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ABSTRACT

Dragging a tool across a textured object creates rich high-frequency
vibrations that distinctly convey the physical interaction between
the tool tip and the object surface. Varying one’s scanning speed
and normal force alters these vibrations, but it does not change the
perceived identity of the tool or the surface. Previous research de-
veloped a promising data-driven approach to embedding this natu-
ral complexity in a haptic virtual environment: the approach centers
on recording and modeling the tool contact accelerations that oc-
cur during real texture interactions at a limited set of force-speed
combinations. This paper aims to optimize these prior methods
of texture modeling and rendering to improve system performance
and enable potentially higher levels of haptic realism. The key ele-
ments of our approach are drawn from time series analysis, speech
processing, and discrete-time control. We represent each recorded
texture vibration with a low-order auto-regressive moving-average
(ARMA) model, and we optimize this set of models for a specific
tool-surface pairing (plastic stylus and textured ABS plastic) using
metrics that depend on spectral match, final prediction error, and
model order. For rendering, we stably resample the texture models
at the desired output rate, and we derive a new texture model at each
time step using bilinear interpolation on the line spectral frequen-
cies of the resampled models adjacent to the user’s current force
and speed. These refined processes enable our TexturePad system
to generate a stable and spectrally accurate vibration waveform in
real time, moving us closer to the goal of virtual textures that are
indistinguishable from their real counterparts.

Index Terms: H.5.1 [Information Interfaces and Presentation]:
Multimedia Information Systems—Artificial, augmented, and vir-
tual realities; H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Haptic I/O

1 INTRODUCTION

Imagine picking up a screwdriver and gently dragging its tip across
a swatch of finely woven wool, a convoluted seashell, a wicker bas-
ket, and a burnished bronze sculpture. You can feel both striking
and subtle variations in texture through a tool, even though your
skin is not directly touching the surface. High-frequency vibra-
tions are a rich and valuable source of information during these
tool-mediated contacts with real objects [10]. The human sense of
touch excels at sensing and interpreting these vibrations to gather
information about the physical contacts taking place.

Richly textured surfaces are essential for creating an immersive
and realistic experience for users in virtual environments. How-
ever, most modern haptic devices and algorithms cannot output

Figure 1: Our texture recording and rendering apparatus. The ABS
plastic sample is shown on the left. An accelerometer mounted on
the stylus records the vibrations that occur as it is dragged across
the real surface. A force sensor in the stylus measures the applied
normal force, and sensors embedded in the Wacom tablet measure
the tool’s position. The virtual texture is rendered on the right. The
computer generates a synthetic texture vibration in real time, and a
voice-coil actuator mounted on the stylus transmits these vibrations
to the user’s hand.

high-fidelity reproductions of the vibrations that occur during tool-
mediated texture exploration [6]. Increasing haptic realism is es-
pecially crucial for medical simulators where doctors train to learn
a new skill before performing it on a human patient. Unrealistic
haptic feedback is considered by many to hinder the widespread
adoption of this technology into the medical curriculum [8].

Although many methods have been proposed for representing
textures, no consensus exists concerning the best solution to this
high-dimensional problem [20]. Given their success in other haptic
rendering areas, such as tapping and cutting [19], measurement-
based models offer a promising new approach to creating realis-
tic virtual textures. The research presented in this paper uses the
measurement-based approach of haptography to model textures felt
through a tool. Haptography draws its name from a comparison to
photography in the way that it allows an individual to record the feel
of an interesting interaction and then reproduce the feel of that sur-
face at a later time [12]. Our group recently made the TexturePad
(Fig. 1), the first demonstration of a full system for capturing and
rendering haptic textures [23]. This paper’s goal is to refine and
understand the methods put forward in prior work to enable more
realistic haptographic textures in the future.

2 BACKGROUND

Traditional impedance-type haptic devices are capable of measur-
ing the user’s position and outputting low-frequency forces. These
forces are commonly calculated using a Hooke’s law relationship
with the penetration depth between the device’s position and the
object’s surface [27]. Although this approach allows for an accu-
rate representation of the overall shape of an object, the objects tend
to feel unrealistically soft and smooth. Much of the interaction is
lost through the virtual model’s focus on low-frequency forces and



the device’s inability to output high-frequency vibrations. Without
these vibrations, virtual surfaces lack the rich textural information
available during tool-mediated exploration of real objects.

Many attempts have been made to improve the realism of haptic
virtual interactions, but most have been unable to completely match
the richness and usefulness of the haptic feedback experienced in
natural interactions with the physical world. The Sandpaper system
was the first project to attempt to recreate virtual textures using an
impedance-type haptic device [16]. In this work, Minsky et al. mod-
eled the surface roughness as a series of lateral springs that would
repel or attract the user’s hand. This system allowed for roughness
perception, but it required extensive interactive tuning by the exper-
imenters for each new desired sensation.

Recently, many researchers have diverged from using a priori
model designs and are exploring the creation of data-driven haptic
textures. A seemingly obvious approach is to record and play back
texture acceleration signals. However, there are many drawbacks to
this approach [23]. Because the power and frequency content of the
vibration must change as a function of the user’s force and speed,
one needs a method for interpolating between signals recorded un-
der different conditions. One could simply always play the record-
ing closest to the user’s current force and speed, but switching be-
tween recordings when force and speed change will create percep-
tually noticeable artifacts in the new acceleration signal. Another
possible method could be to output a weighted average of recorded
acceleration signals as a function of force and speed. However, this
summation in the time domain causes significant constructive and
destructive interference between the signals and does not preserve
frequency content. Furthermore, recordings require a large amount
of storage space, and any pecularities that happened to be captured
would likely be perceptually noticeable when repeated in a loop.
These pitfalls in directly playing recorded acceleration signals has
motivated a range of work in creating data-driven texture models.

For example, Okamura et al. [18] represented patterned textures
as a set of data-driven decaying sinusoids that depend on the user’s
speed and applied force. The vibrations used to represent the tex-
tures were superimposed on forces used to represent the stiffness of
the surface for output to a force-feedback joystick. Guruswamy et
al. [7] took a similar approach and created texture models based on
a spatial distribution of infinite-impulse-response filters that are fit
with decaying sinusoids.

Several other researchers have explored the use of data captured
from real interactions to create virtual haptic texture models in or-
der to increase realism. Pai et al. [21] modeled measured fric-
tion variations as an autoregressive process under the assumption
that the roughness of a surface is isotropic and people are sensi-
tive only to the statistical features of varying friction. Vasudevan
and Manivannan [26] used a SensAble PHANToM to drag across
a textured surface and modeled the resulting haptic texture from
the frequency spectrum of the tooltip’s vertical displacements. Al-
though normal force was kept constant, they allowed for variations
in scanning speed by interpolating between two texture datasets at
different speeds.

This paper builds on the methods by which Romano and Kuchen-
becker created and rendered haptic texture models [23, 24]. A ma-
jor benefit of this data-driven approach is that it does not require
tedious and inaccurate hand-tuning of the output model. Rather,
models are generated automatically from a recorded dataset. This
previous work was an initial implementation of data-driven haptic
textures and resulted in haptic textures with an average realism rat-
ing of 65.4/100 when compared to real materials. In this paper,
we explore this topic in further detail to provide additional model-
ing and rendering techniques capable of reducing the size of stored
models while attempting to maintain or improve realism.
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Figure 2: Sixteen time domain signals for rough ABS plastic. The
speed varies in the horizontal direction from 0.05 to 0.20 m/s. The
force varies in the vertical direction from 0.3 to 1.2 N.
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Figure 3: DFTs of the recorded accelerations shown in Fig. 2. The
smoothed DFT is also shown in white to help visualize the central ten-
dency. The power of the DFT increases with increased force and/or
speed, and the spectrum shifts.

3 TEXTURE MODELING

By critically examining the methods of Romano and Kuchenbecker,
this project aimed to understand and optimize the steps needed to
transform acceleration recordings into a rendered texture that is as
realistic as possible. This section details our improved texture mod-
eling process, and the following section covers the texture render-
ing improvements. Below, we first present the method for acquiring
and processing texture acceleration data, which is largely common
to this paper and [23]. Then we discuss the mathematical model we
chose to represent the texture data. Finally, we describe the metrics
we use to determine an appropriate model order based on error and
spectral match compared to the original recordings.

3.1 Data Collection and Preprocessing
The datasets used to create our texture models were recorded us-
ing a Wacom tablet and stylus equipped with a three-axis high-
bandwidth accelerometer. The apparatus for data collection is
shown in Fig. 1; the experimenter places the surface on top of the
tablet and uses the stylus to explore the texture. The tablet, a Cin-
tiq 12WX interactive pen display by Wacom Co., Ltd., measures
the tool’s scanning speed and normal force during data collection.
The x-position and y-position measurements have a resolution of
4.934 µm and 4.861 µm respectively, and the force has a resolution
of 0.0013 N. These three variables are accessed through a modified



version of the Linux Wacom Project code base [2]. An Analog De-
vices ADXL345 accelerometer is firmly attached to the stylus. This
digital accelerometer was configured into ±78.4 m/s2 (±8 g) mode
with a resolution of±0.153 m/s2 and was polled at a rate of 800 Hz;
faster rates were not possible due to the 1000 Hz limit of the Sub-20
SPI-to-USB converter used to communicate with the accelerometer.
For each surface, five seconds of data (position, force, and acceler-
ation) were recorded for each combination of four speeds (0.05,
0.10, 0.15, and 0.20 m/s) and four forces (0.3, 0.6, 0.9, and 1.2 N),
yielding a total of sixteen datasets.

Data was recorded while the experimenter moved the stylus in
a circle on the surface. For each five-second recording, the exper-
imenter held the stylus vertical and kept the scanning speed and
normal force approximately constant using visual indicators. Ac-
celerations were recorded along three axes and high-pass filtered at
10 Hz to remove gravity and the effects of the circular hand move-
ment. These accelerations were then mapped onto a single axis
using the DFT321 method described in [13], which preserves the
spectral and temporal properties of the three-axis signal. This con-
version is motivated by the fact that humans cannot discriminate
the direction of high-frequency vibrations [4]. Fig. 2 shows the
recorded acceleration data for the sixteen tested combinations of
speed and force on rough ABS plastic, and Fig. 3 shows the cor-
responding DFTs. Many other isotropic surfaces have also been
characterized; this paper uses ABS plastic as a representative sam-
ple because it was the highest rated virtual texture in [23].

3.2 Model Type
To provide a more efficient and robust method of building haptic
texture models from tool-surface interaction data, we applied the
methods of time series analysis to the recordings of high-frequency
accelerations described in the previous section.

Romano and Kuchenbecker [23, 24] used linear predictive cod-
ing (LPC) with 400 coefficients to represent the time-domain pat-
terns in the data, which they recorded at 800 Hz and upsampled to
5000 Hz. In LPC, the system’s next output is modeled as a linear
combination of the last p outputs; this arrangement is also known as
an auto-regressive (AR) model or an all-pole model. We expanded
this approach and modeled the acceleration waveforms using auto-
regressive moving-average (ARMA) models, which include both
poles and zeros. The output of an ARMA model is a combina-
tion of the past outputs (AR) and a weighted moving average of the
past inputs of white Gaussian disturbance noise (MA). The ARMA
model structure is the difference equation:

A(p) y(t) =C(q) e(t)+u(t) (1)

where A(p) is the array of AR coefficients, y(t) is the output at
time t, C(q) is the array of MA coefficients, e(t) is the white-noise
disturbance value at time t, and u(t) is the residual at time t [15].
This difference equation corresponds to the following discrete-time
transfer function:

H(z) =
∑

q
k=0 ckz−k

1−∑
p
k=1 akz−k (2)

where p is the AR model order and q is the MA model order.
The coefficients are estimated using the Levinson-Durbin algo-

rithm, which minimizes the final prediction error (FPE) using a least
squares approach [15] with the equation:

FPE =
N

∑
n=1

(un)
2

=
N

∑
n=1

{
yn−a[1]yn−1−·· ·a[p+1]yn−na

− en− c[1]en−1−·· ·c[q]en−nc

}2

(3)

where N is the length of the dataset being modeled, un is the nth
residual, yn is the nth output, en is the nth disturbance value. The
numerical procedure for estimating the model coefficients is avail-
able in Matlab using the function armax(accel,[p,q]).

Typically, increasing the model order will decrease the residuals
and the FPE of the model. However, raising the model order too
high causes overfitting. Although the model may fit the recorded
data points better than a lower-order model, it will be poor at pre-
diction, as an overfit model will tend to fit noise and other random
effects that are present in the data. Therefore, it is necessary to
determine the appropriate model order for each texture.

3.3 Model Order Selection
When selecting the appropriate model order, we follow the prin-
ciple of parsimony, which seeks to balance adequately represent-
ing the data and minimizing the number of model parameters. This
tradeoff is traditionally expressed via the Bayesian Information Cri-
terion (BIC):

BIC = N ln(σ̂2
a )+(p+q) ln(N) (4)

where N is the number of data points used to make the model and
σ̂2

a is the maximum likelihood estimate of the residual variance
σ2

a [5]. The theory behind this cost function is that a smaller BIC
will result in a more parsimonious model due to the addition of the
second term (p+ q) ln(N), which penalizes larger model orders.
Fig. 4 shows a color matrix plot of the BIC computed for a wide
variety of ARMA model orders for the ABS plastic dataset. The
number of AR coefficients was varied from zero to fifteen (16
options), and the number of MA coefficients was also varied from
zero to fifteen (16 options); a model needs at least one coefficient,
so there is no model with zero AR and zero MA coefficients,
leaving (16×16)−1 = 255 possible model orders. Each datapoint
that appears in the plot is the BIC for that model order averaged
across the models fit for the sixteen recordings in the dataset. The
minimum BIC occurred for a model with ten AR and seven MA
coefficients. The models are poor for either no AR or no MA
coefficients: a large decrease in the BIC value is observed if the
model has at least one AR and one MA coefficient, a trend that
supports our choice of ARMA over AR models.

The BIC focuses on minimizing the FPE, but small residuals are
not the only condition that must be met to ensure accurate haptic
texture models. These models must also feel correct to the user. In
order to accomplish this objective of haptic realism, we believe the
model must be able to match the frequency content of the data in
both amplitude and spectral shape, which is supported in [22].

In order to compare data and model spectra, we calculated the
discrete Fourier transform (DFT) of the raw data using the Mat-
lab function fft(accel,N) where accel is the raw accelera-
tion data and N is the number of datapoints. This DFT was then
smoothed with a 50 point Bartlett-Hann window and normalized
by dividing by

√
N. The frequency content of the model was found

using the Matlab function bode.
The Hernandez-Andres Goodness-of-Fit Criterion (GFC) was

used to compare the spectra of the recorded vibrations and the
model. This criterion was first proposed as a metric for testing
reconstructed daylight spectra [25]. It is based on the Cauchy-
Schwarz Inequality, and it is calculated as:

GFC =
|∑i Ad( fi)Am( fi)|√∣∣∣∑ j
[
Ad( f j)

]2∣∣∣√∣∣∣∑k [Am( fk)]
2
∣∣∣ (5)

where Ad( fi) is the amplitude of the DFT of the data at frequency
fi, and Am( fi) is the amplitude of the model’s frequency response
at frequency fi. Romero et al. [25] calculated that GFC = 0.90 cor-
responds to a reconstructed spectrum with 19% less energy than the
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Figure 4: Bayesian Information Criterion for all considered ARMA
model orders averaged across sixteen datasets for ABS plastic. The
number of AR coefficients varied from zero to fifteen, and the number
of MA coefficients also varied from zero to fifteen. The minimum BIC
occurred for a model with ten AR and seven MA coefficients.
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Figure 5: Goodness of Fit Criterion for all considered ARMA models
averaged across sixteen datasets for ABS plastic. The maximum
GFC occurred for a model with ten AR and five MA coefficients.

original data. Therefore, since the just noticeable difference (JND)
for vibrations greater than 150 Hz has been experimentally deter-
mined to be 17% [22], it is reasonable to expect that GFC > 0.90
will result in a model with a good frequency match. The ex-
act threshold would need to be determined through extensive psy-
chophysical testing. Fig. 5 shows a color matrix plot of the GFC for
all 255 possible models averaged across the sixteen datasets. The
maximum GFC occurred for a model with ten AR and five MA co-
efficients. Similar to the BIC, the GFC shows that models are poor
for either no AR coefficients or no MA coefficients.

As the metrics described above seek to optimize separate aspects
of the model, they rarely agree on the appropriate model order.
In order to integrate the different criteria, some further constraints
must be implemented. To simplify computations during texture ren-
dering, the same number of coefficients should be implemented for
each model used to characterize a material. This work does not con-
sider blending between two distinct textures, so it is not necessary
to keep the number of coefficients consistent across materials.

The information provided by both the BIC and the GFC are im-
portant for determining the appropriateness of the model; therefore
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Figure 6: Comparison of power of sixteen recorded and synthesized
acceleration signals. The powers exhibit a high degree of correlation.

both should be taken into account when selecting the final model
order. We added the GFC to the inverse of the BIC (GFC+1/BIC)
and found its maximum to determine the appropriate model order.
We chose this weighting scheme to place more emphasis on
spectral match over error in increasing realism of texture models.
This combination of the metrics showed that models with ten AR
coefficients and six MA coefficients would be best for ABS plastic.
Several nearby ARMA model orders would produce similar results.

Once the appropriate-order models were found, synthetic texture
accelerations were generated by driving the model transfer function
with white Gaussian noise with a power equal to the FPE. Fig. 6
compares the power of the recorded and synthesized accelerations
for all sixteen force-speed combinations; as expected, the R2 value
is very close to unity, showing a high degree of correlation.

4 TEXTURE RENDERING

After creating data-driven models of each material’s vibration re-
sponse, we use these models to synthesize textures in real time.
This section discusses the method by which the texture models were
implemented for haptic rendering on the TexturePad. As shown in
Fig. 1, the stylus was augmented with a Haptuator (Tactile Labs)
oriented parallel to the surface. This voice-coil actuator is driven
by the computer’s sound card at 5000 Hz via a linear current ampli-
fier. Below, we present a method for resampling the 800 Hz models
to allow for playback at 5000 Hz. Next we discuss the method for
interpolating between models in real time. Finally, we detail the
software and hardware used to output the accelerations to the user.

4.1 Model Upsampling
The sixteen texture acceleration datasets were all recorded at
800 Hz. Therefore, the models identified in the previous section
are discrete-time transfer functions with a sampling rate of 800 Hz.
This means that the output of these models can only be updated
every 1.25 ms. However, the sound card of the computer requires
outputs to be specified at a minimum rate of 5000 Hz. Though
this sampling rate mismatch could have been resolved through the
use of a general-purpose digital to analog device, this choice would
limit the identified texture models to 800 Hz playback. Sharing
models across platforms and between devices will eventually re-
quire sampling rate conversion, so we decided to address this issue.

The problem of recording and rendering vibrations at different
rates is best handled by resampling the discrete transfer function of
each model. The method proposed in [9] was found to satisfy the
needs of our application. This deterministic algorithm requires that
the autocorrelation function (ACF) of the original model is equal
to the ACF of the upsampled model at the lags that are common to
both ACFs. The method neglects the stochastic nature of the sys-
tem, which is then compensated by adjusting the noise-covariance
matrix of the resampled model. Fig. 7 verifies that the step re-
sponse and DFT of representative original and upsampled models
are equivalent.
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Figure 7: Step response and DFT of original and upsampled models.
The step responses share the same damped frequency and settling
time. The DFTs share the same frequency content.

Another approach that we tested was to run the texture model at
its original sampling rate (800 Hz in our case) and use a zero-order
hold to fill in outputs between model updates. It can be shown that
the zero-order hold somewhat attenuates the high frequency con-
tent of the signal, reducing the spectral match, but it is a decent
option that can be used to address sampling rate mismatches in cer-
tain cases. It is not an option when the rendering rate is slower
than the recording rate, nor when the rendering rate is a non-integer
multiple of the recording rate. A final option that was used in the
previous work [23] is to upsample the original data to the render-
ing frequency before fitting models. We moved away from this
approach because it inherently fabricates data and depends on the
exact interpolation method used.

4.2 Interpolating Models
In prior work, the sixteen models for each texture were saved in
a custom C++ lookup table as their coefficients and FPE, labeled
by tool speed and normal force [24]. During rendering, the Tex-
turePad measures the user’s speed and force at a rate of 125 Hz. To
select between available models, speed is rounded to the two closest
speeds that exist within the lookup table, one lower and one higher
than the actual speed, and the same procedure is used for the force.
These four values are used to retrieve the four closest models within
the lookup table. The user’s speed and force are capped at 0.2 m/s
and 1.2 N respectively; if the user’s speed or force are above these
thresholds, we saturate the user’s speed or force to the maximum
modeled value. Additionally, models are created to handle the case
when the user’s speed or force are zero. The coefficients for these
models are equal to the coefficients of the nearest model, and the
FPE is set to zero. This ensures that no vibrations occur if the user
stops moving the stylus or lifts the stylus off the tablet surface.

The previous system used the measured speed and force values to
perform a bilinear interpolation to calculate the new coefficients and
FPE. However, it is not appropriate to simply interpolate the AR
and MA coefficients of the four models because this procedure does
not ensure stability. Fig. 8(a) shows the pole loci that result from
interpolating between the coefficients of four models. The poles
travel outside of the unit circle for some values of speed and force,
thereby resulting in an unstable model. This instability must be
avoided at all times in order to simulate realistic textures. Therefore
it is necessary to represent the coefficients in a different manner
that ensures stability and is more robust. Note that [23,24] used the
naive approach of interpolating coefficients.

It is common practice in digital speech coding to transform the
coefficients into Line Spectral Frequencies (LSF). LSFs have many

Figure 8: Loci of poles for interpolating between four models using
(a) coefficients and (b) line spectral frequencies. When interpolat-
ing with the coefficients of the models, some poles travel outside the
unit circle, resulting in a new unstable model. The line spectral fre-
quencies ensure the stability of the model by requiring all poles to lie
within the unit circle.

benefits over coefficients including greater robustness and less sen-
sitivity. They encode spectral information in the frequency domain
by mapping the poles and zeros in the discrete plane onto the unit
circle, as described in [11]. The LSFs are defined as the angles the
complex poles and zeros make with the real axis. These LSFs are
interpolated between the four models selected earlier. After inter-
polation, the resulting LSFs are converted to the new coefficients
by first mapping the poles and zeros within the unit circle. Fig. 8(b)
shows the pole loci that result from interpolating between the LSFs
of four models. The stability of the interpolation is ensured because
the LSFs require that all poles lie within the unit circle.

4.3 Filtering and Calculating Coefficients

Although the stability of individual models is ensured when inter-
polating the LSFs, this is not sufficient to ensure stable behavior of
the system. The user’s position and force change continuously and
are measured at 125 Hz. Additionally, the system must calculate a
new acceleration output value at 5000 Hz. With a naive approach,
the transfer function of the system changes often and quickly. This
high-frequency model switching between stable models has been
shown to have the potential to result in an unstable system [14],
which we observed in our simulated and implemented systems.

We solve this problem by judiciously filtering the scanning
speed, normal force, and LSFs. A first-order linear low-pass fil-
ter with a cut-off frequency of 8 Hz is applied to the user’s speed
and force to smooth quantization effects. The cut-off frequency is
sufficiently above the normal hand motion bandwidth of 2 Hz [3] to
avoid significant delay or attenuation of deliberate human motions.

A third-order linear low-pass filter a with cut-off frequency of
8 Hz was applied to the AR LSFs, MA LSFs, and FPE. The LSFs
and FPE, which are a direct result of the user’s force and speed,
should not change faster than 2 Hz. Therefore, this filter serves to
further attenuate additive noise from the force and speed calcula-
tions and to handle rounding errors in calculations during interpola-
tion. After filtering, the LSFs are converted to their corresponding
AR and MA coefficients using the method outlined in [11].

First- and second-order filters on LSFs and FPE were also found
to help stabilize the system, but they occasionally permitted strong
transients in acceleration. These transients occurred when speed or
force changed quickly, and were never observed with the described
third-order filter. The delay introduced by the third-order filter is
approximately 50 ms. The threshold of time delay for users to ex-
perience changes in perceived textures has been experimentally de-
termined to be 40 ms [17]. Therefore, the delay introduced by filter-
ing the LSFs may have a small noticeable effect on the perception
of our synthesized textures. Future work will explore alternative fil-
ters and other approaches to avoid this type of instability in texture
synthesis without incurring a 50 ms time delay.



Figure 9: Data from implementation of new rough ABS plastic mod-
els on TexturePad. The power spectrum of the acceleration varies
significantly with force and speed, and no unstable transients occur.

Table 1: Calculated Model Order

Material AR Coefficients MA Coefficients
ABS plastic 10 6

Brushed plastic 10 8
Canvas 9 9

Cardboard 10 10
Denim 15 11
Paper 5 3
Vinyl 10 7
Wood 9 5

4.4 Signal Synthesis

After the new coefficients are calculated, they are used to generate
an appropriate acceleration waveform. Our software generates a
white Gaussian noise excitation signal to drive the ARMA model.
The power of the excitation signal is equivalent to the bilinearly
interpolated FPE value. The software uses the excitation signal’s
history and a history of previous acceleration output values to
calculate the new acceleration value at a rate of 5000 Hz.

4.5 Hardware

After the next acceleration value is synthesized, it must be played
to the user. First the magnitude of the acceleration is converted
to volts in order to be played back through the soundcard of the
computer using the PortAudio C library [1]. The authors direct the
reader to [23] for a full description of this conversion. This output
voltage is passed through a linear current amplifier with a gain of
1 A/V. This output drives a Haptuator vibrotactile transducer (Tac-
tileLabs, model no. TL002-14-A) that is firmly attached to the sty-
lus via a custom 3D-printed plastic bracket. The Haptuator shakes
the stylus, transmitting the synthesized vibrations to the user. The
previous implementation described in [24] used a pair of custom
voice coil actuators; we now prefer the Haptuator for its very low
static friction and commercial availability.

5 RESULTS

We applied the methods described in the previous two sections to
create a full haptographic texture model set for ABS plastic and
render it on the TexturePad. This section discusses the results of
this implementation and quantitatively compares them to the re-
sults achieved via the previous method for creating texture models
described in [23].
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Figure 10: Goodness of Fit Criterion comparing the bode spectral
content to the original data for all sixteen ARMA and LPC models.
All ARMA models had a GFC value above the JND threshold of 0.9.
Three of the LPC models had GFC values below this threshold.
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Figure 11: Goodness of Fit Criterion comparing DFT of data synthe-
sized using the ARMA and LPC models. The GFC was calculated by
comparing the DFTs of the recorded and synthesized accelerations
for 80-ms-long segments of data. The average GFC for the ARMA
models was 0.91 and the average GFC for the LPC models was 0.94.

5.1 Implementation Results

Sample results of implementation on the TexturePad are shown in
Fig. 9. The user moved the tool across the virtual surface using
natural exploratory motions, varying scanning speed and normal
force as seen in the top two panels of the figure. The resulting
accelerations vary in both amplitude and frequency content as
a function of the speed and force. The spectrum of the signal
also varies significantly over time, as we would expect from real
recordings of similar exploratory movements.

5.2 Comparisons to Prior Approach

Model Order The texture modeling methods from Section 3.3 were
completed for rough ABS plastic and seven other materials. The
resulting model orders are shown in Table 1. All of the models
needed significantly fewer coefficients than in the previous imple-
mentation of this system, which used 400 AR coefficients for every
material [23]. This change reduced the model storage space re-
quirements by more than 90%. This is a significant improvement
that will be important if large databases of texture models are to be
created and shared. Furthermore, using fewer coefficients lowers
the computational complexity of real-time texture synthesis.

Spectral Match of Individual Models We compared the fre-
quency responses of the ARMA and LPC models to determine if
the new modeling methods affected the spectral match, since we
believe this metric is central to the realism of the resulting texture
renderings. First we compared the frequency content of all six-
teen models with the DFT of the acceleration data used to make the
model. A bar graph of the resulting GFC values is shown in Fig. 10.
All of the ARMA models had a GFC value above the JND thresh-
old of 0.9 established in Section 3.3. However, three of the LPC
models had GFC values below this threshold, which may result in



perceptually noticeable differences in the frequency content of the
model.

Spectral Match of Free Exploration We also compared the GFC
for accelerations synthesized using the ARMA coefficients and the
LPC coefficients separately. We recorded five seconds of tool speed
and tool force data from free exploration of the real ABS texture
sample, along with the high-frequency accelerations experienced
by the tool during this interaction. We used the recorded speed
and force to synthesize two acceleration output signals offline,
one using the new method and the other using the prior method
with LPC models. The real and synthesized acceleration signals
were then divided into 80-ms-long segments, and the DFT was
computed for each segment. We calculated the GFC between the
real and synthesized signals for each time segment. A bar graph of
the resulting GFC values is shown in Fig. 11.

For the depicted data, the average GFC values for the signals
synthesized using the ARMA coefficients was 0.91, and it was 0.94
for LPC coefficients. Although the average GFC was slightly larger
when using the LPC coefficients, we do not believe that the result-
ing differences in the spectrum of the signal would be perceptually
distinguishable to the human user; more extensive analysis and hu-
man subject testing are needed to truly investigate this question. We
attribute some of the differences in the GFC between the synthe-
sized signals to the delay that occurs when filtering the LSFs, rather
than deficiencies in the models, so we intend to continue looking for
ways to improve this aspect of the system.

6 CONCLUSION AND FUTURE WORK

This paper builds on previous work in the area of haptography,
which involves the creation of texture models from measured accel-
eration, force, and speed data. The focus of the research presented
here was to optimize the process of model building to create more
realistic texture models and to increase efficiency of model stor-
age and texture synthesis. Metrics for determining an appropriate
model order were presented, along with new methods for upsam-
pling models and interpolating between models to ensure stability.
This approach was implemented on the TexturePad system. There
was a large decrease in the space required to store the models, and
the spectral match of the individual models was improved overall,
though the spectral match of free exploration declined slightly.

In future work, we hope to implement a new data capture system
with hardware that is capable of recording data at higher sampling
rates to avoid the need to upsample the model. We also intend to
explore a more efficient method of data capture. Rather than col-
lecting controlled datasets, we envision a system that will allow the
haptographer to explore the entire surface using natural motions
with varied force and speed. We will then parse the data into seg-
ments of approximately constant force and speed that will be used
to create the set of models for the explored surface.
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