the core-excited (sd)2(1p)−4 component in 14C(g.s.). In
the 10Be(t ,p) reaction [5], the g.s. of 12Be was five to seven
times as strong as it would have been if it were a pure p-
shell state. This result, together with a calculation of the 12Be-
12O Coulomb energy difference [6], determined the 12Be(g.s.)
to have approximately 68% of the configuration 10Be(g.s.) ×
v(sd)2—a value later confirmed by other means [7,8].

Care must be exercised when applying this technique. In
a theoretical paper [9] on 19F/19Ne, the authors adjusted their
Nilsson-model parameters to reproduce the 3.91/4.03-MeV
3/2+ mirror states in these nuclei as (sd)3 states, having (in
their results) 70% of the (3/2+)3 Nilsson configuration. As
evidence for this assignment, they cited the strength of the 19Ne
4.03-MeV state in the 21Ne(p,t) reaction [10]. However, this
state has long been thought to have the dominant character of
(sd)5(1p)−2 and/or (sd)7(1p)−4. Another paper [11] used the
21Ne(p,t) reaction to prove the dominance of the former. The
absence of any appreciable (sd)3 component in 19F(3.91) was
demonstrated by its weakness in the 17O(3He,p) reaction [12]
and by its very small α-particle spectroscopic factor [13].

Neutron-rich nuclei near N = 20 have been referred to as
being in an “island of inversion.” Many properties of these
nuclei make it clear that neutron excitations into the fp

shell must be included to understand the low-lying states. An
important question has been whether these (fp)2 excitations
ever become dominant in the g.s. for N � 20. Many have
claimed that, in 32Mg, the energy of the first 2+ state and

its B(E2) to the g.s. require both states to be dominated by
fp-shell components. Others have disagreed. The history is
summarized in Refs. [14,15] and in two more recent papers
[16,17].

In the 30Mg(t ,p) reaction, in reverse kinematics, the excited
0+ state was observed [14] at 1.058 MeV with a cross section
that was 62(6)% of the g.s. Straightforward analysis of those
data, in a simple two-state mixing model, demonstrated [15]
that the g.s. was mostly an sd shell state and the excited
state was mostly the (fp)2 intruder. Resulting wave-function
intensities in the g.s. were 0.81 and 0.19 [15].

Here, we use the same simple model to investigate the
results to be expected in (p,t) and (t ,p) reactions to the lowest
two 0+ states in these and other nearby nuclei.

II. THE MODEL

The model assumes two basis states dominate the structure
of the g.s. and first-excited 0+ state in these nuclei. For N =
20, the g.s. is written as g.s.(20) = a + b(fp)2 (sd)−2, and the
excited 0+ is written as exc(20) = −b + a(fp)2(sd)−2 where
all the action is in the neutrons.

For N = 20 + n, we have g.s.(20 + n) = a(fp)n +
b(fp)n+2(sd)−2, and for N = 20 − m, we have
g.s.(20 − m) = a(sd)−m + b(fp)2(sd)−m−2. In all cases,
the excited 0+ state is taken to be the orthogonal linear
combination. I use direct-reaction phases throughout so that
a positive relative sign in the wave function corresponds
to constructive interference in 2n transfer. The connection
between shell-model and direct-reaction phases is addressed
in Ref. [15].

I deal only with cross section ratios, both calculated
and experimental. As before, I define R2 = σ (fp)/σ (sd),
where σ (fp) is the calculated cross section for the (t ,p)
reaction leading from an empty shell to (fp)2, and σ (sd)
is for 30Mg(g.s.) to 32Mg(g.s.) within the sd shell. Similarly,
I define T 2 = σ [(sd)−4 → (sd)−2]/σ [(sd)−2 → closed shell]
and R′2/R2 = σ [(fp)2 → (fp)4]/σ (empty shell → (fp)2].
As mentioned in Ref. [15], if one theoretical cross section
in the ratio is known, then the ratio can usually be computed
from the summed experimental cross section to the two 0+
states. Of course, if detailed wave functions are known, then
the ratios can always be calculated. For (t ,p) experimental
cross sections, I define r2 = σ (exc)/σ (g.s.). For (p,t), I use
r ′2. Whenever an ambiguity is possible, I have a subscript for
the nucleus A. For r and r ′, the subscript will always refer to
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FIG. 1. Ratio σ (exc)/σ (g.s.) of cross sections for the reaction
30Mg(t ,p) 32Mg. Curved lines are for pure (solid) and mixed (dashed)
30Mg(g.s.). (See text.) Horizontal solid and dashed lines are the
experimental value and the ± 1σ limits, respectively [14]. The
abscissa is the intensity of the (fp)2 intruder configuration in
32Mg(g.s.).

the final nucleus. If I define x = b/a, then, for example, for
the reaction 32Mg(t ,p) 34Mg, we have

r34 = [x32R
′ − x34(R + x32)]/[(R + x32) + x32x34R

′],

and for 32Mg(p,t) 30Mg, we have

r ′
30 = [x32T − x30(1 + x32R)]/[(1 + x32R) + x30x32T ].

For even-even nuclei, the g.s.-to-g.s. 2n transfer amplitude
is always constructive—all the terms will have the same sign.
This feature was treated by Yoshida [18] years ago, and it was
discussed at some length recently [15]. Therefore, a, b, and R

are all non-negative. Because the transfer to the excited state
involves destructive interference, r and r ′ can have either sign.

III. SPECIFIC REACTIONS

A. 30Mg(t , p) 32Mg

First, I review the situation for 30Mg(t ,p) for which the
data were published in Ref. [14] and the two-state analysis
in Ref. [15]. Of all the reactions considered here in the
island of inversion, this is the only one whose experimental
results are known. The solid curve in Fig. 1 was calculated
by assuming the 30Mg(g.s.) was a pure sd shell state. The
ordinate is the calculated exc/g.s. cross section ratio, which
uses the value of R2 = 4.3 extracted [15] from the summed
measured cross sections to the two 0+ states. The abscissa is
b2, the intensity of the (fp)2 intruder component in 32Mg(g.s.).
The horizontal solid line is the measured ratio, and the dashed
horizontal lines are the ± 1σ limits on that ratio. (The dashed
curve is discussed later, below.) Note that the calculation and
experiment intersect at b2 = 0.19. This is the same calculation
that gave b2 = 0.19 in Ref. [15]. The uncertainty on the
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FIG. 2. Plot of σ (exc)/σ (g.s.) for the reaction 34Mg(p,t) vs the
assumed intensity of the (fp)2 intruder configuration in 32Mg(g.s.).
Solid line has R2 = 4.3, dashed line has 3.5. Both are for pure (fp)2

34Mg(g.s.). A value of b2 = 0.19 was estimated [15] from (t ,p).

experimental ratio corresponds to an uncertainty in b2 of about
�(b2) = 0.02.

In 30Mg, the energy of the excited 0+ state is known, and
the E0 transition strength connecting it to the g.s. has been
measured [19]. That analysis provided an estimate of b2 =
0.0319(76) for the intensity of the intruder (fp)2 component
in 30Mg(g.s.). The dashed curve in Fig. 1 was computed by
using this mixing in 30Mg. Because this mixing is so small,
the mixed and pure results for this reaction are very similar.

B. 34Mg( p,t) 32Mg

We first assume that the 34Mg(g.s.) is predominantly (fp)2

in character. Then, we have r ′ = (1 − xR)/(R + x), where x

= b/a in 32Mg and R2 is defined above. Reference [15] found
R2 ∼ 4.3 and b2 ∼ 0.19. In Fig. 2, I plot the predicted cross
section ratio vs b2 for two values of R2 = 4.3 and 3.5. We
note that, for any value of b2 near the estimate of Ref. [15], the
ratio is extremely small. Any neglected small components in
the wave functions will increase the g.s. cross section because
all components will add constructively for the g.s. But, because
the small result for the excited-state cross section arises from
destructive interference, such small components will have
a larger effect on the excited state—probably leading to a
partial filling in of the minimum in the ratio. Nevertheless, the
prediction is that the excited 0+ state of 32Mg will be quite
weak in the 34Mg(p,t) reaction if there is no core excitation in
34Mg(g.s.).

With core excitation in 34Mg(g.s.), the calculated ratio
will be larger because then, three reaction amplitudes can
contribute to (p,t): v(fp)4 to v(fp)2, v(fp)2 to the empty
shell, and 32Mg(g.s.) to 30Mg(g.s.) within the sd shell. Ratios
of these reaction amplitudes are defined in Sec. II above. The
expected ratio is then,

r ′
32 = [(1 + x34R

′) − x32R]/[R + x34(1 + x34R
′)],

and the cross section ratio is r ′2. I have used x32 = 0.48 (from
b2 = 0.19) and R′/R = 1 and 1.29 as likely outer limits.
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FIG. 3. Ratio for the same reaction as in Fig. 2 but now vs
the intensity of intruder (fp)4(sd)−2 configuration in 34Mg(g.s.) by
assuming b2 = 0.19 in 32Mg. Two different curves are described in
the text.

I arrived at these limits by inspection of the microscopic
occupancies of the two lowest fp-shell Nilsson orbitals for
positive deformation. For any reasonably small core excitation
in 34Mg(g.s.), from Fig. 3, we see that the cross section ratio is
small. The predicted (p,t) ratio increases monotonically with
an increase in the core-excitation component in 34Mg(g.s.). A
measurement of this ratio should then provide an estimate of
this core excitation.

C. 32Mg(t , p) 34Mg

With the same definitions, the expression for r34 is given
in Sec. II above. These results are plotted in Fig. 4. Here,
the predicted cross section ratio is extremely small for a wide
range of b2 from about 0.05 to about 0.35 in 34Mg. From
consideration of the B(E2), I expect the relevant region to be
within these limits. So, this reaction would not be a good way to
discover the excited 0+ state in 34Mg [unlike 30Mg (t ,p) 32Mg].

32Mg(t,p)34Mg

0

0.1

0.2

0.3

0 0.1 0.2 0.3 0.4 0.5

b2 in 34Mg

ex
c/

g
.s

.

 R'=R

 R'=1.29R

FIG. 4. Results for the reaction 32Mg(t ,p) 34Mg, using b2 = 0.19
for 32Mg(g.s.), plotted vs b2 in 34Mg(g.s.). Two curves are described
in the text.
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FIG. 5. Results for the reaction 32Mg(p,t) 30Mg, using b2 = 0.19
in 32Mg(g.s.), plotted vs x = b/a in 30Mg(g.s.). Solid vertical lines
are at the limits on x from the E0 measurement [17]. The two curves
result from two different values of T (see text).

D. 32Mg ( p,t) 30Mg and 28Mg(t , p) 30Mg

Here, too, the excited 0+ state is known at 1.789 MeV.
The expression for r ′

30 in (p,t) is given in Sec. II above. The
predicted ratio depends on the value of T defined above. For
spherical sd-shell wave functions, I expect T to be close to,
but perhaps slightly larger than, unity. It is easily calculated
with shell-model wave functions, but here, we are interested
in general trends. So, I have performed the calculations for
T = 1.0 and 1.1.

The predicted cross section ratio is plotted vs x30 in Fig. 5
where I used the b2, a2 values of 0.19, 0.81 previously
determined for 32Mg. Here, the abscissa is x, rather than
b2 because the expected value of b2 is so small in 30Mg.
From a measurement of the E0 strength between the two
0+ states, Ref. [19] estimated b2 = 0.0319(76), and hence,
x = 0.182(22). Here, we see that the excited state is again
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FIG. 6. Results for the 28Mg(t ,p) 30Mg reaction vs x = b/a in
30Mg(g.s.), assuming a pure sd shell 28Mg(g.s.). Solid vertical lines
are as in Fig. 5. Note large predicted ratio.
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FIG. 7. Results for the reaction 28Ne(t ,p) 30Ne plotted vs (fp)2

intensity in 30Ne(g.s.) for full range of b2, assuming 28Ne(g.s.) is a
pure sd shell. Open triangles represent the expected excited 0+ energy
if the mixing matrix element in 30Ne is the same as in 32Mg.

predicted to be weak. Similar arguments apply here as above
for slight changes expected from neglected small components
in the wave function. We return to this point in Sec. IV below.

However, the situation is quite different for the reaction
28Mg(t ,p). The expected σ (exc)/σ (g.s.) ratio for this reaction
is plotted in Fig. 6 and is seen to be very large. In fact, of all
the ratios presented, this is the only one with an expectation
greater than unity. Here, I have assumed that 28Mg(g.s.) is well
described totally within the sd shell. Again, neglected small
components will change the predictions slightly, increasing
the g.s. cross section because of constructive interference and
either increasing or decreasing the excited-state cross section.
The ratio to be found experimentally will probably be slightly
smaller than the ratio plotted here.
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FIG. 8. As Fig. 7 but for a portion of the range. Note small
predicted ratio.

E. 28Ne(t , p) 30Ne

Many groups suggest that 30Ne(g.s.) has more (fp)2

admixture than does 32Mg(g.s.). If that is true, we might expect
that to be apparent in the (t ,p) reaction. With similar definitions
for the two 0+ states in 30Ne, we get the ratio plotted in Figs. 7
and 8. Here, the abscissa is b2 in 30Ne. The excited 0+ state
is not known in 30Ne. If the mixing matrix element between
the two basis 0+ states is the same in 30Ne and 32Mg, the
excitation energy of the excited 0+ state should depend on b2

as indicated in Fig. 7. Figure 8 is an expanded version of a
portion of Fig. 7.

IV. ROBUSTNESS OF THE PREDICTIONS

For all the calculations presented here, only the two
dominant components of the two lowest 0+ states are con-
sidered. Smaller components in the wave functions have
been neglected. Their inclusion could change the results
somewhat. Because all components in the g.s. will produce
constructive interference in the 2n transfer, inclusion of the
small components could slightly increase the predicted g.s.
cross section. However, inclusion of these components would
also slightly decrease the contributions of the two dominant
components (through overall normalization). For the excited
0+ state, for which the two major components interfere
destructively, the effect could be larger and of either sign.
If the predicted excited-state cross section is very small, any
additional amplitudes are likely to increase it, whereas, if it
is large, they will probably decrease it. For a quantitative
estimate, I compare the simple two-component predictions
with a calculation in which an excluded component is added
in.

For definiteness, I consider that the “other” component
mixes with the normal one at the 10% level, so that the ratio
of other/normal intensities is the same (10%) in both the g.s.
and 0+′. Most of the easily envisioned other components have
no direct one-step cross section. These include, for example,
excitations among the protons or a 2+ core coupled to v(fp)2

2.
I consider two cases in which the cross section from a pure
other configuration is 1% and 10% of the simple prediction.
Results are listed in Table I. These are appropriate for the two
processes 30Mg → 32Mg and 34Mg → 32Mg. We see that, when
the other cross section is very small, the g.s. loses a bit because
of overall normalization, but even a 10% cross section for
other leads to an increase for the g.s. The effect on the excited
0+ state depends on whether the new reaction amplitude is
destructive or constructive with respect to the two-component
one. When the simple exc/g.s. ratio is relatively large, as in
30Mg(t ,p) 32Mg, the addition of this other configuration makes
only a small change in the computed ratio. But, when the
simple prediction is for a small ratio, as in 34Mg (p,t) 32Mg,
the other amplitude can increase the exc/g.s. ratio by up to
about 30% or can decrease it by as much as 40%, depending
on relative signs. But, it is clear that none of these subtleties
could turn a ratio of about 0.60 into 0.05 or vice versa. I
conclude that the general flavor of the predictions is stable
with respect to such considerations.

064615-4



TWO-NEUTRON TRANSFER IN THE “ISLAND OF . . . PHYSICAL REVIEW C 85, 064615 (2012)

TABLE I. Relative cross sections for various assumptions regarding a hypothetical neglected component.

Reaction Percentage of others Relative cross section

Other g.s. Excited state

Constr. Destr.

30Mg(t ,p) 32Mg 0 1.0 0.60
10 0.01 0.98 0.61 0.57
10 0.10 1.09 0.66 0.52

34Mg(p,t) 32Mg 0 1.0 0.05
10 0.01 0.98 0.055 0.043
10 0.10 1.09 0.070 0.032

V. SUMMARY

Within the so-called island of inversion, an excited 0+ state
is known in 30,32Mg. Others remain to be discovered. I have
estimated cross section ratios σ (exc)/σ (g.s.) for (p,t) and (t ,p)
reactions on several nuclei here. As noted earlier, in 30Mg(t ,p)
32Mg, the measured ratio of 0.62(6) requires about 19(2)%
of the (fp)2 intruder in the 32Mg(g.s.). At anywhere near this
amount of mixing, the ratio expected in 34Mg (p,t) is extremely
small if 34Mg(g.s.) is pure (fp)2. An admixture of (fp)4(sd)−2

causes the expected ratio to increase monotonically with the
magnitude of the admixture. Even with such an admixture in
34Mg, the predicted ratio in 32Mg(t ,p) is quite small—leading
to the conclusion that this reaction is not a good candidate for
locating the excited 0+ state.

From the E0 measurement [19] in 30Mg, the intruder
admixture is thought to be quite small—0.0319(76). In the
vicinity of that value, the ratio predicted in 32Mg(p,t) is about
0.1. Such a small admixture has a negligible effect on the

30Mg(t ,p) prediction. By far, the largest cross section ratio
predicted here is for the reaction 28Mg(t ,p) where a ratio
between 1 and 2 is expected. This result arises because 28Mg
is assumed to be a pure sd shell, and 30Mg has only very little
mixing with the excited state being the intruder. (Transfer into
the fp shell is significantly stronger than into the sd shell.)

Expected results for the 28Ne(t ,p) 30Ne reaction are
presented for the entire range of intruder-normal-state mixing.
If the g.s. of 30Ne has more than 50% of the (fp)2 intruder

configuration, the predicted ratio is less than 0.1. I also present
the expected excitation energy of the excited 0+ state in 30Ne
if the mixing matrix element is the same as in 32Mg.

All these predictions are based on a model in which the first
two 0+ states are orthogonal linear combinations of two simple
basis states. A simple calculation in Sec. IV suggests that the
addition of a weak neglected state into both, even at the level
of 10%, does not cause a major change in the predictions.
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