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Abstract

Implantable cardiac devices like pacemakers and defibrillators are life-
saving medical devices. To verify their functionality, there is a need for
heart models that can simulate interesting phenomena and are relatively
computationally tractable. In this benchmark we implement a model of
the electrical activity in excitable cardiac tissue as a network of nonlin-
ear hybrid automata. The model has previously been shown to simulate
fast arrhythmias. The hybrid automata are arranged in a square n-by-n
grid and communicate via their voltages. Our Matlab implementation
allows the user to specify any size of model n, thus rendering it ideal for
benchmarking purposes since we can study tool efficiency as a function of
size. We expect the model to be used to analyze parameter ranges and
network connectivity that lead to dangerous heart conditions. It can also
be connected to device models for device verification.
Category: academic Difficulty: high

1 Context and origins

The human heart is a complex system and its scientific study involves multiple
aspects: electrical activity is generated and spreads throughout the heart, which
determines the mechanical contractions of the myocardium (the heart muscle),
which then shapes the blood flow in and out of the heart. The electrical activity
itself is determined by mechanical properties of the myocardium and by the
complex ionic exchanges between each cell of the heart and its neighboring cells.
In this benchmark, we implement a hybrid system model of cardiac tissue that
aims to simulate the generation and spread of electrical activity in the heart.

Models of the electrical properties of the heart allow us to use simulation and
verification for two important applications: first, we can better understand what
gives rise to certain dangerous conditions in the heart, such as tachycardia (a
class of heart rhythms with dangerously elevated rates). Specifically, what are
the parameter ranges, input sequences and cell-to-cell connectivity that increase
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Figure 1: Phases of an action potential (AP). AP figure from [8].

the likelihood of such conditions arising? This is particularly important given
the great variability in physiology between people.

A second use of heart models is in the testing and verification of cardiac
medical devices. For example, a model of an Implantable Cardioverter Defib-
rillator (ICD; an ICD stops fatal tachycardias) may be composed with a model
of cardiac electrophysiology, and properties of the ICD may then be tested or
even verified in some cases [2].

Relevance. The model of cardiac tissue that we implement in this bench-
mark is based on cellular automata (CA), which we formalize as nonlinear hybrid
automata. Cellular automata have been widely used for modeling biological
systems [6]. The model used in this benchmark was described in [9], where
the authors demonstrated its ability to simulate meaningful cardiac phenomena
such as ectopics (irregular isolated beats) and re-entrant tachycardias (which is
a common class of potentially fatal tachycardias). It has also been used to study
the measurement process of ICDs. Our implementation of this model follows
the description in [9] and modifies it slightly to make the resulting waveform
more realistic, as described in the appendix.

Clarity. We provide a Matlab implementation that can be run out of the
box. It allows the user to select the size of the model (how many cells), and
easily choose values for all the parameters. In particular, the user can model
inhomogeneous tissue that is prone to disordered and dangerous rhythms.

Verification advantages. A model instance of size n (with n2 cells) has
18n2 parameters, some of which are time varying. Not all values of these param-
eters will lead to interesting phenomena like tachycardia. Rechability analysis
can be used to study which parameter values lead to phenomena that can be
formulated as invariants. Also, recent work [2] shows that this heart model,
composed with an ICD model, admits finite bisimulations, which opens the way
to the development of model checkers for more complex properties. In the mean-
time, the high-dimensionality of the model and its complexity (see Section 5)
suggest that stochastic falsification will play a prominent role at first.

2 Brief Description

Cardiac cells or myocytes are an example of excitable cells (ECs). The defining
characteristic of ECs is that if the cross-membrane voltage Vm of its neighbors
increases (a process known as depolarization), then its own cross-membrane
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Figure 2: Cardiac tissue is modeled as a 2D grid of cells. SE is a self-exciting cell.
After SE depolarizes, the neighboring cells depolarize as well. The delay in propagation
is determined by the velocity of depolarization, how long the cell remains depolarized,
the resistance to current flow between cells, and the current state of the neighboring
cell. The chain reaction of depolarization causes an aggregate wave of AP propagation.

voltage will increase as well. If the voltage reaches a certain threshold Vth

(which may be cell-specific), then the voltage rises quickly then dies down, in a
characteristic shape known as the action potential (AP). See Fig. 1. The AP
is usually divided into 7 phases as shown in Fig. 1.

The triggering of an AP in a given cell contributes electric charge to its
neighboring cells. If a neighbor’s voltage in turn exceeds its own Vth, an AP
is triggered in the neighbor, and so on across the myocardium. See Fig. 2. It
is by this mechanism that electrical signals propagate through the myocardium
as a moving wavefront. Note that in a self-exciting cell, this AP repeats itself
periodically without external input from neighbors.

Each cell is modeled as a 7-mode nonlinear hybrid automaton with 2 continu-
ous state variables and 18 parameters (some of which change on mode switches).
The modes of the automaton map directly onto the phases of the AP. Automata
are connected to each other through their voltages: specifically, voltage from a
cell’s neighbors affects the derivative of that cell’s voltage. Details of the model
are presented in the appendix.

3 Key Observations

We start by showing a few outputs of simulating the model. Fig. 3a shows
3 APs from 3 non-contiguous cells in a 10-by-10 grid: a self-exciting cell (at
position (1,1)) and two excitable cells from the middle of the grid, at positions
(4,4) and (5,7). As can be seen the AP travels from the self-exciting cell (which
is the first to depolarize) to its neighbors.

The restitution curve is an important feature of cardiac tissue, and is re-
sponsible for the non-linearity of this model. Broadly speaking, it gives the
duration of the next AP, known as action potential duration (APD), as a func-
tion of the Diastolic Interval DIn−1 which lasts from the end of the previous
AP and the current upstroke. We measured the successive (DI, APD) pairs for
cell (1,1) and plotted the resulting curve. Fig. 3b shows that the simulated
curve matches the shape of the experimentally obtained curves in vivo. Finally
in Fig. 4 we show the progression of the electrical wave in an inhomogeneous
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(a) Three APs in a 10-by-10 grid showing
propagation.
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(b) The DI vs APD curve
for a self-exciting cell in a
4-by-4 instantiation.
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Figure 4: Three time snapshots of tissue, showing a depolarization wave prop-
agating, left to right. Warmer colors indicate a more recent upstroke. Because
the tissue is inhomogeneous, propagation does not proceed uniformly across the
tissue, whence the observed eventual fractionation (last panel on the right).

tissue (i.e., whose resistance changes spatially) from three self-exciting cells in
the lower left corner.

The first key observation is that the large number of parameters in this
model (18n2 for an n-by-n grid) makes it very challenging to select values that
lead to desired phenomena. E.g., simply sustaining a propagating wavefront
is not trivial: if we choose upstroke slopes too large, then the AP durations
decrease progressively which can compromise propagation. If the upstroke ve-
locities are too small on the other hand, cell voltages may never exceed the
depolarization threshold a second time and the tissue is electrically dead. This
highlights the need for parameter synthesis in this model and others like it
[4]. We also emphasize that obtaining desired phenomena is also a matter of
neighborhood structure, and depend on the restitution curve.

Another observation is that in this model the transitions of the various
automata can be extremely close in time, since cells that are electrically near
will naturally synchronize with each other. This can create numerical issues for
ODE solvers. E.g. with Matlab’s ode45 (which implements Runge-Kutta (4,5)
method), in mostly homogeneous tissue, a few mode switches were either doubly
detected leading to fake transitions, or incorrectly reported as being duplicate
and thus transitions were missed. We have written code to detect some of these
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cases, but we feel that such an issue is best dealt with by the solvers themselves,
e.g. by the usage of verified integrators. Mode switches are also very frequent
as cells go through their APs and this slows down simulation. E.g., on a 2.2
GHz, 16 GB Intel Core i7, simulating 6 seconds of a 6-by-6 grid took an average
872secs, and an 8-by-8 grid took 2252secs.

4 Sample properties

One important example of how the model can be used is to study the effect
of the restitution curve’s slope on the development of alternans. Electrical
alternans is a condition in which the APD oscillates beat-to-beat between long
and short. I.e., if APDn is the APD of the nth beat, then APDn > APDn−1
and APDn+1 < APDn. The occurrence of alternans is related to the shape
of the restitution curve. Thus we may use the model to explore the effects
of different shapes on the emergence of alternans in the model. Ventricular
fibrillation is a potentially fatal condition in which the electrical activity of
the heart is very disorganized. Because of the disorganized activity, the heart
muscle does not contract in a unified, coordinated fashion. Rather, different
parts of the muscle will contract at different times, resulting in poor blood flow
to the body. If fibrillation persists, it is fatal. A rough indicator of fibrillation
is a large temporal variance in the average upstroke rate between heart regions.
Again we may analyze what leads to such variance.

5 Outlook

The current model can be extended in several directions. Expanding the neigh-
borhood of cell-to-cell interaction via a weighting function [7] is a possible di-
rection. We may also use more realistic single cell models, although this has to
be carefully weighted against the resulting complexity.

The model we presented is a (network of) nonlinear hybrid automata. Cur-
rent tools can perform some degree of reachability on HA, but the properties of
interest are not restricted to invariants. On the practical/computational side,

an n-by-n grid has 7n
2

modes with and 2n2 continuous state variables. Be-
cause of the theoretical and scalability issues, we expect test-based falsification
tools like S-Taliro [3] and Breach [5] to play an important role in testing these
systems. Such tools only need to simulate the model. Associated convergence
results for hybrid systems [1] provide probabilistic guarantees about the tool’s
performance.
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A Appendix: Model description

Note: values for all thresholds and parameters are available in the accompanying
code, see method generate params of class MyocyteVisibleEP.

See Fig. 1. Initially, the cell is in a quiescent, polarized state where the
membrane potential is at a resting potential. The typical resting potential is
about Vm = −90mV . The complex interactions within a neighborhood of the
cell allow the possibility that a net influx of current can occur within the cell
causing Vm to rise. If Vm rises above a threshold value Vth, an AP is triggered.
Vth = −40mV in a typical cardiac myocyte. The cell enters a depolarization
phase where the cell’s voltage Vm rapidly increases. Vm increases until a max-
imum potential Vmax is reached (nominally around 56mV ), at which point the
cell begins an initial repolarization phase. This phase can be represented as a
‘notch’ in the signal. Due to the ion-channel interactions at the cellular level,
cardiac myocytes demonstrate an extended, slower repolarization phase called
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ṫ = 1

V̇ (i, j) = d2, (d2 < d)
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Figure 5: Hybrid model of one hybrid cellular automaton. AP figure from [8].
Vth,2 > Vth, Vmax,2 < Vmax. DIn is the Diastolic Interval of nth beat, and f
is the restitution function which determines the APD for the subsequent cycle
based on the DI of the current cycle.

a plateau phase. Afterwards, a phase of rapid repolarization occurs. The repo-
larization phase can be further divided into an absolute refractory phase, where
the cell is unreactive to external stimuli, and a relative refractory phase, where
external stimuli can cause an additional AP of lesser magnitude. Finally the
cell returns to its initial fully repolarized state.

The hybrid automata (HA) model we propose in this benchmark is based
off the CA model described in [9]. The excitable heart tissue is composed of
individual cells arranged in a 2D grid of N ×N . Cells interact with each other
via a four-neighborhood structure. Each cell is modeled as a nonlinear hybrid
automaton. The continuous state of cell (i, j) is [Vm(i, j), tij ], where Vm(i, j) is
the cross-membrane voltage and tij is a local timer. The cell automaton has 7
modes, which model the 7 phases of an AP. See Fig. 5. They are Quiescent,
Upstroke, Notch, Plateau, absolute refractory period (ERP),relative refractory
period (RRP), and Secondary upstroke. We now describe the dynamics in all
modes.

Quiescent Initially a cell is in the quiescent mode. Typically, Vm(0) =
Vmin = −90mV in this mode. The (i, j)th cell’s voltage at time t in this phase
depends on that of its 4 neighbors and its own as follows [9]

˙Vm(i, j, t) = Vintr +
[V (i− 1, j, t) + V (i + 1, j, t)− 2Vm(i, j, t)]

Rh(i, j)

+
[Vm(i, j − 1, t) + Vm(i, j + 1, t)− 2Vm(i, j, t)]

Rv(i, j)

= Vintr + a(i, j)>V(t), a(i, j) ∈ <N2

(1)
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where Rh, Rv are resistance constants that can vary across the myocardium. In
Quiescent mode, Vintr = 0 for most ECs whereas Vintr > 0 for a self-exciting
cell. V = (V (1, 1), . . . , V (N,N)) ∈ <N2

contains all voltages in the grid.
Upstroke - Depolarization In Upstroke, the voltage increases exponen-

tially according to V̇ (i, j) = d > 0.
Notch - Initial Repolarization. Upon reaching Vmax, the voltage de-

creases slightly per V̇ (i, j) = −g < 0.
Plateau. While the cell is in the plateau mode, Vm remains constant for a

given duration PD (Plateau Duration). Biologically, the delayed reaction time
of slower Ca++ ion channels is the cause for the plateau. In a more realistic
AP, the plateau is not exactly constant but decreases slightly.

ERP - Absolute Refractory Period. Next, the cell begins a secondary
repolarization phase which can additionally be divided into two phases, the first
of which is ERP. During this mode, the cell is resilient to external stimuli which
is reflected in update equations for the state.

From Upstroke to the end of ERP, the cell can not be excited by its neighbors.
This is reflected in the dynamics, which depend solely on the intrinsic voltage
of the cell.

RRP - Relative Refractory Period After ERP, the cell enters the last
phase of repolarization, the RRP mode. During this period, the cell is sus-
ceptible to current flows from neighboring cells. In this mode, the dynamics
follow Eq. 1. If the voltage increases above a threshold Vth,2 > Vth due to
the interactions with its neighbors, the cell can enter a secondary depolariza-
tion mode, Secondary upstroke. If this occurs, the cell depolarizes to a voltage
Vmax′ < Vmax albeit with a smaller slope. If on the other hand, the voltage
goes back to the quiescent level, the cell enters Quiescent.

Action Potential Duration Restitution Curve The time interval between
the time of transition to the Upstroke mode to the point where the cell achieves
90% of repolarization, tAPD90 is considered the APD. The interval from the
tAPD90 to the upstroke of the next AP is called the diastolic interval (DI). If
ADPn and DIn are the APD and DI of the nth beat respectively, they have
been experimentally observed to be related via a non-linear function: APDn =
f(DIn−1). Function f is called the restitution curve. Numerous hypotheses and
studies exist about how to measure the restitution curve and its implications
for arrhythmogenesis. It is also observed that multiple restitution curves might
exist. We implement a restitution curve from the literature whose parameters
can be found in the accompanying code.

Assumptions and Simplifications Within a mode for a single cell, we limit
the cell to linear dynamics. This affects the shape of the action potentials, al-
though not in a manner that precludes the simulation of interesting phenomena.
See Section 3 for sample APs. Furthermore, we limit the interaction between
cells to the 4-neighborhood of the individual cell. This is a simplification of the
interaction between cells, which occurs up to a certain radius.
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