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ABSTRACT 
 

ATOMISTIC SIMULATIONS OF GE ON AMORPHOUS SILICA SUBSTRATES  

Claire Y. Chuang 

Prof. Talid Sinno 

High-quality Ge substrates have numerous applications, including high-efficiency 

III-V multijunction solar cells and photodetectors.  But the high cost of single-crystalline 

Ge makes the use of Ge-on-Si virtual substrates more practical for device fabrication.  

However, the lattice mismatch between Ge and Si leads to a highly strained Ge layer 

when grown directly on the Si lattice.  The high mismatch strain unavoidably leads to 

defects, primarily dislocations, that degrade the Ge film quality.  Several approaches for 

mitigating these defects have been proposed, including selective epitaxial growth (SEG), 

in which one employs an amorphous layer (most often SiO2) as a mask to reduce the 

epitaxial contact between the Ge and Si lattices to lower the mismatch strain.  SEG has 

been demonstrated to successfully produce high-quality Ge films on Si, although defects 

are not fully eliminated.  Further improvements will require quantitative understanding of 

the underlying atomic-scale mechanisms.   

In this work, we present a computational framework to atomistically model the 

components of the SEG system (Si/SiO2/Ge).  The model is validated by comparing 

predictions to experimental observations and ab initio calculations of various properties 

related to crystalline Si and Ge and amorphous SiO2, as well as combinations of these 

materials.  The framework is then applied to study in detail the deposition of Ge on 

amorphous SiO2.  It is shown that the simulations are able to access experimentally 

meaningful deposition conditions and reproduce several quantities related to the island 

size distribution.  We then extend our simulation framework for deposition to include 
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coarse projective integration (CPI).  CPI is a multiscale modeling technique well-suited 

for situations, like atomic deposition, in which a system exhibits fast, stochastic 

processes, superposed onto slowly-evolving dynamics.  In particular, we demonstrate an 

approach for generating atomistic configurations from limited knowledge of an island 

size distribution, which represents one of the key challenges in applying CPI to atomistic 

deposition.  The results generated here should be easily adaptable to other deposition 

systems.   
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 Introduction Chapter 1.
 

1.1 Motivation and Thesis Overview 

High-quality Ge films on Si substrates have many potential applications, 

including III-V multijunction solar cells [1-5] and photodetectors [6, 7], but the 4.2% 

lattice mismatch between Ge and Si leads to the formation of threading dislocations when 

the Ge film is directly grown on the Si wafers.  Selective epitaxial growth (SEG) [8-13] is 

a technique that uses an amorphous layer (most often SiO2) in between the Ge and Si 

layers to relieve the lattice mismatch strain in the Ge film.  In SEG, the Si substrate is 

covered by a thin layer of amorphous SiO2 (a-SiO2) with nanoscale windows prior to Ge 

deposition.  During deposition, the Si lattice exposed by the windows serves as seeding 

sites for the growth of Ge islands.  The Ge islands grow and coalesce upon continued 

epitaxial deposition, forming a Ge film layer on top of the SiO2-covered Si.  The 

localized, nanoscale contact area between the Ge film and the underlying Si substrate 

greatly reduces the total mismatch.  SEG has been shown to successfully produce Ge 

films with low dislocation density (<10
6 

cm
-2

) [13], but further improvements require 

better understanding of the formation of defects, namely stacking faults and dislocations.  

This thesis focuses on the development of a computational framework to describe 

the SEG system that involves crystalline Si and Ge as well as a-SiO2.  The computational 

model is based on the Tersoff empirical interatomic potential for Si-Ge [14] and a recent 

parameterization for the Si-O systems [15], with a single fitting parameter to describe the 

Ge-O interaction strength.  Using atomistic molecular dynamics (MD) simulations, the 

model is shown to reproduce a wide range of structural and energetic properties relevant 

to the SEG system, including structures of bulk a-SiO2, interface energies for Si-SiO2 and 
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Ge-SiO2.  Moreover, the adsorption of Ge on a-SiO2 is successfully captured in the 

current model using grand-canonical Monte Carlo simulations (GCMC).  The fidelity of 

the model is further tested by applying it to processes occurring in SEG using MD, 

namely the random nucleation of Ge islands on the a-SiO2 surface.  The model 

predictions are in good agreement with the experimental results, confirming its validity 

for the SEG system of Ge films on SiO2-covered Si substrates. 

The agreement with experimental measurements in the MD simulation of Ge 

island nucleation on a-SiO2 occurs when the deposition rate is slow relative to other 

processes responsible for island rearrangement and growth, even though the deposition 

fluxes are still orders of magnitude higher than in experiments.  Further reduction in the 

deposition flux is desired, but the fluxes used in our study are already at the timescale 

limit of MD.  The timescale limitation is a well-established problem in the simulation of 

deposition systems.  Many studies combined computational models at different scales to 

examine the deposition systems at extended length and timescales [16-20].  Here, we 

focus on a multiscale simulation technique, known as coarse projective integration (CPI) 

[21-24], that exploits the timescale separation in complex systems.   

Coarse projective integration is a type of the equation-free analysis.  The 

fundamental idea of the equation-free analysis is that many systems that are governed by 

fast, stochastic microprocesses also exhibit a slowly-evolving manifold characterized by 

some coarse variables.  In the case of deposition systems, the coarse variables may 

contain moments of the island size distribution or average surface height.  The closed-

form equations governing the evolution of these variables are not known, but their values 

at any time can be computed directly from the full microscopic system configuration.  

Based upon this idea, in CPI the temporal gradients of the coarse variables are computed 
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by conducting short MD simulations at any points of time.  These numerically-estimated 

gradients are then used to evolve the differential equations in the coarse variables over 

time intervals that are large relative to the microprocesses, but small relative to the coarse 

variable timescale.   

The primary challenge for applying CPI to deposition of Ge on a-SiO2 substrates 

is the reconstruction of microscopic configurations from coarse variable descriptions.  

The a-SiO2 surface presents a highly heterogeneous binding environment to Ge atoms 

and clusters.  Placing islands at locations that are energetically unfavorable or 

constructing island morphologies that are unrealistic with respect to their locations will 

tend to produce instability of the reconstructed system and inability to maintain 

consistency with the slow manifold.  We address this issue by designing a lifting 

procedure that correctly reproduces the evolution of the slow manifold.  Our results allow 

for future application of CPI to the deposition and islanding of Ge on an a-SiO2 surface. 

Additional considerations are given to examining the aggregation of self-

interstitials in bulk Si using a recent parameterization of the Tersoff potential model for 

Si [25].  The small interstitial clusters, with sizes less than 150 interstitial atoms, are 

important to controlling the Si wafer quality during crystallization and subsequent 

processing steps.  While many theories and macroscopic processing models require their 

morphological and energetic properties as input, they are difficult to study experimentally 

due to their small size and transient nature.  With the use of both direct and accelerated 

MD, we study the formation thermodynamics and morphology of these small interstitial 

clusters as a function of size and temperature based on the concept of inherent structure 

landscape.   
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A unifying theme across the different topics covered in the dissertation is the use 

of atomistic simulations with empirical interatomic potentials.  In the next section, a brief 

introduction to atomistic simulations is discussed.  An organization of the thesis is given 

at the end of the chapter.   

 

1.2 Atomistic Simulations with Empirical Interatomic Potentials 

The main goal of our work is to study defect formation processes during SEG 

using computer simulations.  Over the years, computational models at different 

resolutions have been developed to describe phenomena at various time and length scales 

[26].  It is important to choose a computational model that best represents the processes 

of interest. 

The computational models with the finest resolution are the ab initio methods, in 

which the interaction between nuclei is computed using quantum mechanical models.  Ab 

initio methods are widely used in systems where explicit knowledge of the electronic 

structures is required, for example chemical reactions [2, 27].  Due to the extensive 

computational load, ab initio calculations are often limited to the scale of picoseconds 

with hundreds to thousands of atoms.   

Atomistic simulations extend the size and timescales of the ab initio methods by 

coarse graining out the electronic details of the system.  Instead, the interactions between 

atoms are computed using mathematical models that are designed to reproduce the force 

field of the respective system.  The decrease in computational demand allows atomistic 

simulations to reach microseconds and billions of atoms [28].  Large-scale atomistic 

simulations allow one to make direct comparison with experimental observations, for 

example in the simulation of the deformation of nanopillars [29].  
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When the motion of individual atoms is not relevant, coarse grained models lump 

groups of atoms together into single units to reduce the degrees of freedom in the system 

while retaining selective microscopic details.  The coarse grained models are at 

mesoscopic level on the order of micrometers and micro- to milliseconds [26].  Examples 

of coarse grained models include the simulation of polymers [30, 31] and biomolecules 

[32-34].   

Models with the lowest resolution are the continuum models that are on 

macroscopic length and time scales.  In these models, the system is not viewed as an 

ensemble of particles but rather continuous fields that are described by a system of 

mathematical equations, often ordinary or partial differential equations (ODEs or PDEs).  

Examples of such models include crystal growth in binary systems [35] and strain fields 

in Ge quantum dots on SiO2-covered Si substrates [36]. 

In our work, we choose atomistic MD simulations with the use of a well-

characterized empirical interatomic potential model as the means to probe the SEG 

system due to its ability to make direct connections to the experiments.  Over the years, 

various empirical potential models have been proposed for Si and/or Ge that are fitted to 

a set of material properties, such as cohesive energies and lattice constants (hence the 

name “empirical”).  Some popular examples of these empirical potential models include 

the Stillinger-Weber [37], the Environment-Dependent Interatomic Potential [38], the 

modified embedded atom method [39], and the Tersoff models [14, 40, 41].  In this work, 

we choose the Tersoff empirical potential model for the Si-Ge binary system [14] and 

combine it with the recent parameterization for SiO2 [15] to describe the Ge-Si-O ternary 

SEG system with a single fitting parameter controlling the Ge-O interaction strength. 
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In general, it is not possible to capture quantitatively all properties of interest with 

empirical potentials.  For example, while the point defect formation energies in 

crystalline Si are successfully reproduced by the Tersoff empirical potential [41], it over-

predicts the melting temperature by 150% [39].  In the following chapters, we address 

this issue by carefully validating the empirical model for various properties and processes 

relevant to the Ge-on-Si SEG system to find the best overall description.   

 

1.3 Thesis Outline 

The structure of the thesis is organized as follows.  In Chapter 2 we propose a 

Tersoff-based empirical potential model for the Ge-Si-O ternary system with a single 

fitting parameter controlling the Ge-O interaction strength.  The fidelity of the model is 

studied in detail by comparing its predictions to experimental measurements or electronic 

structure calculations.  The properties tested include the structure of bulk amorphous 

SiO2, the Si/SiO2 and Ge/SiO2 interface energies, and Ge binding on a-SiO2 surfaces.  In 

Chapter 3 we applied to model to study dynamical processes that take place during SEG.  

In particular, we focus on the random nucleation of Ge islands on a-SiO2 surfaces.  By 

the application of atomic nucleation theory, we draw quantitative comparisons to prior 

experimental measurements and further validate the potential framework for the 

simulations of selective epitaxial growth of Ge films on Si substrates.  In Chapter 4, we 

use our knowledge of the Ge-SiO2 deposition system as our basis to develop coarse 

projective integration, a multiscale modeling technique, for deposition systems.  A 

procedure for reconstructing microscopic configurations of Ge islands on a-SiO2 surfaces 

is proposed and validated against results from direct simulations.  In Chapter 5, we turn 

to study the small self-interstitial clusters in crystalline Si.  The formation free energies 
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and entropies as functions of size and temperature are computed using the inherent 

structure landscape framework.  Finally, conclusions and outlook of this work are 

presented in Chapter 6. 
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 Computational Framework for the Ge-Si-O Ternary    Chapter 2.

Atomic System 
 

2.1  Introduction 

High-quality, single-crystal Ge substrates are useful for fabricating various 

advanced devices, including high-efficiency multijunction solar cells [1, 3, 4] and light 

emitters [42].  The need for Ge arises from its lattice size compatibility with various III-V 

materials (e.g. GaInP2 and GaAs).  However, the high cost of bulk single-crystal Ge has 

driven efforts to find a replacement, namely thin Ge films grown epitaxially on Si wafers.  

In addition to the greatly reduced cost relative to bulk Ge, such substrates also offer the 

possibility for monolithic integration of optoelectronics with traditional Si-based CMOS 

technology [43].   

A key challenge for epitaxial deposition of Ge on Si is the 4.2% lattice mismatch, 

which leads to large stresses and concomitant defect formation, primarily in the form of 

threading dislocations (TD) that terminate at the Ge surface [11].  Many approaches for 

solving this issue have been proposed in the literature.  Among the most intensively 

studied approaches is the graded SiGe layer technique [44], in which Si1-xGex with 

gradually increasing Ge content is grown on a Si substrate in order to distribute the 

mismatch stress across a thicker film.  This approach has been used to lower the TD 

density to ~10
6
 cm

-2
.  Other well-researched approaches include cyclical thermal 

annealing [45] and liquid-phase epitaxy (LPE) [46, 47].  In the latter, melted Ge is 

encapsulated in a micro-crucible with insulator walls, and Ge contacts underlying Si 

within a limited seeding area of approximately 1000 μm
2
 through a dielectric window 

[48, 49].   
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A particularly promising approach for reducing the impact of lattice mismatch in 

Ge-on-Si heteroepitaxy is selective epitaxial growth (SEG) [9, 11, 50], in which a 

templated interlayer is used to significantly reduce the contact area and strain energy 

density at the mismatched heterojunction and/or to trap defects from propagating by 

“necking” [9].  In a typical SEG process, a thin interlayer (most commonly SiO2) that 

provides separation between Ge and Si is deposited on a Si substrate and subsequently 

perforated using one of several possible approaches [11, 50].  The Si exposed by the 

perforations serves as seeding sites (or pads) for the growth of Ge islands.  These islands 

grow and coalesce upon continued epitaxial deposition, forming a high-quality Ge film.  

Improvement over conventional heteroepitaxy is obtained because the localized contact 

between Ge islands and underlying Si substrate greatly reduces the total mismatch.  This 

reduction is especially significant when the total contact area between Ge and Si 

decreases to nanoscale dimensions because the strain density near the heterojunction 

decreases over a characteristic length comparable to the Ge-Si junction size [51].  On the 

other hand, island-island coalescence unavoidably leads to defects (stacking-faults and 

twins) via a process that remains incompletely understood, despite recent progress [13, 

52]. 

The interaction between deposited Ge atoms and the interlayer is a critical factor 

in establishing the success of the SEG approach for growing high-quality Ge films.  First, 

nonspecific Ge island nucleation on the interlayer must be avoided as these islands are 

not organized by the underlying silicon lattice.  Second, as Ge islands grow out of 

seeding pads and onto the interlayer surface, the stress distribution within them is likely 

to be influenced by their interaction with the interlayer.  The morphology, as well as the 

mobility, of the islands relative to the interlayer surface, depend strongly on the 
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Ge/interlayer interaction [53], which in turn may play a significant role in coalescence 

defect formation.   

In recognition of the importance of the Ge-SiO2 interaction in selective epitaxial 

growth and defect formation, the primary aim of this work is to validate an empirical 

potential model for the Ge-Si-O atomic system for use in molecular simulations.  The use 

of empirical potentials permits the consideration of relatively large numbers of atoms 

thereby allowing more direct connections to experimental measurements [54-60].  On the 

other hand, the quality of the predictions is entirely dictated by the fidelity of the 

potential model, which must be verified carefully against more accurate interaction 

models that include explicit quantum mechanics.  While empirical potentials have been 

tested extensively for single component materials, e.g., Si or Ge, the uncertainty 

associated with their use in a complex system such Ge-SiO2 is much less well 

established.  Here, we employ the Tersoff interaction potential [14] for Si and Ge and its 

recent extension to SiO2 [61].  The Tersoff interaction model has been tested extensively 

in simulations of crystalline and liquid Si and Ge and is one of several popular potentials 

for these materials, along with the Stillinger-Weber [37], the Environment-Dependent 

Interatomic Potential [38], and the modified embedded atom method [39] potential 

models.  Using several different experimental measurements, we study a single parameter 

to assess whether such a simple potential model can be employed in meaningful 

simulations of the Ge-SiO2 system. 

In the following section, the salient details of the Tersoff model are presented and 

the fitting parameter is identified.  In Section 2.3, the interaction potential is applied to 

study several different Si–O systems including bulk a-SiO2, a-SiO2 surfaces, and the Si-

SiO2 interface.  We focus on the interactions between Ge and a-SiO2 in Section 2.4 to 
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parametrize the interaction potential for the SEG system.  The properties analyzed 

include Ge-SiO2 interfaces, as well as desorption and diffusion of Ge on a-SiO2.  We 

show that the resulting potential is able to describe well various properties that have been 

measured experimentally or computed using more accurate quantum mechanical 

simulations based on electronic density functional theory (DFT).  Finally, in Section 2.5 

we provide conclusions and outlook for further work. 

 

2.2 A Tersoff-Based Interaction Model for the Ge-Si-O System 

The Tersoff potential framework has been applied to pure Si [14, 40, 41] and Ge 

[14], Si-Ge [14] and Si-C [14] alloys, and recently to the Si-O mixture [61].  In the latter 

case, the resulting potential was applied to both crystalline and amorphous SiO2 systems, 

and was shown to give reasonable descriptions of various SiO2 structural and dynamical 

properties, including lattice parameters, bond energies and radial distribution functions. 

Multiple parameterizations of the Tersoff model have been published, particularly 

for Si; the values used here are listed in Table 2.1.  Within the Tersoff model, the overall 

system energy is described by a pair-wise summation over all atoms that are within a 

specified cut-off distance.  However, the attractive term in the pair-wise interaction 

depends on the local environment, rendering the Tersoff potential a many-body function, 

i.e., 

      
1

2
c ij R ij ij A ij

i j

E f r f r b f r


  
    (2.1) 

where    expR ij ij ij ijf r A r   and    expA ij ij ij ijf r B r    represent pair repulsion and 

attraction functions, respectively, and ( )C ijf r  is a smooth cut-off function given by  
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   




 . (2.2) 

In the preceding equations, i and j are atom labels, and ijr is the length of the ij 

bond.  The various parameter values are assigned to a specific atom type; parameters that 

are denoted by double indices, which can correspond to both homo-atomic and hetero-

atomic interactions, are obtained by set mixing rules.  In the preceding equations, 

therefore, 1/2( )ij i jA A A , 1/2( )ij i jB B B , 1/2( )ij i jR R R , and 1/2( )ij i jS S S , while 

( ) / 2ij i j     and ( ) / 2ij i j    . 

The attraction term is modulated by the bond-order function  

  
1 2

1
i

i i
n

n n

ij ij i ijb   


   ,  (2.3) 

which makes the strength of each pair-wise interaction depend on the local environment.  

The function ij  includes angular contributions based on three-body terms, i.e., 

    
,

ij C ik ik ijk

k i j

f r g  


  ,  (2.4) 

where 

    
2

2 2 2 21 cosijk i i i i i ijkg c d c d h      
  

.  (2.5) 

All singly-subscripted parameters depend only on a single atom type.  The 

parameter 
ij

 
controls the overall strength of the bond-order modulation, and it is 

assumed that all charge transfer between dissimilar atoms is accounted for implicitly by 

the values of the various ij .  For all homo-atomic interactions, 1ii  .  For hetero-
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atomic interactions, it is assumed that ij ji  .  Previous studies have established 

1.00061Si Ge    [14] and 1.17945Si O    [61, 62], but no values are currently published 

for Ge O  , which serves as the single fitting parameter in the present study.   

Table 2.1 provides a complete summary of all Tersoff parameters for the three 

elements, Si, Ge, and O used in this work.  The first two columns represent two different 

parameterizations for Si.  The first corresponds to the original values specified by Tersoff 

for pure Si and Si-Ge alloy in ref. [14].  The second set of Si parameters corresponds to 

the Si-O potential fit in ref. [61], which only considered SiO2 in the regression process.  

This version of the Si-O potential is henceforth referred to as the Munetoh-Tersoff model, 

or MT.  Note that in the MT potential, the Si cut-off parameters, SiR  and SiS , were 

modified in the regression process but all other Si parameters were unchanged (Column 2 

in Table 2.1).  In a subsequent study of Si-on-SiO2 [62], the same group used the original 

values of SiR  and SiS  (Column 1 in Table 2.1); we refer to this version of the Si-O 

potential as the Lee-Tersoff model, or LT.   

The primary reason for reverting to the original values for cut-off parameters in 

ref. [62] was the fact that the adjusted cut-off parameters in the MT potential degraded 

the description of pure Si, which was not considered in the original parameterization.  For 

example, the influence of the two cut-off parameter sets on the thermal expansion 

behavior of pure crystalline Si is shown in Figure 2.1.  Clearly, the MT potential leads to 

an unphysical negative thermal expansion coefficient at elevated temperatures.  However, 

despite this issue, both the MT and LT potentials are used in the present study and 

detailed comparisons are made.  We show that for a complex situation such as SEG on Si 

with a SiO2 interlayer, the best parameterization is a compromise among several factors. 
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Table 2.1  Tersoff potential parameters for Si, Ge, and O used in the present study.  The 

two columns for Si represent the original parameters (T-Si) [14] and refitted values from 

ref. [61] (M-Si). 

 T-Si M-Si Ge O 

A (eV) 1.8308 × 10
3
 1.8308 × 10

3
 1.769 × 10

3
 1.88255 × 10

3
 

B (eV) 4.7118 × 10
2
 4.7118 × 10

2
 4.1923 × 10

2
 2.18787 × 10

2
 

λ (Å
-1

) 2.4799 2.4799 2.4451 4.17108 

µ (Å
-1

) 1.7322 1.7322 1.7047 2.35692 

β 1.1000 × 10
-6

 1.1000 × 10
-6

 9.0166 × 10
-7

 1.1632 × 10
-7

 

n 7.8734 × 10
-1

 7.8734 × 10
-1

 7.5627 × 10
-1

 1.04968 

c 1.0039 × 10
5
 1.0039 × 10

5
 1.0643 × 10

5
 6.46921 × 104 

d 1.6217 × 10
1
 1.6217 × 10

1
 1.5652 × 10

1
 4.11127 

h -5.9825 × 10
-1

 -5.9825 × 10
-1

 -4.3884 × 10
-1

 -8.45922 × 10
-1

 

R (Å) 2.7 2.5 2.8 1.7 

S (Å) 3 2.8 3.1 2 
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Figure 2.1.  Crystalline silicon lattice parameter, aSi, as a function of temperature using 

the MT (circles) and LT (squares) parameters.   The two set of parameters for Si only 

differ in the specification of the cut-off function.  Also shown are experimental values 

taken from ref. [63] (line). 

 

2.3 Validating the Si –O Interactions 

In Sections 2.3 and 2.4, we describe several situations that were used to evaluate 

the suitability of the Tersoff potential framework to quantitatively describe the Ge-Si-O 

atomic system.  All molecular dynamics simulations were performed using the LAMMPS 

simulation package [64] with a Nose-Hoover thermostat and barostat [65] to control 

temperature and pressure, respectively.  All simulations were performed in the NPT 

ensemble with a time step of 1 fs unless otherwise noted.  Instantaneous quenches to zero 

temperature were performed using conjugate gradient energy minimization with a 

convergence criterion that the energy change between two minimization steps be less 

than 1×10
-16 

eV. 
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2.3.1 Bulk Amorphous SiO2 

Amorphous SiO2 (a-SiO2) glass was prepared using a multi-step melt-quench 

sequence.  First, a β-cristobalite SiO2 lattice was created in a cubic 5.82 nm × 5.82 nm × 

5.82 nm simulation box with 4096 Si and 8192 O atoms.  Periodic boundary conditions 

were applied in all three directions.  The system was annealed at 5000K and zero pressure 

for 7.5 ns to equilibrate SiO2 in the liquid state.  The temperature was then reduced 

gradually to 0K at fixed zero pressure with constant cooling rates ranging from 1×10
11

 

K/s to 1×10
15

 K/s.  It is well known that the structure and energy of silica glass obtained 

using the MD melt-quench approach depends strongly on the cooling rate [66].  The 

enthalpy as a function of time for several different cooling rates is shown in Figure 2.2 

for MT a-SiO2 glasses; similar results were obtained with the LT potential.  The two 

slowest cooling rates, 1×10
11

 K/s and 1×10
12

 K/s, result in zero temperature energies that 

differ by less than 0.3%.  In order to balance the computational efficiency and accuracy, a 

cooling rate of 1×10
12

 K/s was chosen as the default cooling and heating rate in the 

remainder of this study.  It should be noted that the idealized SiO2 preparation procedure 

described here (and used throughout the following studies) is qualitatively expected to 

lead to glass structures that are more consistent with “thermal” oxide, as opposed to the 

“chemical” oxide grown in refs. [11, 53].  The latter generally is less dense and would 

contain a substantially higher density of hydroxyl groups.  In general, the growth 

mechanism for the oxide will therefore impact both the chemical and thermophysical 

properties of the material and presents a source of uncertainty in the predictions and 

comparisons made throughout this study. 
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Figure 2.2.  Enthalpy per SiO2 unit as a function of temperature during constant-cooling 

rate NPT quenches for the MT potential.  From top to bottom, the cooling rates are 

1×10
15

 K/s (green), 1×10
14

 K/s (red), 1×10
13

 K/s (blue), 1×10
12

 K/s (black), and 1×10
11

 

K/s (orange).  

 

The final glass structures generated using the MT and LT potentials are 

structurally very similar.  The densities of MT and LT glasses at 0K are 2.28 g/cm
3
 and 

2.22 g/cm
3
 respectively, which are in excellent agreement with the experimental value 

(2.2 g/cm
3
 [67]).  The partial radial distribution functions (RDF) and bond angle 

distributions for MT and LT glasses generated by quenching at 1×10
12 

K/s to 300K are 

shown in Figure 2.3 and Figure 2.4, respectively.  Also shown for comparison are 

literature results from DFT calculations [68].  The MT and LT SiO2 glass RDFs are very 

similar.  Despite the fact that the Si-Si partial RDFs predicted by MT and LT exhibit a 

peak that is shifted towards slightly larger Si-Si bond distance, both MT and LT a-SiO2 

RDFs are generally in good agreement with the DFT results. 
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Figure 2.3.  Partial radial distribution functions for bulk amorphous SiO2 quenched to 

300K from the liquid state at a constant cooling rate of 1×10
12 

K/s.  MT potential – blue 

line; LT potential – red line; DFT [68] – dashed black line. 

 

The calculated bond-angle distributions in Figure 2.4 again show the structural 

similarity between MT and LT glasses.  Both potentials predict structures that are in good 

overall agreement with the DFT results, but a sizeable discrepancy in the peak for the Si-

O-Si distribution is visible.  Note, however, that the DFT results themselves are not in 

very good agreement with experimental measurements [69] and therefore it is difficult to 

draw concrete conclusions regarding this discrepancy.  In general, the fidelity of DFT 

calculations can be limited by small system size and short relaxation times, the latter 

being significant for glassy materials such as a-SiO2.  In conclusion, both MT and LT 

potentials give similar descriptions for the bulk SiO2 glass. 
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Figure 2.4.  Bond-angle distributions for bulk amorphous SiO2 quenched to 300K from 

the liquid state at a constant cooling rate of 1×10
12 

K/s.  MT potential – blue line; LT 

potential – red line; DFT [68] – dashed line; experimental measurement [69] – black solid 

line (Si-O-Si only). 

 

2.3.2 Amorphous SiO2 Free surface 

Amorphous SiO2 surfaces were generated using the bulk glass structure obtained 

at the end of the melt-quench sequence outlined in the previous section and removing the 

periodic boundary conditions in the z-direction to create two free surfaces.  Two buffer 

regions with height 10 Å were then inserted at the top and bottom of the simulation box.  

The system temperature was increased to 2000K at a rate of 1×10
12 

K/s and annealed at 

2000K within the NPT ensemble until the internal energy reached a constant value.  The 

a-SiO2 surface energy was calculated using 
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where Esys and Nsys represent the energy and number of SiO2 molecules, respectively, in 

the system containing the surface.  The prefactor accounts for the two surfaces at the top 

and bottom of the a-SiO2 slab.  The corresponding quantities with subscript “ref” refer to 

the reference system, which was prepared in an identical manner but with periodic 

boundary conditions maintained at all surfaces.  In the present calculation, the system 

size was 1728 SiO2 molecules for both the surface-containing and periodic reference 

simulation cells, corresponding to a simulation cell with dimensions 4.1 nm × 4.5 nm × 

6.0 nm (including the buffer regions).  For the system containing the free surfaces, this 

size corresponds to a total a-SiO2 surface area of 2×10
-17

 m
2
.  The calculated surface 

energies for the MT and LT SiO2 glasses are 0.42 ± 0.04 J/m
2
 and 0.43 ± 0.07 J/m

2
, 

respectively.  By comparison, the experimental value [70] is 0.29 J/m
2
, which is in 

reasonable agreement with the amorphous SiO2 surface energies reproduced by the two 

potential models. 

 

2.3.3 Si-SiO2 Interface 

The Si-SiO2 interface energy was calculated using the approach described by 

Djurabekova and Nordlund [71].  First, bulk a-SiO2 glass at 0K was created and 

equilibrated using the melt-quench sequence described in Section 2.3.1.  In the present 

simulations, the cell dimensions at the end of the preparation step were approximately 5.5 

nm × 5.6 nm × 5.9 nm.  A spherical region with diameter 3.8 nm was then cut out from 

the center of the domain and a spherical Si nanocrystal with the same size as the cavity 

(approximately 1440 Si atoms) was inserted into the cavity.  The nanocrystal was slightly 

compressed to leave a gap of 1.5 Å between the Si nanocrystal surface and the 

surrounding a-SiO2 matrix to prevent atoms from overlapping.  The temperature of the 
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system was then increased to 300K at a rate of 1×10
12

 K/s, and subsequently annealed at 

300K for 5 ns (at zero pressure) to allow the system to equilibrate (Figure 2.5b).  The 

procedure was repeated with different Si nanocrystal orientations to reduce statistical 

uncertainty. 

 

 

Figure 2.5. (a) Initial configuration of Si nanocrystal in amorphous SiO2 matrix showing 

gap between nanocrystal and matrix.  (b) Configuration snapshot following 5 ns of 

equilibration at 300K and zero pressure.  Blue spheres are Si atoms; red spheres are O 

atoms.  

 

The orientationally-averaged Si-SiO2 interfacial energy, 
2Si SiO  , was calculated 

according to the expression 

  
2

1 NC C GL GL GL GL

Si SiO sys Si Si Si Si O OE N E N E N E
A

 
       
 

,  (2.7) 

where A is the surface area of the nanocrystal, and sysE  is the energy of the overall 

Si/SiO2 system at equilibrium.  
NC

SiN , 
GL

SiN , and 
GL

ON  refer to the number of Si atoms in 

the Si nanocrystal, Si atoms in the glass matrix, and O atoms in the glass matrix, 
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respectively.  The energies, 
C

SiE , 
GL

SiE , 
GL

OE  are the per-atom energy values for Si atoms 

in the bulk crystal, Si atoms in the bulk glass, and O atoms in the bulk glass, respectively.  

All the bulk reference states are defined at the same temperature as the test system 

containing the embedded nanocrystal.   

The numbers of Si atoms in the nanocrystal and the a-SiO2 matrix were 

determined by locating the nanocrystal interface using a radially-averaged energy profile 

as shown in Figure 2.6a.  The system was divided into shells with thickness 0.5 Å 

extending outwards from the center of the nanocrystal and the average energy of the 

atoms within one spherical shell computed.  In Figure 2.6a, a decrease in average energy 

across a ~3 Å window is observed as the system transitions from the nanocrystal region 

to the glass matrix region.  The location of the nanocrystal-glass interface is defined as 

the center of this window.  Note that the energy increase at the particle center exhibited in 

the MT case (solid line in Figure 2.6a) corresponds to the point defect shown in Figure 

2.5b – this was a random event and does not affect the interface energy calculations.  The 

pressure distribution in the embedded nanocrystal and surrounding matrix also was 

calculated as a function of radial position using  

 
1

( )
3

shellN
i i i

shell xx yy zz

i

P       ,  (2.8) 

where shellP  and shellN  are the pressure and total number of atoms (regardless of type) of 

the given shell, and 
i

xx  , i

yy  , 
i

zz  are the normal components of the stress tensor of 

atom i in the given shell.  The pressure distributions for both MT and LT potentials are 

plotted in Figure 2.6b. 

The resulting Si-SiO2 interface energies are 1.5 ± 0.03 J/m
2
 (MT potential) and 

1.1 ± 0.03 J/m
2
 (LT potential), respectively; DFT calculations [72] predict a value of 1.5 
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J/m
2
.  The MT value is (perhaps somewhat fortuitously) in exact agreement with the DFT 

result, although both values are in generally good agreement.  In summary, both the MT 

and LT parameterizations provide a reasonably good picture for the bulk a-SiO2 glass and 

the Si-SiO2 interface.  While the MT potential predicts an unphysical negative thermal 

expansion coefficient for bulk Si, it does appear to be slightly better at predicting the Si-

SiO2 interface energy.  In the following sections, we address the ability of both potentials 

to capture the interactions between Ge and a-SiO2. 

 

 

Figure 2.6. (a) Energy and (b) pressure profiles for the embedded nanocrystal-glass 

matrix systems.  Both energy and pressure distributions were radially averaged over 

shells with thickness 0.5 Å.  MT potential—black line; LT potential—red line. 

 

2.4 Atomistic Analysis of Ge on Amorphous SiO2  

2.4.1 Ge-on-SiO2 Adsorption/Desorption 

As mentioned in Section 2.2, there is no published literature that extends the 

Tersoff potential model to include Ge-O interactions.  Here, we mix the original Tersoff 

parameters for crystalline Ge [14] with the Munetoh et al. parameters for O [61] (see 

Table 2.1) in order to describe the interaction between Ge and O atoms.  The parameter 
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mixing procedure follows the mixing rules specified in the Tersoff potential model [14], 

leaving one free parameter ( Ge O  ) to control the Ge-O bond strength that we use to 

match simulation results to experimental measurements.  Henceforth, we refer to a 

normalized Ge-O interaction strength, /GS Ge O Si O    , to describe and interpret our 

results.  Han et al. [11, 12] have measured a variety of properties related to the behavior 

of Ge atoms adsorbed on amorphous SiO2, including the Ge desorption energy and the 

Ge surface diffusion activation barrier.  Moreover, the Ge-SiO2 interface energy and the 

equilibrium Ge island contact angle on a-SiO2 also are available in the literature [73, 74].  

We first use the Ge desorption energy reported by Han et al. to establish bounds on GS  

for both the MT and LT potentials.  We then use the fitted value of Ge O   to predict the 

orientationally-averaged Ge-SiO2 interface energy. 

An equilibrated a-SiO2 free surface was prepared as follows.  A periodic cell with 

dimensions 5.4 × 6.4 ×5.8 nm was employed to equilibrate bulk SiO2 (see Section 2.3.1), 

after which the topmost 2 nm was removed to create an exposed SiO2 surface.  Periodic 

boundary conditions were maintained in the x and y directions but removed in the z 

direction.  The bottom 1 nm of the SiO2 was held fixed in all subsequent steps.  The 

system was then heated to 2100K within the NPT ensemble at a rate of 1×10
12

 K/s and 

held at constant temperature until equilibrated as measured by the total potential energy.  

During equilibration, the normal pressure components in the x and y directions were set 

to zero.  The prepared surface was then used to characterize Ge adsorption behavior on a-

SiO2 using two different approaches; these are described below in Sections 2.4.1.1 and 

2.4.1.2.   
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2.4.1.1   Grand-Canonical Monte Carlo Simulations 

The a-SiO2 slab prepared above was used to initialize a simulation cell according 

to the approach prescribed by Bakaev and Steele [75, 76].  The a-SiO2 surface was 

divided into a square grid with spacing 0.45 Å in both x and y directions.  At the center of 

each grid square, a Ge probe atom was placed at least 3 Å above the surface.  The Ge 

atom was brought towards the surface by slowly decreasing its z coordinate while 

keeping the x and y positions fixed.  The height at which the system energy reached a 

minimum was recorded.  The simulation cell boundary in the +z direction for each grid 

square then was set to 8 Å above the respective minimum energy height.  The resulting 

simulation box has a non-uniform boundary at the top z-surface as shown in Figure 2.7. 

 

 

Figure 2.7.  Height distribution (in Å) at top simulation cell boundary for GCMC.  

 

Grand canonical Monte Carlo (GCMC) simulations were carried out [77], in 

which Ge atoms are inserted, deleted, or moved inside the cavity space above the a-SiO2 
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surface.  Each type of move was attempted with equal probability.  The atoms in the a-

SiO2 slab were held fixed throughout the simulation; this assumption is discussed further 

below.  Across the entire surface, the cavity space was defined to extend from 2 Å below 

the minimum energy height to the top of the system boundary.  After equilibrating the 

system for 50,000 GCMC steps, each run was allowed to evolve for 200,000 GCMC 

steps.  The adsorption data for a given simulation condition (defined by the temperature, 

the Ge-O bond strength, GS , and the potential model (i.e., MT or LT)) was averaged 

over at least 3 runs in order to improve the statistics.  In addition, the entire procedure 

was repeated using three different a-SiO2 surfaces to ensure robustness of our results. 

Adsorption isotherms were computed for several different values of GS  for both 

MT and LT potentials as shown in Figure 2.8 for T = 2100K.  For both potentials, the 

adsorption isotherms converge as GS  decreases.  However, the MT isotherms are more 

sensitive to changes in GS  than those obtained with the LT potential.  One qualitative 

difference between the two potentials is apparent in the MT isotherm generated with GS  

= 1.0, which appears to exhibit an inflection point at   = -4.1 eV.  A possible source for 

this behavior is a transition from dilute (sub-monolayer) adsorption to multi-layer 

adsorption [78].  Note that higher values of GS  correspond to increased binding between 

Ge and O atoms in the a-SiO2 substrate.   

Next, the isosteric heat of adsorption, stq , was calculated from the isotherms in 

Figure 2.8 according to [75, 79] 

 2 ln
st B B

UP
q k T k T

T N


  

 
,  (2.9) 
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where N is the number of adsorbate molecules, and sys refU U U   is the difference in 

the potential energy of the system relative to the isolated SiO2 substrate.  The second 

equality in eq. (2.9) is obtained via the grand canonical partition function and assuming 

that the vapor phase is ideal [75].  The quantity /U N   was calculated from the 

GCMC simulations at a given value of chemical potential using [75] 

 
22

U UN U N

N N N

 


 
.  (2.10) 

The isosteric heat of adsorption therefore is the enthalpy change in the system as 

the adsorbate molecules adsorb onto the surface—we take this value to correspond to the 

desorption energy measured experimentally in ref. [53]. 
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Figure 2.8.  Sample Ge-on-SiO2 adsorption isotherms for the MT and LT potentials at 

2100K as a function of chemical potential, at several different values of GS .is the 

surface coverage and  represented the chemical potential.  MT: solid lines with filled 

symbols.  LT: dashed lines with open symbols.  Blue circles: GS = 1.0.  Green diamonds: 

GS = 0.8.  Red squares: GS = 0.6.  

 

The calculated isosteric heats of adsorption at different values of GS  are shown 

in Figure 2.9 for the MT and LT potential models at 2100K; also shown is the 

experimental desorption energy (represented by the dashed line at -42 kJ/mol) from ref. 

[53].  The dependence of stq  on GS  predicted by the two potential models is 

qualitatively different, with the MT potential exhibiting a significantly stronger variation.  

Interestingly, the MT potential predicts a desorption energy that asymptotes at the 

experimental value as GS  decreases.  The LT potential, on the other hand, predicts 

values that are much more weakly dependent on GS , with an apparent minimum in 

desorption energy magnitude somewhere in the interval 0.6 < GS  < 0.8.  However, all 
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the desorption energies obtained with the LT potential, though higher in magnitude, are 

in reasonable agreement with the experimental value.  

 

 

Figure 2.9.  Surface-averaged desorption energies for Ge on a-SiO2 as a function of GS  

for MT and LT potentials.  MT—squares; LT—circles. 

 

The MT potential results in Figure 2.9 suggest that an upper bound on GS  may 

be estimated at about 0.8; beyond this point the desorption energy increases rapidly in 

magnitude.  The LT results are less definitive but also suggest that GS ~0.6-0.8 is a 

reasonable window for capturing the experimentally measured desorption energy.  

Finally, the a-SiO2 surface preparation procedure, GCMC simulations, and differential 

adsorption energy calculation were repeated for the MT potential at T = 1800K in order 

to probe any temperature dependence.  To within the statistical uncertainty, no 

measurable temperature dependence was found (data not shown) and the results shown in 
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Figure 2.9 can be assumed to be essentially insensitive to temperature in the interval 

1800-2100K. 

 

2.4.1.2   Spatially-Resolved Surface Binding 

In order to further investigate the origin of the dependence of the desorption 

energy on GS , we mapped the binding sites on the a-SiO2 surface using the following 

procedure.  A single Ge atom first was placed 3 Å above the a-SiO2 surface at a randomly 

chosen {x,y} coordinate.  The atom was then moved along the –z direction until it just 

began to interact with the a-SiO2 surface.  The system configuration at this point was then 

used to initiate a molecular statics simulation, in which the energy of the system was 

minimized (with a conjugate gradient method) by allowing the Ge atom to move towards 

a local energy minimum while holding the SiO2 atoms fixed.  Once the energy 

minimization process was complete, the Ge atomic energy and position were recorded, 

and the Ge atom removed.  This procedure was repeated O(10
5
)  times to generate a map 

of the surface adsorption energy of Ge on SiO2.  The runs were repeated for different 

values of GS  for both MT and LT potentials.   

Examples of the resulting surface desorption energy maps for several values of 

GS  are shown in Figure 2.10 for the MT potential; qualitatively similar results are 

obtained for the LT potential (not shown).  In these maps, the SiO2 surface was 

subdivided into a grid of 0.5 Å × 0.5 Å squares and multiple adsorption energy values 

collected at any point inside the same square were averaged.  At low values of the Ge-O 

bond energy, GS , the binding maps appear to show a  surface that is largely non-binding, 

with evenly distributed, isolated pockets of binding.  A few of these binding sites are 
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larger and more strongly binding than the rest.  As the value of GS  increases from 0.6 to 

1.0, the total binding area becomes larger and begins to percolate throughout the surface.  

Interestingly, there is also an increase in areas that exhibit overall repulsion (denoted by 

red shade in Figure 2.10).  These sites represent mechanically stable locations at which 

the minimum energy was found to be higher than that of the a-SiO2 substrate without Ge 

binding.  They are likely to arise in response to the energy landscape becoming rougher 

as GS  increases, thereby trapping the Ge atom in mechanically stable, but unfavorable, 

locations during the energy minimization process.  At the highest value of GS , the 

binding sites are fully percolated and there exists a large number of “super-binding” sites 

(denoted by the dark blue shade).  The presence of these sites has significant implications 

for Ge diffusion on the a-SiO2 surface – this is discussed in more detail in Section 2.4.3. 
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Figure 2.10.  Surface binding energy maps for a Ge atom on a-SiO2 surface (MT 

potential).  From top to bottom, GS  = 0.60 (a), 0.85 (b), and 1.00 (c).  Maps represent 54 

Å in the x-direction and 64 Å in the y-direction.  Legend values are in units of eV and are 

referenced to the a-SiO2 surface without Ge binding.  

 

The average of the binding energies shown in Figure 2.10, which can be 

interpreted as another measure of the overall adsorption energy, was calculated for each 

case by averaging over all binding energies; the results are summarized in Figure 2.11.  
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For all data points using the random sampling technique, the standard uncertainty is less 

than 0.2 kJ/mol.  Both potentials show similar trends in which the random sampling 

desorption energy shows the best agreement with the GCMC results at intermediate GS

values (~0.7–0.8); interestingly, this is precisely where the agreement with the 

experimental value is also best.   

Finally, the assumption that the a-SiO2 surface is fixed in both the GCMC and 

random sampling calculations was analyzed.  It should be noted that allowing the 

substrate atoms to evolve during GCMC or during the energy minimization greatly 

increases the computational costs of both calculations, particularly the former.  However, 

several instances of random sampling were performed with and without relaxation of the 

substrate atoms and it was found that the differences in the energy was on average less 

than about 5%, which we believe is smaller than the uncertainty associated with the 

overall potential accuracy.  
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Figure 2.11.  Desorption energies as a function of GS  from random sampling and 

GCMC simulations for MT potential (a) and LT potential (b).  Random sampling – open 

symbols with solid line, GCMC – filled symbols with dashed line.  Horizontal dashed 

line represents experimental value from ref. [53]. 

 

2.4.2 Ge-SiO2 Interface Energy Calculation 

The interaction between Ge and a-SiO2 predicted by the MT and LT potentials 

was further examined by calculating the orientationally-averaged Ge-SiO2 interface 
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energies with varying GS values.  The identical simulation setup described in Section 

2.3.3 for the Si-SiO2 interface energy was used here, except that a Ge nanocrystal was 

placed into the center of the a-SiO2 matrix.  The calculated Ge-SiO2 interface energies for 

MT and LT potentials as a function of GS  are shown in Figure 2.12.  Both potentials 

provide almost identical values across the entire range of GS  values sampled and the 

interface energy is found to decrease monotonically with increasing GS .  However, 

across the range of GS  studied here, all the calculated values are significantly higher 

than the DFT value obtained in ref. [73] (1.0 J/m
2
).  Considering both the present results 

and the results in the previous section, GS ~0.8 appears to be a reasonable compromise 

for both MT and LT potentials.  It may be worth noting here that the DFT results against 

which we compare our results may themselves be subject to uncertainties associated with 

relaxation of the Ge-SiO2 interface, which is usually based on empirical potentials [73].   
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Figure 2.12. Orientationally-averaged Ge-SiO2 interface energies for MT and LT 

potentials as a function of GS .  MT – squares.  LT – circles.  Dashed line – value from 

ref. [73]. 

 

2.4.3 Additional Considerations 

We conclude our analysis by considering two additional experimental 

observations on a qualitative basis.  Leonhardt and Han [12] have estimated the surface 

diffusion barrier for Ge on a-SiO2 to be about 0.24 eV using experimental measurements 

of the saturation Ge island density during MBE as a function of substrate temperature and 

Ge atom arrival flux.  This value, along with the low desorption energy barrier discussed 

in the previous sections, was estimated to correspond to Ge atom diffusion lengths of 0.5-

0.9 nm for substrate temperatures between 673 K and 973 K (with the higher temperature 

corresponding to the lower diffusion distance).   

Unfortunately, simulations of Ge diffusion on an a-SiO2 surface prepared 

according to the procedures used in the previous sections do not provide quantitative 
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measures of the diffusion barrier.  Specifically, attempts to compute a statistically 

meaningful mean square displacement (MSD) for a Ge atom placed on an a-SiO2 surface 

were hindered by the fact that Ge atoms tended to either desorb rapidly or to become 

trapped for long periods of time inside one of the “super-binding” sites shown in Figure 

2.10.  As expected, the relative probability of these two outcomes depended on the 

parameter GS ; larger values of GS  were associated with increased probability of Ge 

trapping in a strong binding site.  Although we were unable to calculate a diffusion 

coefficient using the MSD, our qualitative observations are consistent with the short 

diffusion distances inferred by the experimental results.  

Finally, we consider the annealing of Ge on a-SiO2 substrates, which has been 

observed to form three-dimensional crystalline Ge islands at low annealing temperatures 

[80].  A series of MD simulations were performed in which an initially crystalline thin 

film of Ge with thickness two atomic layers was placed onto an equilibrated a-SiO2 

surface at 2100K with dimensions 5.8 nm × 5.5 nm × 3.0 nm.  Keeping the bottom 1 nm 

of the SiO2 substrate fixed, energy minimization first was performed to locally relax the 

system, followed by constant-temperature annealing at 2100K within the NVT ensemble 

for 10 ns.  The film was annealed at several different values of the GS  parameter using 

both MT and LT potentials.   

As shown in Figure 2.13, the value of GS  has a profound effect on the final state 

of the Ge atoms for the MT potential.  Similar observations are made with the LT 

potential (result not shown).  For 0.9GS  , the Ge layer de-wets the a-SiO2 surface to 

produce roughly hemispherical islands that are similar to those observed in ref. [80].  

When GS ~1, however, the Ge wets the a-SiO2 surface, forming an amorphous film that 
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is inconsistent with experimental observations.  The behavior can be explained by the 

increased strength of the Ge-O bonding at high GS .  Repetition of these simulations at 

lower temperatures showed that the above conclusions are not influenced by temperature, 

at least to temperatures as low as 1500K on the Tersoff scale.  Lower temperatures cannot 

be readily accessed due to the very slow evolution dynamics. 
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Figure 2.13.  Equilibrium configurations of Ge on a-SiO2 at 2100K using the MT 

potential.  Values of GS  are (a) 0.8, (b) 0.9, and (c) 1.0.  Green atoms are Ge, red atoms 

are O, and blue atoms are Si. 

 

2.5 Conclusions 

An empirical potential description for the Ge-Si-O system based on the Tersoff 

framework was studied in detail to determine its suitability for use in large-scale 
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atomistic simulations of selective epitaxial growth of Ge on Si.  Two variants of the 

potential that differ only by the interaction cutoff function for Si atoms were compared 

using a single free parameter that specifies the strength of the Ge-O interaction.  All other 

parameters were fixed at values that were previously specified in studies of the Si-Ge and 

Si-O binary systems.  We find that both variants are able to describe, at least semi-

quantitatively, a wide range of properties that are relevant to Ge-on-Si SEG.  These 

properties include the structure of bulk a-SiO2, the a-SiO2 free surface energy, the Si-

SiO2 and Ge-SiO2 interface energies, and the desorption energy of Ge on a-SiO2.  The 

best overall representation of these properties is achieved for both potentials when the 

single fitting parameter used in the present study, GS , is about 0.8, or when the Ge-O 

interaction strength is about 80% of the Si-O interaction.  It should be noted that this 

estimate is based on the assumption that the a-SiO2 prepared in the present study is a 

reasonable model for the SiO2 grown in the experiments.  For example, it is well-

established that the preparation method of SiO2, e.g., whether it is chemically or 

thermally grown, has a significant impact on the Ge diffusion behavior [53].   

Our study addresses a universal challenge associated with the use of empirical 

potentials – namely that it is generally not possible to capture quantitatively all properties 

of interest, particularly in complex, multicomponent systems.  The application of the 

Tersoff framework to the Ge-Si-O ternary system must be especially carefully validated 

because of the omission of explicit charge modeling in the consideration of interactions 

with oxygen.  That said, the large number of structural and thermodynamic properties 

considered in this work indicates that such a framework is sufficiently accurate for 

capturing many of the processes that are relevant to selective epitaxial growth of Ge on 

Si/SiO2 substrates.  These studies were pursued in detail in the following chapters.  More 
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generally, the overall success of the Tersoff framework in describing the ternary system 

studied here can be taken as further empirical evidence for the flexibility of (classical) 

bond-order potentials to capture complex interatomic interactions.   
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 Random Nucleation of Ge Islands on Amorphous SiO2 Chapter 3.

Surfaces 
 

3.1 Introduction 

The need for high-efficiency, yet cost-effective, advanced semiconductor devices 

has fueled interest in the production of high quality Ge films on Si wafers.  The optical 

and electronic properties of Ge allow for many applications including photodetectors [6, 

7] and transistors [81-84].  The lattice compatibility of Ge with the III-V materials also 

makes it an ideal substrate choice for high-efficiency III-V multijunction solar cells [1, 3-

5], but the feasibility of Ge substrates is limited by the high cost of bulk Ge.  High-

quality Ge films on Si wafers, on the other hand, preserve the advantages of Ge substrates 

while reducing the cost significantly.  

The primary challenge for heteroepitaxial growth of Ge on Si is the lattice 

mismatch strain between Ge and Si, which drives formation of misfit dislocations in the 

highly-strained Ge layer [85].  Many approaches have been proposed to overcome the 

lattice mismatch strain in epitaxial Ge films, including compositional grading [44], cyclic 

thermal annealing [45], and selective epitaxial growth [8-11].  In compositional grading, 

the mismatch strain is distributed throughout a thick Si1-xGex layer with gradually 

increasing Ge content.  Cyclic thermal annealing is used to reduce the threading 

dislocation density in Ge films directly grown on Si wafers by cycles of alternating high 

and low temperature anneals.  Selective epitaxial growth (SEG) has been used to produce 

strain-free, high-quality Ge film on Si without the need for costly thermal treatments or 

thick, compositionally-graded Ge layers.  In SEG, an amorphous masking material 

(usually SiO2 or Si3N4) is applied on top of the Si wafer surface.  Nanoscale cavities are 

then introduced in the mask layer, either by high-resolution lithography [9, 10] or by self-
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limiting chemical reactions [11].  Subsequent Ge deposition leads to the formation of 

epitaxial Ge islands at the base of these cavities (“seeding pads”) which then overgrow 

onto the amorphous masking layer.  The epitaxially-adhered islands eventually grow and 

coalesce into a contiguous crystalline film on top of the amorphous mask.  The key aspect 

of SEG is that the epitaxial contact area between Ge and Si layers is restricted to the 

nano-sized pads, which significantly lowers the mismatch strain in the Ge layer and 

suppresses the formation of misfit strain defects.  Indeed, various studies have reported 

threading dislocation densities in SEG films as low as O(10
6
) cm

-2
, making such films 

suitable substrates for the fabrication of III-V structures [13]. 

While the low defect densities in SEG films reported to date are promising, 

further improvements will require a more fundamental understanding of the defect 

formation processes that lead to stacking faults and threading dislocations.  For example, 

one poorly understood phenomenon is the formation of stacking-faults upon island-island 

coalescence during SEG [13].  In this chapter, we study the secondary nucleation of Ge 

on a-SiO2 with the Ge-Si-O potential framework presented previously in Chapter 2.  

While secondary nucleation of Ge, i.e., direct nucleation of (amorphous) Ge islands on 

the a-SiO2 mask, is not a technical challenge in SEG, we focus on this process because it 

has been characterized experimentally in great detail [12].  By comparing our simulation 

predictions with experiment, we will use the process of secondary nucleation as a means 

to establish the quantitative validity and predictive capability of the simulations for 

studying important defect formation process in SEG.  

Leonhardt et al. [12] have studied in detail the kinetics of Ge island nucleation on 

amorphous SiO2 (a-SiO2) using scanning electron microscopy.  Overall, it was found that 

Ge islands grow on a-SiO2 by direct impingement from the vapor, rather than by adatom 
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surface diffusion, principally because Ge adatoms tend to desorb before they diffuse an 

appreciable distance on the surface.  As a result, the condensation coefficient, defined as 

the amount of adsorbate condensed on the surface versus the total amount deposited, was 

found to be small across all temperatures considered in ref. [12].  The small characteristic 

Ge surface diffusion distance on SiO2 was corroborated by the absence of Ge adatom 

exclusion zones around the pads that typically arise as a consequence of diffusion-limited 

island growth [12].  

Here, we use the experimental results in ref. [12] to (1) establish the overall 

quantitative reliability of the empirical potential-based atomistic simulation framework 

described in Chapter 2 and (2) determine the feasibility of meaningfully studying defect 

formation in SEG with fully-resolved atomistic simulations such as molecular dynamics 

(MD).  The latter issue is a well-known one in the broader context of deposition 

processes.  The difficulties are two-fold.  First, experimental atomic deposition rates, 

typically O(10
13

-10
14

) atom/cm
2
s, are many orders-of-magnitude too slow to be simulated 

directly with methods such as molecular dynamics, which are limited to timescales on the 

order of hundreds of nanoseconds.  Second, sufficiently large substrate areas need to be 

considered to allow for the proper capture of island size and density distributions.  

Empirical potential MD simulations currently are limited to tens to hundreds of 

nanometers per spatial dimension, and increasing the number of atoms usually comes at a 

cost of a further reduction in the accessible timescale.  Together, these restrictions make 

the direct MD simulation of deposition rather challenging, and constrain simulation 

conditions to unrealistic operating conditions, which may or may not meaningfully 

represent relevant experimental ones. 



45 

 

It should be noted that many alternatives to direct MD simulation exist for 

simulating atomic deposition processes.  For example, a commonly employed simulation 

technique to overcome the timescale problem is kinetic Monte Carlo (KMC) [86-90].  In 

KMC, the system is evolved by selecting processes from a predefined event catalog in a 

way that is biased by their rates.  Slow processes are picked less often but also 

correspond to larger increments in system time, in principle providing the KMC approach 

with an intrinsic ability to adapt to the timescale of the process being simulated.  

Moreover, the event catalog may be defined at any resolution so that very fast (and 

uninteresting) processes such as atomic vibration can be coarse-grained out of the 

simulation.  In fact, lattice-based kinetic Monte Carlo, in which all particles are confined 

to a predefined, rigid grid, is an extremely popular and computationally efficient variant 

of KMC [88, 91-94] and has been widely applied to the simulation of atomic deposition 

on (usually low-temperature) crystalline substrates [88, 95-100].   

The need for a predefined catalog, however, implies that KMC requires a priori 

knowledge of all possible events and their rates, so assumptions have to be made on 

choosing processes to be included in the model.  The accuracy of any KMC simulation 

depends strongly on these assumptions and the amorphous nature of the a-SiO2 substrate 

and Ge islands makes it very difficult (or even impossible) to specify a comprehensive 

event catalog [101].  The development of on-the-fly atomistic KMC methods [102-104] 

addresses this limitation by building dynamically the catalog of events during the 

simulation via searches over all energy saddles accessible from each current 

configuration.  On-the-fly KMC is usually posed at full atomistic resolution and therefore 

naturally accounts for the complex energy landscapes associated with amorphous 

systems.  However, these methods are much less computationally efficient than the static 
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catalog or lattice-based variants of KMC, and in fact not necessarily much faster than 

MD simulation.  

A variety of techniques also have been proposed to accelerate MD simulations.  

These include temperature-accelerated dynamics (TAD) and hyperdynamics [105, 106].  

Very briefly, these methods aim to speed up MD simulation by increasing the rate at 

which the system escapes from one energy basin to another.  While they have been 

successfully applied to study island growth [107, 108], their application to the system of 

interest (Ge on a-SiO2) is complicated by several elements.  Firstly, because the system 

evolution slows down as temperature decreases, the deposition temperatures considered 

in our study are quite high (0.7—0.9 Tm) due to computational efficiency considerations.  

This limits gains from methods such as TAD.  Moreover, the complex morphologies 

associated with amorphous islands on an amorphous substrate makes it difficult to clearly 

identify transition events to apply the other methods.  

In this Chapter, we apply direct MD simulation to the study of Ge deposition on 

a-SiO2 and make close connections to experimental results in ref. [12] using an analytical 

rate equation framework as a bridge [109, 110].  Reinforcing our previous conclusions 

[111], we demonstrate that the empirical potentials used to describe the interatomic 

interactions between Si, Ge, and O atoms appear to provide an excellent quantitative 

picture for Ge island deposition on a-SiO2, matching the experimental data in several key 

aspects.  We also demonstrate quantitatively that it is indeed possible to directly access 

experimentally relevant deposition regimes with MD simulation, even if the actual 

deposition rates are unrealistically rapid.  The latter finding has important implications 

for the simulation of atomic deposition in a variety of systems. 
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The remainder of the Chapter is organized as follows.  In Section 3.2, a brief 

summary is provided of the analytical rate equation approach developed by Venables and 

others [109, 110, 112-114].  As noted above, the rate equation theory is used to provide a 

quantitative framework for establishing a rigorous connection between simulation and 

experiment.  The simulation methods and system initialization are discussed in Section 

3.3.  In Sections 3.4 to 3.6, results are provided for various deposition simulations, along 

with analysis based on rate equation theory and comparison to experimental data.  

Finally, conclusions are presented in Section 3.7.  

 

3.2 Rate Equation Theory for Island Nucleation and Growth 

Analytical descriptions based on rate equations provide a powerful framework for 

understanding various features of island evolution during deposition.  Here, we briefly 

describe the framework originally proposed by Venables and others [109, 110, 115] that 

describes island growth in terms of low-order moments, namely the island density and 

coverage.  More detailed descriptions also have been proposed to include more complete 

descriptions of island growth by higher-order moments such as island size and/or capture 

zone distributions [116-123], but these are not addressed here.    

The rate equation approach proposed by Venables [109, 110, 114, 115] assumes 

that subcritical clusters dissociate quickly compared to other processes and therefore exist 

in a quasi-steady state relative to stable species, i.e.,  

 1

0 0

exp( )

j

j

j j

n n
C E

N N


 
  

 
,   (3.1) 

for all j  less than or equal to the critical nucleus size, i  [113].  In eq. (3.1), 0N  is the 

number of adsorption sites, 1n  and 
jn  are the concentrations of monomers and clusters 
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of size j , respectively.  
jC  is a statistical weight factor representing the orientation 

degeneracy for j -sized clusters, and 
jE is the binding energy of j -sized clusters relative 

to j  individual monomers adsorbed on the surface. 

Ignoring the spatial variation of monomers on the surface due to capture by 

existing clusters and assuming only monomers are mobile, the mass balance for monomer 

concentration is 

 1 1
1

1

2
i

j x

ja

dn n
F U U U

dt  

     ,  (3.2) 

where F  is the deposition flux and a  is the adatom adsorption residence time, which is 

related to the monomer desorption rate as  1 ~ expa aE   , where aE  is the adsorption 

energy barrier.  The term 12U  in eq. (3.2) represents the rate of dimerization, 
jU  is the 

net rate of formation of size j clusters by monomer addition for ( j i ), and xU  is the 

rate at which monomers join all stable clusters ( { 1, 2, ,max}x i i   ) via surface 

diffusion and direct impingement from the vapor, 

 1x x x x xU Dn n Fa n  .  (3.3) 

Here, x  is the capture number for any stable islands and is assumed to be invariant with 

size, xa  is the average substrate surface area covered by stable clusters so that 

( ) ( ) ( )x xa t n t Z t  represents the total (time-dependent) surface coverage by stable 

clusters.  Finally, D  is the diffusivity of monomers and is given by 

  ~ exp dD E ,  (3.4) 

where dE  is the diffusion barrier for monomers on the surface. 
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The mass balance equations for the concentrations of metastable clusters, 
jn , 

stable clusters, xn , and the total number of monomers in all stable islands, xN , are then 

given by 

 1 , (1 ) 0
j

j j

dn
U U j i

dt
     ,  (3.5) 

 x
i c m

dn
U U U

dt
   ,  (3.6) 

 
1 ( )x

x x

dN
Dn n FZ t

dt
  .  (3.7) 

where the quasi-steady state assumption for metastable clusters was applied in eq. (3.5).  

The terms iU , cU , and mU  in eq. (3.6) represent the net rates of stable cluster nucleation 

and stable cluster coalescence due to growth and surface diffusion, respectively.  Because 

monomers are assumed to be the only mobile species on the surface, ~ 0mU  in eq. (3.6) 

and the dominant mechanism for stable island nucleation at low surface coverage 

proceeds by monomer addition to critical-sized clusters, i.e.,  

 1i i iU Dn n .  (3.8) 

Further assuming that islands are three-dimensional hemispheres regardless of size, cU  

may be approximated as  

   221
2

2
c x x

k

d
U n r

dt
  ,  (3.9) 

where xr  is the average radius for stable clusters.  The same assumption also allows xN  

in eq. (3.7) to be expressed in terms of xr  and Z(t), i.e., 

  
31

3 22
2 2

( )
3 3

x x x xN n r n Z t



 

  
  

.  (3.10) 
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During the early stages of deposition, 1n  is completely dictated by the deposition 

flux, i.e., 1n Ft .  The duration of this initial transient,  , is a combination of the 

adsorption and diffusion time scales and is defined by 

 
1 1

x x

a

Dn
 
  .  (3.11) 

Finally, expanding eqs. (3.2), (3.6), and (3.7) and rearranging gives a system of equations 

describing the rate of island nucleation: 

 1 1(1 ( ))
dn n

F Z t
dt 

   ,   (3.12) 

    
11

0

( )
exp( ) 1 ( ) 2

iix
i i x

dn dZ t
N D F E Z t n

dt dt
  

   ,  (3.13) 

  
 

 

1 1
2 ln( ) 1

1 ( ) ( ) 1
( ) 3 ln ( )

xx
x x

d nndZ t
F Dn Z t Z t

dt Z t d Z t


 



  
           

   
,  (3.14) 

where   is the atomic volume of monomers in stable clusters.  Equations (3.12) – (3.14) 

may be solved analytically by transforming the dependent variable from time, t, to 

surface coverage, Z(t) [109].  The maximum number of stable clusters, which is readily 

measured experimentally, may be obtained from eqs. (3.12) – (3.14) by setting eq. (3.13) 

to zero and rearranging to give [110, 114] 

      

3
2

1,max

,max 0 ,max 02

0 0

1 exp

i

i ix

x a x x a x i a

n F
D n Z D n E D N

N N D
     

   
    

   
, (3.15) 

where 0Z  is the coverage at the occurrence of the maximum cluster density.  The value 

of 0Z  is typically less than 0.2 [110].  Equation (3.15) may be simplified for different 

condensation regimes characterized by the dominant cluster growth mechanism.  In the 

case that clusters grow solely by direct impingement from the vapor phase, the 
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condensation regime is said to be extremely incomplete.  This situation occurs when the 

adatom adsorption timescale is short and the characteristic diffusion length of adatoms is 

much smaller than the inter-island distance.  Conversely, the complete condensation 

regime refers to the situation when the characteristic diffusion length is larger than the 

inter-island distance and adatom desorption is negligible, so that islands grow by 

capturing diffusive adatoms.  An intermediate regime, referred to as initially incomplete 

condensation, occurs when desorption is slow and the characteristic diffusion length is 

smaller than the inter-island distance.  In this regime, adatoms are mobile but may desorb 

before being captured by existing islands, so the condensation is incomplete.  However, 

in this case the condensation regime later becomes complete as islands grow and the 

inter-island distance decreases below the characteristic diffusion length.  Since surface 

capture becomes the governing island growth mechanism at this stage, the system 

behaves identically as in the complete condensation regime [110]. 

As mentioned previously in the Introduction, the experimental study by Leonhardt 

et al. [12] suggested that Ge islands on a-SiO2 grow via direct impingement from the 

vapor, i.e. the condensation is extremely incomplete.  In this case, the monomer capture 

area in the vicinity of a stable cluster is much less than the substrate surface area 

occupied by the cluster, i.e. x a xD n Z   .  This condition simplifies eq. (3.15), which 

becomes [114]  

  
2

3
,max exp

i

x

B

E
n F

k T

 
 
 

, (3.16) 

where   
2

1
3

i a dE E i E E    .  As mentioned above, the value of 
,maxxn  can be 

straightforwardly measured in experiments.  Therefore, eq. (3.15) and its solutions in the 
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three condensation regimes have been widely used to deduce the activation energies for 

adsorption and surface diffusion, as well as critical cluster binding energies in a variety of 

systems [124-127]. 

 

3.3 Ge Deposition Simulations on Amorphous SiO2 surfaces 

All simulations were performed using an empirical interatomic potential model 

for the ternary Ge-Si-O system based on the Tersoff framework [14].  In ref. [111], we 

combined the well-established Tersoff parameters for the binary Si-Ge system [14] with a 

recent parameterization for the Si-O binary system [61].  Using a single fitting parameter 

that represented the Ge-O interaction strength, the ternary potential model was found to 

reproduce well a wide range of structural and thermodynamic properties for bulk a-SiO2, 

the Si-SiO2 interface, and Ge adatom binding on a-SiO2 surfaces.  In this chapter, the MT 

variant of the potential model was used.  All molecular dynamics simulations were 

performed using the LAMMPS software package [64].  The simulations were conducted 

in the NPT ensemble unless otherwise specified, and Nose-Hoover thermostats and 

barostats [65] were applied to control the temperature and pressure of the system, 

respectively.  A time step of 1 fs was applied in all cases.  Static relaxations were 

performed using the conjugate gradient algorithm in the LAMMPS software. 

 

3.3.1 Preparation of a-SiO2 Surfaces 

Bulk a-SiO2 was prepared using a melt-quench sequence; also see ref. [111].  

First, a cubic  -cristobalite SiO2 lattice consisting of 4096 SiO2 units with dimensions 

5.8×5.8×5.8 nm
3
 was created with periodic boundary conditions applied on all sides of 

the system.  The SiO2 lattice was melted at 5000K for 5 ns, followed by rapid cooling to 
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0K at a linear cooling rate of 1×10
12

 K/s.  The quality of the resulting a-SiO2 has been 

discussed in detail in our previous study [111] and overall exhibits good agreement with 

bulk density, radial distribution function, and bond angle distributions predicted by ab 

initio calculations and experiments.  

Following the formation of bulk a-SiO2, periodic boundary conditions in the z-

direction were removed and the slab sliced in two along the xy-plane to create an a-SiO2 

slab (that is still periodic in the xy-plane) with dimensions approximately 6×6×3 nm
3
.  In 

all subsequent deposition simulations, the bottom 1 nm of the a-SiO2 slab was fixed to 

emulate a bulk-like environment for the 2 nm-thick active layer above.  In each case, 

before Ge deposition was initiated the temperature in the active layer was increased at a 

linear rate of 1×10
12

 K/s until the deposition temperature, which ranged from 1800K to 

2300K.  The temperature was then held constant until the system potential energy 

equilibrated; the equilibration period was typically 30 ns long.  Following equilibration, 

the a-SiO2 slab was replicated four times in the x and y directions, resulting in a slab with 

dimensions 24×24×3 nm
3
.  The replicated surface finally was equilibrated at constant 

temperature for a further 0.2 ns.  Note that for all deposition simulations, the top z-

boundary of the simulation domain was placed at least 5 nm higher than the highest point 

of the a-SiO2 surface to prevent any bias in the Ge deposition due to boundary effects. 

 

3.3.2 Modeling Ge Deposition on Amorphous SiO2 

Simulations of Ge deposition on the a-SiO2 surface were performed in the NVT 

ensemble.  A schematic representation of the deposition simulation system is shown in 

Figure 3.1.  Ge atoms were introduced into the region above the slab at a constant rate to 

simulate deposition at a prescribed flux ranging from 5×10
21

 to 6.9×10
24

 atoms/cm
2
s.  
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The x and y coordinates of each inserted atom were chosen randomly, while the z-

coordinate was set to be 5 Å above the maximum height of all atoms within a 5Å radius 

along the xy-plane.  All inserted atoms were initialized with downward velocity 

corresponding to the deposition temperature.   

 

 

Figure 3.1.  Schematic diagram of the Ge on a-SiO2 deposition system.  Ge atoms are 

represented by the green particles.  The fixed and active SiO2 layers (1 nm and 2 nm in 

thickness, respectively) are denoted in the figure.  The arrow indicates a Ge atom that 

was newly added to the system, placed at 5Å above the highest atom within a 5Å radius 

along the xy plane.  This atom is given a downward velocity moving towards the a-SiO2 

surface.   

 

Following each atomic insertion, the system was evolved with MD until the 

addition of the next Ge atom.  An island was defined as a group of interacting Ge 

particles consisting of two or more Ge monomers with inter-particle distances being less 

than the Ge-Ge potential cutoff distance (3.1 Å).  A Ge particle was defined as adsorbed 

if its distance to the nearest Si or O atom is within the respective Ge-Si or Ge-O potential 

cutoff distances (2.9462 Å and 2.49 Å, respectively).   
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Ge atoms desorbing from the a-SiO2 surface require special attention.  Under 

some conditions, namely when the deposition rate is large, atoms rising from the surface 

may collide and bind with downward-moving atoms to form aggregates.  These 

aggregates represent an artifact that may impact the effective deposition flux to the 

surface.  In order to address this issue, checks were performed before every Ge atom 

addition to remove any desorbed Ge atoms from the system.  Desorbed atoms were 

identified as Ge atoms with an upward-directed (+z direction) velocity component and 

zero potential energy. 

 

3.4 Single Ge Adatoms on a-SiO2   

Measurements of Ge adatom residence time and displacement distributions on the 

a-SiO2 surface were made by depositing a single Ge atom onto the surface and then 

tracking its trajectory.  The displacement, aX , of the Ge atom on the surface was defined 

as the distance between the positions at which the particle adsorbs (potential energy first 

becomes nonzero) and desorbs (potential energy becomes zero).  The residence time, a , 

correspondingly was defined as the duration of the adsorption time.  For each sample, the 

simulation was terminated either when the Ge atom desorbed or when the simulation time 

exceeded 50 ps.  The single-atom simulation described here was repeated at least O(10
4
) 

times at both 1800K and 2300K to obtain converged distributions for aX .   

Our previous characterization of the a-SiO2 surface [111] showed that the surface 

is highly heterogeneous in terms of Ge binding strength, and is comprised of favorable 

binding sites interspersed with non-binding, or even repulsive, patches.  The presence of 

unfavorable binding regions in between the binding sites leads to extremely short adatom 
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residence time and surface displacement distributions.  As shown in Figure 3.2, more 

than 90% of Ge adatoms leave the surface after diffusing less than 3 Å at both 

temperatures.  The corresponding residence time for these displacements is less than 1 ps.  

In fact, the mean displacement before desorption for a Ge adatom on the surface is less 

than 1 Å, which is on the order of the atomic vibrational amplitude, further emphasizing 

that adatoms are essentially immobile under the simulations conditions considered here.   

 

 

Figure 3.2.  Ge atom displacement on amorphous SiO2 surface at 1800K and 2300K.  

Blue circles: 1800K; red diamonds: 2300K. 

 

3.5 Deposition and Island Nucleation 

Ge deposition runs were carried out for deposition fluxes ranging from 5×10
21

 

atoms/cm
2
s to 6.9×10

24
 atoms/cm

2
s at temperatures between 1800K and 2300K.  Figure 

3.3 shows four top-down snapshots of the a-SiO2 surface, all taken when the number 

density of Ge atoms brought down to the surface, addN , had reached 6.6×10
14
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the four snapshots correspond to different deposition fluxes and temperatures (see Figure 

3.3 caption).  While the formed Ge islands are always randomly distributed and 

amorphous in structure, their areal density and sizes are strongly impacted by the 

deposition rate and substrate temperature.  Higher temperatures clearly destabilize islands 

and lead to lower densities of smaller islands, while increasing the deposition rate leads 

to a higher density of larger islands.  

 

 

Figure 3.3.  System configurations at addN  = 6.6×10
14

 atoms/cm
2
 for different substrate 

temperatures and deposition fluxes: (a) 2000K, 2.76×10
22

 atoms/cm
2
s, (b) 2200K, 

2.76×10
22

 atoms/cm
2
s, (c) 2000K, 1.38×10

24
 atoms/cm

2
s, (d) 2200K, 1.38×10

24
 

atoms/cm
2
s.  Red atoms: O. Blue atoms: Si. Green atoms: Ge.  Rendering of the system 

was generated using the OVITO visualization tool [128]. 
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The stable surface island density, xn , is shown in Figure 3.4 as a function of 

substrate temperature at several deposition fluxes for addN = 3.47×10
14

 atoms/cm
2
.  Here, 

and in all subsequent discussion, we assume that the critical island size, i, is less than 2 

and all clusters are included in the evaluation of xn .  In Section 3.6, we self-consistently 

validate this assumption.  At every flux, the island density decreases slowly as the 

temperature is increased from 1800K to about 2000K and then decreases more rapidly as 

the temperature is further increased.  Over the entire flux range considered, and for all 

temperatures, higher fluxes generally correspond to higher island densities.  These trends 

are in qualitative agreement with the experimental observations by Leonhardt et al. [12]. 
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Figure 3.4.  Surface island density, xn , as a function of temperature at different deposition 

fluxes at addN  = 3.47×10
14

 atoms/cm
2
.  Blue circles: F = 4.14×10

24 
atoms/cm

2
s.  Cyan left 

triangles: F = 1.38×10
24 

atoms/cm
2
s.  Green diamonds: F = 6.9×10

23 
atoms/cm

2
s.  Dark 

green squares: F = 3.45×10
23

 atoms/cm
2
s.  Brown circles: F = 1.38×10

23
 atoms/cm

2
s.  

Orange diamonds: F = 6.9×10
22

 atoms/cm
2
s.  Dark brown gradients: F = 2.76×10

22
 

atoms/cm
2
s.  Pink right triangles: F = 1.38×10

22
 atoms/cm

2
s.  Red deltas: F = 5×10

21
 

atoms/cm
2
s.  

   

 The evolution of Ge monomer density, 1n , the total island density, xn , and the 

total amount of Ge condensed on the surface, condN , as a function of addN  at 2100K are 

shown in Figure 3.5 for high (F = 4.14×10
24

 atoms/cm
2
s), medium (F = 6.9×10

23
 

atoms/cm
2
s), and low (F = 2.76×10

22
 atoms/cm

2
s) deposition  fluxes.  There are several 

processes dictating the evolution of 1n  and xn , including (1) monomer formation on the 

surface by deposition, (2) monomer desorption from the surface, and (3) island nucleation 

and growth as Ge atoms from the deposition flux impinge onto monomers or islands 

already present on the surface.  During the initial stages of deposition when the surface 

coverage is very low, 1n  evolves according to a balance between monomer deposition 
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and monomer desorption, and no islands are present at this point, i.e., 1 condn N .  As 

islands begin to nucleate by impingement of surface monomers with arriving Ge atoms, 

1n  begins to deviate from condN  and quickly reaches a peak value, at which the island 

nucleation rate becomes the same as the rate of 1n  growth by the balance between 

deposition and desorption.  As the rate of island nucleation subsides and the island 

density, xn , reaches saturation, 1n  evolves largely independently of xn , a consequence of 

the fact that island growth proceeds by direct impingement from the vapor, rather than by 

surface diffusion of monomers to the islands.  In other words, 1n  depends only on the 

relative arrival and desorption rates and the fraction of the surface area that is not 

occupied by islands.  Finally, for all fluxes considered here, the island density reaches a 

saturation value at which point no new islands are formed and existing islands are 

growing (and therefore increasing condN ). 
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Figure 3.5.  Island distribution evolution as a function of time during deposition at 2100K 

at deposition fluxes of (a) F = 4.14×10
24

 atoms/cm
2
s, (b) F = 6.9×10

23
 atoms/cm

2
s, and 

(c) F = 2.76×10
22

 atoms/cm
2
s.  Data shown includes the  total density of Ge condensed 

on the surface ( condN  - orange squares), the density of surface monomers ( 1n  - purple 

diamonds) and the total density of stable clusters ( xn  - green circles).  

 

Shown in Figure 3.6 is the evolution of the integral condensation coefficient, 

cond addN N  , as a function of the number of deposited atoms per unit area at 2200K 

and various deposition fluxes [129, 130].  Note that the number of deposited atoms is 

linearly related to deposition time but by a different factor at each flux.  For times shorter 

than the desorption timescale, the integral condensation coefficient is expected to be 

roughly constant at a value that is dictated by the fraction of surface that is binding.  For 

larger times, desorption from binding sites acts to lower   as seen in Figure 3.6.  

Finally, as the island coverage fraction increases,   reaches a minimum and eventually 

begins to rise because adsorbed Ge islands always represent favorable binding 

environments for incoming Ge atoms.  The impact of deposition flux is strong across all 
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three regimes.  Higher fluxes lead to higher initial   and a stronger impact by island 

coverage at later times. 

  

 

Figure 3.6.  Integral condensation coefficient,  , as a function of the number of Ge 

added to the system per unit area, addN , at 2200K and different fluxes.  Green diamonds: 

F = 6.9×10
23

 atoms/cm
2
s, dark green squares: F = 3.45×10

23
 atoms/cm

2
s, brown circles: 

F = 1.38×10
23

 atoms/cm
2
s, dark brown gradients: F = 2.76×10

22
 atoms/cm

2
s, red deltas: 

F = 5×10
21

 atoms/cm
2
s.   

 

The integral condensation coefficient provides information about the deposition 

regime; complete condensation corresponds to 1  , while extremely incomplete 

condensation implies that 1  .  Leonhardt et al. [12] concluded that Ge deposition on 

a-SiO2 occurs in the extremely incomplete condensation regime.  While the growth of 

islands independently of 1n  in Figure 3.5 suggests that the condensation is extremely 

incomplete in our simulations, the values of   in Figure 3.6, particularly at early time 
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and high flux, are as high as 0.4, which is not necessarily indicative of extremely 

incomplete condensation.   

To further characterize the deposition regime in the simulations, we compared the 

distribution of inter-island distances, islandX , with the adatom diffusion distance, aX , at 

different deposition fluxes.  Inter-island distances were computed on the basis of island 

centers-of-mass.  Islands were approximated to be circular in the xy-plane projection and 

the radius of each island circle was taken to be the distance between the center-of-mass 

and the furthest atom in the island.  The distance between two islands was then calculated 

as the xy-projected distance between the edges of the two circles.  Islands were defined as 

“neighbors” if the line connecting their centers did not cross any areas projected by other 

islands.  Since many Ge islands on the surface deviate strongly from circularity, the 

circular approximation represents an upper-bound for island radius and the approximated 

inter-island distances represent lower-bounds. 

Shown in Figure 3.7(a) is the mean inter-island distance, 
islandX , as a function of 

addN  for the same three deposition fluxes considered in Figure 3.5.  The value of 
islandX  

decreases as islands nucleate on the surface, then levels off when xn  reaches saturation 

density.  The distance between islands decreases with deposition flux due to the 

increasing island density, with the lowest value on the order of 10 Å.  Taking into 

account the adatom displacement distribution shown in Figure 3.2 and the probability 

distributions of islandX  at the saturation island density found for each deposition flux 

(Figure 3.7Figure 3.7(b)), the probability of island growth due to adatom migration on the 

surface is below 1% at high deposition flux, and less than 0.1% for the medium and low 

flux cases.  Because the inter-island distances used here represent lower-bound estimates 
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for the actual island separations on the surface, these probabilities represent upper-bounds 

for the actual probability of island growth by surface adatom capture.  The low 

probability of island growth due to surface capture confirms that the system is in the 

extremely incomplete condensation regime at all deposition fluxes considered in our 

simulations.  Moreover, since adatom displacement does not change significantly with 

temperature (at least over the range considered here), the condensation regime remains 

extremely incomplete at all temperatures sampled in this work. 
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Figure 3.7.  (a) Mean inter-island distance as a function of Ge atoms brought down to the 

surface per unit area at different deposition fluxes and 2100K.  Dark brown gradients: F = 

2.76×10
22

 atoms/cm
2
s, green diamonds: F = 6.9×10

23
 atoms/cm

2
s, blue circles: F = 

4.14×10
24

 atoms/cm
2
s.  (b) Probability distributions of the inter-island distance when xn  

reaches the saturation island density for the three cases shown in (a).  Dark brown 

gradients: F = 2.76×10
22

 atoms/cm
2
s at addN = 9×10

14
 atoms/cm

2
, green diamonds: F = 

6.9×10
23

 atoms/cm
2
s at addN  = 6×10

14
 atoms/cm

2
, blue circles: F = 4.14×10

24
 

atoms/cm
2
s at addN  = 7×10

14
 atoms/cm

2
. 
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3.6 Scaling Analysis and Quantitative Comparison with Experimental 

Measurements 

While the experimentally-observed condensation regime is qualitatively 

reproduced in simulations, quantitative measures of the deposition system are needed to 

make meaningful connections between the computational model and the experiments.  As 

mentioned previously in Section 3.2, the saturation island density, 
,maxxn , can be directly 

measured in experiments.  Recall that in eq. (3.16), 
,maxxn  was found to scale with 

temperature and the deposition flux according to 

 
2

3
,max exp

i

x

B

E
n F

k T

 
 
 

, 

and   
2

1
3

i a dE E i E E     in the extremely incomplete condensation regime.  Thus, 

by measuring the saturation island density as a function of temperature, the slope, BE k , 

may be used to deduce the energy barriers relevant for island nucleation.  For example, in 

Ref. [12], saturation island density measurements  were used to compute the diffusion 

activation energy for Ge on a-SiO2.   

Shown in Figure 3.8 are Arrhenius plots of saturation island density versus 

temperature at several different fluxes ranging from 5×10
21

 atoms/cm
2
s to 6.9×10

24
 

atoms/cm
2
s.  The slope, BE k , changes abruptly at 2000K for the three deposition fluxes 

at which a wide range of temperatures were considered (see Figure 3.8).  The change of 

slope separating the saturation island density into “high” and “low” temperature regimes 

is in excellent qualitative agreement with similar experimental observations reported by 

Leonhardt et al. [12].  Establishing a quantitative connection between the simulation and 

experimental temperature scales is, however, somewhat challenging.  It is well-known 
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that the Tersoff potential significantly overestimates the melting temperature of Si (Tm ~ 

2550K) and the usual approach is to introduce a scaling factor, e.g., Tm,sim/Tm,exp, when 

comparing simulation and experimental results.  However, in the present case it is not 

clear whether the melting temperature of Si or Ge, or the glass transition temperature of 

a-SiO2 should be used to establish a scaling factor for the temperature.  Given these 

ambiguities, we refrain from making a direct comparison to the experimental transition 

temperature reported in ref. [12], which was around 773 K. 

   

 

Figure 3.8. Saturation island density as a function of inverse temperature.  Purple 

diamonds: F = 6.90×10
24

 atoms/cm
2
s.  Blue circles: F = 4.14×10

24
 atoms/cm

2
s.  Cyan left 

triangles: F = 1.38×10
24

 atoms/cm
2
s.  Dark green squares: F = 3.45×10

23
 atoms/cm

2
s.  

Orange diamonds: F = 6.9×10
22

 atoms/cm
2
s.  Dark brown gradients: F = 2.76×10

22
 

atoms/cm
2
s.  Pink right triangles: F = 1.38×10

22
 atoms/cm

2
s.  Red deltas: F = 5×10

21
 

atoms/cm
2
s.  Solid lines are linear regression fits in the high temperature regime; dashed 

lines are linear regression fits in the low temperature regime. 

 

Although the relationship between the Tersoff and experimental temperature 

scales is unclear, the temperature dependence of the saturation island density may be 
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analyzed more directly.  It is immediately obvious that the slopes extracted from both the 

high and low temperature regimes in Figure 3.8 are strong functions of deposition flux.  

In the low temperature regime, BE k  increases from 1600±60K at 1.38×10
24

 atoms/cm
2
s 

to 6100±890K at 6.9×10
22

 atom/cm
2
s, while at high temperature BE k  rises from 

12800±940K at 1.38×10
24

 atoms/cm
2
s to 34000±5900K at 6.9×10

22
 atom/cm

2
s.  On the 

other hand, the analysis in ref. [12] suggests that these values are independent of the 

deposition flux, and are about 5030K and 40400K in the low and high temperature 

regimes, respectively. 

In the following, we focus principally on the high temperature regime (T ≥ 

2000K) for which we have data over a much larger range of fluxes.  Shown in Figure 3.9 

is a plot of BE k  as a function of flux for the high temperature regime.  BE k  rises 

monotonically as the deposition flux decreases, eventually plateauing at a value that is 

tantalizingly close to the experimentally reported value (horizontal line); the onset of the 

plateau appears around a deposition flux of 7×10
22

 atoms/cm
2
s.  While further decreases 

in deposition flux would have been useful to consider, the slowest deposition run 

corresponded to introducing one Ge atom every 34.5 ps, and required an MD simulation 

of 173 ns for a system containing 10
5
 atoms, corresponding approximately to 48,000 

CPU hours on a modern supercomputer. 

The existence of a plateau in BE k  for F ≤ O(10
22

) atoms/cm
2
s, along with the 

excellent prediction of the final value, strongly indicates that for these fluxes, the system 

has reached a “slow deposition” regime that extends all the way to experimentally 

realistic fluxes.  In other words, for fluxes below O(10
22

) atoms/cm
2
s, the deposition 

timescale is slower than other important timescales that govern island rearrangement (for 
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example) or desorption.  Recall that surface diffusion does not appear to be relevant for 

this system due to the presence of extremely incomplete condensation conditions and 

therefore the timescales associated with inter-island diffusion are not likely to be 

important.   

Bearing the above considerations in mind, and assuming that monomer 

equilibration on the surface is the rate limiting process that competes with the deposition 

rate, we may then estimate the maximum flux at which the system is still in the “slow 

deposition” regime.  Recalling that the average residence time (between adsorption and 

desorption) for single Ge monomers was found to be on the order of 10 ps, and requiring 

that the deposition rate to be lower than the desorption rate, the maximum desorption flux 

is O(10
22

) atoms/cm
2
s for the 24 nm by 24 nm a-SiO2 surface used in this study.  This is 

in excellent agreement with the flux at which the plateau is observed in Figure 3.9!  
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Figure 3.9.  Arrhenius slope for saturation island density in the high temperature regime 

as a function of deposition flux.  The solid line represents the value obtained in 

experiments by Leonhardt et al. [12].  

 

Finally, we return to the issue of critical island size, which has been assumed to 

be smaller than 2 throughout the preceding analysis, i.e., all islands, including dimers, 

have been included in the evaluation of 
xn .  According to eq. (3.16), which applies when 

the deposition is in the extremely incomplete condensation regime, the saturation island 

density is related to the deposition flux as 2 /3~ i

xn F .  Shown in Figure 3.10 are log-log 

plots of the saturation island density as a function of deposition flux at several different 

temperatures – the slopes of these curves therefore correspond to the quantity 2i/3.  As 

expected, the slopes, and therefore the critical sizes, are not constant across the entire flux 

range.  However, we do expect that the slope for each temperature reaches a constant 

value once the slow deposition regime is attained over the last 3 or 4 data points – 

although this is difficult to ascertain given the scatter in the data and the minimum flux 
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that can be accessed.  Nonetheless, the slope across the 3 – 4 points that correspond to the 

slowest deposition fluxes at each temperature gives critical sizes in the range of 1 – 2.  

Importantly, for higher deposition fluxes or at lower temperatures, the critical size 

estimate is even lower.  Collectively, these results self-consistently validate the 

assumption that the critical size is less than 2.  The critical size was also estimated in the 

experimental analysis in ref. [12] and found to be in the range 2 – 3 in the “high” 

temperature regime (and 1 – 2 in the “low” temperature regime), again in excellent 

agreement with the present simulation results.  

 

 

Figure 3.10.  Log-log plot of saturation island density versus deposition flux at different 

temperatures.  Lines represent third-order polynomial regression fit.  Red squares: 

2000K.  Green circles: 2050K.  Blue diamonds: 2100K.  Orange deltas: 2150K. 
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3.7 Conclusions 

The nucleation of Ge islands on amorphous SiO2 during Ge deposition was 

investigated with direct MD simulations based on a Tersoff-type empirical interatomic 

potential model parameterized for the ternary Ge-Si-O system.  In accord with prior 

experimental analysis, the deposition physics, which we probed across a wide range of 

fluxes and temperatures, were found to be described well by the so-called extremely 

incomplete condensation regime whereby island growth proceeds by direct impingement 

from the vapor phase rather than diffusional transport on the surface.  These conditions 

exist because of the nature of the a-SiO2 surface, which we have previously shown [111] 

to present a spatially heterogeneous binding energy distribution to Ge atoms.  More 

specifically, the surface exhibits localized binding sites of varying strengths isolated from 

each other by regions of unfavorable binding, thereby leading very limited Ge monomer 

mobility on the a-SiO2 surface and a rather low average barrier for desorption. 

    Two major conclusions may be drawn from our study.  First, and perhaps most 

importantly, we provide evidence that it is possible to simulate atomic deposition, using 

straightforward, direct MD simulations, at experimentally meaningful conditions.  The 

timescale restrictions associated with MD simulations of atomic deposition are well-

established in the literature and typically require that deposition rates be many orders-of-

magnitude higher than experimentally realistic rates.  However, by sampling deposition 

fluxes over a wide enough range (nearly 3 orders-of-magnitude), we found that it is 

possible to (just) reach a regime where key measures of the deposition process no longer 

depend on the flux, enabling us to make detailed, quantitative comparisons to 

experimental measurements.  Of course, this may not always be possible in all materials 

systems, but it does provide strong evidence that realistic deposition rates do not 
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necessarily have to be achieved in atomistic simulations in order to make quantitative 

predictions.  

Second, and somewhat surprisingly given the complexity of the ternary Ge-Si-O 

system, we find that predictions of various measures, namely the critical island size and 

the quantitative temperature dependence, are in excellent agreement with values obtained 

from experiments.  The connection between the simulations and experimental 

observations of much larger islands formed under much slower deposition conditions was 

established using a rate equation-based scaling analysis.  The rate equation framework 

first was used to identify the deposition regime under which the experiments were 

performed, and then to systematically steer the simulations towards it by altering the 

temperature and deposition flux.  Once this was established, the rate equation framework 

was used to identify quantities that could be compared quantitatively – even though the 

simulation length, time, and temperature scales are all different than the experimental 

ones.  Collectively, our findings confirm that the empirical potential model for the Ge-Si-

O system used here and in our previous study is well-suited for the atomistic study of 

SEG.    
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 Coarse Projective Integration for Deposition and Islanding of Chapter 4.

Ge on Amorphous SiO2 Surfaces 
 

4.1 Introduction 

Atomic deposition, via techniques such as molecular beam epitaxy (MBE) or metal-

organic vapor phase epitaxy (MOVPE) of semiconductor species is a critical component 

of microelectronic [16, 131, 132] and optoelectronic [90, 133-137] device fabrication.  It 

is commonly employed to produce high-quality epitaxial thin films [135, 138-149], and a 

variety of advanced structures such as quantum wells [150-153], wires [138, 154-156], 

and dots [132, 138-142, 147]. 

An atomic deposition process consists of multiple sub-processes that occur over a 

very wide range of length and time scales spanning orders-of-magnitude.  These include 

atomic diffusion of adsorbate molecules, nucleation, growth and morphological evolution 

of multi-atom islands, and multilayer-thick film growth.  These processes are all 

intimately coupled so that macroscopic properties of the resulting structure are dictated 

by the microscopic events [157].  Consequently, improvement of existing processes and 

development of new ones both require a comprehensive understanding of the various 

processes that occur and interact during deposition across all time and length scales.   

The wide range of relevant length and time scales, however, pose significant 

computational challenges; a single model that accounts for all macroscopic and 

microscopic details of the deposition process is generally not feasible [26].  Instead, one 

often has to make a choice regarding the time and length scales at which the system is 

resolved, and focus on the processes that are within the selected spatiotemporal domain 

[99, 131, 157-160].  At the highest resolution are quantum mechanical methods that are 

primarily used to compute thermodynamic and transport properties, such as binding 
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energies and diffusion rates for specific events [2, 161]; these are then used as input into 

coarser methods [2, 162, 163].  Next, are empirical potential molecular dynamics (MD) 

and Monte Carlo simulations, which are limited to the nano-to-micro regime in both time 

(s) and length (m) scales [164, 165].  These types of simulation methods may be applied 

to dynamically study deposition processes, but not at experimentally realistic deposition 

rates.  Several methods to accelerate MD simulation of rare events have been proposed, 

e.g., hyperdynamics [106, 108] and temperature-accelerated dynamics [105-108], but 

these methods are somewhat less useful at high temperatures and also require the robust 

identification of transition events which can be difficult. 

A widely-used simulation technique to overcome the timescale limitation in MD 

is the kinetic Monte Carlo (KMC) method [86-88].  In the most common variant of 

KMC, a predefined catalog of events is determined and the associated rates are 

computed.  The simulation proceeds by selecting events in a manner that is biased by 

their rates.  The pre-determined event catalog enables KMC to adapt to the timescale of 

the active processes, although the method can become inefficient when the event 

database includes a very wide range of rates [166].  This problem may be alleviated by 

coarse-graining out very fast processes such as atomic vibrations, which are not of direct 

interest.  This coarse-graining is accomplished by reducing the spatial resolution of the 

model, e.g., by constraining the system to a rigid grid.  The on-lattice variant of KMC (or 

lattice KMC), in which all species are confined to a grid, has been widely used in the 

simulations of atomic deposition on crystalline substrates [98-100, 166-168].   

Finally, we briefly mention continuum models, which have been applied 

extensively to deposition processes.  The most common variants of this approach include 

rate equations, with and without spatial resolution [159, 160, 169], phase field models 
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[35, 157, 170], and even hybrid, semi-discrete models that are coarse-grained in the 

lateral directions and atomistically-resolved in the growth direction [158, 171, 172].   

One powerful approach to circumvent the inherent limitations of each of the 

above techniques is to combine models at different resolutions, either hierarchically or 

concurrently to generate a multiscale approach [26, 131].  In hierarchical approaches, a 

finer-scale model, e.g., a quantum calculation, is used to determine certain properties, 

such as diffusion rates or binding energies.  The properties are then used as input 

parameters to a coarser model such as KMC or a continuum model [16, 19, 173, 174].  In 

concurrent approaches, the microscopic and macroscopic models are executed 

simultaneously, exchanging information on the fly.  One realization of the concurrent 

approach is to partition the simulation domain into separate regions that are described by 

models at different scales [17-20, 175, 176].  This was used in the simulation of epitaxial 

island growth by Sun et al. [19], in which the evolution of the island is described by a 

continuum model, and island boundary regions are simulated using a finer-scale lattice 

KMC model. 

Another type of concurrent multiscale simulation approach, known as coarse 

projective integration, or CPI, has recently been suggested by Kevrekidis and coworkers 

under the general umbrella of ‘equation-free’ methods [21, 23, 24, 177-180].  The 

fundamental idea behind equation-free analysis is that many systems that are governed by 

fast, often stochastic, microprocesses, also exhibit a slowly-evolving manifold defined by 

some coarse variables.  In the case of deposition, such variables may include moments of 

the island size distribution, or an average surface height.  While the values of these 

variables may be computed at any time from the full (microscopic) system configuration, 

the closed-form equations that govern their evolution are not known.  Thus, short MD 
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simulations would be used to compute temporal gradients of the coarse variables at given 

points in time.  These numerically-estimated gradients would then be used to evolve 

differential equations in the coarse variables over time intervals that are large relative to 

the microprocesses of deposition and adatom diffusion, but small relative to the coarse 

variable timescales.  In other words, CPI is a type of ‘equation-free’ simulation in which 

the macroscopic simulator is a numerical time integration scheme [22, 91, 178, 181, 182]; 

the CPI approach is described in more detail in Section 4.2. 

In Ref. [183], Varshney et al. applied the idea of equation-free analysis to 

examine thin film growth.  Using a simplified 1D lattice model, they identified two 

coarse variables as the variance of the height distribution and the surface roughness.  

They reconstructed the microscopic system using the island height distribution as well as 

spatial pair-correlation functions that accounted for lateral interactions among the islands.  

The reconstructed systems exhibited similar coarse evolution as the direct simulation case 

[183].  Although generalizing the 1D lattice model to describe 3D island growth requires 

large numbers of pair-correlation functions, likely making the approach unrealistic, their 

study demonstrates the applicability of CPI to deposition systems. 

Here, we investigate the application of coarse projective integration to the 

deposition and islanding of Ge on an amorphous SiO2 (a-SiO2) surface.  We have studied 

the Ge-on-SiO2 system previously using direct MD simulation (Chapter 3).  There, we 

found that it was indeed possible to access experimentally relevant deposition conditions 

[12], but only indirectly via a scaling analysis.  Even so, the MD simulations required a 

large amount of computing resources and the success achieved for this particular system 

is by no means guaranteed in general.  For example, Ge deposition on a-SiO2 is governed 

by so-called extremely incomplete condensation, in which surface monomer diffusion is 
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unimportant and islands grow/shrink by direct impingement/emission rather than (slow) 

monomer exchange via surface diffusion.  In this chapter, we focus on the issue of 

reconstructing an atomistic configuration only from knowledge of coarse variables such 

as the island size distribution.  We show that this element represents the major challenge 

in applying CPI to deposition in morphologically complex situations.   

The chapter is organized as follows.  In Section 4.2 we describe coarse projective 

integration in detail and present a protocol to reconstruct full microscopic configurations 

from coarse variable descriptions.  The validity of the reconstructed systems based on the 

island size distributions is analyzed in Section 4.3.  A reduced representation of the island 

size distribution from the coarse variables is discussed in Section 4.4.  Finally 

conclusions are presented in Section 4.5.  

 

4.2 Applying Coarse Projective Integration to the Ge Deposition System 

4.2.1 Direct MD Simulation of Ge Deposition 

All simulations were based on the Tersoff-based interaction potential we 

described in Ref. [111], which combined well-established Tersoff parameters for the 

binary Si-Ge system [14], with a recent parameterization of the binary Si-O system [61] 

to describe the Ge-Si-O ternary system.  As described previously in ref. [111], the ternary 

potential model, with a single additional fitting parameter for the Ge-O interaction 

strength, was found to reproduce well a wide range of structural and thermodynamic 

properties for bulk a-SiO2, the Si-SiO2 interface, and Ge adatom binding on a-SiO2 

surfaces.  Moreover, direct MD simulations of Ge deposition and islanding were shown 

to provide quantitative agreement with experimental measurements of various quantities 
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including the Ge island critical size and the scaling of the saturation island density with 

temperature (Chapter 3).  

All MD simulations were performed using the LAMMPS software package [64].  

The temperature and pressure of the system were controlled using the Nose-Hoover 

thermostat and barostat, respectively [65].  The timestep size was fixed throughout at 1 

fs.  When necessary, static relaxations (energy minimizations) were performed using the 

conjugate gradient algorithm in the LAMMPS software.  A minimization was considered 

converged when the change in system potential energy became less than 1×10
-8

 eV, or 

when the 2-norm of the global force vector of the system was below 0.01 eV/Å.   

The a-SiO2 surfaces used in the analysis were created using a melt-quench 

procedure to construct bulk a-SiO2, followed by cleaving the system to produce a free 

surface, and then extensive thermal annealing to relax it; details of the procedure are 

provided in Section 3.3.1.  Throughout the study, we employed an a-SiO2 block that is 24 

nm × 24 nm in area and 3 nm thick.  Periodic boundary conditions were applied in the x 

and y directions to simulate an infinite slab in the xy plane, while the bottom 1-nm layer 

of the slab was held fixed throughout the simulation to provide a bulk-like environment.  

A Ge atom was defined to be an adatom on the a-SiO2 surface if the distance between the 

atom and the nearest surface atom (either Si or O) was within the respective interaction 

cutoff distances, 2.9462 Å for Ge-Si, and 2.49 Å for Ge-O.  Ge islands were identified 

using the Stillinger criterion with a threshold distance equal to the Ge-Ge potential cutoff 

(3.1 Å) [184].   

MD simulations of deposition were performed according to the method described 

in Section 3.3.2.  Briefly, Ge atoms were added to the system at a constant rate that 

corresponds to a desired deposition flux.  For each Ge atom addition, a random position 
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in the xy-plane was generated and the z-coordinate was set to be 5 Å above the highest 

existing atom within 5 Å radius in the xy-plane.  The Ge particle was assigned a 

downward velocity corresponding to the system temperature.  The system was evolved in 

the NVT ensemble until the addition of the next Ge particle.  Before each Ge addition, 

checks were performed to remove any desorbed Ge particles from the system in order to 

prevent the formation of Ge aggregates in the region above the a-SiO2 substrate. 

 

4.2.2 Coarse Projective Integration 

The primary elements of an example coarse projective integration framework are 

shown in Figure 4.1.  Consider a system for which the physics of the fast, microscopic 

dynamics (top row) are known (e.g., an interaction potential energy model for MD), and 

which exhibits slowly evolving dynamics on a ‘slow manifold’ comprised of a set of one 

or more coarse variables (bottom row).  However, the physics governing the dynamics of 

the coarse variables are either difficult to write down or are unknown.   

In the following discussion, we will denote the microscopic description by x and 

the macroscopic description by X.  We first define an appropriate lifting operator,  , 

which maps the macroscopic description X to a consistent microscopic description x.  

Obviously, this mapping is not uniquely defined because there exist many microscopic 

configurations that correspond to a given macroscopic state.   Conversely, we also define 

a restriction operator, M, that maps a microscopic state to a macroscopic description.  

The CPI algorithm then proceeds as follows: (1) for some initial macroscopic 

configuration, 0( )X t , lift to generate a consistent micro-configuration, 0( )x t , (2) evolve 

the microscopic simulator to obtain 0( )x t t  at a later time, (3) restrict to map the 

microscopic state at the later time to the corresponding macroscopic descriptions.  The 
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preceding 3 steps constitute a coarse time stepper for the macroscopic variables [21, 94].  

The next step could be to compute time derivatives of the coarse variables and use them 

to perform projective integration in time.  Clearly, the execution time of the microscopic 

simulator ( t ) has to be short enough to be computationally practical, yet long enough to 

enable meaningful gradient evaluation for the coarse variables.  Finally, given a new 

macroscopic initial condition at the end of the projective step, repeat steps 1 to 3. 

Note that in Figure 4.1, the initial trajectory of the coarse evolution in the lifted 

system is shown to be different from the ‘correct’ trajectory.  Such transient deviations 

are expected to arise from lifting errors, in which details of the micro-configuration that 

are not captured by coarse variables undergo a ‘healing’ period.  The healing period 

represents the relaxation of fast processes (that are associated with the omitted micro-

configurational details) to the slow manifold described by the coarse variables [23].  

Because the system evolution during healing deviates from the correct trajectory, the 

healing period must not be used to collect gradient evaluation.   
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Figure 4.1.  A schematic diagram of the coarse projective integration scheme adapted 

from Ref. [21].  Starting from a given macroscopic representation of the system (X), the 

corresponding microscopic system (x) is constructed through lifting (µ) and evolved 

using a microscopic simulator.  The results are then mapped to the macroscopic states 

(M) and projected forward in time using numerical integration.  The projected 

macroscopic system then is lifted again and the process continues.  

 

The success of coarse projective integration is dependent on several important 

factors related to the identification of appropriate coarse variables.  First, coarse variables 

have to be of sufficiently high fidelity to allow for suitable lifting to consistent micro-

configurations.  For example, in the case of deposition, the mean height of the surface 

alone may be inadequate information to lift to a realistic micro-configuration.  

Simultaneously, the coarse variables must evolve sufficiently rapidly in the microscopic 

simulator to enable gradient estimation.  Generally, variables that include more finely-

resolved information, are easier to lift from, but are also subject to more statistical noise 

making gradient evaluation more difficult.  While approaches have been proposed to 

automatically deduce appropriate coarse variables, including diffusion mapping [93] and 
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a transfer operator-based numerical scheme [92], there is not yet a systematic way to 

construct the lifting operator for a wide variety of systems.  In fact, as we demonstrate in 

the remainder of this chapter, the definition of an appropriate lifting operator is the 

primary challenge for applying CPI to deposition on amorphous substrates. 

 

4.2.3 A Lifting Strategy for Ge-on-aSiO2 Deposition Simulations 

The difficulty in creating a realistic microscopic configuration from a few coarse 

observables is strongly dependent on the nature of the system under consideration.  By 

definition, the problem is under-determined; the key is to lift to a micro-configuration in 

which, at most, only the ‘unimportant’ (fast-relaxing) aspects of the configuration are 

incorrect.    

In addition to these generic issues, the evolution of amorphous Ge islands on an 

amorphous SiO2 substrate poses unique challenges.  To illustrate these challenges, 

consider a situation in which the macroscopic observable at some time t, ( )X t , is the 

complete island size distribution (ISD), i.e., the number of islands at every size.  On one 

hand, this is a detailed collection of coarse observables, and in fact, it would be quite 

difficult to estimate derivatives in time for the number of each of the island sizes from 

microscopic simulations because of stochasticity in these quantities.  On the other hand, 

this information, in many respects, is still insufficient for lifting because of the 

amorphous nature of the system.  First, the morphology of each island at each size is not 

known, and placing configurationally unrealistic islands on the surface would 

underestimate their stability.  Second, we have shown previously [111] that the a-SiO2 

surface presents a highly heterogeneous binding environment to Ge atoms and clusters.  
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Again, placing islands at locations that are not energetically favorable will tend to 

produce unstable islands and an inability to maintain consistency with the slow manifold. 

Next, we present a protocol to lift a macroscopic configuration, defined by a 

given ISD, to an atomistic one.  As noted above, a crucial aspect of the lifting procedure 

for the present situation is the ability to construct realistic amorphous Ge islands.  

Samples of islands from direct MD simulations of deposition exhibit a rather wide range 

of island shapes, which alter the island capture zones and may therefore be important in 

the evolution of the system.  To address this, we implemented a database approach in 

which a library of Ge island configurations was compiled from the direct MD deposition 

simulations reported in Chapter 3.  The MD deposition simulations used to construct the 

library of Ge island configurations were performed at deposition fluxes of 4.14×10
24

 

atoms/cm
2
s, 1.38×10

23
 atoms/cm

2
s, 2.76×10

22
 atoms/cm

2
s, and at temperatures ranging 

from 2000K to 2200K.  At each deposition condition, about 250 snapshots of the system 

were used to inform the library of island configurations.  The procedure was as follows.  

First, individual Ge islands were identified in a given system snapshot using the Stillinger 

criterion.  For each island, the particle with the lowest z-coordinate was set as the origin, 

and the positions of all other particles were adjusted accordingly to maintain their relative 

positions.  The particle coordinates after adjustment, along with the island size, were 

recorded in the library of cluster configurations.  Overall, the island morphology library 

contains O(10
5
) configurations with island sizes ranging from 2 to 153.  Some example 

configurations taken from the configuration library are shown in Figure 4.2.  The islands 

exhibit a wide range of morphologies, particularly at smaller sizes, and include both 

compact clusters and long, extended structures.  The shapes tend to become more hemi-

spherical at larger sizes. 
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Figure 4.2.  Example Ge island morphologies from the library of Ge island configurations 

collected from direct simulations of Ge deposition on a-SiO2.  Particle rendering (here 

and in the remainder of this document) performed using the OVITO visualization 

package [128]. 

 

Given a ‘target’ ISD, the lifting procedure was executed by first randomly 

selecting Ge island configurations from the library of configurations according to the 

sizes required by the ISD.  For every selected island configuration, the particle with the 

lowest z-coordinate was placed at a randomly generated xy-position, (xi, yi) over the a-

SiO2 surface.  The island size was characterized by computing its maximum lengths 

along the x- and y-directions, xL  and yL , respectively.  A rectangular region with area 

( 10) ( 10)x yL L    Å
2
 was then centered at the island center-of-mass.  The z-coordinate 
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of the lowest atom in the island then was initialized to be 5 Å above the maximum height 

of the existing atoms inside this rectangular region.  The atoms in the island were then 

assigned a downward velocity corresponding to the system temperature.   

The island initialization procedure was repeated for all islands needed to fulfill the 

target ISD.  Island overlapping was prevented by first defining a circular area around 

each island with diameter equal to the maximum distance between any two atoms in the 

island.  Inter-island spacing was enforced by requiring that each of circular domains be at 

least 6Å away from any other circular domain.  As each island was created sequentially, 

any conflict with existing islands resulted in a destruction of the island and a resample of 

the ISD to generate a new one.  

The system was subsequently evolved with MD in the NVT ensemble for 0.3 ps, 

allowing the islands to establish interactions with atoms on the surface.  During this 

procedure, all surface atoms (Si and O particles) remained fixed.  Once all islands had 

made contact with the surface, all surface atoms (except for the ones in the bottom 1 nm 

layer of the a-SiO2 substrate) were released.  The system then was further relaxed with 

energy minimization.  Finally, the system was subjected to an NVT-MD anneal at the 

deposition temperature for an additional 2 ps to stabilize the islands on the surface.  Due 

to the strongly heterogeneous binding environment of the a-SiO2 surface [111], some Ge 

islands were found to quickly desorb from the surface, moving the ISD away from the 

target value.  If this was the case, additional islands were introduced to replace any 

islands that desorbed.  In this procedure, the newly introduced islands were brought down 

to the surface using another 0.3 ps-long NVT anneal.  Here, only atoms in the new 

candidate islands were free to move while all other atoms, including those in existing 

(stable) islands, were kept fixed.  The energy minimization and finite temperature 
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annealing procedure described above was then reapplied to the entire system.  The entire 

process was repeated until no islands desorbed during the relaxation protocol and the ISD 

matched the target distribution. 

 

4.3 Lifting from the Full Island Size Distribution 

The lifting strategy described in the previous section was tested using a reference 

deposition simulation performed with direct MD.  The reference simulation was evolved 

for 1.75 ns at 2100K at a deposition flux of 6.9×10
23

 atoms/cm
2
s.  The ISDs at 0.375 ns 

and 0.625 ns were used to lift the system.  The configurations from the direct MD 

simulation at these two time points are shown in Figure 4.3(a) and Figure 4.3(c) 

respectively.  The corresponding lifted configurations, generated using the procedure 

outlined in the previous section, are shown in Figure 4.3(b) and Figure 4.3(d).  The 

configurations are qualitatively similar.  Moreover, the inter-island separation 

distributions are also quite similar.  
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Figure 4.3.  System configurations from direct MD [a,d], and from lifting using the full 

island size distribution as the coarse observable  [b,e].  The distributions of inter-island 

separation, Xisl, are also computed for the direct MD (red) and lifted (blue) 

configurations.  (a) Direct MD configuration at 0.375 ns, (b) lifted configuration using 

the island size distribution from (a), (c) inter-island separation distribution for direct MD 

and lifted configurations at 0.375 ns. (d) direct MD configuration at 0.625 ns,  (e) lifted 

configuration using the island size distribution from (d), (f) inter-island separation 

distributions for direct MD and lifted configurations at 0.625 ns.  In all configurations, 

red atoms are O, blue atoms are Si, and green atoms are Ge.   

 

Next, we studied how well the MD simulations initialized with the lifted 

configurations did in comparison to the reference direct MD trajectory.  The evolution 

trajectories in the reference and the test simulation were compared on the basis of 

moments of the island size distribution.  The k-th order moment of the ISD, Mk, is defined 

as 

 
max

2

i
k

k i

i

M i n


   (4.1) 
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where i is the cluster size, which ranges from 2 to imax, and ni is the number density of 

islands of size i.  The moment definition in eq. (4.1) gives the 0
th

-order moment (M0) as 

the total island number density, and the 1
st
-order moment (M1) as the total number of 

monomers contained in all existing islands on the surface.  Higher-order moments 

become progressively more weighted towards larger islands; this point is addressed 

further below. 

The evolution of various ISD moments for the reference and lifted simulations are 

plotted in Figure 4.4.  Each simulation was performed three times with different random 

number seeds and the trajectories averaged to reduce statistical variations.  Overall, the 

moment trajectories from the lifted systems are in very good agreement with the 

corresponding reference trajectories.  It is noticeable that the trajectories of the lower-

order moments (M0 and to a lesser extent, M1) exhibit large deviations from the 

respective reference trajectories shortly after initialization but then eventually recover to 

join the apparent slow manifold.  Note that the low-order moments are more sensitive to 

small (and fast evolving) species such as dimers and trimers, and therefore also exhibit 

more noise.  The initial healing behavior exhibited by the low-order moment trajectories 

in the lifted simulations confirms the presence of timescale separation in the system, and 

justifies the use of CPI for Ge island nucleation and growth on a-SiO2.  The deviations 

that do exist in the higher-order moment trajectories may be attributed to inadequate 

coarse observables, e.g., the lack of information regarding inter-island spacing.  

Moreover we also note that larger islands are present in lower numbers and this may lead 

to trajectory deviations that require longer times to relax away.  In summary, the overall 

good agreement between the lifted and direct simulation results following the healing 

phase also suggests that the lifting scheme proposed in Section 4.2.3 was successful.   
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Figure 4.4.  (a) – (d) 0
th

 to 3
rd

-order moments of the island size distributions as a function 

of simulation time for reference MD (red) and lifted systems at 2100K and a deposition 

flux of 6.9×10
23

 atoms/cm
2
s.  Purple – system lifted at 0.375 ns; green – system lifted at 

0.625 ns.   

 

Although monomers were not included in the moment calculations, it is also 

interesting to see how the monomer number density, n1, in the lifted systems evolves as 

compared to the reference MD simulation.  The number density of monomers is 

obviously linked to the fast processes of adatom adsorption and desorption, and island 

nucleation.  In our previous study of the Ge island nucleation on a-SiO2 [Chapter 3], n1 
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exhibits a peak in the early stages of deposition due to the aforementioned processes.  Its 

long term evolution (prior to island coalescence) is independent of the overall cluster 

density, a characteristic of the so-called ‘extremely-incomplete’ condensation regime, 

whereby island growth does not depend on monomer surface diffusion. 

The temporal evolution of n1 as a function of time for both reference and lifted 

simulations is plotted in Figure 4.5 for the same simulation systems reported previously 

in Figure 4.4.  In both lifted systems, n1 initially reaches a peak during healing, then 

closely follows the results from direct simulation as the fast processes reach steady state.  

The healing period for n1 is ~0.5 ns, similar to that for the moments in Figure 4.4, 

suggesting that the rates for the ‘fast processes’ responsible for the short-term evolution 

of n1 and the low-order moments are faster than ~ 91 10   s
-1

.  This is of the same order as 

the rate at which atoms arrive over a region that is comparable to the island length scale 

(nm). 
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Figure 4.5.  Monomer number density (n1) as a function of time for the direct simulation 

(red) and lifted systems.  Purple – system lifted at 0.375 ns; green – system lifted at 0.625 

ns.  

 

The maximum island size, imax, provides yet another measure for island evolution.  

In contrast to n1, imax is dictated by the slow, large island processes.  The maximum island 

size, imax, is plotted as a function of time in Figure 4.6 for both the lifted simulations and 

the direct simulation case.  Note that in Chapter 3 we identified the major growth 

mechanism for Ge islands on a-SiO2 was the direct impingement of Ge atoms from the 

vapor, the stochastic nature of the impingement process leads to the large error bars for 

imax in Figure 4.6.  As expected, relaxation of lifting errors in slow processes takes longer 

than in fast processes: the healing period for imax is more than 1 ns, compared to <0.5 ns 

for n1.  Moreover, sudden jumps in the values of imax are observed for the lifted systems 

but are absent in the direct simulations.  The sudden increases in imax for these cases was 

found to be a consequence of coalescence of two nearby islands.  Since Ge islands grow 

mostly by (non-competitive) direct impingement from the vapor instead of surface 
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monomer capture, the distance distribution between islands is less important, and 

occasionally placing islands close to each other should not alter the overall evolution of 

the system.  However, as discussed earlier, some improvements can be made to the lifting 

procedure to reduce the occurrence of the jumps in imax, such as incorporating the average 

inter-island spacing from the given system configuration instead of the 6 Å minimum 

inter-island spacing constraint in the current scheme.  Overall, the lifted systems, 

constructed using the procedure outlined in Section 4.2.3 and the full island size 

distribution, have the same coarse evolution as direct MD simulations in terms of low 

order moments of the ISD, n1, and imax. 

 

 

Figure 4.6.  Maximum island size, imax, as a function of time for the lifted and direct 

simulation systems.  Red: direct simulations.  Purple: system lifted using the ISD at 0.375 

ns.  Green: lifted system lifted using the ISD at 0.625 ns. 

 

Time (ns)

i m
a

x

0.5 1 1.5

50

100
150



94 

 

4.4 Lifting from Reduced Representations of the Island Size Distribution 

While successful lifting is achieved with the full island size distribution from 

direct MD simulations, it is an impractical choice for the coarse observable because the 

number density of each individual size represents a large number of highly stochastic 

variables.  On the other hand, low order moments of the ISD, such as the total number of 

monomers in islands or the average island size (see Figure 4.4) vary smoothly in time, 

making them more suitable coarse variable candidates.  Here, we extend our original 

lifting scheme to use only M0 – M3, n1, and imax as the input by proposing a procedure to 

compute a reduced representation of the ISD that resembles the full ISD from direct MD 

simulations.  Some example full ISDs taken at different time points from a direct 

simulation run are shown in Figure 4.7.  In all ISDs, the island number density is high for 

small sizes and decreases rapidly with the island size, forming a long tail that extends to 

larger sizes as the system evolves.  The majority of the islands are small—more than 50% 

of the islands are still of sizes less than 15 monomers even at 1.74 ns. 
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Figure 4.7.  Island size distributions at various time points from direct MD simulation of 

Ge island nucleation on a-SiO2 at 2100K with a deposition flux of 6.9×10
23

 atoms/cm
2
s.  

Purple circles: 0.125 ns; black deltas: 0.625 ns; green squares: 1 ns; orange diamonds: 

1.74 ns.  

 

Recall the definition of moments in eq. (4.1), one can write the following set of 

linear equations in matrix form: 

 

 

 

 

 

00 0

max
0 2

11 1

max1 3

22 2
2 max

33 33 max
max

2 3

2 3

2 3

2 3 i

iM n

iM n

M i

M n
i

 
    
    
     
    
    
     

.  (4.2) 

The unknown variables in eq. (4.2) are the density of clusters at each size, ni,  max2,i i , 

and the known variables are the moments M0 – M3 and imax.  This is an underspecified set 

of equations which can have an infinite number of solutions that may or may not be 

meaningful representations of full ISD.  To overcome this problem, we divide the range 

{2, imax} into 4 intervals, Ra, Rb, Rc, Rd, where 
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,  (4.3) 

max2 I II IIIq q q i    , and qI, qII, and qIII are island sizes.  The average size in each 

interval is defined as a, b, c, d.  The sum of cluster densities inside each respective 

interval is Xa, Xb, Xc, Xd.  This formulation characterizes the ISD by 4 coarse bins, so eq. 

(4.2) can be re-written as  
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, (4.4) 

which has one unique solution.  Since most information of the ISDs is contained in the 

small size regime (Figure 4.7), the widths of the coarse bins are chosen to be non-

uniform, with more emphasis on the lower sizes.  Here, we chose the ratio 

: : : 1: 2 :3: 4a b c dR R R R   as the width of each bin.  This assumption determines the 

values for a, b, c, d.  Solving eq. (4.4) gives Xa, Xb, Xc, Xd, the sum of island densities 

inside each coarse bin.  Because the island number density decreases with size in the full 

ISD, we assume the island densities inside each bin scales as i
-1

 to solve for the island 

number densities, ni, at each size inside the bin.   

Figure 4.8 are the ISDs computed using the above approach (referred to as 

“reduced ISDs”) plotted against the full ISDs at 0.375 ns and 0.625 ns.  The reduced 

ISDs show the same qualitative trends as the full ISDs by design, where the island 

number densities in the reduced ISDs are high at small sizes and drop rapidly as the 

island size increases.  Note that n1 is one of the coarse measures to be projected forward 
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in CPI and an input to the lifting operator, so it is set to the value from direct simulations 

in the current computation. 

 

 

Figure 4.8.  Full island size distribution from direct MD (blue circles) and reduced 

representations (red diamonds) computed from low-order moments of the island size 

distribution, as well as monomer number density and maximum island size at (a) 0.375 ns 

and (b) 0.625 ns.  
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The reduced ISDs shown in Figure 4.8 at time points 0.375 ns and 0.625 ns were 

used to construct microscopic configurations using the lifting operator presented in 

Section 4.2.3.  Each simulation was performed three times with different random number 

seeds and the trajectories averaged to reduce statistical variations.  The moment 

trajectories from the lifted systems are shown in Figure 4.9, plotted against the 

trajectories from direct simulations.  Similar to the full ISD case (Figure 4.4), an initial 

healing period is observed due to lifting errors that are relaxed by the fast processes.  The 

lifted systems exhibit the same coarse evolution as the direct simulations after healing, 

suggesting that the reduced ISDs are able to correctly reproduce the evolution of the slow 

manifold, without detailed information of the number density at each island size. 
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Figure 4.9.  (a) – (d) 0
th

 to 3
rd

-order moments of the island size distributions as a function 

of simulation time for reference MD (ref) and lifted systems based on reduced ISDs at 

2100K and a deposition flux of 6.9×10
23

 atoms/cm
2
s.  Cyan—system lifted at 0.375 ns; 

blue—system lifted at 0.625 ns.   

 

The percent difference in the low-order moment trajectories shown in Figure 4.4 

and Figure 4.9 for the lifted systems based on the full ISD and the reduced ISD, 

respectively, are compared in Figure 4.10.  The percent difference is computed with 

respect to the reference system, i.e., 
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where vL and vref are values from the lifted and direct MD systems, respectively.  For all 

the moments shown in Figure 4.10, the two types of lifted systems exhibit similar coarse 

evolutions that are within statistical scatter.  Therefore one can perform gradient 

evaluation of the low-order moments based on the reduced ISDs, and the detailed 

information of the island number density at each size is not required for CPI. 

Both lifted systems shown in Figure 4.10 tend to under-predict the values of M1, 

M2, and M3 after healing.  However, since the standard error ranges for the lifted system 

results are high (data not shown), the values of M1 – M3 agrees with direct simulation 

within its standard error range.  Even though the statistics can be improved with 

increasing sample size, the agreement on the low-order moment evolutions between the 

lifted and the direct simulation systems studied in our work remains unchanged.  Our 

analysis demonstrates that coarse projective integration based on a few measures, namely 

M0 – M3, n1, and imax, is feasible for modeling Ge island growth on a-SiO2.   
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Figure 4.10.  Percentage differences in (a) M0, (b) M1, (c) M2, and (d) M3 with respect to 

direct simulation results (orange line) for lifted systems based on full and reduced ISDs.  

Purple: lifted systems based on full ISD at 0.375 ns.  Cyan: lifted systems based on 

reduced ISD at 0.375 ns.  Green: lifted systems based on full ISD at 0.625 ns.  Blue: 

lifted systems based on reduced ISD at 0.625 ns.  The error bars on the orange line in 

each panel indicate the range of standard error from direct simulation results.   
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present in many complex systems.  The fundamental idea behind equation-free analysis 

was that many systems that were governed by fast, often stochastic, microprocesses, also 

exhibited a slowly-evolving manifold defined by some coarse variables.  In CPI, short 

MD simulations are used to compute temporal gradients of the coarse variables at given 

points in time, which are in turn used to evolve differential equations in the coarse 

variables over time intervals that are large relative to the microprocesses, but small 

relative to the coarse variable timescales.  It is a promising tool for modeling the 

deposition system using accurate atomistic simulations while bypassing the limitations on 

accessible length and time scales.  In this chapter, we focused on developing coarse 

projective integration for deposition systems.  Using the Ge on a-SiO2 deposition system 

previously studied in Chapter 3 as our reference, our ultimate goal is to address some key 

issues in applying coarse projective integration to deposition systems, namely the lifting 

operator.     

The lifting operator is a procedure to construct and initialize a detailed 

microscopic system based only on information of the coarse variables.  The amorphous 

nature of small Ge islands and the highly-heterogeneous binding environment for Ge 

atoms and clusters presented by the a-SiO2 surface create unique challenges in lifting.  

The crucial aspect of the lifting procedure is the ability to construct realistic amorphous 

Ge islands.  The proposed lifting procedure used a collection of Ge island morphologies 

from previous direct deposition simulations, and place them on the clean a-SiO2 surface 

to meet a given size distribution.  The islands are stabilized on the surface via series of 

static relaxations along with short constant temperature NVT-MD anneals.  Microscopic 

configurations were constructed using the lifting procedure based on full island size 

distributions (ISDs) from direct MD simulations.  By using the low-order moments of the 
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ISD, monomer number density, and maximum island size as our coarse variables, we 

showed the coarse evolutions of the lifted systems were in agreement with direct MD 

simulations, thereby validating the proposed lifting scheme.  Furthermore, the healing 

observed in the coarse evolutions of the lifted systems, during which the error introduced 

in lifting were relaxed by the fast processes, confirmed the presence of timescale 

separation in the Ge deposition system, justifying the use of CPI.  Due to the stochasticity 

in the full ISDs, we also proposed a method to construct reduced ISDs from the coarse 

variables mentioned above.  The coarse evolutions of the lifted system based on reduced 

ISDs were also shown to be in excellent agreement with direct simulation, rendering 

these coarse variables promising candidates to perform CPI.  

Despite our study is based on the Ge on a-SiO2 system, the lifting procedure, the 

reduced ISD representation, and the possible candidates of coarse variables presented 

here can be easily adapted for other deposition systems.  Overall, our work demonstrated 

the use of the coarse time-stepper scheme to accurately model the evolution of deposition 

systems.  By the addition of a macroscopic time integrator, the current study can be easily 

extended to perform coarse projective integration in deposition systems with the use of 

atomistic simulations. 
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 Thermodynamic and Morphological Analysis of Large Chapter 5.

Silicon Self-Interstitial Clusters  
 

5.1 Introduction 

Silicon self-interstitials and their aggregates play important roles at various stages 

of silicon crystal growth and processing.  During melt-growth of silicon (via either the 

Czochralski or float-zone techniques), self-interstitials introduced at the melt-solid 

interface, as well as those generated in the crystal by Frenkel pair formation, may become 

supersaturated as the crystal cools.  Although the extent of supersaturation depends 

strongly on the crystal growth conditions, any significant supersaturation will induce self-

interstitial clustering.  The highly deleterious nature of these self-interstitial clusters 

requires that most semiconductor silicon has been grown under conditions that are 

vacancy rich and where self-interstitial supersaturation is not present.  However, modern 

crystals are increasingly grown under conditions of point defect neutrality, where self-

interstitials and vacancies are present in near-equal levels, increasing the probability of 

self-interstitial supersaturation and clustering.  In addition to crystal growth, the ion-

implantation process, which is used to introduce dopants (e.g. boron or phosphorous) into 

wafers, also results in strong self-interstitial supersaturation and associated clustering 

[185, 186].  In addition to potentially directly impacting the crystalline quality of the 

material, clusters generated by ion-implantation strongly influence the diffusion behavior 

of implanted dopant atoms during subsequent annealing [187-194]. 

Predicting the impact of self-interstitial clusters in a particular scenario is best 

accomplished with a quantitative model for predicting the size and spatial distribution of 

clusters as a function of process parameters.  Typical models are based on a continuum 

description of the various diffusion, reaction and aggregation processes among point 
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defects and impurity atoms, most often expressed in terms of systems of partial 

differential equations.  Indeed, such “defect dynamics” models have proven exceptionally 

useful in a broad range of applications.  Perhaps the most successful of these is the 

prediction of void (vacancy cluster) distributions in both crystal growth and wafer 

thermal annealing processes [55, 60, 195-198].  Somewhat less success has been realized 

with the much more complex, but technologically critical, case of oxygen precipitation 

[199-203]. 

The input parameters to defect dynamics models include transport (e.g., diffusion 

coefficients), structural (e.g., capture radii) and thermodynamic properties (formation free 

energies) for the various atomic species and their clusters.  Some of these parameters, 

namely the diffusivities and formation thermodynamics of single self-interstitials and 

vacancies, have been studied extensively with both experimental and computational 

approaches, although even for these very basic properties some uncertainty still remains.  

Cluster properties are much less well characterized.  Small defect clusters, which are 

critical during the defect nucleation process, are extremely difficult to study 

experimentally because of their transient nature, their small size, and their relatively low 

concentrations.  Although atomistic simulations are ideal for investigating such small 

defect clusters, they become progressively more challenging to perform as the number of 

atoms, and the associated relaxation timescales, increases.  These difficulties 

notwithstanding, the energetics of various vacancy and self-interstitial cluster structures 

have been computed with both empirical potential and quantum mechanical descriptions.  

Overall, there is good agreement between the various simulation approaches and the 

results of these calculations have been used to explain many experimental observations. 
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  However, defect dynamics models require specification of finite temperature 

free energies, rather than energies, which are significantly more difficult to compute.  The 

importance of entropic contributions to cluster thermodynamics was demonstrated 

previously for the case of vacancy aggregation [55, 60, 204].  Here, both vibrational and 

configurational entropy were shown to contribute at the elevated temperatures 

encountered in melt-growth of silicon boules.  In particular, configurational entropy, 

which is often neglected, was found to be surprisingly high and led to substantial 

reduction of cluster free energies, along with qualitative impact on cluster morphology.  

Overall, inclusion of cluster entropy was shown to materially improve the predictive 

capability of defect dynamics models without the ad hoc parameter regression that is 

usually employed to match model predictions to experimental data. 

The aim of this chapter is to extend the computational framework described in ref. 

[204] for vacancy clusters to also address self-interstitial clusters, which, unlike voids, 

exhibit complex morphological behavior.  While the large vacancy aggregates observed 

experimentally tend to exhibit predominantly octahedral structures bounded by {111}-

oriented planes and with 50-200 nm length scales [205, 206], self-interstitial clusters have 

been observed in a variety of different morphologies that depend sensitively on 

processing conditions such as thermal annealing time and temperature [188, 189, 191, 

193, 207-217].   

Detailed summaries of self-interstitial cluster morphologies observed in 

experiment may be found in prior literature (e.g., [215, 217-219]), and only a brief 

discussion is provided here.  Most large self-interstitial clusters in silicon are planar, and 

can be classified according to their orientations – those that lie along {113} habit planes 

(“{113} defects”), and those on {111} planes (“{111} defects”) [220-225].  {113} 
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defects are comprised of <110>-oriented di-interstitial chains aligned in the {113} habit 

plane [223, 226, 227].  These chains are surrounded on either side by five and seven-

membered atom rings, as well as regular six-membered rings.  Rod-like {113} defects 

generally consist of a few <110> chains, while planar ones include a larger number of 

<110> chains [223, 228].  Interestingly, the spacing between <110> chains is not regular, 

leading to variable self-interstitial density in {113} defects [228].  The notation /I/, /IO/, 

/IIO/, etc. represents the presence (I) and absence of (O) <110> chains along the {113} 

plane in a particular defect.  Common {111}-oriented planar defects include the Frank 

partial (FDL) and the perfect dislocation loops (PDL) [207-209].  Both defects are 

surrounded by dislocation loops ([111]-oriented Burgers vector for FDLs and [110]-

oriented for PDLs).  FDLs also exhibit an extrinsic stacking-fault comprised of two 

additional (111) planes of atoms.  {111} defects are the most energetically stable 

interstitial-related defects and are generally the only remaining species following 

extended annealing of post-implanted wafers [215].  A third type of {111} defect is also 

sometimes observed and is comprised of <110>-oriented interstitial chains surrounded by 

alternating five and eight-membered atomic rings [221, 222].  Finally, smaller clusters 

tend to exist as compact, three-dimensional entities, but except in the case of certain 

“magic” sizes (e.g., Ni = 4, 8 [229-231]), their precise structures are not well 

characterized. 

The structures described above have been largely observed and studied in ion-

implanted wafers.  By contrast, the interstitial aggregates observed in as-grown 

interstitial-rich silicon crystals tend to be observed in two primary modes, traditionally 

referred to as “A” and “B” defects [232].  The smaller B defects, which are observed at 

lower self-interstitial concentrations, are thought to be globular structures similar to the 
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compact structures found in ion-implanted material [215].  The large A defects are 

networks of dislocation loops that can reaches sizes of 10s of microns.  Presumably, the 

differences between clusters observed in ion-implantation and crystal growth are due to 

differences in the nucleation and growth conditions.  The very high supersaturation 

attained in the ion-implantation/wafer annealing case leads to high nucleation rates and, 

coupled with self-interstitial outdiffusion to the wafer surface, more controlled growth 

conditions.  In crystal growth, the self-interstitial clustering process leads to fewer nuclei 

that can grow to much larger (and morphologically complicated) sizes.  

 

5.2 Theoretical Background of the Inherent Structure Landscape Analysis 

The “conventional” strategy for computing defect formation free energies is to 

identify the minimum energy configuration and compute its formation energy and 

vibrational entropy.  Configurational entropy is often neglected but may be included by 

estimating the symmetry degeneracy for the minimum energy configuration.  The implicit 

assumption in this approach is that no other configurations of the defect exist sufficiently 

energetically close to the ground state to contribute significantly to the free energy.  

However, as shown previously [204] for vacancy clusters in silicon described by the 

Environment-Dependent Interatomic Potential (EDIP) [38], configurational entropy may 

be quite significant for defects at the high temperatures relevant to crystal growth and 

some wafer annealing processes.  This configurational entropy is a consequence of a 

large number of mechanically stable, off-lattice configurations corresponding to local 

minima in the potential energy landscape (PEL).   

Here, we use the same computational approach used in refs. [204, 219, 233, 234] 

to compute absolute self-interstitial cluster free energies as a function of size and 
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temperature.  The approach is based on an inherent structure landscape (ISL) description 

[217, 235-242].  Inherent structures, as first introduced by Stillinger and Weber [235, 

243], correspond to local minima in the 3N-dimensional potential energy (or enthalpy) 

landscape defined by the three-dimensional coordinates of an N-atom system [244].  

Each local minimum is surrounded by a basin that defines the region of phase space from 

which a local minimum is always reached upon downhill energy minimization (e.g. 

steepest descent or conjugate-gradient) [236].  Under certain conditions, and most often 

in the solid state, the relevant phase space of the system is well approximated by the 

collection of basins surrounding inherent structures, i.e. the ISL becomes a good 

approximation to the PEL.   

The ISL framework used in this work has been described in detail in refs. [204, 

219, 233, 234] and only a brief development is given here.  The PELISL 

approximation essentially reduces the original potential energy landscape,  NE r , into a 

collection of basins (inherent structures), , each of which is identified by its minimum 

potential energy, E .  For the configurational portion of the canonical partition function, 

the approximation is given by 

         exp ( ) ~ exp expN N

vibQ E d g E E F dE

         r r ,  (5.1) 

where  g E  is the configurational density-of-states (DOS) for inherent structures with 

energies E  and is independent of temperature, 1/ Bk T  .  The vibrational free energy 

of a basin, ( )vib vibF TS T  , represents the (temperature dependent) number of vibrational 

“states” in each basin, i.e., lnvib vibS k N .  Note that in eq. (5.1) it is implicitly assumed 

that inherent structures with similar energies possess similar vibrational characteristics.  



110 

 

A (temperature dependent) modified configurational DOS that includes the vibrational 

states in each basin then may be defined as 

       , exp vibG E g E F

     .  (5.2) 

Noting that the Helmholtz free energy is related to the total partition function, Z, 

as (1/ ) lnF Z  , a free energy difference may be expressed using eq. (5.1) 

  (1/ ) ln ( )exp ( )F G E E d E        ,  (5.3) 

where E  is defined relative to the perfect crystal reference state containing the same 

number of atoms, i.e.,  ( / )ref refE E E N N   .  In eq. (5.3), the modified DOS written 

in terms of the energy difference is independent of temperature 

  
 

 
   
   

   
exp ( )

exp
exp ( )

vib

vibref

ref ref vib

g E FG E
G E g E F

G E g E F




 


 


      


,  (5.4) 

where   1refg E   was applied in the second equality.  The temperature independence of 

the last exponential term in eq. (5.4) may be demonstrated by considering the vibrational 

entropy of a given basin within the harmonic approximation, which is given by  

    
 3 1

ln

N

vib q

q

S k h  
 

   
 
 ,  (5.5) 

where { }q  are the normal modes, and noting that the temperature dependence cancels in 

the expression    

  
1 1

( ) ( )ref

vib vib vib vib

B B

F S S S
k k

        .  (5.6) 
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5.3 Sampling of the Inherent Structure Landscape 

The ISL for each self-interstitial cluster was sampled according to the following 

procedure.  First, a perfect Si lattice was created and iN  self-interstitials were added at 

adjacent tetragonal sites to create a spherical cluster; the host system sizes used for the 

various clusters are summarized in Table 5.1.  In each case, the system was equilibrated 

with NPT-ensemble MD for 1 ns in order to determine the average zero pressure volume, 

followed by a further 0.1 ns in the NVT ensemble.  Following this equilibration phase, 

the system configuration was recorded every 0.2 ps and subjected to conjugate gradient 

energy minimization at constant volume in order to find the minimum energy of the 

current basin.  The convergence criterion for the minimizations was set to 2

2
10F  , 

where 
2

F is the 2-norm of the force vector.  Note that the minimization procedure leads 

to the development of significant tensile stress which impacts the energy.  Moreover, the 

precise amount of tension generated during minimization depends on the specific 

configuration.  Formation energies for each inherent structure were computed by 

referencing the energy to a perfect crystal configuration at the same hydrostatic tension.  
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Table 5.1.  Host system sizes employed for different cluster sizes ( iN ). 

Number of interstitials ( iN ) Host System Size 

2iN   512 

2 8iN   1000 

8 13iN   1728 

13 20iN   2744 

20 35iN   4096 

35 70iN   5832 

150iN   13824 

 

For each minimized configuration, the cluster configuration was assessed for 

intactness – only intact cluster configurations were included in the ensuing analysis and 

configurations that corresponded to broken up clusters were discarded.  Intact clusters 

were identified by first tagging all atoms with energy values that differ by more than 1% 

from the atomic energy in a perfect lattice that was quenched at constant volume to 0K 

from the same temperature as the defect-containing simulation.  Then, a Stillinger 

criterion [184] cutoff of 1.8 times the first nearest-neighbor distance in the perfect lattice 

(2.38Å) was used to determine whether all tagged atoms were connected or not.  Note 

that an atomic displacement criterion may equivalently be used for the purpose of 

assessing cluster intactness.  The atomic displacement criterion identifies all atoms that 

are displaced from their ideal lattice positions by more than a certain threshold using a 

perfect crystal reference lattice at the same total volume as the snapshot containing the 

cluster.  As described later, the displacement criterion is used to generate snapshots of 

cluster configurations and also to probe the geometry of cluster capture zones in Section 
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5.8, but the atomic energy criterion is simpler to evaluate and provides an equally robust 

measure of cluster intactness.  

All MD simulations and energy minimizations were based on the Erhart-Albe 

(EA) parameterization of the Tersoff potential[25] and performed using the LAMMPS 

simulation package.  The EA potential represents an improved parametrization of the T3 

Tersoff model and provides excellent prediction of elastic coefficients of the diamond 

phase and various metrics in the liquid.  Our choice of potential is also motivated by 

further studies (not reported here) in which the impact of carbon on self-interstitial 

clusters is assessed, for which the EA potential has also proven well-suited.  However, 

some limitations in its application to self-interstitial defects are apparent[25] – these are 

addressed in Section 5.7.  Temperature and pressure were controlled with a Nose-Hoover 

thermostat and barostat, respectively.  The MD time step was set to 1 fs in all cases.   

A canonical ensemble MD (or Monte Carlo) simulation executed at a temperature 

simT  samples a PEL so that the probability of being in a basin with minimum energy E  

is 

      , ~ expsim simP E G E E     .  (5.7) 

Probability distribution functions (PDFs) of basin minimum energies were 

constructed by histogramming the basin minimum energies into bins of width 0.2 eV.  

For each PDF, multiple MD simulations with different initialization seeds were used to 

collect O(10
4
) IS samples.  The temperature-independent modified DOS, ( )G E , may 

then be determined from eq. (5.7) up to an unknown multiplicative constant that must be 

evaluated separately (see below).  Note that at a given simulation temperature and for 

finite simulation length, a PDF is statistically converged across a finite range of basin 
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energies and the corresponding modified DOS is valid only over that energy range.  For 

each cluster size, the ISL sampling MD simulations were repeated at multiple 

temperatures in order to generate a single DOS function that spans the entire energy 

range of interest.  The temperature intervals were selected to provide sufficient overlap 

between the converged DOS segments, allowing them to be stitched together. 

Evaluation of the unknown DOS constant in eq. (5.7) requires that the absolute 

value of ( )G E  be independently specified at one value of E .  The lowest energy 

configuration of each size was used for this purpose because low-lying configurations are 

typically widely spaced apart and each energy bin usually contains a single configuration.  

In such a case, the configurational degeneracy of an energy bin is an O(1) number that 

has relatively little impact on the absolute free energy, even if it cannot be exactly 

evaluated.  The product of this O(1) number and the vibrational degeneracy factor, 

exp( / )vib BS k , then provides the absolute total degeneracy of the reference energy bin.  

The vibrational entropy for all configurations was computed within the harmonic 

approximation (eq. (5.5)). 

 

5.4 Replica Exchange Sampling for Large Clusters 

For iN    30, self-interstitial clusters exhibit complex morphological behavior in 

which clusters can assume macroscopically different morphologies, or phases, that are 

stable at different temperatures.  The precise nature of these phases is discussed in detail 

in the following sections; briefly, planar structures that are relatively low in energy, are 

preferred at lower temperatures, while globular configurations are stabilized by entropy at 

higher temperatures.  The transition between these distinct morphologies is apparently 
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difficult, i.e., subject to a significant free energy barrier (that is size dependent), and 

sampling across this transition in a statistically meaningful manner was found to be 

impossible in a single MD simulation at a fixed temperature.  In fact, for the largest 

cluster sizes considered in this study, no transitions between the distinct morphological 

groups could be detected in any of the simulations.  Thus, for the temperature ranges over 

which both morphologies coexist and contribute to the overall free energy, additional 

methods for enhanced sampling are required. 

The replica exchange molecular dynamics (REMD) method [245] was used to 

sample the ISL at multiple temperatures within the coexistence temperature interval.  In 

REMD, NR  copies of the system (replicas) are evolved simultaneously across a range of 

temperatures, 1 2 ... ...i NRT T T T     .  The temperature range for each cluster size was 

selected so that the coexistence regime was contained between the lowest and highest 

temperatures; see Table 5.2.  During the REMD simulation, the system configuration 

exchanges between adjacent replicas, i  and j , are periodically attempted, and accepted 

with an Boltzmann-weighted probability 

  
1 1

min 1,exp i j

B j B i

p E E
k T k T

    
      

     

.  (5.8) 

For each cluster size, the system was first equilibrated at an intermediate 

temperature for 1 ns and then NR  replicas of the equilibrated system were created.  

Exchanges of the configurations among adjacent replica pairs were attempted every 0.1 

ps.  Configurations from each replica were obtained every 2 ps and minimized in the 

same fashion as for the standard MD sampling cases.  
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Table 5.2.  Number of replicas and temperature range used in REMD runs for clusters 

with iN    30. 

Cluster size iN  Number of replicas, NR  Temperature range 

30 8 1800K – 1920k 

50 8 1880K – 2000K 

70 8 1940K – 2050K 

150 12 2050K – 2200K 

 

5.5 Small Cluster Probability Distribution Functions 

The ISLs of very small self-interstitial clusters already have been studied in some 

detail using the EDIP potential [217, 219].  Here, we analyze the new EA potential results 

in the context of the former EDIP results.  Like many other parameterizations of the 

Tersoff model, EA also significantly over-predicts the melting temperature of Si 

(Tm~2450K vs. 1685K); all reported temperatures in the following discussion are either 

actual simulation temperatures or dimensionless values scaled by the EA melting 

temperature.  Shown in Figure 5.1 are distributions for three different clusters sizes (Ni = 

2, 4, and 10), each collected at two temperatures, * 0.78T   and * 0.94T   .  The 4I 

cluster exhibits a sharp peak at 10.2 eV that corresponds to the well-known ground state 

that we have previously termed as the Humble/Arai configuration [217, 219] (Figure 

5.1(b))).  As described previously this structure is stabilized by large vibrational entropy 

and competes strongly with a distribution of higher energy configurations which 

collectively become more important at higher temperature.  These results are 

quantitatively very similar to those obtained previously with the EDIP and Tersoff 

potentials [217, 219].  Here, and in all configurations shown in subsequent figures, the 
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atomic displacement criterion is employed to generate configurational snapshots.  All 

atoms that are displaced from their equilibrium positions by more than 0.4 Å are tagged.  

Of these, the Ni most displaced atoms are arbitrarily assigned as self-interstitials (large 

red spheres) and the remainder are labelled by small green spheres. 

The larger 10I cluster exhibits a broader distribution of energies which is bimodal 

at lower temperature and singly peaked at higher temperature.  The high temperature 

distribution is peaked at configurations that are three-dimensional and highly disordered.  

The two peaks in the lower temperature distribution correspond to a bifurcation in the 

cluster morphology.  The higher energy peak consists of three dimensional disordered 

cluster configurations, while the lower energy one represents configurationally well-

defined precursors (Figure 5.1(c)) to various planar species at larger sizes [217, 219].   

Qualitatively, the small cluster observations are consistent with our prior EDIP 

results, although the EDIP potential predicted a stronger skew towards the disordered 

configurations and only exhibited the disordered configurations at all temperatures 

considered [217, 219]; this is attributed to particularly high EDIP energy landscape 

roughness that corresponds to a large number of competing inherent structures.  

However, in refs. [217, 219] it was demonstrated that the application of tensile 

hydrostatic pressure to the system increased the importance of similar planar precursors, 

also leading to bimodal distributions similar to those observed in the present study and 

also with the “T3” parameterization of the Tersoff potential [14, 41].  The mechanism for 

this response to tension was shown to proceed via reduction of ISL roughness, i.e., a 

reduction in the number of mechanically stable, high energy configurations (and their 

collective configurational entropy).  Although not shown here, the response of the EA 
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PEL to applied pressure is similar to that of EDIP (and T3 Tersoff) – hydrostatic tension 

reduces landscape roughness, while compression increases it. 

In summary, the current EA results indicate that the EA PEL for small self-

interstitial clusters is generally similar to those predicted by other empirical potentials for 

silicon such as T3 Tersoff, Stillinger-Weber, and EDIP but that some differences in the 

landscape roughness are apparent.  Overall, the EDIP PEL appears to be especially rough 

relative to other potentials, favoring higher-energy three-dimensional amorphous 

configurations over the ground state.  

 

 

Figure 5.1.  (a) PDFs for small clusters: red curves – 2I, blue curves – 4I, and green 

curves – 10I. For each case, open symbols correspond to T=1900K, solid symbols to 

T=2300K. (b) Ground state 4I configuration corresponding to Humble/Arai structure (

10.2E   eV). (c) Ground state 10I configuration comprised of side-by-side 

Humble/Arai units surrounding an eight-membered ring ( 22.3E   eV).  Large red 

spheres denote Ni most displaced atoms, small green spheres denote other atoms that are 

displaced by more than 0.4 A from their ideal positions. 
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5.6 Large Cluster Probability Distribution Functions 

The inherent structure probability distributions for larger clusters are much 

broader than the small cluster ones and exhibit a clear separation between various types 

of planar configurations (“plates”) and three-dimensional, amorphous configurations 

(“blobs”).  These two morphological classes may be considered as distinct phases 

separated by a low probability region along the formation energy axis.  This low-

probability region in between the plate and blob phases corresponds to a free energy 

barrier (with height that is inversely related to the probability) for the transition between 

the two phases.  As discussed in Section 5.4, replica-exchange MD (REMD) was required 

to sample the PDFs for these clusters across temperature ranges in which both 

morphological phases were relevant, i.e., near coexistence.   

Shown in Figure 5.2 and Figure 5.3 are inherent structure PDFs for the 70I and 

150I clusters, respectively, at 3 different temperatures, along with example configurations 

for each size.  At the lowest temperature, the distributions are peaked at configurations 

that correspond to various planar configurations, while at higher temperatures, the 3-

dimensional blob phase is dominant.  The intermediate temperature windows, which for 

both clusters lie in the range over which REMD simulations were performed, show a very 

wide range of energy values in which both blob (Figure 5.2(d) and Figure 5.3(d)) and 

plate (Figure 5.2(b,c) and Figure 5.3 (b,c)) phases coexist.  At the lowest temperature 

(1900K), the 70I cluster exhibits both Frank (FDL – Figure 5.2 (c)) and perfect (PDL – 

Figure 5.2(b)) dislocation loops with relative probabilities that depend on the temperature 

– the lower energy PDL becomes dominant as the temperature is lowered.  The 150I 

cluster by contrast only shows PDL structures (Figure 5.3(b)) at the temperatures shown 

– the broad energy distribution exhibited by planar defects is related to the various ways 
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in which PDLs can become disorganized (Figure 5.3(c)).  For all planar configurations 

the surrounding displacement field is three-dimensional and extends in the direction 

normal to the plane of the defect by an amount similar to the diameter of the loops 

resulting in an approximately spherical zone.  This zone of elastic displacement may be 

correlated with the capture zone of the clusters which is discussed in more detail in 

Section 5.8. 

  

 

Figure 5.2.  (a) 70I inherent structure PDF at 3 temperatures: blue – 1900K, purple – 

2050K (from REMD simulation), and red – 2100K.  (b) PDL configuration ( 97.4E 

eV), (c) FDL configuration ( 120.4E  eV), and (d) blob configuration ( 179.5E  eV).  

Large red spheres denote Ni most displaced atoms; small green spheres denote other 

atoms that are displaced more than 0.4 Å from their ideal positions. 
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Figure 5.3.  (a) 150I inherent structure PDF at 3 temperatures: blue – 2050K, purple – 

2144K (from REMD simulation), and red – 2200K. (b) PDL configuration ( 167.9E 

eV), (c) PDL configuration ( 197.1E  eV), and (d) blob configuration ( 480.7E  eV).  

Large red spheres denote Ni most displaced atoms; small green spheres denote other 

atoms that are displaced more than 0.4 Å from their ideal positions. 

 

5.7 Absolute Density-of-States and Free Energies for Self-interstitial 

Cluster Inherent Structures 

The probability distribution functions described in the preceding sections were 

used to compute absolute DOS using eq. (5.6) and vibrational entropy calculations for 

reference states at each size.  The vibrational entropies of formation as a function of 

formation energy are shown in Figure 5.4 for the reference configuration at each cluster 

size.  There is an approximately linear relationship between the formation vibrational 

entropy and formation energy across the entire size range.  This trend is consistent with 

previous calculations of vibrational entropy as a function of formation energy across 

multiple configurations of a single cluster for both self-interstitial and vacancy species 
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[217, 219].  In other words, the linear increase of vibrational entropy with formation 

energy appears to hold across different cluster sizes of a given point defect species as 

well as different configurations of a given cluster type and size.   

It is notable that the EA potential predicts small but negative vibrational entropies 

of formation for the monomer, dimer, and trimer self-interstitial reference configurations, 

which correspond to the lowest energy states found for each species.  These 

configurations are comprised of Ni self-interstitials roughly positioned in neighboring 

tetrahedral sites.  It is well established that both T3 Tersoff and EA (erroneously) predict 

that the tetrahedral configuration is the ground state for the single interstitial rather than 

the <110> dumbbell [25].  The negative vibrational entropy predicted for the tetrahedral 

self-interstitial can be interpreted in the context of additional local rigidity provided by 

the interstitial atom which sits in the middle of a large space within the tetrahedral lattice.  

The fact that negative vibrational entropies of formation are also predicted for dimers and 

trimers reflects the fact that these species also exhibit tetrahedral character that provides 

local rigidity.  The predicted EA ground state structures correspond well to energetically 

low-lying (but not ground state) configurations identified by Ritchie et al. [246] using a 

combination of tight-binding and DFT.  For example, the EA trimer ground state closely 

resembles the compact configuration identified in ref. [246] that is only 0.13 eV above 

the DFT ground state, while the EA dimer ground state is similar in nature to the 
2

bI  

configuration in ref. [246] that was found to be 0.4 eV above the DFT energetic 

minimum configuration.   

The significance of these deviations from the DFT results for very small clusters 

in the context of the present study is not immediately obvious.  At first glance, it would 
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appear that such discrepancies could indicate that the EA (and T3 Tersoff) potentials are 

unsuitable for studies of self-interstitial clusters.  However, it should be noted that 

clusters containing 4 or more self-interstitials are fundamentally different in nature.  For 

example, the Humble structure that represents the ground state for the 4I cluster, 

represents a significant reconstruction, and is essentially unrelated to the structures 

identified for Ni = 1-3 as evidenced by its very large vibrational entropy of formation.  

This reconstruction is a key element in the formation of building block of larger planar 

structures such as the {113} defects. The fact the EA potential correctly predicts this 

structure and gives a good estimate for its formation energy suggests that the impact of 

the discrepancies identified for very small clusters might be limited.  Similar arguments 

may be made for the FDL and PDL {111} defects, which are examples of yet another 

type of reconstruction are also correctly predicted by the EA potential.    
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Figure 5.4.  Self-interstitial cluster vibrational entropy of formation, eq. (6), as a function 

of formation energy.  Red line is a linear fit.  

 

Example absolute DOS curves for several different cluster sizes are shown in 

Figure 5.5, where it was assumed that the configurational degeneracy of the reference 

configuration was unity for all sizes.  Recall that the actual configurational degeneracy of 

any single structure is expected to be O(1) (typically dictated by simple symmetry 

considerations), and the energy bins near the ground state configuration tend to contain 

very few distinct configurations due to the sparsity of inherent structures with very low 

energies.  By using an energy bin with a single structure as a reference for computing an 

absolute DOS, and neglecting the degeneracy introduced by lattice symmetry, the free 

energy of formation for any given cluster size is expected to be overestimated by no more 

than 0.2-0.5 eV across the temperature range considered in this study.  The curves shown 

in Figure 5.5 represent information obtained at multiple simulation temperatures and are 

themselves independent of temperature (within the harmonic approximation).  The 
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energy ranges over which each curve is computed reflect the energies that were 

adequately sampled by the MD simulations at the temperatures considered in this study. 

 

 

Figure 5.5.  Absolute DOS curves for the various cluster sizes.  Red – 10I; Orange – 20I; 

Blue – 30I; Green – 70I.  Energy range for each cluster size represents the aggregate of 

configurations of that size sampled over all simulation temperatures. 

 

The free energy per interstitial as a function of temperature and cluster size is 

shown in Figure 5.6(a).  Generally, the free energy per interstitial decreases with both 

cluster size and temperature, although significant non-monotonicity exists for small 

clusters, which has been addressed in detail in prior studies and is not the focus of the 

present study.  In particular, the 4I and 8I clusters exhibit known special stability (“magic 

sizes”) due to particularly favorable configurations that are precursors to {311} and other 

types of planar defects [230].  The corresponding total formation entropy is shown in 

E (eV)

ln
(G

a
b

s
)

0 100 200 300
0

200

400

600

800

1000



126 

 

Figure 5.6(b).  The total entropy, which includes both vibrational and configurational 

components was defined as 

 
1

( ) ( ) ( , ) ( )S T F T E P E T d E
T
         
  ,  (5.9) 

where the integral term represents the weighted average of the cluster formation energy.  

A sudden increase in total entropy is observed for larger clusters (Ni > 25) above 2100K.  

The effect increases in strength as the cluster size increases due the increased entropy 

associated with larger amorphous configurations.  The temperature dependence of the 

cluster entropy suggests that Ni ~ 25 represents a critical size, below which clusters are 

too small to assume a sufficient diversity of configurations to produce the entropic 

“explosion” observed for larger ones.  

The impact of cluster size on the temperature dependence of cluster 

thermodynamics is more directly shown in Figure 5.7, which presents line plots for both 

the free energy and entropy of formation for the 10I and 150I clusters as a function of 

temperature.  The 150I cluster exhibits a sharp increase in the formation entropy (dashed 

line with diamond symbols) and therefore also in the slope of the energy and free energy 

(dotted and solid lines, respectively) at around 2100K (~0.85 Tm) at which the 

configurational entropy contribution to the free energy becomes important.  As will be 

demonstrated in Figure 5.8, this rapid increase in the cluster entropy corresponds to an 

order-disorder transition from structured, plate-like configurations to amorphous, blob-

like configurations.  Away from the transition region, the entropy is also observed to 

increase with temperature, although at a much slower rate.  Here, the increase in entropy 

(both configurational and vibrational) with temperature may be attributed to a gradual 
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increase in the extent of “microscopic” disorder associated with either the plate or blob 

macro-configurations.     

By contrast, the 10I cluster shows a much more gradual transition region that is 

spread out over several hundred K and lacks a well-defined morphological transition 

temperature.  This may be interpreted as a confinement effect whereby the small size of 

the 10I cluster limits its ability to achieve low energy planar configurations, instead 

producing “precursor” configurations such as the ones shown in Figure 5.7.  Transition 

from these planar precursor configurations to amorphous blob configurations with an 

increase in temperature is therefore more subtle for the 10I case, leading to more gradual 

changes in both the entropy and enthalpy.  In other words, the reduced state space 

associated with sub-critical clusters restricts the order-disorder transition exhibited by 

super-critical clusters (Ni > 25). 
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Figure 5.6.  (a) Cluster formation free energy per interstitial as a function of temperature 

and size computed from absolute DOS curves (examples shown in Figure 5.5).  (b) 

Formation entropy as a function of temperature and size computed using eq. (9).  
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Figure 5.7.  Formation free energy (solid lines and circles), formation enthalpy (dotted 

lines and squares), and formation entropy (dashed lines and diamonds) as a function of 

temperature for the 10I (red) and 150I (blue) clusters. 

 

Shown in Figure 5.8 is the average morphological state of self-interstitial clusters 

as a function of temperature and cluster size.  A continuous order parameter,  , is 

defined by assigning a value of 1   to all planar configurations and 0   to 

amorphous ones and then computing a weighted average over all configurations using the 

inherent structure PDFs at each temperature and cluster size, i.e.,  

 ( ) ( , ) ( )T P E T d E    .  (5.10) 

Note that small clusters (Ni<~15) were defined as blobs in the absence of clear 

planar character; this assignment does not account for the fact that some of the small 

cluster configurations correspond to planar precursors and therefore the averaged 

morphological order parameter is not as meaningful in the small cluster size limit.  As 

shown in Figure 5.8.  Morphological order parameter,  , as a function of temperature 
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and cluster size., the amorphous blob phase is dominant at high temperature (>~2100K) 

for all sizes, although larger clusters persist in planar configurations up to slightly higher 

temperatures.  Comparison of the data in Figure 5.6(b) and Figure 5.8 confirms that the 

transition to the blob phase corresponds to a rapid increase in the configurational entropy.    

  

 

Figure 5.8.  Morphological order parameter,  , as a function of temperature and cluster 

size.  A value of 1 corresponds to purely planar configurations, while a value of 0 

represents blob configurations. 

 

5.8 Capture Zones for Self-Interstitial Clusters 

Cluster capture zones are defined as the volume surrounding a cluster in which a 

mobile entity, typically a single self-interstitial, “sees” the cluster and, assuming that the 

interaction is favorable, is captured by it.  The precise definition of a cluster capture zone 

is difficult.  Dynamical simulations in which single self-interstitials are released near the 

cluster and tracked require that the capture probability be sampled over many different 
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configurations and from many different approach directions.  Moreover, it is often 

difficult to determine unambiguously whether a monomer was in fact directly captured or 

wandered around the simulation cell before finding the cluster.  Here, we employed the 

displacement criterion described in Section 5.3 to define regions that are characterized by 

a threshold amount of elastic strain.  The threshold displacement magnitude,  , was 

studied parametrically because the precise amount of lattice strain required for capture is 

not known a priori.  Once all displaced atoms were tagged, their Voronoi volume, cV , 

was computed using the LAMMPS software.   

The planar configurations shown in Figure 5.2 and Figure 5.3 suggest that 

spherical capture zones may reasonably be assumed for both planar and blob 

configurations.  In fact, there is experimental evidence that the coarsening dynamics of 

these defects are best described on the basis of spheres rather than two-dimensional 

objects [208].  Within the spherical assumption a capture radius, cr , is given by 

 

1
33

( ) ( )
4

c cr V 


 
  
 

.  (5.11)  

Shown in Figure 5.9 is the capture radius as a function of the displacement threshold,  , 

for different individual morphologies of the 70I cluster.  The capture radii of the FDL and 

PDL configurations, which are quite similar, are both always much higher than that of the 

blob configuration.  The results in Figure 5.9 suggest that the capture radius changes 

significantly as clusters transition between planar and blob configurations, however, there 

is little sensitivity of the capture radii on configurational variations within a particular 

morphology, e.g., all FDL and PDL configurations are quite similar in capture zone size.  

Bearing this in mind, a configurationally-weighted capture radius as a function of cluster 
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size and temperature may be estimated by considering a few (~5) representative 

configurations of each morphology and applying the averaged morphological order 

parameter,  

  1planar blob

c c cr r r    ,  (5.12) 

where planar

cr and blob

cr  are the average planar and blob capture radii, respectively. The 

results for 0.4  Å are shown in Figure 5.10 for all cluster sizes and temperatures 

considered in the present study.  Although the configurationally-averaged capture radius 

for small clusters (Ni<50) is relatively insensitive to temperature, larger clusters exhibit a 

very sharp drop in capture radius at ~2100K as planar configurations transition to 3-

dimensional ones.  While the precise magnitude of this drop somewhat depends on the 

assumed atomic displacement threshold for capture, the transition temperature is entirely 

dictated by the morphological transition from plate to blob configurations. 
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Figure 5.9.  Capture radius, cr , as a function of the displacement threshold,  , for 

individual 70I cluster configurations: green – FDL ( E  = 125.06 eV), blue – PDL ( E  = 

106.31 eV), red – blob ( E  = 226.10 eV).  
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Figure 5.10.  Cluster capture radius as a function of temperature for various sizes for 

0.4  .  

 

5.9 Conclusions 

The formation thermodynamics and capture zones of silicon self-interstitial 

clusters were studied computationally across a wide range of temperatures and cluster 

sizes.  While the ground state thermodynamics of small interstitial clusters have been 

addressed computationally in previous studies, here we provide a comprehensive 

quantitative analysis of larger self-interstitial clusters across a wide range of sizes and 

temperatures.  This information represents a critical input into rate equation-based models 

for predicting the size distribution and density of self-interstitial clusters resulting during 

silicon crystal growth or wafer annealing.  To date, such models have been successfully 

applied to the quantitative prediction of vacancy cluster (void) size distributions but much 

less information is available for self-interstitial clusters. 
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The task of computing formation free energies and capture zones for silicon self-

interstitials is substantially complicated by their rich morphological behavior.  First, 

clusters above a critical size are able to assume multiple macroscopically distinct 

configurations – low formation energy configurations correspond to one of multiple types 

of {111}-oriented dislocation loops (“plates”), while high energy configurations are 

amorphous and roughly spherical (“blobs”).  These two “macro-phases” of self-

interstitial clusters are separated by a substantial free energy barrier that increases with 

cluster size and makes it practically impossible to sample across the transition for clusters 

containing more than about 30-40 interstitials.  Secondly, each macro-phase is 

represented by an enormous number of microscopically distinct configurations, 

collectively representing significant configurational entropy.  To address these challenges 

we employ a computational framework based on the sampling of inherent structures that 

we have previously successfully applied to vacancy clusters.  We also apply the replica 

exchange technique to enhance configurational sampling across a wide range of cluster 

energies by exchanging configurations between multiple simultaneously running MD 

simulations, each being executed at a different temperature.   

The resulting free energy and capture zone surfaces provide a quantitative and 

comprehensive view of interstitial cluster free energies as a function of temperature and 

cluster size.  Most importantly the calculations span the transition between disordered, 

three-dimensional configurations that possess high energy and high entropy, and highly 

structured, planar dislocation loops that are generally lower in both energy and entropy.  

The ability to seamlessly bridge this transition effectively enables extrapolation of the 

computed data to cluster sizes and temperatures beyond the ranges computed in the 
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present work and should provide essential input to continuum rate equation models of 

silicon self-interstitial clustering.  
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 Conclusions and Future Work Chapter 6.
 

6.1 A Tersoff-Based Empirical Interatomic Potential Model for Ge-Si-O 

Ternary System 

An empirical potential model for the Ge-Si-O system based on the Tersoff 

framework was studied in detail to determine its suitability for the Ge-on-Si selective 

epitaxial growth (SEG).   Two variants of the potential model were proposed that differ 

by the interaction cutoff function for the Si atoms.  The results from these two variants 

were compared using a single free fitting parameter for Ge-O interaction strength.  Both 

variants were able to describe at least semi-quantitatively a wide range of properties that 

are relevant to SEG, including structural properties of the bulk SiO2, energetics of the Si-

SiO2 and Ge-SiO2 interfaces, as well as Ge binding on the amorphous SiO2 (a-SiO2) 

surface.   

Our study addressed a universal challenge for empirical potentials – namely that it 

is generally not possible to capture quantitatively all properties of interest, particularly in 

complex, multicomponent systems.  That said, the large number of structural and 

thermodynamic properties considered in this work indicates that such a framework is 

sufficiently accurate for capturing many of the processes that are relevant to selective 

epitaxial growth of Ge on Si/SiO2 substrates.  The best overall representation of the 

properties was achieved for both potential variants when the fitting parameter was about 

0.8, i.e., the Ge-O interaction strength is about 80% of the Si-O interaction. 

The potential model characterized for the Si-Ge-O ternary system was used to 

simulate the nucleation of Ge islands on a-SiO2 during Ge deposition at a wide range of 

fluxes and temperatures.  In accord with prior experimental analysis, the deposition 
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physics was described well by the so-called extremely incomplete condensation regime 

whereby island growth proceeds by direct impingement from the vapor phase rather than 

diffusional transport on the surface.  This behavior was explained by the highly 

heterogeneous binding environment to Ge atoms presented by the a-SiO2 surface.  A rate-

equation based framework was used to identify the deposition regime under which the 

experiments were performed, and then to systematically steer the simulations towards it 

by altering the temperature and deposition flux.  Once in the experimentally-relevant 

deposition regime, the rate equation framework was used again to identify quantities that 

allow for quantitative comparison with experiments, even though the simulation length, 

time, and temperature scales are all different than the experimental ones.   

An important conclusion from our study was the ability to simulate atomic 

deposition, using straightforward, direct MD simulations, at experimentally meaningful 

conditions.  The timescale restriction associated with MD simulations was well-

established in the literature.  However, we found that it was possible to reach a regime 

where key measures of the deposition process no longer depend on the flux, enabling us 

to make detailed, quantitative comparison to experimental measurements.  Our model 

predicted various measures—namely the critical island size and quantitative temperature 

dependence—that are in excellent quantitative agreement with experiments.  Our study 

provided strong evidence that realistic deposition rates did not necessarily have to be 

achieved in atomistic simulations in order to make quantitative predictions.  

Overall, our study of the Tersoff-based empirical potential framework showed 

excellent quantitative agreement with experiments and ab initio calculations for many 

structural and energetic properties of the Ge-Si-O ternary system, as well as the 

deposition physics of Ge on a-SiO2 surfaces.  Our results were somewhat surprising given 
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the complexity of the ternary Ge-Si-O system with the omission of explicit charge 

modeling in considering interactions with oxygen.  Collectively, our findings confirmed 

the Tersoff-based empirical potential was well-suited for the atomistic study of the Ge-

on-Si SEG system.  More generally, the overall success of the Tersoff framework in 

describing the ternary system studied here demonstrated the flexibility of (classical) 

bond-order potentials to capture complex interatomic interactions. 

 

6.1.1 Island Coalescence and Origins of Stacking Fault Formation during SEG 

The computational framework carefully validated in this thesis can be readily 

applied in the study of island coalescence during SEG.  As mentioned in Ref. [13], the 

formation of stacking faults in the SEG film is suspected to take place during Ge island 

coalescence.  Large-scale atomistic simulations of Ge island coalescence with the well-

characterized empirical potential model will allow for direct connections to the 

experiments.  An example system to model Ge island coalescence is shown in Figure 6.1, 

where two adjacent Ge islands are in registry with the underlying Si substrate through 

openings in the a-SiO2 layer.  The size of the Ge islands, the window spacing in the a-

SiO2 layer as well as the a-SiO2 thickness shown in Figure 6.1 were constructed based on 

experimental measurements [11, 53] to closely resemble the SEG system.  Our previous 

analysis on random nucleation of Ge islands on a-SiO2 under Ge deposition can be used 

to determine the optimal deposition flux that minimizes secondary island nucleation in 

such systems.  By varying quantities such as Si-Ge contact area and island aspect ratio, 

one can determine the effects of lattice mismatch strain and Ge island morphology on the 

coalescence behavior. 
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One possible bottleneck for the coalescence simulations is that the island growth 

may be too slow for MD and the simulation become too inefficient for island to grow into 

contact.  One can initialize the system with larger islands to minimize inter-island 

spacing, however, the possibility of biasing the coalescence behavior with artificially 

initialized island morphology increases with initial island size.  Other approaches to 

overcome this problem are the applications of accelerated simulation methods, such as 

coarse projective integration or kinetic Monte Carlo.  These methods can be applied to 

speed up island growth and coalescence while maintaining realistic island morphologies.  

Such multiscale approaches may be further extended to model film formation from island 

coalescence.  These studies can serve as a predictive tool for future improvements on the 

SEG of Ge-on-Si.  

 

 

Figure 6.1.  System setup for modeling Ge island coalescence during SEG.  The Ge 

islands are in contact with the Si substrate through openings in the a-SiO2 layer.  Ge 

deposition is represented by Ge atoms in the vapor phase above the islands.  Green 

atoms: Ge; red atoms: O; blue atoms: Si. 
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6.2 Multiscale Modeling of Ge Deposition on Amorphous SiO2 by Coarse 

Projective Integration 

The wide range of timescales for deposition processes that span orders-of-

magnitude presented challenges when modeling the deposition system.  Coarse projective 

integration (CPI), a multiscale modeling technique that exploits the separation of 

timescales commonly found in complex systems, was a promising approach to 

computationally study the deposition systems.  The fundamental idea behind equation-

free analysis was that many systems that were governed by fast, often stochastic, 

microprocesses, also exhibited a slowly-evolving manifold defined by some coarse 

variables.  In CPI, short MD simulations would be used to compute temporal gradients of 

the coarse variables at given points in time, which would in turn be used to evolve 

differential equations in the coarse variables over time intervals that are large relative to 

the microprocesses, but small relative to the coarse variable timescales.  

We investigated the application of coarse projective integration to the deposition 

and islanding of Ge on an a-SiO2 surface.  We focused on the major challenge in 

applying CPI to deposition in morphologically complex situations, namely the 

reconstruction of an atomistic configuration only from knowledge of coarse variables (a 

process called ‘lifting’).  With collected island configurations from previous deposition 

simulations of Ge on a-SiO2 in Chapter 3, we proposed a lifting procedure based on a 

given island size distribution (ISD), in which island configurations were randomly chosen 

from the collection and placed at randomly selected positions on the surface.  The islands 

were stabilized on the surface through sequence of short constant-temperature anneals in 

NVT-MD.  The lifting procedure was tested by constructing atomic systems based on the 

ISD from direct simulations.  Using the quantities such as low order moments of the ISD, 
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the monomer density, and maximum island size as the coarse variables, we demonstrated 

that the lifted systems exhibited the same coarse evolution as direct MD simulations, 

thereby validating the proposed lifting procedure.  Moreover, a healing period at the 

initial stage of the coarse evolution was observed in the lifted systems, in which the errors 

in the reconstructed system introduced during lifting was relaxed by the fast-evolving 

processes.  The healing behavior confirmed the presence of timescale separation, further 

justified the use of CPI for deposition of Ge on a-SiO2 surfaces. 

Furthermore, since the stochastic nature of the full ISD rendered it an unsuitable 

candidate for coarse variables in CPI, a reduced representation of the ISD (reduced ISD) 

was derived using the coarse variables mentioned above.  The agreement on the coarse 

evolutions of the lifted systems based the reduced ISD and of direct MD simulations 

supported the formulation of the reduced ISDs presented in this work.  Overall, our 

analysis addressed the key issues on applying CPI to the Ge-on-SiO2 deposition system.  

More broadly, the lifting procedure, the reduced ISD representation, as well as the 

identified coarse variables presented in our work can be easily adapted for other 

deposition systems where CPI would be an extremely powerful computational tool. 

 

6.2.1 Coarse Projective Integration for Deposition and Islanding of Ge on a-SiO2 

Our work so far addressed the primary challenges in applying CPI for deposition 

of Ge on a-SiO2, namely the lifting procedure.  Furthermore, the coarse variables and 

reduced ISD presented here already constitutes a coarse time-stepper scheme, where one 

can lift, evolve, and restrict based on the low-order moments of the ISD, the monomer 

number density, and maximum island size.  The next step is to incorporate a numerical 

integration scheme to perform CPI on the Ge deposition system.  Using the direct MD 
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results as the reference, the quality of the numerical integrator will be carefully tested 

before extending to timescales beyond the reach of MD.   

 

6.3 Thermodynamic Analysis of Self-Interstitial Clusters in Silicon 

A computational study of the formation thermodynamics and capture zones of Si 

self-interstitial clusters were performed across a wide range of temperature and cluster 

sizes.  The rich morphological behavior of the self-interstitial clusters complicated the 

calculation of their free energies and capture zones.  The difficulties were two-fold: first, 

for clusters greater than the critical size (~ 30-40 interstitials), there existed multiple 

macroscopically distinct configurations, separated by substantial free energy barrier that 

increased with cluster size.  The two “macro-phases” were (1) three-dimensional 

amorphous, roughly spherical, clusters that were high in formation energies (“blobs”) and 

(2) {111}-oriented dislocation loops with low formation energies (“plates”).  Secondly, 

each of these macro-phases consisted of numerous microscopically distinct 

configurations, collectively representing significant configurational entropy.  We 

addressed these challenges by applying a computational framework of inherent structure 

sampling in combination with the replica exchange molecular dynamics method for 

enhanced configurational sampling across a wide range of cluster energies.  

The free energy and capture zone surfaces computed in this work as functions of 

temperature and cluster size spanned the transition between the two macro-phases—the 

disordered, three-dimensional configurations that were high in formation energies and 

entropies, and the highly-structured, planar dislocation loops that were lower in both 

formation energies and entropies.  The transitions were seamlessly bridged in this work, 

thus enabled extrapolation of the computed results to cluster sizes and temperatures 
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beyond the range covered in the present work.  Our results provided critical insight in the 

formation thermodynamics of self-interstitial clusters with significant contribution to the 

prediction of size distributions and density of self-interstitial clusters during silicon 

crystal growth or wafer annealing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



145 

 

BIBLIOGRAPHY 
 

1. Karam, N.H., et al., Development and characterization of high-efficiency 

Ga0.5In0.5P/GaAs/Ge dual- and triple-junction solar cells. Ieee Transactions on 

Electron Devices, 1999. 46(10): p. 2116-2125. 

2. Fichthorn, K.A. and M. Scheffler, Island nucleation in thin-film epitaxy: A first-

principles investigation. Physical Review Letters, 2000. 84(23): p. 5371-5374. 

3. Andre, C.L., et al., Investigations of high-performance GaAs solar cells grown on 

Ge-Si1-xGex-Si substrates. Ieee Transactions on Electron Devices, 2005. 52(6): p. 

1055-1060. 

4. King, R.R., et al., 40% efficient metamorphic GaInP/GaInAs/Ge multijunction 

solar cells. Applied Physics Letters, 2007. 90(18). 

5. Kerestes, C., et al., Fabrication and analysis of multijunction solar cells with a 

quantum dot (In)GaAs junction. Progress in Photovoltaics, 2014. 22(11): p. 1172-

1179. 

6. Ahn, D., et al., High performance, waveguide integrated Ge photodetectors. 

Optics Express, 2007. 15(7): p. 3916-3921. 

7. Michel, J., J.F. Liu, and L.C. Kimerling, High-performance Ge-on-Si 

photodetectors. Nature Photonics, 2010. 4(8): p. 527-534. 

8. Luryi, S. and E. Suhir, New Approach to the High-Quality Epitaxial-Growth of 

Lattice-Mismatched Materials. Applied Physics Letters, 1986. 49(3): p. 140-142. 

9. Langdo, T.A., et al., High quality Ge on Si by epitaxial necking. Applied Physics 

Letters, 2000. 76(25): p. 3700-3702. 

10. Li, Q.M., et al., Selective growth of Ge on Si(100) through vias of SiO2 

nanotemplate using solid source molecular beam epitaxy. Applied Physics 

Letters, 2003. 83(24): p. 5032-5034. 

11. Li, Q.M., et al., Heteroepitaxy of high-quality Ge on Si by nanoscale Ge seeds 

grown through a thin layer of SiO2. Applied Physics Letters, 2004. 85(11): p. 

1928-1930. 

12. Leonhardt, D. and S.M. Han, Energetics of Ge nucleation on SiO2 and 

implications for selective epitaxial growth. Surface Science, 2009. 603(16): p. 

2624-2629. 

13. Leonhardt, D., S. Ghosh, and S.M. Han, Origin and removal of stacking faults in 

Ge islands nucleated on Si within nanoscale openings in SiO2. Journal of Applied 

Physics, 2011. 110(7). 

14. Tersoff, J., Modeling Solid-State Chemistry - Interatomic Potentials for 

Multicomponent Systems. Physical Review B, 1989. 39(8): p. 5566-5568. 

15. Lee, B.M., et al., Generation of glass SiO2 structures by various cooling rates: A 

molecular-dynamics study. Computational Materials Science, 2006. 37(3): p. 203-

208. 

16. Baumann, F.H., et al., Multiscale modeling of thin-film deposition: Applications 

to Si device processing. Mrs Bulletin, 2001. 26(3): p. 182-189. 

17. Schulze, T.P., P. Smereka, and E. Weinan, Coupling kinetic Monte-Carlo and 

continuum models with application to epitaxial growth. Journal of Computational 

Physics, 2003. 189(1): p. 197-211. 



146 

 

18. Schulze, T.P., A hybrid scheme for simulating epitaxial growth. Journal of Crystal 

Growth, 2004. 263(1-4): p. 605-615. 

19. Sun, Y., R. Caflisch, and B. Engquist, A Multiscale Method for Epitaxial Growth. 

Multiscale Modeling & Simulation, 2011. 9(1): p. 335-354. 

20. Fan, J.H., L. He, and R.J. Stewart, Concurrent and Hierarchical Multiscale 

Analysis for Layer-Thickness Effects of Nanoscale Coatings on Interfacial Stress 

and Fracture Behavior. Journal of Engineering Materials and Technology-

Transactions of the Asme, 2012. 134(3). 

21. Kevrekidis, I.G., et al., Equation-Free, Coarse-Grained Multiscale Computation: 

Enabling Microscopic Simulators to Perform System-Level Analysis. 

Communications in Mathematical Sciences, 2003. 1: p. 715-762. 

22. Gear, C.W. and I.G. Kevrekidis, Projective methods for stiff differential 

equations: Problems with gaps in their eigenvalue spectrum. Siam Journal on 

Scientific Computing, 2003. 24(4): p. 1091-1106. 

23. Kevrekidis, I.G. and G. Samaey, Equation-Free Multiscale Computation: 

Algorithms and Applications. Annual Review of Physical Chemistry, 2009. 60: p. 

321-344. 

24. Gear, C.W., et al., Projecting to a slow manifold: Singularly perturbed systems 

and legacy codes. Siam Journal on Applied Dynamical Systems, 2005. 4(3): p. 

711-732. 

25. Erhart, P. and K. Albe, Analytical potential for atomistic simulations of silicon, 

carbon, and silicon carbide. Physical Review B, 2005. 71(3). 

26. Nielsen, S.O., et al., Recent progress in adaptive multiscale molecular dynamics 

simulations of soft matter. Physical Chemistry Chemical Physics, 2010. 12(39): p. 

12401-12414. 

27. Yoon, B., et al., Charging effects on bonding and catalyzed oxidation of CO on 

Au-8 clusters on MgO. Science, 2005. 307(5708): p. 403-407. 

28. Diemand, J., et al., Large scale molecular dynamics simulations of homogeneous 

nucleation. Journal of Chemical Physics, 2013. 139(7). 

29. Gu, X.W., et al., Size-Dependent Deformation of Nanocrystalline Pt Nanopillars. 

Nano Letters, 2012. 12(12): p. 6385-6392. 

30. Paul, W. and G.D. Smith, Structure and dynamics of amorphous polymers: 

computer simulations compared to experiment and theory. Reports on Progress in 

Physics, 2004. 67(7): p. 1117-1185. 

31. Lim, W.K. and A.R. Denton, Polymer crowding and shape distributions in 

polymer-nanoparticle mixtures. Journal of Chemical Physics, 2014. 141(11). 

32. Venturoli, M., B. Smit, and M.M. Sperotto, Simulation studies of protein-induced 

bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for 

lipid bilayers with embedded proteins. Biophysical Journal, 2005. 88(3): p. 1778-

1798. 

33. Monticelli, L., et al., The MARTINI coarse-grained force field: Extension to 

proteins. Journal of Chemical Theory and Computation, 2008. 4(5): p. 819-834. 

34. Henriques, J. and M. Skepo, A coarse-grained model for flexible 

(phospho)proteins: Adsorption and bulk properties. Food Hydrocolloids, 2015. 

43: p. 473-480. 



147 

 

35. Backofen, R., R. Bergamaschini, and A. Voigt, The interplay of morphological 

and compositional evolution in crystal growth: a phase-field model. Philosophical 

Magazine, 2014. 94(19): p. 2162-2169. 

36. Kuryliuk, V.V. and O.A. Korotchenkov, Features of the stress-strain state of 

Si/SiO2/Ge heterostructures with germanium nanoislands of a limited density. 

Semiconductors, 2013. 47(8): p. 1031-1036. 

37. Stillinger, F.H. and T.A. Weber, Computer-Simulation of Local Order in 

Condensed Phases of Silicon. Physical Review B, 1985. 31(8): p. 5262-5271. 

38. Bazant, M.Z., E. Kaxiras, and J.F. Justo, Environment-dependent interatomic 

potential for bulk silicon. Physical Review B, 1997. 56(14): p. 8542-8552. 

39. Lee, B.J., A modified embedded atom method interatomic potential for silicon. 

Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2007. 

31(1): p. 95-104. 

40. Tersoff, J., New Empirical-Model for the Structural-Properties of Silicon. 

Physical Review Letters, 1986. 56(6): p. 632-635. 

41. Tersoff, J., Empirical Interatomic Potential for Silicon with Improved Elastic 

Properties. Physical Review B, 1988. 38(14): p. 9902-9905. 

42. Lafontaine, H., et al., Photoluminescence study of initial interdiffusion of SiGe/Si 

quantum wells grown by ultrahigh vacuum-chemical vapor deposition. Applied 

Physics Letters, 1996. 69(10): p. 1444-1446. 

43. Shah, V.A., et al., Reverse graded strain relaxed SiGe buffers for CMOS and 

optoelectronic integration. Thin Solid Films, 2012. 520(8): p. 3227-3231. 

44. Currie, M.T., et al., Controlling threading dislocation densities in Ge on Si using 

graded SiGe layers and chemical-mechanical polishing. Applied Physics Letters, 

1998. 72(14): p. 1718-1720. 

45. Luan, H.C., et al., High-quality Ge epilayers on Si with low threading-dislocation 

densities. Applied Physics Letters, 1999. 75(19): p. 2909-2911. 

46. Tweet, D.J., et al., Characterization and reduction of twist in Ge on insulator 

produced by localized liquid phase epitaxy. Applied Physics Letters, 2005. 

87(14). 

47. Miyao, M., et al., High-quality single-crystal Ge stripes on quartz substrate by 

rapid-melting-growth. Applied Physics Letters, 2009. 95(2). 

48. Liu, Y.C., M.D. Deal, and J.D. Plummer, High-quality single-crystal Ge on 

insulator by liquid-phase epitaxy on Si substrates. Applied Physics Letters, 2004. 

84(14): p. 2563-2565. 

49. Miyao, M., et al., Giant Ge-on-Insulator Formation by Si-Ge Mixing-Triggered 

Liquid-Phase Epitaxy. Applied Physics Express, 2009. 2(4). 

50. Bai, J., et al., Study of the defect elimination mechanisms in aspect ratio trapping 

Ge growth. Applied Physics Letters, 2007. 90(10). 

51. Luryi, S., A. Kastalsky, and J.C. Bean, New Infrared Detector on a Silicon Chip. 

Ieee Transactions on Electron Devices, 1984. 31(9): p. 1135-1139. 

52. Leonhardt, D. and S.M. Han, Dislocation reduction in heteroepitaxial Ge on Si 

using SiO2 lined etch pits and epitaxial lateral overgrowth. Applied Physics 

Letters, 2011. 99(11). 

53. Li, Q.M., et al., Probing interactions of Ge with chemical and thermal SiO2 to 

understand selective growth of Ge on Si during molecular beam epitaxy. Journal 

of Physical Chemistry C, 2007. 111(2): p. 779-786. 



148 

 

54. Kapur, S.S., M. Prasad, and T. Sinno, Carbon-mediated aggregation of self-

interstitials in silicon: A large-scale molecular dynamics study. Physical Review 

B, 2004. 69(15). 

55. Sinno, T., A bottom-up multiscale view of point-defect aggregation in silicon. 

Journal of Crystal Growth, 2007. 303(1): p. 5-11. 

56. Nieves, A.M., V. Vitek, and T. Sinno, Monte Carlo analysis of stress-directed 

phase segregation in binary thin film alloys under nonisothermal annealing. 

Applied Physics Letters, 2008. 93(19). 

57. Nieves, A.M., V. Vitek, and T. Sinno, Atomistic analysis of phase segregation 

patterning in binary thin films using applied mechanical fields. Journal of Applied 

Physics, 2010. 107(5). 

58. Sinno, T. and M. Prasad, Internally consistent verification of mean-field models 

for aggregation using large-scale molecular dynamics. Molecular Physics, 2004. 

102(4): p. 395-403. 

59. Prasad, M. and T. Sinno, Internally consistent approach for modeling solid-state 

aggregation. I. Atomistic calculations of vacancy clustering in silicon. Physical 

Review B, 2003. 68(4): p. 45206 1-12. 

60. Frewen, T.A., et al., A microscopically accurate continuum model for void 

formation during semiconductor silicon processing. Journal of Crystal Growth, 

2005. 279(3-4): p. 258-271. 

61. Munetoh, S., et al., Interatomic potential for Si-O systems using Tersoff 

parameterization. Computational Materials Science, 2007. 39(2): p. 334-339. 

62. Lee, B.M., T. Motooka, and S. Munetoh, Molecular-dynamics simulations of 

nucleation and crystallization processes of laser crystallized poly-Si. Journal of 

Physics-Condensed Matter, 2008. 20(5). 

63. Okada, Y. and Y. Tokumaru, Precise Determination of Lattice-Parameter and 

Thermal-Expansion Coefficient of Silicon between 300-K and 1500-K. Journal of 

Applied Physics, 1984. 56(2): p. 314-320. 

64. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular-Dynamics. 

Journal of Computational Physics, 1995. 117(1): p. 1-19. 

65. Shinoda, W., M. Shiga, and M. Mikami, Rapid estimation of elastic constants by 

molecular dynamics simulation under constant stress. Physical Review B, 2004. 

69(13). 

66. Vollmayr, K., W. Kob, and K. Binder, Cooling-rate effects in amorphous silica: A 

computer-simulation study. Physical Review B, 1996. 54(22): p. 15808-15827. 

67. Bruckner, R., Properties and structure of vitreous silica. I. Journal of Non-

Crystalline Solids, 1970. 5(2): p. 123-175. 

68. Sarnthein, J., A. Pasquarello, and R. Car, Model of Vitreous Sio2 Generated by an 

Ab-Initio Molecular-Dynamics Quench from the Melt. Physical Review B, 1995. 

52(17): p. 12690-12695. 

69. Malfait, W.J., W.E. Halter, and R. Verel, Si-29 NMR spectroscopy of silica glass: 

T-1 relaxation and constraints on the Si-O-Si bond angle distribution. Chemical 

Geology, 2008. 256(3-4): p. 269-277. 

70. Mizele, J., J.L. Dandurand, and J. Schott, Determination of the Surface-Energy of 

Amorphous Silica from Solubility Measurements in Micropores. Surface Science, 

1985. 162(1-3): p. 830-837. 



149 

 

71. Djurabekova, F. and K. Nordlund, Atomistic simulation of the interface structure 

of Si nanocrystals embedded in amorphous silica. Physical Review B, 2008. 

77(11). 

72. Kroll, P. and H.J. Schulte, Shell-like structure of valence band orbitals of silicon 

nanocrystals in silica glass. Physica Status Solidi B-Basic Solid State Physics, 

2006. 243(6): p. R47-R49. 

73. Du, J.C. and P. Kroll, Electronic structure and interfacial properties of Ge 

nanoclusters embedded in amorphous silica. Journal of Non-Crystalline Solids, 

2010. 356(44-49): p. 2448-2453. 

74. Kaiser, N., et al., Wetting angle and surface tension of germanium melts on 

different substrate materials. Journal of Crystal Growth, 2001. 231(4): p. 448-

457. 

75. Bakaev, V.A. and W.A. Steele, Grand Canonical Ensemble Computer-Simulation 

of Adsorption of Argon on a Heterogeneous Surface. Langmuir, 1992. 8(1): p. 

148-154. 

76. Bakaev, V.A., et al., Adsorption of CO2 and Ar on glass surfaces. Computer 

simulation and experimental study. Journal of Chemical Physics, 1999. 111(21): 

p. 9813-9821. 

77. Frenkel, D. and B. Smit, Understanding molecular simulation : from algorithms 

to applications. 2nd ed. Computational science ; v. 1. 2002, San Diego, Calif.: 

Academic Press. xxii, 638 p. 

78. Sing, K.S.W., et al., Reporting Physisorption Data for Gas Solid Systems with 

Special Reference to the Determination of Surface-Area and Porosity 

(Recommendations 1984). Pure and Applied Chemistry, 1985. 57(4): p. 603-619. 

79. Myers, A.L., Thermodynamics of adsorption in porous materials. Aiche Journal, 

2002. 48(1): p. 145-160. 

80. Wakayama, Y., T. Tagami, and S. Tanaka, Three-dimensional islands of Si and 

Ce formed on SiO2 through crystallization and agglomeration from amorphous 

thin films. Thin Solid Films, 1999. 350(1-2): p. 300-307. 

81. Brunco, D.P., et al., Germanium MOSFET devices: Advances in materials 

understanding, process development, and electrical performance. Journal of the 

Electrochemical Society, 2008. 155(7): p. H552-H561. 

82. Kamata, Y., High-k/Ge MOSFETs for future nanoelectronics. Materials Today, 

2008. 11(1-2): p. 30-38. 

83. Holman, Z.C., C.Y. Liu, and U.R. Kortshagen, Germanium and Silicon 

Nanocrystal Thin-Film Field-Effect Transistors from Solution. Nano Letters, 

2010. 10(7): p. 2661-2666. 

84. Hosoi, T., et al., Mobility characterization of Ge-on-insulator metal-oxide-

semiconductor field-effect transistors with striped Ge channels fabricated by 

lateral liquid-phase epitaxy. Applied Physics Letters, 2014. 105(17). 

85. People, R. and J.C. Bean, Calculation of Critical Layer Thickness Versus Lattice 

Mismatch for Gexsi1-X/Si Strained-Layer Heterostructures. Applied Physics 

Letters, 1985. 47(3): p. 322-324. 

86. Young, W.M. and E.W. Elcock, Monte Carlo Studies of Vacancy Migration in 

Binary Ordered Alloys - I. Proceedings of the Physical Society of London, 1966. 

89(565P): p. 735-&. 



150 

 

87. Battaile, C.C., The kinetic Monte Carlo method: Foundation, implementation, and 

application. Computer Methods in Applied Mechanics and Engineering, 2008. 

197(41-42): p. 3386-3398. 

88. Voter, A.F., Introduction to the Kinetic Monte Carlo Method, in Radiation effects 

in solids K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga, Editors. 2007, 

Springer: Dordrecht, Netherlands. p. 1-23. 

89. Bortz, A.B., M.H. Kalos, and J.L. Lebowitz, New Algorithm for Monte-Carlo 

Simulation of Ising Spin Systems. Journal of Computational Physics, 1975. 17(1): 

p. 10-18. 

90. Fichthorn, K.A. and W.H. Weinberg, Theoretical Foundations of Dynamic 

Monte-Carlo Simulations. Journal of Chemical Physics, 1991. 95(2): p. 1090-

1096. 

91. Dai, J.G., et al., On-lattice kinetic Monte Carlo simulations of point defect 

aggregation in entropically influenced crystalline systems. Physical Review B, 

2005. 72(13). 

92. Dai, J., W.D. Seider, and T. Sinno, Lattice kinetic Monte Carlo simulations of 

defect evolution in crystals at elevated temperature. Molecular Simulation, 2006. 

32(3-4): p. 305-314. 

93. Dai, J., W.D. Seider, and T. Sinno, A lattice kinetic Monte Carlo study of void 

morphological evolution during silicon crystal growth. Molecular Simulation, 

2007. 33(9-10): p. 733-745. 

94. Dai, J.G., W.D. Seider, and T. Sinno, Coarse-grained lattice kinetic Monte Carlo 

simulation of systems of strongly interacting particles. Journal of Chemical 

Physics, 2008. 128(19). 

95. Bales, G.S. and D.C. Chrzan, Dynamics of Irreversible Island Growth during 

Submonolayer Epitaxy. Physical Review B, 1994. 50(9): p. 6057-6067. 

96. Ratsch, C., et al., Submonolayer Epitaxy without a Critical Nucleus (Vol 329, Pg 

L599, 1995). Surface Science, 1995. 338(1-3): p. L889-L890. 

97. Battaile, C.C., D.J. Srolovitz, and J.E. Butler, A kinetic Monte Carlo method for 

the atomic-scale simulation of chemical vapor deposition: Application to 

diamond. Journal of Applied Physics, 1997. 82(12): p. 6293-6300. 

98. Mottet, C., et al., A Monte Carlo simulation of submonolayer homoepitaxial 

growth on Ag(110) and Cu(110). Surface Science, 1998. 417(2-3): p. 220-237. 

99. Evans, J.W., P.A. Thiel, and M.C. Bartelt, Morphological evolution during 

epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surface 

Science Reports, 2006. 61(1-2): p. 1-128. 

100. Zhu, Y.G. and X. Pan, Kinetic Monte Carlo simulation of 3-D growth of NiTi 

alloy thin films. Applied Surface Science, 2014. 321: p. 24-29. 

101. Voter, A.F., F. Montalenti, and T.C. Germann, Extending the time scale in 

atomistic simulation of materials. Annual Review of Materials Research, 2002. 

32: p. 321-346. 

102. Henkelman, G. and H. Jonsson, Long time scale kinetic Monte Carlo simulations 

without lattice approximation and predefined event table. Journal of Chemical 

Physics, 2001. 115(21): p. 9657-9666. 

103. El-Mellouhi, F., N. Mousseau, and L.J. Lewis, Kinetic activation-relaxation 

technique: An off-lattice self-learning kinetic Monte Carlo algorithm. Physical 

Review B, 2008. 78(15). 



151 

 

104. Xu, H.X., Y.N. Osetsky, and R.E. Stoller, Self-evolving atomistic kinetic Monte 

Carlo: fundamentals and applications. Journal of Physics-Condensed Matter, 

2012. 24(37). 

105. Sorensen, M.R. and A.F. Voter, Temperature-accelerated dynamics for 

simulation of infrequent events. Journal of Chemical Physics, 2000. 112(21): p. 

9599-9606. 

106. Voter, A.F., Hyperdynamics: Accelerated molecular dynamics of infrequent 

events. Physical Review Letters, 1997. 78(20): p. 3908-3911. 

107. Montalenti, F., M.R. Sorensen, and A.R. Voter, Closing the gap between 

experiment and theory: Crystal growth by temperature accelerated dynamics. 

Physical Review Letters, 2001. 87(12). 

108. Miron, R.A. and K.A. Fichthorn, Multiple-time scale accelerated molecular 

dynamics: Addressing the small-barrier problem. Physical Review Letters, 2004. 

93(12). 

109. Venables, J.A., Rate Equation Approaches to Thin-Film Nucleation Kinetics. 

Philosophical Magazine, 1973. 27(3): p. 697-738. 

110. Venables, J.A., G.D.T. Spiller, and M. Hanbucken, Nucleation and Growth of 

Thin-Films. Reports on Progress in Physics, 1984. 47(4): p. 399-459. 

111. Chuang, C.Y., et al., Atomistic analysis of Ge on amorphous SiO2 using an 

empirical interatomic potential. Surface Science, 2013. 609: p. 221-229. 

112. Zinsmeis.G, Theory of Thin Film Condensation .B. Solution of Simplified 

Condensation Equation. Thin Solid Films, 1968. 2(5-6): p. 497-&. 

113. Walton, D., Nucleation of Vapor Deposits. Journal of Chemical Physics, 1962. 

37(10): p. 2182-&. 

114. Stowell, M.J. and Hutchins.Te, Nucleation Kinetics in Thin Film Growth .2. 

Analytical Evaluation of Nucleation and Growth Behaviour. Thin Solid Films, 

1971. 8(1): p. 41-&. 

115. Frankl, D.R. and J.A. Venables, Nucleation on Substrates from Vapour Phase. 

Advances in Physics, 1970. 19(80): p. 409-&. 

116. Amar, J.G. and F. Family, Critical Cluster-Size - Island Morphology and Size 

Distribution in Submonolayer Epitaxial-Growth (Vol 74, Pg 2066, 1995). 

Physical Review Letters, 1995. 75(10): p. 2069-2069. 

117. Bartelt, M.C. and J.W. Evans, Exact island-size distributions for submonolayer 

deposition: Influence of correlations between island size and separation. Physical 

Review B, 1996. 54(24): p. 17359-17362. 

118. Vvedensky, D.D., Scaling functions for island-size distributions. Physical Review 

B, 2000. 62(23): p. 15435-15438. 

119. Dubrovskii, V.G. and N.V. Sibirev, Size distributions, scaling properties, and 

Bartelt-Evans singularities in irreversible growth with size-dependent capture 

coefficients. Physical Review B, 2014. 89(5). 

120. Evans, J.W. and M.C. Bartelt, Nucleation, adatom capture, and island size 

distributions: Unified scaling analysis for submonolayer deposition. Physical 

Review B, 2001. 63(23). 

121. Robbie, D.A. and P.A. Mulheran, Impact of monomer evaporation on the 

statistics of island arrays formed in thin film deposition simulations. 

Philosophical Magazine B-Physics of Condensed Matter Statistical Mechanics 

Electronic Optical and Magnetic Properties, 2000. 80(7): p. 1299-1309. 



152 

 

122. Pimpinelli, A. and T.L. Einstein, Capture-zone scaling in island nucleation: 

Universal fluctuation behavior. Physical Review Letters, 2007. 99(22). 

123. Pimpinelli, A., L. Tumbek, and A. Winkler, Scaling and Exponent Equalities in 

Island Nucleation: Novel Results and Application to Organic Films. Journal of 

Physical Chemistry Letters, 2014. 5(6): p. 995-998. 

124. Muller, B., et al., Initial stages of Cu epitaxy on Ni(100): Postnucleation and a 

well-defined transition in critical island size. Physical Review B, 1996. 54(24): p. 

17858-17865. 

125. Bardotti, L., et al., High-resolution LEED profile analysis and diffusion barrier 

estimation for submonolayer homoepitaxy of Ag/Ag(100). Physical Review B, 

1998. 57(19): p. 12544-12549. 

126. Matetskiy, A.V., et al., Peculiar diffusion of C-60 on In-adsorbed Si(111)root 3 x 

root 3-Au surface. Surface Science, 2013. 616: p. 44-50. 

127. Graziosi, P., et al., Pentacene thin films on ferromagnetic oxide: Growth 

mechanism and spintronic devices. Applied Physics Letters, 2014. 105(2). 

128. Stukowski, A., Visualization and analysis of atomistic simulation data with 

OVITO-the Open Visualization Tool. Modelling and Simulation in Materials 

Science and Engineering, 2010. 18(1). 

129. Jensen, P., et al., Growth of three-dimensional structures by atomic deposition on 

surfaces containing defects: simulations and theory. Surface Science, 1998. 412-

13: p. 458-476. 

130. Venables, J., Introduction to surface and thin film processes. 2000, Cambrige, UK 

; New York: Cambridge University Press. xvi, 372 p. 

131. Karakasidis, T.E. and C.A. Charitidis, Multiscale modeling in nanomaterials 

science. Materials Science & Engineering C-Biomimetic and Supramolecular 

Systems, 2007. 27(5-8): p. 1082-1089. 

132. Brunhes, T., et al., Electroluminescence of Ge/Si self-assembled quantum dots 

grown by chemical vapor deposition. Applied Physics Letters, 2000. 77(12): p. 

1822-1824. 

133. Nomura, K., et al., Thin-film transistor fabricated in single-crystalline 

transparent oxide semiconductor. Science, 2003. 300(5623): p. 1269-1272. 

134. Ryu, Y.R., T.S. Lee, and H.W. White, Properties of arsenic-doped p-type ZnO 

grown by hybrid beam deposition. Applied Physics Letters, 2003. 83(1): p. 87-89. 

135. Ohta, H. and H. Hosono, Transparent oxide optoelectronics. Materials Today, 

2004. 7(6): p. 42-51. 

136. Senthilkumar, V., et al., Direct vapor phase growth process and robust photo-

luminescence properties of large area MoS2 layers. Nano Research, 2014. 7(12): 

p. 1759-1768. 

137. Nakamura, S., InGaN-based violet laser diodes. Semiconductor Science and 

Technology, 1999. 14(6): p. R27-R40. 

138. Zhang, J.J., et al., Evolution of epitaxial semiconductor nanodots and nanowires 

from supersaturated wetting layers. Chemical Society Reviews, 2015. 44(1): p. 

26-39. 

139. Aqua, J.N., et al., Growth and self-organization of SiGe nanostructures. Physics 

Reports-Review Section of Physics Letters, 2013. 522(2): p. 59-189. 

140. Ma, Y.J., et al., Ordering of low-density Ge quantum dot on patterned Si 

substrate. Journal of Physics D-Applied Physics, 2014. 47(48). 



153 

 

141. Shchukin, V.A. and D. Bimberg, Spontaneous ordering of nanostructures on 

crystal surfaces. Reviews of Modern Physics, 1999. 71(4): p. 1125-1171. 

142. Ledentsov, N.N., et al., Quantum dot heterostructures: fabrication, properties, 

lasers (Review). Semiconductors, 1998. 32(4): p. 343-365. 

143. Davis, R.F., et al., Thin-Film Deposition and Microelectronic and Optoelectronic 

Device Fabrication and Characterization in Monocrystalline Alpha and Beta 

Silicon-Carbide. Proceedings of the Ieee, 1991. 79(5): p. 677-701. 

144. Kasper, E. and K. Lyutovich, Strain adjustment with thin virtual substrates. Solid-

State Electronics, 2004. 48(8): p. 1257-1263. 

145. Pchelyakov, O.P., et al., Surface processes and phase diagrams in MBE growth of 

Si/Ge heterostructure. Thin Solid Films, 1997. 306(2): p. 299-306. 

146. Gouder, S., et al., Investigation of microstructure and morphology for the Ge on 

porous silicon/Si substrate hetero-structure obtained by molecular beam epitaxy. 

Thin Solid Films, 2014. 550: p. 233-238. 

147. Yoffe, A.D., Semiconductor quantum dots and related systems: electronic, 

optical, luminescence and related properties of low dimensional systems. 

Advances in Physics, 2001. 50(1): p. 1-208. 

148. Zhou, H., et al., Evolution of Wurtzite ZnO Films on Cubic MgO (001) Substrates: 

A Structural, Optical, and Electronic Investigation of the Misfit Structures. Acs 

Applied Materials & Interfaces, 2014. 6(16): p. 13823-13832. 

149. Forrest, S.R., Ultrathin organic films grown by organic molecular beam 

deposition and related techniques. Chemical Reviews, 1997. 97(6): p. 1793-1896. 

150. Levine, B.F., Quantum-Well Infrared Photodetectors. Journal of Applied Physics, 

1993. 74(8): p. R1-R81. 

151. Nakamura, S., et al., InGaN-based multi-quantum-well-structure laser diodes. 

Japanese Journal of Applied Physics Part 2-Letters, 1996. 35(1B): p. L74-L76. 

152. Jain, S.C., et al., III-nitrides: Growth, characterization, and properties. Journal of 

Applied Physics, 2000. 87(3): p. 965-1006. 

153. Schubert, M.F., et al., Polarization-matched GaInN/AlGaInN multi-quantum-well 

light-emitting diodes with reduced efficiency droop. Applied Physics Letters, 

2008. 93(4). 

154. Kong, Y.C., et al., Ultraviolet-emitting ZnO nanowires synthesized by a physical 

vapor deposition approach. Applied Physics Letters, 2001. 78(4): p. 407-409. 

155. Lauhon, L.J., et al., Epitaxial core-shell and core-multishell nanowire 

heterostructures. Nature, 2002. 420(6911): p. 57-61. 

156. Goldberger, J., et al., Single-crystal gallium nitride nanotubes. Nature, 2003. 

422(6932): p. 599-602. 

157. Hu, Z.Z., et al., Phase-field modeling of epitaxial growth: Applications to step 

trains and island dynamics. Physica D-Nonlinear Phenomena, 2012. 241(2): p. 

77-94. 

158. Caflisch, R.E., et al., Island dynamics and the level set method for epitaxial 

growth. Applied Mathematics Letters, 1999. 12(4): p. 13-22. 

159. Xu, C.J. and T. Tang, Stability analysis of large time-stepping methods for 

epitaxial growth models. Siam Journal on Numerical Analysis, 2006. 44(4): p. 

1759-1779. 

160. Tu, Y.H. and J. Tersoff, Coarsening, mixing, and motion: The complex evolution 

of epitaxial islands. Physical Review Letters, 2007. 98(9). 



154 

 

161. Geneste, G., et al., Competing mechanisms in the atomic diffusion of a MgO 

admolecule on the MgO(001) surface. Journal of Physics-Condensed Matter, 

2009. 21(31). 

162. Antoshchenkova, E., et al., Kinetic Monte-Carlo simulation of the homoepitaxial 

growth of MgO{001} thin films by molecular deposition. Surface Science, 2012. 

606(5-6): p. 605-614. 

163. Taioli, S., Computational study of graphene growth on copper by first-principles 

and kinetic Monte Carlo calculations. Journal of Molecular Modeling, 2014. 

20(7). 

164. Biswas, R., G.S. Grest, and C.M. Soukoulis, Molecular-Dynamics Simulation of 

Cluster and Atom Deposition on Silicon(111). Physical Review B, 1988. 38(12): 

p. 8154-8162. 

165. Matsukuma, M. and S. Hamaguchi, Molecular dynamics simulation of 

microcrystalline Si deposition processes by silane plasmas. Thin Solid Films, 

2008. 516(11): p. 3443-3448. 

166. Ratsch, C. and J.A. Venables, Nucleation theory and the early stages of thin film 

growth. Journal of Vacuum Science & Technology A, 2003. 21(5): p. S96-S109. 

167. Cox, E., et al., Temperature dependence of island growth shapes during 

submonolayer deposition of Ag on Ag(111). Physical Review B, 2005. 71(11). 

168. Moskovkin, P. and S. Lucas, Computer simulations of the early-stage growth of 

Ge clusters at elevated temperatures on patterned Si substrate using the kinetic 

Monte Carlo method. Thin Solid Films, 2013. 536: p. 313-317. 

169. Gonzalez-Gonzalez, A., C. Polop, and E. Vasco, Postcoalescence Evolution of 

Growth Stress in Polycrystalline Films. Physical Review Letters, 2013. 110(5). 

170. Eggleston, J.J. and P.W. Voorhees, Ordered growth of nanocrystals via a 

morphological instability. Applied Physics Letters, 2002. 80(2): p. 306-308. 

171. Niu, X., et al., Level set simulation of directed self-assembly during epitaxial 

growth. Physical Review B, 2006. 74(19). 

172. Papac, J., et al., Island-dynamics model for mound formation: Effect of a step-

edge barrier. Physical Review E, 2014. 90(2). 

173. Tsalikis, D.G., et al., A hybrid kinetic Monte Carlo method for simulating silicon 

films grown by plasma-enhanced chemical vapor deposition. Journal of Chemical 

Physics, 2013. 139(20). 

174. Masin, M., et al., Multiscale modeling of submonolayer growth for Fe/Mo (110). 

European Physical Journal B, 2013. 86(8). 

175. Ng, T.Y., V. Pandurangan, and H. Li, Multiscale modeling of nanoindentation in 

copper thin films via the concurrent coupling of the meshless Hermite-Cloud 

method with molecular dynamics. Applied Surface Science, 2011. 257(24): p. 

10613-10620. 

176. Zoontjens, P., T.P. Schulze, and S.C. Hendy, Hybrid method for modeling 

epitaxial growth: Kinetic Monte Carlo plus molecular dynamics. Physical Review 

B, 2007. 76(24). 

177. Kevrekidis, I.G., C.W. Gear, and G. Hummer, Equation-free: The computer-aided 

analysis of comptex multiscale systems. Aiche Journal, 2004. 50(7): p. 1346-1355. 

178. Kavousanakis, M.E., et al., Projective and coarse projective integration for 

problems with continuous symmetries. Journal of Computational Physics, 2007. 

225(1): p. 382-407. 



155 

 

179. Wagner, G.J., X.W. Zhou, and S.J. Plimpton, Equation-Free Accelerated 

Simulations of the Morphological Relaxation of Crystal Surfaces. International 

Journal for Multiscale Computational Engineering, 2010. 8(4): p. 423-439. 

180. Matthew, O.W., J.L. Proctor, and J.N. Kutz, Modeling disease transmission near 

eradication: An equation free approach. Physica D-Nonlinear Phenomena, 2015. 

290: p. 44-56. 

181. Papavasiliou, A. and I.G. Kevrekidis, Variance reduction for the equation-free 

simulation of multiscale stochastic systems. Multiscale Modeling & Simulation, 

2007. 6(1): p. 70-89. 

182. Givon, D. and I.G. Kevrekidis, Multiscale Integration Schemes for Jump-

Diffusion Systems. Multiscale Modeling & Simulation, 2008. 7(2): p. 495-516. 

183. Varshney, A. and A. Armaou, Identification of macroscopic variables for low-

order modeling of thin-film growth. Industrial & Engineering Chemistry 

Research, 2006. 45(25): p. 8290-8298. 

184. Stillinger, F.H., Rigorous Basis of Frenkel-Band Theory of Association 

Equilibrium. Journal of Chemical Physics, 1963. 38(7): p. 1486-&. 

185. Tan, T.Y., H. Foll, and W. Krakow, Detection of Extended Interstitial Chains in 

Ion-Damaged Silicon. Applied Physics Letters, 1980. 37(12): p. 1102-1104. 

186. Jones, K.S., S. Prussin, and E.R. Weber, A Systematic Analysis of Defects in Ion-

Implanted Silicon. Applied Physics a-Materials Science & Processing, 1988. 

45(1): p. 1-34. 

187. Claverie, A., et al., On the Relation between Dopant Anomalous Diffusion in Si 

and End-of-Range Defects. Nuclear Instruments & Methods in Physics Research 

Section B-Beam Interactions with Materials and Atoms, 1995. 96(1-2): p. 202-

209. 

188. Stolk, P.A., et al., Physical mechanisms of transient enhanced dopant diffusion in 

ion-implanted silicon. Journal of Applied Physics, 1997. 81(9): p. 6031-6050. 

189. Jones, K.S., et al., Studies of the interactions between (311) defects and type I and 

II dislocation loops in Si+ implanted silicon. Nuclear Instruments & Methods in 

Physics Research Section B-Beam Interactions with Materials and Atoms, 1995. 

106(1-4): p. 227-232. 

190. Cowern, N.E.B., H.F.F. Jos, and K.T.F. Janssen, Role of Point-Defects in the 

Transient Diffusion and Clustering of Implanted Boron in Silicon. Materials 

Science and Engineering B-Solid State Materials for Advanced Technology, 

1989. 4(1-4): p. 101-105. 

191. Eaglesham, D.J., et al., Implantation and Transient B-Diffusion in Si - the Source 

of the Interstitials. Applied Physics Letters, 1994. 65(18): p. 2305-2307. 

192. Colombeau, B., et al., Atomistic simulations of extrinsic defects evolution and 

transient enhanced diffusion in silicon. Applied Physics Letters, 2001. 78(7): p. 

940-942. 

193. Zhang, L.H., et al., Transient Enhanced Diffusion without (311)-Defects in Low-

Energy B+-Implanted Silicon. Applied Physics Letters, 1995. 67(14): p. 2025-

2027. 

194. Caturla, M.J., M.D. Johnson, and T.D. de la Rubia, The fraction of substitutional 

boron in silicon during ion implantation and thermal annealing. Applied Physics 

Letters, 1998. 72(21): p. 2736-2738. 



156 

 

195. Sinno, T. and R.A. Brown, Modeling microdefect formation in Czochralski 

silicon. Journal of the Electrochemical Society, 1999. 146(6): p. 2300-2312. 

196. Frewen, T.A. and T. Sinno, Vacancy self-trapping during rapid thermal 

annealing of silicon wafers. Applied Physics Letters, 2006. 89(19): p. 191903. 

197. Voronkov, V.V. and R. Falster, Vacancy-type microdefect formation in 

Czochralski silicon. Journal of Crystal Growth, 1998. 194(1): p. 76-88. 

198. Nakamura, K., Saishoji, T., Tomioka, J., Katayama, T. The Dissolution Behavior 

of the Void Defects by Hydrogen Annealing in Czochralski-Grown Silicon Crystal 

s. in Proceedings of the Third International Symposium on Defects In Silicon. 

1999. The Electreochemical Society. 

199. Sueoka, K., N. Ikeda, and T. Yamamoto, Morphology and Size Distribution of 

Oxide Precipitates in as-Grown Czochralski Silicon-Crystals. Applied Physics 

Letters, 1994. 65(13): p. 1686-1688. 

200. Sueoka, K., et al., Computer simulation for morphology, size, and density of oxide 

precipitates in CZ silicon. Journal of the Electrochemical Society, 2003. 150(8): 

p. G469-G475. 

201. Voronkov, V.V. and R. Falster, Effect of vacancies on nucleation of oxide 

precipitates in silicon. Materials Science in Semiconductor Processing, 2002. 5(4-

5): p. 387-390. 

202. Akatsuka, M., et al., Effect of rapid thermal annealing on oxygen precipitation 

behavior in silicon wafers. Japanese Journal of Applied Physics Part 1-Regular 

Papers Short Notes & Review Papers, 2001. 40(5A): p. 3055-3062. 

203. Vanhellemont, J., O. De Gryse, and P. Clauws, Critical precipitate size revisited 

and implications for oxygen precipitation in silicon. Applied Physics Letters, 

2005. 86(22): p. -. 

204. Kapur, S.S., et al., Role of configurational entropy in the thermodynamics of 

clusters of point defects in crystalline solids. Physical Review B, 2005. 72(1): p. -. 

205. Itsumi, M., et al., The Composition of Octahedron Structures That Act as an 

Origin of Defects in Thermal Sio2 on Czochralski Silicon. Journal of Applied 

Physics, 1995. 78(10): p. 5984-5988. 

206. Prasad, M. and T. Sinno, Atomistic-to-continuum description of vacancy cluster 

properties in crystalline silicon. Applied Physics Letters, 2002. 80(11): p. 1951-

1953. 

207. Pan, G.Z. and K.N. Tu, Transmission electron microscopy on {113} rodlike 

defects and {111} dislocation loops in silicon-implanted silicon. Journal of 

Applied Physics, 1997. 82(2): p. 601-608. 

208. Pan, G.Z., K.N. Tu, and A. Prussin, Size-distribution and annealing behavior of 

end-of-range dislocation loops in silicon-implanted silicon. Journal of Applied 

Physics, 1997. 81(1): p. 78-84. 

209. Pan, G.Z., K.N. Tu, and S. Prussin, Microstructural evolution of {113} rodlike 

defects and {111} dislocation loops in silicon-implanted silicon. Applied Physics 

Letters, 1997. 71(5): p. 659-661. 

210. Liu, J., M.E. Law, and K.S. Jones, Evolution of Dislocation Loops in Silicon in an 

Inert Ambient .1. Solid-State Electronics, 1995. 38(7): p. 1305-1312. 

211. Liu, J., et al., The effect of boron implant energy on transient enhanced diffusion 

in silicon. Journal of Applied Physics, 1997. 81(4): p. 1656-1660. 



157 

 

212. Haynes, T.E., et al., Interactions of ion-implantation-induced interstitials with 

boron at high concentrations in silicon. Applied Physics Letters, 1996. 69(10): p. 

1376-1378. 

213. Claverie, A., et al., Nucleation, growth and dissolution of extended defects in 

implanted Si: impact on dopant diffusion. Nuclear Instruments & Methods in 

Physics Research Section B-Beam Interactions with Materials and Atoms, 1999. 

147(1-4): p. 1-12. 

214. Claverie, A., et al., Modeling of the Ostwald ripening of extrinsic defects and 

transient enhanced diffusion in silicon. Nuclear Instruments & Methods in 

Physics Research Section B-Beam Interactions with Materials and Atoms, 2002. 

186: p. 281-286. 

215. Claverie, A., et al., Extended defects in shallow implants. Applied Physics a-

Materials Science & Processing, 2003. 76(7): p. 1025-1033. 

216. Kapur, S.S. and T. Sinno, Detailed microscopic analysis of self-interstitial 

aggregation in silicon. I. Direct molecular dynamics simulations of aggregation. 

Physical Review B, 2010. 82(4): p. -. 

217. Kapur, S.S., A.M. Nieves, and T. Sinno, Detailed microscopic analysis of self-

interstitial aggregation in silicon. II. Thermodynamic analysis of single clusters. 

Physical Review B, 2010. 82(4): p. -. 

218. Cristiano, F., et al., Ion beam induced defects in crystalline silicon. Nuclear 

Instruments & Methods in Physics Research Section B-Beam Interactions with 

Materials and Atoms, 2004. 216: p. 46-56. 

219. Kapur, S.S., A.M. Nieves, and T. Sinno, Detailed microscopic analysis of self-

interstitial aggregation in silicon. II. Thermodynamic analysis of single clusters. 

Physical Review B, 2010. 82(4). 

220. Chou, C.T., et al., {111} defects in 1-MeV-silicon-ion-implanted silicon. Physical 

Review B, 1995. 52(24): p. 17223-17230. 

221. Fedina, L., et al., On the mechanism of {111}-defect formation in silicon studied 

by in situ electron irradiation in a high resolution electron microscope. 

Philosophical Magazine a-Physics of Condensed Matter Structure Defects and 

Mechanical Properties, 1998. 77(2): p. 423-435. 

222. Fedina, L., et al., Extended defects formation in Si crystals by clustering of 

intrinsic point defects studied by in-situ electron irradiation in an HREM. Physica 

Status Solidi a-Applied Research, 1999. 171(1): p. 147-157. 

223. Goss, J.P., et al., Planar interstitial aggregates in Si. Journal of Physics-

Condensed Matter, 2002. 14(48): p. 12843-12853. 

224. Boninelli, S., et al., Evidences of an intermediate rodlike defect during the 

transformation of {113} defects into dislocation loops. Applied Physics Letters, 

2006. 89(16): p. 161904. 

225. Boninelli, S., et al., Transformation of {113} defects into dislocation loops 

mediated by the {111} rod-like defects. Nuclear Instruments & Methods in 

Physics Research Section B-Beam Interactions with Materials and Atoms, 2006. 

253(1-2): p. 80-84. 

226. Takeda, S., An Atomic Model of Electron-Irradiation-Induced Defects on (113) in 

Si. Japanese Journal of Applied Physics Part 2-Letters, 1991. 30(4A): p. L639-

L642. 



158 

 

227. Kohyama, M. and S. Takeda, Atomic-Structure and Energy of the (113) Planar 

Interstitial Defects in Si. Physical Review B, 1992. 46(19): p. 12305-12315. 

228. Kim, J., et al., Stability of Si-interstitial defects: From point to extended defects. 

Physical Review Letters, 2000. 84(3): p. 503-506. 

229. Lee, S. and G.S. Hwang, Structure and stability of small compact self-interstitial 

clusters in crystalline silicon. Physical Review B, 2008. 77(8): p. 085210. 

230. Kapur, S.S. and T. Sinno, Entropic origins of stability in silicon interstitial 

clusters. Applied Physics Letters, 2008. 93(22): p. 221911. 

231. Cowern, N.E.B., et al., Energetics of self-interstitial clusters in Si. Physical 

Review Letters, 1999. 82(22): p. 4460-4463. 

232. De Kock, A. and W. Van de Wijgert, The effect of doping on the formation of 

swirl defects in dislocation-free czochralski-grown silicon crystals. Journal of 

Crystal Growth, 1980. 49(4): p. 718-734. 

233. Nieves, A.M. and T. Sinno, An enthalpy landscape view of homogeneous melting 

in crystals. Journal of Chemical Physics, 2011. 135(7). 

234. Nieves, A.M., C.Y. Chuang, and T. Sinno, Inherent structure analysis of defect 

thermodynamics and melting in silicon. Molecular Simulation, 2012. 38(8-9): p. 

659-670. 

235. Stillinger, F.H. and T.A. Weber, Point-Defects in Bcc Crystals - Structures, 

Transition Kinetics, and Melting Implications. Journal of Chemical Physics, 1984. 

81(11): p. 5095-5103. 

236. Bogdan, T.V., D.J. Wales, and F. Calvo, Equilibrium thermodynamics from 

basin-sampling. Journal of Chemical Physics, 2006. 124(4): p. -. 

237. Calvo, F., J.P.K. Doye, and D.J. Wales, Collapse of Lennard-Jones 

homopolymers: Size effects and energy landscapes. Journal of Chemical Physics, 

2002. 116(6): p. 2642-2649. 

238. Farrell, J.D., et al., Energy landscapes, structural topologies and rearrangement 

mechanisms in clusters of dipolar particles. Soft Matter, 2013. 9(22): p. 5407-

5416. 

239. Sciortino, F., W. Kob, and P. Tartaglia, Inherent structure entropy of supercooled 

liquids. Physical Review Letters, 1999. 83(16): p. 3214-3217. 

240. Debenedetti, P.G. and F.H. Stillinger, Supercooled liquids and the glass 

transition. Nature, 2001. 410(6825): p. 259-267. 

241. Buchner, S. and A. Heuer, Potential energy landscape of a model glass former: 

Thermodynamics, anharmonicities, and finite size effects. Physical Review E, 

1999. 60(6): p. 6507-6518. 

242. Nakagawa, N. and M. Peyrard, The inherent structure landscape of a protein. 

Proceedings of the National Academy of Sciences of the United States of 

America, 2006. 103(14): p. 5279-5284. 

243. Stillinger, F.H. and T.A. Weber, Hidden Structure in Liquids. Physical Review A, 

1982. 25(2): p. 978-989. 

244. Wales, D.J., The energy landscape as a unifying theme in molecular science. 

Philosophical Transactions of the Royal Society of London Series a-Mathematical 

Physical and Engineering Sciences, 2005. 363(1827): p. 357-375. 

245. Sugita, Y. and Y. Okamoto, Replica-exchange molecular dynamics method for 

protein folding. Chemical Physics Letters, 1999. 314(1): p. 141-151. 



159 

 

246. Richie, D.A., et al., Complexity of small silicon self-interstitial defects. Physical 

Review Letters, 2004. 92(4): p. -. 

 

 


