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Percolation clusters are random fractals whose geometrical and transport properties can be characterized
with the help of probability distribution functions. Using renormalized field theory, we determine the
asymptotic form of various such distribution functions in the limits where certain scaling variables become
small or large. Our study includes the pair-connection probability, the distributions of the fractal masses of the
backbone, the red bonds, and the shortest, the longest, and the average self-avoiding walk between any two
points on a cluster, as well as the distribution of the total resistance in the random resistor network. Our
analysis draws solely on general, structural features of the underlying diagrammatic perturbation theory, and
hence our main results are valid to arbitrary loop order.
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I. INTRODUCTION AND SUMMARY OF RESULTS

Percolation �1� clusters are random fractals. Due to their
randomness, it is natural to characterize their properties, such
as geometrical and transport properties, by means of prob-
ability distribution functions. Perhaps the most basic of these
distribution functions is the percolation correlation function
��r−r��, which measures the pair connection probability,
i.e., the probability that two sites located at space coordinates
r and r� are connected. For many applications, it is useful to
consider percolation models that allow for additional pro-
cesses to unfold on the clusters. The most prominent model
of this kind is the random resistor network �RRN� where
occupied bonds are viewed as resistors so that the clusters
can transport electric currents. One of the typical questions
addressed when studying the RRN is that of the total resis-
tance R�r ,r�� between two leads located at points r and r�
on the same cluster. Because the underlying cluster is ran-
dom, the R�r ,r�� is a random number governed by a distri-
bution function, P�R ,r−r��. Experimentally, this distribution
might be determined as follows: Measure the resistance be-
tween all pairs of sites with separation �r−r�� using an ohm-
meter. Discard all measurements yielding an infinite value as
these measurements probe sites belonging to different clus-
ters. Prepare a histogram that collects the measured finite
values. Then, P�R ,r−r��dR corresponds to the number of
points in the histogram between R and R+dR divided by the
number of measurements with finite outcome. A similar ex-
periment was performed, e.g., some 20 years ago by Ram-
mal, Lemieux, and Tremblay �2�.

Other interesting measurable quantities that are intimately
related to the transport properties of percolation clusters in-
clude the masses �the number of bonds� of various fractal
substructures of the clusters. The most prominent substruc-
tures of a cluster are perhaps the backbone �the set of bonds
that carry current�, the red bonds �the bonds that are singly
connected and hence carry the full current�, as well as the
shortest, the longest, and the average self-avoiding walk
�SAW� on the cluster. Their masses are random numbers, and
the corresponding distribution functions can be measured in

much the same way as described above for the total resis-
tance.

In this paper, we study the distribution functions of the
pair connection probability, the total resistance, and the
masses of fractal substructures by using renormalized field
theory. Our work is based on the Harris-Lubensky �HL�
model �3–5� for the RRN and its nonlinear generalization by
Harris �6�. In this generalized model, the bonds are assumed
to have a nonlinear current-voltage characteristic of the type
V� Ir �7�. The main benefit of this generalization is that it
allows us to map out the aforementioned fractal substruc-
tures by taking the appropriate limits with respect to r: the
limit r→−1+ leads to the backbone, whereas r→�, r→0+,
and r→0− lead to the red bonds, the shortest, and the longest
self-avoiding path, respectively. Of course, one retrieves the
linear RRN for r→1. Via these limits, the distribution func-
tions of the total resistance and the fractal masses are all
related to one single distribution function, namely that of the
total nonlinear resistance. Regarding the average SAW, the
story is somewhat more complex. Obviously, the length of
the average SAW lies between the lengths of the shortest and
the longest SAW. In a certain sense, the average SAW is
concealed somewhere in the discontinuity at r=0, and it not
clear how to extract its length by taking a limit of the non-
linear RRN. Recently �8�, we proposed a method to calculate
the scaling form of this length via using our real-world in-
terpretation of the Feynman diagrams of the RRN, which we
will explain below. In this paper, we use this method �which
is intimately related to a correct interpretation of the Meir-
Harris model �9�� to determine the distribution of this length.

In their seminal paper �5�, HL studied among many other
interesting things the asymptotic form at criticality of the
distribution P�R ,r� of the linear total resistance for large R.
Their calculation is based on the assumption that the uncon-
ditional probability Puc�R ,r� for measuring R, which differs
from P�R ,r� in that infinite resistances are not discarded,
becomes independent of r for large R. This assumption is
problematic, however, because large R corresponds due to
scaling to short distances, and in critical phenomena, short
distances generically lead to extra singularities, which has

PHYSICAL REVIEW E 79, 011128 �2009�

1539-3755/2009/79�1�/011128�14� ©2009 The American Physical Society011128-1

http://dx.doi.org/10.1103/PhysRevE.79.011128


qualitative consequences �10�. Our careful analysis, based on
the so-called short-distance expansion as a field-theoretic
tool, reveals that this assumption breaks down beyond mean-
field theory, and hence the long-standing result by HL turns
out to be incorrect for dimensions d�6.

Before moving into the depths of field theory, we would
like to summarize for the convenience of the reader the re-
sulting picture of the various distribution functions. It is well
established that the pair connection probability obeys the
scaling form

��r,�� = �r�2−d−��̂���r�1/�� , �1.1�

where � is the control parameter that measures the deviation
from the percolation point. In bond percolation, e.g., � is
proportional to �pc− p�, where p is the bond occupation prob-
ability and pc is its critical value. � and � are the order
parameter and correlation length exponents for isotropic per-
colation, respectively. �̂�x� is a scaling function, whose
asymptotic behavior we calculate for small and large x. For
small x, we find

�̂�x� = A0 + A1x + A2x2 + A3xd�−1 + ¯ , �1.2�

where A0 and so on are expansion coefficients. For large x,
we obtain

�̂�x� = Ax�d−3+2���/2 exp�− ax�� + ¯ , �1.3�

with constants A and a. The distribution Pr�R ,r� of the total
nonlinear resistance obeys at criticality, �=0, the scaling
form

Pr�R,r� = R−1�r�R�r�−�r/�� , �1.4�

where �r is the resistance exponent of the nonlinear RRN.
As discussed above, the distribution function for the total
linear resistance is implied in this result for r→1, that of the
backbone mass for r→−1+, and so on. For large s, we find
that the scaling function �r�s� behaves as

�r�s� = Cr,1s−�d�−1�/�r + Cr,2s−d�/�r + Cr,3s−�d�+�r−1�/�r

+ Cr,4s−�d+	̄��/�r + ¯ , �1.5�

where C1,r and so on are constants, and where 	̄ is the so-
called Wegner exponent. For small s, we get

�r�s� = Crs
−�d−2+2���/2��r−�� exp�− crs

−�/��r−��� + ¯ ,

�1.6�

with constants Cr and cr. Equations �1.4�–�1.6� also describe
the distribution of the length of the average SAW; we merely
have to replace �r by �0ª� /�SAW, where �SAW is the usual
scaling exponent of the average SAW on a percolation clus-
ter, and we also have to replace nonuniversal constants Cr,1
and so on by other nonuniversal constants, say C0,1 and so
on. We note that similar asymptotic laws were derived a long
time ago by des Cloizeaux �11�, Fisher �12�, and McKennzie
and Moore �13� for SAWs on isotropic nondisordered sub-
strates.

The remainder of this paper has the following outline:
Section II briefly reviews the field-theoretic formulation of
the Potts model and the HL model and its nonlinear gener-

alization to provide background information and to establish
notation. Section III treats the renormalization of composite
fields that play a role in the short distance expansion. Section
IV contains the core of our short distance expansion. Section
V presents the derivation of our final results for the distribu-
tion functions. Section VI gives a few concluding remarks.

II. FIELD-THEORETIC PERCOLATION MODELS BASED
ON THE POTTS MODEL—A BRIEF REVIEW

There are two main field-theoretic approaches for perco-
lation problems: one is based on the so-called generalized
epidemic process, and the other is based on the q-state Potts
model in the limit q→0. The latter is intimately related to
the RRN and thus it is particularly useful for studying trans-
port properties of percolation clusters. In this paper, we focus
on the Potts model and the RRN along with its nonlinear
generalization. Here, in this section we review some aspects
of the field theory of the Potts model and the RRN that are
essential for our present work, in order to provide the reader
with background information and to establish notation.

A. Potts model

1. Hamiltonian

In the literature, the minimal model or field-theoretic
Hamiltonian for the q= �n+1�-state Potts model has been
written in several forms. The perhaps simplest form,

H =� ddr�
k=0

n 	1

2
��
k�2 +

�

2

k

2 +
g
n + 1

6

k

3� , �2.1�

is achieved if the �n+1�-component order parameter field 
k
satisfies the constraint

�
k=0

n


k = 0, �2.2�

because, in this case, 
k shows most directly the underlying
symmetry of the Potts model that arises from the equivalence
of the n+1 states. The order parameter with constraint �2.2�
constitutes an irreducible representation of the group of per-
mutations of n+1 elements, i.e., the symmetric group Sn+1.
In group-theoretical language �14�, this is the representation
�n ,1� �15�. The parameter � measures the distance from the
critical point in the phase diagram, which is given in mean-
field theory by �c=0. Note that there is only a single expan-
sion coefficient or coupling constant g decorating the cubic
term since the third-order direct product �n ,1�3 contains the
identity representation only once. Hence, there is just one
cubic invariant of the order parameter. For the model to de-
scribe �purely geometric� percolation, one has to take the
limit n→0.

For addressing certain questions, it can be useful to switch
from 
k to its Fourier transform 
̃� and vice versa via the
relations


k =
1


n + 1
�
�

�eik�
̃�, �2.3a�
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̃� =
1


n + 1
�
k=0

n

e−ik�
k, �2.3b�

with � given by

� =
2�l

n + 1
mod2� with l = 0,1, . . . ,n . �2.4�

The prime in Eq. �2.3a� indicates that �=0 is excluded from
the sum over � due to the constraint �2.2�. Alternatively, one
can admit �=0 if one demands that 
̃� satisfies the constraint

̃�=0=0 that is a consequence of Eq. �2.2�. In terms of 
̃�, the
field-theoretic Hamiltonian for the Potts model reads

H =� ddr	 1

2�
�


̃−��� − �2�
̃� +
g

6 �
�,��


̃�
̃��
̃−�−��� .

�2.5�

2. Renormalization

Throughout the rest of this paper, we will draw heavily on
the well established methods of renormalized field theory.
We will outline the steps that we take as much as possible.
Given the space constraints of this type of paper, however,
we have to refer to the textbooks on field theory �10� for
general background and technical details.

At and below the upper critical dimension dc=6, mean-
field theory, i.e., saddle-point integration of functional inte-
grals followed by naive perturbation expansions �with a
physical finite cutoff�, breaks down. Naive perturbation ex-
pansions produce IR divergencies near the critical point, and
renormalization-group methods must be employed instead to
sum up the leading divergencies of the complete expansion.
In diagrammatic perturbation calculations using dimensional
regularization instead of a finite cutoff, poles in 
=6−d
arise. These 
-poles can be eliminated from the theory by
employing the renormalization scheme


 → 
̊ = Z1/2
 , �2.6a�

� → �̊ = Z−1Z�� + �̊c, �2.6b�

g → g̊ = Z−3/2Zu
1/2g , �2.6c�

u = G
�−
g2, �2.6d�

where the circle denotes bare, unrenormalized quantities. u is
an effective coupling constant that appears naturally in any
diagrammatic calculation based on the Potts Hamiltonian
�2.1�. � is an inverse length scale, and the factor �−
 makes
u dimensionless in the sense that its engineering dimension
vanishes. G
=��1+
 /2� / �4��d/2 is a convenient numerical
factor depending on space dimension. The renormalization
factors Z, Z�, and Zu are known to three-loop order �16�. As
far as explicit diagrammatic calculations are concerned, we
will not go in the present paper beyond two-loop order, to
which the renormalization factors are given by

Z = 1 − �n − 1�
u

6

+ �n − 1��5n − 11



−

13n − 37

12

 u2

36

,

�2.7a�

Z� = 1 − �n − 1�
u



+ �n − 1��5n − 9



−

23n − 47

12

 u2

4

,

�2.7b�

Zu = 1 − �n − 2�
2u




+ �7n2 − 29n + 30



−

23n2 − 99n + 118

12

 u2

2

,

�2.7c�

if one uses minimal subtraction, as we do. The critical value
of the control parameter �̊c= g̊4/
S�
�, where the Symanzik
function S�
� contains simple IR poles at all values 
=2 /k
with k=1,2 , . . ., becomes formally zero in the 
 expansion.
Note that the renormalization factors are at any order in per-
turbation theory polynomials in n, and hence it is guaranteed
that they are well behaved in the limit n→0.

B. Nonlinear random resistor network

In their seminal work on linear RRN, HL showed, based
on earlier ideas by Stephen �17�, that the field-theoretic
Hamiltonian for the Potts model can be extended to describe
the RRN. We refer to their field-theoretic model as the HL
model. Shortly after the HL model was introduced, Harris �6�
took up ideas by Kenkel and Straley �7� and generalized the
HL model so that it captures nonlinear voltage-current char-
acteristics of the type V� Ir. More precisely, this nonlinear
RRN features bonds between nearest-neighboring sites i and
j that obey a generalized Ohm’s law Vj −Vi=�i,jIi,j�Ii,j�r−1,
where �i,j is the nonlinear bond resistance. As is customary,
we use here and in the following the symbol r for the non-
linearity parameter. This parameter must not be confused
with the magnitude of the space position r. The nonlinearity
parameter always appears as a power or a subscript, respec-
tively, and when read in its context, the meaning of r should
be clear. The main benefit of the nonlinear RRN is that it
allows us to map out the important fractal substructures of
percolation clusters by taking the appropriate limits with re-
spect to r. Of course, one retrieves the linear RRN for r
→1. We will refer to the model introduced in Ref. �6� as the
nonlinear HL model.

1. Hamiltonian

To capture the RRN, one distributes the n+1= �2M +1�D

states of the �n+1�-state Potts model on a D-dimensional

periodic lattice �torus� with site coordinates ��

=���j1 , . . . , jD�, where ji=−M ,−M +1, . . . ,M. The combina-
tion


M�� ª �0 �2.8�

is a free parameter of the theory, which plays a subtle role.
We will comment on this role as we move along. The order
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parameter field of the �nonlinear� HL model is given by the
generalized Potts spin 
�� subject to the constraint

�
��


�� = 0. �2.9�

It is related to its Fourier transformed counterpart via


�� =
1

�2M + 1�D/2�
��

�ei�� ·��
̃�� , �2.10�


̃�� =
1

�2M + 1�D/2�
��

e−i�� ·��
�� , �2.11�

where �� = ��1 , . . . ,�D� with

�� =
2�l�

�2M + 1���
mod2�/�� , �2.12�

and l�=−M ,−M +1, . . . ,M. The prime in Eq. �2.10� indicates

that �� =0� is excluded from the sum. In the following, we will
drop this prime for notational simplicity unless stated other-
wise. Through this Fourier transformation, the constraint
�2.9� translates into 
̃��=0=0. Expressed in terms of 
̃��, the
nonlinear HL model takes on the form

H =� ddr	 1

2�
��


̃−���� + w�r��� � − �2�
̃��

+
g

6�
�� ,��


̃��
̃���
̃−��−���� , �2.13�

where

�r��� � = − �
�=1

D

�− ��
2��r+1�/2. �2.14�

The control parameter w is proportional to the resistance of
the occupied bonds. The parameter r specifies the nonlinear-
ity of the network with r=1 corresponding to the linear
RRN. The HL model constitutes a Potts model with a spe-
cific quadratic symmetry breaking. Purely geometrical per-
colation is retrieved for w→0 provided one takes the limit
D→0 with M finite. In contrast, for the model to describe
the �nonlinear� RRN, one has to take the limits D→0 and
M→� �keeping �0 fixed� with the order of the limits being
of crucial importance. In the following, we will refer to this
double limit as the RRN limit.

There are some subtle, however important, features of the
theory associated with the RRN limit. As long as M is finite,
we have a model for percolation with quadratic symmetry
breaking which can be handled by simple insertions of the

operator w���
̃−���r��� �
̃��. However, in the continuum limit
of the � variables, M→�, sums of the form �����1

¯��k
diverge like Mk/2 even if D→0, and a more careful treatment
is in order �3,5�. In the RRN limit, the free parameter �0
becomes obsolete, or in the language of field theory, it be-
comes a redundant parameter. As such, it is possible to elimi-
nate it via rescaling of w. That this elimination can indeed be

achieved hinges on the fact that in perturbation theory in

conjunction with the RRN limit, w and �r��� � always appear

in the combination w�r��� �. This in turn implies that only this

combination, as opposed to w or �r��� � alone, has a well-
defined engineering dimension, namely 2 like � or �2.

2. Connection probability and average nonlinear resistance

The success of the HL model and its nonlinear generali-
zation stems, at least in part, from the fact that the two-point
correlation function

G�r,�� ,�,w� = �
̃−���r�
̃���0�� �2.15�

provides for an elegant and efficient route to calculate the
average resistance between two points on the same cluster. In

the following, we will use the notation G(r ,� ,w�r��� �) for

the two-point function, as we can because �� and w always

appear in the combination w�r��� �; see above. That the two-
point function �2.15� is helpful in calculating the average
resistance becomes transparent if one notices that it consti-
tutes a generating function,

G„r,�,w�r��� �… = ���r�C�exp„− w�r��� �Rr�r�C�…�av

= ��r��exp„− w�r��� �Rr�r�C�…�av� ,

�2.16�

where Rr�r �C� is proportional to the total nonlinear resis-
tance between an arbitrary point r and 0 for a given random
percolation configuration C. Here, we have absorbed the re-
sistance � of the conducting microscopic bonds into the con-
trol parameter w such that Rr�r �C���0. ��r �C� is an indica-
tor function that is 1 if r is connected to 0 in configuration C,
and zero otherwise. �¯�av denotes the disorder average over
all configurations of the diluted lattice. �¯�av� stands for dis-
order averaging conditional to the constraint that r and 0 are
connected.

��r� = ���r�C��av �2.17�

is the usual percolation correlation function, i.e., the prob-
ability for any two sites a distance �r� apart being connected.
From Eq. �2.16� it follows that one can extract the average
resistance

Mr�r� = �Rr�r�C��av� �2.18�

and its moments simply via taking the derivatives of

G(r ,� ,w�r��� �) with respect to w�r��� �.
As mentioned above, the great value of the nonlinear

RRN lies in the fact that it can be used to map out different
fractal substructures of percolation clusters. Inspection of the
overall dissipated electric power shows readily that

lim
r→−1+

Mr�r� � Mbb�r� , �2.19�

where Mbb is proportional to the average mass �number of
bonds� of the backbone �between any two sites a distance �r�
apart, of course�. Moreover, it has been shown by Blumen-
feld and Aharony �18� that

HANS-KARL JANSSEN AND OLAF STENULL PHYSICAL REVIEW E 79, 011128 �2009�

011128-4



lim
r→�

Mr�r� � Mred�r� , �2.20�

where Mred stands for the mass of the red bonds and

lim
r→0+

Mr�r� � Mmin�r� , �2.21�

where Mmin is the mass �length� the shortest self-avoiding
walk �SAW�. Likewise, one can show that

lim
r→0−

Mr�r� � Mmax�r� , �2.22�

where Mmax is the mass �length� of the longest SAW. As
alluded to above, it is not known how to extract the mass
�length� MSAW of the average SAW from Mr. However, we
recently proposed �8� a method for calculating MSAW based
on the RRN that does not invoke Mr directly. The idea be-
hind this method is to exploit the real-world interpretation of
the RRN Feynman diagrams, which will be explained in the
next subsection, by placing SAWs onto these diagrams �for
details, see Ref. �8��. Using this approach, one can calculate
MSAW in much the same way as Mmin and Mmax.

3. Renormalization, real world interpretation of Feynman
diagrams, and scaling

From the above, it should be clear that the renormaliza-
tion factors Z, Z�, and Zu for the RRN are identical to those
for the Potts model with n+1= �2M +1�D states. The control
parameter w, however, needs an independent renormalization

w → ŵ = Z−1Zww �2.23�

with the renormalization factor Zw having no counterpart in
the usual Potts model. This renormalization can be calculated
in an elegant and efficient way by using our real world in-
terpretation of the HL model’s Feynman diagrams �19–22�.
This interpretation is based on the observation that the dia-
grammatic perturbation theory of the HL model in the RRN
limit can be formulated in such a way that the Feynman
diagrams resemble real RRNs. In this approach, the diagrams
feature conducting propagators corresponding to occupied
conducting bonds, and insulating propagators corresponding
to open bonds. The conducting bonds carry replica currents

−i�� . The resistance of a conducting bond is given by its
Schwinger parameter in a parametric representation of the

propagators. Because of the interpretation of �� �apart from
the factor −i� as a replicated current, we refer to the space in

which �� takes on its values as the replicated current space.
Likewise, we refer to the space in which the conjugate vari-

able �� lives as the replicated voltage space.
When this real world interpretation is used, the task of

calculating Zw is by and large reduced to calculating the total
nonlinear resistance of the conducting Feynman diagrams.
To one-loop order, one obtains �6,20�

Zw = 1 + �1 − �
0

1

dxcr�x�
u



. �2.24�

The function cr�x� is given by

cr�x� =
x�1 − x�

�x1/r + �1 − x�1/r�r . �2.25�

Note that it vanishes for x=0 and 1 if r is positive. For
negative r, cr�x� it takes the form

cr�x� = �x1/�r� + �1 − x�1/�r���r�, �2.26�

which is equal to 1 for x=0 and 1. Here, we encounter an-
other manifestation of the discontinuity at r=0 which, physi-
cally, is related to the different types of SAWs on the perco-
lation clusters.

Following standard procedures of renormalized field
theory, one can extract from the above renormalizations a
Gell-Mann-Low renormalization-group equation �RGE� that
governs the scaling behavior of the correlation functions. For
the two-point functions, in particular, this RGE leads to the
well known result

G„r,�,w�r��� �… = �r�2−d−�Ĝ„��r�1/�,w�r��� ��r��r/�
… ,

�2.27�

where Ĝ is, up to scaling factors, a universal scaling func-
tion. The critical exponents � and � are known to three-loop
order �16�. To two-loop order, they are given by

� = −
1

21

 −

206

9261

2, �2.28a�

� =
1

2
+

5

84

 +

589

37044

2. �2.28b�

The resistance exponent �r is known for general r to one-
loop order up to a remaining integral �6�,

�r = 1 +



14
�

0

1

dxcr�x� , �2.29�

with cr�x� given by Eq. �2.25�. For specific values of r, �r is
known to higher order. For the linear RRN, the resistance
exponent �=�1 is known to two-loop order �19,22,23�. In
the limit r→−1+ relevant for the backbone, we calculated �r
to three-loop order �20–22�. In the limit r→� relevant for
the red bonds, we showed explicitly to three-loop order that
�r=1 �20–22�, as had to be expected from rigorous results
by Coniglio �24�. Furthermore, we calculated �r in the limit
r→0+ describing the shortest SAW �20–22,25� as well as the
exponents governing the longest and the average SAW to
two-loop order �8�.

4. Probability distribution for the nonlinear resistance—
Definition and mean-field theory

As discussed in the Introduction, it is useful for a com-
prehensive characterization of the properties of the RRN and
the various fractal substructures of percolation clusters to go
beyond just studying the average nonlinear resistance or its
higher moments and to address the more general problem of
the form of the distribution function of the nonlinear resis-
tance.

The distribution Pr�R ,r� of the conditional probability
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that the total nonlinear resistance between r and 0 is Rr given
that r and 0 are on the same cluster can be defined as

Pr�R,r� = ��„R − Rr�r�C�…�av� . �2.30�

Comparison with Eq. �2.16� reveals that

��z,r� ª
G�r,�,z�
G�r,�,0�

= �
0

�

dRe−zRPr�R,r� �2.31�

is the Laplace transform of Pr�R ,r�. Thus, one can calculate
Pr�R ,r� via calculating the two-point correlation function

G(r ,� ,w�r��� �¬z) and applying the inverse Laplace trans-
formation to ��z ,r�,

Pr�R,r� =
1

2�i
�

�−i�

�+i�

dzezR��z,r� . �2.32�

This is the main route that we will follow in the remainder of
this paper.

The distributions of the various fractal masses can be de-
fined by modifying Eq. �2.30� in an evident manner. These
distributions can be extracted from Pr�R ,r� simply by taking
the appropriate limit with respect to r except for the distri-
bution PSAW�L ,r� of the length L of the average SAW. Nev-
ertheless, by combining the route described above with the
method proposed in Ref. �8�, we can calculate PSAW�L ,r� in
much the same way as the distributions of the other fractal
masses.

Before embarking on field theory, we conclude this re-
view section by considering mean-field theory. At zero-loop
order, the two-point correlation function is given simply by
the Fourier transform of the Gaussian propagator,

G�r,�,z� = �
q

exp�iq · r�
q2 + � + z

=
1

�2��d/2� � + z

r2 
�d−2�/4

� K�d−2�/2��r�
� + z� ,

�2.33�

where �q is an abbreviation for 1
�2��d �ddq, and where K��x� is

the modified Bessel function �Basset function� with index �.
Using this two-point function in conjunction with Eq. �2.31�
in Eq. �2.32� and introducing the quantity

C��x� =
����

2
�2

x

�

K��x�−1, �2.34�

which becomes unity at criticality, C��0�=1, we obtain �26�

Pr�R,r� =
C�d−2�/2��r�
��

�„�d − 2�/2…
R−1exp�− �R − r2/�4R��

�4R/r2��d−2�/2

�2.35�

for the resistance distribution in mean-field theory. Note that,
from this expression, one can read off the mean-field results
for the correlation length and resistance exponents, �= 1

2 and
�r=1. The mean-field result for PSAW�L ,r� is of the same
form as Eq. �2.35� with R replaced by L. This implies the
well known mean-field result �SAW= 1

2 .

At criticality, the distribution function takes on the scaling
form �1.4�. The corresponding mean-field scaling function is
plotted in Fig. 1. For large and small arguments, it behaves
asymptotically as the leading term in Eqs. �1.6� and �1.5�,
respectively, with � / ��r−��=1 and d�−1= �d−2
+2��� / �2��r−���=2.

As mentioned above, HL based their calculation on the
assumption that the unconditional distribution function
Puc�R ,r�=��r�P�R ,r� becomes independent of r for s
=R /r2�1. Noting from Eq. �2.27� that ��r���r�−d+2−� and
recalling from Eq. �1.6� that �r�s��s−g1 +¯ with g1= �d�

−1� /�r in this limit, we find Puc�R ,r���r�g� with g�=2−�
−1 /�. In mean-field theory, where �=0 and �= 1

2 , g� van-
ishes so that Puc is indeed independent of r. Beyond mean-
field theory, however, g� is nonzero, and the assumption by
HL is incorrect. Because of this shortcoming, the HL result
g1

HL= �d−2+��� /�1 for g1 is not correct for d�6, although
it produces the correct mean-field value.

III. REPRESENTATIONS, COMPOSITE OPERATORS,
AND THEIR RENORMALIZATION

Now we turn to renormalized field theory to study the
connection probability and the nonlinear resistance distribu-
tion beyond mean-field theory. In particular, we will calcu-
late their asymptotic forms in the limits x=��r�1/��1 and s
=R / �r��r/��1, respectively. These calculations are quite non-
trivial because we need to determine the short-distance be-
havior of the two-point correlation function. This behavior
can be analyzed systematically with the help of the well es-
tablished short-distance expansion �10�. We will explain the
application of this technique to the current problem in some
detail in Sec. IV. It turns out that the composite field or
composite operator 1

2 
̃���r�
̃−���r� plays a pivotal role in the
short-distance expansion �SDE�. In this section, we discuss
the renormalization of this and related operators employing
group theory �14�. Our approach is guided by the work of
Wallace and Young �15�, and we review parts of their work
in a language that is adapted to the problem at hand.

We are interested in the direct product of the order param-
eter with itself. As discussed below Eq. �2.2�, the order pa-
rameter 
�� is an object that transforms as the fundamental
irreducible representation �n ,1� of the symmetric group Sn+1,
if the invariant identity representation �n+1� is ruled out

0.0 0.5 1.0 1.5 2.0
0.0

0.1

0.2

0.3

0.4

0.5

R/r2

R
P

(R
,r

)

FIG. 1. Form of the resistance distribution function at criticality
as given in mean-field theory by Eq. �2.35� with �=0 and d=6.
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through the constraint ���
�� =0. The product of the funda-
mental representation with itself is reducible and it can be
decomposed into a sum of irreducible representations,

�n,1� � �n,1� = �n + 1� + �n,1� + �n − 2,2� + �n − 1,12� ,

�3.1�

comprising the identity representation �n+1�, the fundamen-
tal representation �n ,1�, the symmetric tensor representation
�n−2,2�, and the antisymmetric tensor representation �n
−1,12�. The latter is absent for a product of two identical
fields. Applied to the product 
��
��

� , the decomposition leads
to the identity representation

B =
1

2�
��



��
2
, �3.2�

the fundamental representation

��� =

n + 1

2



��
2

−
B


n + 1
, �3.3�

and the symmetric tensor representation

��� ,��� = �1 − ��� ,����	 1

2

��
��� +

��� + ����

�n − 1�
n + 1
+

B
n�n + 1�� .

�3.4�

To simplify the discussion to follow, it is useful to switch
from replicated voltage space to replicated current space via
the Fourier transformation �2.10�. Then, the above operators
take on the form

B =
1

2�
��


̃−��
̃�� , �3.5a�

�̃�� =
1

2�
��


̃��−��
̃�� , �3.5b�

�̃�� ,��� =
1

2

̃��
̃��� −

�̃��+���

n − 1
−

B
n

���+���,0� �3.5c�

if �� and ��� are nonzero. Otherwise �̃0� =�̃�� ,0� =�̃0� ,�� =0.
Hence, there does not exist any component with zero current.

As mentioned above, it will be the operator

A�� = :
1

2

̃���r�
̃−���r� , �3.6�

which plays a central role in the SDE. Evidently, this opera-
tor satisfies A��=0=0. As we will discuss in the following, the
renormalization of A�� is intimately related to that of the

operators B and �̃�� ,��
� . Equation �3.5� implies that the opera-

tors A��, B, and �̃�� ,−�� are related for �� �0 via

A�� =
1

2
�̃�� ,−�� +

1

n
B . �3.7�

Note that the decomposition of A�� in irreducible parts con-
tains a factor 1 /n, which could be potentially problematic in

the limit n→0. This factor, however, cancels in perturbation
theory.

From the group-theoretic considerations above, we draw
the following three important conclusions. �i� The operator

�̃�� can mix additively with the order parameter field 
̃�� and
its derivatives because both transform according to the same
irreducible representation �n ,1�. �ii� The operators B and

�̃�� ,��
� are renormalizable individually by multiplicative

renormalization, because they belong to representations that
are different from one another and �n ,1�. �iii� The operator
A��, which will play a central role in the SDE, contains both

the independent renormalizations of B and �̃�� ,−�� and mixes
these.

Equipped with this information, we will now determine
the renormalizations of the various composite operators.
With the renormalization scheme �2.6�, the renormalized ver-
sion of the generalized Potts Hamiltonian is given by

H =� ddr	 1

2�
��


̃−���Z�� − Z�2�
̃��

+ Zu
1/2g

6 �
�� ,���


̃��
̃���
̃−��−���� . �3.8�

From this renormalized Hamiltonian, we can infer without

much effort the renormalizations of B and �̃��. As far as B is
concerned, we note that if � is viewed as a function of r, one
can generate insertions of the operator −Z�B into renormal-
ized correlation functions via functional differentiation with
respect to ��r�. Thus, the renormalized version BR of B is
given by

BR = Z�B = Z�Z
−11

2�
��


̊̃−�� 
̊̃�� . �3.9�

Turning to �̃��, we note that the functional derivative with
respect to 
̃���r� leads to the equation of motion

� �H
�
̃−���r�


̃�r1� ¯ 
̃�rN��
= �

i=1

N

�
̃�r1�
̃�ri−1�
̃�ri+1� ¯ 
̃�rN����r − ri� ,

�3.10�

where we have suppressed the current index of most of the
fields for notational simplicity. As a consequence of this
equation of motion, insertions of the operator

�H
�
̃−��

= Z��
̃�� − Z�2
̃�� + Zu
1/2g

2�
��


̃��−��
�� �3.11�

into renormalized correlation functions are already com-
pletely renormalized. This implies that the renormalized ver-

sion �̃�� ;R of �̃�� is given by

DISTRIBUTION FUNCTIONS IN PERCOLATION PROBLEMS PHYSICAL REVIEW E 79, 011128 �2009�

011128-7



�̃�� ;R = Zu
1/2�̃�� +

1

g
�Z� − 1��
̃�� −

1

g
�Z − 1��2
̃��

= Zu
1/2Z−1�

��

̊̃��−�� 
̊̃�� +

1

g
Z−1/2�Z� − 1��
̊̃��

− Z−1/21

g
�Z − 1��2
̊̃�� . �3.12�

As noted above, �̃�� mixes under renormalization additively
with 
̃�� and its derivatives.

Next, we move on to A�� and �̃�� ,−��. Our strategy is to
determine the renormalization of A�� with the help of that of

�̃�� ,−�� and B via relation �3.7�, and we will switch back and

forth between considering A�� and �̃�� ,−�� to achieve this goal.
As we know from our group-theoretic considerations above,

the renormalization of �̃�� ,−�� is independent of that of B and

�̃��, and thus it is renormalizable by multiplicative renormal-
ization. Also because of this independence, we cannot simply

extract the renormalization of �̃�� ,−�� from the above. As the
typical quadratic symmetry-breaking term in the Hamil-

tonian, the tensor �̃�� ,��� determines the so-called crossover
exponent. Thus, we denote its renormalization factor by Zc
so that

�̃�� ,���;R = Zc�̃�� ,���. �3.13�

To approach the renormalization of A�� through perturba-
tion theory, we consider its insertions into vertex functions
��� ,−��

�2� , i.e., ��� ,−�� ;A�
�

�2� . According to the above, A�� itself is not

renormalizable multiplicatively as it requires additive contri-
butions from B, i.e., the renormalized version of A�� will be
of the type

A�� ;R = Z�A�� + YB . �3.14�

Any result for ��� ,−�� ;A�
�

�2� produced by diagrammatic perturba-

tion theory has to be of the form

��� ,−�� ;A�
�

�2� =
1

2
���� ,�� + ��� ,−����1 + A�n�� + B�n� , �3.15�

where A�n� and B�n� are polynomials in n which at each
order in n have a perturbation expansion in powers of u

containing 
 poles. Summing both sides of Eq. �3.15� over ��

produces

��� ,−�� ;B
�2� = �1 + A�n�� + nB�n� . �3.16�

We already know that ��� ,−�� ;B
�2� is renormalized by multiplica-

tion with Z�, i.e., Z���� ,−�� ;B
�2� =��� ,−�� ;BR

�2� is free of 
 poles, and
thus

��� ,−�� ;BR

�2� = Z� + Z��A�n� + nB�n�� = finite, �3.17�

from which Z� can be constructed order for order in u with
polynomial factors in n.

Equipped with this information, we now insert the renor-
malized version of A�� as given in Eq. �3.14� into the renor-

malized two-point vertex function and determine Z� and Y
such that ��� ,−�� ;A�

� ;R

�2� is cured at any order in u from 
 poles,

i.e., such that

��� ,−�� ;A�
� ;R

�2� = Z���� ,−�� ;A�
�

�2� + Y��� ,−�� ;B
�2�

=
1

2
���� ,�� + ��� ,−����Z� + Z�A�n��

+ Y + Z�B�n� + Y�A�n� + nB�n�� �3.18�

is finite. It follows from summation over the n nonzero val-

ues of �� that

�Z� + nY� + �Z� + nY��A�n� + nB�n�� = finite. �3.19�

Comparison of Eqs. �3.17� and �3.19� now reveals that

Y =
Z� − Z�

n
. �3.20�

Hence, the remaining task in determining the renormaliza-
tion of A�� is to determine Z�. To this end, we substitute the
result �3.20� into Eq. �3.14� and we then note that

A�� ;R −
1

n
BR = Z��A�� −

1

n
B
 =

1

2
��� ,−�� ;R, �3.21�

which reveals that

Z� = Zc. �3.22�

Because Zc, Z�, and Y are at each order in u polynomials in
n, it follows in particular for n→0 that

lim
n→0

Zc = lim
n→0

Z�, �3.23a�

lim
n→0

Y = lim
n→0

�Z� − Zc

n

 , �3.23b�

whereby we now have completely determined the renormal-
ization of A�� in the percolation limit. Note that these results
are valid to arbitrary order in perturbation theory. To double-
check our reasoning, we also calculated Zc and Y explicitly
in a two-loop calculation, yielding

Zc = 1 +
u



− �3n − 9



−

5n − 47

12
� u2

4

, �3.24a�

Y = −
u



+ �5n − 11



−

23n − 65

12
� u2

4

. �3.24b�

In conjunction with Eq. �2.7b�, the results clearly confirm
our above general results.

It is worth pointing out that the equality of temperature
renormalization and crossover renormalization in the replica
limit is a generic feature of all replicated field theories,
which, therefore, have a crossover exponent that is strictly
equal to 1. For example, this is also true for the n→0 limit of
the n-component 
4 theory describing linear polymers. Sur-
prisingly, this important general feature has not been much
appreciated in the literature, at least as far as we know.
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IV. SHORT DISTANCE EXPANSION

As discussed in Sec. II B 4, the distribution function for
the nonlinear resistance can be extracted from the two-point

correlation function G(r ,� ,w�r��� �), whose scaling form is
well known to be given by Eq. �2.27�. For treating the limit
�r� /R�r/��1, however, we need to know how the scaling

function Ĝ�x ,y� in Eq. �2.27� behaves for small arguments.

Naively, one might attempt a Taylor expansion of Ĝ�x ,y� for
small arguments, which is erroneous, however, because the
scaling function contains infrared singularities. To treat these
IR singularities properly, one has to resort to an SDE. For the
�4 model, this was done a long time ago by Brezin, Amit,
and Zinn-Justin �27� and Brezin, De Dominicis, and Zinn-
Justin �28�. To follow their route, we will briefly review
some essentials of the SDE and its basis, the operator prod-
uct expansion �OPE� �29�. Then we will investigate the short

distance behavior of G(r ,� ,w�r��� �) by applying the SDE,
which will involve the operators A�� and B, whose renormal-
ization we discussed in Sec. III. In the following, we will
suppress the subscript R on renormalized operators for nota-
tional simplicity.

The OPE is based on the fact that a product of two renor-
malized operators O��r� and O �r�� �which may be plain or
composite fields� at two different but close points can be
expanded as �10�

O��r�O �r�� = �
!

c� ,!�r − r��O!��r + r��/2� , �4.1�

where the c� ,!�r� are pure functions of r. Of course, any
decomposition into symmetry representations has to be done
such that both sides of this equation remain consistent. The
statement �4.1� is meaningful only when inserted in correla-
tion or vertex functions and only in the critical domain. The
same holds true for many of the equations in the remainder
of this section, and we ask the reader to keep this in mind
when going through this section. If the O��r� are eigenop-
erators of the RG, i.e., if

O���r� = �−x�O��r� , �4.2�

where x� is the scaling dimension of O��r�, then the c� ,!�r�
are given by

c� ,!�r� � �r�x!−x�−x . �4.3�

The higher the scaling dimension of an operator O! in the
expansion �4.1�, the less it contributes if �r−r�� is small.
Thus one naturally obtains an expansion for short distances,
or SDE, if one orders the operators in the OPE according to
their scaling dimension.

In general, the unit operator will be present on the right-
hand side of Eq. �4.1�. However, if one considers connected
correlation functions, as we do, it does not contribute. The
leading contributing operators are then those that have at dc
the naive dimension 4, viz., A���R� and B�R�, and thus the
leading contributing terms in the SDE of 
̃���r�
̃−���r�� read


̃���R + r/2�
̃−���R − r/2� = cA�r�A���R� + cB�r�B�R� + ¯ .

�4.4�

All other composite fields such as ��
̃�� � 
̃−����R�,
�
̃���

2
̃−����R�, �
̃���̃−����R�, and their sum over �� do at least
have naive dimension 6 at dc. The same holds true for the
operator

C�R� ª w��
��

�r��� �
̃��
̃−����R� ¬ wC��R� . �4.5�

Note that this composite operator must be renormalized as a
whole; its renormalization does not simply follow from the
renormalization of its part �
̃��
̃−����A�� in the RRN limit.
This was overlooked in earlier work �15� and led to the
wrong result �r=1 for the crossover exponents. However,
the operator C� plays a special role due to the double limit
D→0 and M→�. When the other dimension 6 operators
such as �

��
��
̃���

2
̃−����R� are inserted into Feynman dia-
grams, they leave the superficial degree of divergence un-
changed. When C�R� is inserted into Feynman diagrams, it
reduces the superficial degree of divergence of any of these
diagrams by 2 just as B�R� does. Thus, C�R� should be in-
cluded on the same footing as B�R� as far as making inser-
tions to avoid extra UV singularities if the limit �r−r��→0 is
concerned. All other operators whose naive dimension is 6 or
higher can be neglected in the following.

Having established the specific form of the SDE for the
problem at hand, we will now turn to various RGEs that will
eventually reveal the short distance behavior of the two-point
correlation function. These RGEs can be set up using stan-
dard procedures exploiting the fact that the unrenormalized
theory must be independent of the inverse length scale �
introduced by renormalization �10�, cf. the renormalization
scheme �2.6�. In the RGEs for the current problem, we en-
counter on various occasions the RG differential operator

D� ª ��� +  �u + ���� + "rw�w, �4.6�

which contains the RG functions

 �u� = ��
�u

��
�

0
, ��u� = ��

� ln �

��
�

0
, "r�u� = ��

� ln w

��
�

0
,

�4.7�

and the RG function

!�u� = ��
�

��
ln Z�

0
, �4.8�

where the �0 indicates that bare quantities are kept fixed while
taking the derivatives. All these RG functions are well
known and explicit results for them can be straightforwardly
reconstructed from the renormalizations and Z-factors re-
viewed in Sec. II.

First, let us state the RGEs for the operators A��, B, and
C�, which we will need as input as we move along,

�D� + ��A���R� + yB�R� = 0, �4.9a�

�D� + ��B�R� = 0, �4.9b�
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�D� + "r�C��R� = 0, �4.9c�

with the RG function y�u� given by

y�u� = ��
�

��
Y�

0
= u −

65

24
u2 + ¯ , �4.10�

where we used on the-right hand side our two-loop result
�3.24b� for Y. Next, we set up and solve RGEs for the SDE
coefficients cA and cB. From Eq. �4.4�, we learn by using the
distributivity of D� and by exploiting the RGEs �4.9� that

0 = �D� + !��
̃���R + r/2�
̃−���R − r/2��

� �D� + !��cA�r�A���R� + cB�r�B�R��

= A���R��D� + !�cA�r� + cA�r�D�A���R�

+ B�R��D� + !�cB�r� + cB�r�D�B�R�

= A���R��D� + ! − ��cA�r�

+ B�R���D� + ! − ��cB�r� − ycA�r�� . �4.11�

Because the operators A�� and B are linearly independent,
this implies that

�D� + ! − ��cA�r� = 0, �4.12a�

�D� + ! − ��cB�r� − ycA�r� = 0. �4.12b�

At the RG fixed-point u*, determined by  �u*�=0, these
coupled RGEs for cA and cB are readily solved with the
result

cA�r;�� = cA��r� = ���r��2−�−1/�cA�1� , �4.13a�

cB�r;�� = cB��r�

= ���r��2−�−1/� � �cB�1� − y�u*�cA�1�ln���r��� .

�4.13b�

The additional logarithmic contribution ln���r�� appears be-
cause the operators A�� and B have the same scaling dimen-
sion, d−1 /�, in the percolation limit n→0. �=!* and �
=1 / �2−�*�, where !*=!�u*� and so on, are the usual critical
percolation exponents, cf. Sec. II B 3. For completeness, and
because we will use this later on, we also note that the resis-
tance exponent �r is determined by the fixed-point values of
the RG functions as �r=��2−"

r
*�.

Now we are in the position to address the short distance

behavior of G(r ,� ,w�r��� �). We must not naively simply
plug the expansion �4.4� into the correlation function �2.15�
because this would generate correlation functions such as
�A���R��, which require additional additive renormalizations.
This problem can be avoided by taking derivatives with re-
spect to � and w, which generate insertions of B and C� that
reduce the superficial degree of divergence. It turns out that
three-fold differentiation is sufficient to suppress additional
UV singularities. In the following, we denote derivatives
with respect to −� and −w with superscripts N and M, e.g.,

�r��� �MG�N,M�
„r,�,w�r��� �…

ª �− ���N�− �w�MG„r,�,w�r��� �…

= �
̃���r/2�
̃−���− r/2�B̃�0�NC̃��0�M� , �4.14�

where

B̃�q� =� ddrB�r�e−iq·r, �4.15�

and likewise for C̃�. Until noted otherwise, we assume that
N+M #3. Then it is safe to use the SDE �4.4� in the con-
nected correlation function with insertions �4.14�, which
leads to

�r��� �MG�N,M�
„r,�,w�r��� �…

� cA�r��A���0�B̃�0�NC̃��0�M� + cB�r��B�0�B̃�0�NC̃��0�M� .

�4.16�

This equation makes it transparent that the expansion has the
benefit of factorizing the spatial dependence from the depen-
dence on the control parameters � and w. This feature will be
important when it comes to solving the RGE for G�N,M�. As
pointed out above, this expansion is valid only in the critical
domain, i.e., for �� /�2��� ��r�−1 and �w /�2��/�r � ��r�−1.

Next, we discuss the two contributions to Eq. �4.16�. The
second term on its right-hand side vanishes in the limit n
→0. This can be seen as follows. Let us abbreviate

�B�0�B̃�0�NC̃��0�M�=�
��
��A���0�B̃�0�NC̃��0�M�ª�

��
� f(�r��� �),

where we have reinstated the prime on the sums over repli-

cated currents to emphasize that �� =0� is excluded from these
sums, cf. the comment below Eq. �2.12�. Switching to an

unrestricted sum, we can rewrite �
��
� f(�r��� �) as ��� f(�r��� �)

− f�0�. By expressing f(�r��� �) in terms of its Laplace trans-
form, switching from discrete to continuous replica currents,

and then performing the integration over �� with the help of

the saddle-point method, we find that ��� f(�r��� �)= f�0� in the
limit D→0. Thus, the second term on the right-hand side of
Eq. �4.16� vanishes in this limit. For discussing the first term
on the right-hand side of Eq. �4.16�, we denote

FA
�N,M�

„�,w�r��� �,�… ª �r��� �−M�A���0�B̃�0�NC̃��0�M� .

�4.17�

An RGE for this connected correlation function is readily
derived,

�D� + �1 + N�� + M"r�FA
�N,M�

„�,w�r��� �,�… = 0.

�4.18�

At the fixed point, it is straightforward to solve this RGE.
The result is
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FA
�N,M�

„�,w�r��� �,�… = ��1+N��*+M"
r
*

� FA
�N,M�

„��*�,�"
r
*
w�r��� �,��… .

�4.19�

This solution needs to be augmented with a dimensional
analysis,

FA
�N,M�

„�,w�r��� �,�… = �d−2�N+1�−2M

� FA
�N,M�

„�/�2,w�r��� �…/��2,1� ,

�4.20�

to account for the nonvanishing naive dimensions of its vari-
ous ingredients. By combining Eqs. �4.19� and �4.20� and by
exploiting freedom of choice regarding the flow parameter �
by setting �= �� /�2��, we obtain the scaling form

FA
�N,M�

„�,w�r��� �,�… = �d−2�N+1�−2M��/�2�d�−�N+1�−M�r

� F̂A
�N,M��w�r��� �/�2

��/�2��r

 , �4.21�

where F̂A
�N,M��z� is a scaling function. For z around 0, this

scaling function is certainly analytic because the model is for
��0 away from its critical point, and hence there can be no
IR singularities. The situation is more subtle for �→0 be-
cause then the question arises whether a nonzero w makes
the system noncritical. The most economical way to address

this question is to calculate F̂A
�0,0��z� in dimensional regular-

ization to lowest order beyond mean-field theory. Diagram-
matically, this calculation involves the attaching of external
legs �propagators� to the usual one-loop self-energy diagrams
followed by an integration over the external momentum
�which amounts essentially to a two-loop calculation�. Note
that it is sufficient to work for N=M =0 in dimensional regu-
larization, at least formally, because this regularization for-
mally sets the otherwise required additive renormalizations
equal to zero. We perform this calculation for the physically
relevant limits of r discussed above. For r$0, we find that
w�0 is sufficient to make the system noncritical for �=0.
Thus, we expect that

F̂A
�N,M��z� = Krz

�d�−N−1�/�r−M �4.22a�

for z→�, where Kr is some constant. For r�0 it appears as
if w�0 is not sufficient to make the system noncritical for
�=0. However, we encounter the problem that the calcula-
tion produces a contribution proportional to �−1+
 that has no

counterpart in mean-field theory, i.e., F̂A
�0,0��z� is not renor-

malizable with the usual renormalization factors for r�0.
Currently, we do not know how to overcome this problem or
what its physical significance might be. Nevertheless, we
expect that

F̂A
�N,M��z� � 1 + Krz

�d�−N−1�/�r−M �4.22b�

for z→� if r�0. Until the problem with the renormalizabil-
ity is resolved, this formula should be understood as a pro-
posal, as do our final results for the distribution functions

pertaining to r�0. We plan to return to the unresolved dif-
ficulties for r�0 in a future publication.

Now, we move on to the RGE for G�N,M�. In its generic
form, it reads

�D� + N� + M"r�G�N,M�
„r,�,w�r��� �,�… = 0. �4.23�

For solving this equation, it is useful to split it up into two
parts such that one of the parts collects the derivatives with
respect to � and w contained in D�. At the fixed point u*, this
procedure leads to

���� + � + N�* + M"
r
*�G�N,M�

= − ��*��� + "
r
*w�w�G�N,M�

= �*�G�N+1,M� + "
r
*w�r��� �G�N,M+1�

� cA��*�FA
�N+1,M� + "

r
*w�r��� �FA

�N,M+1�� , �4.24�

where we have dropped the arguments of G�N,M� and so on
for notational simplicity. Note that the part of the equation
that has been moved over to the right-hand side constitutes
the leading terms in an expansion of G�N,M� in powers of �

and w�r��� �. Thus, after the RGE is written in the form of
Eq. �4.24�, the SDE is safe for N+M #2. For the right-hand
side of the RGE �4.24�, we can draw on the results we es-
tablished above for cA and FA

�N,M�. We obtain

���� + � + N�* + M"
r
*�G�N,M�

„r,�,w�r��� �,�…

� �d−2�N+M+1����r��2−�−1/���/�2��d�−1�−�N+M�r�

� ��N,M��w�r��� �/�2

��/�2��r

 , �4.25�

where ��N,M��z� is a scaling function that sums up the con-

tributions of the different F̂A�z�, and whose details are unim-
portant for our main quest. Any solution of the inhomoge-
neous RGE consists, of course, of the general solution of the
underlying homogeneous equation and a particular solution
of the inhomogeneous equation. The homogeneous equation
is independent of � and w, and its solution is found to be

G�N,M��r,��hom

= ��+N�*+M"*G�N,M��r,���hom

= �d−2�N+M+1���d−2+��−�N+M�r�/�G�N,M����r,1�hom

� �d−2�N+1�−2M���r��−�d−2+��+�N+M�r�/�. �4.26�

As a particular solution of the inhomogeneous equation, we
find

G�N,M�
„r,�,w�r��� �,�…part

� �d−2�N+M+1����r��2−�−1/�

� ��/�2��d�−1�−�N+M�r�S�N,M��w�r��� �/�2

��/�2��r

 ,

�4.27�

where S�N,M��z� is some scaling function determined by a
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linear first-order differential equation containing ��N,M��z�.
Now, we are finally in the position to write down the short
distance scaling form of the two-point correlation function
via adding Eqs. �4.26� and �4.27� and subsequent integration
with respect to � and w. Introducing the scaling variables

x = ��/�2����r��1/�, �4.28a�

y = �w�r��� �/�2����r���r/�, �4.28b�

we arrive at

G„r,�,w�r��� �,�… � �d−2���r��−d+2−��A0 + A1,0x + A0,1y

+ A2,0x2 + A1,1xy + A0,2y2

+ xd�−1Sr�y/x�r�� , �4.29�

where A0 and so on are constants, and where Sr�z� is yet
another scaling function that, in principle, can be calculated
from S�N,M��z�. Based on Eq. �4.22a� and �4.22b�, we expect
that Sr�z� is analytic near z=0, and for z�1,

Sr�z� � ��− r� + Krz
�d�−1�/�r. �4.30�

We conclude this section by asserting what additional
contributions we get if we proceed to next order in the SDE
�28�, i.e., if we include operators that have at dc a naive

dimension of 6. These operators are �A��, w�r��� �A��,

�
̃���
2
̃−���, �
̃��%̃−���, and �2A��, and their respective scaling

exponents are d, d+ ��r−1� /�, d, d+ 	̄, and d+2−1 /�,
where 	̄= ��u*�=
+¯ is the so-called Wegner exponent.
The operator �2A�� does not contribute to the SDE, because
when inserted into correlation functions, it produces zero

due to translational invariance: ��2A���R�B̃�0�NC̃��0�M�
=�2�A���R�B̃�0�NC̃��0�M�=0. Therefore, the upshot here is
that the dimension 6 operators lead to additional analytic
contributions in the brackets in Eq. �4.29� which are of third
order in x and y, such as x3, x2y, and so on, as well as
additional nonanalytic contributions of the form
xd�S1�y /x�r�, xd�+�r−1S2�y /x�r�, and x�d+	̄��S3�y /x�r�.

V. SHAPE OF DISTRIBUTION FUNCTIONS

In this section, we exploit our renormalization-group re-
sults for the two-point correlation function derived in the
previous section to determine the shape of connection prob-
ability and the probability distribution for the nonlinear re-
sistance. In the remainder, we will suppress the inverse
length scale � for notational simplicity.

A. Connection probability

As reviewed in Sec. II B 2, the connection probability,
i.e., the probability for any two sites a distance �r� apart
being on the same cluster, is proportional to the two-point
correlation function of the RRN evaluated at w=0. Hence,
the scaling form �2.27� of the two-point correlation function
implies that

��r,�� = �r�2−d−��̂���r�1/�� , �5.1�

with �̂�x� being a scaling function that depends on the scal-
ing variable x defined in Eq. �4.28a�. In the following, we

will discuss the asymptotic forms of this scaling function for
small and large x.

For small x, our SDE result �4.29� implies that

�̂�x� = A0 + A1x + A2x2 + A3xd�−1 + ¯ , �5.2�

where A0 and so on are expansion coefficients. When we go
to next order in the SDE, we get additional contributions
proportional to x3, xd�, and x�d+	̄��.

Now we turn to large x, i.e., to distances �r� that are large
compared to the correlation length &� ���−�. These distances
correspond to small wave vectors q, for which we can ex-
pand the two-point vertex function �2�q�, i.e., the inverse of
the two-point correlation function, as

�2�q,�� = �2�0,���1 + &2q2 + O�q4�� . �5.3�

Thus, we obtain by applying the inverse Fourier transforma-
tion

G�r,�� =
1

�2�0,���q

eiq·r

1 + &2q2 �
1

&d�2�0,��� &

�r�

�d−1�/2

e−�r�/&,

�5.4�

where we have omitted higher-order terms. Using �2�0 ,��
��!, where != �2−���, we get

G�r,�� �
��d−3+2���/2

�r��d−1�/2 e−�r�/& =
x�d−3+2���/2

�r�d−2+� exp�− ax�� ,

�5.5�

where a is some constant. This reveals that the large-x be-
havior of the scaling function of the connection probability is
given by

�̂�x� = Ax�d−3+2���/2 exp�− ax�� + ¯ , �5.6�

with constants A and a.

B. Resistance and fractal masses

To establish the general scaling form of the resistance
distribution, we recall from Sec. II B 4 that this distribution
can be extracted from the two-point correlation function via
inverse Laplace transformation. Inserting Eq. �2.27� into Eq.
�2.32�, we readily obtain

Pr�R,r� =
�r�−�r/�

2�i
�

�−i�

�+i�

dy
Ĝ�x,y�

Ĝ�x,0�
exp�yR/�r��r/��

= R−1'r�R�r�−�r/�,��r�1/�� , �5.7�

with a scaling function 'r. In the remainder, we focus on
criticality, �=0, where

Pr�R,r� = R−1�r�R�r�−�r/�� , �5.8�

with �r�s�='r�s ,0�, and we discuss the asymptotic forms of
the distribution when the scaling variable

s ª R�r�−�r/� �5.9�

is either small or large.
For large s, we draw on our SDE results yielding
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Ĝ�x,y�

Ĝ�x,0�
= 1 + B1y + B2xy + B3y2 + xd�−1�Sr�y/x�r� − Sr�0��

+ ¯ . �5.10�

This expansion is now inserted into Eq. �5.7�. In performing
the inverse Laplace transformation, the analytic contributions
in y merely produce shorts, R=0, in the form of delta func-
tions ��R� and their derivatives. What remains reads

Pr�R,r� =
�r�−�r/�

2�i
�

�−i�

�+i�

dyxd�−1

� Sr�y/x�r�exp�yR/�r��r/��

=
1

R
� �r�

R�/�r

d−1/� 1

2�i
�

�−i�

�+i�

dzz�d�−1�/�r

� Ŝr��R1/�r/z1/�r�exp�z� , �5.11�

where Ŝr�z�=zd�−1Sr�1 /z�r�. At the critical point, we obtain
in particular

�r�s� = Cr,1s−�d�−1�/�r + Cr,2s−d�/�r + Cr,3s−�d�+�r−1�/�r

+ Cr,4s−�d+	̄��/�r + ¯ , �5.12�

where Cr,1 and so on are constants. Here, we included the
next higher-order terms in the SDE as discussed above.

Finally, we turn to small s. To this end, we expand the
two-point vertex function for small wave vectors,

�2�q;�,z� = �2�0;�,z� + �q2�q2�2�q;�,z��q2=0 + O�q4�

= z!/�rf0��/z1/�r��1 + q2/z2�/�rf1��/z1/�r� + O�q4�� ,

�5.13�

where we denote z=w�r��� � in conformity with our conven-
tions of Sec. II B 4 and where f0 and f1 are scaling functions.
At the critical point, we can replace these functions by con-
stants. By dropping terms that are subdominant for �r�
�z−�/�r, we obtain

G�r,� = 0,z� =
1

f0z!/�r
�

q

eiq·r

1 + f1z−2�/�rq2

�
y�d−3+2���/2�r

�r�d−2+� exp�− f1y�/�r� , �5.14�

where y= �r� /z�/�r in accordance with Eq. �4.28b�. Feeding
this intermediate result into Eq. �5.7�, we obtain

Pr�R,r� =
�r�−�r/�

2�i
�

�−i�

�+i�

dyy�d−3+2���/2�r

� exp�yR/�r��r/� − f1y�/�r� . �5.15�

The remaining integration can be simplified by substituting

y = X�r/�v with X � ��r�/R�/�r�1/�1−�/�r�, �5.16�

which yields

Pr�R,r� �
X�d−1+2��/2

R

1

2�i
�

�−i�

�+i�

dvv�d−3+2���/2�r

� exp�X�v − kv�/�r�� , �5.17�

where k is some constant. For large X, we may use the
saddle-point approximation provided that � /�r�1. How-
ever, � /�r$1 for d=2 and r=1 as well as r=� since �
=4 /3! We finally arrive at

�r�s� = Crs
−�d−2+2���/2��r−�� exp�− crs

−�/��r−��� + ¯ ,

�5.18�

where Cr and cr are constants. As discussed above, it is
straightforward to extract from these general results the dis-
tributions of the linear total resistance as well as the distri-
butions of the fractal masses of the red bonds, the backbone,
and the shortest and longest SAWs by taking the appropriate
limit with respect to r.

For PSAW�L ,r�, the analysis just presented in conjunction
with the method of Ref. �8� leads at criticality to the same
form as given in Eqs. �5.8�, �5.12�, and �5.18�. To transcribe
the above results to the average SAW, we just need to replace
on the right-hand side of these equations R by L, �r by �0
=� /�SAW, and the constants Cr,1 and so on by other con-
stants, say C0,1 and so on.

VI. CONCLUDING REMARKS

In summary, we calculated the asymptotic forms of the
pair-connection probability, the distributions of the total re-
sistance and fractal masses of the backbone, the red bonds,
and the shortest, the longest, and the average self-avoiding
walk between any two points on a cluster. Our analysis drew
solely on general, structural features of the underlying dia-
grammatic perturbation theory, and hence our results for the
form of the distributions are valid to arbitrary loop order,
although the critical exponents featured in these distributions
are known only to finite order, of course. The distributions of
the transport quantities such as the total resistance or the
backbone mass, etc., are essentially all of the same form. In
this sense, these distributions share a high degree of univer-
sality.

As far as future directions are concerned, we think it is
worthwhile to study the renormalizability problem for r�0
discussed in Sec. IV and its implications in more detail. It
would be interesting to have field-theoretic results for distri-
bution functions in directed and dynamic percolation. Also, it
would be interesting to see experimental or simulation re-
sults for distribution functions in any kind of percolation that
might be compared to our results presented here or to future
results. We hope that our work stimulates further interest in
this subject.
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