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ABSTRACT

BULGES AND DISKS IN THE NEARBY UNIVERSE: APPLICATIONS TO

EVOLUTION AND FORMATION OF GALAXIES

Alan Meert

Mariangela Bernardi

We present a catalog of 2D, PSF-corrected de Vacouleurs, Sérsic, de Vacouleurs + Expo-

nential, and Sérsic + Exponential fits of ∼ 7×105 spectroscopically selected galaxies drawn

from the Sloan Digital Sky Survey (SDSS) Data Release 7. Fits are performed for the SDSS

r-band utilizing the fitting routine Galfit and analysis pipeline PyMorph. Simulations

are used to test the two-dimensional decompositions of SDSS galaxies. We compare these

fits to prior catalogs and present a physically motivated flagging system which suggests

that more than 90 per cent of two-component fits can be used for analysis. The catalogs

provide a robust set of structural and photometric parameters for future galaxy studies.

The catalog is then extended into the g-band and i-band. The data and fitted images are

available online at http://shalaowai.physics.upenn.edu/~ameert/fit_catalog/.

Two applications of the catalog are presented. The sensitivity to the choice of light

profile and its affect on the massive end of the stellar mass function is quantified. The

total stellar mass density at z ∼ 0.1 is about 1.2 times larger than in previous analysis of

the SDSS using the new catalog. The differences are most pronounced at the massive end,

where the measured number density of objects having M∗ ≥ 6× 1011 M⊙ is approximately

five times larger. The systematics of fitting different model profiles on the size-luminosity

relation of galaxies in the SDSS (i.e. at z ∼ 0.1) are also quantified in the r-band. The net

effect on the R-L relation is small, except for the most luminous tail. Neither the early-

nor the late-type relations are pure power laws: both show significant curvature, which

we quantify. This curvature confirms that two mass scales are special for both early- and

late-type galaxies: M∗ ∼ 3×1010 and 2×1011 M⊙. The intrinsic scatter in the R-L relation

is shown to decrease at large L and/or M∗ and should provide additional constraints on

models of how the most massive galaxies formed.

Future work applying the analysis to DES and LSST galaxies at higher redshifts is

suggested to further constrain models of galaxy formation and evolution at higher redshifts.

vi
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Chapter 1

Introduction

Convincing evidence of galaxies that exist beyond our home Galaxy, the Milky Way, was

presented by Hubble (1929). Hubble used observations of Cepheid variable stars, which

have a predictable relationship between absolute brightness and the period of the stars

variability to show that the nearby nebula, Andromeda, was indeed much further away. It

was so far, that there was no way the nebula could be part of the Milky Way.

Prior to this work Hubble constructed the “tuning fork” diagram for classifying galaxies

(Hubble 1922, 1926) which has been refined since then. Figure 1.1 shows the tuning fork.

The Hubble Tuning Fork as described in Abraham (1998). The fork arranges Elliptical

galaxies (Early types) on the left and Spiral (Late types) on the right. The spirals are

separated into barred and non-barred forms and the prominence of the bulge decreases

toward the left. The winding of the spiral arms also becomes looser toward the right. The

distinction of Early vs Late types are due to the incorrect belief that Elliptical galaxies

evolved toward Spiral types. If anything, it is the opposite.

Since the 1920’s much work has been carried out cataloging, measuring, and interpreting

galaxy properties and properties of the population of galaxies as a whole. Global galaxy

properties (e. g. shape, size, total magnitude) were some of the first properties measured
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Figure 1.1: The Hubble Tuning Fork as described in Abraham (1998). The fork arranges

Elliptical galaxies (Early types) on the left and Spiral (Late types) on the right. The spirals are

separated into barred and non-barred forms and the prominence of the bulge decreases toward

the left. The winding of the spiral arms also becomes looser toward the right.

for galaxies. The first galaxy catalogs (de Vaucouleurs 1948; Sérsic 1963b) focused on these

properties because of the limitations of observers at the time and the lack of sufficient

understanding of galaxy dynamics. These basic properties have since proved to be useful

tests of evolutionary models for galaxies. In addition, properties like color and the sub-

components contained in a galaxy have also become of interest to observers.

1.1 Galaxy Types

Galaxies can be roughly separated into several types. The types exhibit different colors,

morphologies, and compositions.

1.1.1 Elliptical

Elliptical galaxies appear smooth in structure. They vary in apparent ellipticty from circular

(E0) to having an axis ratio (the ratio of the shortest axis of the ellipsoid to the longest) as

high as 0.3 (E7). These galaxies tend to have older stellar populations with no young, blue

stars. There is generally little cold gas in elliptical galaxies, and the star formation rates
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1.1 Galaxy Types

are quite low (<<< 1M⊙/year) and are often found in clustered environments. The most

massive galaxies (BCG’s and cD’s) are elliptical galaxies.

The radial light profile of Elliptical galaxies tend to follow a de Vaucouleurs profile (de

Vaucouleurs 1948), or the modified version, the Sérsic profile (Sérsic 1963a):

I(r) = Ie exp

(

−bn

[

(

r

Re

)
1
n

− 1

])

bn = 1.9992n − 0.3271,

(1.1)

where Sérsic index (n), half-light radius (Re), and surface brightness at Re (Ie) are the

parameters used to define the profile. bn has several approximations, the approximation

from Capaccioli (1989) is used here, which is valid for 0.5 < n < 10. When n = 4, the Sérsic

model reduces to the de Vacouleurs model. Sérsic index values tend to range between 4

and 6 for elliptical galaxies, although galaxies with higher index values may exist in nature

(e. g. Graham and Driver 2007; Kormendy et al. 2009).

1.1.2 Lenticular/S0

S0 galaxies tend to share qualities with both the elliptical and spiral galaxies. They may

have a thin, rotating disk as well as a dominant bulge component. They may also possess

a bar.

1.1.3 Spiral

Spiral galaxies have a thin, rotating disk composed of cooler gas, dust, star-forming regions,

and young blue stars. In addition, the disk often possesses spiral arms. The number,

tightness of the winding, and continuity of the arms is variable. Spiral galaxies also may

have a bar component as well as a redder bulge component at the center of the galaxy.
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Hubble E E-S0 S0 S0-Sa Sa Sa-b Sb Sb-c Sc Sc-Irr Irr

deV E S0− S00 S0+ Sa Sab Sb Sbc Scd Sdm Im

T -5 -3 -2 0 1 2 3 4 6 8 10

Table 1.1: Comparison of the major classes of Hubble galaxies to the classification scheme of

de Vaucouleurs.

Spiral disks are commonly treated as an exponential disk with a scale radius (Rd) and

central surface brightness (Id). The disk is modeled using the function

IExp(r) = Id exp

(−r

Rd

)

(1.2)

This is equivalent to setting the Sérsic index to 1 and redefining the radius and surface

brightness parameters.

Since a bulge is also present, the bulge and disk can be simultaneously fitted using a

Sérsic model for the bulge and an Exponential disk for the galactic disk. A simultaneous fit

of these two components produces a measurement of the bulge and disk parameters. The

relative contribution of each component (bulge and disk) are interesting because the latest

type spirals appear to have little or no bulge and the earliest ellipticals have no disk. The

relative contributions of bulge and disk are characterized by the amount of light contributed

by the bulge relative to the total light of the galaxy. This is called the B/T ratio With

better resolution, additional galaxy components like bars, rings, etc. can be modeled and

similar ratios can be constructed.

1.1.4 Galaxy classification

Over the last 50 years, other classification schemes have been produced. Another popular

classification scheme is the de Vaucouleurs system, which uses a numerical T-type (de Vau-

couleurs 1974) and refined the Hubble system. The relationship between the classifications

are shown in Table 1.1.
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These classifications are useful because they tend to follow trends in measurable proper-

ties of galaxies as well as fitting within models of galaxy formation. Merging morphological

information with other measures of galaxies (e. g. luminosity, mass, color, etc. ) can inform

formation models.

For instance, the T-type has a broad relationship with B/T ratio for galaxies (Oohama

et al. 2009; Simien and de Vaucouleurs 1986). Figure 1.2 shows the results taken from

Oohama et al. (2009) for B/T vs. T-type. Oohama et al. (2009) fitted an n =4 bulge and

an exponential disk to approximately 700 well-resolved, bright, nearby galaxies. They use a

modified T-type, where T= 0 represents Elliptical, and T values of 1,2,3, 4, and 5 represent

S0, Sa, Sb, Sc, and Sd galaxies, respectively. The B/T value decreases significantly with

type, although there is large scatter. Such decompositions have only been carried out for

small samples (∼ 1 000 galaxies), and only recently on larger samples (Lackner and Gunn

2012; Simard et al. 2011).

B/T measurements provide an automated proxy for the T-type, which has to be as-

signed by visual inspection. In addition, the B/T value is a continuous value, making it

easier to incorporate or predict in numerical cosmological simulations. In addition, the

bulge and disk components of galaxies trace many other galaxy parameters related to both

assembly and evolution of galaxies (color, metallicity, gas fraction, central velocity disper-

sion) (Bernardi et al. 2003b,c,d). Properties may also trace halo size, galaxy environment,

and place constraints on ΛCDM cosmology (Bernardi 2009; Blanton et al. 2005a; Shankar

et al. 2010a,b). Therefore, accurate measurement of galaxy fit parameters (including B/T,

radius, magnitude, mass, etc. ) are useful for constraining formation models.

1.2 The Luminosity function

The Luminosity function (LF) describes the number density of galaxies at a given magni-

tude or luminosity. A common model for the luminosity function was developed in Press
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Figure 1.2: Results of Oohama et al. (2009) for B/T vs. T-type. A modified T-type is used,

where T= 0 represents Elliptical, and T values of 1,2,3, 4, and 5 represent S0, Sa, Sb, Sc, and

Sd galaxies, respectively.
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and Schechter (1974) and Schechter (1976). It is written:

Φ(L)dL = φ∗

(

L

L∗

)α

exp

(−L

L∗

)

dL

L∗

(1.3)

where φ∗ a normalization defining the overall density of galaxies, often quoted in units of h3

Mpc−3, and L∗ is the characteristic luminosity above which the number of galaxies declined

exponentially. α represents the faint-end slope of the LF and is typically negative. This

reflects the expectation that there are many more galaxies at low luminosities than at higher

luminosities.

Equation 1.3 can also be written in magnitudes, requiring appropriate conversion of the

luminosity. The measurement in magnitudes is closer to the explicitly measured quantity.

Absolute calibration of telescope measurements is generally quite difficult, and using the

magnitude system eliminates the explicit requirement for accurate absolute calibration.

There are several other important steps to accurate determination of the luminosity

function. These include accurate estimations of the extinction (both due to our galaxy and

to the galaxy being observed), accurate K-correction measurement, and accurate redshift

estimation. In addition, assumptions about the cosmology of the universe are necessary in

order to obtain a distance from the galaxy redshift.

Finally, there are many observational biases that can distort the LF. The most common

is an apparent magnitude cut on the survey. Such cuts make the observable volume behave

as a function of the observed magnitude. As a result, a Vmax correction is applied, weighting

each galaxy by the volume in which it can be observed (see Schmidt 1968, for details of the

weighting and diagnostic tests).

Similar effects on the observable volume can arise as a result of redshift limits, size limits,

or surface brightness limits, all of which are often seen in surveys (see Shen et al. 2003, for

examples of these effects in SDSS data and methods for accounting for such effects).

Nonetheless, the LF can serve as a test of formation models by describing the statistical

properties of the galaxy population, including the evolution of the population at different

7
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redshifts and the effects of environment on the galaxy population.

The LF can also be converted to a Mass function (MF) by determining the Mass-to-

Light ratio (M/L) . For galaxies, this requires modeling the stellar population of the galaxy,

which is non-trivial, as well as determining the amount of gas, dust, and non-baryonic dark-

matter in the galaxy. Another option is to use a lensing mass estimate for the galaxy, or

some other probe that directly measures the galaxy mass (rotation curves, etc. ).

1.3 Scaling relations

The structural components of galaxies in the local Universe obey many scaling relations

including the morphology-density relation (MDR; Dressler 1980). Elliptical galaxies and

(to some extent, bulges of spiral galaxies) follow the Kormendy (Kormendy 1977), Faber-

Jackson (Faber and Jackson 1976), and the Fundamental Plane (Djorgovski and Davis

1987). Disks of spiral galaxies also follow the Tully-Fisher (Tully and Fisher 1977) relation

and spiral galaxy bulges follow the MBH − σ relation.

The Fundamental Plane (Djorgovski and Davis 1987) arises from arguments related to

the Virial theorem:
GM

〈R〉 = 〈v2〉 (1.4)

where G is Newton’s gravitational constant, M is the mass of the object, 〈R〉 is the average
radius of the object, and 〈v2〉 is the average squared speed. The left side is the mean

potential energy per unit mass and the right side is the mean kinetic energy per unit mass.

The Virial theorem relates the two with a factor of 2 (which has been omitted). The half-

light radius, Re can be related to 〈R〉 up to a constant (i. e., Re = kr〈R〉). Similarly, the

central velocity dispersion is related to 〈v2〉 (i. e., σ0 = kv〈v2〉). The luminosity of the galaxy

can be expressed as L = 2π〈I〉eR2
e where 〈I〉e is the average surface brightness within Re.

Combining all of these terms yields:

Re = Kσ2〈I〉−1
e

(

M

L

)−1

(1.5)
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and taking the log of both sides yields

logRe = a log σ0 + b log〈I〉−1
e + constant (1.6)

which is the Fundamental Plane. The plane may show tilt or curvature if the M/L or the

other constants are not truly constants, but have some dependence on the elliptical galaxies

of interest.

The other relations (size-luminosity, Kormendy, Faber-Jackson) are the result of the

projection of the fundamental plane into two dimensions.

1.4 Constraining models of formation and evolution

Figure 1.3 (Mo et al. 2010) shows a schematic of the process of galaxy formation. The

process begins with slight overdensities in the early universe which eventually form galaxies.

The white boxes in the flowchart represent the physical processes at work throughout the

process of galaxy formation. The gray boxes show the final products (and what is ultimately

observed today). By constraining the relative proportions of bulge, bulge+disk, and disk

systems, we can set limits on the relative importance of the different pathways though the

formation and evolution process.

Models of galaxy formation must agree with observations for the models to be valid.

Thus, updating the local observations can lead to additional constraints on models. Fig-

ure 1.4 (Cole et al. 2000) shows many predicted quantities produced by semi-analytical

models of galaxy formation. All of these measured quantities (perhaps with the exception

of clustering) require accurate photometric measurements of the galaxy size, luminosity, and

morphology. Therefore, accurate measurements are essential to improving these models.

Models also predict B/T values and fractions of elliptical galaxies (e. g. Wilman et al.

2013), and size-luminosity functions (e. g. Shankar et al. 2010a). So, accurate measurements

of these properties in a large sample of low redshift galaxies could further constrain models

of galaxy formation and evolution.
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Figure 1.3: This figure is taken from Mo et al. (2010) and shows the schematic process of

galaxy formation from the initial overdensities in the early universe through to present day.
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Figure 1.4: The predicted quantities of semi-analytical models of galaxy formation. The

vast majority of these predictions are tested by making accurate measurements of photometric

luminosity, size, and morphology, making such studies extremely important.

Figure 1.5: The predicted B/T and elliptical fraction from Wilman et al. (2013)
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Figure 1.6: Predicted size-luminosity relations from Shankar et al. (2010a).
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1.5 Testing models of galaxy formation and evolution

The study of the structural components of galaxies has contributed substantially to the

understanding of the formation and evolution of galaxies. The discovery of many scaling

relations including the Faber Jackson (Faber and Jackson 1976), Kormendy (Kormendy

1977), Tully Fisher (Tully and Fisher 1977), the Fundamental Plane (Djorgovski and Davis

1987) and the morphology density relation (Dressler 1980) refined models of galaxy forma-

tion and evolution. In addition, the structural components of galaxies in the local Universe

trace morphological galaxy type and many other galaxy parameters related to both assem-

bly and evolution of galaxies: color, metallicity, gas fraction, central velocity dispersion (e. g.

Bernardi et al. 2003b,c,d; Kauffmann et al. 2003; Tremonti et al. 2004). Properties may

also trace halo size and galaxy environment and place constraints on Λ cold dark matter

cosmology (e. g. Bernardi 2009; Blanton et al. 2005a; Kravtsov et al. 2014; Shankar et al.

2010a,b). However, careful estimation of structural parameters for large numbers of galaxies

is required to test different formation and evolution models. Testing galaxy models requires

a large sample of galaxies containing photometric, spectroscopic, and morphological data.

The Sloan Digital Sky Survey (SDSS) has already provided a sample of many millions

of nearby galaxies. Future surveys like the Dark Energy Survey (DES)and Large Synoptic

Survey Telescope (LSST) will produce larger data sets, both increasing the number and

quality of galaxies available for analysis. At the same time, the growth of computing

power makes it possible to analyze these data sets at a reasonable rate, making it possible

to perform time-intensive analysis, like galaxy decompositions, on large data sets. These

decompositions can be used to make important comparisons between data and theory.

There has been recent work on improving photometric decomposition of nearby galaxies

(Gadotti 2009; Häußler et al. 2013; Kelvin et al. 2012; Lackner and Gunn 2012; Simard

et al. 2011). The approach is largely the same for these analyses. However, the different

fitting processes continue to produce different results. The applicability of such fits is often

questioned, particularly when multiple components are fitted (i. e., bulge+disk+bar etc. ).
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This thesis presents a catalog of two-dimensional, PSF-corrected de Vaucouleurs, Sérsic,

de Vaucouleurs+Exponential, and Sérsic+Exponential fits of ∼ 7 × 105 spectroscopically

selected galaxies drawn from the SDSS. In Part I, fits are presented for the SDSS g-, r-,

and i-bands utilizing the fitting routine Galfit and analysis pipeline PyMorph. This

catalog is one of the largest galaxy samples for which structural decompositions have been

performed on SDSS galaxies. Simulations are used to justify the choices made during

fitting, and comparisons are made to previous works. Part II presents initial applications

of the catalog to test and update important predictions of formation models, namely the

luminosity function (Chapter 10) and the size-luminosity relation (Chapter 11). Part III

briefly describes future work to be done with the catalog and some concluding remarks.

Parts of the catalog have been published in Meert et al. (2013) and Meert et al. (2015).

The results of the catalog have been applied to several tests of galaxy formation and evo-

lution. Shankar et al. (2013) tested semi-analytical modeling of hierarchical formation.

Huertas-Company et al. (2013b) examined environmental effects on the size of galaxies.

Bernardi et al. (2013) analyzed the uncertainty in the bright end of the mass and luminosity

functions (LF). Bernardi et al. (2014) also examined the biases automated decompositions

impose on the size luminosity relation. Finally, Kravtsov et al. (2014) performed detailed fits

of approximately 10 brightest cluster galaxies (BCGs) and found that their measurements

agree more with our measurements than with the measurements of other catalogs.
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A catalog of DR7 spectroscopic

galaxies
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Chapter 2

Catalog Selection

Using a well-understood sample is essential for testing evolutionary models of galaxy for-

mation. It prevents biases from distorting the population of galaxies. If this is not possible

then we should at least have a good estimate of the biases in our sample and some idea of

how to correct for them.

2.1 The Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS) uses a single, dedicated 2.5 meter telescope located at

Apache Point Observatory in New Mexico. The SDSS consists of two completed campaigns

(SDSS-I and SDSS-II) as well as a current, ongoing campaign (SDSS-III). Figure 2.1 shows

the telescope open and ready for observation, although the sky is light enough that such

observations would not be possible. Gunn et al. (1998) describes the photometric camera

in detail, and Gunn et al. (2006) describes the telescope itself.

The focalplane of the SDSS telescope is pictured in Figure 2.2. There are 6 columns

(referred to as the “camCol”) in the imaging plane. Each column has an imaging CCD for

each of the filter bands used in the survey. The telescope is operated in drift-scan mode for
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Figure 2.1: The SDSS telescope at Apache Point Observatory. Image Credit:Fermilab Visual

Media Services and Sloan Digital Sky Survey

photometric observations. This means that targeted objects slowly drift across the imaging

plane during observation. Software allows the telescope to compensate for this motion.

SDSS-I took place from 2000 through 2005 and is fully contained in the fifth data

release (Adelman-McCarthy et al. 2007, DR5). The Early Data Release contains much

useful information on the survey methods, design, and analysis pipelines (Stoughton et al.

2002, EDR). SDSS-I covered about 8000 sq. degrees of the sky, surveying millions of galaxies,

hundreds of thousands of Quasars (QSOs) as well as many stars and other galactic objects.

Survey data was taken in five bands, the u, g, r, i, and z bands, spanning wavelengths

from near-UV to near-IR. The images are 53.9 second exposures with platescale of 0.396

arcsec/pixel.

Figure 2.3 shows approximate transmission curves in vacuum for the SDSS filters.

Spectroscopic data was also obtained for up to ∼ 600 objects at a time using two fiber-

fed spectrographs with moderate resolution (R 1800 − 2200) and is detailed in Strauss

et al. (2002). The spectroscopic survey includes galaxies, QSOs, and stars. For galaxies,
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Figure 2.2: An image and diagram of the SDSS focalplane showing the 6 camera columns

(know as camCol). Each camCol contains a 2048x2048 chip for each of the u, g, r, i, and z

filters. Images are taken as objects drift across the focalplane, passing over each of the filtered

chips in a camCol. Image Credit:Fermilab Visual Media Services and Sloan Digital Sky Survey

18



2.1 The Sloan Digital Sky Survey

4000 6000 8000 10000

Wavelength [Angstroms]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
ra

n
sm

is
si

o
n

u-band

g-band

r-band

i-band

z-band

Figure 2.3: The photometric SDSS filter transmission curves in vacuum.
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Figure 2.4: A spectroscopic plate used during the spectroscopic survey mounted into the

telescope housing with drilled holes at observation locations and optical fibers inserted directing

light to the spectrograph for observation. Each plate was drilled after spectroscopic targets

selection and survey strategy were completed. Insertion of the fibers into these plates were

done by-hand for each plate by workers on-site. Image Credit:Fermilab Visual Media Services

and Sloan Digital Sky Survey

target selection is complete down to an r-band extinction corrected magnitude of 17.77 mags

and a surface brightness of 23.0 mags/arcsec2. Figure 2.4 shows the spectroscopic plates

with drilled hole and optical fibers inserted for observation. Each plate was drilled after

spectroscopic targets selection and survey strategy were completed. Insertion of the fibers

into these plates were done by-hand for each plate by workers on-site.

SDSS-II took place from 2005 through 2008 and is fully contained in the seventh data

release (hereafter DR7; Abazajian et al. 2009). SDSS-II had three separate goals:

The Sloan Legacy Survey: The Sloan Legacy Survey completed the original SDSS imag-

ing and spectroscopic goals. The final catalog contains 230 million celestial objects

covering 8,400 square degrees of the sky and spectra of 930,000 galaxies, 120,000

quasars, and 225,000 stars.

SEGUE: The Sloan Extension for Galactic Understanding and Exploration (SEGUE)
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2.1 The Sloan Digital Sky Survey

probed the structure and history of the Milky Way galaxy. It contains new imaging

of 3500 sq. degrees and spectra of 240,000 stars covering a range of spectral classes

and sizes.

The Sloan Supernova Survey: The Sloan Supernova Survey carried out repeated imag-

ing of the 300 square degree southern equatorial stripe, referred to as “Stripe 82,” to

discover and measure supernovae and other variable objects. In the course of three

3-month campaigns, the supernova survey discovered nearly 500 spectroscopically con-

firmed Type Ia supernovae, which are still being used to constrain cosmological models

over the last 4 billion years.

Each section of the sky is identified by a run, rerun, and field number which uniquely

identifies its location on the sky. The exact survey strategy used to collect the data is not

relevant this study, so no more comments are made regarding it.

More information on SDSS-I and II are available through the original SDSS website:

http://www.sdss.org.

SDSS-III is currently ongoing. It has several constituent surveys. The goals of these

surveys are to constrain the Baryon Acoustic Oscillations using spectroscopic information

on galaxies out to larger redshifts than the original SDSS Legacy survey. It also has several

projects associated with Quasars, galactic objects, and Exoplanets. The current data release

is DR10 (Ahn et al. 2014) with more data releases planned. More information can be found

at http://www.sdss3.org.

SDSS was revolutionary for many reasons including the large sky coverage, the digital

nature of its imaging, the public data releases, the size of the collaboration, and online

data service made available to astronomers. This project uses the completed Legacy Survey

from SDSS-II and DR7. Work is restricted to the g-, r-, and i-bands, which have the best

signal-to-noise, and use galaxies from the spectroscopic survey. The details of this selection

are described in the next section. Figure 2.5 shows the sky coverage for the legacy survey

area in DR7 of the photometric (in red) and spectroscopic (in green) portions of the survey.
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2. CATALOG SELECTION

Figure 2.5: The photometric (in red) and spectroscopic (in green) sky coverage of the SDSS

DR7 legacy survey. The coordinates are given in right ascension (longitudinal) and declination

(latitudinal) coordinates. Image Credit:Fermilab Visual Media Services and Sloan Digital Sky

Survey
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2.2 SDSS CasJobs Data

The data used in this analysis were drawn from the spectroscopic main galaxy sample of

the DR7 Legacy Area. The spectroscopic sample provides a well-established sample with

well-defined and tested selection criteria. The criteria are presented in Strauss et al. (2002).

The main galaxy sample consists of galaxies with r-band Petrosian magnitudes r ≤
17.77 and r-band Petrosian half-light surface brightnesses µ50 ≤ 24.5 mag arcsec−2. The

completeness of the sample exceeds 99 per cent. However, About 6 per cent of galaxies

that satisfy the selection criteria are not spectroscopically observed because they have a

neighboring target closer than 55 arcseconds, which is the minimum spectroscopic fiber

separation.

Galaxies from the main sample have both spectroscopic and photometric information

and are listed in both the PhotoObj and SpecObj tables of the CasJobs DR7 data base.

Galaxies that satisfy three main selection criteria were selected. Those criteria were: (1)

the extinction-corrected r-band Petrosian magnitude was between magnitude 14 and 17.77;

(2) the Photo pipeline identified the object as a galaxy (Type = 3); and (3) the spectrum

was also identified as a galaxy (SpecClass = 2). The limit at the faint end (17.77 mag in

the r-band) corresponds to the the lower limit for completeness of the SDSS Spectroscopic

Survey (Strauss et al. 2002). The limit of at the bright end (14 mag) is used to exclude

large, nearby galaxies that are typically either too well resolved to be fitted with a standard

smooth light profile or shredded into multiple smaller objects in the SDSS catalog. These

brightest galaxies may also be segmented over multiple images or so large that it prevents

robust estimation of the background flux. Such galaxies require additional work to properly

combine neighboring images (see Blanton et al. 2011, for details). In addition, this magni-

tude cut corresponds to the cut used in Simard et al. (2011, hereafter S11) which is used

throughout this work as a benchmark for comparison.

The query used, omitting the names of selected data columns, is:

SELECT p.objid ...FROM photoobj as p ...LEFT OUTER JOIN SpecObj as s on
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p.objID = s.BestObjID, segment g, field f, chunk c

WHERE g.segmentID = f.segmentID and f.fieldID = p.fieldID

and c.chunkID = g.chunkID and

(p.petroMag r - p.extinction r) between 14.0 and 17.77 and

p.type = 3 and s.specclass = 2 ORDER BY p.objid,

which produces 676 010 matches.

Additional cuts similar to Shen et al. (2003) and S11 to the data prior to fitting. All

galaxies with redshift < 0.005 (1647 galaxies) are removed. These galaxies have large appar-

ent sizes and resolved structure that make decomposition difficult. In addition, the redshift

may be contaminated by peculiar velocities, making the redshift-dependent distances unre-

liable.

Twenty galaxies with redshift > 1.0 were also removed. Visual inspection reveals that

these galaxies likely represent catastrophic failures in the redshift code. Catastrophic red-

shift errors may exist at even lower redshift, and there are an additional 66 galaxies with

0.4 < z < 1.0 that we include out catalog. These galaxies may have the same problem.

Galaxies with saturated pixels as indicated by the Photo flags are also removed from the

sample (3207 galaxies). In addition, as discussed in Strauss et al. (2002), a surface brightness

cut on the mean surface brightness within the Petrosian half-light radius of µ50, r < 23.0

mag, where

µ50, r = mpetro, r + 2.5 log (2πr2petro, 50) (2.1)

is necessary because there is incomplete spectroscopic target selection at brightnesses below

this threshold.

After applying all the cuts, 5529 galaxies (approximately 0.8 per cent of the sample)

are removed and a sample of 670 722 galaxies remains. This sample is used throughout the

project and the cuts described here are considered in the sample completeness discussed in

Chapter 9.
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2.2 SDSS CasJobs Data

Figure 2.6 shows the surface brightness distribution, redshift distribution, extinction-

corrected Petrosian magnitude, Petrosian half-light radius, Vmax-weighted luminosity func-

tion, and signal-to-noise distribution of the sample used in this work. The S/N is defined

as the mean pixel flux within the half-light radius divided by the noise associated with that

pixel, or
(

S

N

)

≡ Iµ50

Navg

Navg ≡
√

Iµ50 + Isky
gain

+ dark variance

Iµ50 = 10−0.4(µ50−zp) × platescale−2

(2.2)

where Iµ50 is the source DN (‘data numbers’ or, equivalently, counts)1 of the average sur-

face brightness defined in Equation 2.1. The zeropoint, zp, is calculated from the SDSS

zeropoint, extinction, and airmass terms associated with each image. The platescale is

used to convert the surface brightness from counts per square arcsecond to counts per pixel.

Navg is the noise in a pixel using the SDSS background measurement as an estimate of the

background flux and the average flux per pixel inside the Petrosian half-light radius as the

galaxy flux.

Figure 2.6 shows that the surface brightness (top left panel) is brightest in the i-band

and dimmest in the g-band. The sizes of galaxies in each band (bottom row, left panel) are

similar, although the g-band is slightly larger than the r-band on average. The i-band is

slightly smaller than the i-band. This trend follows the same trend in average PSF width

seen across the bands (1.47 vs 1.35 vs 1.28 arcsec for the g-, r-, and i-bands, respectively).

The large difference in surface brightness is due to substantial differences in the total mag-

nitudes of the objects (top row, right panel). However, the S/N is most relevant to fitting.

The S/N (bottom row, right) shows that the i-band has S/N similar to, and perhaps slightly

higher than, the r-band. Although the i-band galaxy images are brighter and the same size

1The counts are related to the number of photo electrons collected by the detector through the gain of

the detector amplifier. This distinction is important since the photo electrons obey Poisson statistics.
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Figure 2.6: Distributions of (a) extinction-corrected Petrosian magnitude, (b) redshift,

(c) Petrosian half-light radius, (d) surface brightness, (e) Signal-to-Noise using the the mea-

surement of sky provided by the SDSS photometric pipeline, (f) PSF size, (g) absolute Petrosian

magnitude, (h) Vmax-weighted luminosity function, and (i) physical size, of the samples drawn

from the DR7 spectroscopic galaxy sample. Bin counts are normalized to integrate to 1. The i-

and r-bands are similar in many respects, although the S/N is larger for the i-band data. The

g-band is different in many respects. It tends toward smaller sizes, lower S/N, and appears as

complete rather than a magnitude-limited distribution of galaxies.
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as the r-band galaxy images, which would imply a higher S/N. However, the sky brightness

is also ≈50% brighter in the i-band. The g-band has comparably lower average S/N relative

to the r-band. The average g-band sky is dimmer by 1 magnitude relative to the r-band,

but the galaxy brightness is also dimmer on average. These differences, particularly in S/N

must be accounted for when testing any algorithm intended to be used across all the fitted

bands. Chapter 4.5 addressed this issue for the simulations used to test the work presented

here, and Chapter 5.5 addresses the changes necessary to adapt the flagging developed in

the r-band to work in the i- and g-bands. Differences in S/N are most concerning in the

case of the Ser-Exp and deV-Exp fits where two-components are being simultaneously fit.

Lowering the S/N of each component (because the total flux is now divided between the

two fitted components) makes accurate measurement and decomposition difficult.

It is also potentially useful to use information about each band to inform the fits of

neighboring bands. Indeed (Simard et al. 2011) attempted this by requiring many param-

eters (i. e., Sérsic index, radius, ellipticity) of the fitting model to be identical across the

g- and r-bands, essentially using the two bands as a form of co-added data to increase the

S/N. This increase of S/N comes at the expense of dis-allowing variation in the matched

parameters, which may or may not be an appropriate assumption (i. e., in a two-component

fit, we might expect the bulge size to change across bands, which is dis-allowed). Addition-

ally, Häußler et al. (2013) enforced simple polynomial relationships in parameters across

bands, using the neighboring bands to further constrain the acceptable parameter space to

be searched by the fitting algorithm.

The most flexible method is to fit each band independently and examine the systematic

effects of each band as necessary, making additional cross-band comparisons including color

(for example, see Lackner and Gunn 2012). This is the method adopted for the data

presented here.

All of the identifying data, photometric measurements, and spectroscopic measurements

obtained from the SDSS CasJobs server were collected and stored in the table named the
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“CasJobs Table” distributed with this work. For convenience, ID numbers were assigned

to all galaxies contained in the catalog to be used in place of the SDSS ObjID. These

ID numbers are referred to as galnum and used throughout the available data products

presented here. The galnum are used throughout the analysis as the unique identifier for

each galaxy.

Using the information obtained from the SDSS CasJobs server, all necessary fpC images

and PsField files from were downloaded from the SDSS. The PsField files provide the 2D

reconstruction of the point spread function (PSF) necessary for fitting. The fpC images

contain the galaxy and surrounding neighborhood. Individual postage stamps for each

galaxy were extracted from the fpC images for fitting rather than using the stamps provided

through the atlas images produced by SDSS. This process is described in more detail in

Chapter 3.1.

2.3 Additional Data

In addition to the data provided by CasJobs, parameters were collected from a number of

other studies. The Morphology catalog of Huertas-Company et al. (2011, hereafter H2011)

is an automated morphological classification that used a Bayesian SVM algorithm to classify

all galaxies in the spectroscopic sample based on data available as part of the SDSS DR7.

Objects are matched to our catalog based on the SDSS DR7 objID. The morphological

parameters from the matching catalog (H2011) for our sample is described in the electronic

catalog.

2.3.1 Derived Parameters

K-corrections, distance modulus, angular diameter distance, and VMax corrections are cal-

culated for each galaxy in order to make account for observational effects on the data. These

calculations assume a flat cosmology with (H0,ΩΛ,Ωm) =(70 km s−1Mpc−1, 0.7, 0.3).
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2.3.2 K-Corrections

K-corrections are calculated using version 4.2 of the K-correction code kcorrect described

in Blanton and Roweis (2007). To calculate the K-correction, the SDSS modelmag and

modelmag err are used and data for all band passes (u,g,r,i,z) are provided to the program.

These terms are collected and provided with the data.

2.3.3 Rest-Frame Conversion Parameters

The distance modulus, DM, and angular diameter distance, DA, are calculated in Mpc

according to the usual equations:

DM (z) =
c

H0

∫ z

0

dz′
√

ΩM (1 + z)3 +ΩΛ

, (2.3a)

DA(z) =
DM

1 + z
, (2.3b)

DL(z) = (1 + z)DM , (2.3c)

DM = 5log (DL) + 25 (2.3d)

using the notation given in Hogg (1999). The angular diameter distance is reported in the

DERT in units of kpc per arcsec to allow for easy conversion between apparent and physical

sizes of galaxies.

2.3.4 VMax Correction for Selection Effects

A VMax term is also calculated for each galaxy. This represents the observable volume

given the constraints on magnitude, surface brightness, and redshift used to construct the

catalog. Volume corrections are calculated similar to that of Shen et al. (2003) (i. e., we

account for all of the catalog cuts when calculating the observed volume for any galaxy in

the catalog). As discussed in Chapter 2.2, the SDSS spectroscopic survey is complete down

to a galactic extinction corrected Petrosian r-band magnitude of 17.77 and an extinction
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corrected Petrosian r-band surface brightness of 23.0 mag/arcsec2. Additionally, a minimum

redshift cut of zmin > 0.005 and a maximum redshift cut of zmin < 1.0 were imposed. The

upper redshift cut removes essentially no galaxies and changes the VMax value of less than

10 galaxies. In addition, a minimum magnitude cut was included to exclude bright galaxies.

Therefore, the volume in which any particular galaxy is observable must account for these

effects.

The lower and upper bounds of redshift that limit this volume are determined by the

conditions imposed on the data. The magnitude limits in the r-band, mr,min ≤ mr,obs ≤
mr,max correspond to a lower and upper limit on the redshift at which the galaxy remains

observable through the luminosity distance.

DL(zmax,m) = DL(z)10
−0.2(mr−mr,max), (2.4a)

DL(zmin,m) = DL(z)10
−0.2(mr−mr,min) (2.4b)

The surface brightness limit constrains VMax mainly through the (1 + z)4 cosmological

dimming effect. The maximum redshift from which a galaxy with mean surface brightness

µ50,r at redshift z can be detected at the surface brightness limit of µ50,r = 23 is given by

zmax,µ = (1 + z)10(23.0−µ50,r )/10 − 1 (2.5)

As is mentioned by S11, our selection criteria do not include a cut on size of the target

galaxy, so the maximum redshifts may differ from that of Shen et al. (2003). The maximum

and minimum redshifts for a galaxy in this work are then

zmin = max(zmin,m, 0.005), (2.6a)

zmax = min(zmax,m, zmax,µ, 1.0) (2.6b)

With the above limits on redshift, the comoving volume in which a target galaxy satisfies

the sample selection criteria is:

VMax =

∫

dΩf(θ, φ)

∫ zmax(θ,φ)

zmin(θ,φ)

(1 + z)2D2
A

H(z)
cdz (2.7)
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where H(z) is the Hubble parameter at redshift z and c is the speed of light. f(θ, φ) is the

sampling fraction of point (θ, φ) on the sky, and Ω is the solid angle. Following S11, f(θ, φ)

is treated as constant. In the case of a flat universe, Equation 2.7 reduces to

VMax =
4πfsky

3
(DM (zmax)

3 −DM (zmin)
3) (2.8)

where fsky = 0.195 is the fraction of the full sky covered by SDSS (8032 square degrees cov-

erage for the SDSS DR7 Legacy survey out of 41253 square degrees in the sky). Calculated

values of VMax are provided as part of the data released with this work.
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Chapter 3

Fitting Process

This chapter describes the fitting process. Section 3.1 describes the choice of cutout size and

the data used for fitting. Section 3.2 describes the profiles used during fitting. Section 3.3

briefly describes the PyMorph pipeline and its components used to fit the catalog. Finally,

Section 3.4 describes the masking and neighbor identification process used in this work.

3.1 Preprocessing of SDSS Images

FpC images and psField files are the primary data used in the fitting procedure. The data

were downloaded from the SDSS Data Archive Server as described in Chapter 2.2. Postage

stamp images of each source were extracted from the fpC image such that the stamp was

40 Petrosian half-light radii on a side (20×petroR50 r from the center of the image to the

edge) and centered on the target source.

The decision to cut at 20 half-light radii is justified in chapter 4.2.5 based upon sim-

ulations and provides a large number of background pixels (about 30 000-40 000 pixels for

an average-sized image). In addition, a minimum size of 80 pixels on each side was set to

ensure that enough pixels were retained to properly determine the background. In reality,

with such a large postage stamp size, this minimum of 80 pixels is rarely required. With
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these settings, the estimate of background sky brightness is accurate to ∼ 0.1% with a slight

bias toward underestimating the background level using this stamp size. This sky bias does

not noticeably bias the other fitted parameters.

A smaller cutout size could potentially be used when fitting the galaxy and would reduce

the time needed to fit each galaxy. Figure 4.18 and the related discussion show that the

effect of further reducing the cutout size is insignificant to estimates of the total magnitude,

half-light radius, and sky brightness. However, the original 20 half-light radii cutout sizes

are used throughout the rest of this work.

The PSF is extracted from the PsField files using the readAtlasImages-v5 4 11

program distributed on the SDSS website2. The PSF provided by SDSS has a standard

image size of 51 pixels on each side.

In addition, prior to fitting the 1000 DN soft bias is removed from the images and PSF.

Sigma images are created from the SDSS image cutout following the standard deviation

calculation3

Wi,j =

√

Fi,j

gain
+ dark variance (3.1)

where Wi,j is the pixel sigma in DN, Fi,j is the pixel flux (again in DN), gain for the image

as specified in SDSS CasJobs and used to account for the fact that the photo electrons

(rather than the DN) obey Poisson statistics, and ‘dark variance’ is the term used by SDSS

to describe the contribution of the read noise and dark current to the image noise. Finally,

the postage stamp and sigma images are normalized to a 1 s exposure prior to fitting. A

simple diagram of this process is shown in Figure 3.1.

2The use of readAtlasImages-v5 4 11 for PSF extraction is described at

http://www.sdss.org/dr7/products/images/read_psf.html
3See the SDSS DR7 online documentation at http://www.sdss.org/dr7/algorithms/fluxcal.html for

further discussion.
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Figure 3.1: The flowchart of the preprocessing done prior to fitting with PyMorph.
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3.2 The Fitted Profiles

The Sérsic model has been used extensively in galaxy studies since first being proposed by

Sérsic (1963a):

I(r) = Ie exp

(

−bn

[

(

r

Re

)
1
n

− 1

])

bn = 1.9992n − 0.3271,

(3.2)

where Sérsic index (n), half-light radius (Re), and surface brightness at Re (Ie) are the

parameters used to define the profile. bn uses the approximation from Capaccioli (1989)

which is valid for 0.5 < n < 10. When n = 4, the Sérsic model reduces to the de Vacouleurs

model (de Vaucouleurs 1948). For the fitting presented here, the Sérsic index is restricted to

values less than or equal to 8.0. Higher values of the Sérsic index are not allowed. Although

such galaxies may exist in nature (e. g. Graham and Driver 2007; Kormendy et al. 2009),

we find that higher values of the Sérsic index are often associated with fitting problems in

this sample.

For two-component models, a de Vacouleurs or Sérsic model is used to model the light

in the central part of the galaxy (often associated with the bulge) and an exponential disc

is added to model the portion of the galaxy farther from the center (often associated with

the rotational disc). The exponential model is defined by the scale radius (Rd) and central

surface brightness (Id). The disc is modeled using the function

IExp(r) = Id exp

(−r

Rd

)

(3.3)

The profiles defined in equations 3.2 and 3.3 are 1D profiles. The 1D profiles are used

to generate 2D models by also fitting a center on the image, position angle (φ), and axis

ratio (b/a) to each component.

Equations 3.2 and 3.3 are often interpreted as representing a bulge and a disc, respec-

tively. However, fitting two-component models to galaxies does not guarantee that the two
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components measured are truly present. Many early-type galaxies show no signs of disc-like

structures. Similarly, many late-type galaxies show little or no sign of a bulge in the central

part of the galaxy. Also, when fitting multiple components, a significant second component

may only indicate substantial departure from a single component profile rather than the

presence of a physically meaningful second component. For example, Gonzalez et al. (2005),

Donzelli et al. (2011), and Huang et al. (2013) fit multiple components to Ellipticals (Ell)

and BCGs without necessarily claiming the existence of additional physically distinct com-

ponents. Also, the presence of a bar will affect fitting, changing the ellipticity and Sérsic

index of the bulge component in the two-component models. The effects of bar presence is

examined in Chapter 8.4.

Judgment on the physical interpretation of the components will be reserved until after

discussion of the flagging system in Chapter 5. However, there are many cases in which the

components should not be interpreted as a physically meaningful bulge and disc and this is

an important consideration in this work.

The Sérsic model intended to represent the central region of two-component galaxies has

broad wings but can have a large fraction of its total light at large radii. This is especially

true at higher values of the Sérsic index and often causes the Sérsic model to dominate

any exponential disc at large radii. Cases where the Sérsic component dominates at large

radii are considered during the flagging procedure described in Chapter 5 by focusing on

the relative brightness of the two components only out to the radius where 90 per cent of

the total light is enclosed. However, the reader should be aware that the Sérsic component

may often dominate at radii beyond this point.
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Estimate Starting Values

Run SExtractor

Run CASGm

Output Results

Construct EM Mask

Run Galfit

Start PyMorph

Identify Fitted NeighborsConstruct M Mask

Figure 3.2: The flowchart of the internal PyMorph processes.

3.3 The Fitting Pipeline

This work fits both one- and two-component models to the sample described in Chapter 2.2

using PyMorph (Vikram et al. 2010). PyMorph is a Python based automated software

pipeline built on SExtractor (Bertin and Arnouts 1996) and the 2D fitting routine Gal-

fit (Peng et al. 2002). Both PyMorph and Galfit have been extensively tested (see

Peng et al. 2002; Vikram et al. 2010, for more tests of Galfit). After fitting, additional

measurements used during flagging are performed.

3.3.1 PyMorph

PyMorph was released in Vikram et al. (2010) and is written in PYTHON. The pipeline

was developed to automate the process of target identification, masking, generation of

Galfit configuration files, running Galfit, making non-parametric measurements, and

collecting output data. A simple diagram of the internal PyMorph process is shown in

Figure 3.2.
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PyMorph can be run on full telescope images in a mode where objects are identified,

selected and fit separately in a fully automated way. For this work, PyMorph was provided

with the postage stamp images of each galaxy, weight image, and PSF extracted as described

in Chapter 3.1.

PyMorph runs SExtractor and uses the output catalog to construct the image mask

for fitting prior to running Galfit on the postage stamp image.

3.3.2 SExtractor

This work uses version 2.8.6 of SExtractor (Bertin and Arnouts 1996). The SExtrac-

tor code provides automated detection and photometry of sources in telescope images. The

code can provide many measurements of photometry. The measurements reported by SEx-

tractor are used as a starting point for the Galfit code and need only be approximate.

Because of this, the accuracy and appropriateness of specific SExtractor photometry

choices will not be discussed here.

SExtractor works in a series of steps. First, it determines the background and sep-

arates pixels belonging to background from objects. Then it segments any area that is not

background into separate objects and determines the properties of each object. The output

of this process is written to a catalog. Optionally, the code can output images with object

boundaries, pixel-by-pixel background estimation or other output. In addition to producing

the list of objects with a series of measured parameters (ellipticity, size etc.) each object is

classified into stars and galaxies (i. e., everything non-star-like) by a neural network.

For the background determination, all the pixels with intensity above above a given

threshold are treated as belonging to an object. Based on the structure of the intensity

distribution and the settings for deblending, any given object may be split into two separate

objects. Photometry is done on these by dividing up the intensity of the shared pixels.

Background is estimated using the BACK SIZE parameter. Within each area of size

BACK SIZE the mean and standard deviation of the background is iteratively estimated
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3.3 The Fitting Pipeline

with pixels deviating by more than 3-σ being pruned at each step until convergence.

DETECT THRESHOLD sets the minimum flux per pixel required for an object to

be detected by SExtractor. In addition, all pixels of a detected object must be adjacent

to each other and the total area must be as large or larger than DETECT MINAREA.

For this work, DETECT MINAREA is set to 6 pixels and DETECT THRESHOLD is

set to 1.5.

DEBLEND MINCONT and DEBLEND NTHRESH are the most relevant parame-

ters for object deblending. SExtractor deblends objects by iteratively dividing contigu-

ous groups of pixels that are above the background level into two objects brighter than a

given threshold with a region below the threshold separating the two objects. The number

of thresholds is set by DEBLEND NTHRESH (32 in this work), which are spaced ex-

ponentially between the DETECT THRESHOLD and the maximum pixel brightness in

the object. In order to separate a single object into two objects at a given threshold, both

objects must contain at least DEBLEND MINCONT or larger fraction of the light in the

blended object. If either or both objects fail this criteria, then deblending does not split

the object.

Using these settings, SExtractor identifies neighboring objects (including both stars

and galaxies) and measures approximate values of the center, size, and brightness for each

object as well as the brightness of the sky background at the location of the object. These

measurements are used by PyMorph to mask neighbors and configure Galfit.

3.3.3 Galfit

The PyMorph pipeline uses Galfit (Peng et al. 2002) version 2.0.3c to fit single Sérsic

and single de Vaucouleurs fits (Ser and deV) as well as Sérsic + exponential disc (Ser-Exp)

and de Vaucouleurs + exponential disc (deV-Exp) models to each galaxy in the SDSS.

Galfit uses a non-linear least-squares minimizer to fit the selected profiles to each

galaxy. The minimizer uses a Levenberg-Marquardt minimization algorithm (Press et al.
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1992) and is a “greedy” algorithm, meaning that it uses certain heuristics to speed up

convergence of the minimization. A result of this is that it is susceptible to finding local

minimums and does not necessarily find the global minimum.

The measure of goodness-of-fit is the reduced chi-squared, χ2
ν :

χ2
ν =

1

NDOF

nx
∑

x=1

ny
∑

y=1

(fdata(x, y)− fmodel(x, y))
2

σ(x, y)2
(3.4)

The minimization proceeds iteratively because of the non-linear nature of the profiles and

the need to convolve the image with the PSF each time before calculating the goodness-of-

fit. While minimizing the χ2
ν is appropriate for the fitting process, the value produced does

not necessarily provide an accurate measure of the probability of an appropriate fit. The

unsuitable nature of the χ2
ν is a major driver of developing the flagging process presented

as part of this work. The χ2
ν is discussed further in Chapter 5.1.

3.3.4 Non-parametric measurements

In addition to photometric decomposition, PyMorph also supports measurement of several

non-parametric structural parameters described in Conselice (2003) and Lotz et al. (2004).

These include the concentration index (C) defined as the ratio of the radius that contains

80 per cent of the galaxy light to the radius that contains 20 per cent, or

C = 5 log

(

r80
r20

)

. (3.5)

Several other definitions of this value exist, but all are related to the Sérsic index for a

single-component galaxy.

The asymmetry (A) is measured by taking the difference of the image and the image

rotated 180 degrees normalized by the original pixel flux. The clumpyness (S) is measured

by summing the residual of the original image and a boxcar-smoothed version of the image.

Gini coefficient and second-order moment of the galaxy are also measured by the code.
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3.4 Masking and neighbor identification

These non-parametric measures of galaxy structure have been used in the past to differ-

entiate galaxy types. The values for these measurements are reported in the final catalog.

However, caution is necessary when using these parameters because PSF effects cannot

be removed from the measurements. As a result, there may be strong resolution effects,

particularly since much of the galaxy sample is similar in size to the image PSF.

3.3.5 Post-fitting measurements

We also directly measure a total half-light radius and total axis ratio for all models using

the image of the fitted model. To do this, after fitting we generate an unconvolved image of

the fitted model using Galfit. Using the image moments, we calculate the position angle

and ellipticity of the galaxy and measure in elliptical annuli extending out until 50 per

cent of the total light of the image are enclosed. This numerical measurement is found to

agree with the actual radius of the galaxy within 1 per cent for single-component galaxies

where a direct comparison between the analytical and computed half-light radii can be

compared. These measurements allow direct comparison of the one- and two-component

model half-light radii (See Chapter 6.4 and Figure 6.9, for example).

Figure 3.3 shows two example galaxy fits performed as part of this work using the

PyMorph pipeline. Ser-Exp fits are shown. Each column contains the input image (far

left), mask (center left), fitted galaxy (center right), and the residual image (far right).

The first row shows a well-fit galaxy. The second row shows an early-type galaxy with a

smoother profile and a fitted neighbor. The three rightmost columns are all data produced

as a result of running the pipeline and used in post-fitting analysis.

3.4 Masking and neighbor identification

In this chapter, the effects of masking and neighbors on fitting process. The choices for

masking and simultaneously fitting neighbors are examined and justified. The chapter
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mtot=17.6 rhl=2.66”

B/T=0.47

modelmask

mpetro=17.7 rpetro=2.60”

galnum=19384

data masked residual

mask

mtot=17.3 rhl=1.85”

B/T=0.73

model

mpetro=17.4 rpetro=1.96”

galnum=145

data masked residual

Figure 3.3: Two example fits output by the PyMorph pipeline. Ser-Exp fits are shown.

Each column contains the input image (far left), mask (center left), fitted galaxy (center right),

and the residual image (far right). The first row shows a well-fit galaxy. The second row shows

an early-type galaxy with a smoother profile and a fitted neighbor.
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3.4 Masking and neighbor identification

Figure 3.4: A flowchart showing the process of masking and simultaneous fitting described

in Chapter 3.4. The flowchart also includes the decision process used to identify ‘fractured’

or ‘polluted’ fits described in Chapter 3.4.3. This entire process is carried out for each galaxy

individually.
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also describes how galaxies with fitting problems caused by neighbors are identified in the

catalog.

Figure 3.4 summarizes the process we used to identify neighbor sources, decide whether

to mask or simultaneously fit the neighbor, and verify that the choice is appropriate. This

process is described throughout Chapter 3.4.

3.4.1 The masking and neighbor identification process

PyMorph performs image masking using the SExtractor program (Bertin and Arnouts

1996). Any sources identified by SExtractor are masked out for fitting unless the extra

source is too close to the target galaxy to be properly masked. (The threshold for this case

is set by the user.) Neighbors that are not simultaneously fit are masked according to the

SExtractor segmentation image. Simultaneous fitting of the target source and neighbor

source is performed in cases where the proximity of the sources makes masking ineffective.

In this case, the extra source is simultaneously fitted with a single Sérsic profile while fitting

the target galaxy.

PyMorph detects all neighboring sources in the fitted frame using SExtractor with

settings BACK SIZE= 64, ANALYSIS THRESHOLD= 1.5 and DETECT MINAREA= 6. We tested

several values of these settings but found no effect on the final fits. Object detection is

unaffected by varying these parameters because the objects that require masking are large,

bright neighbors with high S/N.

After searching the frame with SExtractor, the SExtractor catalog is used to

decide whether to mask or fit neighboring sources according to requirements set on the

minimum fractional size of a neighbor relative to the target and the maximum separation

between the neighbor and target in multiples of the sum of the half-light radii. When

both conditions are satisfied simultaneously by a specific neighbor-target combination, the

neighbor is simultaneously fitted with a Ser profile. Otherwise, the area occupied by the

source as defined by the SExtractor segmentation image is masked out during fitting.

44



3.4 Masking and neighbor identification

For the fits presented in this work, neighboring sources are simultaneously fit when the

separation of the target and neighbor source is less than three times the sum of the two

objects’ semi-major half-light radii as measured by SExtractor. The neighbor source

must be larger than 20 per cent of the area defined by the SExtractor radius of the

target galaxy. Explicitly, these conditions are:

dtn < 3(rhl,neighbor + rhl,target) (3.6)

and

r2hl,neighbor/r
2
hl,target > 0.2 (3.7)

.

Figure 3.5 shows some examples of galaxies fitted with Ser profiles. Each galaxy has

masked or simultaneously fit neighbors. The decision of whether to mask or fit the neighbor

was carried out as described in this chapter. Each row shows the input image, mask used

during fitting, the final fitted image, and the residual of the fit. The half-light radius of

the target galaxy and the neighbor jointly determine whether the neighbor is masked or

simultaneously fit.

Several masking methods were tested prior to fitting, using circular and elliptical masks

with sizes 2, 4, and 6 times the size of the neighbor sources (see Chapter 4.2.6. These

masking configurations provided no reduction in the scatter of the recovered parameters

when tested on simulations. Since no improvement was evident, we used the default con-

figuration for analysis (i. e., masks are drawn according to the SExtractor segmentation

image produced during fitting).

3.4.2 Failures of masking related to Nearby Neighbors and Source Frag-

mentation

A subset of catalog galaxies have nearby neighbors. In practice, neighbors far away from the

target galaxy (i. e., larger than a few times the Petrosian half-light radius of the galaxy are
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mtot=14.7 rhl=7.49”

B/T=0.16

modelmask

mpetro=14.9 rpetro=6.85”

galnum=6833

data masked residual

mtot=14.4 rhl=10.70”

B/T=0.68

modelmask

mpetro=15.0 rpetro=3.89”

galnum=7780

data masked residual

Figure 3.5: Examples of two galaxies with neighbors fitted simultaneously (top row) or masked

out (bottom row). From left to right, each row shows the input image, mask created after initial

analysis of the image, fitted image, and residual. Regions that are masked out during fitting

are shown in the mask image as the black areas.
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3.4 Masking and neighbor identification

easily identified by PyMorph and properly masked or simultaneously fit. However, there

are cases where the galaxies are too close together and fitting will not properly proceed

without human intervention.

Figure 3.6 shows an example of two galaxies that sit very close together and are not

properly identified as two separate sources. These galaxies are listed as two separate sources

in the CasJobs database, but not separated by SExtractor during fitting. Problems such

as this are not immediately noticeable using the catalog because the only galaxies selected

for fitting are those galaxies in the spectroscopic catalog. Most neighbors fall below the

spectroscopic sample cut (extinction-corrected mr <17.77) and will not be included in the

catalog.

Additionally, neighbors bright enough to pass the spectroscopic cuts may still be missing

from the spectroscopic catalog due to fiber collisions at separations of 55 arcsec or less

(Strauss et al. 2002). These collisions will occur only for galaxies that meet the criteria

used for spectroscopic target selection. Galaxies that have an extinction-corrected Petrosian

magnitude brighter than 17.77 will then be excluded from the sample if they caused a fiber

collision during target selection. However, given the source density of these sources (of order

1 per fPc image), it is reasonable to expect very few overlapping bright sources. Fields with

multiple visits can also avoid fiber collisions by measuring the colliding sources on separate

occasions. This represents only a small number of catalog galaxies (less than 100). Instead,

nearby sources dimmer than 17.77 magnitudes must also be considered.

The missed neighbors can often be detected by SExtractor using deeper deblending

settings. However, increasing the sensitivity of the SExtractor deblending can lead to

source fragmentation. If PyMorph is too sensitive to unusual profile behavior, then a spu-

rious source may be detected and fit. This fragments the source into multiple pieces, causing

PyMorph to under-report the brightness and size of the source as well as producing mean-

ingless fitting parameters. Increasing the sensitivity of SExtractor only when the SDSS

CASJobs data suggests that increased sensitivity is required balances these two concerns.
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Figure 3.6: An example of two galaxies so close together that source separation is not done

correctly and a single fit is applied.
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3.4 Masking and neighbor identification

This is determined by comparing the catalogs of SDSS and PyMorph as described in the

next section.

3.4.3 Verifying masking and deblending conditions

After an initial first run of the PyMorph pipeline, verify that proper neighbor identifica-

tion and masking or simultaneous fitting is verified by comparing the PyMorph catalog

containing each targeted galaxy and any fitted neighbors against the five nearest Primary

Photometric targets from the DR7 CasJobs PhotoPrimary table. CasJobs objects are re-

quired to have Petrosian r-band magnitude brighter than 20 and be within 9 arcsec of the

original galaxy fitted by PyMorph. Objects farther or dimmer than these cuts are unlikely

to cause fitting problems because they are more than ∼ 5 times dimmer and over 4 half-light

radii away from the average galaxy in the catalog.

There are ≈ 78 000 potential neighbors in SDSS and ≈ 100 000 simultaneously fitted

PyMorph neighbors (about 79 000 galaxies have one neighbor, about 8 000 galaxies have

two neighbors, and about 1 500 galaxies have three or more simultaneously fitted neighbors,

adding up to produce the ≈ 100 000 neighbors).

Since the average number of PyMorph neighbors per galaxy is small, there should

be good agreement between the PyMorph neighbors and the brightest neighbors found

in SDSS. Therefore, matching PyMorph neighbors to SDSS neighbors by cross-matching

the two catalogs with a search radius equal to the r-band Petrosian half-light radius of the

SDSS neighbor (which is usually a few arcseconds) is acceptable. If a PyMorph neighbor

and SDSS neighbor are separated by less than this radius, the two matched objects are

considered matched.

Specifically, the matching conditions are:
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dX =(Xtarget −Xneighbor)− (colcr, target − colcr, neighbor) (3.8)

dY =(Ytarget − Yneighbor)− (rowcr, target − rowcr, neighbor) (3.9)
√

d2X + d2Y ≤ rpetro,hl,r (3.10)

where the separation is measured in pixels. X and Y are the coordinates on the cutouts used

for fitting. colc and rowc are the coordinates on the fPc image. There are a small number

of neighbors (about 2000 out of the 70,000 neighbor candidates) that come from different

runs. For these objects, matching conditions are relaxed and any neighbor candidates that

have the same angular separation from the target galaxy in both the SDSS and PyMorph

catalogs (these neighbors both lie in the same 1.5 arcsec annulus about the target galaxy)

are considered matched. While this provides no sensitivity to direction, it is not a cause for

concern, since galaxies have few fitted neighbors (most galaxies have 0 neighbors, and only

about 10,000 have 2 or more neighbors as noted earlier in this section). Therefore, it is safe

expect that the confusion rate in the neighbor-matching algorithm to be quite low.

Each fitted neighbor has a unique (galnum , neighbornum) pair assigned to it. The

neighbornum of the matching CAST neighbors entry is reported as the neighbornum entry

in the CAST neighbors table. The status of the fitted neighbor (1 for matched, 0 for not

matched) is also recorded in the “ismatched” parameter of the r neighbors ser table. These

tables are released with the catalog.

About 40 000 of the 100 000 fitted PyMorph neighbors match SDSS objects. The

remaining 60 000 unmatched PyMorph neighbors and ≈ 38 000 unmatched SDSS neighbors

may cause problems during fitting. Following the procedure described in this section, the

number of galaxies with problems due to neighbors is only ≈4 000 galaxies in the final

sample.

The two groups, unmatched SDSS neighbors and unmatched PyMorph neighbors, pos-

sibly represent two different failures of the pipeline. Unmatched PyMorph neighbors may

50



3.4 Masking and neighbor identification

be spurious neighbors fitted by PyMorph after SExtractor improperly separates the

target galaxy into several smaller fragments. Unmatched SDSS objects may be nearby

neighbors that fail to be deblended from the target galaxy by SExtractor.

Unmatched SDSS neighbors tend to happen when neighbors are superimposed on the

target galaxy or very nearby. In principle, these situations can happen independent of the

true physical separation of the neighbor and target (i. e., a star may be superimposed on a

galaxy, the two of which should not be correlated in any physically meaningful way). The

incidence of nearby neighbors may also be enhanced in dense environments (i. e., within

clusters). This is a potentially important effect as it can bias measurements of galaxies in

clusters.

However, SDSS has many suspicious entries at dimmer magnitudes. These sources are

often the result of deblending errors. Figure 3.7 shows the fit to galaxy with a fictitious

neighbor. According to CasJobs, there are two sources at this location with the same or

similar magnitudes. These cases obviously do not constitute true neighbors and have no

effect on the fitting.

As an additional constraint, we download the SDSS object flags4 In particular, the

DEBLEND NOPEAK flag in the band of interest (either g,r,or i) needs to be checked. This flag

indicates that no peak was found in the deblended source, and the source is likely not a real

source. Although not implemented here, one could have required that the objects have the

BINNED1 flag set. The SDSS site discusses that sources should have either BINNED1, BINNED2,

or BINNED4 to be detected. However, many of the BINNED2 sources are spurious detections

of the outskirts of bright galaxies and scattered light from bright stars. In addition, SDSS

says that very few objects flagged as BINNED4 are real astrophysical objects. We could

also check for the NOPROFILE flag which indicates that no profile could be measured for the

debelended source. Such sources are likely spurious, especially in the neighborhood of a

4For an explanation of the flags, see http://www.sdss3.org/dr8/algorithms/flags_detail.php. See

also Robert Lupton’s page at http://www.astro.princeton.edu/~rhl/flags.html.
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galaxy. These two additional flags were checked initially and found to provide no additional

information for the sample of neighbors used in this work, so this flag was not used in the

final matching.

Many SDSS galaxies may be masked rather than simultaneously fit, causing it to ap-

pear that PyMorph misses many neighbors. In order to examine the SDSS neighbors for

contamination of target galaxies, we examined the PyMorph fitting masks to verify that

these neighbors are not masked out. Any masked neighbors (for which at least 80 per cent

of the pixels inside their half-light radii are masked) are removed from the set of potentially

problematic SDSS neighbors. This removes approximately 4 000 SDSS neighbors. SDSS

neighbors that possess the DEBLEND NOPEAK r-band flag in the SDSS data are also removed

(this indicates that no peak was found in the deblended source by the SDSS photo pipeline,

and the source is likely to be a spurious source).

SDSS sources that do not have the DEBLEND NOPEAK flag set and are not masked are con-

sidered to be polluting the target galaxy profile if they are unmatched to a fitted PyMorph

neighbor and the distance calculated as

xd = cos(φ) ∗ (xn− xt) + (yn− yt) ∗ sin(φ)

yd = − sin(φ) ∗ (xn− xt) + (yn− yt) ∗ cos(φ)

rd =
√

ba ∗ (x2d) + (y2d)/ba ∗ 0.396

(3.11)

where φ and ba are the position angle and ratio of the semi-minor to semi-major axis of the

fitted target galaxy. rd is converted to arcsec by the pixel scale, 0.396 arcsec/pixel. rd is

compared to the maximum of the Petrosian half-light radius and the fitted half-light radius

(this protects us in cases where the target shrinks to a point source, as can happen in cases

poor fits).

Any SDSS neighbors that pass these cuts potentially corrupt the fits. An empirically

verified safe cut for considering these unmasked, unfit neighbors to be problems is if they
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are less than 3 half-light radii away and

mn −mt < 4.0 − rd/rhl (3.12)

where rd is the radial distance from the target galaxy to the neighbor, rhl is the target

galaxy half-light radius, mn is the neighbor magnitude and mt is the target magnitude.

For example, a neighbor galaxy 4 arcsec away from an average galaxy in the sample (with

half-light radius of 2 arcsec) may be no more than 2 mag dimmer than the target in order

for us to be concerned that it was not chosen for simultaneous fitting. This cut naturally

tapers, allowing brighter neighbors to be considered problematic out to larger radii relative

to dimmer neighbor galaxies. After this cut, only about 7 500 target galaxies potentially

have contamination from unmatched SDSS neighbors.

Another potential problem case are the so-called “fractured” galaxies. In the largest and

nearest galaxies, detailed galaxy structure (e. g. spiral arms or dust lanes) triggers improper

separation and deblending. These cases are called ‘fractured’ galaxies and identified by

searching for the fitted galaxies where the Petrosian magnitude is at least 0.5 mag brighter

than the fitted magnitude and the unmatched fitted neighbor is less than 3.0 Petrosian

half-light radii from the target galaxy. Specifically,

rd < 3.0 ∗ rpetro
mn −mt < 3.0− dis/rpetro

rd < 9.0

mt −mpetro > 0.5

(3.13)

These cases are quite rare, representing only about 150 ‘fractured’ galaxies in the entire

catalog.

After all of these constraints are applied to the catalog, about 12,000 “polluted” sources

and about 150 “fractured” galaxies are identified (which is about 2% of the sample). About

2,000 of these were initially failed fits. The remaining ∼ 10000 are refit using a deeper
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Figure 3.7: An example of a galaxy that has a neighbor with the same magnitude centered

less than 2 pixels. This is a case where there is no need for a neighbor fit

deblending setting on SExtractor and stricter masking conditions that make it more

likely for a neighbor to be detected and simultaneously fit rather than masked or never

detected.

Once the images with unfitted neighbors are identified, an additional run of PyMorph

is preformed on the smaller sample. This run uses a different, deeper set of deblend-

ing settings for SExtractor as well as more generous settings of PyMorph neigh-

bor fitting. The SExtractor setting are changed to DEBLEND NTHRESH 64 rather than

the original DEBLEND NTHRESH 32 and DEBLEND MINCONT 0.001 rather than the original

DEBLEND MINCONT 0.005 . This produces more fragmented sources with less contrast re-

quired to determine that a source is actually two blended objects. Changing these settings
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not only increases the likelihood of detecting the SDSS neighbors, but also of incorrectly

‘fracturing’ larger sources. We also reduce the neighbor source area requirement in Py-

Morph for this fitting run. This makes PyMorph more likely to perform a neighbor fit,

requiring the neighbor to be only 10 per cent of the area of the target rather than the

original setting of 20 per cent area.

After refitting the test for unfit or unmasked neighbors described in this section is

repeated. Galaxies still having neighbor problems at this point are flagged in the final

catalog as potentially being polluted by neighbor objects. This process improves the fits

of ∼ 3500 galaxies, or 0.5 per cent of the total sample, for which deeper fitting identifies

previously unmasked neighbors.

Figure 3.8 shows the change in fitted Ser magnitude (the fitted magnitude from the

second pass minus the original fitted magnitude) for galaxies where all neighbors were

detected on a second pass of fitting using deeper deblending. Individual galaxies are shown

as gray scatter points. The median and 68 per cent contour are over-plotted in red. The

x-axis shows the difference in target and neighbor magnitudes.

The plot shows that on average, the target galaxies get dimmer on a second pass as light

from the neighbor is now properly associated with a different source (the neighbor) rather

than being fitted as part of the target galaxy. A difference between target and neighbor of

more than 3 mag causes little change in the fitted magnitude.

According to the 68 per cent contours on the plot, approximately 16 per cent of the

refit galaxies become brighter during refitting. Since the original fits may include unmasked

SDSS neighbors, the fits are usually poor. In some cases, the fit is not just contaminated by

the neighbor, but the fit fails catastrophically, producing unreliable magnitudes and other

fitting parameters. In these cases, the original fit would have been classified as a failed fit

using our flagging system. Such fits may produce a brighter magnitude when refit with

proper identification of the neighbor target.
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Similarly (although not shown here), separations of the source and target of more than 3

target half-light radii show little-to-no change in magnitude. The other fit parameters (i. e.,

Sérsic index , axis ratio, and radius) exhibit similar behaviors. Based on these observations,

we believe our cutting criteria in Equation 3.12 to be generous enough to capture the

majority of cases where a true SDSS neighbor is causing fitting contamination.

About 4 000 ‘polluted’ target galaxies still fail during the second pass with deeper de-

blending. The ‘polluted’ and ‘fractured’ galaxies jointly comprise about 0.6 per cent of the

sample. Galaxies that are suspected to have substantial fitting problems are marked with

a quality flag discussed in Chapter 5 and shown in Table 5.8. The number of simultaneous

fits for each galaxy in our catalog is also reported since such fits substantially increase the

number of free parameters during fitting and make it much more likely that the resulting

fit has problems.
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Figure 3.8: The change in magnitude (the fitted magnitude from the second pass minus the

original fitted magnitude) of galaxies for which the fitting is rerun with deeper deblending and

all the expected neighbors are detected. Individual galaxies are shown as gray scatter points.

The median and 68 per cent contour are over-plotted in red. The x-axis shows the difference

in target and neighbor magnitudes. Galaxies tend towards dimmer magnitudes on the second

fit which is consistent with a reduction in the contamination of the target galaxy by light from

the neighbor source. Note that by a difference of 3 mag the median change in the parameters is

consistent with zero. There is no need to look at unmatched SDSS sources dimmer than this.
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Chapter 4

Simulations

In order to quantify the systematics and robustness of the fits of g-, r-, and i-band SDSS spec-

troscopic galaxies presented throughout this work, simulations of single and two-component

galaxies are used to test the fitting process. These simulations are referred to as “mocks,”

and are generated using an independent code. The simulations are fit using the same Py-

Morph pipeline discussed in Chapter 3.3 and used for the photometric decompositions of

the DR7 galaxies presented in this work.

Following several detailed studies which have used simulations to test the robustness

of different fitting algorithms (e. g. Häussler et al. 2007; Lackner and Gunn 2012; Simard

et al. 2002), the main goal is to test the robustness of PyMorph pipeline software on SDSS

galaxies. These simulations test the effects of increased signal-to-noise as well as increased

resolution, PSF errors, and sky determination. The simulations are specifically applicable

to the SDSS galaxies in this catalog.

Unbiased samples selected to accurately represent the distribution of SDSS galaxies

are used to estimate and correct the systematic error on recovered parameters as well as

estimate reasonable uncertainties on fit parameters.

A description of the simulation process is presented in Chapter 4.1. This includes con-
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4.1 Creating the catalog simulations

structing a catalog of realistic galaxy parameters (Chapter 4.1.1); generating galaxy surface

brightness profiles based on these parameters (Chapter 4.1.2); generating sky and noise

(Chapters 4.1.3 and 4.1.4); and including seeing effects in the final image. The completed

simulations are run through the fitting pipeline, and the fits are analyzed in Chapter 4.2.

Examination of the recovery of structural parameters in noise-free images is presented in

Chapter 4.2.1. Parameter recovery in realistic observing conditions including both neigh-

boring sources and the effects of incorrect PSF estimation is examined in Chapter 4.2.2.

PyMorph is further tested by inserting mocks into real SDSS images to test the depen-

dence on local density in Chapter 4.2.3. Dependence of the fits on resolution and signal-to-

noise are tested in Chapter 4.2.4. This is particularly interesting since the pipeline may be

applied to DES and future LSST surveys.

The effect of changing the fitted cutout size is presented in Chapter 4.2.5, and the effect

of incorrect background estimation is also examined in Chapter 4.2.7.

Single-component Sérsic galaxy models (Ser), de Vacouleurs bulge with an exponential

disk models (deV-Exp) and Sérsic bulge with exponential disk models (Ser-Exp) are all

used to test the fitting. The fitting bias of the single-component deV model is not examined.

Although deV fits are performed on the SDSS catalog and released as part of this work, the

deV model is not preferred for any work presented here. As a result, there is no reason to

examine the bias present.

4.1 Creating the catalog simulations

4.1.1 Selecting the simulation catalog

The set of mocks used to test the fitting code are drawn from an initial run of the pho-

tometric decompositions of the catalog. These galaxy parameters represent the r-band

image decompositions of a complete sample of the SDSS spectroscopic catalog containing

all galaxies with spectroscopic information in SDSS DR7 (Abazajian et al. 2009).
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4. SIMULATIONS

For each model (Ser, deV-Exp, and Ser-Exp), a representative sub-sample of physically

meaningful photometric decompositions is randomly drawn from the catalog. In order to

ensure that the galaxies are representative of the full catalog, the distributions of basic

observational parameters of SDSS galaxies (surface brightness, redshift, apparent Petrosian

magnitude, Petrosian half-light radius, and absolute magnitude) were examined.

Some restrictions on fit parameters are necessary to ensure that outliers are removed

from the parameter space used to generate the simulations. Galaxies that do not satisfy

these basic cuts are removed to ensure that the parameters used to generate the images are

physically motivated. The cuts do not significantly bias the galaxy distributions shown in

Figure 4.1. The cuts are:

1. Any Sérsic components must have Sérsic index less than 8.

2. Half-light radius of any Sérsic component must be less than 40 kpc.

3. In the two-component fits, the ratio of the bulge half-light radius to disk scale radius

should be less than 1, or the galaxy should be bulge dominated (B/T > 0.5).

Conditions (i) and (ii) are used to prevent selection of Ser models with extended profiles

that are likely the result of incorrect sky estimation during the fitting process. Condition

(iii) ensures that any disk dominated galaxies have a bulge component that is smaller than

the disk.

After enforcing the cuts on the sample, 10 000 fitted galaxy profiles for each of the Ser,

deV-Exp, and Ser-Exp models are selected at random without regard to the morphological

classification of the original galaxy. The fitted parameters of these sample galaxies are used

to generate the mocks used in testing the pipeline.

Selecting galaxy samples independent of galaxy morphology allows the deV-Exp and

Ser-Exp samples to contain some galaxies that do not truly possess a second component.

Using the flagging presented in Chapter 5 more of these galaxies would be removed. The

flagging was not available at the time of the simulation tests.
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4.1 Creating the catalog simulations

Additionally, there will be some truly two-component galaxies (i. e., both bulge and

disk components are present) that are misrepresented by a single Sérsic fit. However, this

sampling method will not invalidate the results of the tests. Testing the ability to recover

simulated galaxy parameters only requires a realistic sample of galaxy profiles. These

samples satisfy this requirement. Single Sérsic galaxies in the original sample, simulated as

mock Ser galaxies and fit with Ser models, test the ability to recover Sérsic parameters.

Similarly, Ser mocks with Ser-Exp models, show bias resulting from over-fitting a galaxy.

Fitting the Ser-Exp mocks with a Ser model shows the bias due to under-fitting.

Fitting a single-component model regardless of galaxy structure or morphology is a

common practice (e. g. Blanton et al. 2005b; Häussler et al. 2007; Simard et al. 2011).

Figure 4.8b shows that bias of 0.05 mags and 5 per cent of the half-light radius result

from fitting a two-component galaxy with a single component and that this bias increases

to 0.1 mags and 10 per cent of the half-light radius for brighter galaxies. These biases

are important in analyzing the results of a single-component fitting catalog. For example,

Bernardi et al. (2013) shows that intermediate B/T galaxies can often be fit by Sérsic models

with large Sérsic indexes, which can lead to misclassification if cuts similar to Shen et al.

(2003) are used.

Figure 4.1 shows the distributions of surface brightness, redshift, extinction-corrected r-

band Petrosian magnitude, r-band Petrosian half-light radius, and absolute magnitude of all

SDSS spectroscopic galaxies (in black) and simulation samples: Ser (red), deV-Exp (green),

and Ser-Exp (blue). The distribution of mock galaxies reproduces the observed distribution

for all three samples for each observational parameter as verified by a KS 2-sample test.

Figure 4.1 also presents the signal-to-noise (S/N) of the mock samples as compared to the

parent distribution. The S/N of the images is a limiting factor in the fitting process, so care

must be taken to ensure that the S/N is not artificially increased in the simulations when

compared to true SDSS galaxies. This S/N is calculated using the r-band Petrosian magni-

tude and r-band Petrosian half-light radius. Petrosian quantities are used to make a fairer
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Figure 4.1: Distributions of (a) extinction-corrected r-band Petrosian magnitude, (b) red-

shift, (c) r-band Petrosian half-light radius, (d) surface brightness, (e) signal-to-noise, and

(f) Vmax-weighted luminosity function of the samples in the simulations drawn from the DR7

spectroscopic galaxy sample. The distribution of all DR7 spectroscopic galaxies is shown in

black. Distributions of the Ser, deV-Exp, and Ser-Exp mocks are shown in red, green, and

blue, respectively. Bin counts are normalized to integrate to 1. The distributions of the mocks

are representative of the full catalog fitted in this work and are appropriate to compare to the

DR7 spectroscopic sample as verified by a Kolmogorov-Smirnov 2-sample test. The signal-to-

noise (S/N) will be discussed further in Chapter 4.1.4. In calculating this S/N, the measurement

of sky provided by the PyMorph pipeline rather is used rather than DR7 to identify and sep-

arate target counts from sky counts. PyMorph sky estimation is shown to be more accurate

than the SDSS estimation provided in the DR7 catalog.

62



4.1 Creating the catalog simulations

comparison among all the samples. Because the Petrosian quantities are non-parametric,

they avoid the complications that arise in assessing the possible biases introduced during

fitting. Any differences in S/N are not large enough to significantly bias the distributions

as verified by the KS 2-sample test. Therefore, the samples are fair representations of the

underlying distribution of SDSS spectroscopic galaxies. The S/N is discussed further in

Chapter 4.1.4.

Testing the accuracy of the PyMorph fitting routine does not necessarily require an

unbiased parameter distribution. In reality, all that is required is a sample with sufficient

coverage of the parameter space represented by the data. The simulations use smooth

profiles, simplifications of the true galaxies that are observed in SDSS. Examination of the

results of fitting these simplified models and comparison to fits of true observed galaxies can

potentially yield useful information regarding galaxy structure. In Bernardi et al. (2013),

the simulations are used together with the decompositions of the SDSS spectroscopic sample

to characterize the scatter in the size-luminosity relation as well as examine possible biases.

In order to make these comparisons, an unbiased sample is required. The distributions

shown in Figure 4.1 show that the simulations are appropriate to use for this purpose.

4.1.2 Generating the images

Two-dimensional normalized photon distributions are generated from the one-dimensional

Sérsic profiles and the one-dimensional exponential profiles of each bulge and disk compo-

nent. Disk components are only simulated where required, as is the case for two-component

fits. When multiple components are to be simulated, each component’s normalized pho-

ton distribution is generated separately and combined prior to generating the simulated

exposure.

Two-dimensional galaxy profiles are treated as azimuthally symmetric one-dimensional

galaxy light profiles that are deformed according to an observed ellipticity. The galaxy
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profiles are generated using the structural parameters generated from photometric decom-

positions as described in the previous section. Single-component galaxy profiles and the

bulges of two-component galaxies are generated according to the Sérsic profile

I(r) = Ie exp

(

−bn

[

(

r

Re

)
1
n

− 1

])

bn = 1.9992n − 0.3271

(4.1)

where Sérsic index (n), half-light radius (Re), and surface brightness at Re(Ie) are selected

simultaneously from the catalog described in the previous section.

For the deV-Exp and Ser-Exp cases, an exponential disk (Equation 4.1 with n = 1)

is added to the Sérsic component to model the disk component of the galaxies. The disk

is modeled using a slightly modified version of Equation 4.1. This model requires input

parameters scale radius (Rd) and central surface brightness (Id).

IExp(r) = Id exp

(−r

Rd

)

. (4.2)

After generating the two-dimensional profile, the image is pixelated by integrating over

each pixel area. The details of this integration are largely unimportant. However, the

simulation must take careful account of the integration in the central pixels, where the

profile can vary greatly over a single pixel. Various oversampling methods have been devised

to properly correct this common problem (e. g. Häussler et al. 2007; Peng et al. 2002). The

simulations in this paper have been tested to ensure that the pixel-by-pixel integration is

accurate to ≈ 3 per cent of the corresponding Poisson noise in a given pixel. Therefore, the

simulations are treated as exact calculations of the galaxy photon distributions since any

noise from the integration contributes only a small amount to the total noise budget.

The pixelated galaxy is numerically convolved with a PSF extracted from SDSS DR7

data using read PSF program distributed by SDSS5. The choice of this PSF is discussed in

Chapter 4.2.2.

5read PSF is part of the readAtlasImages-v5 4 11 package available at

http://www.sdss.org/dr7/products/images/read_psf.html
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4.1 Creating the catalog simulations

4.1.3 Creating the background

Two hundred background images, each equal in size to an SDSS fpC image, are also sim-

ulated for testing purposes. These images contain constant background and a randomly

selected field of galaxies taken from an SDSS fpC image. The SDSS catalog provides rudi-

mentary photometric decompositions of each star and galaxy. Galaxies are fit with an

exponential disk and a de Vacouleurs (n = 4) bulge independently. The best fit is reported

as a linear combination of the two fits using the fracdev parameter to express the ratio of

the de Vacouleurs model to the total light in the galaxy.

For the simulated background used in this paper, each galaxy is generated using the

combined profile of the two fits. The de Vacouleurs bulge and exponential disk compo-

nent are separately simulated according to the magnitude, radius, ellipticity, and position

angle reported in SDSS. Each component is simulated using the method described in Chap-

ter 4.1.2. The background galaxy is constructed by adding the two components using the

fracdev parameter. The galaxy is then inserted into the fpC image. Any foreground stars

are also simulated as point sources and inserted into the image.

The mean sky of all SDSS observations as given in the SDSS photoobj table by the

sky r parameter is used for the background sky counts in the image. The distribution of

the sky flux is plotted in Figure 4.2 in units of counts (or DN) per pixel per exposure. The

median and mean values for a 54 second SDSS exposure are ≈125 and ≈130 counts per

pixel, respectively. The mean value of 130 counts per pixel is used as the background in the

simulations. This sky background is applied to the entire chip as a constant background;

no gradient is simulated across the image. Background gradients should be approximately

constant across a single galaxy. This assumption is verified by inserting the simulated

galaxies into real SDSS fpC images near known clusters, where the sky contribution should

be higher and gradients are more likely. In Chapter 4.2.3, the simulations show that there

is little change in the behavior of the fits in these types of environments.
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Figure 4.2: The distribution of sky values for data in the SDSS CASJOBS catalog. These

data are drawn from the sky r CASJOBS parameter and are converted into counts (DN) per

pixel per standard SDSS image exposure of 54 seconds. This distribution is used to deter-

mine the sky value used in the simulations. As an approximation, the mean value of 130

counts/pixel/exposure is selected.
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4.1 Creating the catalog simulations

Previous work has improved the measurements of sky background (see Blanton et al.

2011). However, these corrections tend to focus on areas of large, bright galaxies or on

making the sky subtraction stable for purposes of tiling fpC images together. Since the focus

is on maintaining the proper S/N for the simulations, the sky levels provided in the SDSS

database are sufficient, provided that they maintain the correct S/N. The S/N distribution

of the simulations and the original SDSS galaxy sample are discussed in Chapter 4.1.4.

Diffraction spikes and other image artifacts are not directly simulated. However, the

SDSS photo pipeline often misidentifies additional phantom sources along an observed

diffraction spike. These phantom sources are modeled in the background, and so these

effects are approximately modeled. It is reasonable to expect that the diffraction effects

should not have a large effect on the fitting process, as their elongated straight structure

does not mimic galaxy structure. The dominant effect produced by the bright stars in the

field is bias in the background estimation in the nearby neighborhood of a star.

After simulation of the background images, and prior to adding noise, each background

image is convolved with a random SDSS PSF selected from original fpC image upon which

the individual image is based. Selecting PSFs from original SDSS images introduces a vari-

ation in PSF size between mock galaxies inserted into images and the background galaxies.

However, this variation is not of concern for us in the fitting process because the vast ma-

jority of galaxies (over 90 per cent of all galaxies) do not have neighbors near enough to

the target galaxy to require simultaneous fitting. For these galaxies, the PSF applied to

neighboring galaxies is of no interest in the fitting process because the sources are masked

out. The details of this masking are not discussed in the remainder of the paper. Modi-

fying the masking conditions produce no noticeable difference in the fitted values for the

simulations. For the remaining 10 per cent of galaxies, there may be some variation in the

fit due to differing PSFs. PSF sizes can differ between target and neighboring galaxies by

up to a factor of 2. However in practice, this happens for less than 1 per cent of galaxies

of the galaxies with neighbors. Furthermore, incorrect PSF tends to only cause effects at
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the centers of galaxies. So although using a PSF that is different from the background PSF

will affect the recovered parameters of the neighbor, it will not affect the target galaxy.

4.1.4 Noise

After generating a target galaxy and inserting it into a background, Poisson noise is added

using the average inverse gain of an SDSS image (4.7 e−/DN) and the average contribution

of the dark current and read noise, referred to as the “dark variance,” (1.17 DN2), to

determine the standard deviation for each pixel. Specifically,

Fi,j ≡ Ii,j + bkrdi,j (4.3)

is the total flux in pixel (i, j) (i. e., the sum of the source and background fluxes in the

pixel), and

σi,j =

√

Fi,j

gain
+ dark variance (4.4)

so
(

S

N

)

i,j

≡ Ii,j
σi,j

, (4.5)

for a single pixel.

Since the fitting pipeline is dependent on the S/N, it is essential that the simulated S/N

is comparable to SDSS. The distribution of the average S/N per pixel within the half-light

radius for the simulations and the original galaxies is plotted in Figure 4.1e. The S/N

distribution of simulations and the SDSS spectroscopic galaxies agree as verified by a KS 2-

sample test, therefore the simulations appropriately approximate the S/N of SDSS galaxies

contained in the catalog.

An unbiased selection in the previously mentioned parameters is not sufficient to guar-

antee fair sampling of the S/N with respect to magnitude, nor does it prevent fictitious

correlations among multiple fit parameters. In fact, correlations among fit parameters are

to be expected if the PyMorph pipeline is robustly measuring properties of the target
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galaxies (many correlations exist among physical parameters). It is difficult, and largely

unnecessary, to examine every possible relationship for correlations introduced by biases in

the sample selection process.

Examining the S/N and the half-light radius versus apparent magnitude help to ensure

the appropriateness of the simulation. Systematic differences in radius will lead to sys-

tematic variation in the S/N of the sample. The scatter in recovered fitting parameters is

also examined as a function of magnitude. Therefore, the S/N as a function of apparent

magnitude should appropriately reflect that of the parent sample from SDSS.

Figure 4.3 presents the half-light radius versus apparent magnitude, and Figure 4.4

presents the S/N versus apparent magnitude. The points shown in red and blue correspond

to the Ser and Ser-Exp mocks, respectively. The underlying SDSS parent distribution is

shown in black. Figure 4.3 shows that the Ser and Ser-Exp models are in close agreement

with the full SDSS sample. The Ser and Ser-Exp model radii agree across the magnitude

range. The S/N agrees with the full SDSS sample or is slightly below that of SDSS. The

lower signal-to-noise, although not exactly that of SDSS, will not bias the tests toward

better results, so these samples are acceptable for testing. The deV-Exp sample, which is

not shown here, tends to have smaller radii and higher S/N at brighter magnitude. The

results of tests using the deV-Exp model are not discussed in the remainder of this paper.

They can be found in M2014.

4.1.5 Final processing for fitting

For each mock galaxy, a weight image of the σi,j values is generated according to Equa-

tion 4.4. This image is supplied along with the input image to the pipeline in order to

calculate the χ2 value for the fit.

Figure 4.5 shows some examples of mock galaxies throughout the simulation process.

This includes the noiseless mock galaxy, the noiseless simulated background, the composite

image of galaxy and background, and the composite image after adding Poisson noise with
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Figure 4.3: The distribution of galaxy radii as a function of apparent magnitude for the parent

SDSS sample in black, the Ser model in red and the Ser-Exp model in blue. The median in

each bin is shown with error bars representing the 95 per cent CI on the median. Corresponding

dashed lines show the extent of the middle 68 per cent of data. The Ser-Exp model is in close

agreement across the entire magnitude range while the Ser model begins to diverge at brighter

magnitudes.
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Figure 4.4: The distribution of galaxy S/N as a function of apparent magnitude is presented

in the same format as Figure 4.3. The Ser-Exp and Ser models are in close agreement with

the full sample across the entire magnitude range.
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Ser model background model+background model+background+noise
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Figure 4.5: Examples of mock galaxies and background shown before and after adding Pois-

son noise. Top, middle, and bottom rows show randomly selected sample Ser, deV-Exp, and

Ser-Exp profiles, respectively. From left to right, the columns show the mock galaxy, simulated

background, background+galaxy, and final image with noise.
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σi,j defined in Equation 4.4. The final image size used for fitting is 20 times the Petrosian r-

band half-light radius. A discussion of this choice of stamp size is presented in Chapter 4.2.5.

4.2 Testing PyMorph image decompositions

In order to test the parameter recovery of the PyMorph pipeline on SDSS spectroscopic

galaxies, the PyMorph pipeline is applied mocks described in Chapter 4.1. The PyMorph

pipeline uses Galfit to fit smooth profiles to the the mock galaxies. The pipeline is applied

to several different realizations of the mock galaxies. These realizations increase in complex-

ity from a noiseless image to an image with real noise and (possibly clustered) neighboring

sources. The ability of PyMorph to reliably recover model parameters is limited by both

the S/N and the resolution of the mock galaxy. Understanding the systematic effects of

S/N and resolution is useful in interpreting the data presented in Chapter 5. It may also

be used to correct biases in the data as described later in Chapter 4.4.

4.2.1 Noiseless images

As an initial test, the pipeline is applied to simulations prior to adding noise, background

counts, or neighboring sources. This produces the minimum scatter in the data, serves to

verify that the simulations are correct, and shows that PyMorph is properly functioning.

The total apparent magnitude, half-light radius, and additional fit parameters recovered

by fitting the noiseless images of the Ser and Ser-Exp models are presented in Figures 4.6a,

4.7a, 4.8a, 4.9a, 4.10a, and 4.11a. The plots show the difference in simulated and fitted

values (fitted value - input value). The difference is shown versus the input magnitude as

well as the input value of the respective fit parameter. The gray-scale shows the density of

points in each plane with red points showing the median value. Error bars on the median

value are the 95 per cent confidence interval on the median obtained from bootstrapping.

Blue dashed lines show the regions which contain 68 per cent of the objects.
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Figures 4.6a and 4.9a show the corresponding fit is well constrained (Ser fit with Ser, and

Ser-Expwith Ser-Exp). The total magnitude and half-light radius are both constrained well

within 1 per cent error on the flux or radius (σtotal mag ≈ 0.01 mag and σradius ≈ 1 per cent).

However, the scatter increases somewhat for the sub-components of the Ser-Exp fit (see

Figures 4.10a and 4.11a). As the components of the Ser-Expmodel become dim (bulge/disk

magnitude approaches 18.5), the component contribution to the total light becomes small.

The origin of the magnitude limit is merely an artifact of the selection criteria requiring that

all galaxies have total magnitude brighter than 17.77. This implies that components with

magnitude of ≈18.5 or dimmer are necessarily sub-dominant components and contribute at

most ≈50 per cent of the light to the total profile. On average, components dimmer than

18.5 magnitudes contribute about 25 per cent of the total light to a typical galaxy in this

sample, and this contribution drops rapidly to about 10 per cent by 19 magnitudes. In these

cases, the sub-dominant component will be much less apparent in the image and, therefore,

less important to the overall χ2 of the fit, allowing for greater error in the parameters of

that component. In addition, once Poisson noise is considered, these dimmer components

suffer from much lower S/N. Later tests (Chapter 4.2.4) show substantial error on these

components due to the low flux and resulting low S/N.

Additionally, sub-dominant components (in particular, bulges) may be much smaller

than the overall size of the galaxy. This makes bulge parameter recovery susceptible to

resolution effects. These effects are also explored in Chapter 4.2.4.

The magnitude and half-light radius are also well constrained when a Ser galaxy is fit

with a Ser-Exp profile (Figure 4.7a). However, a Ser-Exp galaxy fit with a Ser profile

produces large biases in the magnitude and half-light radius (Figure 4.8a).

As already mentioned, the total magnitude and half-light radius are well constrained

(σtotal mag ≈ 0.01 mag and σradius ≈ 1 per cent) in cases where the correct model is applied

to the mocks (i. e., Ser mock fit with a Ser model). This is not always the case when the

wrong model is applied (i. e., Ser-Exp mock fit with a Ser model). When attempting to
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fit the simulated Ser-Exp mocks with a Ser model, there is a measurable bias of order .01

magnitudes in total magnitude. The scatter of both the size and magnitude is increased by

an order of magnitude. This bias and increased scatter becomes even larger in later tests. It

is obvious that a single-component galaxy cannot properly model a two-component galaxy

in general, and therefore, significant problems would be expected when attempting to fit

a single-component profile to a two-component galaxy. Nevertheless, this type of fit is

often performed on real data at low to moderate resolution and S/N where it is unlikely

to recover a robust two-component fit. An important observation is that the Ser-Exp fit

provides the most stable estimate of the half-light radius and total magnitude regardless of

the true simulated galaxy model (Ser, deV-Exp, or Ser-Exp). The additional freedom in

the Ser-Exp model and the fact that the Ser and deV-Exp models are special cases of the

Ser-Exp model would lead us to expect this result. Therefore, it is advisable to always use

a Ser-Exp fit in the course of fitting SDSS galaxies unless there is specific evidence to the

contrary.

One systematic effect in the pipeline that has been noted by other groups (e. g. Blanton

et al. 2005b; Guo et al. 2009), is the underestimate of Sérsic index at larger Sérsic indexes.

At Sérsic indexes of n ≈ 4, the Sérsic index is underestimated by less than 1 per cent.

However, this underestimate increases in the later tests. The data suggest that a substantial

component of this error is due to the resolution limits of the SDSS sample. At larger Sérsic

index, a high sampling rate at the center of the galaxy is useful in distinguishing the

preferred value of the Sérsic index. The effect of image resolution is further explored in

Chapter 4.2.4.

Since no Poisson noise is added to these images, the scatter apparent in these fits is

a combination of the limitations of the SDSS data (in particular resolution), systematics

inherent in the PyMorph routine (as well as the Galfit routine used by PyMorph), and

any parameter degeneracies inherent in the models.
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Galfit uses the Levenberg-Marquardt minimization method (Press et al. 1992) to find

the minimum of the χ2 distribution of the fit. The Levenberg-Marquardt method is not

a global search algorithm but rather follows the steepest decent to a local minimum. As

the parameter space becomes more complicated, Galfit has more trouble accurately re-

covering parameters. Adding components to the fit (i. e., going from a one-component to

two-component fit or going from a fixed Sérsic index component to one with a free Sérsic

index) will not only complicate the χ2 surface, making convergence less likely, but may

introduce true degeneracies in the parameter space.

For instance, the Ser-Exp fit of a galaxy of very late type often suffers from over-fitting.

The bulge component will tend to fit the disk of the galaxy as a second disk component

with nbulge ≈ 1. This is obviously an unintended solution to the fitting but one that

is equally valid from an χ2 perspective. In practice, it is difficult to prevent this type

of convergence without artificially constraining the fitting routine. Such constraints are

generally discouraged and can lead to other negative effects including convergence to a non-

optimal solution. The best solution to the parameter degeneracy is close examination of

any two-component fits in cases where nbulge ≈ 1, or B/T ≈ 0 or 1.

In addition, PyMorph reports statistical error estimates on the fitted parameters as

returned from Galfit. These errors are found to be an underestimate of the true error in

the fits by as much as an order of magnitude. This gross underestimation of the error is

also reported by Häussler et al. (2007) as well as being discussed in the Galfit user notes6.

Following Häussler et al. (2007), the ratio of the uncertainty reported by Galfit to the

deviation of the measured parameters (referred to as σ/∆) should be greater than 1 for

approximately 68 per cent of the data if the estimated uncertainty is appropriate. However,

this is not the case for any of the parameters in the fits. We discuss a simple method for

correcting the systematic bias and estimating the uncertainty in Chapter 4.4.

6See the technical FAQs at http://users.obs.carnegiescience.edu/peng/work/galfit/TFAQ.html
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Figure 4.6: The simulated and recovered apparent magnitude, half-light radius, and Sérsic

index for a Ser galaxy fit with a Ser model in four cases: (a) the image prior to adding Poisson

noise, (b) the fiducial case containing simulated sky, Poisson noise, PSF errors, and neighboring

sources, (c) the fiducial case with S/N increased by a factor of 4, and (d) the fiducial case with

resolution increased by a factor of 2. Over-plotted are the bias (red points) in the fitted values.

All plots show the 68 per cent (dashed line) scatter in blue. The density of points is plotted in

gray-scale. The Sérsic index shows increasing underestimate up to ≈0.5 (or ≈6 per cent) at the

largest Sérsic indexes.
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Figure 4.7: The simulated and recovered apparent magnitude and half-light radius for a Ser

galaxy fit with a Ser-Exp model in four cases: (a) the image prior to adding Poisson noise, (b)

the fiducial case containing simulated sky, Poisson noise, PSF errors, and neighboring sources,

(c) the fiducial case with S/N increased by a factor of 4, and (d) the fiducial case with resolution

increased by a factor of 2. Over-plotted are the bias (red points) in the fitted values. All plots

show the 68 per cent (dashed line) scatter in blue. The density of points is plotted in gray-scale.
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Figure 4.8: The simulated and recovered apparent magnitude and half-light radius for a

Ser-Exp galaxy fit with a Ser model in four cases: (a) the image prior to adding Poisson noise,

(b) the fiducial case containing simulated sky, Poisson noise, PSF errors, and neighboring

sources, (c) the fiducial case with S/N increased by a factor of 4, and (d) the fiducial case

with resolution increased by a factor of 2. Over-plotted are the bias (red points) in the fitted

values. All plots show the 68 per cent (dashed line) scatter in blue. The density of points is

plotted in gray-scale. The inability of the Ser profile to accurately model a Ser-Exp galaxy is

clearly evident. Errors in magnitude and half-light radius are correlated and the error in radius

is largely driven by errors in the largest, brightest objects. However, systematic errors occur

even at the dimmer magnitudes. Ser fits tend toward recovering larger, brighter objects when

applied to a true two component galaxy.
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Figure 4.9: The simulated and recovered apparent magnitude, half-light radius, and bulge-

to-total light ratio for a Ser-Exp galaxy fit with a Ser-Exp model in four cases: (a) the image

prior to adding Poisson noise, (b) the fiducial case containing simulated sky, Poisson noise,

PSF errors, and neighboring sources, (c) the fiducial case with S/N increased by a factor of 4,

and (d) the fiducial case with resolution increased by a factor of 2. Over-plotted are the bias

(red points) in the fitted values. All plots show the 68 per cent (dashed line) scatter in blue.

The density of points is plotted in gray-scale. The apparent trend in B/T from overestimation

at lower B/T values to underestimation at higher B/T values is largely due to the boundaries

on the parameter space forcing the scatter to be asymmetric (e. g. a galaxy with true B/T= 1

cannot be estimated to have B/T> 1).
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Figure 4.10: The simulated and recovered bulge component parameters for a Ser-Exp galaxy

fit with a Ser-Exp model in four cases: (a) the image prior to adding Poisson noise, (b) the

fiducial case containing simulated sky, Poisson noise, PSF errors, and neighboring sources, (c)

the fiducial case with S/N increased by a factor of 4, and (d) the fiducial case with resolution

increased by a factor of 2. Over-plotted are the bias (red points) in the fitted values. All plots

show the 68 per cent (dashed line) scatter in blue. The density of points is plotted in gray-scale.
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Figure 4.11: The simulated and recovered disk component parameters for a Ser-Exp galaxy

fit with a Ser-Exp model in four cases: (a) the image prior to adding Poisson noise, (b) the

fiducial case containing simulated sky, Poisson noise, PSF errors, and neighboring sources, (c)

the fiducial case with S/N increased by a factor of 4, and (d) the fiducial case with resolution

increased by a factor of 2. Over-plotted are the bias (red points) in the fitted values. All plots

show the 68 per cent (dashed line) scatter in blue. The density of points is plotted in gray-scale.
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4.2.2 The effects of background, neighbor sources, and incorrect PSF

extraction

When analyzing real data, it is not possible to extract the PSF at the target galaxy to

arbitrary accuracy. Interpolation is required and generally performed on a network of the

nearest stars to the target galaxy. This effect is tested through extraction of a neighboring

PSF to be used during fitting in place of the PSF used to generate the image.

The neighbor PSF used in fitting is randomly selected from a location within a 200

pixel box surrounding the source. This provides approximately even sampling of distances

from nearly 0 to about 170 pixels in separation from the source which corresponds to a

separation of ≈ 0 to ≈ 67.32 arcseconds between the target galaxy and the location used

for PSF extraction. This inserts some PSF error into the process of fitting as would be

expected in the case of real data. However, it also retains the similarity between the PSF

used for simulation and the PSF used for fitting. A strong similarity between the two would

be expected since the PSF generally will not vary greatly over the area of a single fpC image.

Target galaxies are randomly inserted into the simulated fpC images described in Chap-

ter 4.1.3. The simulated fpC images contain sky as well as neighboring sources. The PSF

of the neighboring sources will have a different PSF than the target galaxy. This effect is

not of concern in this work.

Prior to fitting, a new cutout is extracted from the total image (containing the target

galaxy and background) ensuring that the target galaxy is at the center of the stamp image.

By constructing new postage stamp images in this manner, there is sufficient variation in

the background and fitting the incorrect galaxy can be prevented.

These fits (containing error in PSF reconstruction, neighboring sources, and noise) are

the closest simulation to actual observing conditions analyzed in this work. Therefore the

fits and the resulting measures of scatter and bias are adopted as the fiducial estimates of

scatter and bias when using the pipeline.
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Figures 4.6b, 4.7b, 4.8b, 4.9b, 4.10b, and 4.11b show that the input values are recovered

with marginal scatter. The total magnitude and half-light radius remain well constrained

(σtotalmag ≈ 0.05 mag and σradius ≈ 5 per cent) in cases where the correct model is fit to

the mock galaxy. However, this scatter becomes larger when the wrong model is fit. The

underestimate of the Sérsic index, particularly at large values, persists.

Further examination of the two-component fits show that the pipeline has difficulty

extracting dim components (bulge or disk magnitude dimmer than ≈ 18.5). In these ranges,

the components are observed at lower S/N and the pipeline looses sensitivity to the model

parameters. The Ser-Exp fit shows an underestimate of Sérsic index, which is even stronger

than in the single-component case, and an underestimate of bulge radius. However, the

disk parameters remain unbiased with an increase in scatter of the model parameters. The

increased stability of the disk parameters relative to the bulge parameters was also noted in

Simard et al. (2011). In their paper, the authors comment that this may be due to the fixed

profile shape (due to the fixed Sérsic index, n = 1) or to the fact that on average bulges are

more compact than disks leading to a resolution effect. This stability is the result of the

increased resolution as disk sizes in the sample are roughly 3 times the FWHM of the PSF

while bulges are smaller, on average approximately equal to the FWHM of the PSF in size.

Further discussion is in Chapter 4.2.4.

In general, the Ser-Exp fits are problematic and require much care when analyzing

individual components. However, as was already shown, total magnitude and half-light

radius are still tightly constrained.

Table 4.1 summarizes the bias and scatter in the fits; they exhibit trends with both the

input value of the parameter and the input magnitude of the galaxy. This behavior is not

properly encapsulated in the overall measure of bias, so these values are useful only as an

example of the relative scale of bias and scatter for each parameter.

Errors can be correlated across many fit parameters. Figure 4.12 shows the error cor-

relation matrix for the Ser-Exp mocks fit with a Ser-Exp model. The strong correlations
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Figure 4.12: The correlation matrix for a mock Ser-Exp galaxy fit with a Ser-Exp model.
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between bulge-to-light ratio and the bulge and disk magnitudes are expected as well as the

correlation among the radii of the bulge component with the Sérsic index. While the corre-

lation matrix suggests that there is little correlation between sky estimation error and the

fitted parameters, there is indeed a strong correlation in model errors with sky estimation

error.

The apparent lack of correlation of sky error with the other fitting parameters is some-

what surprising. However, Figures 4.21 and 4.22 suggest a possible explanation for the

apparent lack of correlation. Correlation of parameter errors with sky errors is non-linear

and asymmetric with respect to over- or underestimating the sky. The fits discussed in this

section are shown on Figures 4.21 and 4.22 in red. These points lie in a region where sky

error does not significantly bias most parameters. In addition, the scatter of the sky values

is quite small. This small scatter prevents us from sampling the broader covariance of the

sky. If, for example, the recovered sky value was an underestimate of 0.5 per cent, then

there would be a measurable covariance of fitting parameters with sky due to the steepness

of the parameter bias with respect to sky level. The sky estimation is discussed further in

Chapter 4.2.7.

4.2.3 Testing with real images

To verify the validity of the simulated background and to test the fitting pipeline in clustered

environments, the mock galaxies were inserted into real SDSS fpC images. The fpC images

are selected from SDSS DR7 images containing spectroscopic galaxy targets.

Plots of the fitted values are omitted here, because the scatter and the bias in the fits

remain unchanged, suggesting that the sky background and neighboring sources common

to an SDSS spectroscopic galaxy are properly modeled.

Dense environments provide an additional test for the pipeline. The GMBCG catalog

(Hao et al. 2011) provides a selection of fpC images that contain dense environments.

Brightest cluster galaxies (BCGs) with galaxies in the original catalog to select fpC images
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Simulated model Parameter fitted model

Ser SerExp

bias 1-σ bias 1-σ

Ser

mtot [mag] 0.00 ± 0.09 [−0.02, 0.02] −0.02 ± 0.18 [−0.11, 0.02]

rhl [arcsec] −0.01 ± 0.68 [−0.14, 0.01] 0.11 ± 1.53 [−0.11, 0.04]

sky [ per cent] −0.05 ± 0.14 [−0.11,−0.05] −0.05 ± 0.14 [−0.11,−0.05]

Sérsic Index −0.08 ± 0.57 [−0.44, 0.01] – –

SerExp

mtot [mag] −0.07 ± 0.18 [−0.22,−0.01] −0.02 ± 0.15 [−0.09, 0.01]

rhl [arcsec] 0.49 ± 1.86 [−0.02, 0.30] 0.07 ± 1.17 [−0.07, 0.04]

sky [ per cent] −0.08 ± 0.15 [−0.16,−0.07] −0.06 ± 0.13 [−0.11,−0.05]

B/T – – 0.00 ± 0.15 [−0.07, 0.03]

mbulge [mag] – – −0.14 ± 0.71 [−0.73, 0.06]

mdisk [mag] – – −0.04 ± 0.50 [−0.41, 0.05]

rbulge [arcsec] – – 0.08 ± 0.97 [−0.27, 0.11]

rdisk [arcsec] – – 0.07 ± 0.82 [−0.14, 0.08]

Sérsic Index – – 0.06 ± 1.98 [−0.90, 0.14]

Table 4.1: The bias and scatter of the fitted parameters of the simulated images with back-

ground and PSF effects. These values are provided for illustrative purposes only. There is

much underlying structure in the errors when compared to their respective input values or the

magnitude of the component.

with cluster members including the BCG. The mock galaxies are then inserted into the

image which is run through the pipeline. In the previous simulations, intracluster light and

gradients in the sky were not modeled. These tests show what the effects may be. Once

again, the errors remain unchanged, showing that no environmental correction is necessary

when using the fits from the pipeline.

Placing mock galaxies near cluster members tests for systematic effects in crowded

fields. However, further examination of BCG galaxies is necessary before properly modeling

them for this purpose. For example, the curvature at the bright end observed in the size-

luminosity relation of early-type galaxies (see Bernardi et al. 2013) appears to be due to an

increasing incidence of BCGs, which define steeper relations than the bulk of the early-type

population (e. g. Bernardi et al. 2007, 2013). However, the curvature could also be due to

intracluster light (e. g. Bernardi 2009). The ability to test the systematic effects associated

with BCGs using the method outlined above is severely limited due to the existence of a

BCG at the preferred location for placing the test galaxy (i. e., the center of the cluster).
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Therefore, the stability of recovered fit parameters with respect to environment cannot be

assumed to extend to BCGs based on the tests presented here alone. Further tests for the

largest, brightest galaxies are needed to explore this possibility.

4.2.4 Varying the S/N and pixel size

The effects of the S/N and image resolution on the bias and scatter in the fits can be

quantified. Figures 4.6c, 4.7c, 4.8c, 4.9c, 4.10c, and 4.11c show the effect of increasing the

S/N by a factor of 4 while holding all other parameters fixed. Similarly, Figures 4.6d, 4.7d,

4.8d, 4.9d, 4.10d, and 4.11d show the effect of increasing resolution by a factor of 2 while

holding S/N constant. Corresponding decrements in these parameters were performed,

although they are not presented in this paper.

Improving the resolution by a factor of two substantially improves the ability to recover

the radius and Sérsic index with reduced bias. For instance, the Sérsic index bias is reduced

to ≈ 0.1 at the larger values. Additionally, the bulge parameters of the Ser-Exp fit im-

prove substantially with improved resolution. Corresponding changes in the S/N reduce the

scatter, but by a small amount relative to the effect of the resolution change. In addition,

changing the S/N does not remove the observed bias in Sérsic index or bulge size. This

leads us to conclude that the limitations of the resolution of SDSS are the leading factor in

causing systematic offsets in the half-light radius, Sérsic index, and other fitting parameters

(including the bulges of the Ser-Exp fits). While increasing the S/N will reduce the scatter

in the fits, increased resolution is necessary to properly recover unbiased values.

Lackner and Gunn (2012) also examined the effects of changing S/N and resolution on

SDSS galaxies (see Figures 5-11 of their paper). The authors found that decreased resolution

and S/N increases the relative error in the Sérsic index and radius. They recommended

that Ser galaxies (and the bulge and disk sub-components of two-component galaxies) have

radii, Rhl & 0.5×FWHM. This cut removes ≈ 1 per cent of the Ser mocks and ≈ 22 per
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cent of the Ser-Exp mocks from the simulated samples with a preference toward galaxies

above z = 0.05.

While this condition is sufficient to keep the relative error in the half-light radius and

Sérsic index comparable to the error in the magnitude, this condition fails to remove the

bias in the galaxy samples. Figure 4.6b shows that the underestimate of Sérsic index occurs

at larger values. These galaxies tend to exhibit radii larger than the PSF. Given that the

average FWHM of PSFs in the sample is ≈ 1.3′′, it is not possible to remove the bias in

Sérsic index. Clearly, reliable measurements are dependent on both the Sérsic index of the

object and its radius relative to the resolution. Both parameters must be accounted for

when deciding on an appropriate resolution cut.

Extending the Lackner and Gunn (2012) recommendation to include a Sérsic index

dependent term is sufficient to provide for recovery of Sérsic index > 4 with bias ≈ 0.1 or

≈ 1 per cent. Galaxies should have circularized half-light radii Rhl &0.5*FWHM×n. This

removes nearly 75 per cent of the sample. While such large cuts are sufficient to remove the

bias in radius and Sérsic index for the Ser fits, the data are certainly biased relative to the

original catalog after the cuts. Rather than remove these galaxies, it is possible to correct

for the bias following a simple statistical argument presented in Chapter 4.4.

4.2.5 Effect of cutout size

It is important to select a cutout size for fitting that does not significantly bias the fits

produced by PyMorph. The most important consideration is to provide enough sky pixels

to allow the PyMorph program to properly determine the sky level in the images. Reducing

cutout size may cause overestimation of background and corresponding errors in the other

fit parameters. However, the PyMorph pipeline and Galfit fit a constant background

to the galaxy image. Since a larger image could make sky gradients more significant, this

could bias the fits when a larger cutout is used. Minimizing error when estimating the sky
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Figure 4.13: The Ser galaxies fit with a Ser model for resolution degraded by a factor of 2.
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Figure 4.14: The Ser galaxies fit with a Ser-Exp model for resolution degraded by a factor

of 2.
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Figure 4.15: The Ser-Exp galaxies fit with a Ser model for resolution degraded by a factor

of 2.
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Figure 4.16: The Ser-Exp galaxies fit with a Ser-Exp model for resolution degraded by a

factor of 2.

level without introducing a gradient term and further complicating the fitting process is

preferred.

To test for optimal cutout size, mocks were fit with cutout sizes between 10 and 25

Petrosian half-light radii. In Figure 4.18 the error and 1-σ scatter in the error on the to-

tal magnitude, half-light radius and sky (showing SExtractor sky in blue and estimates

from this work in red) are plotted as a function of cutout size. Smaller sizes clearly bias sky

estimates made by SExtractor, but only minor improvement in the scatter of any param-

eters is achieved by using cutout sizes above 20 half-light radii. Since the SExtractor sky

is the starting point for the fitting, a size of 20 half-light radii is used for the images. The

sky estimates of SExtractor improve substantially. However, Galfit sky estimation is

stable over these sizes. Because Galfit sky estimation is largely independent of the initial

starting SExtractor value (which is expected if Galfit is truly finding the best fit to

the galaxy), it is likely the case that cutout sizes smaller than even 10 half-light radii could

be used for analysis.
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Figure 4.17: The sub-components of Ser-Exp galaxies fit with a Ser-Expmodel for resolution

degraded by a factor of 2.
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Figure 4.18: The mean difference of the total magnitude (left column), PSF-corrected half-

light radius (center column), and sky estimation (right column) as a function of cutout size for

Ser-Exp mocks fitted with a Ser-Exp model. Other simulated models behave similarly. For sky

estimation, the sky measured by Galfit is plotted in red. SExtractor sky measurements are

plotted in blue for reference. One-σ scatter in the fits is plotted as a dashed line. Improvement

in scatter when fitting for cutout sizes above 20 Petrosian radii is limited, so a 20 half-light radii

cutout size is used for all images. Fit parameters seem to have no sensitivity to cutout size in

this range, suggesting that it may even be possible to use smaller cutouts.

Additional plots of other parameters are omitted in this section. The other fitted param-

eters show little or no sensitivity to cutout size in the range of cutout sizes used. However,

as previously discussed, the bias and scatter may not be equally affected across all model

parameters. The effects may be concentrated in a small part of the parameter space.

4.2.6 Masking and neighbor thresholding

Different settings of the masking configuration were also tested. These different settings

provided no reduction in the scatter of the recovered parameters when tested on simulations.

Since no improvement was evident, the default configuration was selected for analysis (i. e.,

masks are drawn according to the SExtractor segmentation image produced during fit-

ting). While this likely leaves unmasked light from neighboring sources, it has no apparent

effect on the determination of sky. The insensitivity of the sky estimation to this choice

of masking is likely the result of the large cutout sizes used during fitting, which reduces

sensitivity of sky estimation to stray light from masked neighbors. The large number of

sky pixels used during fitting prevents skewed fitting results due to the small amount of
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stray light from masked neighbors. Different masking and handling of neighboring sources

was carried out by S11 as well as in Barden et al. (2012). The masking generally covers a

smaller area around each source when compared to these two works.

SExtractor uses a flexible elliptical aperture around every detected object and mea-

sures the aperture flux in the background-subtracted image. This elliptical aperture is

generated from moments of the light distribution in pixels above a given threshold (called

the DETECT THRESHOLD). Therefore, the detection threshold will change the auto-

mag value by changing the aperture size. Of course any change to the SExtractor settings

that influences the level of the sky will also cause a corresponding shift in the auto-mag

value.

For example, the GAMA survey (Barden et al. 2012) chose theDETECT THRESHOLD

to be 1.7. This decision is made by choosing the threshold that minimizes the difference

in number of detected sources between GAMA SExtractor and SDSS Photo Pipeline (see

Hill et al. 2011, for all the details)). The DETECT THRESHOLD was set at 1.5. This

threshold represents the minimum excess of flux relative to the sky sigma necessary for

a pixel to be considered part of the target galaxy. Therefore, lowering the threshold will

make target sources appear larger and brighter. In practice, this has little effect on the fit-

ted models, as the SExtractor values are only used as input. PyMorph rarely converges

to the values given by SExtractor. However, the SExtractor radii are used to gener-

ate the masks. Therefore, the masking will be slightly more conservative as compared to

GAMA (PyMorph will mask out a slightly larger region around sources). This difference

in masking is small enough to have no effect.

There are other possible settings that could bias the SExtractor magnitude, but

these appear to be the same in this work and GAMA fitting. For instance, both cata-

logs use 2.5×Kron radius as the fixed aperture size for magnitude measurements. The

PHOT APERTURES setting, which sets the minimum aperture used for photometry can

also influence the measurement of magnitude by artificially inflating the value of the mag-
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nitude for small objects. In practice, this has no effect since the galaxies in these in this

work are not smaller than 5 pixels (the default value of PHOT APERTURES).

Figure 4.19 shows the scatter in Ser models fit with Ser profiles for several different

masking settings. The first row shows the original masking (based on the segmentation

image produced by SExtractor) adopted throughout this work. This mask is produced

by masking the segmentation image for all sources identified by SExtractor, except for the

target. The second, third and fourth rows show the result of masking an ellipse of radius 2,

4, and 6 ∗ semi-major axis for each neighboring source, respectively. The columns show the

results of reducing the threshold for neighboring sources being simultaneously fit. The first

column is the default settings of threshold=3 and threshold area=0.2 used throughout

this work and shown in Equations 3.6 and3.7. The second column uses threshold=4

and threshold area=0.2. The third column uses threshold=4 and threshold area=0.1.

Neighbor fits result in 10 per cent, 20 per cent, and 30 per cent of fits for the columns 1, 2,

and 3, respectively. Magnitude is effectively independent of the thresholding and masking

conditions for the total sample.

4.2.7 The effect of incorrect sky estimation

Estimation of the sky in the vicinity of the target galaxy has a high level of uncertainty.

Indeed, accurate sky determination is likely not even a solvable problem as discussed briefly

in Blanton et al. (2011). To determine the bias introduced by the sky estimation, the fitting

pipeline was tested in cases of both underestimation and overestimation of the sky. The

sky was fitted at the simulated sky level, as well as at simulated sky level ±0.5 per cent and

±1.0 per cent. These ranges were chosen to represent the range of differences between the

sky estimations and those provided in the CASJOBS database for the SDSS spectroscopic

sample.

Figure 4.20 shows a comparison of sky estimates using PyMorph to those provided

from the SDSS photometric data pipeline. This comparison is performed on data from the
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Figure 4.19: The scatter in Ser models fit with Ser profiles. The first row shows the original

masking (based on the segmentation image produced by SExtractor) adopted throughout

this work. The second, third and fourth rows show the result of masking an ellipse of radius 2, 4,

and 6 ∗ semi-major axis for each neighboring source, respectively. The columns show the results

of reducing the threshold for neighboring sources being simultaneously fit. The first column is

the default settings of threshold=3 and threshold area=0.2 as was done throughout this

work. The second column uses threshold=4 and threshold area=0.2. The third column

uses threshold=4 and threshold area=0.1. Neighbor fits result in 10, 20, and 30 per cent

of fits for the columns 1, 2, and 3, respectively. Magnitude is effectively independent of the

thresholding and masking conditions for the total sample.
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catalog presented in M2014. The Figure shows the normalized distribution of differences in

sky estimation in bins of 0.1 per cent. A negative difference indicates that the sky measured

by PyMorph is lower than that reported by SDSS. The vertical red solid line indicates

the median of the distribution. The red dashed, dot-dashed, and dotted lines indicate the

68-95-99 per cent ranges of the data, respectively. The 95 per cent range of sky values is

approximately between ±1 per cent difference. This range is adopted as the range to test

for sky variation.

The results of incorrectly estimating the sky are shown in Figures 4.21 and 4.22. The

results of fitting galaxies using the standard PyMorph pipeline, treating sky level as a free

parameter in the fit, are shown in red. PyMorph systematically underestimates the sky at

the 0.1 per cent level. However, the scatter is very tight as indicated by the vertical dashed

red lines. The fitting results at fixed sky levels of the correct value and ±0.5 per cent and

±1.0 per cent are shown in black. Errors approaching 0.5 per cent clearly introduce a large

bias in the fits. The 0.5 per cent level is an important level because it is the approximate level

of overestimation shown in the preceding section (Chapter 4.2.5) found by SExtractor.

Note the asymmetry of the effects of incorrect sky estimation on fitting parameters. In

particular, an underestimate of sky is much more detrimental to the fit than the corre-

sponding overestimate. The reason for this asymmetry is due to changes in the perceived

“flatness” of the profile at large radii. When the sky is overestimated, the galaxy profile

tends to 0 flux too early. This causes a decrease in the Sérsic index and a decrease in the

radius. However, when the sky is underestimated, there will be an extended, approximately

constant brightness profile at larger radii. The only way to model such a profile is for Sérsic

index to diverge to larger values which produce flat, extended profiles at large radii.

Guo et al. (2009) examined the effects of sky uncertainties in regards to the covariance

between magnitude and both Sérsic index and half-light radius. They randomly sampled

sky estimates from a distribution contained mostly within ±1 per cent. They found similar

variation of Sérsic index (varying by 2 or more in some cases of underestimating the sky
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Figure 4.20: The percent difference between the sky estimate of PyMorph for SDSS galaxies

and the sky estimated by the SDSS photometric pipeline for those same galaxies. The normal-

ized distribution of differences is shown in bins of 0.1 per cent. A negative difference indicates

that the sky measured by PyMorph is lower than that reported by SDSS. The vertical red

solid line indicates the median of the distribution. The red dashed, dot-dashed, and dotted

lines indicate the 68-95-99 per cent ranges of the data, respectively. The 95 per cent range of

sky values is approximately between ±1 per cent difference, this is adopted as the range used

to test the effects of improper sky estimation.
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and varying by less than 1 in the case of overestimation). The asymmetry in bias due to

incorrect sky estimation is apparent in Figure 5 of Guo et al. (2009), but not explicitly

commented upon.

Figure 4.20 shows that PyMorph consistently estimates the sky ≈0.25 per cent lower

than that of the SDSS pipeline. Figures 4.18, 4.21, and 4.22 show that PyMorph has a

systematic underestimate of the true sky at the ≈0.1 per cent level. This bias is much

smaller than the bias associated with using the SExtractor sky estimate as shown in

Figure 4.20 (especially for smaller cutout size), which suggests that the sky values in SDSS

are slightly overestimated.

Ser-Exp disk components are remarkably robust to the errors in sky estimation, while

bulge parameters suffer greatly, especially when the sky is underestimated. Upon further

examination of Figure 4.22, the bulge parameters of the model are more accurately estimated

when the sky is treated as a free parameter in the fit rather than when the sky is fixed at

the correct value. However, this improvement does not suggest that underestimate of the

sky is the preferred fitting outcome. It merely reflects the fact that the systematic effects

due to underestimation of the sky are opposite to the underlying biases in half-light radius

and Sérsic index. If the PyMorph pipeline we applied to an image with higher S/N and

increased resolution, the correct estimate of the sky would be preferred to prevent systematic

overestimate of these parameters.

4.3 Applicability of an F-test criteria

The preceding sections have shown the covariance, bias, and scatter in the parameter es-

timation for the Ser and Ser-Exp models. In reality, the effects above will combine to

yield a total scatter, covariance, and bias that should approach those shown in 4.2.2. the

simulations give us an idea of the behavior of the PyMorph pipeline when fitting SDSS

galaxies as presented in M2014.
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Figure 4.21: The simulated and recovered apparent magnitude (left), half-light radius (center),

and Sérsic index (right) for a Ser galaxy fit with a Ser model The residuals are plotted as a

function of the sky level. Points plotted in black are from fits performed with fixed sky. The

over-plotted points in red are the result of fitting with sky level as a free parameter in the fit.

The vertical dashed red lines mark the 68 per cent scatter of the free sky determination. The

fits are slightly biased low, and this contributes to a small overall bias in fit parameters.

The simulations show that the recovery of global fitting parameters (total magnitude

and half-light radius) in the case of SDSS galaxies is remarkably robust, even in the case of

the Ser-Exp fits. Two-component fits present a more difficult test for the pipeline. Both

the bulge and disk components exhibit increased scatter relative to the scatter of the global

parameters. In addition, the bulge component exhibits a systematic underestimation of

the radius, Sérsic index, and magnitude, particularly for bulges with larger radii or higher

Sérsic index.

The galaxies fit in this work have a median size roughly equivalent to the average PSF of

SDSS. For most galaxies, the resolution necessary to accurately resolve bulge substructure

is not present. As shown in Chapter 4.2.4, the ability to recover small bulges is improved by

a factor of 2 increase in resolution. Finer resolution in central regions of the galaxy is also

necessary to fully recover larger Sérsic indexes without bias. Even with these systematics,

the two-component fits are still necessary to recover unbiased global parameters and can

provide insight into the structure of galaxies.

The use of two-component models is potentially ill-advised for many SDSS galaxies as

the respective sub-components may be too small to be well-resolved. This is suggested by
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Figure 4.22: The simulated and recovered parameters of a simulated Ser-Exp galaxy fit with

a Ser-Exp profile. The residuals are plotted as a function of the sky level. Points plotted in

black are from fits performed with fixed sky. The over-plotted points in red are the result of

fitting with sky as a free parameter of the model. The vertical dashed red lines mark the 68

per cent scatter of the Galfit sky determination. Notice that disk parameters are relatively

robust while bulge parameters suffer from incorrect sky estimation. Underestimates of sky level

have a particularly strong effect on the bulge.
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Simard et al. (2011) as well as Lackner and Gunn (2012) (if one uses the suggested resolution

cut based on the PSF FWHM). However, the data show that this recommendation should

be conditional on the galaxy parameters of interest. While it may be true that bulge

parameters of the Ser-Exp fit become unreliable at small radii, using only the Ser fit radius

will bias a sample of SDSS galaxies containing both single and two-component profiles (see

Figure 4.8b). However, there are no cases where the Ser-Exp fit introduces bias. It is

advisable to use the Ser-Exp half-light radius and magnitude as the total magnitude of the

galaxy when examining a sample such as this.

The F-test offers a potentially powerful way to distinguish when it is necessary to use

a more complicated two-component model. The F-test can compare the χ2 values among

nested linear models with Gaussian errors (Lupton 1993). Although the models are not

linear and the error distribution is not strictly Gaussian, one can apply the F-test to the

fits. Following Simard et al. (2011), an F-test probability of 0.32 is adopted as the cutoff

indicating a more complicated model is required. When a low F-test probability is found,

Pcorrect < 0.32, the more complicated model (i. e., going from a one-component to two-

component fit, or allowing the Sérsic index of the bulge to vary) provides a better fit to the

observed profile. In cases where a Ser fit is used rather than a Ser-Exp fit, the improvement

in fitting is large enough to justify using a model with more free parameters. The improved

fit is not merely the result of using a more flexible model. A similar test was performed by

Lackner and Gunn (2012) to select among a pure disk or disk+bulge model.

If the selection based on the F-test is correct, then the resulting measurements of total

magnitude and half-light radius will be unbiased. Using the Ser-Exp mocks fit with each

of the Ser and Ser-Exp models, F-test comparing the Ser and Ser-Exp fits was preformed.

The preferred fit (either Ser or Ser-Exp) of the Ser-Exp mocks is then used to assess the

bias in the half-light radius and magnitude.

By examining the subset of Ser-Exp mocks for which the F-test determines the Ser

model to be the appropriate fit, one can test the ability of the F-test to select galaxies that
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Figure 4.23: Total magnitude and half-light radius of Ser fits of Ser-Exp mocks shown by

F-test to be sufficiently well fit by Ser models. The fits are unbiased, but the scatter in the

recovered values are approximately twice as wide in half-light radius and magnitude as compared

to the Ser-Exp fits in Figure 4.9b.

are correctly represented by Ser models. Figure 4.23 shows the resulting distribution of

total magnitude and half-light radius of this subset of Ser-Exp mocks fit with Ser models.

The bias originally observed in Figure 4.8b is not evident. However, the scatter in the

recovered values are approximately twice as wide as in Figure 4.9b, indicating that while

the fits are unbiased, some sensitivity is lost by using the simpler (and ultimately incorrect)

model. The remaining Ser-Exp mocks, for which the Ser-Exp fit is determined by F-test to

be most appropriate, are also unbiased in total magnitude and half-light radius. From this

test, using the F-test to determine the most appropriate fitted model allows for unbiased

measurement of the half-light radius and total magnitude.

Using the Ser mocks, the false positive rate (Ser mocks classified as needing a Ser-Exp

fit according to the F-test) for the F-test with a significance level of 0.32 is 5 per cent,

suggesting that there is a low level of contamination in a two-component sample selected

using the F-test. Using Ser-Exp mocks with 0.2 < B/T < 0.8 and nbulge > 2, which are

considered true two-component galaxies, the false negative rate (Ser-Expmocks classified as

needing only a Ser fit according to the F-test) is 34 per cent, missing a substantial fraction

of the galaxies with two components. While selection using the F-test is sufficient to remove

the measured bias in global fitting parameters and is able to select a relatively pure sample

of two-component galaxies, it does not select a complete sample of two-component galaxies.
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Clearly caution is necessary when using the F-test to select two-component galaxies from

fitting routines. However, the F-test can indicate when the global parameters of a Ser

model are likely unbiased regardless of the underlying galaxy type.

Following Simard et al. (2011), one can also select the fitted model based on a tiered

approach, first performing the F-test on the Ser and deV-Exp fits. Galaxies for which the

deV-Exp fit gives a statistically significant improvement are then tested again to determine

whether the Ser-Exp fit is preferable to the deV-Exp fit. The preferred fit (either Ser,

deV-Exp, or Ser-Exp) of the Ser-Exp mocks is then used to assess the bias in the half-light

radius and magnitude. This approach did not significantly alter the results.

Many galaxies exhibit more complex structure than a single- or two-component struc-

ture. Even the case of a two-component model often oversimplifies galaxy structure. Bars,

rings, central sources, clumpyness, or asymmetry cannot be effectively modeled in the sim-

ulations. This limits the process to only determining a lower-bound on the uncertainty in

the parameter estimates. However, correcting fits using this lower bound improves the fit

of the observed galaxy.

4.4 Bias correction using simulations

A simple example of bias correction can be applied following the procedure outlined in

Simard et al. (2002). Given the simulated and fitted values of the Sérsic index for the

Ser model, the output value represents the measured value in real data. The simulated

value represents the true underlying value of the galaxy Sérsic index. The average bias and

uncertainty in the bias, labeled as Bias and ∆Bias, as a function of output Sérsic index can

be measured. Additionally, random error in the fits from the width of the bias distribution

as a function of Sérsic index, labeled as ∆Random, can be measured. Then the corrected
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Sérsic index and uncertainty on the corrected index is

ncorrected = nfitted −Bias(nfitted)

∆n =
√

∆2
galfit +∆Bias2 +∆Random2

(4.6)

Applying this correction allows us to correct bias as a function of both simulated and fitted

Sérsic index for the sample of galaxies used in this work. The results of this process are

shown in Figure 4.24.

The statistical correction for the bias in the sample in both the simulated and fitted

bases works for most values of the Sérsic index. However, there is an under-correction

at high simulated Sérsic value. This effect appears to be due to the boundaries of the

parameter space that PyMorph is allowed to search for the best fit model. By restricting

PyMorph to values of n < 8, galaxies simulated with Sérsic index of 8 will be preferentially

underestimated. However, the highest bins of fitted Sérsic index contain many more galaxies

with over-estimated Sérsic index. Therefore the net correction will be negative and not

appropriate for the highest bins. The error correction at higher bins could be improved by

allowing Galfit to explore larger values of the Sérsic index. Additional corrections may

also be considered (i. e., divide in both magnitude and Sérsic index prior to computing the

bias correction) depending on the specifics of a given study.

4.5 Extending the simulations to the g- and i-bands

the tests were performed on r-band data from SDSS. The performance of the pipeline can

change when observing in different bands. This change is primarily dependent on the change

in the S/N and resolution between bands (due to the changing brightness of the sky, color

of the galaxy, and size relative to the PSF) and on the different galactic structures to which

neighboring SDSS filter bands are sensitive. In principle, these effects could be measured

from the simulations presented in this paper by adjusting the S/N and background level.
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Figure 4.24: An example of the bias correction of the Sérsic index of the Ser model. The

error in the Sérsic index (noutput-ninput) versus output value is presented before (top left panel)

and after (top right panel) correction. The same correction is shown in the bottom row versus

the simulated value of the Sérsic index. The correction is applied in the noutput basis. This

appropriately corrects the bias as a function of ninput except at high n where the correction

fails. The reason for this failure is due to the boundaries of the allowed n parameter space.

Galaxies in the highest bins of output Sérsic index are a combination of poorly fit, low Sérsic

index galaxies that are artificially constrained to fall in the high bins, and correctly fit, high

Sérsic index galaxies. The result of this mixture is a net negative correction on galaxies with

high Sérsic index.
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Figure 2.6 in Chapter 2 showed that the S/N of the i-band in similar to that of the r-

band fits. Therefore, the performance of the flagging in the i-band is expected to be similar

to that of the r-band. However, the g-band fits were found to be lower in S/N with the

peak of the distribution approximately a factor of 2 smaller than the peak in the r-band.

The simulations of this chapter were primarily based on assuming the S/N of the r-band

data, so further investigation may be necessary prior to accepting the g-band fits. When the

appropriate profile (i. e., one vs. two-component) is chosen, magnitude and half-light radius

are expected to be accurate at the 5 per cent level (using 1-σ errorbars). However, these tests

presumed the average S/N of an r-band image. This is not a concern for the i-band, which

has both better seeing and brighter galaxies. In the i-band the sky is also brighter offsetting

any gains in S/N and making the distribution S/N very similar to the r-band, if not skewed

slightly higher. In the g-band, the sky is dimmer, but the galaxies are also dimmer and

the PSF wider such that the average S/N is substantially lower. This is expected to affect

the measurements in a few ways. First, the fitting parameters, particularly in the case of

the deV-Exp and Ser-Exp fits may be biased or have very large uncertainty. Second, (and

partially as a result of the first issue) the choice of bulge/two-component/disk based on the

flagging may be biased.

Since the resolution is only moderately different between bands (less than 10 per cent)

the effects are expected to be somewhat smaller. However, prior to fitting the g-band, the

mock galaxies are resimulated with S/N reduced by a factor of 2 to explore the effects

of reduced S/N in the g-band. Figure 4.25 shows a comparison of the original fiducial

simulations of Ser-Exp fits and the results of lowering the S/N by a factor of 2, similar to

what is observed in the g-band images. Figure 4.25 compares the original fiducial estimates

from Chapter 4.2.2 (i. e., the scatter and bias in fits at the same S/N as the r-band) in the

top row to the lower S/N fits (S/N a factor of 2 smaller, similar to g-band measurements) in

the bottom row. Comparisons are shown for the bulge half-light radius (left-hand column),

disk half-light radius (center column), and B/T (right-hand column). The plots show that
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the bulge half-light radius is much more susceptible to underestimation, with the median

bulge size underestimated by more than 20 per cent at radii larger than 2 arcsec. The 68

percent scatter in bulge size estimation also increases substantially. Disk size is more stable,

showing little or no bias, but the 68 percent scatter increases by roughly a factor of 2. The

scatter in B/T also gets broader, although the overall trend remains approximately the

same (with slight overestimates of B/T at small B/T values to underestimates of B/T at

high B/T values approaching 0.1. However, this trend is partially due to the intrinsic limits

on B/T which only allow for underestimates(overestimates) at large(small) B/T because

B/T is bounded between 0 and 1.

The behavior of total magnitude, total half-light radius, bulge and disk magnitude and

bulge Sérsic index are similar to the effects shown on disk half-light radius. There is growth

in the scatter of the estimated parameters by as much as a factor of two, but no additional

bias is introduced. The g-band estimates of magnitude and half-light radius are expected to

be accurate at the 10 per cent level (using 1-σ errorbars) compared to 5 per cent accuracy

in the r- and i-bands.

A smaller number of pure bulge galaxies may also be expected as a result of the larger

underestimate of bulge size and decrease in the median B/T seen above 0.8. These effects

may cause or magnify any shift away from pure bulge galaxies in the g-band.

Additional, size differences may alter the results of the simulations somewhat. However

the distributions of sizes do not change drastically over the three bands fitted in this work.

However, these simulations become an increasingly poor estimate of error in bluer bands

where the photometry becomes more sensitive to star forming regions. These regions tend

to be clumpier and, therefore, less well represented by a smooth profile. Therefore, g-band

fits may present more scatter than the r- or i-band data. These clumpy regions are difficult

to model with the smooth models presented here. One could attempt a hybrid approach

to generating simulated data whereby one isolates clumpyness in nearby galaxies and use

this as a template to add clumpyness to smaller SDSS galaxies. However, the details of
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Figure 4.25: Comparison of the original fiducial simulations of Ser-Exp fits and the results

of lowering the S/N by a factor of 2 (bottom row), similar to what is observed in the g-band

images. Comparisons are shown for the bulge half-light radius (left-hand column), disk half-

light radius (center column), and B/T (right-hand column). The median value is plotted in

red with 95 per cent CI errorbars shown. The 68 percent scatter of the data is shown as the

dashed contours. The plots show that the bulge half-light radius is much more susceptible to

underestimation, with the median bulge size underestimated by more than 20 per cent at radii

larger than 2 arcsec. The 68 per cent scatter in bulge size estimation also increases substantially.

Other fitted parameters primarily show increases in the 68 per cent scatter of approximately a

factor of 2.
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this process are not addressed here because the galaxies used in this work are at the limit

of resolution for detecting the bulges of galaxies. It is unlikely (except for the few largest

galaxies) that resolution of star-forming regions are even possible.
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Chapter 5

Flagging and classification of good

and bad fits

This chapter discusses the flagging method used to separate good fits from poor fits in the

catalog. The flagging system provides a straight-forward way of determining which fits to

use and an interpretation of the good fits. Chapter 5.1 gives the motivation for the flagging

system. Chapter 5.2 briefly describes the visually classified galaxies used to design and tune

our flags. Chapter 5.3 describes the automated flags resulting from our visual inspection

and gives a breakdown of the flags for the Ser-Exp catalog. A detailed description of the

flags are also provided in and example cases for each flag are presented.

5.1 The motivation for the flagging system

Independent inspection of the χ2 values from each fitted model (deV, Ser, deV-Exp, and

Ser-Exp) is a poor indicator of properly fitted models in the catalog for some reasons. The

most important reason is that while the χ2 measures the ability of the model to appropriately

fit the data, it makes no distinction between physical and unphysical models. Also, the

number of degrees of freedom (DOF) is not well defined for non-linear models (see Andrae
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Figure 5.1: The cumulative distribution of P(χ2|DOF) for the Ser fits. The probabilities

are primarily confined to the endpoints of the probability range. Over 70% of galaxies have

Ser fits with P(χ2|DOF) < 0.05. Only 20% of galaxies have P(χ2|DOF) > 0.5. It would be

unreasonable to reject such a large proportion of the sample, so we examine other methods of

distinguishing good fits from poor fits rather than using the χ2 value.
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et al. 2010, for a more in-depth discussion), and the distribution of residual values do not

approximate a normal distribution.

A simple cut on P(χ2|DOF) could lead to rejecting many poorly fitted galaxies, but

would miss many of these unphysical models. For example, Figure 5.1 shows the cumulative

distribution of P(χ2|DOF) for the Ser fits. A cut of P(χ2|DOF) < 0.05, a commonly used

level of statistical significance, would lead us to reject 70% of the fitted galaxies as poor fits.

Rejecting such a large portion of galaxies would make use of such a catalog useless. Although

the number of DOF’s and the resulting probability are not well defined, minimization of

the χ2 can still produce the ‘best’ fit by minimizing the χ2 value. However, the statistical

likelihood associated with the fitted χ2 is not the best measure for determining physically

meaningful fits.

Of course, poor performance is not an acceptable reason to relax constraints on the

significance of fitted χ2. Chapter 4 showed that successful fits of galaxies occur well in

excess of 30 per cent of galaxies, and the percentage of successful fits was closer to 90

per cent. Based on the simulations of Chapter 4, the χ2 is not a reliable predictor of the

appropriateness of the fit. Additionally, for non-linear models, the number of degrees of

freedom is not well defined (see Andrae et al. (2010) for a more in-depth discussion), and

tests of the χ2 value do not produce reliable statistics. Some groups have argued that

the DOF should be reduced further in proportion to the size of the PSF (e. g. Lackner

and Gunn 2012). Although the number of DOF’s and the resulting probability is not well

defined, minimization of the χ2 can still produce the “best” fit. However, the statistical

likelihood associated with the fitted χ2 is not reliable.

The focus of this work is not only on producing good fits, but on separating the cases

where a second component is needed from those where the second component is not needed.

Reliable identification of physically meaningful and unphysical fits is also desired. For this,

analysis beyond the χ2 value is required. In place of the χ2 test, we devise a series of

physically motivated flags outlined in Table 5.6. These flags are used to determine the
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reliability of the various fits and the individual subcomponents as well as mark poorly

fitted galaxies.

The final goal of our flagging system is to identify galaxies as being in one of the following

categories:

1. bulge-like galaxies,

2. disk-like galaxies,

3. two-component galaxies, and

4. unknown type/poorly fitted/failed fits.

In the Ser and deV fits, these conditions simplify somewhat since there are no subcom-

ponents. Rather than focus on these broad (and perhaps vaguely defined) categories for

classification, a series of quantitative indicators based on the fitted parameters is defined

and assessed to determine the quality of the fits.

Several methods of quality assessment have been used in previous works. Allen et al.

(2006) separated galaxies based on the 1D radial profile, comparing the Ser and Exp com-

ponents to separate galaxies into one of seven categories. More recently, Mendel et al.

(2014) applied a similar criteria to distinguish one-component galaxies from galaxies that

are better fit by two-component deV-Exp models. A different approach is to apply a sta-

tistical test similar to S11 and LG12, which perform an F-test to separate meaningful fits

from galaxies that are likely over-fit by the more complex models. The approach in this

work is similar to the former groups rather than the latter. Galaxies are separated using a

categorical description of the fits. The results of the flagging are compared to the results of

S11, LG12, and Mendel et al. (2014) in Chapters 7 and 8.

While the fitting process is fairly straightforward, automated fitting routines tend to

produce many poor fits. Non-physical ellipticity or sizes can easily be produced, especially

if the sky is not properly estimated or neighbors are not properly accommodated. Inverted
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two-component profiles (where the component intended to fit the bulge fits the disc of a

galaxy) are possible when the bulge has low Sérsic index, or when the S/N of the bulge is too

low. Extreme cases of face-on or edge-on galaxies can also present difficulty. Over-fitting

(i. e., fitting components not truly present in the galaxy just to improve the χ2
ν is easy to

do, producing meaningless results for the components.

Chapter 4 also tested fitting in SDSS conditions of S/N, platescale, and seeing using

simulated data. The test presented in Chapter 4 showed that estimates of the sky are

expected to be accurate at the level of 0.05 per cent, and that fitted parameters are not

significantly affected by sky errors at this level. In addition, fitting a Ser profile to a galaxy

with two components will cause a bias in size and magnitude at the 5-10 per cent level. When

the appropriate profile (i. e., one versus two components) is chosen, magnitude and half-light

radius are expected to be accurate at the 5 per cent level (using 1 σ errorbars). The flagging

procedure presented in Section 5 is intended (among other goals) to reliably distinguish

between one- and two-component fits, reducing any fitting bias resulting from fitting a one-

component profile to a two-component galaxy (see Chapter 4 for more information on the

simulations and results).

5.2 The visual classification

No catalog of 105 galaxies can be visually inspected in a reasonable amount of time without

employing a large number of observers following a procedure similar to Galaxy Zoo (GZ;

Lintott et al. 2008). A small training set of visually classified fits was used to design the

flagging criteria. For purposes of training and validation, 1 000 galaxies were randomly

selected from the fitted galaxies for visual classification. The visual classification system

has several categories including general fit problems and image characteristics. The sample

was classified by examining the fitted parameters, the 2D image, 2D model, 2D residual,

the 1D profile and, the 1D residual. These panels are generated on the fly and available to
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5. FLAGGING AND CLASSIFICATION OF GOOD AND BAD FITS

the reader upon request from the catalog website:

http://shalaowai.physics.upenn.edu/~ameert/fit_catalog/view_galaxies/.

Figure 5.2 shows an example of the plots used to manually inspect the fits. Visual

classification makes it possible to enumerate the types of problems commonly found in the

fits (i. e., effects of contamination or poorly defined bulges) and understand the relative

importance of each problem. The visual sample was selected randomly from the catalog

and fairly represents the full catalog in photometric parameters (e. g. magnitude, radius,

redshift, etc. ). The incidence of problems associated with fitting in the visually classified

sample is expected to be similar to that of the full catalog. However, rarer problems are

potentially missed in such a small sample.

After visual classification, the sample was randomly divided into two samples of approx-

imately equal size, a training sample and a test sample. The training sample was used to

define the automated flags described in Section 5.3. The test sample was set aside and used

to test the reliability of the automated flags once they were defined.

Classifications were carried out for each galaxy. After viewing each fit, we assign a series

of flags intended to give useful information about the appropriateness of the total fit and

the physical or unphysical nature of the components. Each fitted model (the deV, Ser,

deV-Exp, and Ser-Exp) is assigned an independent set of flags. However, our focus here

and throughout the text is on classifying the Ser-Exp fits.

The visual classification system has several categories including general fit problems

and image characteristics. Table 5.1 shows the description of these visual flags. The visual

flags contain a component focusing on the fitted model and a component focusing on the

photometric qualities of the galaxy and its neighborhood. For instance, we expect that

strong bar components may affect the fit of the Ser component to the galaxy. This would

increase the ellipticity of the Ser component and potentially alter its radius. The ability

to distinguish these bar cases would be useful. The effects of bar presence are discussed

further in Chapter 8.4.
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5.2 The visual classification

Figure 5.2: An example panel used during visual classification showing the original image,

fitted galaxy, 2-d residual, 1-d galaxy profile, and 1-d residual. Many fitting parameters are

displayed on the left side of the image for comparison. During visual classification, checks

include looking for Ser components that dominate at large radii, mis-aligned components, large

residuals, and other indications of bad fits.
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Flag bit Fit Flag Flag Description

0 Bad Central Fit The fit residuals are large in the range r < 2rhl
1 Bad Middle Fit The fit residuals are large in the range 2rhl <=

r <= 4rhl
2 Bad Outer Fit The fit residuals are large in the range r>4 rhl
3 Ser Fitting Outer Part of the Galaxy A bad Ser component that dominates the fit

at large radii is observed

4 Exp fitting Inner Part of the Galaxy A bad Exp component that dominates the fit

at the central radii is observed

5 Centering Problems The center of the model is offset from the data,

usually due to neighbor contamination

6 Sky Subtraction Problems The sky-brightness is incorrect and affects the

total magnitude of the fitted model

7 Ser/Exp Position Angle Difference The position angles of the Ser and Exp com-

ponents differ substantially

8 High Ellipticity Exp Component The Exp component has high ellipticity

9 High Ellipticity Ser Component The Ser component has high ellipticity

10 Large ExpRadius/ExpFitting Sky Large radius of Exp component indicating fit-

ting sky

11 Bad Fit of Sub-Dominant Second Component The dimmer component is incorrectly fit due

to contamination or some other issue

Flag bit Image Flags

0 contamination from nearby sources

1 Background problems

2 crowded field

3 Evidence of past of present interaction

4 Asymmetry

5 Low Surface Brightness components

6 Bar component evident

Table 5.1: The visual classification system used to build a training and validation set for the

machine classifier. The choice of classification was made on the basis of the model 2d image,

2d residual, 1d profile and 1d residual. These data were compiled in a single panel for each

model. An example of such a panel is shown in Figure 5.2. The first section of the table

shows the possible visual flags available to the human classifier and a description of the flag.

The second section of the table includes additional observations available to the human during

classification. Although these additional observations do not necessarily indicate a poor fit, they

are potentially correlated with common fitting problems (e. g. a nearby neighbor contaminating

the fit can cause the fitted galaxy to align with the neighbor).
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The incidence of flags in the visual classification of the Ser-Exp fit is shown in Table 5.2.

Only the Ser-Exp fit is shown since it is the focus of the flagging and the least well-

constrained of the fits. A flagging procedure that is effective on the Ser-Exp fits should do

equally well (or perhaps even better) on the simpler models.

The visual classifications are used to tune the automated flags used in the main text.

The mapping used to compare automated flags and visual flags is given in Table 5.3. The

mapping shows the simple automated flags in the first column and the visual analog in the

second column. Chapter 5.3 gives a full description of the simple automated flags. We rely

upon the simple automated flags to classify galaxies in the catalog into the refined categories

presented in the main text.

5.3 The automated flagging system

The automated flags consist of two tiers. The first tier consist of simple, quantitative flags

that attempt to replicate many of the problems observed during manual examination of the

fits. The second tier consists of the final flags used to separate galaxies into pure bulge/pure

disk/two-component galaxies. The second tier of flags is more interpretive, attempting to

explain each fit in a more useful way.

The tier-1 automated flags are explained in Table 5.4. These flags are chosen to ap-

proximately map to the visual classification described in Chapter 5.2 and contain definitive

numerical cuts. Each individual flag has a tunable cutoff that is optimized using the train-

ing set of manually classified galaxies. The efficacy of the flag is evaluated using the test

set of galaxies (which are also visually classified). A list of the automated flags and the

percentage of the test set flagged are presented in Table 5.5. The visually classified sample

is randomly divided into a training set (≈ 50% of the data) used to train the classifier and

the test set (the remaining ≈ 50% of the data).

These flags are binary classifiers. Each classifier is evaluated using the Matthews Corre-

lation Coefficient (hereafter MCC; see Baldi et al. 2000, for a discussion of the MCC). The
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5. FLAGGING AND CLASSIFICATION OF GOOD AND BAD FITS

Flag bit Fit Flag Flag Incidence out of 1000 galaxies

0 Bad Central Fit 45

1 Bad Middle Fit 47

2 Bad Outer Fit 35

3 Ser Fitting Outer Part of the Galaxy 115

4 Exp Fitting Inner Part of the Galaxy 46

5 Centering Problems 13

6 Sky Subtraction Problems 12

7 Ser/Exp Position Angle Difference 61

8 High Ellipticity ExpComponent 108

9 High Ellipticity SerComponent 141

10 Large ExpRadius/ExpFitting Sky 22

11 Bad Fit of Sub-Dominant Second Component 212

Flag bit Image Flag Flag Incidence out of 1000 galaxies

0 Contamination from nearby source 146

1 Background Problems 7

2 Crowded field 110

3 Evidence of past or present interaction 46

4 Asymmetry 103

5 Low Surface Brightness 1

6 Bar Component Evident 47

Table 5.2: The results of visual classification for the Ser-Exp models. Many flags are sparsely

populated. While this is encouraging with respect to the fitting (the low incidence of flags

suggests that the fitting is performing relatively well), it is problematic for training and tuning

purposes. After dividing the sample into a training sample and test sample, the incidence of

flags is further reduced by a factor of two. This can lead to tuning problems as we don’t have

enough of a signal for the automated flags to rely on.
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Automated Flag Equivalent Visual Flag

Centering Centering Problems

Ser is Sky Sky Subtraction Problems AND NOT large Exp radius/Exp fitting sky AND

b/abulge > 0.4 AND rbulge,cir/rsex > 3.0

Exp is Sky large Exp radius/Exp fitting sky AND b/adisk > 0.4

No Ser Likely NONE

Ser Fitting Outer Ser fitting outer part of the galaxy

High e Ser high ellipticity Sercomponent

Ser is Disk Ser fitting outer part of the galaxy AND Exp fitting inner part of galaxy AND nbulge <

2

Ser PA Problem Ser/Exp position angle difference AND B/T<0.5

Ser Contaminated NOT large Expradius/Expfitting sky & b/abulge < 0.4 & rbulge,cir/rsex > 3.0

Low Sérsic index Ser NONE

Ser Dominates Always NONE

Exp Fitting Inner Exp fitting inner part of galaxy

Exp Contaminated large Expradius/Expfitting sky & b/adisk < 0.4 & B/T>0.3

High e Exp high ellipticity Expcomponent

No Exp Likely NONE

Exp PA Problem Ser/Exp position angle difference AND B/T>0.5

Exp Dominates Always NONE

Parallel Components NONE

Flip Components NONE

Gal fit Failure NONE

Table 5.3: The mapping of the visual classification system to the automated flags. Most

flags have a visual analog, the flags that do not have a visual analog can be divided into

two categories. The first category of flags without visual analogs contains flags that can be

objectively defined and don’t require tuning. This category includes Ser Dominates Always,

Exp Dominates Always, Low Sérsic index Ser, and Galfit Failure. The remainder, including

Flip Components, Parallel Components, No Exp Likely, and No Ser Likely are defined according

following the discussion in Chapter 5.3.
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5. FLAGGING AND CLASSIFICATION OF GOOD AND BAD FITS

MCC is useful in binary classification problems because it takes into account all terms in

the confusion matrix. The MCC considers the relative proportions of True Negative cases

in addition to all other possibilities. Other common performance metrics like precision,

recall, and the f-score do not consider the true negative rate and are not optimal for binary

classification. The MCC returns a value between -1 and 1 for each test; 1 being a perfect

predictor, 0 being random, and -1 corresponding to predictions that are exactly opposite of

the true value. The MCC is also proportional to the χ2 with 3 degrees of freedom, so the

significance of the choice of flags can be based on the χ2 probability of identification vs.

the null hypothesis that the flags are not accurate predictors of fit problems identified by

manual classification.

Many combinations of flags can exist in the sample. Interpretation of these flag combi-

nations in necessary for the flagging to be useful during fitting. The catalog is separated

into useful groups in Table 5.6, and the table shows the relative percentages of the catalog

for each group. These are the categories that are referred to as “tier-2” flags and are the

flags most useful for analysis purposes.

To define the final flags, combinations of “tier-1” flags are manually explored and as-

signed to descriptive categories.

5.3.1 Finding galaxies with no bulge or no disk

The decision on where to cut bulges and disks, setting the line between one- and two-

component galaxies is somewhat arbitrary. There are a number of cases where the galaxy

has only a single component. The most definitive of these is when the second component is

too dim relative to the brighter component.

According to the simulations shown in previous sections, scatter in the fitted values

of the bulge and disk sub-components increases substantially when the sub-component is

dimmer than 19 magnitudes. Large disparities in the magnitudes of the components make

the smaller component less important and more likely to be fitting noise or substructure
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Flags Flagging Criteria

Centering (galaxy centroid-SDSS galaxy centroid)>0.7*rsex

Parallel Components RMS(B/T − µ(B/T )) : 0 < r < r(0.9Ltot) & nbulge < 2.0

No Ser Likely 1000*(0.2-B/T)3+(mbulge-19)>0.5

No Exp Likely 1000*(B/T-0.8)3+(mdisk-19)>0.5

Ser Component Flags

Ser Contaminated rbulge,cir/rsex > 4.0 AND b/abulge <= 0.6

Ser is Sky rbulge,cir/rsex > 4.0 AND b/abulge > 0.6

High e Ser b/abulge < 0.4 AND B/T<0.25

Ser PA Problem ∆φ > 45 AND B/T<0.5 AND b/abulge < 0.75 AND b/adisk < 0.75

Ser Fitting Outer B/T< 0.7 AND B/T(r(0.9Ltot)>0.5

Ser is Disk rb/rd > 1.5 AND nbulge < 2

Ser Dominates Always B/T(r) >0.5 : 0 < r < r(0.95Ltot)

Low Sérsic index Ser rb/rd ≤ 1.5 AND nbulge < 2

Exp Component Flags

Exp is Sky rdisk,cir/rsex > 3.0 AND b/adisk > 0.6

Exp Contaminated rdisk,cir/rsex > 3.0 AND b/adisk <= 0.6

High e Exp b/adisk < 0.4 AND B/T> 0.75

Exp PA Problem ∆φ > 45 AND B/T>0.5 AND b/abulge < 0.75 AND b/adisk < 0.75

Exp Fitting Inner B/T(0)<0.5 AND B/T(r: r< 2.7rhl) > 0.5

Exp Dominates Always B/T(r)<0.5 : 0 < r < r(0.95Ltot)

Galfit Failure Galfit fails to converge and crashes

Table 5.4: The selection criteria used to define the automated flags. The fist column gives the

flag name, the second column gives the numerical criteria corresponding to that flag.
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Flags % of Test Sample % of Total Catalog

No Flags 21.88 21.84

Centering 1.04 1.54

Parallel Components 5.00 4.85

No Ser Likely 16.25 17.43

No Exp Likely 8.13 7.84

Ser Component Flags

Ser Contaminated 1.87 1.50

Ser is Sky 1.25 0.78

High e Ser 4.37 4.91

Ser PA Problem 5.83 5.40

Ser Fitting Outer 13.54 10.07

Ser is Disk 2.50 2.14

Ser Dominates Always 13.33 14.62

Low Sérsic index Ser 20.00 19.50

Exp Component Flags

Exp is Sky 0.42 0.48

Exp Contaminated 1.46 1.86

High e Exp 3.12 3.09

Exp PA Problem 5.21 4.45

Exp Fitting Inner 4.79 3.56

Exp Dominates Always 5.83 5.73

Galfit Failure

Table 5.5: The automated flags applied to the test sample and to the full catalog. Quantities

are shown as a percentage of the respective sample. Columns 1, 2, and 3 are the flag name,

the percentage of galaxies possessing the given flag from the test sample, and the percentage of

the full sample, respectively. Multiple flags can be assigned to a single galaxy, so percentages

do not add to 100%. However, the galaxies possessing “no flag” cannot appear in any other

flag categories. Galaxies flagged as having No Ser (No Exp ) are excluded from the other

Ser(Exp)-related flags. These flags are less useful for analysis and difficult to interpret.
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that is not of interest. For example, a B/T value of 0.05 is very small and indicates that,

while there may be a small component at the center of the target galaxy, it is not likely to

be a bulge. This may be a small, point source near the center, or the result of the disk not

perfectly fitting the galaxy even though is is correct across the image. Similar problems are

present in disks.

Since the extremes in magnitude and B/T are strong indicators of a galaxy best described

by a single component, a cubic polynomial cut line in B/T vs magnitude space allows

identification of these differences. The cuts are

1000 ∗ (0.2−B/T )3 + (mbulge − 19) > 0.5 ⇒ No Ser component

1000 ∗ (B/T − 0.8)3 + (mdisk − 19) > 0.5 ⇒ No Exp component.
(5.1)

Cases of “No Exp component” are further separated into Bulge and Disk galaxies based on

the Sérsic index (n ≥ 2 ⇒Bulge galaxy, n < 2 ⇒Disk galaxy). These cuts remove any

galaxy with the secondary component dimmer than 19.5 mag if it represents less than 20%

of the total light of the galaxy and cuts at progressively brighter magnitudes. Using this

cut, secondary components that represent less than 5% of the total light are considered to

be a single component regardless of the component magnitude. This is consistent with the

visual classification that was previously performed. The cuts capture 17% of bulges and

7.8% of disks in our sample.

Figure 5.3 shows the entire sample of galaxies in the m vs B/T plane with the cut drawn

as a green dashed line for each of the bulge and disk cuts. The choice of a cubic term in B/T,

while arbitrary, gives the desired behavior. As the secondary component becomes brighter,

it has higher signal-to-noise and should then be more reliable, even when it represents a

smaller component of the total light. Likewise, if the component is dimmer, then it should

represent much more of the total light for it to be considered trustworthy.
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Figure 5.3: The no bulge cut and no disk cut drawn as a green dashed line superimposed over

the total distribution of galaxies from the catalog. Note that the cut becomes more generous

in B/T for brighter magnitudes and more restrictive for dimmer magnitudes.
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5.3 The automated flagging system

5.3.2 Examples of galaxies possessing automated flags

This section shows examples of galaxies flagged with the various automated flags. Fig-

ures 5.4-5.8 show different flags.
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Figure 5.4: Example Ser-Exp fits possessing tier-1 automated flags. “Centering” and “Parallel

Components” are shown. “Centering” suggests a poor fit because the fitted object is not at

the location of the target galaxy. “Parallel Components” suggests that both the Ser and Exp

components behave similarly and should be considered a single component. The flag is denoted

above each row. Each row shows the data image, model image, and masked residual image. The

data image has the Petrosian magnitude and radius as well as the unique id for our catalog.

The model image displays the fitted magnitude and radius for comparison as well as the fitted

B/T ratio. On the far right e show the one-dimensional surface brightness profile as a function

of the half-light radius. The dots represent the data while the blue solid, dashed, and dotted

lines represent the total, Ser, and Exp component surface brightness from the fitted model,

respectively.
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Figure 5.5: Example Ser-Exp fits possessing tier-1 automated flags that suggest the presence

of only one component. The plots are shown in the same format as Figure 5.4.
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Figure 5.6: Example Ser-Exp fits possessing tier-1 automated flags that suggest problems

with the Ser component. The plots are shown in the same format as Figure 5.4.
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Figure 5.7: Example Ser-Exp fits possessing tier-1 automated flags that suggest problems

with the Exp component. The plots are shown in the same format as Figure 5.4.
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Figure 5.8: Example Ser-Exp fits possessing tier-1 automated flags that suggest large inaccu-

racies in fitting. The plots are shown in the same format as Figure 5.4.
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5.4 Final Flags

The automated bit flags are designed to accurately identify problems commonly observed

during visual examination of the fits. Each automated flag has a tunable cutoff that is

optimized using the training set of manually classified galaxies. Then the efficacy of the

flag is evaluated using the test set of galaxies (which are also visually classified).

Table 5.6 shows the flagging categories, the final percentage of Ser-Exp galaxies in each

category, and references to example galaxies for each flag. Example galaxies selected to

characterize each flag are presented in Chapter 5.4.2. Two example galaxies are shown for

each flagging category. For each fit, the 2D data, fitted model, and residual as well as the

1D radial data profile, bulge and disc component profiles, and the total fitted profile are

shown.

A tiered structure is used to describe the fits. The most general description is the

accuracy of the total magnitude and radius. About 94 per cent of the Ser-Exp sample is

classified as having an accurate measurement of the total magnitude and half-light radius.

Within the first tier assessing the accuracy of the total magnitude and radius, the galaxies

are separated into single-component galaxies (flag bits 1 and 4), two-component galaxies

(flag bit 10), and problematic two-component galaxies (flag bit 14) that have fit parameters

that are difficult to interpret.

The categories presented in Table 5.6 are the recommended flags used to select samples

from the catalog. In particular, major categories of the flagging are as follows.

� Good Two-Component Fits (bit 10 set)–

These are the galaxies found to have two fitted components with intermediate bulge-

to-total light ratio (B/T) and reasonably well behaved subcomponents. Both the

subcomponents and the total magnitude and radius can be used in any analysis.

Bits 11-13, only one of which will be set, give a more specific description of the

galaxy.
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Flag bit Description Per cent Ser-Exp Example galaxy

– Good total and component magnitudes and sizes 39.055

10 Two-component galaxies 39.055 Figure 5.9, 5.10, 5.11

11 No flags 18.095 Figure 5.9

12 Good Ser, good Exp (some flags) 19.417 Figure 5.10

13 Flip components 1.543 Figure 5.11

– Good total magnitudes and sizes only 54.945

1 Bulge galaxies 18.964 Figure 5.12, 5.13

2 No Exp component, nSer >2 7.074 Figure 5.12

3 Ser dominates always 11.889 Figure 5.13

4 Disk galaxies 25.146 Figure 5.14, 5.15, 5.16, 5.17, 5.18

5 No Ser component 16.876 Figure 5.14

6 No Exp, nSer <2, Flip Components 0.551 Figure 5.15

7 Ser dominates always, nSer <2 0.103 Figure 5.16

8 Exp dominates always 2.872 Figure 5.17

9 Parallel components 4.745 Figure 5.18

14 Problematic two-component galaxies 10.835 Figure 5.19, 5.20, 5.21, 5.22

15 Ser outer only 7.504 Figure 5.19

16 Exp inner only 0.425 Figure 5.20

17 Good Ser, bad Exp, B/T>=0.5 0.017 Figure 5.21

18 Bad Ser, good Exp, B/T<0.5 0.625 Figure 5.22

19 Bulge is point 2.237 Figure 5.23

20 Bad total magnitudes and sizes 6.000

Table 5.6: A breakdown of the automated flags characterized into categories useful for analysis.

The first two groups can be used for analysis of total fits. When examining the sub-components,

consideration should be given as to exactly which groups of fits should be included.
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� Good Bulge Fits (bit 1 set)–

These are the galaxies found to have little or no evidence of an Exp second compo-

nent. The B/T can be as low as 0.8, however, the Exp component is not trustworthy.

The Ser fit is recommended for these galaxies, and they should be treated as having

B/T=1.0 regardless of the fitted B/T. Bits 2 and 3, only one of which will be set,

give a more specific description of the galaxy.

� Good Disk Fits (bit 4 set)–

These are the galaxies found to have little or no evidence of a Ser second component.

The B/T can be as high as 0.2, however, the Ser bulge component of the Ser-Exp

fit is not trustworthy. Using the Ser fit is recommended for total magnitude and

radius in any analysis. The Ser fit should be used for galaxies, and they should be

treated as having B/T=0 regardless of the fitted B/T. Bits 5-9, only one of which

will be set, give a more specific description of the galaxy.

� Problematic Two-Component Fits (bit 14 set)–

These are the galaxies with two fitted components with intermediate B/T, but

at least one sub-component has strange behavior. These galaxies likely require

additional investigation prior to including them in any analysis. Bits 15-19, only

one of which will be set, give a more specific description of the galaxy.

� Bad Fits (bit 20 set)–

These are the galaxies found to have severe problems with the fit. They should not

be included in any analysis without close examination. Even the total magnitude

and total radius are believed to have significant errors. Bits 21-26, only one of which

will be set, give a more specific description of the galaxy.

For the single-component Ser and deV fits, the two-component categories listed above

have no galaxies in them, but the same flagging structure is used for all fits to ensure

consistency and ease of use.
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The flagging here focuses on identifying Ser versus Ser-Exp fits. While the Ser fit can

reproduce the deV fit in cases where the Sérsic index is 4, it will be different for other values.

The deV fits are reported for comparison purposes. Similarly, the deV-Exp fit is included as

a separate fit because the Ser-Exp fit is not necessarily equivalent to the deV-Exp fit.

5.4.1 Detailed descriptions of the final flags

This chapter provides a more detailed descriptions of the flags used in this catalog. Table 5.7

gives a short description of the fitting parameters used to set the value of each flag. The

majority of the flags use the B/T, Sérsic index, and radial light profiles of the galaxy to set

the flags. The flags also consider the axis ratio and the difference in position angle of the

bulge and disc because small axis ratios combined with large differences in position angle

of the two components is an unphysical fit for most cases. B/T(r) in flags 3, 7, 8, etc.

refers to the radial B/T profile. For the radial profile, the local B/T ratio (i. e., the ratio

of light contributed by the bulge at the annulus of width 1 arcsec centered on radius r to

the light contributed by the disc) is plotted. rsextractor is the half-light radius reported by

SExtractor during fitting. This radius is used to set the scale of the galaxy during fitting

and to test whether components have become unphysically large after fitting.

Flag bit 9 is used to determine whether the bulge and disc are fitting the same component

of the galaxy. This is most common in very late-type galaxies (i. e., T-types greater than

4) that have no visible bulge. The flag criteria reference r(0.9Ltot), which is the radius

enclosing 90 per cent of the total light of the galaxy. The flag also measures the quantity

RMS(B/T − µ(B/T )) : 0 < r < r(0.9Ltot). The quantity RMS(B/T − µ(B/T )) is the

standard deviation of B/T about the mean B/T value. The average is taken over the radii

interior to the radius enclosing 90 per cent of the light. If the standard deviation is less

than 0.1, then the B/T ratio is approximately the same at all radii and the components

are parallel. Two parallel components, each with Sérsic index <2, are indistinguishable

from one brighter exponential component, so these galaxies are flagged as discs and the
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Flag bit Analysis flag Flag criteria

– Good total and component magnitudes and sizes

10 Two-component galaxies

11 No flags No flags are present

12 Good Ser, Good Exp (some flags) Some minor automated flags

13 Flip components Exp component fitting the inner and Ser component

fitting the outer part of the profile

– Good total magnitudes and sizes only

1 Bulge galaxies

2 No Exp component, nSer >2 1000(B/T-0.8)3+(mdisc-19)>0.5 AND nSer ≥2

3 Ser dominates always B/T(r) ≥ 0.5 for all r AND nSer ≥2

4 Disc galaxies

5 No Ser component 1000(0.2-B/T)3+(mbulge-19)>0.5

6 No Exp, nSer <2, Flip Components 1000(B/T-0.8)3+(mdisc-19)>0.5 AND nSer <2

7 Ser dominates always, nSer <2 B/T(r) ≥ 0.5 for all r AND nSer <2

8 Exp dominates always B/T(r) < 0.5 for all r

9 Parallel components RMS [(B/T − µ(B/T )) : 0 < r < r(0.9Ltot] < 0.1

AND nbulge < 2.0

14 Problematic two-component galaxies

15 Ser outer only B/T< 0.7 AND B/T(r(0.9Ltot)>0.5 AND nbulge ≥

2.0 AND B/T(0)>0.5

16 Exp inner only B/T(0)<0.5 AND B/T(r: r< 2.7rhl) > 0.5 AND

nbulge ≥ 2.0 AND NOT Ser Outer Only

17 Good Ser, bad Exp, B/T>=0.5 B/T>0.75 AND ∆φ > 45 AND b/abulge < 0.75 AND

b/adisc < 0.4

18 Bad Ser, good Exp, B/T<0.5 B/T<0.25 AND ∆φ > 45 AND b/abulge < 0.4 AND

b/adisc < 0.75

19 Bulge is point Circularized bulge radius <0.188 arcsec

20 Bad total magnitudes and sizes

21 Centering problems (galaxy centroid-SDSS galaxy centroid)>

0.7×rsextractor

22 Ser component contamination by neighbors or sky rbulge,cir/rsextractor > 4.0

23 Exp component contamination by neighbors or sky rbulge,cir/rsextractor > 4.0

24 Bad Ser and bad Exp components Failure of measurements

25 Galfit failure Galfit fails to converge or other failure of the pipeline

26 Polluted or fractured CasJobs neighbors not properly masked/masked or

target is separated into 2 or more objects

Table 5.7: The description of our categories as described in the main text. The major flag

bits used to select different catalogs are flag bits 10 (good two-component fits), 1 (good bulge

galaxy), 4 (good disc galaxy), 14 (problematic two-component fit), and 20 (bad fit). The use of

these flags is described in Chapter 5.4.
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Flag bit Descriptive Category Per cent SerExp Per cent Test

– Trust total and component

magnitudes and sizes

39.055 39.167

10 Two-component galaxies 39.055 39.167

11 No flags 18.095 17.917

12 Good Ser, good Exp (some flags) 19.417 18.333

13 Flip components 1.543 2.917

– Trust total magnitudes and

sizes only

54.945 54.375

1 Bulge galaxies 18.964 18.958

2 No Exp component, nSer >2 7.074 7.917

3 Ser dominates always 11.889 11.042

4 Disc galaxies 25.146 23.958

5 No Ser component 16.876 15.625

6 No Exp, nSer <2, flip components 0.551 0.208

7 Ser dominates always, nSer <2 0.103 0.625

8 Exp dominates always 2.872 2.917

9 Parallel components 4.745 4.583

14 Problematic two-component

galaxies

10.835 11.458

15 Ser outer only 7.504 8.125

16 Exp inner only 0.425 0.625

17 Good Ser, bad Exp, B/T>=0.5 0.017 0.000

18 Bad Ser, good Exp, B/T<0.5 0.652 0.625

26 Bulge is point 2.237 2.083

19 Bad total magnitudes and sizes 6.000 6.458

20 Centering problems 0.557 0.625

21 Ser component contamination by

neighbors or sky

2.129 3.333

22 Exp component contamination by

neighbors or sky

2.392 2.083

23 Bad Ser and bad Exp components 0.239 0.417

24 Galfit failure 0.355 0.208

25 Polluted or fractured 0.676 0.833

Table 5.8: A breakdown of the descriptive categories useful for analysis. The percentages of

the total catalog are shown for each of the fitted models and our visually classified test set.

The one component models (Ser and deV) can not be classified as two-component models, by

definition. For the Ser and deVmodels, many of the categories are empty. The major distinction

for the one-component models is whether the fits have major problems (i. e., flag bit 20 is set).
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5.4 Final Flags

components are considered unreliable. The Ser model is the most appropriate model in

this case, similar to all the bulge and disc flag categories.

Flag bit 24 (bad Ser and bad Exp) also includes failures that indicate strange fitting

behavior. This category includes galaxies where the B/T > 0.5 and the measured B/T is

lower than 0.5, or vice versa. These cases occur when the bulge or disc parameters get very

unusual (radii approaching 0 or b/a approaching 0).

The remaining flag bits are self-explanatory, so they are not described here. Table 5.8

shows the percentage of galaxies in each flag type for the Ser-Exp model and the visually

classified test sample. The percentages for the deV, Ser, deV-Exp, and Ser-Exp models

are shown in Table 5.10, 5.11, 5.12, and 5.13, respectively. The one-component models

(Ser and deV) cannot be classified as two-component models, by definition, so many of the

categories are empty. The major distinction for the one-component models is whether the

fits have major problems (i. e., flag bit 20 is set). The failure rate (flag bit 20 set) increases

with the complexity of the fits, but stays below 7 per cent for the Ser-Exp model and 8

per cent for the test sample. An additional ∼ 10 per cent of the two-component fits have

problematic interpretations. The remaining ∼ 80 − 85 per cent of two-component galaxies

appear to have good fits that can be used in analysis. As discussed previously, this does

not guarantee that the fits can be interpreted as a physical bulge and a physical disc model.

Many caveats to this interpretation still exist.

5.4.2 Examples of the final flags

This chapter, provides sample Ser-Exp fits to galaxies for each of the flagging categories

described in Table 5.6. Although examples are shown for only for the Ser-Exp fits, the

same flags are applied to the deV-Exp fit. For the deV and Ser fits, a subset of these flags is

used that include only the flags applicable to one-component fits (i. e., the ‘bad’ flags and

pure bulge or pure disc flags).
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5. FLAGGING AND CLASSIFICATION OF GOOD AND BAD FITS

Each figure in this section shows two example galaxies that have the flag described in

the figure caption. Each example galaxy shows the 2D fitted model and 2D data (top left

and right, respectively). It also shows the 1D fitted profile and 2D masked residual image

(bottom left and right, respectively). The total magnitude, B/T, and fitted, PSF-corrected

half-light radius in arcseconds are shown in the 2D model image. The 2D data image has

the galnum (our unique galaxy identification number), apparent Petrosian magnitude,

and Petrosian half-light radius in arcseconds shown for comparison.

The 1D fitted profiles show the measured 1D profile using elliptical annuli as black dots.

The total profile is plotted as the solid blue line. The Ser-Exp bulge is plotted as the

dashed blue line and the Ser-Exp disc is plotted as the dotted blue line. The radial profiles

are plotted in mag arcsec−2 and the x-axis shows the radius in units of the fitted half-light

radius.

Figures 5.9, 5.10, and 5.11 show various types of good two-component fits. Figures 5.12

and 5.13 show bulge fits. Figures 5.14, 5.15, 5.16, 5.17, and 5.18 show disc galaxies. Finally,

Figures 5.19, 5.20, 5.21, 5.22, and 5.23 show two-component fits where the components are

difficult to interpret.
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(a) Galaxy 35521
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(b) Galaxy 408774

Figure 5.9: Example Ser-Exp fits considered good using our flagging criteria. For these

galaxies, we claim that the two components of the fit are real and without fitting problems.

These galaxies are in category ‘no flags’ in Table 5.6 and have flag bits 10 and 11 set.
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(a) Galaxy 86055
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(b) Galaxy 163409

Figure 5.10: Example Ser-Exp fits considered good using our flagging criteria. For these

galaxies, we claim that the two components of the fit are real and largely free of fitting problems.

However, there can be some isolated problems with the fits. For example, galaxy 86055 (left)

has a high ellipticity bulge (b/a≈0.2) and galaxy 163409 (right) has a bulge with low Sérsic

index (nbulge ≈ 1.1) and the bulge and disc position angles differ by a large amount (≈ 45◦).

However, we do not find enough reason to remove the fit as unphysical. These galaxies are in

category ‘good Ser, good Exp (some flags)’ in Table 5.6 and have flag bits 10 and 12 set.
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(a) Galaxy 48927
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(b) Galaxy 645918

Figure 5.11: Example Ser-Exp fits considered good using our flagging criteria. For these

galaxies, we claim that the two components of the fit are real. However, the components need

to be interchanged to fit with the standard interpretation of the fits that we use throughout the

paper.These galaxies are in category ‘flip components, nSer <2’ in Table 5.6 and have flag bits

10 and 13 set.
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(a) Galaxy 246717
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(b) Galaxy 167097

Figure 5.12: Example Ser-Exp galaxies considered single-component galaxies with bulge-like

profiles. The profiles have little or no Exp component contributing light to the galaxy. These

galaxies are in category ‘no Exp component, nSer >2’ in Table 5.6 and have flag bits 1 and 2

set.

144



5.4 Final Flags

mtot=16.4 rhl=6.16”

B/T=0.76

model

mpetro=16.9 rpetro=3.51”

galnum=255297

data

masked residual

0 5 10 15 20

rhl

19

20

21

22

23

24

25

26

27

µ

1D Profile

(a) Galaxy 255297
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(b) Galaxy 557050

Figure 5.13: Example Ser-Exp galaxies considered single-component galaxies with bulge-like

profiles. The profiles tend to have some small Exp component, but the Ser component dominates

at all radii. These galaxies are in category ‘Ser dominates always’ in Table 5.6 and have flag

bits 1 and 3 set.
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(a) Galaxy 12474
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(b) Galaxy 223566

Figure 5.14: Example Ser-Exp galaxies considered single-component galaxies with disc-like

profiles. The profiles tend to have little or no contribution to the total light by the Ser compo-

nent. These galaxies are in category ‘no Ser component’ in Table 5.6 and have flag bits 4 and

5 set.
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(a) Galaxy 355
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(b) Galaxy 84055

Figure 5.15: Example Ser-Exp galaxies considered single-component galaxies with disc-like

profiles. The profiles tend to have little or no Exp component, but the Ser component is disc-like

with a Sérsic index less than 2. These galaxies are in category ‘no Exp, nSer <2, flip components’

in Table 5.6 and have flag bits 4 and 6 set.
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(a) Galaxy 135981

mtot=17.0 rhl=2.76”

B/T=0.72

model

mpetro=17.0 rpetro=2.81”

galnum=413052

data

masked residual

0 2 4 6 8 10

rhl

19

20

21

22

23

24

25

26

27

µ

1D Profile

(b) Galaxy 413052

Figure 5.16: Example Ser-Exp galaxies considered single-component galaxies with disc-like

profiles. The profiles tend to have some small Exp component, but the Ser component dominates

at all radii and is disc like with a Sérsic index less than 2. These galaxies are in category ‘Ser

dominates always, nSer <2’ in Table 5.6 and have flag bits 4 and 7 set.
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(a) Galaxy 157120
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(b) Galaxy 656426

Figure 5.17: Example Ser-Exp galaxies considered single-component galaxies with disc-like

profiles. The profiles tend to have some small Ser component, but the Exp component dominates

at all radii. These galaxies are in category ‘Exp dominates always’ in Table 5.6 and have flag

bits 4 and 8 set.
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(a) Galaxy 543174
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(b) Galaxy 642141

Figure 5.18: Example Ser-Exp galaxies considered single-component galaxies with disc-like

profiles. The profiles tend to have both Ser and Exp components, but the Ser component is

disc-like with Sérsic index less than 2 and components contribute similar amounts of light to the

profile across a range of radii (they appear to parallel each other in the 1D fit). These galaxies

are in category ‘parallel components’ in Table 5.6 and have flag bits 4 and 9 set.
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(a) Galaxy 182763
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(b) Galaxy 532728

Figure 5.19: Example Ser-Exp galaxies considered two-component galaxies although the

components may have problematic interpretations. The profiles tend to have both Ser and

Exp components, but the Ser component dominates at large radii. This can be related to

sky problems and artificially increase the bulge radius and magnitude. These galaxies are in

category ‘Ser outer only’ in Table 5.6 and have flag bits 14 and 15 set.
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(a) Galaxy 520456
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(b) Galaxy 541105

Figure 5.20: Example Ser-Exp galaxies considered two-component galaxies although the

components may have problematic interpretations. The profiles tend to have both Ser and Exp

components, but the Exp component dominates at small radii and the Ser component is not

necessarily disc like. These galaxies are in category ‘Exp inner only’ in Table 5.6 and have flag

bits 14 and 16 set.
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(a) Galaxy 117380
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(b) Galaxy 242460

Figure 5.21: Example Ser-Exp galaxies considered two-component galaxies although the

components may have problematic interpretations. The profiles tend to have both Ser and Exp

components, but the Exp component is highly elliptical and misaligned with the galaxy. These

galaxies are in category ‘good Ser, bad Exp, B/T>=0.5” in Table 5.6 and have flag bits 14 and

17 set.
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(a) Galaxy 22342

mtot=16.7 rhl=2.49”

B/T=0.12

model

mpetro=16.8 rpetro=2.51”

galnum=554147

data

masked residual

0 2 4 6 8

rhl

19

20

21

22

23

24

25

26

27

µ

1D Profile

(b) Galaxy 554147

Figure 5.22: Example Ser-Exp galaxies considered two-component galaxies although the

components may have problematic interpretations. The profiles tend to have both Ser and Exp

components, but the Ser component is highly elliptical and misaligned with the galaxy. These

galaxies are in category ‘bad Ser, good Exp, B/T<0.5’ in Table 5.6 and have flag bits 14 and

18 set.
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(a) Galaxy 642128
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(b) Galaxy 670464

Figure 5.23: Example Ser-Exp galaxies considered two-component galaxies although the

components may have problematic interpretations. The profiles tend to have both Ser and

Exp components, but the Ser component has shrunk to a point source. These galaxies are in

category ‘bulge is point’ in Table 5.6 and have flag bits 14 and 19 set.
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5.5 g- and i-band flag results

The flagging procedure presented in this chapter is intended (among other goals) to reliably

distinguish between one- and two-component fits, reducing any fitting bias resulting from

fitting a one-component profile to a two-component galaxy. The majority of the flags are

constructed using relative measurements that should not require adjustment to accommo-

date measurements in bands other than the r-band. For instance, determining that a galaxy

has a contaminated bulge or disk component (flag bits 22 and 23) requires comparing the

comparing the size of the bulge and disk components to the Petrosian radius in the corre-

sponding band. Since this measurement is not band-specific, it should change automatically

when different bands are used.

However, the bounds for determining when a bulge or disk component is not present

(i. e., flag bits 1 and 4) are partially determined by a cut on magnitude calibrated to the

r-band fits using a training set of visually classified galaxies. Since the magnitudes and S/N

are different in the g- and i-bands, it is possible that these cuts need to be adjusted to work

in the neighboring bands.

In particular, the no bulge condition was

1000(B/T − 0.8)3 + (mdisc − 19) > 0.5 (5.2)

and the no disc condition was

1000(0.2 −B/T )3 + (mbulge − 19) > 0.5 (5.3)

These cuts were set based on visual classification of fitted galaxies by the authors and the

fact that scatter in the bulge or disc components grows substantially when the component

was dimmer than 19. This cut of 19 was based on the assumption of S/N present in the

r-band images. In particular, the average sky brightness and noise properties in the g-, r-,

and i-bands differ as well as the average magnitudes.
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Band rarcsec zeropoint µsky [mag arcsec−2] Gain Dark Variance S/N m

g 1.20 24.2 22.0 3.85 1.44 1.34 19.0

r 1.12 23.9 21.0 4.70 1.00 1.34 19.0

i 1.00 23.6 20.3 4.86 5.75 1.34 18.2

Table 5.9: Median values of radius, zeropoint, sky brightness, gain, and dark variance for the

g-, r-, and i- bands. The S/N and magnitude are also shown. The r-band flags use a cut of 19

magnitudes as the basis for determining that a bulge or disk component is not reliable. Here,

we show the median S/N of an object in the r-band, then using median values for the g- and

i-bands, we calculate the equivalent magnitude of an object with the same S/N (within 1 per

cent) as the r-band value. This band-dependent magnitude is used for bulge and disk flagging

in the two-component g- and i-band fits and accounts for differences in the sky brightness and

zeropoints between the bands.

Using Equation 2.2, the equivalent magnitude in the g-(and i-)bands of a component

with the same S/N as an r-band magnitude 19.0 object with median sky brightness, median

bulge(or disc) half-light radius, and median noise properties were calculated. Table 5.9

summarizes the median values used in each band and the equivalent magnitude for the g-

and i-bands calculated using these values. The g-band requires no adjustment. The i-band

requires more adjustment due to the increasing sky brightness and dark variance in the

band. We use these magnitudes as the basis for the flag bits 1 and 4 (i. e., “no bulge” or

“no disk”) flags. These flags are the only flags that use an absolute cut on magnitude, so

the remaining flags require no such adjustment.

Tables 5.10, 5.11, 5.12, and 5.13 show the flagging categories, the final percentage of

galaxies in each flagging category for the g-, r-, and i-bands (left, center, and right columns)

for the deV, Ser, deV-Exp, and Ser-Exp models, respectively.

About 94% of the r-band Ser-Exp sample is classified as having an accurate measure-

ment of the total magnitude and half-light radius. This percentage is reduced in the g- and

i-bands to approximately 92 percent. The increase in failed fits can be mostly attributed to

increasing neighbor contamination, which is reflected in the flagging as an increase of the
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5. FLAGGING AND CLASSIFICATION OF GOOD AND BAD FITS

“Ser component contamination by Neighbors or Sky” and the “Exp component contami-

nation by Neighbors or Sky” flags which contain an additional ≈1.5 per cent of the total

sample compared to the original r-band fits.

In addition to the increase of failed galaxies, there is a decrease in the percentage of

two-component fits from ≈39 percent in the r-band 33 percent in the g-band and 37 per

cent in the i-band. At the same time, the number of pure bulge galaxies drops in the bluer

filters from 20 percent in the i-band to 17 per cent in the g-band and the number of disks

increases substantially from 24 per cent in the i-band to 31 per cent in the g-band). These

observations agree with a simple bulge+disk model of galaxies where the disk tends to be

bluer and the bulge is redder. It may also partially explain the increase in failed cases due

to contamination or sky since the g-(i-) band will feature the disk(bulge) more prominently

and the second component will be dimmer or not present due to the different color. With

dim or low S/N component, there is a more likely possibility that the fitting routine will

settle into a local minima that improperly uses this second component since it is not well

constrained by the observations. A poorly constrained component may be used to fit stray

light from neighboring galaxies, increasing the failure rate as observed here.
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5.5 g- and i-band flag results

Descriptive Category % deV,g % deV,r % deV,i

Trust Total and Component Magnitudes and Sizes — — —

Two-Component Galaxies — — —

No Flags — — —

Good Ser, Good Exp (Some Flags) — — —

Flip Components, nSer <2 — — —

Trust Total Magnitudes and Sizes Only 96.623 97.653 96.958

Bulge Galaxies 96.623 97.653 96.958

No Exp Component, nSer >2 96.623 97.653 96.958

Ser Dominates Always — — —

Disk Galaxies — — —

No Ser Component — — —

No Exp, nSer <2, Flip Components — — —

Ser Dominates Always, nSer <2 — — —

Exp Dominates Always — — —

Parallel Components — — —

Problematic Two-Component Galaxies — — —

Ser Outer Only — — —

Exp Inner Only — — —

Good Ser, Bad Exp, B/T>=0.5 — — —

Bad Ser, Good Exp, B/T<0.5 — — —

Tiny Bulge, otherwise good — — —

Bad Total Magnitudes and Sizes 3.377 2.347 3.042

Centering Problems 0.292 0.338 0.311

Ser Component Contamination by Neighbors or Sky 1.865 1.302 1.651

Exp Component Contamination by Neighbors or Sky — — —

Bad Ser and Bad Exp Components — — —

Galfit Failure 0.386 0.187 0.286

Polluted or Fractured 1.041 0.679 0.947

Table 5.10: deV model table showing flagging breakdown for the g-, r-, and i-bands.
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5. FLAGGING AND CLASSIFICATION OF GOOD AND BAD FITS

Descriptive Category % Ser,g % Ser,r % Ser,i

Trust Total and Component Magnitudes and Sizes — — —

Two-Component Galaxies — — —

No Flags — — —

Good Ser, Good Exp (Some Flags) — — —

Flip Components, nSer <2 — — —

Trust Total Magnitudes and Sizes Only 95.502 97.380 96.612

Bulge Galaxies 52.177 58.378 60.972

No Exp Component, nSer >2 52.177 58.378 60.972

Ser Dominates Always — — —

Disk Galaxies 43.325 39.001 35.640

No Ser Component — — —

No Exp, nSer <2, Flip Components 43.325 39.001 35.640

Ser Dominates Always, nSer <2 — — —

Exp Dominates Always — — —

Parallel Components — — —

Problematic Two-Component Galaxies — — —

Ser Outer Only — — —

Exp Inner Only — — —

Good Ser, Bad Exp, B/T>=0.5 — — —

Bad Ser, Good Exp, B/T<0.5 — — —

Tiny Bulge, otherwise good — — —

Bad Total Magnitudes and Sizes 4.498 2.620 3.388

Centering Problems 0.320 0.357 0.322

Ser Component Contamination by Neighbors or Sky 3.012 1.618 2.036

Exp Component Contamination by Neighbors or Sky — — —

Bad Ser and Bad Exp Components — — —

Galfit Failure 0.327 0.124 0.239

Polluted or Fractured 1.046 0.681 0.948

Table 5.11: Ser model table showing flagging breakdown for the g-, r-, and i-bands.
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5.5 g- and i-band flag results

Descriptive Category % deV-Exp,g % deV-Exp,r % deV-Exp,i

Trust Total and Component Magnitudes and Sizes 33.077 42.223 44.524

Two-Component Galaxies 33.077 42.223 44.524

No Flags 22.918 30.152 31.952

Good Ser, Good Exp (Some Flags) 8.526 10.701 11.180

Flip Components, nSer <2 1.633 1.369 1.391

Trust Total Magnitudes and Sizes Only 59.362 52.444 48.390

Bulge Galaxies 15.043 14.636 14.211

No Exp Component, nSer >2 9.610 4.646 3.398

Ser Dominates Always 5.433 9.989 10.813

Disk Galaxies 36.291 28.462 24.225

No Ser Component 34.502 25.041 20.070

No Exp, nSer <2, Flip Components — — —

Ser Dominates Always, nSer <2 — — —

Exp Dominates Always 1.789 3.421 4.156

Parallel Components — — —

Problematic Two-Component Galaxies 8.029 9.346 9.954

Ser Outer Only 4.906 5.289 5.494

Exp Inner Only 0.632 0.514 0.534

Good Ser, Bad Exp, B/T>=0.5 0.003 0.011 0.010

Bad Ser, Good Exp, B/T<0.5 0.620 0.884 1.042

Tiny Bulge, otherwise good 1.868 2.648 2.874

Bad Total Magnitudes and Sizes 7.560 5.334 7.086

Centering Problems 0.762 0.599 0.769

Ser Component Contamination by Neighbors or Sky 1.816 1.251 1.608

Exp Component Contamination by Neighbors or Sky 3.887 2.788 3.868

Bad Ser and Bad Exp Components 0.634 0.177 0.148

Galfit Failure 0.389 0.249 0.290

Polluted or Fractured 1.038 0.677 0.945

Table 5.12: deV-Exp model table showing flagging breakdown for the g-, r-, and i-bands.

161



5. FLAGGING AND CLASSIFICATION OF GOOD AND BAD FITS

Descriptive Category % Ser-Exp,g % Ser-Exp,r % Ser-Exp,i

Trust Total and Component Magnitudes and Sizes 33.290 39.055 37.049

Two-Component Galaxies 33.290 39.055 37.049

No Flags 14.266 18.095 18.088

Good Ser, Good Exp (Some Flags) 16.662 19.417 17.704

Flip Components, nSer <2 2.362 1.543 1.258

Trust Total Magnitudes and Sizes Only 58.616 54.945 54.926

Bulge Galaxies 17.245 18.964 20.104

No Exp Component, nSer >2 11.255 7.074 10.058

Ser Dominates Always 5.990 11.890 10.046

Disk Galaxies 31.197 25.146 24.193

No Ser Component 21.438 16.876 18.453

No Exp, nSer <2, Flip Components 1.455 0.551 0.744

Ser Dominates Always, nSer <2 0.121 0.103 0.074

Exp Dominates Always 2.013 2.872 1.607

Parallel Components 6.170 4.745 3.316

Problematic Two-Component Galaxies 10.174 10.835 10.629

Ser Outer Only 7.218 7.504 8.383

Exp Inner Only 0.943 0.425 0.325

Good Ser, Bad Exp, B/T>=0.5 0.008 0.017 0.012

Bad Ser, Good Exp, B/T<0.5 0.512 0.652 0.552

Tiny Bulge, otherwise good 1.493 2.237 1.357

Bad Total Magnitudes and Sizes 8.094 6.000 8.025

Centering Problems 0.619 0.557 0.679

Ser Component Contamination by Neighbors or Sky 3.096 2.129 2.848

Exp Component Contamination by Neighbors or Sky 2.992 2.393 3.354

Bad Ser and Bad Exp Components 0.824 0.239 0.347

Galfit Failure 0.418 0.355 0.311

Polluted or Fractured 1.038 0.676 0.946

Table 5.13: A breakdown of the flags now shown for the g-, r-, and i-band fits. The prevalence

of galaxies with two-component fits decreases toward the bluer end from ≈ 39 per cent in the

i-band to 33 per cent in the g-band. The prevalence of pure bulge galaxies also decreases toward

bluer bands while the prevalence of disk galaxies increases. This is as expected using a simple

bulge+disk model with a bluer disk and redder bulge.
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Chapter 6

Internal comparisons and

consistency checks

Before comparing the fits, in particular the Ser-Exp fits, to other groups, some internal

consistency checks are performed. Chapter 6.1 examines the distribution of general classifi-

cations described in Chapter 5.3 for the Ser-Exp catalog as a function of basic observables.

Chapter 6.3 examines the bulge radii with respect to the PSF. Chapter 6.4 compares some

of the fitted values of the Ser fit to the Ser-Exp fit.

6.1 Examination of flags with basic observables

Using the flags from Chapter 5.3, one should be able to reproduce sensible distributions

of magnitude, radius, and ellipticity provided that the chosen flags can reliably separate

good and bad fits within the sample. The bulge Sérsic index is also included, which is

used during classification. Figure 6.1 and Figure 6.2 show the percentage of two-component

(green points, labeled as ‘2com’, flag bit 10), bulge (red points, labeled as ‘bulges’, flag

bit 1), disc (blue points, labeled as ‘discs’, flag bit 4), problematic two-component (yellow

points, labeled as ‘bad 2com’, flag bit 14), and failed galaxies (black points, labeled as
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6. INTERNAL COMPARISONS AND CONSISTENCY CHECKS
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Figure 6.1: The bin-by-bin percent of galaxies of each type: disk (blue points, labeled as

‘discs’), bulge (red points, labeled as ‘bulges’), two-component (green points, labeled as ‘2com’),

problematic two-component (yellow points, labeled as ‘bad 2com’), and failed galaxies (black

points, labeled as ‘bad’), according to the categorical flags. The good two-component models

are separated into those with Sérsic indexes below 8 and those galaxies with acceptable fits but

the Sérsic index of the bulge hits the n = 8 boundary of the parameter space (cyan points,

labeled as ‘n8’) to check for any bias resulting from the restriction on the fitted Sérsic index.

In the background of the plot, the total distribution of galaxies with respect to the parameter

used to bin the data is plotted.
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6.1 Examination of flags with basic observables
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Figure 6.2: The percent of galaxies of each type, given as a percentage of the total sample.

The colors and plot design are the same as Figure 6.1. For example, approximately 3 per cent of

all galaxies are ‘2com’ galaxies fitted with apparent magnitudes between 16.5 and 16.75 (from

the top-left panel)
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6. INTERNAL COMPARISONS AND CONSISTENCY CHECKS

‘bad’, flag bit 20) in the Ser-Exp catalog as a function of several parameters. The figures

show the same distribution of the categories using different normalizations. Figure 6.1 is

normalized such that the sum of the fractions of all categories sums to 1 in each bin (i. e.,

the reported fractions for the blue line with square points show the fraction of galaxies at a

given magnitude, size etc. that are discs). Figure 6.2 is normalized by the total number of

galaxies in the sample (i. e., the reported fraction for the blue line with square points show

the fraction of all galaxies in the sample galaxies that are discs and have a given magnitude,

size, or other measured parameter).

In both figures, the total distribution of galaxies is plotted in the background in order

to give the reader a sense of the number of galaxies in each bin. The left-hand axis denotes

the fraction of galaxies in given category (e. g. bulge, disc, or other category) using the

relevant normalization. The right-hand axis denotes the raw number of galaxies plotted in

the background histogram relative to 670 722, the total number of galaxies in our sample.

We have also separated the good two-component models into those with Ser-Exp bulge

Sérsic indexes below 8 and those galaxies for which our flags indicate the fitted profiles are

acceptable but the Ser-Exp bulge Sérsic index hits the n = 8 boundary of the parameter

space (cyan points, labeled as ‘n8’). Galaxies with the Ser-Exp bulge Sérsic index ap-

proaching the boundary of the parameter space may exhibit problems due to the inability

of the code to reach the true minimum of the fit. We separate out these fits to check for

any strange behavior that would suggest substantial biases in the fitting due to this effect.

6.1.1 Behavior with apparent magnitude

The original sample selected from SDSS is defined by a cut in extinction-corrected r band

apparent Petrosian magnitude removing all galaxies brighter than 14 or dimmer than the

spectroscopic sample cut of 17.77. Examination of the type distribution with respect to total

fitted apparent magnitude derived from the Ser-Exp fits by summing both components

of the fit (top-left panel) reveals that the percentage of good two-component galaxies is
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6.1 Examination of flags with basic observables

independent of apparent magnitude across magnitudes 14–17.77 where the majority of our

sample is located. Independence with apparent magnitude is expected unless there are

observational biases in the flags. However, the endpoints (i. e., below 14 and above 18)

show a large increase in the percentage of failed galaxies.

Since the Petrosian magnitudes are known to be dimmer at the brighter end of the mag-

nitude distribution (Bernardi et al. 2013; Blanton et al. 2001) and dimmer for galaxies with

higher Sérsic index (or greater concentration) (see Figure 7 of Graham and Driver 2005),

galaxies with fitted magnitudes brighter than 14 (where our original selection cut is made;

see Chapter 2) are not immediately identifiable as failed fits. Indeed, Petrosian magnitude

is dimmer than fitted magnitude by approximately 0.2 for a Ser galaxy with Sérsic index

of 4 (however this increases to about 0.55 mag for n= 8 galaxies). Larger concentration (or

equivalently, Sérsic index) is required to account for larger differences between Petrosian

and fitted magnitude. Similarly, as concentration increases, the proportion of galaxies pos-

sessing at least that level of concentration decreases. So, a reasonable expectation is that

the failure rate should increase brighter than 14. In addition, fitted magnitudes should

rarely be dimmer than the Petrosian magnitude unless there was a failure in deblending or

some other photometry problem. Therefore, the majority of the galaxies outside the range

of 14–17.77 mag should be flagged as failed cases because their magnitudes vary greatly

from what is expected.

The increasingly high failure rate at the bright end of the apparent magnitude plotted

above 14 and the increase in the failure rate at the dim end below 17.77 are an indicator

of the ability of the flags to identify poorly fit galaxies. Indeed, the majority of the failed

galaxies (∼ 800 out of the ∼ 1000) in the magnitude bins brighter than 14 have either flags

21 or 22 set. These flags identify galaxies with large, extended components that are due to

underestimating sky brightness or contamination from nearby neighbors. This makes sense

as we expect galaxies with these bright magnitudes to have their brightness substantially

overestimated.
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6. INTERNAL COMPARISONS AND CONSISTENCY CHECKS

Classification of bulge, disc, or 2com galaxies is also increasingly unreliable in galaxies

outside of the 14–17.77 mag range. Since these galaxies are not selected in our original

sample, the training set may not be appropriate sample for these galaxies. Therefore,

careful consideration of any galaxies dimmer than 17.77 or brighter than 14 should be

taken before including them in any analysis.

6.1.2 Behavior with absolute magnitude

Figures 6.1 and 6.2 also show the behavior of the component categories with respect to total

fitted absolute magnitude derived from the Ser-Exp fits by summing both components of

the fit (top-right panel). Bulge galaxies (i. e., elliptical) galaxies dominate at the brightest

magnitudes while disc galaxies dominate at the dimmest magnitudes and two-component

models dominate at the intermediate magnitudes. There is an increase in failed cases near

the bright end of the distribution. Further inspection of this end of the distribution shows

that it is a pile-up effect due to the preference of PyMorph to over estimate the brightness

of a galaxy when a fitting failure occurs. Large components (either Ser or Exp components;

both occur at similar rates) can be wrongly used by PyMorph to fit sky or neighbors.

These large components will contribute to the brightness of the source, making it appear

brighter than the true brightness. Therefore, the failed galaxies will tend to shift up the

magnitude distribution to brighter magnitudes.

To test for this problem, the distribution of galaxy types was examined using the model-

independent Petrosian magnitudes. This shifts many of the failed cases back to the dimmer

Petrosian magnitude bins and smooths out the distribution of failed galaxies at the bright

end. As a result, the failure rate at the bright end is substantially lower when viewed in

Petrosian magnitudes. The failure rate increases roughly linearly between –23 and –25 mag

from about 10 to 30 per cent rather than increasing to 80 per cent as shown in Figure 6.1.

The percentage of failed cases in the magnitude range –23 to –22 also increases. This shows

that a small failure rate in the dimmer bins (magnitudes between –23 and –22) is causing
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6.1 Examination of flags with basic observables

a substantial contribution to the number of galaxies in the brighter bins (brighter than

–23). However, these failed cases far outnumber the legitimate galaxies in the brightest

bins causing the apparent failure rate to approach or exceed 50 per cent.

The occurrence of two-component models is also moderately higher in the magnitude

bins brighter than –23 when viewed in Petrosian magnitudes. The recent works of Mosleh

et al. (2013) and Davari et al. (2014) report improved fitting and recovery of magnitude

and radius when using two-component models for nearby elliptical galaxies (as opposed to

galaxies at z ∼ 1). Huang et al. (2013) also provide evidence for using three components

when fitting well-resolved elliptical galaxies (requiring resolution substantially better than

1 kpc). The question of exactly how to interpret such an additional component is more

difficult, caution is advised against a simple bulge+disc interpretation of these galaxies.

Chapter 8 further discusses this issue.

6.1.3 Behavior with apparent and absolute half-light radius

Figure 6.1 and 6.2 also show the behavior of the percentage of our component categories with

respect to the total absolute half-light radius derived from the Ser-Exp fits by measuring

the half-light radius of the total profile (second row, right). Here, the expected trends

in physical size (larger physical size should be dominated by bulge galaxies) are observed.

When observing in apparent size (second row, left), the incidence of two-component galaxies

increases with smaller apparent size and peaks at 1.5 arcsec, above the half-width at half-

maximum (HWHM) of the PSF (which is about 0.7 arcsec in the r band). At these sizes,

the percentage of discs drops substantially while the percentage of bulges remains constant.

The shift in the percentage of galaxy types at small half-light radii is consistent with

an interpretation that the observed shift to two-component galaxies is due to observational

effects of the magnitude limit on the distribution of galaxies rather than systematics in the

fitting. For example, Figure 6.1 shows that the peak of the pure disc sample is near 5 kpc

in size. This is near the typical size of late-type discs for galaxies at –21 r-band Petrosian
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6. INTERNAL COMPARISONS AND CONSISTENCY CHECKS

magnitude in the SDSS sample (see Figures 5 and 6 of Shen et al. 2003). The –21 magnitude

also corresponds to the peak of the disc galaxy distribution in Figure 6.2. When this size

(5 kpc) is translated to an apparent size at z ≈ 0.05 the expected size of these disc galaxies

would be nearly 4 arcsec, well above the sizes where this effect occurs. Even at z ≈ 0.15,

which is higher redshift than approximately 80 per cent of our sample, the expected size of

these disc galaxies would be about 2 arcsec. Therefore, it is reasonable not to expect many

disc galaxies below 2 arcsec where the drop in pure disc systems occurs.

Even if such a drop in disc galaxies was believed to be fitting bias, PSF effects have been

shown to set in near the HWHM of the PSF (see Chapter 6.3 for justification and further

discussion). The drop between 1 and 2 arcsec is above the HWHM of the PSF where sizes

are potentially biased by the PSF.

A similar examination of bulge galaxies versus two-component galaxies is less conclusive.

Both groups (bulge and two-component) should be present at the smaller radii (below 2

arcsec).

Further examination of the B/T of the two-component and pure bulge galaxies is shown

in Figure 6.3. The median B/T as a function of the fitted total half-light radius for pure

bulge galaxies (left) and two-component galaxies (right) is shown. Symbols show median

values. 68 and 95 per cent contours are plotted as dashed and dot-dashed lines. Errorbars on

the median values represent 95 per cent confidence intervals (CI) obtained from bootstrap

resampling.

B/T increases to a median value of 0.6 at small radii versus median values of 0.4 in the

larger apparent radii bins. The fitted B/T of the Ser-Exp model for pure bulge galaxies

also drops from ≈ 0.85 to ≈ 0.75 in the smallest radii bins. This indicates a possible

bias in our catalog of preferentially classifying apparently small galaxies as two-component

galaxies with moderately high (0.6-0.8) B/T due to effects of the PSF. We examine bias

due to the PSF further in Chapter 6.3. Here, we caution the reader that there may be some

classification bias preferring two-component fits at small sizes.
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Figure 6.3: Symbols show median B/T as a function of the fitted total half-light radius for

pure bulge galaxies (left) and two-component galaxies (right). 68 and 95 per cent contours are

plotted as dashed and dot-dashed lines. Errorbars on the median values represent 95 per cent

CI obtained from bootstrap resampling. The B/T of pure bulges drops as the apparent size of

the galaxy decreases. At the same time, the B/T of the two-component galaxies increases, sug-

gesting the ability to distinguish one- and two-component galaxies is reduced at small apparent

size.
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6.1.4 Behavior with axis ratio

Figure 6.1 and 6.2 also show the distribution of total axis ratios derived from the Ser-Exp

fits by measuring the axis ratio of the total profile for the fitted galaxies in our catalog

(bottom left). If the flagging properly identifies pure bulge systems, we would expect to see

pure bulge systems concentrated near axis ratios approaching 1 since early-type galaxies

are ellipsoidal. Lower values of axis ratio should be dominated by pure discs and two

component systems if these categories properly identify late-type galaxies. Figure 6.1 shows

this behavior. Figure 6.2 also shows that the peak of the bulge galaxy distribution is near

0.8 with few galaxies at small axis ratios.

6.1.5 Behavior with bulge Sérsic index

Figure 6.1 and 6.2 also show the distribution of bulge Sérsic index derived from the Ser-Exp

fits to galaxies in our catalog (bottom right). Figure 6.1 shows that two-component galaxies

dominate the objects fitted with bulge indexes between 1 and 4. Galaxies with lower(higher)

bulge indexes tend to be classified as pure disc(bulge) galaxies. Figure 6.2 also shows similar

behavior.

However, the reader should be cautioned that interpretation of these plots is complicated

by the fact that the bulge Sérsic index is used during classification. Also, the B/T of these

galaxies is not considered in this plot. Many galaxies, especially with low bulge index, have

low B/T, making the observed bulge index unreliable.

6.1.6 Interpretation of the two-component galaxies

The distribution of bulge and disc galaxies appear to make sense when the distributions are

examined with respect to basic observables like magnitude, size, and axis ratio. Therefore, it

may be appropriate to associate our bulge and disc classes with early and late-type galaxies,

respectively. Further evidence for this claim is discussed in Chapter 8.
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6.2 g- and i-band results

Chapter 4 showed that accurate measurement of the total size and magnitude can be

accomplished without the components necessarily having physical interpretation. It also

showed that PyMorph can reliably recover Ser and Exp components of two-component

models down to component magnitudes of roughly 19 in the r band. However, accuracy of

the fitted components does not guarantee that the components represent physical bulges

or discs. Indeed interpretation of the Ser-Exp subcomponents as true bulge and disc com-

ponents is complicated. The Ser and Exp components of two-component Ser-Exp fits will

be referred to as ‘bulge’ and ‘disk’ throughout this work. The reader should be cautioned

that there are many cases where this simple interpretation does not make sense. Additional

discussion is in Chapter 8.

6.2 g- and i-band results

Figure 6.4 shows the apparent magnitude (left-hand side) and absolute magnitude distri-

bution (right-hand side) of the g- (top row), r- (middle row), and i-band (bottom row)

for galaxies in the catalog. The figure shows the bin-by-bin percent of galaxies of each

type; Disk (blue points, labeled as “disks”), Bulge (red points, labeled as “bulges”), Two-

Component (green points, labeled as “2com”), Problematic Two-Component (yellow points,

labeled as “bad 2com”), Failed Galaxies (black points, labeled as “bad”), according to the

categorical flags. The good two-component models are also separated into those with Sérsic

indexes below 8 and those galaxies with acceptable fits but the Sérsic index of the bulge

hits the n = 8 boundary of the parameter space (cyan points, labeled as “n8”) to check for

any bias resulting from the restriction on the fitted Sérsic index. In the background of the

plot, the total distribution of galaxies is plotted with respect to the parameter used to bin

the data.

The r- and i-bands appear similar in behavior, while the g-band shows increased contri-

butions from pure disk galaxies at the peak of the apparent magnitude distribution. This

increased contribution is also reflected in the absolute magnitude distribution where there
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Figure 6.4: The magnitude distribution of bin-by-bin percent of galaxies of each type; Disk

(blue points, labeled as “disks”), Bulge (red points, labeled as “bulges”), Two-Component

(green points, labeled as “2com”), Problematic Two-Component (yellow points, labeled as “bad

2com”), Failed Galaxies (black points, labeled as “bad”), according to our categorical flags. We

have also separated the good two-component models into those with Sérsic indexes below 8 and

those galaxies with acceptable fits but the Sérsic index of the bulge hits the n = 8 boundary

of the parameter space (cyan points, labeled as “n8”) to check for any bias resulting from the

restriction on the fitted Sérsic index. In the background of the plot, we plot the total distribution

of galaxies with respect to the parameter used to bin the data.
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6.2 g- and i-band results

is a smaller region with 2-component models dominating and the range of magnitudes with

majority pure disk population is larger. At 18.5 or dimmer in the g-band, two-component

models begin to dominate. A similar trend is not seen in the dimmer r- or i-band fits.

This may be a flagging or fitting systematic. However, it may also be real signal. Galax-

ies with 18.5 or dimmer g-band magnitude are definitely brighter in the redder bands (if

this were not true, then the galaxy would not have been selected as part of the sample).

These redder galaxies are more likely to contain bulge components and bulge components

are generally Ser-like rather than Exp-type profiles. So it is reasonable to expect that the

dimmer g-band objects would show an increasing fraction of profiles containing bulges. The

absolute magnitude distribution of the g-band supports the argument made here that there

is not a negative systematic effect caused by the change in proportions of galaxy types at

the dimmer g-band apparent magnitudes.

Figure 6.5 shows the apparent half-light radius (left-hand side) and physical half-light

radius distribution (right-hand side) of the g- (top row), r- (middle row), and i-band (bottom

row) for galaxies in the catalog. The figure is presented in the same way as Figure 6.4. All

the apparent radii exhibit similar behavior with smaller radii being dominated by two-

component models. This is possibly a systematic due to the sizes approaching the PSF size

which is discussed in Chapter 6.3. The physical half-light radii are also similar in behavior

across the bands. The bulges, disks, and 2com models appear to have the same behavior

across the bands with only the overall relative scaling changing between bands.

Figure 6.6 shows the axis-ratio (left-hand side) and bulge Sérsic index (right-hand side)

of the g- (top row), r- (middle row), and i-band (bottom row) for galaxies in the catalog. The

figure is presented in the same way as Figure 6.4. Again, all bands show similar behavior.

Figures 6.4, 6.5, and 6.6 show that the fitting is quite similar in distribution across the

bands with a smooth transition from having more disks in the g-band to fewer disks in the

g-band. However, in addition to stability across the entire sample, single galaxies should

show strong correlation across the three fits.

175



6. INTERNAL COMPARISONS AND CONSISTENCY CHECKS

0 2 4 6 8

rhl,g,tot,arcsec

25000

50000

75000

100000

T
o
ta

l
g
a

la
x
ie

s

0.2

0.4

0.6

0.8

1.0

fr
a

ct
io

n
o
f

g
a

la
x
ie

s

0.0 2.5 5.0 7.5 10.0

Rhl,g,tot,kpc

15000

30000

45000

60000

T
o
ta

l
g
a

la
x
ie

s

0.2

0.4

0.6

0.8

1.0

fr
a

ct
io

n
o
f

g
a

la
x
ie

s

0 2 4 6 8

rhl,r,tot,arcsec

30000

60000

90000

120000

T
o
ta

l
g
a

la
x
ie

s

0.2

0.4

0.6

0.8

1.0

fr
a

ct
io

n
o
f

g
a

la
x
ie

s

0.0 2.5 5.0 7.5 10.0

Rhl,r,tot,kpc

15000

30000

45000

60000

T
o
ta

l
g
a

la
x
ie

s

0.2

0.4

0.6

0.8

1.0

fr
a

ct
io

n
o
f

g
a

la
x
ie

s

0 2 4 6 8

rhl,i,tot,arcsec

30000

60000

90000

120000

T
o
ta

l
g
a

la
x
ie

s

0.2

0.4

0.6

0.8

1.0

fr
a

ct
io

n
o
f

g
a

la
x
ie

s

0.0 2.5 5.0 7.5 10.0

Rhl,i,tot,kpc

15000

30000

45000

60000

T
o
ta

l
g
a

la
x
ie

s

0.2

0.4

0.6

0.8

1.0

fr
a

ct
io

n
o
f

g
a

la
x
ie

s

bulges

disks

2com

bad 2com

bad

n8

Figure 6.5: The size distribution of bin-by-bin percent of galaxies of each type; Disk (blue

points, labeled as “disks”), Bulge (red points, labeled as “bulges”), Two-Component (green

points, labeled as “2com”), Problematic Two-Component (yellow points, labeled as “bad

2com”), Failed Galaxies (black points, labeled as “bad”), according to the categorical flags.

Good two-component models are separated into those with Sérsic indexes below 8 and those

galaxies with acceptable fits but the Sérsic index of the bulge hits the n = 8 boundary of the

parameter space (cyan points, labeled as “n8”) to check for any bias resulting from the restric-

tion on the fitted Sérsic index. In the background of the plot, the total distribution of galaxies

is plotted with respect to the parameter used to bin the data.
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Figure 6.6: The total axis-ratio and bulge Sérsic index distribution of bin-by-bin percent

of galaxies of each type; Disk (blue points, labeled as “disks”), Bulge (red points, labeled as

“bulges”), Two-Component (green points, labeled as “2com”), Problematic Two-Component

(yellow points, labeled as “bad 2com”), Failed Galaxies (black points, labeled as “bad”), ac-

cording to the categorical flags. The good two-component models are also separated into those

with Sérsic indexes below 8 and those galaxies with acceptable fits but the Sérsic index of the

bulge hits the n = 8 boundary of the parameter space (cyan points, labeled as “n8”) to check

for any bias resulting from the restriction on the fitted Sérsic index. In the background of the

plot, the total distribution of galaxies is plotted with respect to the parameter used to bin the

data.
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Figure 6.7 shows the breakdown of the fitting categories across two bands at a time.

Each cell of the matrix shows the fraction of the entire catalog that is classified in the

combination of bands and fitting categories denoted by the axes of the matrix (e. g. the

top left cell of the first matrix shows that 12 percent of the sample is classified as “pure

bulge” in both the g- and r-band fits). The majority of galaxies (≈ 65 − 70 per cent are

in the top left 3×3 quadrant of each matrix, indicating that the majority of galaxies are

similarly identified across the bands. Also, the bulge-disk and disk-bulge cells are below

0.5 per cent (indicated by the 0.00 value) showing that few or no galaxies switch directly

from bulge to disk categories, which would be unexpected. Additionally, the diagonal cells

contain between 50 and 60 percent of the sample, further indicating that there is stability

in the flagging classification used in this work.

6.3 PSF effects on bulge radius

The PSF limits the ability to accurately recover component radii and Sérsic index when

the PSF is larger than the component in question. Gadotti (2008) examined the effects of

low resolution on galaxy parameters by performing detailed fitting of 17 nearby (z ∼ 0.005)

nearly face-on (b/a>0.9) SDSS disc galaxies. The galaxies were then redshifted to z ∼ 0.05

and refit. Figure 13 in Gadotti (2008) and the accompanying discussion shows that bulge

sizes smaller than 80 per cent of the seeing radius (or equivalently 80 per cent of the PSF

HWHM) can be biased high (by as much as 50 per cent). Bulge Sérsic indexes can also be

suppressed for values greater than 2 (by as much as 1), and B/T can be biased high (by as

much as 0.1). However, the authors caution against extending these expectations to higher

redshifts as the physical scale of the PSF grows substantially with redshift.

Gadotti (2009) studied a larger sample of galaxies compared to Gadotti (2008) (∼ 3000

compared to 17 galaxies) with a wider range of types (including ellipticals). The decision

of whether to fit a second component was based on individual inspection of the radial light

profile. Figure 7 in Gadotti (2009) shows the distribution of the quantity (bulge radius/PSF

178



6.3 PSF effects on bulge radius

b
u

lg
e
s

d
is

k
s

2
co

m

b
a

d
2

co
m

b
a

d

n
8

r-band

bulges

disks

2com

bad 2com

bad

n8

g
-b

a
n

d

0.12 0.00 0.04 0.01 0.01 0.00

0.00 0.20 0.06 0.02 0.01 0.02

0.04 0.02 0.20 0.02 0.01 0.00

0.01 0.01 0.03 0.04 0.00 0.01

0.02 0.01 0.01 0.01 0.03 0.00

0.00 0.00 0.01 0.01 0.00 0.01

b
u

lg
e
s

d
is

k
s

2
co

m

b
a

d
2

co
m

b
a

d

n
8

i-band

bulges

disks

2com

bad 2com

bad

n8

g
-b

a
n

d

0.11 0.00 0.03 0.01 0.01 0.00

0.00 0.17 0.07 0.03 0.02 0.02

0.05 0.02 0.18 0.02 0.01 0.00

0.02 0.01 0.03 0.04 0.00 0.01

0.01 0.01 0.01 0.01 0.03 0.00

0.00 0.00 0.01 0.01 0.00 0.01

b
u

lg
e
s

d
is

k
s

2
co

m

b
a

d
2

co
m

b
a

d

n
8

i-band

bulges

disks

2com

bad 2com

bad

n8

r-
b
a
n

d

0.14 0.00 0.03 0.01 0.01 0.00

0.00 0.18 0.03 0.02 0.01 0.01

0.04 0.02 0.25 0.03 0.01 0.01

0.01 0.01 0.02 0.05 0.01 0.01

0.01 0.01 0.01 0.00 0.03 0.00

0.00 0.00 0.01 0.01 0.00 0.02

Figure 6.7: The confusion matrix for each combination of bands and flagging categories. The

number in each cell denotes the fraction of the catalog classified by the combination of categories

and bands denoted on the axes. For example, the top left cell of the first matrix shows that 12

percent of the sample is classified as “pure bulge” in both the g- and r-band fits. All possible

combinations of bands are shown. The majority of galaxies (≈ 65− 70 per cent are in the top

left 3×3 quadrant of each matrix, indicating that the majority of galaxies are similarly identified

across the bands. Also, the bulge-disk and disk-bulge cells are below 0.5 per cent (indicated by

the 0.00 value) showing that few or no galaxies switch directly from bulge to disk categories,

which would be unexpected.
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Figure 6.8: The comparison of Ser-Exp bulge circularized effective radius to the PSF HWHM.

15 per cent(24 per cent) of bulges lie below the cut of 0.8×HWHM(1.0×HWHM).
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6.3 PSF effects on bulge radius

HWHM) for galaxies with a detected bulge component. The authors find that 3 per cent

of their sample are bulges that are smaller than 80 per cent HWHM and 10 percent are

smaller than the HWHM. Bernardi et al. (2014) found similar results. However, excluding

galaxies below the 80 per cent level or even the more conservative HWHM do not change

the measurements of physical bulge sizes made by either group.

Figure 6.8 shows the comparison of the bulge radius to PSF size for all Ser-Exp bulges

in our catalog. 15 per cent (24 per cent) of bulges lie below 0.8×HWHM(1.0×HWHM).

The percentage of poorly resolved bulges is somewhat higher than either Gadotti (2009)

or Bernardi et al. (2014). For the pure bulge galaxies (i. e., flag bit 1 set), only 2 per cent

(3 per cent) of pure bulge galaxies have radii smaller than 0.8×HWHM (1.0×HWHM).

Including pure bulge galaxies and two-component galaxies with B/T>0.5 (i. e., Ser-Exp

fits with flag bit 1 set or with B/T>0.5 and flag bit 10 or 14 set), 7 per cent (12 per cent)

of the bulges are smaller than 0.8×HWHM (1.0×HWHM). These numbers are still higher,

but in closer agreement with both Gadotti (2008) and the sample used in Bernardi et al.

(2014). In contrast, 28 per cent (41 per cent) of two-component galaxies with B/T≤0.5 have

bulges smaller than 0.8×HWHM (1.0×HWHM). The work of Gadotti (2009) suggests that

a significant proportion of our Ser-Exp bulge components with B/T≤ 0.5 are potentially

biased to larger sizes and brighter magnitudes by poor resolution. This must be considered

when looking at the bulge components of galaxies with significant discs. We include the

PSF size in the catalog so that this consideration can be made during future analysis.

Chapter 4 also showed that the effective bulge radius for bulges smaller than 1 arcsec

is overestimated by ∼ 5 per cent ±20 per cent. The simulations reflect a tendency to

overestimate bulge radius as reported in Gadotti (2008). There is no correction for this

effect here, but user should be aware that small bulges (smaller than the HWHM) are likely

biased larger and brighter. This effect likely contributes to the increase in two-component

galaxies at small apparent sizes as discussed in Chapter 6.1.3.
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6.4 Comparison of the Ser and Ser-Exp models

This work favors the Ser-Exp model for both deciding on the structure of the galaxies (i. e.,

one versus two components) and for estimating the total size and magnitude. Figure 6.9

shows comparisons of fitted magnitude (top row) and half-light radius (bottom row) between

the Ser and Ser-Exp fits. The top row shows comparisons of the fitted magnitude as

a function of apparent Petrosian magnitude (left), absolute Petrosian magnitude (centre),

and Ser-Exp B/T (right). Magnitude differences are reported as Ser-Exp – Ser magnitude,

therefore a positive magnitude indicates a brighter Ser fit relative to the corresponding

Ser-Exp fit. Median values for each bin are plotted in red with the errorbars representing

a 95 per cent bootstrap CI on the median. The 68 per cent contours of the data are plotted

as blue dashed lines. The density of points is plotted in gray-scale with the low end of the

density representing 1 per cent of the maximum density. Bins with a density below the

minimum density are plotted in white.

Analogous plots are presented for the half-light radius in the second row. In all the plots

presented here, we bin galaxies by Petrosian magnitude in order to make consistent compar-

isons across the different models. The Petrosian magnitude provides a model-independent

measure of the magnitude so that any comparison has the same distribution of galaxies

among the bins.

We observe larger differences in the magnitude at brighter apparent magnitude, brighter

absolute magnitude, and intermediate B/T values. These differences are consistent with the

effects seen in the simulations in Chapter 4. The bias is caused by inappropriately fitting

a one-component model to a more complicated light profile. This type of under-fitting

was shown to bias measurements of the Ser magnitude to be brighter than the combined

Ser-Exp magnitude measured from the same galaxy. This effect is also reported by Mosleh

et al. (2013) and Davari et al. (2014).

Figure 1 of Bernardi et al. (2013) also shows the difference in magnitudes for the Ser

and Ser-Exp fits of this work as a function of absolute magnitude. The figure also shows
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Figure 6.9: The comparison of Ser fit to Ser-Exp fit for galaxies in this work. The top

row shows comparisons of magnitude ( Ser-Exp – Ser ) as a function of apparent Petrosian

magnitude, absolute Petrosian magnitude, and B/T. The bottom row shows comparisons of

half-light radius as a function of apparent Petrosian magnitude, absolute Petrosian magnitude

and the fitted Ser-Exp B/T. At the low and high B/T, the bias is nearly 0 with smaller scatter.

In the intermediate B/T values where a single-component model would be expected to fit poorly,

the bias and scatter are larger.
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Figure 6.10: The comparison of Ser fit to Ser-Exp fit for galaxies in this work. The top

row shows comparisons of magnitude ( Ser-Exp – Ser ) as a function of apparent Petrosian

magnitude, absolute Petrosian magnitude, and B/T. The bottom row shows comparisons of

half-light radius as a function of apparent Petrosian magnitude, absolute Petrosian magnitude

and the fitted Ser-Exp B/T. At the low and high B/T, the bias is nearly 0 with smaller scatter.

In the intermediate B/T values where a single-component model would be expected to fit poorly,

the bias and scatter are larger.
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Figure 6.11: The comparison of Ser radius to the Ser-Exp bulge radius as a function of

B/T for galaxies in this work. As B/T increases, the Ser-Exp bulge radius approaches the Ser

radius as expected. As B/T approaches 0, the ratio approaches 0 indicating that the bulge is

shrinking in size with magnitude as would be expected if the bulges are properly fitting the

central bulge of the galaxy. Median values for each bin are plotted in red with the errorbars

representing a 95 per cent bootstrap CI on the median. The 68 per cent contours of the data

are plotted as blue dashed lines. The density of points is plotted in gray-scale with the low end

of the density representing 1 per cent of the maximum density. Bins with a density below the

minimum density are plotted in white.

the comparison of the Ser fit presented in this work to the Ser fits of S11 and the SDSS

magnitudes. The Ser magnitudes from this work are systematically brighter by up to 0.5

mag as you approach –24. This difference leads to large differences in the bright end of

the LF. However, consistent difference of the Ser magnitudes is not an indication of bias in

our fits because Kravtsov et al. (2014) showed that the magnitudes reported here are more

consistent with their results than either SDSS or S11.

The bottom row of Figure 6.9 shows comparisons of half-light radius between the Ser

and Ser-Exp fits. The plot shows the fractional difference in radii. For example, a value

of 0 indicates no disagreement between the compared radii. A value of –1 would indicate

that the Ser model is 100 per cent larger compared to the Ser-Exp model. There is a

difference of 5 per cent in radius and 0.05 mag at the intermediate B/T values. The lowest

and highest B/T values show both agreement in the median difference between Ser and

Ser-Exp models as well as decreasing scatter.

Figure 6.11 also shows comparisons of bulge radius for the Ser and Ser-Exp fits. The
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Ser-Exp bulge radius gets smaller with decreasing B/T relative to the single-component

Ser radius, as one might expect if the Ser component of the Ser-Exp model is fitting the

central bulge of the galaxy. While this shows that the bulges are mostly compact, we discuss

the correspondence between the Ser component of the Ser-Exp fit and the central bulge of

galaxies further in Chapters 7.5 and 8.
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Chapter 7

Comparisons to literature

In this section, we show several comparisons to the literature. We also direct the reader

to the work presented in Chapter 4, in which simulations were used to test and verify the

accuracy of the fitting code. Although the flagging was not applied to these simulations,

the simulations demonstrate the accuracy of the fitting algorithm, particularly for total

magnitude and radius.

We describe the external catalogs used for comparison in Chapter 7.1. We compare

the fits of SDSS, LG12, S11 and Mendel et al. (2014, hereafter Men14) to our fits where

appropriate. Chapter 7.2 compares the deV fits to SDSS and LG12. Chapter 7.3 compares

the Ser fits to S11 and LG12 Ser fits. Chapter 7.4 compares the deV-Exp fits to S11 and

LG12 deV-Exp fits. Chapter 7.5 compares the Ser-Exp fits to S11 Ser-Exp fits. Chapter 7.6

presents a final comparison using the magnitudes measured using the preferred model of this

work, Men14, and S11 to commonly used SDSS magnitudes (i. e., cModel and Petrosian).

7.1 External catalogs used for comparison and analysis

We use the fits of S11, SDSS DR7, and LG12 to make comparisons. S11 carried out fits of

SDSS galaxies with Ser, deV-Exp, and Ser-Exp models using the gim2d program (Simard
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et al. 2002). gim2d uses the Metropolis search algorithm (Metropolis et al. 1953) to optimize

the model parameters rather than a gradient descent algorithm similar to Galfit. S11 also

used SExtractor to mask out pixels dominated by neighbor galaxy light, which they

refer to as ‘SEXTDEBL,’ or SExtractor deblending to separate the light of neighboring

objects from the target galaxy rather than the simultaneous fitting used in this work. They

also chose a minimum number of pixels to use for sky estimation (20 000 pixels). The

sky was fixed at this level during fitting rather than fitting the sky brightness as a free

parameter. Fixing the sky was shown to provide the better fits than a fitted sky level for

gim2d (Häussler et al. 2007).

Additionally, S11 provide a statistical probability of a given galaxy being Ser, deV-Exp,

or Ser-Exp based on an F-test. The F-test statistic is used to analyze if increasing the

number of free parameters in the fit is statistically justified. This probability is used to

select the preferred ‘best-fitting’ model from their data. S11 report two F-test probabilities,

the PpS probability, which is the probability that a one-component Ser model is preferred

to a two-component deV-Exp model, and the Pn4 probability, which is the probability that

a two-component Ser-Exp model is preferred over a two-component deV-Exp model when

attempting to explain the distribution of light in the observed galaxy.

Men14 re-analyzed the S11 fits and classified the galaxies by a different method. Men14

used the radial light profile of the deV-Exp fit to separate galaxies into (1) bulge-dominated

galaxies, (2) Exp dominated galaxies, (3) two-component galaxies, and (4) non-physical or

unclear fits that do not fall into the previous categories.

LG12 provide an additional comparison to this work. The authors used a sample re-

stricted to more nearby galaxies (0.003< z <0.05) using SDSS DR8 (Aihara et al. 2011)

data. The catalog contains deV-Exp fits (referred to as ‘nb4’ in LG12), pseudo-bulge (expo-

nential bulge + exponential disc, referred to as ‘nb1’ in LG12), deV (referred to as ‘dvc’ in

LG12), Ser (referred to as ‘ser’ in LG12), and exponential disc or Exp (referred to as ‘exp’
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7.1 External catalogs used for comparison and analysis

in LG12) fits for 71 825 galaxies from the SDSS. The LG12 terminology is used for their fits

throughout this paper to make it more clear which sample we are addressing.

In addition to fitting the models listed above, LG12 also give a classification of the ‘best-

fitting’ model chosen from the five models they fit. LG12 assign a ‘best-fitting’ model using

a combination of statistical and other metrics. For Exp models, statistical insignificance of

the bulge and quality tests on the bulge magnitude, shape, and size is used to select Exp

models rather than the Ser, nb1, or nb4 models. deV, or dvc, models are selected in a similar

manner. Additional galaxies are selected as deV galaxies based on the colors and shapes

of the disc in the nb4 fits. nb1 and nb4 galaxies are chosen from the remaining galaxies

using the statistical significance of the bulge and quality tests on the fitting parameters

intended to identify bad fits (i. e., tests on bulge ellipticity and bulge size relative to disc

size). Remaining galaxies that do not satisfy any of these criteria are given the Ser model

as the ‘best-fitting’ model.

LG12 report an absolute magnitude for each galaxy, which includes K-correction, ex-

tinction correction, and cosmological effects. While the assumed cosmology, the extinction

correction, and the K-correction software used in this work are the same as those of LG12,

the K-correction may be slightly different depending on the choice of input magnitudes

(i. e., the Petrosian, SDSS model magnitudes, or fitted magnitudes can be used to calculate

a K-correction). Also the zeropoint of the magnitudes may vary from the values used here

due to the small calibration differences between SDSS DR7 and DR8. Differences in the ze-

ropoint calibration are expected because the calibration procedure (the ‘Ubercal’ algorithm;

Padmanabhan et al. 2008) is a global algorithm, using all of the imaging data to determine

the overall calibration rather than just a single frame. Since the volume of imaging data

increased between DR7 and DR8, this can cause slight differences in the calibration.

The overlap of LG12 and this work contain galaxies at the low-redshift end of the galaxy

distribution in our catalog. These galaxies generally have better resolution and are brighter

than the full sample of our catalog, so agreement between LG12 and this work only provide
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a lower bound on the bias and scatter of our full catalog. However, this comparison provides

a test of the most optimal fitting conditions where resolution effects are less of a concern.

All plots presented here are binned by Petrosian magnitude in order to make consistent

comparisons across all the works. The Petrosian magnitude provides a model-independent

measure of the magnitude so that any comparison has the same distribution of galaxies

For the analysis, the ‘best-fitting’ models given by S11 and LG12 are treated as the most

appropriate models to use in comparison. Therefore, the fits of this work are compared to

the best fits of the external works (e. g. deV-Exp fits from this work are compared to galaxies

identified as deV-Exp by S11 or to galaxies identified as ‘nb4’ by LG12). This will reduce

the bias introduced by fitting an incorrect model to the galaxy since we will be comparing

the fits with the highest confidence of being correct.

Chapters 7.6 and 8 compare the S11, Men14, and LG12 classifications to the choice of

best model based on the flagging presented in Chapter 5.

7.2 The deV fits

The SDSS pipeline computes PSF-convolved 2D deV fits in addition to other parametric

and non-parametric measurements. The SDSS fits are truncated at 7 reff to go smoothly

to zero beyond 8 reff and also employ some softening of the profile within r = reff/50

(Stoughton et al. 2002). No truncation of the profile is imposed upon the fits presented in

this paper. For a deV profile, 94 per cent of the light is contained within 8 reff and 93 per

cent of the light is contained within 7 reff . So, an offset between the deV model fit by SDSS

and the deV fit presented here is expected. If different pipelines recover the same fitting

parameters for sky, radius, axis ratio, etc. the expected offset due to the profile truncation

is 0.0716 mag, assuming that half the light between 7 and 8 reff , where the softening takes

place, is also truncated.

For purposes of a fair comparison, we correct SDSS magnitudes by making the deV

magnitudes of SDSS brighter by 0.07 mag. LG12 also truncate the deV profile following the
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Figure 7.1: A comparison of fitted deV magnitude from this work, SDSS, and LG12 as a

function of apparent Petrosian magnitude (top row) and absolute Petrosian magnitude (bot-

tom). SDSS deV fits and PyMorph deV fits are compared for the 217131 galaxies in SDSS

that are best fitted by the deV profile as identified by fracdev r≥ 0.8. LG12 comparisons use

the ∼ 9 000 galaxies identified as ‘dvc’ galaxies using the ‘best model’ parameter of LG12. We

also remove all poorly fitted galaxies with flag bit 20 set (i. e., galaxies with fitting problems).

This removes 2.82 per cent of the deV sample. Magnitude comparisons are shown as the first

model – the second model. For example, the top-left panel compares PyMorph with SDSS,

so magnitude differences are quoted as PyMorph – SDSS and negative values indicate that

PyMorph produces a brighter magnitude. Median values for magnitude bins are plotted in

red with the errorbars representing a 95 per cent bootstrap CI on the median. The 68 per

cent contours of the data are plotted as blue dashed lines. The density of points is plotted in

gray-scale with the low end of the density representing 1 per cent of the maximum density. Bins

with a density below the minimum density are plotted in white. SDSS and PyMorph agree

within 0.05 across the magnitude range, except at the bright end where we are consistently

brighter than SDSS. LG12 exhibit an offset to both SDSS and our fits of up to 0.05.
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Figure 7.2: Similar to Figure 7.1, but now also including the comparison of SDSS with LG12

galaxies (far right column). The panels show the difference in magnitude and radius as a

function of apparent or absolute Petrosian magnitude. The offsets are discussed in the main

text.
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Figure 7.3: Similar to Figure 7.1, but now also including the comparison of SDSS with LG12

galaxies (far right column). The panels show the difference in magnitude and radius as a

function of apparent or absolute Petrosian magnitude. The offsets are discussed in the main

text.
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Figure 7.4: Similar to Figure 7.1, but now also including the comparison of SDSS with LG12

galaxies (far right column). The panels show the difference in magnitude and radius as a

function of apparent or absolute Petrosian magnitude. The offsets are discussed in the main

text.
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7.2 The deV fits

same prescription as SDSS. However, LG12 do not soften the centre of the profile within

r = reff/50. A similar offset is expected for the LG12 ‘dvc’ fits, so we apply the same

correction of 0.07 mag. No modification is made to the radii of the fits or any other fitting

parameters.

Figure 7.1 shows a comparison of fitted deV magnitude from this work, SDSS, and LG12

as a function of apparent Petrosian magnitude (top row) and absolute Petrosian magnitude

(bottom). SDSS deV fits and PyMorph deV fits are compared for the 217131 galaxies in

SDSS that are best fit by the deV profile as identified by fracdev r≥0.8. LG12 comparisons

use the∼ 9 000 galaxies identified as ‘dvc’ galaxies using the ‘best model’ parameter of LG12.

We also remove all galaxies with flag bit 20 set (i. e., galaxies with fitting problems). This

removes 2.82 per cent of the deV sample.

Magnitude comparisons are shown as the first model minus the second model. For

example, the top-left panel compares PyMorph with SDSS, so magnitude differences are

quoted as PyMorph – SDSS and negative values indicate that PyMorph produces a

brighter magnitude. Median values for magnitude bins are plotted in red with the errorbars

representing a 95 per cent bootstrap CI on the median. The 68 per cent contours of the

data are plotted as blue dashed lines. The density of points is plotted in gray-scale with

the low end of the density representing 1 per cent of the maximum density. Bins with a

density below the minimum density are plotted in white.

In the left-hand column of Figure 7.1, PyMorph deV magnitudes agree with SDSS with

a scatter of 0.05 (using 68 per cent contours) across most of the magnitude range but show

a systematic increase to about 0.07 mag brighter than SDSS values at the bright end of the

apparent magnitude range (top row, left-hand column). While SDSS and this work differ at

the bright end, the majority of the galaxies show no systematic bias. In contrast, LG12 have

an offset of −0.03 to −0.05 across the entire magnitude range (centre column of Figure 7.1).

LG12 comment on this systematic difference in their paper noting a −0.025 mag offset in

their deV fits to SDSS galaxies with fracdev r>0.5 as well as a ∼ 9 per cent difference

195



7. COMPARISONS TO LITERATURE

in the fitted radii. We investigated the source of this offset, but can find no reason for it.

Although the zeropoint of DR8 and DR7 vary up to 0.2 mag, correcting for this effect does

not reduce the offset.

Median differences in the measured radii are below 5 per cent when comparing LG12

and this work. The difference in radii agrees with the observed magnitude differences,

suggesting that the PyMorph fits presented here are larger and brighter compared to the

LG12 fits.

The radii in SDSS are 5 − 10 per cent smaller when compared to PyMorph. LG12

comment on this difference as well, attributing it to effects of the softening of the fitted

profile in the centre (inside reff/50) which suppresses the half-light radius in SDSS. This

cannot, however, be the source of the disagreement between LG12 and this work since

neither work implements such softening.

Figures 7.2, 7.3, and7.4 show expanded comparisons of g-, r-, and i-bands, respectively.

Looking at the third column of each figure, the comparison of LG12 with PyMorph shows

better agreement in the i-band with larger discrepancies in the bluer g-band. This effect

is explained by the choice of fitting used in LG12. The authors only fitted profiles to the

r-band data. After fitting, all parameters were fixed except for the magnitude of the profile

and then the profile was fit to the g-band and i-band data. This process biases the results

if the half-light radius or other parameters (e. g. ellipticity, Sérsic index, etc. ) change

as a function of the observed band. The PyMorph fitting allows for these changes by

independently fitting each band. As a result, the PyMorph parameters change across the

bands while the LG12 fitting parameters remain fixed. This effect appears as a trend from

over- to under-estimation as is observed in these plots.

The level of the sky in our fitting is found to be, on average, 0.25 per cent dimmer when

compared to SDSS (see also Figure 7.9 and related discussion). Sky level and the fitted

magnitude have been shown to be correlated (see Chapter 4, and references therein for a

full discussion). Bias in the sky level may explain the slight differences in magnitudes. In
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7.3 The Ser fits

Chapter 4, overestimates of sky at the level of 0.5 per cent are shown to suppress fitted Ser

magnitude by ≈ 0.1 mag. We discuss the sky brightness further in Chapter 7.3.

7.3 The Ser fits

We also compare our Ser fits to those of LG12 and S11. Figure 7.5 shows the difference

between magnitude (first row), half-light radius (second row), and Sérsic index (third row).

We compare PyMorph and S11 for the full sample (left-hand column), PyMorph and

S11 for the LG12 sample (centre column), and PyMorph and LG12 (right-hand column)

Plots are in a format similar to that of Figure 7.1. For the Ser fits we also examine the

differences in Sérsic index, nser.

For the plots presented in Figure 7.5, we select galaxies in both S11 and LG12 that are

‘best fit’ by a Ser model according to S11. We use the S11 classification in this case because

LG12 use the Ser category as a default category for fits that are not well described by the

other models they fit. The authors comment that the LG12 Ser galaxies are primarily low

Sérsic index. S11 sample a broader range of Sérsic indexes because they do not have separate

deV or Exp categories. LG12 do not mention any truncation of the Ser profile, so we do not

apply a correction here. The top-left panel of Figure 7.5 shows that the LG12 magnitudes

are offset again relative to PyMorph. Comparison with S11 (middle row, left) also show

a zero-point offset, but in the opposite direction (i. e., S11 is brighter than this work while

LG12 is fainter). In addition, there is an overall trend in S11 across the magnitude range.

The radii of S11 are also smaller at the bright end of the apparent magnitude range

when compared to this work (bottom row, centre column). This trend is reduced in the

LG12 comparison (top row, centre). The Sérsic index also displays a trend in the S11 data

(bottom row, right) that does not appear in the comparison of LG12 and this work (top row,

right). Although this trend appears to be insignificant, there are larger biases in the Sérsic

index when compared as a function of absolute magnitude. This trend was also discussed
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Figure 7.5: The difference between the Ser magnitude (first row), radius (second row), and

Sérsic index (third row). The left-hand column shows the comparison of this work and S11 for

the full sample. The centre column shows a comparison of this work and S11 for the galaxies

of the LG12, low-redshift sample. The right column show comparisons for this work and LG12.

S11 and LG12 galaxies are identified as best fit ‘ser’ models in S11. The format of the plot

is the same as Figure 7.1. The LG12 fits exhibit an offset in magnitude similar to the offset

seen in the deV fits. Differences between this work and LG12 for bright galaxies are reduced in

comparison to the S11–PyMorph comparison.
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Figure 7.6: Similar to Figure 7.5, but now also including the comparison of S11 with LG12

galaxies (far right column). The panels show the difference in magnitude, half-light radius, and

Sérsic index as a function of apparent or absolute Petrosian magnitude. Note the trends in S11

when compared to LG12 or this work. Similar trends in Sérsic index, magnitude, and radius

are not present in the comparison of this work with LG12.
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Figure 7.7: Similar to Figure 7.5, but now also including the comparison of S11 with LG12

galaxies (far right column). The panels show the difference in magnitude, half-light radius, and

Sérsic index as a function of apparent or absolute Petrosian magnitude. Note the trends in S11

when compared to LG12 or this work. Similar trends in Sérsic index, magnitude, and radius

are not present in the comparison of this work with LG12.
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Figure 7.8: Similar to Figure 7.5, but including only comparisons the LG12 fits. The panels

show the difference in magnitude, half-light radius, and Sérsic index as a function of apparent

or absolute Petrosian magnitude. S11 i-band fits were not carried out by the authors.
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Figure 7.9: The difference in the r band sky values of S11 Ser fits and our PyMorph Ser

fits shown as PyMorph – S11 (negative values indicate that PyMorph produces a dimmer

sky measurement compared to S11). The top row shows the difference between the S11 and

PyMorph Ser sky brightness as a function of the apparent Petrosian magnitude. The second

row shows the difference in sky versus absolute Petrosian magnitude. An offset in sky brightness

is observed. This difference increases with increasing brightness, suggesting that the S11 sky

values are systematically biased brighter for brighter and larger galaxies in both the observed

and absolute frame, causing a systematic bias in the r band magnitudes of S11.
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in Bernardi et al. (2014), where the authors argue that the behavior of the Sérsic Index is

consistent with systematic errors in the Sérsic index due to over subtracting sky.

Figures 7.6, 7.7, and7.8 show expanded comparisons of g-, r-, and i-bands, respectively.

Figure 7.8, showing the i-band comparisons is presented in slightly different format because

the S11 catalog does not provide i-band fits and no comparisons can be made as a result.

This figure is equivalent to the third column of the g- and r-band plots. Looking at the third

column of each figure, the comparison of LG12 with PyMorph shows similar systematic

trends across the bands as the Ser fits. The trend is most apparent in the Sérsic index

where better agreement is apparent in the r-band with larger discrepancies in the bluer

g-band and redder i-band.

We used the S11 sky values (Simard, private communication) to examine the effect

of the sky on the Ser fits. PyMorph prefers sky levels about 0.25 per cent lower than

that of S11. S11 sky brightness is similar to SDSS. Figure 7.9 shows a comparison of S11

and PyMorph sky levels as a function of apparent (top) and absolute (bottom) Petrosian

magnitude. There is an offset in sky level of approximately 0.25 per cent, similar to the

SDSS. However, this difference increases in the Ser fits with PyMorph sky levels appearing

up to 1 per cent dimmer in the brightest apparent and absolute magnitude bin.

The simulations in Chapter 4 showed that PyMorph estimates the sky with a bias ∼ 0.1

per cent which is a factor of ≈ 2 smaller than the observed difference seen for the SDSS

measurements. Furthermore, the underestimate of sky brightness observed in Chapter 4 was

not large enough to cause a measurable bias in recovered magnitude for the simulations.

Since we expect an offset of 0.1 per cent in sky brightness if SDSS sky measurements are

accurate, the observed offset of 0.25 per cent indicates that SDSS sky levels are likely slight

overestimates (about 0.15 per cent of sky brightness). Since S11 sky levels have a similar

offset, we expect that they are overestimates as well. Although Häussler et al. (2007) argue

that such an overestimate of sky improves gim2d performance, offsetting the inefficient

masking of neighboring galaxies.
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We propose a simple explanation for this effect in the S11 fits. S11 used at least 20 000

pixels nearest to each galaxy to estimate the sky (the nearest 20 000 pixels that are classified

as neither source, nor neighbor pixels). This is, in general, a large number of pixels that

sample the sky at many different radii. However, as the size of the target galaxy grows,

the annuli that form the perimeter of the galaxy grow as well. This leads to a systematic

sampling of the sky for the brighter and larger galaxies. For the extended objects studied

here, this will lead to an overestimate of the sky and, as a consequence, a suppression of

galaxy size and brightness. Using an image cutout that instead scales with the galaxy

radius, as is used here, ensures that the same range of half-light radii are sampled for sky

estimation and prevents this systematic effect.

We note that two works have already shown that our measurements should be preferred

to those of S11. First, Kravtsov et al. (2014) performed detailed fits of approximately 10

BCGs and found that their measurements agree more with our measurements than with

the measurements of S11. Secondly, we direct the reader to appendix A of Bernardi et al.

(2014) which shows an unexpected redshift evolution of the Sérsic index in the S11 data.

The trend in Sérsic index is not observed in the fits of this work. Bernardi et al. (2014)

argue that this is another reason to prefer the fits of this work to those of S11. Therefore, we

recommend that caution should be exercised when using the Ser fits from different works

to properly account for such differences in fitting.

7.4 The deV-Exp fits

The deV-Exp model is the final model that allows for a direct comparison of both the S11

and LG12 fits with our own. We see broad agreement between PyMorph, S11, and LG12

for the total half-light radius and total magnitude. Figure 7.10 shows comparisons of total

magnitude (top row), half-light radius (middle row), and B/T (bottom row) for this work

compared to S11 (left-hand column), this work compared to LG12 (centre column) and S11

compared to LG12 (right-hand column). The PyMorph and LG12 magnitude and half
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Figure 7.10: The difference between the PyMorph deV-Exp magnitude, half-light radius,

and B/T and those of LG12 deV-Exp and S11 deV-Exp fits for galaxies in the LG12 sample.

The top row shows the comparison of magnitude between S11 and PyMorph (left), PyMorph

and LG12 (centre), and S11 and LG12 (right). The second row shows a comparison of the total

half-light radius as a function of apparent magnitude. The third row shows a comparison of

B/T as a function of PyMorph B/T. S11 and LG12 galaxies are identified as best-fitting ‘nb4’

models in LG12. The format of the plot is the same as Figure 7.1. S11 B/T has larger scatter

with respect to either PyMorph or LG12.
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Figure 7.11: Comparison of the g-band deV-Exp total magnitude, half-light radius, and B/T

versus apparent Petrosian magnitude (top 3 rows), B/T (row 4), and absolute Petrosian mag-

nitude (bottom 3 rows) for this work, S11, and LG12. Plot format is the same as Figure 7.10.
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Figure 7.12: Comparison of the deV-Exp bulge component fits of this work, S11, and LG12

in the g-band.
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Figure 7.13: Comparison of the deV-Exp disk component fits of this work, S11, and LG12 in

the g-band.
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Figure 7.14: Comparison of the r-band deV-Exp total magnitude, half-light radius, and B/T

versus apparent Petrosian magnitude (top 3 rows), B/T (row 4), and absolute Petrosian mag-

nitude (bottom 3 rows) for this work, S11, and LG12. Plot format is the same as Figure 7.10.
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Figure 7.15: Comparison of the deV-Exp bulge component fits of this work, S11, and LG12

in the r-band.
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Figure 7.16: Comparison of the deV-Exp disk component fits of this work, S11, and LG12 in

the r-band.
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Figure 7.17: Comparison of the i-band deV-Exp total magnitude, half-light radius, and B/T

versus apparent Petrosian magnitude (top row), B/T (middle row), and absolute Petrosian

magnitude (bottom row) for this work and LG12. Plot format is the same as Figure 7.10.
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Figure 7.18: Comparison of the deV-Exp component fits of this work and LG12 in the i-band.

The format of the plot is the similar to as Figure 7.10. The panels show the difference in

magnitude and half-light radius as a function of apparent and absolute Petrosian magnitude

for the bulge, and disc. The scatter is quite broad, making it difficult to draw any conclusions.

Again the i-band comparisons to S11 are omitted since since no S11 fits were available in this

band.

light radius agree with smaller scatter than either comparison to S11. B/T values of LG12

and this work are also in better agreement (bottom row). S11 tend to overestimate B/T

relative to this work by about 0.1 at the low B/T while the LG12 fits are in closer agreement

to this work across the B/T range.

The scatter in the sub components is quite broad making any conclusions difficult. When

comparing this work to S11, bulge magnitudes have a scatter of ∼ 0.3 mag, bulges tend to

be dimmer in this work compared to S11 by as much as 0.1 mag, and bulges are larger by

almost 10 per cent. There is better agreement in the disc magnitudes, but PyMorph discs

tend to be 5 per cent larger when compared to S11. The scatter decreases when comparing

this work with LG12, although a difference in bulge and disc parameters is still observed.

Figures 7.11, 7.14, and7.17 show expanded comparisons of the total magnitude, half-light

radius, and B/T in the g-, r-, and i-bands, respectively. Figures 7.12, 7.13, 7.15, 7.16, and 7.18

show expanded comparisons of the bulge and disk magnitude and half-light radius in the

g-, r-, and i-bands.
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Figure 7.19: Comparison of the Ser-Exp fits of this work with S11 in the g-band. The format

of the plot is similar to Figure 7.21. The panels show the difference in total magnitude, half-

light radius, and B/T (left, center, and right columns, respectively) as a function of apparent

Petrosian magnitude (row 1) and as a function of absolute Petrosian magnitude (row 2).

Figure 7.8, showing the i-band comparisons is presented in slightly different format

because the S11 catalog does not provide i-band fits and no comparisons can be made as

a result. This figure is equivalent to the third column of the g- and r-band plots. Looking

at the third column of each figure, the comparison of LG12 with PyMorph shows similar

systematic trends across the bands as the Ser fits. The trend is most apparent in the Sérsic

index where better agreement is apparent in the r-band with larger discrepancies in the

bluer g-band and redder i-band.

7.5 The Ser-Exp fits

While S11 provide a Ser-Exp model fits, they expect less than 10 per cent of galaxies to

support such a model according to the χ2 arguments in their analysis. Also, they apply a

prior on the Sérsic index of the bulge during fitting that favors a traditional n = 4 bulge.
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Figure 7.20: Comparison of the Ser-Exp component fits of this work and S11 in the g-band.

The panels show the difference in magnitude, half-light radius, and (bulge) Sérsic index as a

function of apparent and absolute Petrosian magnitude for the bulge, and disc. The scatter is

quite broad, making it difficult to draw any conclusions.
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Figure 7.21: Comparison of the Ser-Exp fits of this work with S11 in the r-band. The format

of the plot is similar to Figure 7.1. The panels show the difference in total magnitude, half-

light radius, and B/T (left, center, and right columns, respectively) as a function of apparent

Petrosian magnitude (row 1) and as a function of absolute Petrosian magnitude (row 2). The

Ser-Exp fits have wider scatter than the analogous parameters in the deV-Exp fits.
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Figure 7.22: Comparison of the Ser-Exp component fits of this work and S11 in the r-band.

The panels show the difference in magnitude, half-light radius, and (bulge) Sérsic index as a

function of apparent and absolute Petrosian magnitude for the bulge, and disc. The scatter is

quite broad, making it difficult to draw any conclusions.
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LG12 do not attempt to fit such a model to the low z sample. As a result, our ability to

compare the Ser-Exp fits is somewhat limited.

Figures 7.19 and 7.21 show a comparison of the total magnitude, radius and B/T values

for galaxies selected as Ser-Exp according to S11. These galaxies have F-test probabilities

below 0.32 for both the PpS and Pn4 probabilities, indicating that the Ser-Exp fit is signifi-

cantly better than either the deV-Exp or Ser fits. Figures 7.20 and 7.22 show a comparison

of the component fitting parameters.

The total values are in agreement with wider scatter compared to that seen in Figures 7.5

and 7.10. However, the bright end of both the apparent magnitude and absolute magnitude

distributions show trends similar to the Ser fits. The S11 fits use the same fixed sky level

for all fitted models. Since we see evidence of bias in the sky level for the Ser galaxies of

S11, it is likely that the same problems exist in the Ser-Exp fits. The components of the

Ser-Exp fits have wider scatter than the analogous parameters in the deV-Exp fits.

More on the general comparisons with the S11 measurements is presented in Chapter 8

which support the accuracy of our Ser-Exp fits.

7.6 Comparing the preferred models

We conclude this section by comparing the ‘best model’ magnitudes of this work, S11, and

the Men14 classification of S11 fits to commonly used SDSS magnitudes. Bernardi et al.

(2013) showed that the choice of fitted model can substantially alter the bright end of

the LF. Here, we examine whether these differences can be eliminated by the use of the

‘best-fitting’ magnitude rather than using magnitudes measured using only a single fitted

model.

For the fits of this work, we construct a ‘best fit’ from the combination of the Ser

and Ser-Exp catalog as follows: first, galaxies with flag bit 10 or 14 set (galaxies shown as

‘2com’ and ‘prob 2com’ in Figure 8.1) are given the total magnitude measured by fitting the
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Figure 7.23: The difference between g-band SDSS cModel magnitude (first two

rows)/Petrosian magnitude (last two rows) compared to the magnitude fit by PyMorph, S11,

and Men14 for the galaxies appearing in all three catalogs. Galaxies classified as an unknown

profile in Men14 (Proftype= 4) are excluded from the plots. This removes approximately 10

per cent of our original catalog. We also exclude any failed fits from our catalog.

218



7.6 Comparing the preferred models

14 15 16 17

mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

PyMorph vs SDSS (Joint sample)

14 15 16 17

mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

S11 vs SDSS (Joint sample)

14 15 16 17

mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

Men14 vs SDSS (Joint sample)

-24 -22 -20 -18 -16

Mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

PyMorph vs SDSS (Joint sample)

-24 -22 -20 -18 -16

Mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

S11 vs SDSS (Joint sample)

-24 -22 -20 -18

Mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

Men14 vs SDSS (Joint sample)

14 15 16 17

mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

PyMorph vs SDSS (Joint sample)

14 15 16 17

mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

S11 vs SDSS (Joint sample)

14 15 16 17

mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

Men14 vs SDSS (Joint sample)

-24 -22 -20 -18 -16

Mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

PyMorph vs SDSS (Joint sample)

-24 -22 -20 -18 -16

Mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

S11 vs SDSS (Joint sample)

-24 -22 -20 -18

Mpetro, r

-0.4

-0.2

0.0

0.2

0.4

∆
m

to
t,

r

Men14 vs SDSS (Joint sample)

Figure 7.24: The difference between r-band SDSS cModel magnitude (first two

rows)/Petrosian magnitude (last two rows) compared to the magnitude fit by PyMorph, S11,

and Men14 for the galaxies appearing in all three catalogs. Galaxies classified as an unknown

profile in Men14 (Proftype= 4) are excluded from the plots. This removes approximately 10

per cent of our original catalog. We also exclude any failed fits from our catalog.
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Figure 7.25: The difference between i-band SDSS cModel magnitude (first row)/Petrosian

magnitude (second row) compared to the magnitude fit by PyMorph. S11 and Men14 are not

compared since they do not do i-band fits. We exclude any failed fits from our catalog.

Ser-Exp model. Galaxies with flag bits 1 or 4 set (i. e., ‘bulge’ or pure ‘disc’ in Figure 8.1)

are given the total magnitude of the Ser fit. Finally, any galaxies with flag 20 set (i. e.,

‘bad’ fits ) for the Ser-Exp fit are given the fitted Ser magnitude if the Ser fit does not

have flag bit 20 set.

For S11 fits, we assign fitted Ser magnitudes to galaxies with F-test probabilities

PpS ≥0.32. deV-Exp fit magnitudes are used for galaxies with F-test probabilities PpS <0.32

and Pn4 ≥0.32. Galaxies with F-test probabilities PpS <0.32 and Pn4 <0.32 are given the

reported Ser-Exp magnitudes.

For the Men14 classification of S11 fits, galaxies are assigned Ser magnitudes if they

have Proftype=1 or 2 (i. e., the bulge category or disc category, respectively) in the Men14

data. Galaxies are assigned the deV-Exp fit magnitude if they have Proftype=3 (i. e.,

the two-component category). Proftype=4 (i. e., the problematic fits) are ignored. After

assigning the galaxies to these categories, we select only those galaxies present in all three
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data sets for comparison.

Figure 7.24 shows the comparison of PyMorph, S11, and Men14 to the SDSS cModel

magnitudes for the full sample. The cModel magnitudes (defined in Bernardi et al. 2010) are

calculated from the linear combination of the independently fit SDSS deV and Exp models

that best fits the galaxy.

The CModel magnitudes are a simplified estimate for the total light of a galaxy surface

brightness distribution for galaxies that follow neither a pure exponential disk (Exp )nor

a deVaucouleur’s (deV) profile (Bernardi et al. 2007). The CModel fitting proceeds by

separately fitting a Exp profile and a deV profile to the total light profile of the galaxy. These

separately generated fits are then jointly fit, adjusting the relative brightness contributed

by each model but keeping the other parameters (i. e., radius, axis-ratio, position angle, and

center) fixed. This is achieved by fitting the parameter fracdev in the equation:

Ftot = fracdevFdeV(r, φ) + (1− fracdev)FExp(r, φ) (7.1)

where FdeV(r, φ) and FExp(r, φ) are the flux at a given distance (r) and position angle (φ)

for each of the previously fit deV and Exp profiles. For intermediate types(i. e., not pure deV

or pure Exp galaxies) the separate CModel components (deV and Exp) will not be directly

related to the bulge and disk components of the galaxy, but will look more like the size and

shape of the total galaxy profile.

The parameter that sets the fraction of flux contributed by the deV fit is defined as

fracdev. A fracdev=1 galaxy is best fit by the deV model, while a fracdev=0 galaxy is

best fit by the Exp model. The fracdev parameter provides a very crude estimate similar

to the B/T measured during simultaneous fitting. The CModel magnitudes are corrected

for the offset due to profile truncation as was previously done in Figure 7.1.

The difference between CModel magnitudes and S11 or this work increases at brighter

magnitudes. This effect is not present using the Men14 selection of S11 (right-hand column).

Bernardi et al. (2013) showed that the systematic effects on the bright end of the luminosity
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and stellar mass functions can cause a substantial underestimate of the bright end of the LF

(see also Chapter 10). The lowest estimates of the bright end of the LF occur in the SDSS

Petrosian and CModel measurements. Since Men14 agree more closely with SDSS at the

bright end, this suggests that Men14 are selecting models that underestimate the brightest

galaxies by a substantial amount.

The large difference between Men14 and S11 in the brightest magnitude bins may be the

result of Men14 strongly favoring the two-component deV-Exp fit for all galaxies as opposed

to the preference of this work and S11 for single-component Ser fits at these magnitudes.

The brightest, largest galaxies tend to have higher Sérsic index, which requires more light in

the wings of the profile in order to account for the concentration observed at the centre of the

galaxy. Similar concentrations can be reproduced with two lower concentration components

(deV bulge and Exp disc), but when integrated to infinity, these two-component galaxies have

less total light compared to the broader Ser profile. Fitting of a two-component deV-Exp

model appears to produce a dimmer estimate of the total magnitude relative to the Ser

model.

Figure 7.24 also shows the similar comparison of PyMorph, S11, and Men14 to the

SDSS Petrosian magnitudes. Differences approaching 0.5 mag in the brightest bins are

observed in S11 and this work. These differences will increase the number of bright galaxies

in the brightest bins of the LF. While Bernardi et al. (2013) only explored cases of pure fits

(i. e., fitting the entire sample with Ser fits only or fitting the entire sample with Ser-Exp

fits only), the large differences in the LF reported there likely persist based on the differences

observed here where the ‘best-fitting’ profile is used.

Figures 7.23 and 7.25 show similar comparisons of the g- and i-band fits. Behavior of

the PyMorph fits is largely the same as in the r-band data.
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Chapter 8

Comparisons using morphological

information

Finally, we examine our selection of bulge, disc and two-component galaxies using mor-

phological information from other catalogs. The work of Nair and Abraham (2010) gives

a detailed visual morphological classification of a set of about 10 000 nearby galaxies. The

GZ2 project (Lintott et al. 2011, 2008) provides another morphological classification of

nearly half of our sample. These catalogs give morphological classifications not dependent

on fitting and provide another test of our profile-based flagging. Chapter 8.1 compares the

preferred models of LG12, S11 and Men14 to our selection with respect to magnitude and

T-types calculated using the work of Nair and Abraham (2010). Chapter 8.3 examines a few

internal checks, including B/T and axis ratios separated by T-type. Chapter 8.4 discusses

possible effects of bars on the fitting based on barred galaxies identified in GZ2.
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Figure 8.1: Type comparisons as a function of absolute Petrosian magnitude for this work

(top row), S11 (second row), Men14 (third row), and LG12 (fourth row) for the smaller, low-z

LG12 sample (left) and the full sample (right). Plot design is the same as Figure 6.1.
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Figure 8.2: Type comparisons as a function of absolute Petrosian magnitude for the g-, r-,

and i-bands of this work. The left column shows the classifications for the smaller, low-z LG12.

The right column shows the distribution for the full sample presented in this work. Model types

for each group are plotted. The distribution of galaxies as a function of magnitude is plotted in

the background histogram and the histogram scale is on the right axis of the plot. The fraction

of galaxies reported is the fraction within the respective bin. For each panel, the sum of all

models in any given bin is 1.
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8.1 Preferred models as an indicator of morphological clas-

sification

In this section, we compare our selection of bulge, disc, and two-component galaxies pre-

sented in Chapter 5 with S11, LG12, and Men14, all of which include a ‘preferred’ model

in their catalogs. Figure 8.1 shows the percent of model types as a function of absolute

Petrosian magnitude for two samples. The left-hand column shows the results for the low-z

sample of LG12. The right-hand column shows the results for the entire spectroscopic cata-

log used in this work. The panels show the models of this work (top row), S11 (second row),

Men14 (third row), and LG12 (fourth row). Model types for each group are plotted as lines

with symbols. The fraction of galaxies reported is the fraction within the respective bin.

For each panel, the sum of all models in any given bin is 1. The total distribution of galaxies

as a function of magnitude is plotted in the background histogram and the histogram scale

is on the right-hand axis of the plot.

The fits of this work show expected trends with almost no bulges (only a few percent)

and a mixture of disc and two-component galaxies at low magnitudes (below about –19.5).

Two-component fits are the dominant model between –20 and –22 and bulges dominate at

magnitudes brighter than –22. This behavior is visible in both samples and shows that the

flag-based model selection is reasonably independent of apparent magnitude and resolution

effects. Such effects would likely cause a different appearance in the model selection for

the low-z LG12 catalog (left-hand column) when compared to the full sample (right-hand

column).

In contrast, S11 (second row) have a large shift from fitting galaxies brighter than –21

with two-component models in the low-z sample (about 80 per cent of galaxies brighter

than –21 in the LG12 sample are two-component) to predominantly fitting Ser models to

the galaxies with similar absolute magnitude in the full sample. This indicates that S11

are potentially more sensitive to observational effects (e. g. resolution or S/N) than to the
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8.1 Preferred models as an indicator of morphological classification

actual morphology of the galaxy. However, the general behavior in the full sample is similar

to the fits presented in this work. The single-component, disc-like fits dominate at faint

magnitudes. Two-component fits are more prevalent at intermediate magnitudes (in the

neighborhood of -21) and single-component bulges make up a large fraction of galaxies at

the brightest magnitudes.

Men14 (third row) are less sensitive to the absolute magnitude of the galaxy, with high

percentages (between 60 and 80 per cent) of deV-Exp galaxies across the entire magnitude

range in the LG12 sample. Men14 do identify slightly more discs in the full sample, but

the deV-Exp model is still dominant across the magnitude range.

LG12 (fourth row) cannot be compared to the full sample. In the LG12 sample, the

behavior of both LG12 and this work is similar over the range of magnitudes examined here.

Bulges dominate at the brightest magnitudes, discs are much more frequent at dimmer mag-

nitudes, and two-component fits dominate in the region surrounding –20 mag. However,

LG12 find higher proportions of one-component models at the low and high magnitudes

compared to this work (∼ 80 per cent for LG12 compared to ∼ 40 per cent for this work).

The authors discuss in their paper that an initial identification of bulges using fitting pa-

rameters and χ2
ν statistics does not produce a high enough percentage of bulges, so many

galaxies are chosen to be ‘dvc’ (i. e., deV fits) based on color information rather than the

fitting parameters. Many of these galaxies have large diffuse components that are fitted by

the Exp component of the two-component models.

As was briefly mentioned in Chapter 3.2, we find similar behavior in our fits (the in-

cidence of two-component fits is higher than expected at the brightest magnitudes). We

choose not to force these galaxies to be fit by a single component in order to avoid the

magnitude bias reported in Chapter 4. Instead, we choose to relax our definition of the

fitted models and caution the user that a significant Exp component may be an indication

of an extended halo component rather than a classical disc in early-type galaxies.
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Figure 8.2 shows the percent of model types as a function of absolute Petrosian magni-

tude for two samples. The left column shows the results for the low-z sample of LG12. The

right column shows the results for the entire spectroscopic catalog used in this work. The

panels show the models fit to the g-band (top row), r-band (second row), and i-band (third

row). Model types are plotted as lines with symbols. The fraction of galaxies reported is

the fraction within the respective bin. For each panel, the sum of all models in any given

bin is 1. The total distribution of galaxies as a function of magnitude is plotted in the

background histogram and the histogram scale is on the right axis of the plot.

The fits of this work show expected trends with almost no bulges (only a few percent)

and a mixture of disk and two-component galaxies at low magnitudes (below about -19.5).

Two-component fits are the dominant model between -20 and -22 and bulges dominate at

magnitudes brighter than -22. In the g-band, the failure rate is substantially higher at the

brightest magnitudes. However, the entire g-band sample is dimmer and galaxies as bright

as -24 in the g-band are extremely rare, making it more likely that galaxies as bright as -24

are indeed incorrectly fit galaxies. The plots again demonstrate the stability of the flagging

across the bands. Effects of S/N or resolution would likely cause a different appearance in

the model selection for the different bands.

8.2 Model selection as a function of T-type

We assign a T-type to each galaxy in the catalog using the type probabilities (Ell, S0, Sab,

and Scd) provided by the BAC (H2011). The BAC of H2011 used a Bayesian approach to

assign probabilities of being one of four broad galaxy types (Ell, S0, Sab, or Scd) to each

galaxy using color, total axis ratio, and concentration as measured by the SDSS. An SVM

algorithm was used to produce the probabilities, using the Fukugita et al. (2007) sample as

the training set.
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Figure 8.3: Comparisons of the inferred T-type for this work (top row), S11 (second row),

Men14 (third row), and LG12 (fourth row) for the smaller, low-z LG12 sample (left) and the

full sample (right). Plot design is the same as Figure 6.1.
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Figure 8.4: Comparisons of the inferred T-type for this work. Plot design is the same as

Figure 8.2.
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8.2 Model selection as a function of T-type

We calibrate the probabilities from H2011 to the T-types using a simple linear model:

T =− 4.6× P (Ell)− 2.4× P (S0)

+ 2.5× P (Sab) + 6.1× P (Scd)
(8.1)

The coefficients of the equation are calibrated to the visually classified galaxies of Nair

and Abraham (2010) by an unweighted linear regression. A similar comparison was used in

Willett et al. (2013), although a symbolic regression was used rather than a linear regression.

In Willett et al. (2013), the result of the symbolic regression was a linear model in parameters

relating only to the dominance of the bulge. The regression fit in this work estimates T-

types between –5 and 4 with median bias of 0 in T-type and 68 per cent of the estimates

within ±2 in T-type. Although the scatter is relatively broad, we can reliably separate

early and late types (the difference in T-type for these galaxies is more than 4). Since the

Nair catalog is quite small (only about 10 000 galaxies from this work are present in Nair),

we use this extension to estimate T-types for the entire sample common to S11, LG12, and

this work. Since the parameters used in the H2011 model are not specific to any particular

fitting method or fitting code, we expect them to be unbiased across the studies examined

here.

Figure 8.3 shows the distributions of the preferred models of Men14, S11, LG12, and

our Ser-Exp categories of bulge, disc, and two-component fits as a function of T-type for

galaxies in the LG12 sample. Each plot shows the percentage of galaxies for each preferred

model as a function of T-type. Ser models are divided into two categories, n<2 and n≥2, to

better understand whether the preferred models are more disc like or bulge like. Although

this is the same Sérsic index cut used in this work, we also use other criteria (based on the

B/T, bulge and disc axis ratio, etc. ) in addition to Sérsic index to classify pure bulges and

pure discs (see Chapter 7.6).

For this work, we plot the distribution of our three models (bulge, bulge+disc (2com),

and disc) as well as the failed galaxies (called ‘bad’), the problematic two-component fits

(called ‘bad 2com’) and the two-component galaxies with n=8 bulges (called ‘n8’). For the
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8. COMPARISONS USING MORPHOLOGICAL INFORMATION

S11 fits, the deV-Exp, Ser-Exp, and Ser models are plotted. For the LG12 galaxies, the

five different models are shown with ‘nb1’ referring to two-component galaxies with n=1

bulges and ‘nb4’ referring to galaxies with n=4 bulges. The Men14 fits are separated into

deV, Exp, deV-Exp, and unknown following the Proftype provided by the authors and used

earlier in this paper (see Chapter 7.6).

The classification used in this work (top row) performs largely as expected over the

range of T-types. Late T-types (above T= 4) are 70-80 per cent discs and the remainder is

approximately equal parts two-component and failed fits. Pure bulges approach 0 percent of

the sample at this end. The early end (below T= −2) has an increasing percentage of pure

bulge systems, but has a large contribution from two-component models. This is discussed

further in Chapter 8.3.2. These Exp components are not indicative of the presence of a

true disc but rather a departure from a pure Sérsic profile. Finally, the failed fits (in black)

and the n= 8 bulges (in cyan) are uniformly distributed in T-type. This is expected if the

failure rate is not correlated with T-type. A lack of correlation with T-type is preferable

for evolutionary or environmental studies because it reduces the likelihood of introducing a

bias by excluding these categories.

The S11 classification (second row) again shows substantial differences in bulge prefer-

ence between the LG12 and full samples. This difference occurs for the early types (T< 0)

similar to Figure 8.1 where the shift from two-component to one-component galaxies occurs

at brighter absolute magnitude. When the Ser-Exp and deV-Exp categories are combined

into a class of two-component systems, 46 per cent of the entire LG12 sample are repre-

sented by this class. In contrast, the full S11 sample for has 35 per cent two-component

galaxies (26 and 9 per cent are deV-Exp and Ser-Exp, respectively). This shows a possible

dependence on the image quality of the fitted galaxies (see second row, left). Nearby galax-

ies are more likely to be considered for two-component fits using the S11 criteria. This is

expected since nearby galaxies are better resolved and more likely to have resolved struc-

ture. However, we would expect the well-resolved ellipticals to not be as strongly affected as
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8.2 Model selection as a function of T-type

the intermediate types where more structure is expected. These results suggest that while

S11 fits are similar to this work (see Chapter 7) S11 model selection (i. e., Ser, deV-Exp,

or Ser-Exp) is possibly affected by observational effects and may not provide an accurate

indication of galaxy type.

The Men14 classification (third row) is largely independent of T-type, similar to the

behavior with absolute magnitude discussed in Chapter 8.1. The dominant one-component

model transitions from deV to Exp across the T-types, but makes up nearly 20 per cent of

the sample across the range.

The LG12 classification (bottom row) shows a large percentage of deV fits at the early

end of the T-types. This is achieved by using a color cut on the data. Forcing galaxies to

be deV profiles based on the color without considering the fitted models is a qualitatively

different process compared to using the profiles to select preferred models, as is done in this

work. There is dependence of Sérsic index across type, and we show in Chapter 8.3.1 that

Ell galaxies (i. e., the most negative T-types) are dominant at higher values of Sérsic index.

Choosing the deV model for these galaxies may then impose a bias on the fitted magnitudes

for the brightest galaxies in the LG12 fits. LG12 have a similar percentage of pure disc

systems at the late end compared to the fits of this work. Combining the Ser galaxies with

n<2 and the Exp galaxies in LG12, LG12 pure discs at T =4-6 account for approximately 70

per cent of galaxies compared to 80 per cent in this work. Also, the Ser models with n ≥ 2

(orange points) and the nb4 (green points) models appear to be related by a simple constant

fraction (i. e., they are scaled versions of each other). The similar shape of the green and

orange curves suggests that the two samples may identify the same type of galaxy, with

the distinction between one and two-component models being the result of observational

limitations rather than intrinsic differences in the galaxies.

Figure 8.4 shows the distribution of flags for the g- (top row), r- (middle), and i-band

(bottom row) using the T-types as a proxy for morphology. The classification used in this

work is virtually independent of band, but differences are observable in transitional ranges
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Figure 8.5: The Ser-Exp bulge Sérsic index, B/T, and bulge radius for all galaxies as a

function of T-type. Pure discs as denoted by our flags have been given B/T = 0 and the radius

and Sérsic index of the bulge are set to 0. The values trend towards zero at later T-types.

Median values are plotted as the points. 68 and 95 per cent contours are plotted as dashed

and dot–dashed lines. Errorbars on the median values represent 95 per cent CI obtained from

bootstrap resampling.

of T-type. Near T-type= 3 where bulges should become less prominent, the fraction of

“pure disk” galaxies steadily drops toward the redder bands and the “2com” proportion

increases, as would be expected for redder dimmer bulges.

8.3 Internal consistency checks using T-type

8.3.1 Bulge behavior with T-type

We can examine a few internal checks on the component parameters of bulges and discs

in our two-component models. Figure 8.5 shows the median Ser-Exp bulge Sérsic index,

B/T, and bulge radius for all galaxies in our catalog as a function of T-type calculated

using Equation 8.1. 68 and 95 per cent contours are plotted as dashed and dot–dashed

lines. Error bars on the median values represent 95 per cent CI obtained from bootstrap
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resampling. Pure discs, as denoted by our flags, have been given B/T = 0 and the radius

and Sérsic index of the bulge are set to 0, but not excluded from the sample.

B/T, bulge radius, and bulge Sérsic index all decrease with increasing T-type. The

median bulge Sérsic index (left-hand panel) for the earliest T-types is approximately 5±1.5,

using the 68 per cent contours. Median Ser-Exp bulge Sérsic index decreases to 2 by T-

type of 2 before dropping rapidly to zero due to the increased presence of pure disc systems.

Median B/T decreases from 0.8 to 0.2 over the same range while median bulge size also

decreases. Since we do not consider the T-type at all during the flagging or fitting, and we

also do not use the color or any other source of morphological information during fitting,

the behavior of the bulges in our sample is good evidence for proper fitting and effective

flagging.

8.3.2 Bulge and disk axis ratios

Disk and bulge axis ratios are expected to have different distributions if we are truly mea-

suring bulges and discs as opposed to fitting unphysical components. For instance, bulges

are expected to be rounder with lower ellipticities while discs should be more evenly dis-

tributed across the range of axis ratios. This distribution for discs is expected for thin discs

with uniformly distributed disc inclination. Figures 8.6 and 8.7 show the bulge and disc

axial ratios for galaxies considered to be (1) two-component or pure bulge for the bulge axis

ratio and (2) two-component or pure disc for the disc axis ratio as defined by our flags. We

divide the galaxies using the T-type defined in Equation 8.1. We then bin galaxies as either

Ell, S0, Sab or Scd using Equation 8.2.

Type =















Ell : T ≤ −3
S0 : −3 < T ≤ 0.5
Sab : 0.5 < T ≤ 4
Scd : 4 < T

(8.2)

The axis ratio for early types is peaked near 0.8 for the Ell and 0.6 for the S0 galaxies.

The distributions get progressively flatter as later types are considered. The increase of
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Figure 8.6: The Ser-Exp bulge axis ratio for all good two-component or pure bulge galaxies

separated by type.
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Figure 8.7: The Ser-Exp disc axis ratio for all good two-component or pure disc galaxies

separated by type.
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bulges with lower b/a seen in the S0, Sab, and Scd samples is, in part, explained by

poor fitting due to contamination of a bar. We address this in Chapter 8.4. Overall, the

distributions shown here are flatter than LG12 but similar to those reported in S11 for

two-component galaxies. The distributions of disc axial ratios are flatter for the later types.

We expect a flat distribution in disc axis ratio if galaxies have thin discs due to random

orientation of galaxies with respect to the observer.

Also, for the early-type galaxies, the distribution of disc axis ratios is flatter but tends to

follow the bulge distribution. This is an additional indication that the second component fit

by the disc is not a true disc (i. e., a rotationally flattened disc) but an extended component

similar to the bulge. A detailed study on this will be done in the future.

8.4 Effects of bars

The simple models fit in this paper and the other works of LG12 and S11 neglect many often

observed components of galaxies. The effect of these components is a concern whenever the

fitted values are used to test models of formation and evolution. Gadotti (2008) showed that

the effect of neglecting a bar or AGN component can still be substantial at lower resolution.

A significant bar can increase B/T and the bulge effective radius by 20 per cent or more.

Gadotti (2008) also showed that AGN components had little effect on the bulge Sérsic index

(this is most likely due to the loss of resolution which suppresses the Sérsic index, acting

oppositely to the effects of the AGN).

Comparing galaxies with known bars to galaxies without bars can establish how strong

the effect of bars is in our sample. GZ2 (Willett et al. 2013) presents detailed morphologies

for more than 300 000 of the largest and brightest SDSS galaxies (mr < 17). The galaxies

were visually classified by thousands of citizen-scientists and corrected for any classification

bias introduced by the citizen-scientists using spectroscopic information. GZ2 presents a

debiased classification as well as a simple binary flag that is intended to select a pure, but

possibly incomplete sample of many morphological classifications.
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Figure 8.8: The distribution of Ser-Exp fitting parameters for disk galaxies with bar com-

ponents and those that do not have a bar, as identified by selecting on the bar vs no bar GZ2

t03 classification. Preferred models using our Ser-Exp flags (top left), fitted Ser-Exp B/T (top

center), Ser-Exp semi-major bulge half-light radius (top right), Ser-Exp bulge Sérsic index

(bottom left), and Ser-Exp bulge axis ratio (bottom center) are shown. Black lines show the

results for the i-band. Red and green show the r- and g-bands, respectively.
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Figure 8.8 presents the distribution of fitting parameters for disc galaxies with bar

components and those that do not have a bar, as identified by GZ (by selecting on the bar

versus no bar GZ2 t03 classification). Preferred models using our Ser-Exp flags (top left),

fitted Ser-Exp B/T (top center), Ser-Exp semi major bulge half-light radius (top right),

Ser-Exp bulge Sérsic index (bottom left), and Ser-Exp bulge axis ratio (bottom center) for

these galaxies are shown.

Figure 8.8 shows that approximately 50 per cent of the galaxies without bars to be

classified as pure discs (i. e., no measurable bulge component). However, when a bar is

present, about 65 per cent of barred galaxies are fitted with two components and the

percentage of pure disc galaxies drops to ∼ 20 per cent. In addition, the B/T and Sérsic

index of the Ser-Exp bulge in barred galaxies is increased.

The distribution of semi major bulge half-light radii is skewed towards smaller values

for bar-free galaxies compared to galaxies that have bar component. This is especially

true when considering that almost 50 per cent of galaxies without bars are classified as

pure disc versus only 20 per cent of galaxies with bars. These galaxies are included in the

normalization of the plots, but do not add to the visible part of this distribution. Cases

with the presence of a bar also complicate the interpretation of the bulge component, since

the relative brightness of the bar and bulge must be considered when interpreting the radius

of this component.

The axis ratio of galaxies with bars is much more bar like (close to a median of 0.4)

than bulge like. This is clear evidence that Ser-Exp bulges of late type galaxies can be

strongly affected by bar contributions and caution should be taken to separate bulges and

bars in the Ser-Exp fits. The distribution of Ser-Exp bulge axis ratio does offer a potential

method of separating galaxies with bars from the non-barred galaxies. The distribution of

Ser-Exp bulge axis ratios of the two samples are distinct in their median b/a, although the

overlap is quite large. Galaxies without a visually confirmed bar have round bulges while

barred galaxies have Ser-Exp bulges of much higher ellipticity. This may also explain the
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relative flatness of the bulge axis ratio distribution in Figure 8.6. Proper modeling of the

distribution may provide a constraint on the bulge fraction in the sample.

8.5 Color-magnitude relations of the types

As a final comparison, Figure 8.9 shows the color-magnitude plot using the g-r color and

r-band magnitudes of galaxies in our catalog. The x-axis uses r-band CModel magnitude of

SDSS and the y-axis uses the g-r color of the SDSS Modelmag. This combination of mea-

surements is found to be most accurate by Stoughton et al. (2002). The catalog is divided

into several classes based on the confusion matrices presented in Figure 6.7. Figure 8.9

shows galaxies classified as pure bulge in all bands in red contours (≈ 62 000 galaxies), pure

disk in all bands in blue contours (≈ 109 000 galaxies), and two-components in all bands

in green contours (≈ 116 000 galaxies). The solid, dashed, and dotted contours contain 25,

50, and 75 per cent of each group, respectively. The purple solid line is the definition of the

centre of the “green valley” adopted by LG12. The dotted purple lines above and below

mark the edges of the “green valley” used by LG12.

The contours show that there is good separation in the flagging with pure bulges centered

on the red sequence and pure disks covering the blue cloud. Two-component galaxies appear

to strongly favor the red sequence, but have a center closer to the “green valley” and more

overlap with the “green valley” than either the pure bulge or pure disk sample. However,

more analysis is required. Deeper analysis of the green valley galaxies in this sample could

further inform recent claims that the “green valley” is not a single evolutionary pathway

for galaxies, but contains several pathways from actively star-forming to passive galaxies

(Schawinski et al. 2014). This is a goal for future analysis and is discussed in Chapter 12.3.
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Figure 8.9: Color-magnitude plot using the g-r color and r-band magnitudes of galaxies in our

catalog. The x-axis uses r-band CModel magnitude of SDSS and the y-axis uses the g-r color of

the SDSS Modelmag. The catalog is divided into several classes based on the confusion matrices

presented in Figure 6.7. Galaxies classified as pure bulge in all bands in red contours (≈ 62 000

galaxies), pure disk in all bands in blue contours (≈ 109 000 galaxies), and two-components in

all bands in green contours (≈ 116 000 galaxies). The solid, dashed, and dotted contours contain

25, 50, and 75 per cent of each group, respectively. The purple solid line is the definition of the

centre of the “green valley” adopted by LG12. The dotted purple lines above and below mark

the edges of the “green valley” used by LG12.
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Chapter 9

Discussion and use of the catalog

When using the catalog, it is recommended to remove galaxies flagged as bad (flag 20) as

these galaxies have catastrophically bad estimates of total magnitude and radius. Addi-

tional galaxies may be removed depending on how conservative the user seeks to be. The

problematic two-component fits (flag 14) or the two-component fits with bulge Sérsic index

n=8 may be used for total magnitude and radius measurements, but the subcomponents

are not reliable.

The user should also be aware that the bulge and disc components of galaxies with bit 6,

7, or 13 set (which were flagged as inverted profiles in the Ser-Exp fit) have been swapped.

These galaxies have B/T inverted and the components reversed relative to the Ser-Exp fit.

Therefore, no additional alterations must be made to account for the inverted nature of the

profile. However, using the ‘raw’ fit produced prior to flagging requires swapping bulge and

disc parameters and inverting the B/T. This alteration has been done in all catalogs.

The fits and flags are provided for each of the four models (deV, Ser, deV-Exp, and

Ser-Exp). In addition, the preferred catalog used in Sections 7.6 and 8 is provided for

public use. This preferred catalog has Ser fits for galaxies flagged as pure bulge or pure

disc. The remaining galaxies have Ser-Exp fits. The derived T-types used in Section 8 are
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Figure 9.1: The completeness of the samples described in Section 9. The ‘fitted sample’

represents our selection after the cuts used in Section 2. All completeness calculations are

relative to the original magnitude-limited galaxy sample downloaded from SDSS DR7.
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not included in these tables, but can be calculated directly using Equation 8.1.

The suggested composite samples drawn from the preferred fit catalog described in the

previous paragraph are:

The conservative catalog Select all galaxies with final flag bits 11, 12, or 13 set and

bulge Sérsic index <8. In addition, the user should select galaxies with Ser-Exp final

flag bits 1 or 4 set. These galaxies will have B/T of 1 (for bulges; final flag bit 1

set) or a B/T of 0 (for discs; final flag bit 4 set) and the relevant Ser parameters are

reported in the catalog.

The intermediate catalog Use the catalog above plus all galaxies with final flag bit 10

set and bulge Sérsic index =8.

The full catalog Use the catalog above plus all galaxies with final flag bit 14 set. This

is the least restrictive version of the catalog but may include galaxies with strange,

difficult-to-interpret fit parameters.

Figure 9.1 shows the completeness of the three samples described above. The ‘fitted

sample’ represents our selection after the cuts made in Chapter 2. All completeness calcu-

lations are relative to the original magnitude-limited galaxy sample downloaded from SDSS

DR7. Not surprisingly, the completeness drops with more conservative catalog choices.

However, the completeness is largely flat across the magnitude range with a slight decrease

of the order of 0.05 at magnitudes brighter than 14.5 extinction-corrected Petrosian r band

magnitude.

While the deV and deV-Exp models are not a focus of this work, there may be cases in

which these models are preferred for analysis, especially when comparing to prior works.

If the deV-Exp model is desired for two-component galaxies rather than the Ser-Exp used

here, the same criteria used to draw the composite samples described in this section may be

applied to the deV-Exp fits. This may be done at the user’s discretion. All flagging is carried
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out in the same manner for the Ser-Exp and deV-Exp models, except where the fits do not

allow such treatment (e. g. there can be no cases of bulges appearing disc-like in the deV-Exp

sample since the Sérsic index is fixed at 4 in all deV-Exp fits). The single-component deV

and Ser fits also receive the same treatment during flagging.

The data files for this catalog are available online at

http://www.physics.upenn.edu/~ameert/SDSS_PhotDec/. The website provides an in-

terface for generating panels similar to Figure 5.2, i. e., postage stamp images of the 2D

model and residual as well as the 1D profile. These panels can be generated for a user-

uploaded list of galaxies on demand.

Tables 9.1 and 9.2 describe the format of the data tables released as part of this work.

The data are distributed as a binary table using the FITS standard. The first binary ex-

tension contains the model-independent measurements for each galaxy (e. g. SExtractor

measurements, the number of fitted neighbors, etc. ). The following extensions contain the

‘best model’ (the combination of Ser and Ser-Exp fits described in Chapters 7.6 and 8),

the deV model, the Ser model, the deV-Exp model, and the Ser-Exp model in that order.

These extensions include the fitted values for magnitude, radius, and other parameters as

well as the flags described in Section 5.3 (labeled as finalflag, in column 34). A separate

table containing RA/Dec/z information and other identifying information is also available

to allow matching between this catalog and external works.
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Column Number Column Name Explanation Data Type

0 SExMag The SExtractor magnitude (mag) Float

1 SExMagErr The SExtractor magnitude error (mag) Float

2 SExHrad The SExtractor half-light radii (arcsec) Float

3 SExSky The SExtractor sky brightness (mag arcsec−2) Float

4 num targets the number of targets Int

5 num neighborfit the number neighbor sources fitted with Ser profiles Int

6 C The concentration Float

7 C err The concentration error Float

8 A The asymmetry Float

9 A err The asymmetry error Float

10 S The smoothness Float

11 S err The smoothness error Float

12 G The gini coefficient Float

13 M20 The M20 value Float

14 extinction The SDSS-provided galactic extinction (magnitude) Float

15 dismod The calculated distance modulus Float

16 kpc per arcsec The angular scale (kpc/arcsec) Float

17 Vmax The volume used for Vmax corrections (Mpc3) Float

18 SN The average S/N per pixel inside the half-light radius Float

19 kcorr k-correction calculated using the SDSS model magnitudes Float

Table 9.1: Description of columns in the electronic table UPenn PhotDec nonParam rband.

The data are model-independent measurements fitted by PyMorph. Problematic data or

parameters are replaced with -999.
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Column Number Column Name Explanation Data Type

0 m tot Total fitted apparent magnitude Float

1 BT The B/T (bulge-to-total light ratio) of the fit Float

2 r tot The half-light radius (arcsec) of the total fit Float

3 ba tot The axis ratio (semi-minor/semi-major of the total fit Float

4 xctr bulge The bulge x centre (pixels) Float

5 xctr bulge err The bulge x centre error (pixels) Float

6 yctr bulge The bulge y centre (pixels) Float

7 yctr bulge err The bulge y centre error (pixels) Float

8 m bulge The bulge magnitude Float

9 m bulge err The bulge magnitude error Float

10 r bulge The bulge half-light radius (arcsec) Float

11 r bulge err The bulge radius error (arcsec) Float

12 n bulge The bulge Sérsic index Float

13 n bulge err The bulge Sérsic index error Float

14 ba bulge The bulge b/a Float

15 ba bulge err The bulge b/a error Float

16 pa bulge The bulge position angle (degrees) Float

17 pa bulge err The bulge position angle error (degrees) Float

18 xctr disc The disc x centre (pixels) Float

19 xctr disc err The disc x centre error (pixels) Float

20 yctr disc The disc y centre (pixels) Float

21 yctr disc err The disc y centre error (pixels) Float

22 m disc The disc magnitude Float

23 m disc err The disc magnitude error Float

24 r disc The disc half-light radius (arcsec) Float

25 r disc err The disc radius error (arcsec) Float

26 n disc The disc Sérsic index Float

27 n disc err The disc Sérsic index error Float

28 ba disc The disc b/a Float

29 ba disc err The disc b/a error Float

30 pa disc The disc position angle (degrees) Float

31 pa disc err The disc position angle error (degrees) Float

32 GalSky The PyMorph sky brightness (mag/arcsec2) Float

33 GalSky err The PyMorph sky brightness (mag/arcsec2) Float

34 chi2nu The χ2/DOF Float

35 finalflag The primary quality flag described in this work Float

36 autoflag The intermediate, visually calibrated, automated flag de-

scribed in this work

Float

37 pyflag The PyMorph run flag Float

38 pyfitflag The PyMorph fit flag Float

Table 9.2: Description of columns in the electronic table UPenn PhotDec Models rband. The

data are the ‘best model’, deV, Ser, deV-Exp, and Ser-Exp model fit parameters fitted by

PyMorph. Unfit parameters or missing data are replaced with values of -999.
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Part II

Applications of the catalog
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Chapter 10

Dependence of the bright end of

the LF and MF on the fitted profile

This chapter compares the luminosity and stellar mass functions based on SDSS CModel

magnitudes and PyMorph Ser and Ser-Expmodels of galaxies in the SDSS. This work was

completed with Mariangela Bernardi, Ravi Sheth, Vinu Vikram, Marc Huertas-Company,

and Francesco Shankar and the results were published in Bernardi et al. (2013).

Chapter 7.6 showed that PyMorph fits return more light compared to the CModel fits.

The predicted masses are larger than CModel-based masses as a result. The differences are

most pronounced at the massive end, where the measured number density of objects having

M∗ ≥ 6×1011M⊙ is ∼ 5× larger. Overall, the total stellar mass density as z∼ 0.1 is a factor

of about 1.2 larger than the analysis of Bernardi et al. (2010). The differences with respect

to Petrosian-like magnitudes, are even more dramatic. In addition to these effects, different

studies have large differences in the assumed M∗/L, which can exist even after scaling to

the same IMF. While these allow one to quantify the differences which arise because of the

assumed light profile, the most appropriate profile for high mass galaxies is still debated.
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10.1 Introduction

10.1 Introduction

Halo Model based abundance matching techniques or extreme value statistics require a good

parametrization of galaxy abundance at the bright, massive end of the LF in order to to

understand the origin of the most luminous galaxies (e. g. Paranjape and Sheth 2012).

Bernardi et al. (2010) noted that the most luminous galaxies were more abundant than

expected from the most commonly used parameterizations of the LF. They also showed

that this mis-match was important for constraining assembly of the brightest galaxies via

major or minor mergers In particular, the stellar mass function affects models which use

the observed abundance and its evolution to constrain formation models. They also showed

that the conversion from φ(L) to φ(M∗) is sensitive to the assumed stellar mass-to-light

ratio, for which, there is still no consensus.

In addition to the large systematic differences arising from assumptions about the stellar

mass-to-light ratio, the massive end of the stellar mass function is sensitive to the exact

method used to fit light profiles to the most luminous galaxies. Bernardi et al. (2010)

used luminosities estimated from the CModel magnitudes output by the DR7 (Abazajian

et al. 2009). These tend to return more light than the more commonly used estimates

based on the Petrosian radius defined by the SDSS, especially for the brightest objects (see

Chapter 7.6). However, some of this difference was due to sky subtraction problems in the

SDSS. Bernardi et al. (2010) applied a crude correction for this to the CModel magnitudes,

but not to the Petrosian magnitudes output by the SDSS pipelines, primarily because

essentially all previous work with Petrosian magnitudes made no such correction.

The CModel magnitudes are defined in Equation 7.1 and discussed in Chapter 7.6. The

fits presented as part of this thesis, in particular the Ser and Ser-Exp fits, typically return

even more light than the CModel magnitudes (see Figure 7.24, also Bernardi et al. 2014),

in part because of the improved treatment of the sky, but also because differences in the

model which is fitted to the observed light profile matter. The Ser and Ser-Exp models

are integrated to infinitely large radius, while the CModel and other SDSS magnitudes are
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truncated at several half-light radii. A correction was applied to account for the profile

truncation. However, a difference in magnitude is still present.

These differences impact estimates of the luminosity and stellar mass functions at the

bright end. Chapter 10.2 describes the sample used to examine the effects on the LF

and MF, shows the luminosity and stellar mass functions, quantifies how they depend on

the fit to the light profile and provides simple fitting formula which quantify the results.

While these results allow one to easily account for the dependence on the light profile (e. g.

using Ser instead of SDSS CModel or Petrosian magnitudes), which M∗/L estimate is most

appropriate is still and open question, and deserves further study. For reasons described

in Bernardi et al. (2010), all M∗/L estimates assume a Chabrier (2003) IMF. Chapter 10.3

shows that even though a number of recent works have made this same choice for the IMF

(Baldry et al. 2012; Moustakas et al. 2013), they still have M∗/L values which are very

different from the values presented as part of this work (Bernardi et al. 2010, i. e., ), from

one another, and from earlier work (Bell et al. 2003). The fact that differences in M∗/L arise

even when the same IMF is assumed is not generally considered and is a substantial sign

of the intrinsic uncertainty in these measurements. Chapter 10.4 shows how the luminosity

and stellar mass functions depend on morphological type, where the type is determined by

the Bayesian Automated Classification of Huertas-Company et al. (2011).

10.2 Luminosity and stellar mass functions

10.2.1 The sample

To provide a direct comparison with previous work, the sample of Bernardi et al. (2010)

was used. This sample consists of about 260,000 SDSS galaxies having 14.5 ≤ mrPet ≤ 17.7.

DR7 Petrosian and CModel estimates of the total light for each of these objects were used

in the analysis. These are known to suffer from sky-subtraction and crowded-field/masking

problems (Bernardi et al. 2010; Meert et al. 2013, 2015). For this analysis, the CModel
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Figure 10.1: Difference between PyMorph Sérsic fits and SDSS DR7 Petrosian, SDSS CModel,

PyMorph SerExp, and Sérsic fits from Simard et al. (2011) (bottom to top), for galaxies in the

sample selected by Bernardi et al. (2010). Petrosian magnitudes are always the faintest, whereas

single Sérsic-based magnitudes tend to be the brightest. Dotted lines around PyMorph (Ser)–

Simard (Ser) show the 16th and 84th percentiles of the distribution; these are similar to the

scatter around the median for the other curves.
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magnitudes are crudely corrected for the SDSS sky subtraction problems as described in

Bernardi et al. (2010). Analogous corrections to the Petrosian magnitudes are rarely made,

so no such correction is made here. This allows easier comparison with previous work (this

is discussed further in the context of Figure 10.1). Finally, k- and evolution corrections

were computed for each object following Bernardi et al. (2010).

10.2.2 Dependence on assumed surface brightness profile

Chapter 4.2.1 and 4.2.2 showed that the magnitudes and half-light radii output by Py-

Morph depend on the model which is fit. For example, fitting what is really a two-

component image with a deV profile will generally underestimate the total light. On the

other hand, the total light associated with the best-fit Ser or a Ser-Exp, is less-biased

from its true value (Bernardi et al. 2007, 2014, e. g. ). Chapter 4.2.1 and 4.2.2 as well

as Bernardi et al. (2014) have also shown that in objects brighter than L∗, fitting a two-

component Ser-Exp model to what is really just a Ser results in a noisier, but unbiased,

recovery of the input parameters. In contrast, fitting a Ser to what is truly a two-component

system results in significant biases.

Although the Ser-Exp model is more accurate, the Ser fit is often performed on real

data when the resolution and S/N are make it unlikely to recover a robust two-component

fit. However, either of these models are expected to be more realistic than a deV model.

The estimates of the total light from a Ser or Ser-Exp model are generally larger than

those based on the CModel magnitudes output by the SDSS pipelines (Bernardi et al. 2007,

2014; Hill et al. 2011; Mosleh et al. 2013, e. g. ), and both are larger than the SDSS DR7

Petrosian magnitudes. Figure 10.1 illustrates that this difference can be large. Some of this

is due to the difference in the treatment of the sky, and some to the differences between the

fitted models. For example, the offset at the faint end between the Petrosian and the other

models is almost entirely due to the fact that the SDSS DR7 pipeline tended to overestimate
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Figure 10.2: Comparison of Ser fits for the SDSS galaxies in common to Simard et al. (2011),

Kelvin et al. (2012), and PyMorph (our notation MSer−10Re reflects the fact that Kelvin et al.

truncate the profile at 10Re). Red triangles show a similar analysis if one restricts to objects

with z < 0.06 as done in Baldry et al. (2012); this shallower volume does not probe the highest

luminosities that are of most interest here. Dotted lines show the 16th and 84th percentiles of

the distribution.
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the contribution from the sky, thus making the SDSS Petrosian magnitudes about 0.05 mags

too faint.

After this study was complete, He et al. (2013) quantified the effects of sky-subtraction

and masking problems on the SDSS DR7 Petrosian values. Accounting for these effects

makes the Petrosian magnitudes 0.05 mags brighter at the faint end, and 0.2 mags brighter

at the bright end. (Our own reanalysis, based on PyMorph sky-estimates suggests this

difference is slightly smaller: about 0.1 mags at Mr ≤ −23.5.) As a result, He et al. (2013)

Petrosian magnitudes are slightly brighter than our CModel magnitudes at the bright end

(recall that the CModel magnitudes include only a crude correction for the SDSS sky sub-

traction problems), but they are generally fainter than our Ser or Ser-Exp values at the

bright end. There are several systematic effects on Petrosian magnitudes. Petrosian mag-

nitudes underestimate the total light when the light profile has extended wings (extended

wings are manifested as high Sérsic index in the fits). This is particularly important at

the bright end (Andreon and Cuillandre 2002; Binggeli and Cameron 1991; Blanton et al.

2001; Brown et al. 2003; Graham et al. 2005; Trujillo et al. 2001, e. g. ). At the bright

end, this leads to an underestimate of order ∼ 0.3 mags or more (i. e., , this matters more

than the sky-subtraction problems), which is similar to the difference between the CModel

and Ser-Exp magnitudes. This expected difference is consistent with the He et al. (2013)

finding that even the revised Petrosian magnitudes are systematically fainter than aperture

fluxes based on deeper photometry which reaches to 1% of the sky.

Although the dependence on the assumed light profile is what has motivated this study,

it is reasonable to ask if these differences are indeed larger than those associated with

different pipelines which fit the same model.

10.2.3 Dependence on pipeline

As a check of reductions, we have also used luminosities from the Ser photometric reductions

of Simard et al. (2011). Figure 10.1 shows that these are in good agreement with PyMorph
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10.2 Luminosity and stellar mass functions

Fit φ∗ L∗ α β φγ Lγ γ ρL
10−2Mpc−3 109 L⊙ 10−2Mpc−3 109 L⊙ 109 L⊙Mpc−3

CModel 0.928 0.3077 1.918 0.433 0.964 1.8763 0.470 0.136

Sérsic 1.343 0.0187 1.678 0.300 0.843 0.8722 1.058 0.150

SerExp 1.348 0.3223 1.297 0.398 0.820 0.9081 1.131 0.146

Sérsic (Simard) 1.920 6.2456 0.497 0.589 0.530 0.8263 1.260 0.152

Fit φ∗ M∗ α β φγ Mγ γ ρMs

10−2Mpc−3 109 M⊙ 10−2Mpc−3 109 M⊙ 109 M⊙Mpc−3

CModel 0.766 0.4103 1.764 0.384 0.557 4.7802 0.053 0.276

Sérsic 1.040 0.0094 1.665 0.255 0.675 2.7031 0.296 0.344

SerExp 0.892 0.0014 2.330 0.239 0.738 3.2324 0.305 0.330

Sérsic (Simard) 0.820 0.0847 1.755 0.310 0.539 5.2204 0.072 0.349

Table 10.1: Parameters of φ(Lr) (top rows) and φ(M∗) (bottom rows) derived from fitting

equations (10.1) to the observed counts based on different magnitudes.

except for a small offset (∼ 0.05 mags), although the differences become large at the bright

end. Chapter 7.3 shows more detailed comparisons of S11 and this work. Figures A1 and

A2 in Bernardi et al. (2014) and discussion on sky estimates in Chapter 4.2.7 and7.3 suggest

that the PyMorph estimates are less biased compared to the S11 fits. Nevertheless, these

differences are small compared to PyMorph–CModel.

The PyMorph and S11 luminosities come from integrating the fitted profile to infinity

while other authors truncate the profile, typically at some multiple of the half-light radius.

For example, the analysis of galaxies in the GAMA survey (Galaxy And Mass Assembly

survey Kelvin et al. 2012) truncates the fits at 10Re. Figure 10.2 compares PyMorph,

Simard, and GAMA values for the Sermagnitude. PyMorph, S11, and GAMA DR1 values

(Driver et al. 2011) are compared for the ∼ 7335 galaxies for which all three reductions are

available. This sample is set by the fact that the GAMA DR1 covers 100 sq.deg. of the

SDSS. GAMA has 10750 matches with the DR7 SDSS spectroscopic galaxy sample, of

which 7335 galaxies are in the Bernardi et al. (2010) sample used here. The bottom right

panel shows that the truncation matters at the level of 0.05 mags only at Mr < −22. But

otherwise, if truncated similarly, then GAMA and PyMorph are in good agreement at
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Mr > −22, whereas PyMorph returns significantly more light than the other two at the

bright end. Differences at the bright end are likely similar in origin (i. e., sky subtraction

issues) to those with respect to S11 (Bernardi et al. 2014; Meert et al. 2013, 2015, see).

10.2.4 The luminosity function

For each of the estimates of the total light shown in Figure 10.1, the luminosity function

is estimated as in Bernardi et al. (2010) using the Vmax method of Schmidt (1968). Each

galaxy is weighted using 1/Vmax(LrPet), where Vmax is the maximum comoving volume

within which the object could have been included in the sample, accounting for both the

bright and faint magnitude limits.

Figure 10.3 shows the luminosity functions for the SDSS Petrosian and CModel mag-

nitudes (corrected for the SDSS sky subtraction problems as described in Bernardi et al.

(2010)), and Ser-Exp and Ser magnitudes (from PyMorph). Although the difference be-

tween the Petrosian and CModel magnitudes has been known for some time, the fact that

Ser-based counts lie substantially above those based on the SDSS outputs has only recently

begun to attract attention. For example, the GAMA based results of Hill et al. (2011) point

to this difference, but because GAMA covers a substantially smaller volume than the SDSS,

it does not probe the high luminosity end which is of most interest here. Our PyMorph

reductions, which are in good agreement with Hill et al. (2011) at Mr > −23, show that at

Mr < −23 the difference with respect to CModel counts is dramatic.

The PyMorph-based counts are in good agreement with those which use the Simard

et al. (2011) Ser reductions, except at luminosities brighter than Mr ∼ −24, where Py-

Morph tends to be brighter, so the PyMorph luminosity function shows more high lu-

minosity objects. This agreement illustrates that our finding that single-Sérsic fits return

substantially more objects in the high luminosity tail than do CModel magnitudes is robust

to changes in the reduction pipeline.
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The solid curves show the result of fitting

Xφ(X) = φαβ

(

X

X∗

)α e−(X/X∗)β

Γ(α/β)
+ φγ

(

X

Xγ

)γ

e−(X/Xγ ) (10.1)

with X = L to the counts. The associated luminosity density is ρX = φα X∗ Γ[(1 +

α)/β]/Γ[α/β] + φγ Xγ Γ[1 + γ]. The first term in equation (10.1) is the same functional

form as that used by Bernardi et al. (2010); the second is required to fit the slight bump at

the faint-end. The parameters which yield the best-fit are given in Table 10.1. Note that

the value of X∗ is not as intuitive as is its mean value X∗ Γ[(1 + α)/β]/Γ[α/β].

The observed distributions shown here have been broadened slightly by measurement

errors. Bernardi et al. (2010) showed how to modify the analog of Equation 10.1 to estimate

the parameters of the intrinsic distribution. In practice, the difference between the intrinsic

and observed broadened distributions is small; much smaller than the difference between the

PyMorph and CModel counts, so here the results of the observed distribution are shown

rather than the intrinsic one.

10.2.5 The stellar mass function

Figure 10.4 shows the associated stellar mass functions. In all cases, M∗ was estimated from

the luminosity and the CModel g − r color assuming the Chabrier (2003) IMF as described

in Bernardi et al. (2010). CModel color is used here because the main goal of this paper is

to study the effect on φ(M∗) from changes in L. Using CModel colors ensure that M∗/L

estimates for each object are the same as in Bernardi et al. (2010). However, the L estimate

for each object differs (Petrosian 6= CModel 6= PyMorph). Additionally, if the stellar

population models used to estimate M∗/L are incorrect, or if the IMF is mass-dependent,

then this will modify the results. Chapter 10.3 shows comparison with other work.

The estimate from Baldry et al. (2012) lies below all the others. This is remarkable

because it is based on the GAMA-Ser reductions, and the associated φ(L) (Hill et al. 2011,

from) is in good agreement with PyMorph-based estimate. Therefore, the difference in
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Figure 10.3: SDSS Main galaxy luminosity function based on Petrosian, CModel, Ser from S11

and PyMorph Ser-Exp and Ser magnitudes (bottom to top at Mr = −24). Smooth curves

show the result of fitting equation (10.1) to the counts; associated best-fit parameter values are

given in Table 10.1. For the Petrosian and CModelmagnitudes, the curve shown is that reported

by Bernardi et al. (2010) on the basis of fitting to Mr < −20. The Petrosian and Ser based fits

of Bell et al. (2003) and Hill et al. (2011), respectively, are also shown for comparison.
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10.2 Luminosity and stellar mass functions

Figure 10.4: Same as Figure 10.3, but now for the associated stellar mass functions. Recent

stellar mass functions from Baldry et al. (2012, ;based on Sérsic magnitudes) and Moustakas

et al. (2013, ;based on CModelmagnitudes) are also shown. All stellar masses assume a Chabrier

IMF.

261



10. DEPENDENCE OF THE BRIGHT END OF THE LF AND MF ON THE
FITTED PROFILE

Figure 10.5: Similar to Figure 10.4, but now showing cumulative rather than differential

counts. Top and bottom panels show number and stellar mass density respectively. To facilitate

comparison with previous work we show the fit of Bell et al. (2003).
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φ(M∗) must be entirely due to M∗/L, even though Baldry et al. (2012) also assume a

Chabrier IMF. This is discussed further in Chapter 10.3.

Figure 10.5 shows cumulative (rather than differential) counts, both for number and

stellar mass-weighted density. The number counts at the mass scale above which the number

density of objects is 10−6Mpc−3 is larger by a factor of ∼ 2 compared to the CModel-based

counts (a factor of ∼ 3 compared to Bell et al. (2003)). Alternatively, at M∗ = 6× 1011M⊙,

the PyMorph counts lie a factor of ∼ 8 above those based on CModel magnitudes (a much

larger factor above Bell et al. (2003)). For the mass-weighted counts the corresponding

discrepancies at 106M⊙Mpc−3 or 6× 1011M⊙ are similar or slightly larger.

10.3 Comparison with previous work

Recent focus has concentrated more on φ(M∗) than φ(L). Unfortunately, this combines

uncertainty associated in the total light with uncertainty in the stellar mass-to-light ratio

M∗/L (e. g. mismatched stellar templates, mass-dependence of the IMF, etc.). To illustrate

this, the results of PyMorph were compared to two of the most recent determinations of

φ(M∗): the results of Baldry et al. (2012) and Moustakas et al. (2013). Although all three

assume a Chabrier IMF, the estimates of φ(M∗) made in Baldry et al. (2012) and Moustakas

et al. (2013) are more similar to one another than they are to PyMorph. However, this

implies large differences in their M∗/L values since they used different luminosities to get

M∗.

The Baldry et al. (2012) analysis is based on Ser fits to the light profiles from galaxies

with z < 0.06 in the GAMA survey reported by Kelvin et al. (2012). Of the 7335 GAMA

matches in the Bernardi et al. (2010) sample which are studied here, only 1612 have z < 0.06.

The red triangles in Figure 10.2 show that, for these 1612 galaxies, the Ser PyMorph

estimates of the total light are in good agreement with those derived by Kelvin et al.

(2012), and used by Baldry et al. (2012) However, the redshift cut eliminates most of the

high luminosity objects which are of most interest in this work.
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Figure 10.6: Morphological dependence of the luminosity (top) and stellar mass (bottom)

functions. In all cases, the luminosities are based on Ser magnitudes, stellar masses assume

a Chabrier IMF, and morphologies are based on the BAC method of Huertas-Company et al.

(2011).
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GAMA-based luminosity function for these z < 0.06 objects is in good agreement with

that based on PyMorph Ser reductions when restricted to z < 0.06. This is in good

agreement with that for the full GAMA sample of Hill et al. (2011) shown in Figure 10.3.

The smaller volume means the error bars are large, and the comparison is effectively limited

to abundances greater than about 10−4 Mpc−3 dex−1. However, PyMorph-based φ(M∗)

estimate lies well above that of Baldry et al. (2012), so M∗/L values for PyMorph must

be larger. The Baldry et al. (2012) estimate is much closer to, but slightly below, the

estimate of Bell et al. (2003, scaled to a Chabrier IMF). However, since the Baldry et al.

(2012) Ser-based φ(L) estimate agrees with PyMorph, and this lies well above the φ(L)

associated with the SDSS Petrosian magnitudes which were used by Bell et al. (2003) (see

Figure 10.3), the Baldry et al. (2012) M∗/L values must also be smaller than those of Bell

et al. (2003).

Moustakas et al. (2013) use CModel magnitudes. Since their sample is essentially the

same SDSS sample as the Bernardi et al. (2010) sample, the luminosity function should

agree with that of Bernardi et al. (2010). However, Figure 10.4 shows that although their

stellar mass function is similar to the CModel-derived φ(M∗) at low masses, it is different at

the high end, indicating that the Moustakas et al. (2013) M∗/L ratios are smaller than those

used here. This may be related to the choice of template used to estimate M∗/L at higher

masses, for reasons given in Fig. 22 and associated discussion of Bernardi et al. (2010). On

the other hand, despite differences at lower masses, the Moustakas et al. (2013) φ(M∗) is

reasonably well approximated by the Bell et al. (2003) estimate at higher masses. Since

the CModel luminosity function is different from the Petrosian one at these high masses,

the Moustakas et al. (2013) M∗/L values must be smaller than those of Bell et al. (2003),

and different again from those of Baldry et al. (2012) (who used Ser rather than CModel

magnitudes).

Therefore,
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� by comparing the PyMorph Ser-based φ(M∗) with that based on S11, Figure 10.4

quantifies how differences due to the uncertainties in a given light profile fit affect

φ(M∗);

� by comparing the Ser-Exp and Ser-based φ(M∗) fits, Figure 10.4 quantifies the effect

of fitting different light profile models;

� by comparing the Petrosian based φ(M∗) to the Bell et al. (2003) fit, the CModel-

based estimate to that from Moustakas et al. (2013), or Ser (or S11) based φ(M∗) to

Baldry et al. (2012), Figure 10.4 quantifies how systematic differences in M∗/L affect

φ(M∗).

This shows that the effects on φ(M∗) of using the total luminosity computed from different

fits to the light profile are dramatic; it is important to specify how the light profile was fit

when reporting a luminosity or stellar mass function.

10.4 Dependence on morphology

Combining the PyMorph Ser-Exp reductions with the Bayesian Automated morphological

Classifier of Huertas-Company et al. (2011) as was carried out in Chapter 8, can determine

how the luminosity and stellar mass functions depend on morphology. Since the BAC

returns the probability that an object is one of four types, the sum of the four probabilities

is unity for each object. Therefore, to estimate the luminosity function, each object, j, is

weighted by pj(type)/Vmax(L
Pet
j ).

In practice, there are a number of faint objects for which pj(E) ≤ 0.15. These can

dominate over the counts from similarly faint objects for which pj(E) > 0.85. If these low

values of p are simply the result of errors in the BAC algorithm, then these will wrongly

boost the luminosity function at the faint end. To check the magnitude of the effect, all

values of p ≤ 0.15 are set to zero, and the weights are renormalized so that the sum over
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the four p values (some of which are now zero) is still unity. This reduces the counts of faint

ellipticals and luminous spirals by a factor of about two. The modified counts are shown

in Figure 10.6. Figure 10.6 shows that early-types (E and S0) dominate the high-mass end

and later-types (Sa to Sd) dominate at lower masses as is expected.

These estimates were compared to Nair and Abraham (2010), who used the T-Type

classification using the modified RC3 (Third Reference Catalogue of Bright Galaxies) clas-

sifiers. Setting E galaxies to T= −5 and T= −4, S0 galaxies to T= −3, T= −2 and T= −1,

Sa galaxies to T= 0, T= 1 and T= 2, Sb galaxies to T= 3 and T= 4, and Scd galaxies

to T= 5, T= 6 and T= 7 in place of the BAC probabilities, PyMorph E and S0 counts

are in quite good agreement. However, at the bright end Nair and Abraham (2010) tend

to classify objects as E rather than S0 when BAC divides its weights between E and S0.

Differences are slightly more pronounced for later types. PyMorph Scd counts are in good

agreement at the faint end, but lie substantially above Nair and Abraham (2010) at high

luminosities (where the counts are falling exponentially). On the other hand, PyMorph

Sab counts lie about a factor of two below Nair and Abraham (2010) at high L, suggesting

that BAC assigns some weight to the extreme Scd classification when Nair and Abraham

(2010) choose the extremes.

10.5 Discussion

PyMorph Ser or Ser-Exp-based estimates of the total light of a galaxy are larger than

those based on SDSS pipeline outputs (Petrosian or CModel; Figure 10.1). As a result our

PyMorph-based luminosity and stellar mass functions are different from previous work.

They have more light and mass at the bright, massive end (Figures 10.3 and 10.4).

Petrosian magnitudes have been popular in recent years. However, the SDSS Petrosian-

based luminosity functions presented here, which are similar to those in the literature, lie

well-below any of the others. This is consistent with a number of recent studies which agree
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that Petrosian, and CModel magnitudes, underestimate the total light (Bernardi et al. 2014;

Hall et al. 2012; Hill et al. 2011; Kelvin et al. 2012; Meert et al. 2015; Simard et al. 2011).

Some of this is due to sky-subtraction problems which affect the SDSS pipelines (Bernardi

et al. 2010) more than PyMorph (Meert et al. 2015). While Petrosian magnitudes with

better sky-subtraction are brighter (He et al. 2013, e. g. ), thus reducing the difference with

respect to PyMorph magnitudes, the results presented here suggest that Petrosian values

should only be used after applying the sorts of corrections advocated by Graham et al.

(2005) which partially account for the fact that Petrosian magnitudes underestimate the

total light when the light profile has extended wings (Andreon and Cuillandre 2002; Blanton

et al. 2001; Trujillo et al. 2001, e. g. ). For the brightest galaxies, even such corrected Pet-

rosian magnitudes are fainter than PyMorph magnitudes. In addition, Petrosian-derived

quantities are not seeing corrected; this impacts studies of scaling relations (Hyde and

Bernardi 2009, e. g. see Appendix A in) more than studies of the mass function. For these

reasons, fits to Ser or Ser-Exp profiles are to be preferred, especially in higher redshift

datasets where seeing is an issue.

The Ser-based luminosity functions from PyMorph and S11 are very different from

the Ser-based analysis in Blanton et al. (2003b). However, the Ser parameters used by

Blanton et al. (2003b) were estimated from a 1-dimensional radial surface brightness profile,

measured in ∼ 5 − 10 azimuthally averaged annuli. This procedure is expected to be

significantly less accurate than the 2-dimensional fits to the whole galaxy image performed

by PyMorph and S11. In addition, these more recent analyses include a more careful

treatment of the background sky, especially in crowded fields, so these more recent Ser

reductions (as well as those of Kelvin et al. (2012) for the subset of objects in the GAMA

survey) supersede those of Blanton et al. (2003b).

The fits presented here indicate that the luminosity density at z ∼ 0.1 is about 10%

larger than previous work with CModel magnitudes (Table 10.1), and about a factor of two

larger than when based on Petrosian SDSS DR7 magnitudes (Figure 10.5). This differ-
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ence is driven by the most luminous objects which are predominantly quiescent early-type

galaxies (Figure 10.6). Since a number of authors now agree that SDSS pipeline magnitudes

underestimate the true luminosity, and these more recent algorithms are in reasonably good

agreement with the PyMorph reductions used here (Figure 10.2), there is now good agree-

ment that the bright end of the luminosity function may be substantially brighter than the

SDSS DR7 Petrosian magnitudes suggest.

As one might expect given this analysis of the luminosity function, the (Chabrier IMF-

based) stellar mass densities at z ∼ 0.1 are about 25% larger than previous work (Bernardi

et al. 2010) with CModel magnitudes (Table 10.1), which was itself considerably larger

than when based on the SDSS DR7 Petrosian magnitudes often used for this purpose

(Figure 10.5). As a result, the estimates presented here have implications for studies of the

evolution of the star formation rate, the growth of stellar mass in galaxies, the processes by

which this mass was assembled, and Halo Model analyses of the M∗ −Mhalo relation. For

example:

� Higher stellar mass density at z ∼ 0 resolves the tension with respect to the total mass

density inferred from the integrated star formation rate (SFR), as noted in Bernardi

et al. (2010).

� A higher number density of massive galaxies in the local Universe allows for a higher

incidence of major (in addition to minor) mergers in driving the stellar mass growth

of the most massive central galaxies at late times (Bernardi et al. 2011a,b; Shankar

et al. 2013, e. g. ). This conclusion rests, of course, on the quality of the determination

of the high redshift stellar mass function, a task which is expected to be even more

challenging than in the local Universe. In this respect, it is interesting that the z ∼ 1

counts at M∗ ≥ 1011.5M⊙ of Carollo et al. (2013) are in rather good agreement with

our z ∼ 0 (Ser-based) estimate, strongly limiting merger rates at the high mass end.
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� A higher number density at high masses would better match the stellar and dynamical

mass functions, possibly reducing the need for a strong mass-dependent variation of

the IMF (see, e. g. Fig. 23 in Bernardi et al. 2010), although the true extent of the

latter statement relies on accurate dynamical mass measurements with appropriate

effective radii and structure constants.

� The stellar mass function in the local Universe is one of the fundamental ingredients

in popular semi-empirical models for populating halos with galaxies, such as the halo

occupation and abundance matching techniques (Berlind and Weinberg 2002; Cooray

and Sheth 2002; Leauthaud et al. 2012; Moster et al. 2013; Shankar et al. 2006; Vale

and Ostriker 2004; Zehavi et al. 2011, e. g. ). If the more massive galaxies are more

abundant, then Halo Model analyses will assign them to lower mass halos. Since lower

mass halos are less strongly clustered, the most massive galaxies will be less strongly

clustered than current models assume.

� This would also imply that the median baryon fraction at the high mass end may be

significantly higher than previously thought. This may pose serious questions about

the impact of feedback from active galactic nuclei, in the quasar and/or radio modes

(Croton et al. 2006; Granato et al. 2004; Silk and Mamon 2012, e. g. ); even more so,

if one considers that the baryon fraction of ellipticals at their formation epoch (z > 1)

must have been even higher.

� More stellar mass at the high mass end directly impacts studies of how the stellar

fraction compares with that in the gas detected by X-ray and Sunyaev-Zeldovich ex-

periments. e. g. , by decreasing the halo mass one should associate with a given stellar

mass, it potentially reduces the discrepancy shown in Figure 9 of Planck Collaboration

et al. (2013).

� These effects on the stellar to halo mass mapping go in the same direction as those

from plausible changes to the IMF at the massive end (Bernardi et al. 2010, and
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references therein), so the data may be indicating that a major revision of the results

on the galaxy-halo mapping at the high mass end, is called-for.

The estimates of the amount of stellar mass in the most massive objects used in this

study are at least 2× larger than other recent determinations (e. g. Baldry et al. 2012;

Moustakas et al. 2013). Even though the estimates of the luminosity function are in much

better agreement than this φ(M∗)-based number suggests. Chapter 10.3 shows that the

M∗ values are similar only because they assume very different L and M∗/L values from

one another. Therefore, until the field converges on what it believes to be reliable M∗/L

estimates for the highest mass objects (see Mitchell et al. 2013, for ongoing discussion of this

point), these results argue against calibrating models to published stellar mass functions:

calibrating to the luminosity function is more robust, as it does not combine differences in

L and M∗/L into a single number M∗.

When using these results, it is important to bear in mind that the PyMorph estimates

assume that the galaxy is either a Ser, or a Ser-Exp system. These both allow for substantial

light beyond the core of the image, so there is some question as to just what it is that the

profiles are fitting. The most massive objects tend to be the brightest cluster galaxies

(BCGs), so some of the excess light returned by Ser and/or Ser-Exp fits may contain

intracluster light (ICL). If so, then these estimates of the total stellar mass are appropriate

for models which associate the ICL with the central galaxy. This may even be physically

reasonable, since most of the accretion and stripping which occurred as the cluster assembled

likely happened during accretion onto what is now the central object.
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Chapter 11

Systematic effects on the

size-luminosity relations of early

and late type galaxies: dependence

on model fitting and morphology

This chapter quantifies the systematics in the size-luminosity relation of galaxies in the SDSS

main sample (i. e., at z ∼ 0.1) which arise from fitting different one- and two-component

model profiles to the r-band images. This work was completed with Mariangela Bernardi,

Vinu Vikram, Marc Huertas-Company, Simona Mei, Francesco Shankar and Ravi Sheth and

the results were published in Bernardi et al. (2014).

Chapter 4.2.1 and 4.2.2 have shown that in objects brighter than L∗, fitting a two-

component Ser-Exp model to what is really just a Ser results in a noisier, but unbiased,

recovery of the input parameters. In contrast, fitting a Ser to what is truly a two-component

system results in significant biases. For objects brighter than L∗, fitting a Ser profile to what

is really a two-component Ser-Exp system leads to biases in the half-light radius, which is
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increasingly overestimated as Sérsic index, n, of the fitted single component increases. The

half-light radius is also overestimated at intermediate B/T(∼ 0.6) where a single component

cannot effectively account for the shape of the profile created by two distinct components.

However, the net effect on the R− L relation is small, except for the most luminous tail.

The dependence on morphology of incorrect fitting on theR−L relation is also examined.

This analysis is one of the first to use Bayesian-classifier derived weights, rather than hard

cuts, to define morphology. For the R−L relation Es, S0s and Sa’s are early-types, whereas

Sbs and Scds are late. Neither the early- nor the late-type relations are pure power-laws.

Both show significant curvature, which is quantified.

This curvature seems to confirm that two mass scales are special for both early- and

late-type galaxies: M∗ ∼ 3× 1010M⊙ and 2× 1011M⊙. Also, although the Rdisk−Ldisk and

Rdisk−M∗disk relations of disks of disk-dominated galaxies run parallel to the corresponding

relations for the total light in late-types (i. e., , they are significantly curved), Rbulge−Lbulge

and Rbulge −M∗bulge for bulge dominated systems show almost no curvature (i. e., , unlike

for the total light of earl-type galaxies). Finally, the intrinsic scatter in the R− L relation

decreases at large L and/or M∗ and should provide additional constraints on models of how

the most massive galaxies formed.

11.1 Introduction

The spatial (and color) distribution of star light in a galaxy is thought to encode information

about its formation history, so there has been considerable interest in developing accurate

descriptions of the projected surface brightness distribution of galaxies. The work presented

in this thesis, as well as SDSS, Simard et al. (2011), Lackner and Gunn (2012), etc. , cited

throughout this thesis, seek to answer these questions.

Of course, it is not obvious that the light profile should be fit using a single component.

The stellar kinematics in many galaxies indicate that the stars define more than one dy-

namical component. Examples include counter-rotating disks, as well as disk systems with
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bulges or bars in their centers (e. g. Emsellem et al. 2011). Evidence for more than one

component is often seen in the chemical composition as well (e. g. Johnston et al. 2012). In

such galaxies, it is interesting to see if the light profile also indicates the presence of more

than one component.

This has motivated studies which model the observed profile as the sum of an exponential

and a de Vaucouleurs profile; what we will call the deV-Exp model. (Of course, since there

are now more free parameters to be fit, better, higher resolution data are required. In

this context, it is worth noting that Sérsic’s initial motivation was to fit a functional form

with fewer free parameters which would allow one to interpolate between two-component

systems having varying fractions of an n = 4 bulge and an n = 1 disk. It is common to

report the result of such two-component fits in terms of the fraction of the total light that

is in the bulge (de Vaucouleurs) component: B/T. Correlations of these B/T values with

other parameters (e. g. luminosity) are then used to constrain formation history scenarios.

On the other hand, if galaxies really are single component Ser, and one attempts to

fit them with two component deV-Exp profiles, then one will infer an entirely spurious

B/T value (the profile was, after all, just a single component). This spurious B/T will

correlate with other parameters if n itself does, complicating the interpretation of such

correlations. Indeed, some have argued that the evidence for two-components in the light

profile is sometimes just a consequence of trying to fit what is really a single component

Ser with a linear combination of exponential and de Vaucouleurs profiles (eg Graham et al.

2003), although this leaves unanswered the question of why dynamically or chemically

distinct components do not leave a signature in the light.

In recent years, the correlation between size and luminosity for early-type galaxies has

received much attention, because high redshift early-types appear to be more compact than

their counterparts at low redshift (e. g. Bruce et al. 2012; Cimatti et al. 2008; Trujillo

et al. 2006; van Dokkum et al. 2008). However, both the size and the luminosity estimates,

R and L, are derived parameters, obtained by fitting to the observed surface brightness
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distribution. As a result, they depend on assumptions about the intrinsic shape of the

surface brightness profile. For example, if the fit assumes that galaxies are made up of two

components or just one, and if two, whether they are modeled as the sum of an exponential

and a de Vaucouleurs profile, an exponential and a Sérsic, or two Sérsic profiles.

The main goal of this chapter is to quantify the systematics on the local R−L relation

which are associated with the choice of a particular model. In practice, ‘local’ means the

5 × 105 galaxies at z ∼ 0.1 in DR7 of the SDSS Main Galaxy sample (Abazajian et al.

2009). Because this sample is apparent magnitude limited (mr < 17.75), in practice, by

R−L relation we always mean log10 R fitted as a function of absolute magnitude (see Sheth

and Bernardi 2012, for a simple description of the bias which would arise from fitting L

as a function of R). And R denotes the radius which encloses half the total light L. (For

exponential disks, this radius is 1.67 times the scale length of the exponential. In the case

of two components, R is a complicated function of the light in each component and the two

scale radii.)

Our goal implies that we must fit the observed profiles and determine the associated

R − L relation using a variety of different models. Chapter 11.2 summarizes the relevant

properties of the SDSS DR7 sample we study. Chapter 11.3 compares the R − L relation

based on single Ser, Ser-Exp, deV-Exp, and deV fits, showing that the relations from Ser

fits (the standard to date) are offset to larger sizes and those from deV fits to smaller sizes,

compared to those from the two-component fits.

There is no particular reason why systems supported by rotational motions should define

the same R − L relation as those supported by random motions. Therefore, it makes

little sense to speak of a single R − L relation for the entire galaxy population. Indeed,

the R − L relation has long been known to depend on morphological type (e. g. Shen

et al. 2003). Chapter 11.4 quantifies this morphological dependence, and then focuses on

the differences between the relations defined by early-type bulge dominated systems, and
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later type disk-dominated systems. Disk dominated galaxies have small bulges, and bulge

dominated galaxies have extended second components.

11.2 The SDSS DR7 sample

In this chapter, we study the galaxies in the Seventh Data Release (DR7) of the SDSS Main

Galaxy sample (Abazajian et al. 2009). This sample is the same as the sample defined in

Bernardi et al. (2010) and used in Chapter 10. It contains about 260,000 SDSS galaxies

having 14.5 ≤ mrPet ≤ 17.7. The DR7 database provides crude estimates of the (galactic

extinction corrected) apparent brightness and angular size of each galaxy in the catalog. We

will use the SDSS-based CModel magnitudes and sizes (a weighted combination of separate

fits to Exp and deV profiles) defined in Bernardi et al. (2010). When converting these

to physical sizes and luminosities, we assume a flat ΛCDM model with Ωm = 0.3 and a

Hubble constant whose present value is H0 = 70 km s−1Mpc−1. The luminosities are k-

corrected following Bernardi et al. (2003a). For colors we use SDSS DR7 Model magnitudes

(corrected for galactic extinction). The database also provides estimates of the stellar

velocity dispersion of each galaxy. We follow custom and correct these values for aperture

effects following Bernardi et al. (2003a).

In the first half of this chapter, we describe a number of other estimates of the total light

associated with each r-band image. However, recent work has focused on stellar masses M∗

rather than luminosity L. Our estimated stellar masses come from combining our estimates

of Lr with (M∗/Lr) estimated following Bernardi et al. (2010) assuming a Chabrier IMF.

11.2.1 Estimates of photometric parameters

One of our primary goals is to quantify how the R − L relation depends on how R and L

were estimated. This work uses the fits presented in Part I. It is conventional to speak of
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the two components as being ‘bulge’ and ‘disk’ components; while this is accurate for disk-

dominated systems (typically later-type galaxies), it may be better to think of the ‘disk’

component in bulge-dominated systems (typically early-type galaxies) as simply being a

second component that is not necessarily a (thin, inclined) disk (e. g. Gonzalez et al. 2005;

Oemler 1976; Schombert 1986).

Before moving on, we note that there is an analytic expression for the light enclosed

within a given distance of the center of a single circular Ser profile (e. g. Ciotti and Bertin

1999). From this, the half light radius can be obtained easily. However, if the object has

axis ratio b/a 6= 1, where b and a are the half-light radii along the principal axes of the

image, then the corresponding expression must be integrated numerically. Since this can be

time-consuming, it is usual to approximate this case by using the expression for a circle, but

with a suitably chosen effective circular radius. The most common choice is
√
ba = a

√

b/a,

but Saglia et al. (2010) have recently shown that (b + a)/2 is more accurate: for bulge

dominated systems the difference matters little, but it does matter for disks. Therefore, we

use (b+ a)/2 except in Chapter 11.3.1 where, to fairly compare with previous work, we use
√
ba.

This raises the question of what we should do when we have two components? A natural

choice would be to circularize each component using its own (b+a)/2, and to then determine

the half light radius of the sum of the circularized components, where each is weighted by

the fraction of the total light that it contains. We have found that this approximation is

quite accurate, so we use it throughout.

11.2.2 Morphologies

A secondary goal of this work is to quantify the role of galaxy type or morphology on the

R − L relation. In practice this is difficult, because unambiguous determinations of the

morphological type are not straightforward, although the task is slightly easier for bulge

dominated systems. Previous work has used crude proxies for morphological type: these
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include isophotal shape and central concentration (Strateva et al. 2001), the Sérsic index n

(Shen et al. 2003), the color, spectral features, and some combination of the above (Baldry

et al. 2004; Bernardi et al. 2003a).

In what follows, we use the Bayesian Automated Classifications (hereafter BAC) of

Huertas-Company et al. (2011) which are available for our full DR7 sample. The BAC clas-

sifications are particularly interesting, because they are expressed as probabilistic weights

(determined from an object’s k-corrected g− r and r− i colors, and its isophotal shape and

light concentration in the i-band)

We will study an ‘early-type’ sample defined on the basis of hard conservative cuts on

two parameters which are available for each galaxy: the value of n returned by PyMorph

when fitting a Ser profile to the image, and the BAC probability p(E+S0) that the object

is an early-type. We require

n > 3 and p(E + S0) > 0.85.

These cuts by no means select all early-type galaxies; they are simply designed to select a

population which is very unlikely to be contaminated by later-types. Since our goal is to

select objects of a single type, we are willing to sacrifice completeness for purity.

To assess how these BAC-based hard-cuts perform, we use the eye-ball classifications

of Fukugita et al. (2007, ; hereafter F07) and of Nair and Abraham (2010, ; hereafter

N10). These are based on analysis of a much smaller patch of the SDSS sky, and a brighter

magnitude limit (e. g. F07 has only ∼ 7000 objects restricted to mr < 16; N10 has about

twice as many), but for our purposes, the important point is that they are both magnitude

limited.

Whereas BAC classifies galaxies into 4 (E,S0,Sab,Scd) morphological types, F07 use

0 <T< 7 in steps of 0.5. To convert, we assign E (T = 0 and 0.5), S0 (T = 1), Sa (T = 1.5

and 2), Sb (T = 2.5 and 3), and Scd (T = 3.5, 4, 4.5, 5, and 5.5). Similarly, N10 use the

T-Type classification (−5 <T< 7) from the modified RC3 classifiers; we assign E (T= −5
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Selection E S0 Sa Sb Scd

EARLY-TYPES

Selected

P(E+S0)> 0.85 AND n > 3 0.70 0.21 0.08 0.01 0

n > 2.5 0.44 0.18 0.20 0.13 0.05

Missed

P(E+S0)< 0.85 OR n < 3 0.10 0.43

n < 2.5 0.02 0.12

LATE-TYPES

Selected

P(E+S0)< 0.15 AND n < 3 0 0.01 0.08 0.36 0.51

n < 2.5 0.01 0.04 0.11 0.33 0.45

Missed

P(E+S0)> 0.15 OR n > 3 0.86 0.47 0.21

n > 2.5 0.75 0.41 0.16

Table 11.1: Eyeball morphological classifications from Fukugita et al. (2007). We set E (T =

0 and 0.5), S0 (T = 1), Sa (T = 1.5 and 2), Sb (T = 2.5 and 3), and Scd (T = 3.5, 4, 4.5, 5,

and 5.5).

and T= −4), S0 (T= −3, T= −2 and T= −1), Sa (T= 0, T= 1 and T= 2), Sb (T= 3 and

T= 4), and Scd (T= 5, T= 6 and T= 7).

Table 11.1 shows the mix of F07 morphological types in samples which are defined by

the hard cuts (on n and BAC p(type)) given above. Table 11.2 reports a similar analysis

which is based on the eye-ball classifications of N10 instead of F07. These Tables show that

91% and 86% of the resulting sample are indeed either E and S0. In contrast, requiring only

n > 2.5 (as done in the past) yields a sample in which the E+S0 fraction is just 62% and

56% respectively. (A small fraction of the objects are Irregulars, which is why the numbers

do not always add up to 100%.) Clearly our selection is much purer.
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As a measure of its incompleteness, we also indicate the fraction of objects classified

as Es and S0s which do not make the cut. These fractions are 10% and 43% for the F07

classifications, and 14% and 43% for N10. This ‘missed’ fraction is much smaller if we only

require n < 2.5, but we believe the price to pay in purity is unacceptable.

The bottom halves of the two tables show a similar analysis of BAC and n cuts which

are designed to produce a pure sample of later types. In this case requiring

n < 3 and p(E + S0) < 0.15

yields a sample in which Sa + Sb + Scd account for 95% of the objects. If we only require

n < 2.5, and do not use the BAC-probability at all, then Sa + Sb + Scd account for 89% of

the objects so, for later types, the use of the BAC analysis does not make such a dramatic

difference.

Whereas the extremes of the morphological mix are relatively easy to define, Tables 11.1

and 11.2 indicate that the intermediate regime, the Sa/Sb class, will be difficult to define

cleanly. Indeed, we have found that more than a third of the objects with BAC p(S0) > 0.6

are Sa’s, and about a fifth of the objects with p(Scd) > 0.6 are Sb’s. Conversely, of the

objects which have p(Sab) > 0.6, about one third are Scd’s. For this reason, when we

provide these BAC weight-derived relations in Tables 11.3 and 11.4, we refer to them as

being for E, S0/Sa, Sa/Sb/Scd and Scd samples.

We will use these hard cuts, as well as the BAC-weights themselves. Note that all the

results which follow are based on the full SDSS DR7 sample: we use the smaller F07 and

N10 samples again only to perform sanity checks (as we did here) in Chapter 11.4.

11.3 The R − L relation at z ∼ 0.1

We now study how the R − L relation depends on the functional form for the surface

brightness profile that was assumed when estimating R and L. We would especially like

to compare the effects of fitting one versus two-component models to the images, and we
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Selection E S0 Sa Sb Scd

EARLY-TYPES

Selected

P(E+S0)> 0.85 AND n > 3 0.57 0.29 0.14 0 0

n > 2.5 0.32 0.23 0.29 0.12 0.03

Missed

P(E+S0)< 0.85 OR n < 3 0.14 0.43

n < 2.5 0.02 0.07

LATE-TYPES

Selected

P(E+S0)< 0.15 AND n < 3 0 0 0.15 0.41 0.39

n < 2.5 0.01 0.03 0.17 0.35 0.36

Missed

P(E+S0)> 0.15 OR n > 3 0.79 0.35 0.17

n > 2.5 0.71 0.33 0.10

Table 11.2: Eyeball morphological classifications from Nair and Abraham (2010) who used

T-Type classification using the modified RC3 classifiers. We set E (T= −5 and T= −4), S0

(T= −3, T= −2 and T= −1), Sa (T= 0, T= 1 and T= 2), Sb (T= 3 and T= 4), and Scd

(T= 5, T= 6 and T= 7).
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do this separately for the early and late type samples defined by the hard cuts on n and

BAC-p(type) described in Section 2.2.

It is conventional to speak of these as ‘bulge’ and ‘disk’ components; while this is accurate

for disk-dominated systems (typically later-type galaxies), it may be better to think of the

‘disk’ component in bulge-dominated systems (typically early-type galaxies) as simply being

a second component that is not necessarily a (thin, inclined) disk (e. g. Gonzalez et al.

2005; Oemler 1976; Schombert 1986).

11.3.1 Single Ser fits and comparison with previous work

To connect with previous work, we begin with a comparison of the PyMorph derived R−L

relation based on Ser-derived parameters, with analogous fits from the literature. Using

the objects in an earlier SDSS data release, Shen et al. (2003, ; hereafter S03) reported fits

to the R − L relation for objects which had n > 2.5 and n < 2.5, where R, L and n were

determined from a Ser fit to the light profile. Note that the Ser parameters used by S03

were estimated from a 1-dimensional radial surface brightness profile (profMean), measured

in ∼ 5− 10 azimuthally averaged annuli (Blanton et al. 2003a). Thus, it is expected to be

significantly less accurate than a 2-dimensional fit to the whole galaxy image.

The S03 relations for n > 2.5 and n < 2.5 are shown as the dashed and dotted lines in

the left and right hand panels of Figure 11.1, respectively. The red and blue symbols with

error bars show our determination of the single-Ser based relation, where now R, L and n

are from our PyMorph reductions, and the gray symbols and error bars show the R − L

relation which follows from Ser fits performed by S11.

For objects with n < 2.5, the S11-derived relation runs parallel to that from S03, but is

offset to larger sizes by 0.05 dex, whereas the PyMorph-derived relation transitions from

S03 at low luminosities to S11 at high luminosities. For objects with n > 2.5 the PyMorph-

derived relation lies about 0.1 dex above, and is more curved than the fit reported by S03

The PyMorph and S11 based relations depart significantly from S03 at the low and high
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Figure 11.1: The r-band single-Ser based half-light radius (Rhl) versus total absolute mag-

nitude (Mtot) relation for objects with n > 2.5 (left) and n < 2.5 (right). In the panel on the

left, our PyMorph determination is in good agreement with that based on single-Ser param-

eters from S11, but lies about 0.1 dex above, and is more curved than the fit reported by S03.

Symbols with error bars (joined by a solid curve for clarity) show the median half-light radius

in bins of absolute magnitude. Dashed lines show the 16th and 84th percentile. In the panel on

the right (objects with n < 2.5), except for the brightest objects, the PyMorph relation lies

systematically 0.05 dex below that of S11.
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luminosity ends, where they curve upwards to larger sizes. For this reason, we are inclined

to conclude that, at least at the bright end, S03 is slightly biased. At the low end the

curvature could be due to contamination by later-type galaxies.

However, at the highest luminosities, and for objects with n > 2.5, the PyMorph and

S11 relations are also slightly but significantly different from one another.

11.3.2 Dependence on model fitting

Figure 11.1 showed the R−L relation derived from Ser fits to the two-dimensional surface

brightness profile. We now compare these to relations based on SDSS fits to a single de

Vaucouleurs profile; SDSS-based CModel sizes defined by Bernardi et al. (2010), PyMorph

fits to a two-component deV-Expmodel; PyMorph fits to a two-component Ser-Expmodel;

and PyMorph fits to a Ser profile. We expect the Ser-Exp reductions to return the least

biased estimates of R and L, and hence of theR−L relation. We also show the corresponding

R−M∗ relations (with M∗ estimated as described in Section 2).

All of these relations show curvature which we quantify by fitting to

〈

log10
R

kpc

∣

∣

∣
O
〉

= p0 + p1O + p2O
2; (11.1)

the coefficients of these fits for O = Mr and O = log10(M∗/M⊙) are reported in Tables 11.3

and 11.4. Although p1 is the coefficient of the linear part of the relation, the slope on scale

O is p1+2p2O; this is the value (at some characteristic O) which should be compared with

the slope of a linear fit to the relation.

11.3.2.1 Early-types

The panel on the left of Figure 11.2 shows the R − L relation obtained for the early-type

sample (i.e. n > 3 and p(E+S0)> 0.85) based on a number of single and two-component

fits to the images. There are clear systematic differences between these relations, with the

Ser and de Vaucouleurs models returning the relations with the largest and smallest sizes,
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Figure 11.2: Dependence of derived size-luminosity (left panels) and size-stellar mass (right

panels) correlations for early-type galaxies on the assumed surface brightness profile. Symbols

with error bars (joined by a solid curve for clarity) show the median half-light radius in bins

of absolute magnitude (left) and stellar mass (right). The SDSS fits to a single de Vaucouleurs

profile return a relation with the smallest sizes; our PyMorph fits to a Ser profile return the

largest sizes. Of the relations which lie in between these two extremes, and which are almost

indistinguishable at M < −21.5, the SDSS based CModel sizes (defined by Bernardi et al. 2010)

are the smallest; those based on our PyMorph fits to a two-component deV-Exp model are

slightly larger; and those based on PyMorph fits to a Ser-Expmodel are largest. The curvature

at the bright end appears to be due to an increasing incidence of BCGs, which define steeper

relations (dotted lines) than the bulk of the early-type population. To highlight this curvature,

bottom panel shows the ratio of all quantities in the top panel to the dashed line.
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respectively. The various two-component based relations are in good agreement except at

the highest luminosities (Mr < −22), where the sample becomes increasingly contaminated

by BCGs which are known to define steeper relations than the bulk of the population (e. g.

Bernardi 2009; Bernardi et al. 2007).

The panel on the right shows a similar analysis of the R−M∗ relation. Note that both

R − L and R −M∗ are significantly curved, consistent with previous work (e. g. Binggeli

et al. 1984; Graham 2013). Of course, if the stellar population models used to estimate

M∗/L are incorrect, or if the IMF is mass-dependent, then this will modify the curvature

in R−M∗.

While not the main focus of the present work, we note that Figure 11.2 is consistent

with recent work showing that a variety of other early-type galaxy scaling relations change

slope at ∼ 3×1010M⊙ and again at ∼ 2×1011M⊙ (Bernardi et al. 2011b). Crude estimates

of these two mass scales are given by the values of M∗ at which a linear fit intersects the

parabola given by the quadratic fit. For the Ser-Exp fits to the Early-types shown above

the best linear fit has 〈R|M〉 = −5.9155 + 0.598 log10(M∗/M⊙), so it crosses the associated

parabola (parameters from Table 11.4) at log10(M∗/M⊙) = 10.4 and 11.6. We could assign

uncertainties to these scales by propagating the uncertainties on the fitted coefficients pi,

but these are smaller than the systematics associated with this particular choice of defining

the mass scales. Another estimate comes from adjusting the amplitude of the straight line fit

so that it is tangent to the parabola, and then identifying the scales on which the parabola

lies sufficiently far from it. Figure 11.3 shows such an analysis for the Ser-Exp R − M∗

relation; the vertical lines show 3× 1010M⊙ and 2× 1011M⊙. This demonstrates our main

point – that the existence of these two scales is not an artifact of the model used to estimate

R and L.
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Sample/fit p0 p1 p2

Ser (Early-types) 12.8145 1.3788 0.0377

Ser (Late-types) 8.4847 0.9092 0.0254

Ser (n > 2.5) 8.1624 0.9821 0.0292

Ser (n < 2.5) 4.7207 0.5601 0.0173

Ser (E) 7.0946 0.8650 0.0262

Ser (S0/Sa) 10.9232 1.2218 0.0344

Ser (Sa/Sb/Scd) 13.9656 1.4694 0.0395

Ser (Scd) 12.6494 1.3128 0.0352

Ser-Exp (Early-types) 8.6032 0.9979 0.0290

Ser-Exp (Late-types) 7.3204 0.7929 0.0226

Ser-Exp (n > 2.5) 6.0716 0.7770 0.0242

Ser-Exp (n < 2.5) 4.2848 0.5151 0.01615

Ser-Exp (E) 7.4437 0.8922 0.0266

Ser-Exp (S0/Sa) 9.6010 1.0903 0.0311

Ser-Exp (Sa/Sb/Scd) 9.3135 1.0182 0.0286

Ser-Exp (Scd) 7.8056 0.8396 0.0237

Ser-Exp (Early-type-Bulges) -2.0733 0.0956 0.0098

Ser-Exp (Late-type-Disks) 6.4982 0.6934 0.0199

Table 11.3: Luminosity-size relation. Early-types: p(E+S0)> 0.85 and n > 3. Late-types:

p(E+S0) < 0.15 and n < 3. Early-type-bulges: the bulge half-light radius versus the bulge

luminosity for galaxies with p(E+S0) > 0.85 and n > 3. Late-type-disks: the disk half-light

radius versus the disk luminosity for galaxies with p(E+S0) < 0.15 and n < 3.
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Sample/fit p0 p1 p2

Ser (Early-types) 19.0933 -3.9536 0.2070

Ser (Late-types) 13.0054 -2.6438 0.1393

Ser (n > 2.5) 14.4995 -3.1767 0.1742

Ser (n < 2.5) 8.6098 -1.8301 0.1014

Ser (E) 13.6593 -2.9799 0.1635

Ser (S0/Sa) 20.1092 -4.1549 0.2166

Ser (Sa/Sb/Scd) 22.3082 -4.4655 0.2275

Ser (Scd) 17.9815 -3.6102 0.1862

Ser-Exp (Early-types) 13.4131 -2.9324 0.1607

Ser-Exp (Late-types) 11.2699 -2.3026 0.1227

Ser-Exp (n > 2.5) 12.5026 -2.7875 0.1551

Ser-Exp (n < 2.5) 9.5210 -1.9963 0.1090

Ser-Exp (E) 12.8394 -2.8246 0.1557

Ser-Exp (S0/Sa) 19.2830 -3.9866 0.2079

Ser-Exp (Sa/Sb/Scd) 18.6150 -3.7425 0.1922

Ser-Exp (Scd) 11.7537 -2.3957 0.1271

Ser-Exp (Early-type-bulges) 4.0853 -1.4159 0.0992

Ser-Exp (Late-type-disks) 17.9763 -3.5683 0.1831

Table 11.4: Stellar mass-size relation. Early-types: p(E+S0)> 0.85 and n > 3. Late-types:

p(E+S0) < 0.15 and n < 3. Early-type-bulges: the bulge half-light radius versus the bulge

stellar mass for galaxies with p(E+S0) > 0.85 and n > 3. Late-type-disks: the disk half-light

radius versus the disk stellar mass for galaxies with p(E+S0) < 0.15 and n < 3.
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Figure 11.3: The R−M∗ relation for Ser-Exp fits, compared to a power-law showingR ∝ M0.6
∗

.

Vertical lines show the two mass scales identified by Bernardi et al. (2011b) on the basis of a

variety of other early-type galaxy scaling relations; the R − M∗ relation clearly curves away

from the power law at these scales.

11.3.2.2 Comparison of early- and late-types

We have repeated this analysis for the late-type sample (defined by requiring n < 3 and

p(E+S0) < 0.15). Although we do not show the corresponding plots here, we again see

curvature (coefficients of fits to equation 11.1 are given in Tables 11.3 and 11.4). Rather,

we illustrate this in Figure 11.4, which compares the Ser-Exp-based R−L relation for our

way of selecting early- and late-type samples, with the more traditional cuts on n (larger or

smaller than 2.5). The two ways of selecting the samples lead to very similar results, with

the low luminosity early-types having smaller sizes, but defining a steeper relation, so they

would cross the R − L relation of late-types at about Mr < −23 (beyond which there are

few late-types anyway).

We have also selected an intermediate-type population (i.e. Sa/Sb) by requiring 2.5 <

n < 3.5 and 0.2 < p(E + S0) < 0.4. Notice that this sample defines the same R−L relation
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Figure 11.4: Similar to previous figure, but now objects are selected using different hard

cuts which define early-, late- or intermediate-type (i.e. Sa/Sb) samples. Symbols with error

bars (joined by a solid curve for clarity) show the median half-light radius in bins of absolute

magnitude. Dashed lines show the 16th and 84th percentile. Note that this definition of

intermediate’s (i.e. Sa/Sb) yields an R − L relation which is essentially the same as for the

population with n > 2.5.
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as when we require our early-type selection (i.e., n > 3 and p(E + S0) > 0.85), as well as

that when we only require n > 2.5; we return to this in Chapter 11.4.

11.4 Dependence on Bayesian Automated Classifier morpholo-

gies

Prior to now, we used a hard cut on the BAC probability to determine morphology. Since

this is not quite in the spirit of why such probabilities were generated in the first place,

this section shows the result of using the BAC probabilities as weights when determining

the R − L scaling relation. As this is one of the first such studies of weight-based scaling

relations, and Tables 11.1 and 11.2 indicate that the relation between these weights and

eye-ball classifications can be complex in detail, we include an explicit comparison of these

BAC-based scaling relations with those based on eye-ball classifications.

Figure 11.5 shows the size-luminosity (left) and size-M∗ (right) relations obtained by

weighting objects by p(type) as determined by BAC. The results of fitting equation (11.1)

to these curved relations are reported in Tables 11.3 and 11.4.

Notice that galaxies weighted by p(Sab) define a relation which lies between that defined

by p(Scd) on the one hand and p(E) and p(S0) on the other. However, the Sa/Sb class is

difficult to define (c.f. discussion of Tables 11.1 and 11.2).

11.4.1 Small but statistically significant difference between Ellipticals

and S0s

Above, we noted that there is essentially one R − L relation for E, S0 and Sa galaxies.

However, our sample is large enough to detect small but significant differences within the

early-type (E and S0) sample. A closer look at Figure 11.5 indicates that S0s are slightly

smaller than Es of the same luminosity. Figure 11.6 shows that this offset is about 0.06 dex,
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Figure 11.5: Ser-Exp based size-luminosity (top) and size-M∗ (bottom) relations, obtained

by weighting objects by the BAC p(type). The low L or M∗ part of the relation for Scds has

the same slope as that reported by S03 for their n < 2.5; and the intermediate L or M∗ part

has the same slope they report for n > 2.5. The relations for S0s are very similar to those for

Es, and the Sab relations always lie between the E and Scd relations. Numbers in legend show

the percentage of E, S0, Sa, Sb, Sbc and Irr galaxies classified by F07 with BAC p > 0.6. Using

this selection we miss about 18% of Es, 60% of S0s, 64% of Sab (37% Sa and 27% Sb) and 56%

of Scd, respectively.
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Figure 11.6: At fixed luminosity, Es tend to be about 0.06 dex larger than S0s, although this

offset depends slightly on how R and L were determined.

although it depends slightly on how R and L were determined. This is particularly inter-

esting in view of recent work at z ∼ 1, based on the S11 reductions, which shows a similar

offset of about 15% for the SDSS sample growing to ∼ 40% at z ∼ 1 (Huertas-Company

et al. 2013b). Both the sign of the trend and its evolution deserve further study, because,

the sign of the trend is not what one might naively have expected.

11.4.2 Scatter in log(size) around the mean relation for early-types

In addition to the mean R−L relation, the scatter around the mean relation is expected to

constrain galaxy formation models (Shankar and Bernardi 2009; Shankar et al. 2012; Shen

et al. 2003). As we show below, our analysis of the mean R− L relation allows us to make

two interesting statements about the scatter around it for early-type galaxies: (i) there is

intrinsic scatter and (ii) it is smaller at the high mass end.

The top two jagged solid curves in the left panel of Figure 11.8 show the measured scatter

around the mean R − L relation for SDSS early-types, when R and L are determined by
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fits to a single Ser (larger scatter) and to a Ser-Exp model (lower scatter). This scatter

is broader than the intrinsic one, because it includes a contribution from the measurement

errors. For comparison, the smooth black curve shows the corresponding (error broadened)

scatter reported by S03. It is in reasonably good agreement with ours, except at the faint

end, where we believe the enhanced scatter is due to increased contamination by spirals,

for which the scatter is larger (as we show later).

To estimate the intrinsic scatter, we must account for the broadening due to measure-

ment errors. We estimate the errors on the sizes from fitting to the objects in the mock

catalogs used in Chapter 4, where we know the input values. The dotted and dashed lines

show these simulation-based estimates of the measurement error on the sizes for an early-

type sample. The lowest dotted line shows the RMS scatter in log10R around the input

value if the input profile is a Ser, and we fit it with a Ser. In this, and all the cases which

follow, we show this scatter as a function of the fitted (as opposed to the input) absolute

magnitude. The other dotted line, which lies only slightly above the previous one, shows

what happens if we fit a Ser-Exp with a Ser-Exp. These curves certainly underestimate the

full measurement error, since they are based on fits to smooth images, whereas real images

may be lumpy, have spiral arms, etc.

To get an idea of the magnitude of such effects, the dot-dashed curve in the left panel of

Figure 11.8 shows the RMS difference between PyMorph and S11 sizes returned by two-

component Ser-Exp fits to SDSS images, plotted as a function of the PyMorph Ser-Exp

absolute magnitude for the early-type sample. This is almost certainly an overestimate of

the measurement error on the sizes, since it includes systematic effects which arise from

the differences between PyMorph and S11; we have included it just to get a sense of the

overall magnitude with which systematic rather than random errors might affect the scatter

in the R− L relation.

The two dashed curves show results from using PyMorph to fit a Ser with a Ser-Exp

(lower) and a Ser-Exp with a Ser (upper). The differences between these and the dotted
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11.4 Dependence on Bayesian Automated Classifier morphologies

Figure 11.7: At fixed velocity dispersion σ, the R − L relation is almost a pure power law

whose slope is almost the same for all σ (the black solid line shown is very close to R ∝ L0.83),

but whose zero-point increases as σ decreases. In contrast, the relation upon averaging over all

σ (red dotted curve) is much more curved. The bottom panel shows the result of dividing the

measurements in the top panel by the black solid line.
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curves give an idea of the effect on the scatter of fitting an incorrect model to the data.

The upper dashed curve is particularly interesting, in view of the fact that the Ser-Exp

model is more realistic (see Chapters 6-8) whereas the Ser model is most often fit. Clearly,

subtracting it in quadrature from the upper solid curve will lead to negative values at

large luminosities. This is shown by the lower of the two curves in the bottom panel: at

Mr < −23 or so, the intrinsic scatter is consistent with zero. This, of course, does not mean

that the R−L relation is intrinsically a line with negligible scatter. Rather, it is entirely a

consequence of fitting an incorrect model.

Recently, Nair et al. (2011) have used just such an argument to claim that the R−L re-

lation has no scatter. However, their argument is based on Petrosian sizes and luminosities;

these are known to be inaccurate at large L, so the analysis above illustrates why their claim

should be treated with skepticism. Indeed, the upper curve shows the result of subtracting

(in quadrature) the upper dotted curve from the lower solid one, since both these are based

on fitting to what we argued were more realistic models of the light profile (i.e. Ser-Exp).

In this case, the intrinsic scatter is well-behaved: although it decreases steadily with Mr, it

does not go negative.

Of course, since our estimate of the measurement error is really an underestimate, it

is still possible that the intrinsic scatter is smaller than we show. Therefore, we turn to

what we believe is a much more effective way of showing that there is some intrinsic scatter.

This method studies if the residuals from the relation correlate with other parameters, once

correlations between the measurement errors have been accounted for. If they do, then

there must be some intrinsic scatter.

Figure 11.7 shows the R−L relation for a number of narrow bins in velocity dispersion

σ. At fixed σ, the R − L relation is a power law whose slope is 0.85 for all σ but whose

zero-point increases as σ decreases. The scaling is quite well described by

〈R|L, σ〉 ∝ L0.85σ−0.73. (11.2)
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11.5 Summary

The dependence on σ shows clearly that the scatter around the mean R−L relation corre-

lates with σ; it is not all due to measurement errors. We are not the first to have made this

point (see Bernardi et al. 2003b, for an explicit discussion of this, although the long-studied

Fundamental Plane is the result of this correlation), so it is surprising that Nair et al. (2011)

ignored it. The slope of 0.85 (at fixed σ) is consistent with previous work (Bernardi 2009;

Bernardi et al. 2003a). While steeper than the slope of 0.64 associated with averaging over

all σ, it is less than unity.

Finally, one final observation is that the intrinsic scatter appears to be smallest for the

most luminous objects. Since it is commonly believed that mergers will affect the scatter

of scaling relations such as this one, our overestimate of the intrinsic scatter in the R − L

relation provides a new constraint on models of how the most massive galaxies must have

formed. For example, Shen et al. (2003) argue that many minor mergers may be more

consistent with the shape and scatter of the R − L relation than are few major mergers.

Other work has also explored constraints which come from the scatter (Shankar et al. 2012);

it will be interesting to revisit this question in light of the mass-dependence we believe we

see.

11.5 Summary

We used our automated image decomposition algorithm PyMorph to study the effects of

systematics in the size-luminosity relation of galaxies in the SDSS main sample (i.e. at

z ∼ 0.1) which arise from fitting different models to the images.

We studied how the R − L relation depends on galaxy morphology. Our Figure 11.5

shows one of the first uses of Bayesian classifier-based weights in the estimation of the R−L

scaling relation for different morphologies (e. g. Aguerri et al. 2012). We found that, even

if we allow for finer bins in morphology, there seem to be only two fundamental R − L

relations, both of which are slightly but statistically significantly curved (Figures 11.4 and

11.5 and Tables 11.3 and 11.4).
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Figure 11.8: Left: Observed scatter around the mean 〈R|L〉 relations for early-types based on

fitting Ser (solid red) and Ser-Exp models (solid green) to the images. Black solid curve shows

the corresponding (error-broadened) measurement from Shen et al. (2003). Dashed and dotted

curves show a number of estimates from simulations of the measurement errors (see text for

details). Grey dot-dashed line in top panel shows the RMS difference between PyMorph and

S11 sizes (both based on fitting a two-component Ser-Exp). Right: Estimate of the intrinsic

scatter around the Ser (lower, red curve) and Ser-Exp (upper, green) derived relations for early-

types, obtained by subtracting in quadrature the red-dashed and green dotted curves from the

corresponding red and green solid curves shown in the left panel.
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11.5 Summary

Of course, a closer inspection does reveal subtle dependences on morphology. Amongst

early-types, S0s tend to be about 0.06 dex smaller than Es of the same luminosity (Fig-

ure 11.6). This difference is smaller than the ∼ 40% reported by Huertas-Company et al.

(2013a) at z ∼ 1. We argued that this subtle difference argues against interpreting the

second component in Ser-Exp fits as a disk. It is particularly interesting in view of the fact

that the two types show very different trends as a function of age Bernardi et al. (2010), so

we expect that it, and its evolution, should yield interesting new constraints on models of

how early-type galaxies assembled their stellar mass. Similarly, amongst late-types, faint

Sbs tend to be ∼ 0.1 dex smaller than Scds of the same luminosity, but these differences

decrease as luminosity increases.

Whether or not these scales are associated with the onset of different physics is the

subject of ongoing debate. For example, Graham and Worley (2008) have pointed out that

curvature in the R−L relation may arise as a consequence of linear n−L and central surface

brightness-L relations; the linearity of these would not be suggestive of changing physics

along the relation. Our Ser-based fits do indeed yield pure power laws for these relations,

at least for Early-types above M∗ = 3× 1010M⊙. But they are not pure power laws for our

Ser-Exp reductions, which we believe we have demonstrated are more appropriate.

Bernardi et al. (2011b) attribute the change at M∗ ∼ 2 × 1011M⊙ to a change in

the assembly histories – to ones in which major dry mergers become important. So it is

interesting that it is at this mass scale that the bulge and total R −M∗ relations become

the same, despite being very different at smaller masses. This is particularly remarkable in

light of recent work showing that early-types below this mass scale tend to be fast rotators

Cappellari et al. (2013). It may be that our Ser-Exp bulge-disk decompositions of the

images are reflecting this change in the kinematics. Using the PyMorph results, colors

and color gradients of the individual components are topics for future study.
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Future Work and Concluding

Remarks
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Chapter 12

Future Work

12.1 Further exploration of g- and i-bands

A full exploration of the g- and i-band data produced as part of this work is the next step

with this project. These results as well as the total colors, bulge and disk colors, and the

inter-band relationships will be explored further.

Figure 12.1 shows the bulge (top row) and disk (bottom row) colors as a function of

T-type for the three combinations of bands g-r, g-i, and r-i in the left-hand, centre, and

right-hand columns, respectively. Colors are stable across the T-types for the bulge and disk

components using the r-i color. The g-r and g-i colors show trends toward bluer colors. The

trend is small between T= −5 and T= 3 changing roughly 0.2 mags across the range. There

is a break in the trend at T= 3 and later types show bluer bulges by 0.5 mags compared to

those at T= 3. This change corresponds to the transition from majority two-component to

majority “pure disk” galaxies seen in Figure 8.3. The transition is also present in the disk

colors, although it is somewhat smaller.

Inter-band relationships are particularly interesting for future analysis. Choosing an

appropriate functional relationship between the fitted parameters in the different bands is

useful for constraining bands with low S/N. For instance, the megamorph project (Häußler
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Figure 12.1: Bulge (top row) and disk (bottom row) colors for the three combinations of

bands g-r, g-i, and r-i in the left-hand, centre, and right-hand columns, respectively. Median

values are plotted in as red symbols with 95 per cent CI as error bars. The 68 per cent contours

are shown as blue dashed lines.

et al. 2013) uses the same Galfit fitting routine used in this work and seeks to automate

multi-band fitting, using information from neighboring bands to improve fitting stability

and accuracy in bands with low S/N. Neighboring bands are used to constrain fitting by

requiring variation in the fitting parameters (e. g. bulge radius, Sérsic index, etc. ) to vary

across the bands according to low-order polynomial functions. This is likely appropriately

smooth, as the figures in Chapters 6.2 and 8 show, there is a systematic change in the

parameters across the bands. However, more optimal methods may exist. For instance,

also informing the direction of the change across the bands may be useful (e. g. the B/T is

expected to decrease toward the rest-frame blue bands and increase toward redder bands in

the rest-frame). Further exploration of this is necessary as the next generation of surveys

(DES and LSST) begin to map out more dim galaxies.
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12.2 Pushing to higher resolution and redshift

The simulations in Chapter 4 showed that improving the S/N as well as the resolution offered

substantial improvement in the accuracy of the fitted parameters. This was particularly

true in the case of two-component models. SDSS reached limits in fitting accuracy for two-

component fits at magnitudes dimmer than the apparent magnitude cut of the spectroscopic

sample. However, Chapter 6.3 showed that many of the bulges fit in this catalog have radii

below the PSF radius and may suffer from fitting bias as a result. PSF effects reduce the

accuracy of the fitted radius as well as the sensitivity of the fit to profile Sérsic index. Newer

surveys offer better resolution and S/N relative to the SDSS data (e. g. DES has almost a

factor of 2 better seeing in the r-band). Extending this study to newer surveys will improve

the fitted models further lowering the uncertainty on the LF, other scaling laws, and B/T

values; all of which will improve constraints on formation models.

In addition, newer surveys offer the opportunity to extend the fits to galaxies at higher

redshift. For example, DES will find many galaxies near z ∼ 0.5 at similar physical reso-

lution(i. e., kpc per image pixel rather than arcsec per image pixel) and S/N as the SDSS

galaxies studied here. This offers an important opportunity to extend the analysis to higher

redshifts where galaxy evolution is more active. Constructing an accurate LF at these differ-

ent redshifts would constrain merger rates and relative fractions of major vs minor mergers

through evolution of LF, MF, and other scaling relations.

12.3 Exploring the Green Valley

The green valley (e. g. Baldry et al. 2004; Strateva et al. 2001) was only briefly explored

in Chapter 8.5. This region of parameter space offers interesting opportunities to explore

the mechanisms for galaxy evolution from actively star-forming (blue galaxies) to passive

galaxies (i. e., “red and dead”) galaxies. Recently, Schawinski et al. (2014) challenged the

idea of the green valley being a common transitional state for galaxies by combining Galaxy
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12. FUTURE WORK

Zoo data (Lintott et al. 2011) with SDSS and GALEX UV data. Galaxy Zoo uses citizen

scientists to classify galaxies using somewhat subjective scales in place of numerical values

(e. g. How prominent is the bulge? Extremely, moderately, barely evident, ...). Numerical

measurements of B/T produced by this catalog would offer a more quantitative approach

that either supports or questions these results.
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Chapter 13

Conclusion

A catalog of deV, Ser, deV-Exp, and Ser-Exp galaxies was constructed for the SDSS DR7

spectroscopic sample using the PyMorph pipeline, including the SExtractor and Gal-

fit programs, to perform 2D decompositions (see Chapters 2 and 3). A physically motivated

flagging system that removes poor fits and accurately identifies pure bulge, pure disc, and

two-component systems was presented (Chapters 5.3 and 8.1). After applying the flagging

system to the Ser-Exp fit, about 94 per cent of the fitted sample as having reliable total

magnitude and half-light measurements in the r-band. About 39 per cent of the sample are

two-component galaxies with well-behaved components. An additional ≈ 11 per cent may

be two-component fits, but with difficult-to-interpret components. The remaining 44 per

cent are pure bulge and disc galaxies.

The fits were compared to various results from the literature in Chapter 7. These

comparisons showed that some measurable systematic differences exist in sky brightness as

well as percent-level systematic differences in size and magnitude. Recent work suggests

that the magnitudes reported in this work are more accurate than previously measured

magnitudes (Bernardi et al. 2014; Kravtsov et al. 2014).

Throughout this work, we have focused on the Ser-Exp model. Simulations (e. g. Chap-
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13. CONCLUSION

ter 4, Davari et al. 2014; Mosleh et al. 2013) have shown that there are cases where the

Ser-Exp fit produces more reliable measurements of the total magnitude and half-light ra-

dius compared to the Ser fit. Examination of the Ser-Exp fits and the flagged categories

show that the morphological classes assigned in this catalog using the flags (i. e., bulge, disc,

or two component) also correlate well with estimated T-types (Section 8.2). The fits of this

catalog also behave appropriately in B/T, bulge size, and bulge Sérsic index with respect

to T-type (Section 8.3.1).

The two-component fits are difficult to interpret in many circumstances. We examined

several potential fitting systematics. We make several observations of potential bias in our

catalog.

� Bias due to resolution effects for the Ser bulge components of the Ser-Exp fits is likely

present in the catalog. The majority of galaxies affected by this are the small, low B/T

galaxies. Galaxies with B/T> 0.5, including pure bulge galaxies have a size distribution

similar to Gadotti (2009), and we expect the resolution to have little effect on the

determination of bulge size for the pure bulge and B/T> 0.5 as a result(Section 6.3).

� Bars can strongly alter the measured parameters for the bulges of galaxies with lower

B/T values, although using the b/a distribution can help to separate barred and non-

barred galaxies (Section 8.4).

� At the bright end, two-component models should not be interpreted as traditional

bulge+disc systems, even though the Ser-Exp fit provides a more accurate measure-

ment of galaxy half-light radius and magnitude. The axis-ratio of discs in the early

type (see Section 8.3.2 and Figures 8.6 and 8.7) suggest that these components are sim-

ilar to the bulge component and may represent departures from a single Ser profile or

an extended halo around the galaxy.

After presenting and analyzing the catalog, two applications of the catalog were pre-

sented in Part II These applications applied the catalog to test and update important
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predictions of formation models, namely the luminosity function (Chapter 10) and the size-

luminosity relation (Chapter 11).

As Astronomy becomes more data-rich and newer surveys become main sources of as-

tronomical information (e. g. LSST), large-scale numerical analysis similar to this catalog

will become more important and also more feasible, providing further refinement of models

of galaxy formation and evolution.
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Glossary

Astronomical Terms

L∗ The characteristic luminosity above

which the number of galaxies decline ex-

ponentially in the LF, page 7

Cepheid Variables Unstable stars the that have

a periodic pulsation. The period of the

pulsation is related to the brightness of

the star in a known way., page 1

K-correction The correction to broadband mag-

nitudes to account for cosmological red-

shift shifting the spectrum of the ob-

served object relative to the observer’s

telescope filter band, page 7

LF The function describing the number

density of galaxies at a given magni-

tude. This can vary with environment

or redshift. See Johnston (2011) for a

review of the LF., page 5

M/L The ratio of mass-to-light in a galaxy or

other astronomical object., page 8

MF Similar to the LF, but using additional

assumptions to convert the galaxy lu-

minosities to masses. This is easier to

compare to theoretical models and nu-

merical simulations, although more dif-

ficult to estimate., page 8

Symbols

b/a The ratio of semi-minor to semi-major

axis for ellipses, page 35

B/T The B/T ratio is the ratio of light con-

tributed by the bulge of a galaxy to

the total light within the galaxy. This

parameterizes the relative strength of

the bulge and disk components in the

galaxy and correlates with morphology.,

page 4

χ2
ν The chi-squared per degree of freedom,

a common measure of goodness-of-fit,

page 40

µ50 The Petrosian half-light surface bright-

ness, page 23

Surveys and Catalogs

DES The Dark Energy Survey, page 13

GAMA Galaxy Mass and Assembly survey pre-

sented in Barden et al. (2012), page 94

H2011 H2011 is an automated morphologi-

cal classification that used a Bayesian

SVM algorithm to classify all galaxies in

the spectroscopic sample based on data

available as part of the SDSS DR7. Ob-

jects are matched to our catalog based

on the SDSS DR7 objID., page 28

LSST The Large Synoptic Survey Telescope,

page 13

Men14 A reanalysis of S11, see Mendel et al.

(2014), page 187
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S03 The study of size-luminosity relation of

SDSS galaxies published in Shen et al.

(2003), page 282

S11 The work of Simard et al. (2011) was

a previous attempt at decomposing the

sample used here using different soft-

ware., page 23

SDSS The Sloan Digital Sky Survey, page 13

GZ2 Galaxy Zoo 1 and 2 are an ongoing

project using citizen scientists to vi-

sually classify galaxies. See Lintott

et al. (2008) and Lintott et al. (2011),

page 223

Acronyms

CCD A charge-coupled device. This is the

standard for imaging in optical wave-

lengths and consists of a chip with

many distinct cells on it called pixels.

The pixels produce free electrons at a

rate proportional to the amount of light

falling on the chip. The device is con-

structed such that these free electrons

can be moved around and counted by

the astronomer taking data., page 16

DN ‘data numbers’ or, equivalently, counts

are the actual measured quantity and

are related to the number of photo-

electrons produced by the detector

scaled by the gain of the detector am-

plifier. Photo-electrons, not DN, obey

Poisson statistics, making this distinc-

tion important, page 25

MCC Matthews Correlation Coefficient, see

Baldi et al. (2000), page 122
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