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ABSTRACT

SHIFTED SYMPLECTIC STRUCTURES ON SPACES OF FRAMED MAPS

Theodore Spaide

Tony Pantev

This work examines the existence of shifted symplectic and Poisson structures on certain spaces

of framed maps.

We define n-shifted Poisson structures and coisotropic structures in terms of shifted symplectic

structures and Lagrangian structures. Shifted Poisson structures are shown to have properties

analogous to those of shifted symplectic structures, and reduce to ordinary Poisson structures in the

classical case.

Next, we examine the space Map(X,D,Y) of maps from X to Y, framed along some divisor D.

These are shown to inherit a shifted symplectic or Poisson structure from Y in certain conditions.

This construction is used to rederive the existence of symplectic and Poisson structures in classical

examples.
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Chapter 1

Introduction

This thesis is an investigation into shifted symplectic structures and shifted Poisson structures,

and their relation to certain spaces of framed maps. Shifted symplectic structures could pithily be

described via a pullback square of “symplectic geometry” and “derived algebraic geometry” over

“algebraic geometry”, although maybe not if you want anyone to understand what you’re saying.

1.1 Shifted Symplectic Structures

Shifted symplectic structures, first described in [PTVV], are the natural extension of ordinary (alge-

braic) symplectic structures to the land of derived algebraic geometry. Promoting everything to the

level of derived stacks has the notable effect of replacing the cotangent sheaf LX with the cotangent

complex LX , and dually the tangent sheaf with the tangent complex. This has the expected “ho-

motopic” effect of replacing isomorphisms with quasi-isomorphisms, equalities with equalities up to

homotopy, et cetera. More interestingly, the usual nondegeneracy requirement that the induced map

TX → LX is an isomorphism seems to become a requirement that TX → LX is a quasi-isomorphism.

This is generally impossible, unless LX is concentrated in cohomological degrees [−a, a] for some a.

More generally, we might look for a map TX → LX [n], which would correspond to a 2-form of

degree n, and which would ultimately correspond to an n-shifted symplectic structure1. Assuming

LX is concentrated in degrees [a, b] (with |a|, |b| < ∞), an n-shifted symplectic structure may be

possible for n = a+ b.

This is a wide generalization of ordinary symplectic structures. First, it really is a generalization:

1This is somewhat misleading; in the classical case, the form is equivalent to the map T → L, but in the derived
case more structure is needed.
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0-shifted symplectic structures on smooth varieties are symplectic structures in the ordinary sense.

Second, there are constructions which will provide new shifted symplectic spaces from old ones,

often with different shifts. Thus, someone uninterested in derived algebraic geometry might still use

this machinery to end up with a 0-shifted structure on a smooth variety. Finally, a lot of derived

stacks—like the classifying stack BG—have shifted symplectic structures.

1.2 Maps and Framed Maps

One particular example, discussed in [PTVV], is as follows. Let Y have an n-shifted symplectic

structure, and let X be O-compact oriented in dimension d. This latter condition is nontrivial;

it is, for example, satisfied for X a smooth compact Calabi-Yau variety. Then the mapping stack

Map(X,Y ) has an (n− d)-shifted symplectic structure.

This is a powerful theorem that also recreates some examples of known classical symplectic

structures. For example, if X is a K3 surface and G a semisimple group, then the symplectic

structure on the stable locus of Map(X,BG) was described by Mukai.

However, there are also a number of cases this does not cover. Let G be a reductive group.

Let Map(P2, L,BG) be the space of stable principal G-bundles on P2 with a trivial framing along

a line L. This space has a symplectic structure as described in [Bo]. For another example, let

Map(P1, p,G/B) be the space of maps from P1 to a flag variety G/B sending a marked point in the

source to a marked point in the target. This space also has a symplectic structure, as described in

[FKMM].

Both of these examples detail spaces of framed maps. Specifically, fix maps i : D → X and

f : D → Y , and look at the homotopy fiber of Map(X,Y ) → Map(D,Y ) above f . The resulting

space, Map(X,D, Y ) parametrizes maps g : X → Y with homotopies g ◦ i ∼ f on D. As the above

examples show, these spaces will have shifted symplectic structures under certain circumstances.

Looking at things from a different perspective, in the above cases the source X does not have a

d-orientation, and Map(X,Y ) does not a have a symplectic structure; Map(X,D, Y ) is the “correct”

space for symplectic structures.

The main result for this is

Theorem 1.1. Let X be a d-dimensional proper smooth scheme and D an effective divisor. Suppose

E is an effective divisor of X such that D̃ = 2D + E is anticanonical. Let Y be a derived Artin

stack such that Map(X,Y ), Map(D̃, Y ), Map(D,Y ), and Map(D + E, Y ) are themselves derived
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Artin stacks of locally finite presentation over k. Fix a base map f : D → Y . Suppose Y is n-shifted

symplectic and the projection Map(D + E, Y ) → Map(D,Y ) is etale over f . Then Map(X,D, Y )

has an (n− d)-shifted symplectic structure.

This theorem will provide, for example, the symplectic structure on Map(P2, L,BG). On the

other hand, it is a bit fragile; varieties with effective anticanonical divisor are common enough, but

the cohomological condition that Map(D + E, Y ) → Map(D,Y ) is etale over f is not guaranteed.

On a more conceptual level, we would like to know why Map(X,Y ) isn’t symplectic in this scenario

(and Map(X,D, Y ) whenever the etaleness condition is not satisfied).

1.3 Shifted Poisson Structures

To justify this sudden change of topics, we note that in the above examples, even when the mapping

space doesn’t have a symplectic structure, it still has a Poisson structure. To give two examples, if G

is a semisimple group and P is a parabolic subgroup, Map(P1, p,G/P ) will have a Poisson structure

[FKMM]. The space Map(P2, L,BG) will not have a symplectic structure if we choose a nontrivial

framing on L, but it will still have a Poisson structure [Bo].

To motivate the definition of a shifted Poisson structure, we note two things. First, if we let •n+1

denote a point with the trivial (n + 1)-shifted symplectic structure, then an n-shifted symplectic

structure on a stack X is exactly the same as a Lagrangian structure on X → •n+1. Second, if X

is a smooth underived scheme, then a Poisson structure on X can be used to construct a 1-shifted

symplectic space Y and a morphism X → Y with Lagrangian structure; conversely, given such a

map to a 1-shifted symplectic Y , we can construct a Poisson structure on X.

With this in mind, we take an n-shifted Poisson structure on X to be a formal derived stack Y

with an (n+1)-shifted symplectic structure, and morphism X → Y with Lagrangian structure. The

preceding paragraph tells us that any n-shifted symplectic structure is n-shifted Poisson, and that

a 0-shifted Poisson structure on a smooth scheme is a Poisson structure in the usual sense.

With this definition, we prove a number of results about Poisson structures generalizing those

about symplectic structures. For framed mapping spaces we have the following theorem:

Theorem 1.2. Let X be a d-dimensional proper smooth scheme and D an effective divisor. Suppose

E is an effective divisor of X such that D̃ = 2D + E is anticanonical. Let Y be a derived Artin

stack such that Map(X,Y ), Map(D̃, Y ), Map(D,Y ), and Map(D + E, Y ) are themselves derived

Artin stacks of locally finite presentation over k. Fix a base map f : D → Y . Suppose Y is n-shifted
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Poisson. Then Map(X,D, Y ) has an (n− d)-shifted Poisson structure.

We have, notably, discarded the etaleness assumption. This theorem is pretty broadly applicable.

For example, we obtain the Poisson structure on the remaining cases of Map(P2, L,BG). The case

of Map(P1, p,G/P ) requires a more roundabout approach, but ultimately is understood via these

tools.

Even in the case that Y is symplectic, this theorem is illuminating. For example, it tells us “why”,

if X has nonzero effective anticanonical divisor, the space Map(X,Y ) does not have a symplectic

structure; it has a (nonsymplectic) Poisson structure. In fact, the same is true for any Map(X,D, Y )

for which the etaleness condition of Theorem 1.1 does not hold.

1.4 Organization

Chapter 1 is an overview of shifted symplectic structures. It collects some definitions and results

but is not a detailed reference.

Chapter 2 is about shifted Poisson structures. Poisson structures and coisotropic morphisms are

defined. 0-shifted Poisson structures on smooth schemes are shown to be Poisson structures in the

ordinary sense. Results for symplectic structures are generalized to Poisson structures.

Chapter 3 concerns framed mapping spaces. It contains the main results of this thesis, particu-

larly those given in this introduction.

Chapter 4 is about the spaces of monopoles Map(P1, p,G/P ). The Poisson structure on this

space is constructed.
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Chapter 2

Shifted Symplectic Structures

In the following, k will be the base field, of characteristic 0.

Shifted symplectic structures are first defined in [PTVV]. We will recall some definitions and

results.

Let X be a derived Artin stack. We can form the de Rham algebra Ω∗X = Sym∗OX
(LX [1]). This

is a weighted sheaf whose weight p piece is ΩpX = Symp
OX

(LX [1]) = ∧pLX [p].

Definition 2.1. The space1 of p-forms of degree n on X is

Ap(X,n) = τ≤0 HomLQCoh(X)
(OX ,∧pLX [n]).

Here LQCoh(X) is the ∞-category of chain complexes of quasicoherent OX -modules.

Let dLX
denote the differential on LX or the induced differential on

∧∗ LX . Let ddR be the de

Rham differential on
∧∗ LX . Then we construct the weighted negative cyclic chain complex NCw,

whose degree n, weight p part is

NCn(ΩX)(p) = (
⊕
i≥0

∧p+iLX [n− i], dLX
+ ddR).

Definition 2.2. The space of closed p-forms of degree n is

Ap,cl(X,n) = τ≤0 HomLQCoh(X)
(OX , NCn(ΩX)(p)).

1Here I use “space”, “simplicial set”, and “connective chain complex” interchangably.
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There is a natural “underlying form” map Ap,cl(X,n)→ Ap(X,n) corresponding to the projection⊕
i≥0 ∧p+iLX [n− i]→ ∧pLX [n].

Intuitively, a “closed p-form” ω of degree n consists of forms ωp+i ∈ ∧p+i(LX)n−i for i ≥ 0 such

that (dLX
+ ddR)(ωp + ωp+1 + · · · ) = 0. This has the following interpretation. The underlying form

of ω is ωp; we require dLX
ωp = 0 so that ωp defines a class in cohomology. For de Rham closedness,

we do not require that ddRωp equals zero, but that it is homotopic to zero with specified homotopy:

ddRωp = −dLX
ωp+1 for some ωp+1. We then require that ωp+1 be de Rham closed, again in the

sense that ddRωp+1 = −dLX
ωp+2, et cetera. Note that closedness of a p-form is not a condition on

a p-form, but an extra structure consisting of the forms ωp+i for i ≥ 1. In the case of a (0-shifted)

p-form on an ordinary smooth variety, LX is concentrated in degree 0, so we must have ωp+i = 0

for i ≥ 1. Thus the structure reduces to a condition in this case.

Now we can define symplectic structures:

Definition 2.3. A 2-form ω : OX → ∧2LX [n] of degree n is nondegenerate if the adjoint map

TX → LX [n] is a quasi-isomorphism. Let A2(X,n)nd denote the non-degenerate 2-forms of degree

n on X.

An n-shifted symplectic form on X is a closed 2-form whose underlying form is nondegenerate.

The space of n-shifted symplectic forms is the (homotopy2) product

Symp(X,n) = A2,cl(X,n)×A2(X,n) A2(X,n)nd.

Let us give a few examples of spaces with shifted symplectic structures.

• If X is an ordinary (underived) smooth scheme, then a 0-shifted symplectic structure on X is

precisely the same as a symplectic structure in the ordinary sense.

• Let G be a reductive affine smooth group scheme over k. Then the classifying stack BG has a 2-

shifted symplectic structure. A 2-shifted symplectic form on G is the same as a nondegenerate

G-invariant quadratic form on g.

• Let X be a derived Deligne-Mumford stack locally of finite presentation over k. Then we

can define the n-shifted cotangent stack T∨X[n] = R Spec SymOX
(TX [−n]). Then T∨X[n] has

2A2(X,n)nd is a union of connected components of A2(X,n), so the ordinary product is the homotopy product.
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a natural n-shifted symplectic form defined analogously to the canonical symplectic form on

T∨X for a smooth scheme X.

• The quotient stack [g∨/G] has a canonical 1-shifted symplectic form ([Ca], 1.2.3).

2.1 Lagrangian Structures

Let Y be a derived Artin stack with an n-shifted symplectic form ω and let f : X → Y be a

morphism.

Definition 2.4. The space of isotropic structures on f (with respect to ω) is

Isot(f, ω) = Path0,f∗(ω)(A2,cl(X,n))

the space of paths from 0 to f∗(ω) in A2,cl(X,n).

Let Tf be the relative tangent complex of f , so that we have a distinguished triangle

Tf → TX → f∗(TY ).

An isotropic structure h ∈ Isot(f, ω) provides a homotopy between the morphism

TX ∧ TX → f∗(TY ) ∧ f∗(TY )→ OX [n]

and 0. Then we also get a homotopy from

Tf ⊗ TX → TX ∧ TX → f∗(TY ) ∧ f∗(TY )→ OX [n]

to 0. There is another homotopy between this morphism and 0, coming from the canonical homotopy

from Tf → f∗TY to 0. Composing these yields a loop in HomLQCoh(X)
(Tf ⊗ TX ,OX [n]), which is a

point of HomLQCoh(X)
(Tf ⊗ TX ,OX [n− 1]). By adjunction, we get a map Θh : Tf → LX [n− 1].

Definition 2.5. We say h is Lagrangian if Θh is a quasi-isomorphism of complexes.

Note that an isotropic or Lagrangian structure is indeed a structure on a map, rather than

a property as in the ordinary case. As with the closedness structure, the structure reduces to a

condition when we restrict to ordinary varieties.

7



Remark 2.5.1. Note that if •n denotes the point with trivial n-shifted symplectic structure, then a

Lagrangian structure on X → •n is just an (n− 1)-shifted symplectic structure on X.

Lagrangian structures are useful in generating new symplectic spaces:

Theorem 2.6 ([PTVV], Theorem 2.9). Let X,L1, L2 be derived Artin stacks, ω ∈ Symp(X,n) an

n-shifted symplectic structure on X, and fi : Li → X a morphism with Lagrangian structure hi for

i = 1, 2. Then the product L1 ×hX L2 has a natural (n − 1)-shifted symplectic structure, which we

denote by R(ω, h1, h2).

Proof. We briefly show the construction of R(ω, h1, h2); the complete proof is given in [PTVV]. Let

Z = L1 ×hX L2, and πi : Z → Li the projection for i = 1, 2. Let u : f1 ◦ π1 ⇒ f2 ◦ π2 be the natural

homotopy.

The Lagrangian structure hi yields a homotopy 0 ∼ f∗i ω in A2,cl(Li, n). Pulling back by πi gives

homotopies

π∗i hi : 0 ∼ h∗i f∗i ω,

for i = 1, 2. The homotopy u gives a homotopy

u∗ω : h∗1f
∗
1ω ∼ h∗2f∗2ω.

Concatenating these paths yields a loop in A2,cl(Li, n); for concreteness we take π∗1h1 +u∗ω−π∗2h2.

This defines an element

R(ω, h1, h2) ∈ π1(A2,cl(Z, n)) ' π0(A2,cl(Z, n− 1)).

Remark 2.6.1. In particular, let X1 and X2 be derived Artin stacks with n-shifted symplectic

structures ω1 and ω2, respectively. Considering ω1 and ω2 as Lagrangian structures on the maps

X1, X2 → •n+1, this theorem provides the symplectic structure π∗1ω1 − π∗2ω2 on X1 ×X2.

8



2.2 Symplectic Structures on Mapping Stacks

Let X and Y be derived Artin stacks. The evaluation map ev : X × Map(X,Y ) → Y yields a

pullback map

ev∗ : RΓ(Y,Ω∗Y )→ RΓ(X ×Map(X,Y ),Ω∗X×Map(X,Y )).

If X is O-compact (see [PTVV], Definition 2.1), we have a map

RΓ(X ×Map(X,Y ),Ω∗X×Map(X,Y ))→ RΓ(X,OX)⊗ RΓ(Map(X,Y ),Ω∗Map(X,Y )),

which is the Künneth formula

RΓ(X ×Map(X,Y ),Ω∗Map(X,Y )) ' RΓ(X,Ω∗X)⊗ RΓ(Map(X,Y ),Ω∗Map(X,Y ))

followed by projection RΓ(X,Ω∗(X))→ RΓ(X,OX) onto the 0-forms.

Given a “fundamental class” [X] : RΓ(X,OX) → k[−d], we can compose these morphisms to

obtain

RΓ(Y,Ω∗Y )→ RΓ(Map(X,Y ),Ω∗Map(X,Y ))[−d],

which will induce a map on (closed) p-forms:

Ap(,cl)(Y, n)→ Ap(,cl)(Map(X,Y ), n− d).

If [X] satisfies a certain nondegeneracy condition, the above map will preserve nondegeneracy of

forms. We now describe the condition.

For any perfect complex E on X, we let E∨ = RHom(E,OX), and we have a natural pairing

RΓ(X,E)⊗ RΓ(X,E∨)
∪ // RΓ(X,OX)

[X] // k[−d] ,

which is adjoint to a map

RΓ(X,E)
−∩[X] // RΓ(X,E∨)∨[−d] .

More generally, for any A ∈ cdga≤0
k , we let XA = X × SpecA, and for any perfect complex E on

9



XA we have a map

RΓ(XA, E)
−∩[X]A// RΓ(XA, E

∨)∨[−d] .

Definition 2.7. We say [X] is a d-orientation if for every A ∈ cdga≤0
k and perfect complex E on

XA, the map − ∩ [X]A is a quasi-isomorphism.

Then we have

Theorem 2.8 ([PTVV], Theorem 2.5). Let Y be a derived Artin stack, and let X be an O-compact

derived stack with a d-orientation [X]. Assume the derived mapping stack Map(X,Y ) is a derived

Artin stack locally of finite presentation over k. Then we have a map

∫
[X]

ev∗(−) : Symp(Y, n)→ Symp(Map(X,Y ), n− d).

Fix ω ∈ Symp(Y, n). Let us describe the induced structure
∫

[X]
ev∗(ω) now. For any f ∈

Map(X,Y ), the tangent complex at f is Tf Map(X,Y ) ' RΓ(X, f∗TY ). Then the pairing

2∧
Tf Map(X,Y )→ k[n− d

is given by

RΓ(X, f∗TY ) ∧ RΓ(X, f∗TY )
∪ // RΓ(X, f∗TY ∧ f∗TY )

f∗(ω)

tt
RΓ(X,OX [n])

[X] // k[n− d]

Several examples of orientations are given in [PTVV], following Theorem 2.5. One particular

example is the case that X is Calabi-Yau. If X has dimension d and we have an isomorphism

ωX ' OX , then projection of RΓ(X,OX) onto the degree d cohomology Hd(X,OX)[−d], followed

by the isomorphism

Hd(X,OX) ' Hd(X,ωX) ' k

provides a map [X] : RΓ(X,OX)→ k[−d]. This is an orientation by Serre duality.
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2.2.1 Boundary Structures

The following is due to [Ca]. Let X,Y , and Z be derived Artin stacks. Given a map f : Z → X,

we have a pullback map (− ◦ f) : Map(X,Y )→ Map(Z, Y ). Assume that X and Z are O-compact

and Z has a d-orientation [Z], that Y has an n-shifted symplectic form ω, and that both mapping

spaces are Artin stacks. Then Map(Z, Y ) will have an (n − d)-shifted symplectic structure. It is

natural to ask when the pullback map (− ◦ f) has an isotropic or Lagrangian structure.

Definition 2.9. The space of boundary structures on f (with respect to [Z]) is

Bnd(f, [Z]) = Path0,f∗[Z](Homk(RΓ(X,OX), k[−d]))

the space of paths from 0 to f∗[Z] in Homk(RΓ(X,OX), k[−d]).

This definition is dual to the definition of isotropic structures, and it is clear that a boundary

structure on f will yield an isotropic structure on − ◦ f with respect to
∫

[Z]
ev∗Zω, via the identity

(− ◦ f)∗
∫

[Z]

ev∗Zω =

∫
f∗[Z]

ev∗Xω.

This can be extended to a dual notion of nondegeneracy (see [Ca], definition 2.8) which guarantees

that the isotropic structure is Lagrangian:

Theorem 2.10 ([Ca], Theorem 2.9). Let X,Y, Z be as above. Then we have a map

Bnd(f, [Z])→ Isot(f∗,

∫
[Z]

ev∗Zω)

sending nondegenerate boundary structures to Lagrangian structures.

In particular we are interested in the following case. Let X be a geometrically connected smooth

proper algebraic variety of dimension d+1, and say it has a smooth anticanonical effective divisor D.

Then D is a d-dimensional Calabi-Yau variety by the adjunction formula, and so has a d-orientation

[D] : RΓ(D,OD)→ k[−d]. Similarly, using

KX ' OΣ(−D),

11



we get a map [X] : RΓ(X,OX(−D))→ k[−d− 1]. Then the short exact sequence

0 // OX(−D) // OX // ι∗OD // 0

gives us a commutative diagram

RΓ(X,OX) // RΓ(D,OD) //

[D]

��

RΓ(X,OX(−D))[1]

[X]

��
k[−d] k[−d]

.

Since the top row is naturally homotopic to 0, this provides a path between 0 and ι∗[D], that is, a

boundary structure on ι. In fact:

Lemma 2.11 ([Ca], Claim 3.3). This is a nondegenerate structure.

And so, using Theorem 2.10, we get

Corollary 2.12. Let X be a geometrically connected smooth proper algebraic variety of dimension

d+1, and let D be a smooth anticanonical effective divisor. Let Y have an n-shifted symplectic form

ω ∈ Symp(Y, n). Assume Map(X,Y ) and Map(D,Y ) are derived Artin stacks.

Then there exist a natural (n−d)-shifted symplectic form on Map(D,Y ) and Lagrangian structure

on Map(X,Y )→ Map(D,Y ).

12



Chapter 3

Shifted Poisson Structures

To motivate the definition of shifted Poisson structures, let us first look at ordinary Poisson structures

in terms of shifted symplectic structures. Let X be a smooth (underived) scheme with Poisson

bivector field π. The Poisson structure is equivalently given by the sheaf map π] : T∨X → TX .

Here is one way to get maps T∨X → TX . Let Y be a formal stack with a 1-shifted symplectic

structure, and let q : X → Y have a Lagrangian structure h. Then the Lagrangian condition gives

a quasi-isomorphism Tq ' T∨X, and composing with Tq → TX yields a map π]h : T∨X → TX.

This construction necessarily yields a Poisson structure, and in fact provides all Poisson struc-

tures:

Theorem 3.1. Let X be a smooth scheme. Then:

1. Given a Poisson structure π on X, there exist a formal derived stack Y with 1-shifted symplectic

ω, a map q : X → Y , and Lagrangian structure h on q such that π] = π]h.

2. Let Y be a formal derived stack with 1-shifted symplectic form ω, and let q : X → Y be a map

with Lagrangian structure h. Then π]h is a Poisson structure on X.

Proof. For (1), consider the map π] : TX → T∨X. This map extends to a map

∧pπ] : ∧pT∨X → ∧pTX

13



such that the square

∧pT∨X
∧pπ]

//

d

��

∧pTX

[π,−]

��
∧p+1T∨X

∧p+1π]
// ∧p+1TX

commutes, where [−,−] is the Schouten bracket. To see this, first note that [π,−] has square 0: for

a ∈ Γ(U,∧pTX), we have [π, [π, a]] = 1
2 [[π, π], a], but [π, π] = 0 is exactly equivalent to the Jacobi

identity for π. Additionally, [π,−] is a derivation: [π, ab] = [π, a]b + (−1)aa[π, b]. The claim holds

almost by definition for p = 0: for f ∈ Γ(U,OX), we have

[π, a] = ιdfπ = π](df).

Assuming the claim for p− 1, note that Γ(U,∧pT∨X) is generated k-linearly by sections of the form

fdα, for α ∈ Γ(U,∧p−1T∨X). Then

∧p+1π](d(fdα)) = ∧p+1π](df ∧ dα)

= π](df) ∧ (∧pπ](dα)),

and

[π,∧pπ](fdα)] = [π, f ∧p π](dα)]

= [π, f ] ∧ [π,∧p−1π](α)] + f [π, [π,∧p−1π](α)]]

= π](df) ∧ (∧pπ](dα)).

Thus the map T∨X → TX induces a morphism

Sym•(π][−1]) : (Sym•(T∨X[−1]), d)→ (Sym•(TX[−1]), [π,−])

of graded mixed cdga.

We can then form the derived quotient [X/π]]. This is a formal stack equipped with a map

q : X → [X/π]]. It satisfies the universal property that a map f : X → F to a formal derived stack
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F descends to ϕ : [X/π]]→ F iff the map Sym•(π][1]) factors through

ψ : (Sym•(Lf,big[−1]), d)→ (Sym•(TX[−1]), [π,−]),

and a map ψ of mixed graded cdgas uniquely determines ϕ.

The structure sheaf of this stack is (Sym•OX
(TX[−1]), [π,−]). Its tangent complex is

T[X/π]] ' { T∨X
π]
// TX },

with TX sitting in degree 0. Looking at the 2-forms, we have

∧2L[X/π]] ' {∧2T∨X → T∨X ⊗ TX → Sym2 TX}.

The degree 1 component, T∨X ⊗ TX, contains a canonical section ω corresponding to the identity

TX → TX. For this to define a 2-form we need dω = 0. To see this, note that the image of ω via

T∨X ⊗ TX → TX ⊗ TX

is precisely the bivector field π; that this disappears in Sym2 TX is precisely the fact that π is

antisymmetric. Nondegeneracy is clear, as the map T[X/π]] → L[X/π]][1] is literally the identity

using the above representatives for T[X/π]] and L[X/π]]. For closedness, let

ζ ∈ (O[X/π]])1 ⊗ (L[X/π]])0
∼= TX ⊗ T∨X

be the section corresponding to the identity on TX. Then ddRζ = ω, so we have ddRω = 0. Thus

we can take 0 as a closedness structure for ω. (Note that ζ does not define a form on [X/π]], as

generally dζ 6= 0; thus ω is not necessarily exact.)

Thus [X/π]] has a canonical 1-shifted symplectic structure. Looking at q : X → [X/π]], we see

that q∗ω is a form of degree 1, so it is zero in ∧2LX ' ∧2T∨X. Thus q is isotropic with isotropic

structure 0. Further, Tq ' T∨X, and the induced map Tq → LX is the identity. So in fact, q has a

Lagrangian structure. Finally, π]0 : T∨X ' Tq → TX is exactly the map π].

Now consider the case of (2). The quasi-isomorphism Tq → LX gives us a map π] : T∨X '
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Tq → TX. Using the fiber sequence

T∨X
π]
// TX // q∗TY ,

we have

q∗TY ' { T∨X
π]
// TX },

with TX sitting in degree 0. Under this identification, we have

q∗(∧2LY ) ' {∧2T∨X → T∨X ⊗ TX → Sym2 TX},

with q∗ω corresponding to the identity in T∨X ⊗ TX. As before, antisymmetry of π] is exactly the

fact that d(q∗ω) = 0. In particular, π] corresponds to a bivector field π. For the Jacobi identity,

look at the second infinitesimal neighborhood Xq,2 of X along q. Its structure sheaf is given by

OXq,2 ' (Sym≤2
OX

(TX[−1]), [π,−]). For this to be a dg-algebra, we need [π, [π,−]] = 1
2 [[π, π],−] = 0

on OX , so [π, π] = 0, which is the Jacobi identity.

Note that the actual Poisson structure on X only depends on a formal neighborhood of X in Y ;

in particular, all the relevant structures involve q∗LY and its various byproducts.

With this in mind, we define:

Definition 3.2. An n-shifted Poisson structure on X is (Y, ω, q, h), where Y is a formal derived

stack with an (n+ 1)-shifted symplectic structure ω ∈ Symp(Y, n+ 1), and q : X → Y is a map with

Lagrangian structure h. Y is called the Poisson base of X.

An equivalence of Poisson structures (Y, ω, q, h) → (Y ′, ω′, q′, h′) is a pair (g, γ) consisting of

a map g : (Y, q) → (Y ′, q′) (in the category of formal derived stacks under X), and a homotopy

γ : q∗ω ∼ q∗g∗ω′ in |NC2(Sym• q∗LY [1])| such that

(q′)∗LY ′ ' q∗g∗LY ′ → q∗LY

is a quasi-isomorphism, and the image of γ in A2,cl(X,n) intertwines h and h′.

Remark 3.2.1. As per the remark following Definition 2.5, if •(n+1) denotes the point with trivial

(n + 1)-shifted symplectic structure, then a symplectic structure on a derived Artin stack X is
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the same as a Lagrangian structure on the map X → •(n+1). Thus every symplectic structure is

naturally Poisson.

Remark 3.2.2. Let X be a smooth variety and π = 0 the zero Poisson structure. Then the space

[X/π]] constructed in the proof of Theorem 2 is the shifted cotangent space T∨X[1].

For nonzero π, suppose the (classical) moduli space of symplectic leaves Y is a derived Deligne-

Mumford stack. Suppose there is a closed 2-form ω on X whose pullback to any symplectic leaf is

the form induced by π. Then the map X → T∨Y [1] with Lagrangian structure ω also defines the

Poisson structure π; this map descends to [X/π]]→ T∨Y [1], which gives an equivalence of Poisson

structures.

Now consider a smooth variety X with Poisson structure π, which we consider in terms of the

1-shifted symplectic structure ω on some Y and the Lagrangian structure on q : X → Y . Let us

now characterize coisotropic subvarieties of X in terms of the map q with its Lagrangian structure.

Theorem 3.3. Let X be a smooth variety. Let Y be a formal derived stack with 1-shifted symplectic

structure ω, and let q : X → Y be a map with Lagrangian structure h. Let π be the resulting Poisson

structure.

1. Suppose that W is a coisotropic subvariety of X, and let s : W → X be the inclusion. Then

there exists a formal derived stack X ′ and maps s′ : W → X ′, q′ : X ′ → Y , such that q′ has

a Lagrangian structure, q ◦ s = q′ ◦ s′, and the induced map a : W → P := X ′ ×Y X has a

Lagrangian structure.

2. Conversely, say s : W → X is a subvariety, and suppose there exist a formal derived stack X ′,

maps s′ : W → X ′, q′ : X ′ → Y , a Lagrangian structure on q′, a homotopy q ◦ s ∼ q′ ◦ s′, and

a Lagrangian structure on a : W → P := X ′ ×Y X. Then W is coisotropic in X.

Proof. For (1), let s : W → X be a coisotropic subvariety. That is, W is also a smooth variety,

and the Poisson structure restricted to the conormal bundle N∨W |X → T∨X → TX factors through

the tangent space TW of W . Let the adjoint of N∨W |X → TW be π]W : T∨W → NW |X ; one can

show that the morphism of mixed graded cdgas induced by π] descends to π]W , so we have a formal

quotient X ′ := [W/π]W ], with a projection s′ : W → [W/π]W ]. From the universal property of

[W/π]W ] there is a natural map q′ : [W/π]W ]→ Y descending from W → X → Y .

We can write

T[W/π]
W ] ' {N

∨
W |X → TW},
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with TW in degree 0; thus,

∧2L[W/π]
W ] ' {∧

2T∨W → T∨W ⊗NW |X → Sym2NW |X}.

I claim that (q′)∗ω = 0. To see this, recall that the pullback of ω to (q′)∗ ∧2 LY is the element of

T∨X ⊗ TX corresponding to the identity on TX. But Hom(TX, TX) → Hom(TW,NW |X) sends

the identity to the composition TW → TX → NW |X , which is 0 by definition. Thus q has isotropic

structure 0. Further, we have

Tq ' {T∨W → NW |X},

with T∨W sitting in degree 0. The map Tq → L∨
[W/π]

W ]
is clearly an isomorphism, so the isotropic

structure on q is Lagrangian. Then P = [W/π]W ] ×Y X is a Lagrangian intersection, so it has a

0-shifted symplectic structure. One can check that TP is an extension

0→ TW → TP → T∨W → 0.

Let a : W → P be map induced by s′ and s; if ωP is the symplectic form on P , then a∗ωP = 0, so

a is isotropic (with isotropic structure 0). However, we have Ta ' T∨W [−1], and Ta → LW [−1] is

the identity. So in fact a : W → P is Lagrangian.

For (2), let pr1 : P → X ′ be the projection. Then we have an exact sequence

Ta → Ts → a∗Tpr1 .

Using Ta ' LW [−1] from the Lagrangian structure, and Tpr1 ' pr∗2Tq ' pr∗2T∨X, we have

T∨W [−1]→ Ts → s∗T∨X,

so that Ts ' N∨W |X . Further, the diagram

Ts //

��

TW

��
s∗Tq // s∗TX

commutes, that is, the Poisson map N∨W |X → T∨X → TX factors through N∨W |X → TW . So W is
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coisotropic in the usual sense.

This leads us to define coisotropic structures in general:

Definition 3.4. LetX be a derived Artin stack with n-shifted Poisson structure given by f : X → Y .

Let W be a derived Artin stack with a map g : W → X. A coisotropic structure on g consists of the

following data:

• X ′ a formal derived stack

• f ′ : X ′ → Y

• g′ : W → X ′

• An homotopy η : f ◦ g ' f ′ ◦ g′

• A Lagrangian structure α on f ′

Note that the above data define a map X ′ → Y ′×Y X, and that Y ′×Y X has an n-shifted symplectic

form by Theorem 2.6. We finally require:

• A Lagrangian structure β on the map a : X ′ → Y ′ ×Y X.

We refer to the map f ′ : X ′ → Y as the coisotropic base of W → X.

Let (X ′i, f
′
i , g
′
i, ηi, αi, βi) be coisotropic structures for i = 1, 2. An equivalence of coisotropic

structures is a pair (h, γ), where h : (X ′1, f
′
1, g
′
1, η
′
1)→ (X ′2, f

′
2, g
′
2, η
′
2) is a morphism in the appropriate

slice category, and γ : (g′1)∗α1 ∼ (g′1)∗h∗α2 is a homotopy in |NC2(Sym•(g′1)∗LX′1 [1])|, such that

(g′2)∗LX′2 ' (g′1)∗h∗LX′2 → (g′1)∗LX′1

is a quasi-isomorphism, and if ωi is the symplectic form on X ′i×Y X for i = 1, 2, then the homotopy

a∗1ω1 ∼ a∗2ω2 induced by γ intertwines the homotopies β1, β2.

Remark 3.4.1. It is clear from the definition that if X has an n-shifted symplectic structure, con-

sidered as an n-shifted Poisson structure via X → •(n+1), then any Lagrangian morphism Y → X

is also coisotropic over •n → •(n+1).

Note, however, that the classical fact that a morphism which is both coisotropic and isotropic

must be Lagrangian is not true. For example, the morphism A1 → •1 is clearly isotropic (with
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isotropic structure 0), and coisotropic over T∨A1[1] → •2. However, a Lagrangian structure on

A1 → •1 would be a symplectic structure on A1 (in the classical sense), which clearly does not exist.

Definition 3.5. Let X be a derived Artin stack with Poisson structure given by P2 = (Y2, ω2, f2, h2),

and g : W → X with coisotropic structure (X ′, f ′, g′, η, α, β). Let P1 = (Y1, ω1, f1, h1) be another

Poisson structure and (k, γ) : P1 → P2 an equivalence. The pullback of the coisotropic structure via

h is as follows. Let Ỹ1 be a formal neighborhood of X in Y1.

• Let X ′1 = X ′ ×Y2
Ỹ1.

• The map f ′1 : X ′1 → Y1 is X ′1 → Ỹ1 → Y1.

• g′1 : W → X ′1 is induced by W → X ′ and W → X → Ỹ1.

• η1 = id : f1 ◦ g ∼ f ′1 ◦ g′1.

• Let pr : X ′1 → X ′ be the projection. The homotopy γ yields a homotopy

(f ′1)∗ω1 ∼ (f ′1)∗k∗ω2 ∼ pr∗(f ′)∗ω2.

Then α1 is this homotopy followed by pr∗α. The Lagrangian condition follows from the

Lagrangian condition for α, using the fact that Ỹ1 → Y2 and pr are etale.

• Let ω2 be the induced symplectic structure on P2 := X ′ ×Y2
X. Let ω1 be the induced

symplectic structure on P1 := X ′1 ×Y1
X. Let r : P1 → P2 be the natural map. The homotopy

induced by γ in the previous point also gives a homotopy ω1 ∼ r∗ω2. Following this with

r∗β yields β1. As in the previous point, the Lagrangian condition follows from etaleness of all

relevant maps and Lagrangianness of β.

Lemma 3.6. Let X1, X2, X3, Y be derived Artin stacks, and let ω ∈ Symp(Y, n) be an n-shifted

symplectic structure on Y . For i = 1, 2, 3, let fi : Xi → Y be a morphism with Lagrangian structure

hi. Note that any product Xi ×Y Xj has a canonical (n − 1)-shifted symplectic structure. Let

g12 : L12 → X1×Y X2 and g23 : L23 → X2×Y X3 be morphisms with Lagrangian structures k12, k23

respectively.

Then g13 : L13 := L12 ×X2
L23 → X1 ×Y X3 has a canonical Lagrangian structure.

Proof. Let π1 : L12 → X1 and π2 : L12 → X2 be the projections, and let η12 : f1 ◦ π1 → f2 ◦ π2 be

the natural equivalence of morphisms. If ω12 ∈ Symp(X1×Y X2, n− 1) is the symplectic form given
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by Theorem 2.6, then g∗12ω12 = π∗1h1 + η∗12ω − π∗2h2. Then k12 gives a path from 0 to this form.

Similarly if π′2 : L23 → X2 and π3 : L23 → X3 are the projections and η23 : f2 ◦ π′2 → f3 ◦ π3 the

equivalence of morphisms, then k23 is a path from 0 to (π′2)∗h2 + η∗23ω − π∗3h3 in A2,cl(L23, n− 1).

L13

πa

}}

πb

!!
+3ηab

L12

π1

}}

π2

!!
+3η12

L23

π′2

}}

π3

!!
+3η23

X1

f1

((

X2

f2
��

X3

f3

vv
Y

Now let πa : L13 → L12 and πb : L13 → L23 be the projections and ηab : π2 ◦πa → π′2 ◦πb the natural

equivalence. Then in A2,cl(L13, n− 1) we have paths

π∗ak12 : 0 ∼ π∗aπ∗1h1 + π∗aη
∗
12ω − π∗aπ∗2h2

π∗bk23 : 0 ∼ π∗b (π′2)∗h2 + π∗bη
∗
23ω − π∗bπ∗3h3

η∗abh2 : 0 ∼ π∗aπ∗2h2 + η∗abf
∗
2ω − π∗b (π′2)∗h2.

Composing these gives

0 ∼ π∗aπ∗1h1 + η∗13ω − π∗bπ∗3h3, (*)

where

η13 = (πbη23) ◦ (ηabf2) ◦ (πaη12) : πb ◦ π3 ◦ f3 → πa ◦ π1 ◦ f1

is the equivalence. If ω13 ∈ Symp(X1 ×Y X3, n − 1) is the symplectic form, then (*) is exactly the

isotropic structure 0 ∼ g∗13ω13 we need.

For Lagrangianness, we use the diagram

TL13
//

��

TL12 ⊕ TL23
//

∼

��

TX2

∼

��

/ //

Lg13 [n− 2] // (Lg12 ⊕ Lg23)[n− 2] // Lf2 [n− 1] / //

.

The rows are exact and two of the three vertical maps are quasi-isomorphisms, so the third is as
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well.

Restated in Poisson language, the above is a generalization of Theorem 2.6:

Corollary 3.7. Let X have an n-shifted Poisson structure given by f : X → Y . For i = 1, 2, let

gi : X ′i → X be coisotropic with coisotropic base hi : Y ′i → Y . Then X1 ×X X2 is (n − 1)-shifted

Poisson with base Y1 ×Y Y2.

Now let us generalize the situation of mapping spaces. It is relatively clear that Lagrangian

structures descend to mapping spaces:

Theorem 3.8 ([Ca], Theorem 2.10). Let X,Y, Z be derived Artin stacks and f : Y → Z a map.

Assume X is O-compact with d-orientation [X]. Assume the stacks Map(X,Y ) and Map(X,Z) are

derived Artin stacks locally of finite presentation over k. Then we have a map

∫
[X]

ev∗(−) : Lagr(f, ω)→ Lagr(f ◦ −,
∫

[X]

ev∗(ω)),

that is, from Lagrangian structures on f to Lagrangian structures on (f ◦ −).

Again, using the language of Poisson structures, we have

Corollary 3.9. Let Y have an n-shifted Poisson structure with base Z. Let X be O-compact with

d-orientation [X]. Assume the stacks Map(X,Y ) and Map(X,Z) are derived Artin stacks locally

of finite presentation over k. Then Map(X,Y ) has an (n − d)-shifted Poisson structure with base

Map(X,Z).

We also have a variant of Theorem 3.8 to the coisotropic case:

Theorem 3.10. Let Y be n-shifted Posison with base Z, and let g : Y ′ → Y be coisotropic with

base h : Z ′ → Z. Let X be O-compact with d-orientation [X]. Assume the stacks Map(X,Y ),

Map(X,Z), Map(X,Y ′), and Map(X,Z ′) are derived Artin stacks locally of finite presentation over

k. Then Map(X,Y ′)→ Map(X,Y ) is coisotropic with base Map(X,Z ′)→ Map(X,Z).

Proof. By Theorem 3.8, the maps Map(X,Z ′) → Map(X,Z), Map(X,Y ) → Map(X,Z), and

Map(X,Y ′)→ Map(X,Z ′ ×Z Y ) have natural Lagrangian structures. But

Map(X,Z ′ ×Z Y ) ∼= Map(X,Z ′)×Map(X,Z) Map(X,Y )
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as symplectic spaces.

And similarly of Theorem 2.10:

Theorem 3.11. Let Y be n-shifted Poisson given by f : Y → Z and Lagrangian structure h : 0 ∼ ω.

Let g : W → X be a map of O-compact derived Artin stacks, and let [W ] be a d-orientation on W

and γ a boundary structure on g.

Then Map(X,Y )→ Map(W,Y )×Map(W,Z)Map(X,Z) has a natural Lagrangian structure. Equiv-

alently, Map(X,Y )→ Map(W,Y ) has a coisotropic structure over Map(X,Z)→ Map(W,Z).

Proof. Map(W,Z) has symplectic structure
∫

[W ]
ev∗Wω. The Lagrangian structure on Map(W,Y )→

Map(W,Z) is given by

∫
[W ]

ev∗Wh : 0 ∼
∫

[W ]

ev∗W g
∗ω = (g ◦ −)∗

∫
[W ]

ev∗Wω.

The Lagrangian structure on Map(X,Z)→ Map(W,Z) is given by

∫
γ

ev∗Xω : 0 ∼
∫
f∗[W ]

ev∗Xω = (− ◦ f)∗
∫

[W ]

ev∗Wω.

Let ω̃ be the induced symplectic structure on Map(W,Y )×Map(W,Z) Map(X,Z), and let

r : Map(X,Y )→ Map(W,Y )×Map(W,Z) Map(X,Z)

be the natural map. Then

r∗ω̃ =

∫
f∗[W ]

ev∗Xh−
∫
γ

ev∗W g
∗ω,

and the isotropy is given by ∫
γ

ev∗Xh : 0 ∼ r∗ω̃.

For the Lagrangian condition, fix a dga A and σ : SpecA → Map(X,Y ) corresponding to σ̃ :

X × SpecA→ Y . Let π2 : X × SpecA→ SpecA be the projection. Then

σ∗Tr ' (π2)∗HoFib(σ̃∗Tg → (f × 1SpecA)∗(f × 1SpecA)∗σ̃∗Tg)

and

σ∗LMap(X,Y ) ' ((π2)∗σ̃
∗TY )∨ = Hom ((π2)∗σ̃

∗TY ,OSpecA) .
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The map σ∗Tr → σ∗LMap(X,Y )[n− d− 1] is induced by the maps Tg → LY [n], a quasi-isomorphism

given by the Lagrangian structure h, and

(π2)∗HoFib(σ̃∗LY → (f × 1SpecA)∗(f × 1SpecA)∗σ̃∗LY )→ ((π2)∗σ̃
∗TY )∨[d− 1],

a quasi-isomorphism given by the nondegenerate boundary structure.

Specifically, we want to generalize the case of 2.12:

Corollary 3.12. Let X be a geometrically connected smooth proper algebraic variety of dimension

d+1, and let D be a smooth anticanonical effective divisor. Let Y have an n-shifted Poisson structure

given by Y → Z. Assume Map(X,Y ), Map(D,Y ),Map(X,Z), and Map(D,Z) are derived Artin

stacks.

Then there exist a natural (n−d)-shifted Poisson structure on Map(D,Y ) (over Map(D,Z)) and

coisotropic structure on Map(X,Y )→ Map(D,Y ) (over Map(X,Z)→ Map(D,Z)).

Finally, we need more technical “Poisson generalizations” of some results. The following is a

generalization of the first statement of Theorem 3.11:

Corollary 3.13. Let Y be n-shifted Poisson given by f : Y → Z. Let C → Y be coisotropic over

Y ′ → Z. Let g : W → X be a map of O-compact derived Artin stacks, and let [W ] be a d-orientation

on W and γ a boundary structure on g.

Then Map(X,C)→ Map(W,C)×Map(W,Y ) Map(X,Y ) has a natural coisotropic structure.

Proof. Recall that the Poisson structure on Ψ := Map(W,C)×Map(W,Y ) Map(X,Y ) is given by

Ψ→ Ξ := Map(X,Z)×Map(W,Z) Map(W,Y ′),

with a natural Lagrangian structure, as per Corollary 3.7. I claim thatMap(X,C)→ Ψ is coisotropic

over Map(X,Y ′)→ Ψ. First, the Lagrangian structure on Map(X,Y ′)→ Ψ is exactly the one given
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by Theorem 3.11. Next, note that Map(X,Y ′)×Ψ Ξ is exactly the limit of the diagram

Map(W,C)

''

��

Map(X,Y ) //

��

Map(W,Y )

��

Map(X,Y ′) //

''

Map(W,Y ′)

''
Map(X,Z) // Map(W,Z)

,

which we can rewrite as Map(X,Y ×Z Y ′)×Map(W,Y×ZY ′) Map(W,C). This space has a symplectic

form arising from the form on Y ×Z Y ′, which will agree with the structure on Map(X,Y ′)×Ψ Ξ up

to sign. But the fact that

Map(X,C)→ Map(X,Y ×Z Y ′)×Map(W,Y×ZY ′) Map(W,C)

has a Lagrangian structure is precisely Theorem 3.11.

This is a generalization of Lemma 3.6:

Corollary 3.14. Let X1, X2, X3, Y be derived Artin stacks, and let Y have an n-shifted Poisson

structure given by Y → Z for some (n+ 1)-shifted symplectic Z. For i = 1, 2, 3, let fi : Xi → Y be a

morphism coisotropic over Y ′i → Z. Note that any product Xi×Y Xj has a canonical (n− 1)-shifted

Poisson structure over Y ′i ×Y Y ′j . Let g12 : C12 → X1×Y X2 and g23 : C23 → X2×Y X3 be morphisms

coisotropic over L12 → Y ′1 ×Y Y ′2 and L23 → Y ′2 ×Y Y ′3 , respectively.

Then C13 := C12×X2 C23 → X1×Y X3 has a canonical coisotropic structure over L12×Y ′2 L23 →

Y ′1 ×Z Y ′3 .

Proof. We need to show that

C13 → T := (X1 ×Y X3)×Y ′1×ZY ′3
(L12 ×Y ′2 L23)

has a Lagrangian structure. As in the previous proof, writing T as a limit gives us

T ∼= (X1 ×Y ′1 L12)×Y×ZY ′2
(X3 ×Y ′3 L23).
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The base is again symplectic, and the maps

X1 ×Y ′1 L12 → Y ×Z Y ′2 ← X3 ×Y ′3 L23

have Lagrangian structures provided by Lemma 3.6. Thus this expresses T as a Lagrangian inter-

section, which again has a symplectic structure that agrees with the original structure on T up to

sign. Now, X2 → Y ×Z Y ′2 has a Lagrangian structure by assumption, and further rearrangement

gives a Lagrangian structure on

C12 → (X1 ×Y X2)×Y ′1×ZY ′2
L12
∼= (X1 ×Y ′1 L12)×Y×ZY ′2

X2,

and similarly for C23.

But then we can apply Lemma 3.6 to get the Lagrangian structure on C13 → T .

C13

zz $$
ksC12

yy $$
ks

C23

zz %%
ksX1 ×Y ′1 L12

**

X2

��

X3 ×Y ′3 L23

tt
Y ×Z Y ′2
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Chapter 4

Framed Mapping Spaces

Definition 4.1. Let D,X, and Y be derived Artin stacks, and fix maps i : D → X and f : D → Y .

We define the framed mapping space Map(X,D, Y, f) = HoFibf (Map(X,Y )→ Map(D,Y )), the ho-

motopy fiber of Map(X,Y ) over f ∈ Map(D,Y ). Where f is understood we will write Map(X,D, Y ).

In the following, X will generally be a smooth scheme and i : D → X the inclusion of a divisor;

or X and D will both be divisors in some smooth scheme.

Now, for any g : X → Y framed along D, let us consider (TMap(X,D,Y ))g. We have an exact

sequence

(TMap(X,D,Y ))g // (TMap(X,Y ))g //

∼

��

(TMap(D,Y ))(i◦g)

∼

��
RΓ(X, g∗TY ) RΓ(D, i∗g∗TY )

,

so we can identify (TMap(X,D,Y ))g ' RΓ(X, (g∗TY )−D), where (g∗TY )−D is the subsheaf of g∗TY

vanishing on D. In our cases we will be able to write D = V (a) locally, so (g∗TY )−D ' a(g∗TY ).

More globally, let ev : X ×Map(X,D, Y )→ Y be the evaluation map and

π : X ×Map(X,D, Y )→ Map(X,D, Y )

the projection. Then TMap(X,D,Y ) ' π∗
(
(ev∗TY )−(D×Map(X,D,Y ))

)
.

For p ≥ 0 we have a cup product map

∧pTMap(X,Y ) ∼ ∧p(π∗ev∗TY )→ π∗ ∧p (ev∗TY ).
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This induces a map

π∗(∧pev∗LY )→ (π∗(∧pev∗TY ))∨ → ∧pLMap(X,Y ).

This map is compatible with the mixed structure on both sides, so descends to the level of negative

cyclic complexes:

π∗ev
∗(NC(Y ))→ NC(Map(X,Y )).

With this in mind, we define a special class of forms on Map(X,Y ):

Definition 4.2. A p-form on Map(X,Y ) (resp. closed p-form) is multiplicative if the corre-

sponding map OMap(X,Y ) → ∧pLMap(X,Y ) factors through π∗(∧pev∗LY ) (resp. factors through

π∗ev
∗(NC(Y ))).

Note that all forms obtained from the
∫

[X]
ev∗(−) map of Theorem 2.8 are multiplicative.

The importance of multiplicative forms is as follows. Suppose E1, E2 → ev∗TY are two sheaves

on Map(X,Y ) which are orthogonal in the sense that the multiplication map E1⊗E2 → ∧2ev∗TY is

0. Then for any 2-form ω, we have a pullback via

∧2LMap(X,Y ) → (π∗E1)∨ ⊗ (π∗E2)∨.

If ω is multiplicative, then we can lift the pullback through π∗(∧2ev∗LY )→ π∗(E∨1 ⊗ E∨2 ), which is

the 0 map. Thus the pullback will be 0.

We want to generalize the case of Theorem 2.8 and Corollary 3.9 to spaces Map(X,D, Y ). The

main theorem of this section is

Theorem 4.3. Let X be a d-dimensional proper smooth scheme and D an effective divisor. Suppose

E is an effective divisor of X such that D̃ = 2D+E is anticanonical. Let Y be a derived Artin stack

such that Map(X,Y ), Map(D̃, Y ), Map(D,Y ), and Map(D + E, Y ) are themselves derived Artin

stacks of locally finite presentation over k. Fix a base map f : D → Y .

1. Suppose Y is n-shifted symplectic and the projection Map(D + E, Y ) → Map(D,Y ) is etale

over f . Then Map(X,D, Y ) has an (n− d)-shifted symplectic structure.

2. Suppose Y is n-shifted Poisson. Then Map(X,D, Y ) has an (n− d)-shifted Poisson structure.
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Proof. Consider the fiber diagram

Map(X,D, Y ) //

��

Map(D̃,D, Y ) //

��

•

��
Map(X,Y ) // Map(D̃, Y ) // Map(D,Y )

,

where both squares and the larger rectangle are Cartesian. Then Map(D̃, Y ) is (n − d + 1)-shifted

symplectic (resp. Poisson) by Theorem 2.8 (Corollary 3.9), and Map(X,Y ) → Map(D̃, Y ) has a

canonical Lagrangian structure (coisotropic structure) by Corollary 2.12 (Corollary 3.12). If we can

show that Map(D̃,D, Y ) → Map(D̃, Y ) has a Lagrangian structure (coisotropic structure) as well,

we will be done by Theorem 2.6 (Corollary 3.7). We state this as a separate lemma:

Lemma 4.4. Let X,Y,D, D̃ be as in the theorem. Then

1. Suppose Y is n-shifted symplectic and the projection Map(D + E, Y ) → Map(D,Y ) is etale

over f . Then ϕ : Map(D̃,D, Y )→ Map(D̃, Y ) has an canonical Lagrangian structure.

2. Suppose Y is n-shifted Poisson. Then Map(D̃,D, Y )→ Map(D̃, Y ) has a canonical coisotropic

structure.

Proof. Let i : D → D̃ be the inclusion, and let g : D̃ → Y be a map such that f = g ◦ i. Then

Tg Map(D̃,D, Y ) ' RΓ(D̃,HoFib(g∗TY → i∗i
∗g∗TY )). Let us write this as Tg Map(D̃,D, Y ) '

RΓ(D̃, (g∗TY )−D). Similarly, for any extension of f : D → Y to f̃ : D + E → Y , we have

Tg Map(D̃,D + E, Y, f̃) ' RΓ(D̃, (g∗TY )−(D+E)).

Let us consider (1). The multiplication

(g∗TY )−D ⊗ (g∗TY )−(D+E) → ∧2g∗TY

is zero; in an affine local patch of X, if D = V (a) and E = V (b), then the map on sheaves is

a(g∗TY )⊗ ab(g∗TY )→ ∧2g∗TY

and a2b = 0 on 2D + E.

Now, the symplectic structure on Map(D̃, Y ) is a multiplicative form. Thus, RΓ(D̃, (g∗TY )−D)

and RΓ(D̃, (g∗TY )−(D+E)) are orthogonal in Tg Map(D̃, Y ) ' RΓ(D̃, g∗TY ) under this structure.
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Thus the map

RΓ(D̃, (g∗TY )−D)→ Tg Map(D̃, Y )→ Lg Map(D̃, Y )[n− d+ 1]

→
(
D̃,RΓ((g∗TY )−(D+E))

)∨
[n− d+ 1]

is 0, so

RΓ(D̃, (g∗TY )−D)→ Lg Map(D̃, Y )[n− d+ 1] '
(
RΓ(D̃, g∗TY )

)∨
[n− d+ 1]

factors through a map

RΓ(D̃, (g∗TY )−D)→
(
RΓ(D̃, g∗TY ⊗OD+E)

)∨
[n− d+ 1]. (*)

In fact, extending g to a map g̃ : X → Y , consider the diagram

g̃∗TY (−2D − E) //

��

g̃∗TY (−2D − E) //

��

0

��
g̃∗TY (−D) //

��

g̃∗TY //

��

g̃∗TY ⊗OD

��
g̃∗TY (−D)⊗OD+E

// g̃∗TY ⊗O2D+E
// g̃∗TY ⊗OD

.

As all columns and the first two rows are distinguished triangles, so is the last row; restricting back

to D̃, we get a quasi-isomorphism

(g∗TY )−D ' g∗TY ⊗OD+E(−D) ' g∗TY ⊗ j∗KD+E ,

where j : D + E → D̃ is the inclusion.

Then the map (*) can be rewritten as a map

RΓ(D + E, j∗g∗TY ⊗KD+E)→ (RΓ(D + E, j∗g∗TY ))
∨

[n− d+ 1].
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This is just the quasi-isomorphism

RΓ(D + E, j∗g∗TY ⊗KD+E)→ RΓ(D + E, j∗g∗LY ⊗KD+E)[n]

given by the symplectic structure on Y , followed by the Serre duality quasi-isomorphism

RΓ(D + E, (j∗g∗TY )∨ ⊗KD+E)[n]→ RΓ(D + E, j∗g∗TY )∨[n− d+ 1].

In particular, (*) is a quasi-isomorphism.

Now let us consider case (1). The etaleness assumption gives us that

RΓ(D̃, g∗TY ⊗OD+E)→ RΓ(D̃, g∗TY ⊗OD)

is a quasi-isomorphism, and so

RΓ(D̃, (g∗TY )−(D+E))→ RΓ(D̃, (g∗TY )−D)

is as well. Thus the map

∧2RΓ(D̃, (g∗TY )−D)→ ∧2RΓ(D̃g∗TY )

is 0, so 0 is an isotropic structure on ϕ. In addition, the map Tϕ → LMap(D̃,D,Y )[n− d] is precisely

the map (*) shifted by 1. This is a quasi-isomorphism, so we have a Lagrangian structure on ϕ.

Now consider case (2). Suppose Y has a Poisson structure given by p : Y → Z, where Z has

an (n + 1)-shifted symplectic structure ω and p has a Lagrangian structure γ. Recall that the

(n− d+ 1)-shifted Poisson structure on Map(D̃, Y ) is given by Map(D̃, Y )→ Map(D̃, Z), with the

symplectic and Lagrangian structures induced from ω and γ. I claim that

Map(D̃,D, Y )→ Map(D̃, Y )

is coisotropic. The base B will be the formal neighborhood of Map(D̃,D, Y ) in

Map(D + E,D, Y )×Map(D+E,D,Z) Map(D̃,D,Z), and q : B → Map(D̃,D,Z) comes from the pro-

jection

Map(D + E,D, Y )×Map(D+E,D,Z) Map(D̃,D,Z)→ Map(D̃,D,Z)
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followed by Map(D̃,D,Z)→ Map(D̃, Z).

First let’s find a convenient representation of TB . Let g ∈ Map(D̃, Y ). In the diagram

RΓ(D̃, (g∗Tp)−(D+E)) //

��

RΓ(D̃, (g∗Tp)−D) //

��

RΓ(D + E, (j∗g∗Tp)−D)

��
RΓ(D̃, (g∗TY )−D) //

��

RΓ(D̃, (g∗TY )−D)⊕ RΓ(D + E, (g∗TY )−D) //

��

RΓ(D + E, (g∗TY )−D)

��
(TB)g // RΓ(D̃, (g∗p∗TZ)−D)⊕ RΓ(D + E, (g∗TY )−D) // RΓ(D + E, (j∗g∗p∗TZ)−D)

the last two columns and all rows are triangles, so the first column is as well. Thus we have

(TB)g ' HoCofib(RΓ(D̃, (g∗Tp)−(D+E))→ RΓ(D̃, (g∗TY )−D)). (**)

For the Lagrangian structure on q, let us identify q∗Ω, where Ω is the symplectic structure on

Map(D̃, Z). For ` ≥ 2, we have by (**):

(∧`LB)g ' { ∧` RΓ(D̃, (g∗TY )−D)∨

→ RΓ(D̃, (g∗Tp)−(D+E))
∨ ⊗ ∧`−1RΓ(D̃, (g∗TY )−D)∨

→ · · · }.

(That is, the two are equivalent as dg-objects). Now, Ω on Map(D̃, Z) is multiplicative, and pulling

back a multiplicative form to

Syms RΓ(D̃, (g∗Tp)−(D+E))
∨ ⊗ ∧`−sRΓ(D̃, (g∗TY )−D)∨

with s > 0 yields 0. The weight ` part of q∗Ω corresponds to a map k → (∧`LB)g, which in turn

decomposes to a nonzero map k → ∧`RΓ(D̃, (g∗TY )−D)∨ and a 0 map to all later terms in the

sequence. A homotopy from this to 0 is given by restricting the isotropic structure
∫

[D̃]
ev∗γ from

∧`RΓ(D̃, g∗TY )∨ to ∧`RΓ(D̃, (g∗TY )−D)∨, and taking the 0 homotopy on all later terms.
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For the Lagrangian condition, using (**), consider the diagram

RΓ(D̃, (g∗Tp)⊗OD+E)[−1] //

��

RΓ(D̃, (g∗Tp)−(D+E)) //

��

RΓ(D̃, g∗Tp)

��
RΓ(D̃, (g∗TY )⊗OD)[−1] //

��

RΓ(D̃, (g∗TY )−D) //

��

RΓ(D̃, g∗TY )

��
(Tq)g // (TB)g // RΓ(D̃, g∗p∗TZ)

.

The second two columns and all rows are triangles, so the first column is too. Thus we have

(Tq)g ' HoCofib(RΓ(D̃, (g∗Tp)⊗OD+E)[−1]→ RΓ(D̃, (g∗TY )⊗OD)[−1]). (***)

Similarly to the map (*) above, we obtain a quasi-isomorphism

RΓ(D̃, (g∗Tp)−D)→
(
RΓ(D̃, g∗TY ⊗OD+E)

)∨
[n− d+ 1],

namely

RΓ(D̃, (g∗Tp)−D) ' RΓ(D + E, j∗g∗TY ⊗KD+E)→ RΓ(D + E, j∗g∗LY ⊗KD+E)[n],

where Tp → LY [n] is a quasi-isomorphism coming from the Lagrangian structure on p, followed by

the Serre duality quasi-isomorphism

RΓ(D + E, (j∗g∗TY )∨ ⊗KD+E)[n]→ RΓ(D + E, j∗g∗TY )∨[n− d+ 1].

Similarly, there is a natural quasi-isomorphism

RΓ(D̃, (g∗Tp)−(D+E))→
(
RΓ(D̃, g∗TY ⊗OD)

)∨
[n− d+ 1].
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Then the map Tq → LB [n− d] is given by the diagram

(Tq)g //

��

(LB)g[n− d+ 1]

��
RΓ(D̃, (g∗Tp)⊗OD+E)

∼ //

��

RΓ(D̃, (g∗TY )−D)∨[n− d+ 1]

��
RΓ(D̃, (g∗TY )⊗OD)

∼ // RΓ(D̃, (g∗Tp)−(D+E))
∨[n− d+ 1]

;

the columns are triangles by (**) and (***). Then this map is a quasi-isomorphism, so the isotropic

structure is Lagrangian.

Let Q = Map(D̃, Y )×Map(D̃,Z) B be the product, and r : Map(D̃,D, Y )→ Q the map. For any

g ∈ Map(D̃,D, Y ), consider the diagram

RΓ(D̃, (g∗Tp)⊗OD+E)[−1] //

��

RΓ(D̃, (g∗Tp)−(D+E)) //

��

RΓ(D̃, g∗Tp)

��
RΓ(D̃, (g∗TY )−D) //

��

RΓ(D̃, g∗TY )⊕ RΓ(D̃, (g∗TY )−D) //

��

RΓ(D̃, g∗TY )

��
(r∗TQ)g // RΓ(D̃, g∗TY )⊕ (r∗π∗2TB) // RΓ(D̃, g∗TZ);

again, everything but the first column is a triangle, so the first column is too.

Then

(r∗TQ)g ' HoCofib(RΓ(D̃, (g∗Tp)⊗OD+E)[−1]→ RΓ(D̃, (g∗TY )−D)).

The map

(TMap(D̃,D,Y ))g ' RΓ(D̃, (g∗TY )−D)→ (r∗TQ)g

is precisely the structure morphism of the above cofiber. Letting ωQ be the symplectic structure on

Q, we get r∗ωQ = 0, so r has 0 as isotropic structure. It is easy to check that (Tr)q ' RΓ(D̃, (g∗Tp)⊗

OD+E)[−2], and the map (Tr)q → (LMap(D̃,D,Y ))q[n− d− 1] is the quasi-isomorphism

RΓ(D̃, (g∗Tp)⊗OD+E)→ RΓ(D̃, (g∗TY )−D)∨[n− d+ 1]

shifted by −2.
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Remark 4.4.1. Using similar methods, one can show that if Y is (pre)symplectic, then

Map(X,D + E, Y ) has a natural presymplectic structure.

Analogously to Theorems 3.8 and 3.10, we have:

Theorem 4.5. Let X be a d-dimensional proper smooth scheme and D an effective divisor. Suppose

E is an effective divisor of X such that D̃ = 2D+E is anticanonical. Let Y be a derived Artin stack

such that Map(X,Y ), Map(D̃, Y ), Map(D,Y ), and Map(D + E, Y ) are themselves derived Artin

stacks of locally finite presentation over k. Fix a base map f : D → Y . Let W be a derived Artin

stack and pick a map s : W → Y .

1. Suppose Y is n-shifted symplectic, that the projection Map(D + E, Y ) → Map(D,Y ) is etale

over f , and that Map(D + E,W ) → Map(D,W ) is etale over any lift f̃ of f . Suppose

s : W → Y has a Lagrangian structure. Then Map(X,D,W ) → Map(X,D, Y ) has a natural

Lagrangian structure.

2. Suppose Y is n-shifted Poisson, and s : W → Y has a coisotropic structure. Then

Map(X,D,W )→ Map(X,D, Y ) has a natural coisotropic structure.

Proof. Similarly to the previous theorem, we use the fiber diagram

Map(X,D,W ) //

((

��

Map(D̃,D,W )

((

��

Map(X,D, Y ) //

��

Map(D̃,D, Y )

θ

��

Map(X,W ) //

((

Map(D̃,W )

η

((
Map(X,Y )

ζ // Map(D̃, Y )

.

The front and back faces are Cartesian squares. We have a Lagrangian (resp. coisotropic) structure

on ζ by Corollary 2.12 (Corollary 3.12), on η by Theorem 2.6 (Corollary 3.7), and on θ by Lemma

4.4. We also have a Lagrangian (coisotropic) structure on

Map(X,W )→ Map(X,Y )×Map(D̃,Y ) Map(D̃,W )
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by Theorem 3.11 (Corollary 3.13). If we show that

Map(D̃,D,W )→ Map(D̃,D, Y )×Map(D̃,Y ) Map(D̃,W )

has a Lagrangian (coisotropic) structure, then we will be done by Lemma 3.6 (Corolllary 3.14). As

before, we put this in a separate lemma:

Lemma 4.6. Let X,Y,W,D, D̃ be as in the theorem. Then

1. Suppose Y is n-shifted symplectic, that the projection Map(D + E, Y ) → Map(D,Y ) is etale

over f , and that Map(D+E,W )→ Map(D,W ) is etale over any lift f̃ of f . Suppose s : W →

Y has a Lagrangian structure. Then r : Map(D̃,D,W )→ Map(D̃,D, Y )×Map(D̃,Y )Map(D̃,W )

has a canonical Lagrangian structure.

2. Suppose Y is n-shifted Poisson and that s : W → Y has a coisotropic structure. Then r :

Map(D̃,D,W )→ Map(D̃,D, Y )×Map(D̃,Y ) Map(D̃,W ) has a canonical coisotropic structure.

Proof. For (1), let γ be the Lagrangian structure on s. If Ω is the induced symplectic structure

on Map(D̃,D, Y ) ×Map(D̃,Y ) Map(D̃,W ), one can check that r∗Ω = −
∫

[D̃]
ev∗γ. But this is a

multiplicative form, so is already 0 on

(∧`TMap(D̃,D,W ))g ' ∧
`RΓ(D̃, (g∗TW )−D) ' ∧`RΓ(D̃, (g∗TW )−(D+E)), (` ≥ 2)

for any g ∈ Map(D̃,D,W ); here the second quasi-isomorphism comes from the etaleness condition.

Thus 0 is an isotropic structure. For the Lagrangian condition, we have

(Tr)g ' RΓ(D̃, g∗Ts ⊗OD) ' RΓ(D̃, g∗Ts ⊗OD+E),

and the map Tr → LMap(D̃,D,W )[n− d] is the quasi-isomorphism

RΓ(D + E, g∗Ts)→ RΓ(D + E, g∗LW )[n− 1]

from the Lagrangian condition on s, followed by the Serre quasi-isomorphism

RΓ(D + E, g∗LW )→ RΓ(D + E, g∗TW ⊗KD+E)∨[1− d] ' RΓ(D̃, (g∗TW )−D)∨[1− d],
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as in the proof of the previous theorem.

For (2), let the Poisson structure on Y be given by p : Y → Z with Lagrangian structure γ, and

the coisotropic structure on W → Y given by u : W → Y ×Z Y ′ with Lagrangian structure ε, where

p′ : Y ′ → Z has Lagrangian structure γ′.

Letting B be a formal neighborhood of Map(D̃,D, Y ) in Map(D + E,D, Y ) ×Map(D+E,D,Z)

Map(D̃,D,Z), recall that the coisotropic structure on Map(D̃,D, Y ) → Map(D̃, Y ) came from the

map B → Map(D̃, Z). In our present case, the Poisson structure on Ψ := Map(D̃,D, Y )×Map(D̃,Y )

Map(D̃,W ) comes from

Ψ→ Ξ := B ×Map(D̃,Z) Map(D̃, Y ′).

Let B′ be a formal neighborhood of Map(D̃,D,W ) in

Map(D + E,D,W )×Map(D+E,D,Y ′) Map(D̃,D, Y ′). The maps

Map(D + E,D,W )×Map(D+E,D,Y ′) Map(D̃,D, Y ′)
π2 // Map(D̃,D, Y ′) // Map(D̃, Y ′)

and

Map(D+E,D,W )×Map(D+E,D,Y ′)Map(D̃,D, Y ′)→ Map(D+E,D, Y )×Map(D+E,D,Z)Map(D̃,D,Z)

give a map q′ : B′ → Ξ. As in the previous theorem, one can give an isotropic structure on q′ basically

arising from the isotropic structure on Map(D̃,W )→ Map(D̃, Y ×Z Y ′), and Lagrangianness comes

from

(Tq′)g //

��

(LB′)g[n− d+ 2]

��
RΓ(D̃, (g∗Tu)⊗OD+E)

∼ //

��

RΓ(D̃, (g∗TW )−D)∨[n− d+ 2]

��
RΓ(D̃, (g∗Ts)⊗OD)

∼ // RΓ(D̃, (g∗Ts′)−(D+E))
∨[n− d+ 2]

.

Again similarly to the previous theorem, letting ρ : Map(D̃,D,W ) → R := B′ ×Ξ Ψ, if ΩR is the

induced structure on R, then ρ∗ΩR is already 0, so 0 is an isotropic structure. For the Lagrangian

condition, at any g ∈ Map(D̃,D,W ), the corresponding map (Tρ)g → (LMap(D̃,D,W ))g[n− d− 1] is

just

RΓ(D̃, g∗Tu ⊗OD+E)[−1]→ RΓ(D̃, (g∗TW )−D)[n− d− 1],
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analogous to previous maps. This gives the coisotropic structure on Map(D̃,D,W )→ Ψ we needed.

4.1 Framed Vector Bundles on Surfaces

As an application of these theorems, let X be a smooth surface with effective anticanonical bundle,

and take effective divisors D and E such that 2D + E is anticanonical. Let G be a reductive

group. Choose a map D → BG, that is, a G-bundle G → D. The space Map(X,D,BG,G) has, by

Theorem 4.3, a 0-shifted Poisson structure. This structure will be symplectic if Map(D+E,BG)→

Map(D,BG) is etale over G. That is, if for every extension G̃ → D + E of G, the map

H∗(D + E, ad(G̃))→ H∗(D.ad(G))

is an isomorphism in all degrees. Assuming the moduli space is a smooth variety (or looking at a

semistable locus), this will be an ordinary Poisson or symplectic structure. Taking ζ ∈ H0(X,E) to

be a section vanishing on E, this is precisely Theorem 4.3 of [Bo].

In particular, let us consider the case where X = P2, D = E is a line L, G = SLn, and G is the

trivial bundle. The space Map(P2, L,BSLn,G) may be identified with the framed SU(n)-instantons

on S4 ([Do]). In this case, the only extension of G to 2L is the trivial bundle again, and the failure

of

H∗(2L, sln ⊗O2L)→ H∗(L, sln ⊗OL)

to be an isomorphism is given by

H∗(L, sln ⊗OL(−1)) = 0,

so we have a symplectic structure.
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Chapter 5

Monopoles

Let G be a semisimple complex Lie group and B a Borel subgroup. Let Y = G/B be the complete

flag variety of G. Fix a point p ∈ P1. The space Map(P1, p, Y ) is the space of framed G-monopoles

on R3 [Ja]. In [FKMM] the authors show that this space has a symplectic structure. More generally,

let P be a parabolic subgroup of G and Y = G/P the partial flag variety; then it is shown that

Map(P1, p, Y ) has a Poisson structure. Here I will show that the Poisson and symplectic structures

arise from the machinery of shifted structures on framed mapping spaces. In particular, they extend

to framed maps which do not obey stability conditions.

5.1 Classical Construction of the Symplectic Structure

The following construction is described in [FKMM].

Let gY = g⊗OY denote the trivial g-bundle on Y . Let pY ⊂ gY be subbundle whose fiber over

a parabolic P is its Lie subalgebra p ⊂ g; similarly let rY ⊂ pY be the subbundle whose fiber over

P is the nilpotent radical r. Let lY = pY /rY be the bundle of abstract Levi algebras.

Recall that TY is canonically isomorphic to gY /pY , and a G-invariant symmetric nondegenerate

bilinear form on g will give an isomorphism T∨Y ∼= rY . In the Borel case, we note that lY is trivial.

The Poisson structure on Map(P1, p, Y ) is defined as follows. First note that at any f ∈

Map(P1, p, Y ), we have

Tf Map(P1, p, Y ) ∼= H0(f∗TY (−1),P1) ∼= H0(f∗(g/p)(−1),P1)
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and

T∨f Map(P1, p, Y ) ∼= H1(f∗T∨Y (−1),P1) ∼= H1(f∗(r)(−1),P1).

Now consider the complex

rY → gY → gY /pY

on Y . Pulling back by f and twisting by −1 yields

f∗(rY )(−1)→ f∗(gY )(−1)→ f∗(gY /pY )(−1).

Now we take the hypercohomology spectral sequence of this complex. At page 0, we get the sheaf

cohomology of each of the sheaves. Since gY is trivial, f∗(gY )(−1) is a sum of OP1(−1)s and its

cohomology vanishes. Thus the d1 differentials vanish, and at E2 we get a differential

d2 : H1(f∗(rY )(−1),P1)→ H0(f∗(gY /pY )(−1),P1),

that is,

T∨f Map(P1, p, Y )→ Tf Map(P1, p, Y ).

This is the Poisson structure. Verifying that this really is a Poisson structure is done by a complicated

explicit calculation in [FKMM], or follows conceptually from Theorem 5.2.

Remark 5.0.1. Assuming this really is a Poisson structure, let us show nondegeneracy for the case

P = B. The complex

f∗(rY )(−1)→ f∗(gY )(−1)→ f∗(gY /pY )(−1)

is quasi-isomorphic to

0→ f∗(lY )(−1)→ 0,

which has zero hypercohomology, as lY is trivial. Thus in particular the differential

d2 : H1(f∗(rY )(−1),P1)→ H0(f∗(gY /pY )(−1),P1)

must be an isomorphism.
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5.2 Construction via Shifted Poisson Structures

In this section we describe a construction of a Poisson structure on Map(P1, p,G/P ) using the

machinery of shifted Poisson structures.

Our first hope might be to find a 1-shifted Poisson structure on Y = G/P and use Theorem

4.3 to induce a structure on Map(P1, p, Y ). This should make us suspicious in the P = B case, as

we would expect a 1-shifted symplectic structure on G/B, which would yield a quasi-isomorphism

between g/p and r[1], which is clearly impossible.

In the general case, we can also show we can’t get our Poisson structure this way. Suppose Z is

2-shifted symplectic, and g : Y → Z has a Lagrangian structure defining a Posson structure on Y .

Using the Lagrangian condition, we get Tg ' LY [1] ∼= r[1], and in particular the map Tg → TY is

the zero map. For any f ∈ Map(P1, p, Y ), the map T∨f Map(P1, p, Y ) → Tf Map(P1, p, Y ) will just

be the map

H1(P1, f∗(r)(−1)) ' RΓ(P1, f∗(Tg)(−1))→ RΓ(P1, f∗(TY )(−1)) ' H0(P1, f∗(g/p)(−1)),

so will also be zero, which we do not want.

Instead, we note that G/P is already related to an existing shifted symplectic stack, BG, via the

fiber diagram

G/P //

��

BP

��
• // BG

. (*)

Recall that the symplectic structure on BG is given by a G-invariant nondegenerate symmetric

quadratic form on g. Fix such a form ω.

Choose an opposite parabolic P− so that P ∩P− = L is a Levi subgroup of G. Letting l = Lie(L),

we can then write g = r− ⊕ l ⊕ r. Since l is orthogonal to r and r−, ω descends to l and is also

L-invariant and nondegenerate. Thus, BL has a symplectic structure ωL induced from BG. Recall

that the identification L ∼= P/ rad(P ) gives us a map P → L.

Lemma 5.1. The map ι : BP → BG×BL has a Lagrangian structure given by 0. Thus BP → BG

has a coisotropic structure.

Proof. The claim that 0 is an isotropic structure reduces to the claim that ι : p→ g⊕ l is isotropic
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in the usual sense with respect to ω − ωL. Write p = l ⊕ r and recall that r is orthogonal to itself

and l. Then

(ω − ωL)(ι∗(`, r), ι∗(`
′, r′)) = ω(`, `′)− ω(`, `′) = 0,

so we have isotropy.

For the Lagrangian condition, recall that ω pairs up r nondegenerately with r−. Let

∆,∆ : l→ g⊕ l be the diagonal and antidiagonal maps, and note that ω − ωL pairs up ∆(l) and

∆(l) nondegenerately. Then the map Tι → LBP [1] is just the adjoint ∆(l)⊕ r− → (∆(l)⊕ r)∨.

So BP → BG has a coisotropic structure, and if • → BG had one too, we would get a 1-

shifted Poisson structure on G/P by Corollary 3.7. As mentioned, there is no decent shifted Poisson

structure on G/P and it is also easy to check that • → BG has no coisotropic structure. Instead,

we apply the functor Map(P1, p,−) to * to get

Map(P1, p,G/P ) //

��

Map(P1, p, BP )

��
Map(P1, p, •) // Map(P1, p, BG)

,

and note that now Map(P1, p, BG) is 1-symplectic and Map(P1, p, BP ) → Map(P1, p, BG) is co-

isotropic by Theorem 4.5. Let GP1 denote the trivial G-bundle on P1, framed at p. Then the

map

• = Map(P1, p, •)→ Map(P1, p, BG)

is just the point GP1 . And this is coisotropic, as

TGP1
Map(P1, p, BG) = Ext∗(OP1 ⊗ g,OP1 ⊗ g)(−1)[1] ' 0.

Then the map • → Map(P1, p, BG) is trivially Lagrangian, hence coisotropic. Then Corollary 3.7

gives a 0-shifted Poisson structure on Map(P1, p,G/P ).

To be a little more specific, the coisotropic bases are the maps Map(P1, p, BL) → • and • → •

respectively, so the Poisson structure comes from a map Map(P1, p,G/P ) → Map(P1, p, BL). In

particular, in the case P is a Borel, L is a torus, and so Map(P1, p, BL) =
∏r
i=1 Map(P1, p, BGm),

where r is the rank of G. But Map(P1, p, BGm) ∼= Z, so Map(P1, p, BL) is a disjoint union of points

•1 with the trivial 1-symplectic structure. Thus, Map(P1, p,G/P ) is in fact symplectic.
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Theorem 5.2. The Poisson structures described above coincide.

Proof. Let us look at the construction using shifted Poisson structures first. Recall that, for X an

underived smooth scheme with Poisson structure g : X → Z, we recover the map T∨X → TX by using

the Lagrangian structure on g to yield an isomorphism Tg ∼= LX ; with respect to this isomorphism,

the Poisson structure is given by LX ∼= Tg → TX . In the case X = Map(P1, p,G/P ), let’s look at

the map g : X → Z = Map(P1, p, BL). For f ∈ X, the tangent map g∗ : TfX → g∗(TZ)f is the

composition

RΓ(P1, f∗(gY /pY )(−1))
∂∗ // RΓ(P1, f∗(pY )(−1))[1]

π // RΓ(P1, f∗(lY )(−1))[1]

Here ∂∗ is the connecting map coming from the short exact sequence

0→ f∗(pY )(−1)→ f∗(gY (−1))→ f∗(gY /pY (−1))→ 0;

since f∗(gY (−1)) is acyclic, ∂∗ is a quasi-isomorphism. Then from the sequence

0→ f∗(rY )(−1)→ f∗(pY )(−1)→ f∗(lY )(−1)→ 0

we see that the fiber of π (and thus of g∗) is RΓ(P1, f∗(rY )(−1))[1] ' H1(P1, f∗(rY )(−1)). This is

identified with T∨f X in the canonical way, and the Poisson map is then

H1(P1, f∗(rY )(−1))→ H1(P1, f∗(pY )(−1)) ∼= H0(P1, f∗(gY /pY (−1))).

For the spectral sequence, consider the map of complexes

rY //

��

gY // gY /pY

pY // gY // gY /pY

.
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Pull back by f , twist by −1, and look at the induced map on the E2 page:

H1(P1, f∗(rY )(−1)) //

��

H0(P1, f∗(gY /pY )(−1))

H1(P1, f∗(pY )(−1)) // H0(P1, f∗(gY /pY )(−1))

.

The bottom map is the inverse to the connecting isomorphism

H0(P1, f∗(gY /pY )(−1))→ H1(P1, f∗(pY )(−1))

from the long exact sequence. Thus the Poisson map is exactly the composition

H1(P1, f∗(rY )(−1))→ H1(P1, f∗(pY )(−1)) ∼= H0(P1, f∗(gY /pY (−1))),

as above.

Remark 5.2.1. In either case, much of the “real work” of the Poisson structure lies in the identification

(P1, H0(f∗(gY /pY )(−1)))∨ ∼= H1(P1, f∗(r)(−1))

arising from Serre duality and the isomorphism (gY /pY )∨ ∼= rY .

Remark 5.2.2. Given that G/P doesn’t have a 1-shifted Poisson structure, what structure does

it have? Recall that an n-shifted symplectic structure on X is equivalent to a map X → •n+1

with a Lagrangian structure. Generalizing this by replacing •n+1 with an arbitrary (n + 1)-shifted

symplectic derived stack Z yields the notion of an n-shifted Poisson structure.

However, there is another generalization we can make: if X → •n+1 only has an isotropic

structure, we get an n-shifted presymplectic structure on X. Combining these two, we might say an

n-shifted “pre-Poisson” structure on X is an (n+ 1)-shifted symplectic derived stack Z and a map

X → Z with an isotropic structure. This is the structure G/P has; specifically, G/P → BL has an

isotropic structure.
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5.3 Other Fibers

In the fiber square

Map(P1, p,G/P ) //

��

Map(P1, p, BP )

��
• // Map(P1, p, BG)

,

the base point in Map(P1, p, BG) is the trivial G-bundle on P1 framed at p. This gives us

Map(P1, p,G/P ) as the fiber, but is also neccessary to get a Poisson structure: for general

G ∈ Map(P1, p, BG), the corresponding • → Map(P1, p, BG) is not Lagrangian or even coisotropic.

Let’s be a little more precise. Let aut(G) denote the vector bundle whose fiber at x is

Lie(Aut(Gx)), and let autp(G) be the sheaf of sections of aut(G) vanishing at p. Then TG '

RΓ(P1, autp(G))[1]. The automorphisms of G within Map(P1, p, BG) are Autp(G), the group of

automorphisms of G over P1 which are the identity above p. Then the corresponding map

B(Autp(G))→ Map(P1, p, BG)

will be an isomorphism on T in degree −1, and will be Lagrangian (with Lagrangian structure 0).

Then applying Corollary 3.7, we get

Theorem 5.3. The product B(Autp(G))×Map(P1,p,BG)Map(P1, p, BP ) will have a Poisson structure.

This structure is symplectic if P = B.

The space B(Autp(G)) ×Map(P1,p,BG) Map(P1, p, BP ) can be described as follows. G acts on G

from the right and G/P on the left, so we can form the balanced product G ×GG/P , a G/P -bundle

over P1. Note that Autp(G) still acts on G ×G G/P . Let Γ(P1,G ×G G/P (−1)) denote the sections

of G ×G G/P sending p to a specified point of (G ×G G/P )x. Then

B(Autp(G))×Map(P1,p,BG) Map(P1, p, BP ) ∼= Γ(P1,G ×G G/P (−1))/Autp(G).
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