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Abstract—This work presents an analysis of a cluster of
finite population of low cost sensor nodes operating in a p-
persistent S-Aloha framework with multipacket messages. Using
this analytical framework, we consider the issue of partitioning
the nodes and available frequencies into groups so as to maximize
the system throughput. Assigning the nodes and frequencies into
“groups” is important because the size of the group impacts the
tradeoff between the benefits of frequency diversity and the cost
of collision on the shared medium imposed by the nodes in a
group. We study this tradeoff through analytical and numerical
results and show how the correct choice of group sizes can vary
depending on various factors like the ratio of nodes to frequencies
and the overall system load.

I. INTRODUCTION

The growing availability of affordable wireless devices is
creating new opportunities for large scale distributed sensing
and surveillance for military operations. High density deploy-
ment of these low cost COTS-based devices as Points of
Presence (POPs) close to the targets (devices or facilities)
can be used to improve situational awareness, collaborative
monitoring, threat recognition, and Electronic Warfare Surveil-
lance (ES). These POPs can monitor and report in a distributed
manner to a rendezvous node or a cluster-head with SATCOM
capabilities, which then aggregates, filters, and relays the
information to a remote operation command center (e.g., EWO
in a prophet vehicle). An example of such a deployment
scenario is shown in Figure 1.

But since these POPs operate in an uncoordinated (de-
centralized) manner to send reports to the cluster-head, they
contend for the access channels, resulting in transmission
collisions with other POPs. In such scenarios with shared
medium, various techniques can be used to reduce collisions.
For example, the Ethernet uses CSMA-CD as a MAC protocol,
while 802.11 wireless LAN uses CSMA-CA. But in wireless
communication settings, collision detection (CD) is expen-
sive and collision avoidance through carrier sensing is often
difficult for high-density, low-cost devices. An alternative,
lightweight MAC protocol that has been often used in sce-
narios with such “hidden-node” problem is the Slotted Aloha
(S-Aloha). S-Aloha is a decentralized MAC protocol without
carrier sensing in which transmitting devices are restricted
to sending packets within discrete time slots. Aloha channels
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Fig. 1. Surveillance Network Scenario

were used in a limited way in 1G mobile phones for signaling
and controlling, and since 1990s for SMS in 2G. In early
2000s, additional Aloha channels were added to 2.5G and
3G mobile phones with the introduction of GPRS. S-Aloha is
also widely used in many underwater sensor networks, satellite
networks, wireless radios etc. Therefore, the simple S-Aloha
protocol is a likely protocol for the COTS sensor network
scenario of Figure 1.

Previous works have analyzed Aloha and several of its
variants for their throughput and stability, as discussed in
Section II. In this work, we consider a p-persistent S-Aloha
model [2] with saturated arrival, in which a node backs off
with a positive probability after each message transmission.
This back off mechanism helps to prevent channel capture by
any one nodes. Our work extends this framework to a setting
with multi-packet messages with a finite number of users and
a finite set of channels (frequency sets).

But more importantly, the closed form expressions we derive
for throughput in this generic setting allow us to answer
the practical question of efficient resource partitioning: How
should we “group” the POPs into MAC subnets and assign
frequency sets to them so as to improve the system throughput?
For example, if we have M = 8 nodes and F = 4 frequencies
to allocate, is it better to form: (a) 4 groups with two nodes
and only one frequency assigned to each group, or (b) 2 larger
groups with four nodes and two frequencies assigned to each



group, such that the four nodes can transmit on any of the
two frequencies, or (c) one large group with all eight nodes
sharing all the four frequencies? At the heart of this question
is the tradeoff between the impact of increase in channel
diversity from more available frequencies and the potential for
a greater contention among accessing nodes. Understanding
this tradeoff requires analyzing the throughput of such a multi-
packet, finite user, S-Aloha system for a range of possible
“grouping” or clustering of sensor nodes and frequencies.

The key features and contributions of this work are:
• We model a deployment scenario of low cost sensor

devices that operate in a basic random access mode and
study the issue of partitioning these nodes and available
frequencies to maximize throughput.

• Our analysis provides closed form expressions for the
throughput of multi-packet, p-persistent S-Aloha system
with finite number of nodes and frequencies.

• Our results provide guidelines in network planning and
resource allocation by illustrating that the right choice of
clustering or “grouping” nodes and frequencies will vary
depending on factors like the system load.

The paper is organized as follows: Section II discusses
the related literature, Section III introduces the model and
Section IV analyzes the throughput of the system for different
scenarios, the results and numerical examples are reported in
Section V, followed by the conclusion in Section VI.

II. RELATED LITERATURE

Aloha is a popular low complexity random access protocol
[4] that has been extensively analyzed. Ferguson [5] and
Bellini [6] considered the performance of pure (unslotted)
Aloha with infinite user population and variable packet length.
[7] considers the performance of S-Aloha system with multi-
packet buffers. Raychaudhuri [1] extended these early works
to S-Aloha systems in which messages generated by users
consists of multiple packets instead of only one.

Another variation of slotted Aloha, known as p-persistent S-
Aloha, considered in this work, uses a persistence parameter,
p, to determine the probability that a node transmits a packet
in a slot [2]. Our work extends this line of investigation
by computing throughput for multi-packet messages with a
finite population and finite frequency set. Additionally, we
use our formulation to address the issue of network resource
partitioning and its impact on throughput.

Researchers have also focused on stability of the Aloha [9],
but this issue is not pertinent to our study because our model,
like that of [3], [11], considers a saturated arrival scenario.
[3] proposes a generalized S-Aloha in which nodes back off
with a probability that depends on whether the previous packet
transmission has been successful. But unlike [3], the low-cost
nodes of our setting typically lack expensive CD capability
and ACK mechanisms (due to long RTTs often arising in
such scenarios), and hence, are assumed to back off with a
probability p to avoid channel capture issues.

Performance analysis of strategic behavior in Aloha [10] and
game theoretic formulations [11] have also been considered.
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Fig. 2. Markov chain of the S-Aloha model considered

Although our present work does not involve strategic game
formulation since we consider only low cost sensor nodes with
limited computational capacity, it is a topic of potential interest
for future work.

III. MODEL

In this section, we introduce the system model and its
parameters. We consider a cluster with M transmitting nodes
(POPs) and F frequencies to share. Some key feature of the
scenario considered are:

1) A node (POP) always has “messages” to transmit, i.e.,
saturated arrivals (i.e. elastic transfer).

2) These “messages” sent by the nodes are multi-packet
messages, each constituted of k number of packets.

3) All the k packets in the message are transmitted back
to back, one in each time slot.

4) In each transmitting slot, a node can choose any one
of the F frequencies uniformly at random to transmit a
packet of the message.

5) Collision occurs when two or more nodes transmit
message packets simultaneously on the same frequency.

Since the focus of this work is on performance measured
in terms of attainable throughput, and not on stability, we
follow [3] in considering a system in a saturated arrival mode.
Classical stability analysis is not applicable to this model
because the system is assumed to operate in a saturated
arrival, and hence throughput is the primary performance
metric considered.

Like the traditional Aloha protocol, we consider only “no
capture” setting, i.e., collided messages are lost. Additionally,
we assume that the low-cost nodes lack CD capabilities (e.g.,
it is difficult for radios to listen for interference while actively
transmitting) and long RTT for ACKs (as in satellite links) and
additional buffering needs render link layer packet-by-packet
ACKs or selective ARQ unviable (i.e. message retransmissions
are taken care of at higher layers of the protocol stack).
In other words, if any of the k back-to-back packets from
two message transmissions collide, both the collided message
are assumed to be lost. We also consider perfect channel
condition in this model, but extension to an i.i.d. settings
is fairly straightforward. Earlier research has highlighted the
potential benefits that channel diversity can provide due to
randomization over the access channels [12]. In practice,
such fast slot-to-slot frequency switching can be enabled by
using two network interface cards (NICs) or frequency agile
transmitters.

The p-persistent Slotted Aloha protocol considered in this
work has the following features:



• If a node m has a message to send, then it begins to
transmit the first packet in the next slot with a probability
pm, followed by the rest of the k−1 packets back to back,
one in each time slot.

• Once a message has been transmitted, the node transmits
the first packet of the next message in the next slot with
a probability pm or backs off with a probability 1− pm.

Given that the nodes of the system are uncoordinated and
independent of each other, the resulting Markov chain for
an individual node is shown in Figure 2. The states of a
given node m, are denoted by i ∈ {0, . . . , k}, with stationary
probabilities of πi, where π0 corresponds to an “idle” state
and others being packet transmitting states. When a node is in
k-th state, the node is sending the last packet of a message,
followed by which it can back-off into an idle or inactive state
with probability 1−pm or transition to state 1 with probability
of pm to send the first packet of the next message. The steady
state probabilities are therefore given by:

π0 =
1− pm

1− pm(1− k)
, πi =

pm
1− pm(1− k)

∀i ∈ {1, . . . , k}
(1)

A similar Markov chain can be constructed when we define
each state by a tuple (i, j), where i = {0, . . . , k} denotes
the packet transmission state and j = {1, . . . , F} denotes the
frequency of transmission. Given that the frequency hopping
is done uniformly across the set of frequencies, we obtain the
following expressions:

π0 =
1− pm

1− pm(1− k)
(2)

πij =
pm

[1− pm(1− k)]F
∀ 0 < i ≤ k, 1 ≤ j ≤ F (3)

We use these expressions in Section IV to calculate success-
ful message transmission probabilities in various scenarios.

IV. ANALYSIS

In this section, we first derive the throughput expressions
for a homogeneous system in which each node has the same
message transmission probability of p = pm. Then we extend
the results for a scenario with heterogeneous system with
distinct pm for each node.

A. Homogeneous Nodes

1) Single Frequency Case: When a finite number of nodes,
M , share a single frequency to transmit k-packet length
messages using described p-persistent S-Aloha protocol, the
message transmission is successful if no other node was
active at during the duration of this transmission, that is, the
unconditional success probability Ps for a given node is:

Ps = π1π
M−1
0 ((1− p)M−1)k−1 =

p(1− p)(M−1)k

[1− p(1− k)]M−1
(4)

where π0 and π1 are given by Eqn. (1).
For the special case of k = 1, i.e., single packet messages,

this probability is Ps = p(1− p)M−1.
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Fig. 3. Markov chains of possible configurations when Node B is already
transmitting the second packet
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Fig. 4. Markov chains of possible configurations when Node B is already
transmitting the third packet

2) Multiple Frequency Case: In the case of multiple fre-
quencies, deriving the probability of a successful message
transmission is particularly difficult because of the possibility
of messages from any two nodes colliding at one or more
of the k time slots. This difficulty arises because a particular
node’s throughput depends on: (1) whether each of the other
nodes were active or inactive, either entirely or partially, during
the duration of this node’s message transmission, and (2)
whether any of the actively transmitting nodes chose the same
frequency in any of the time slots as this particular node during
its message transmission.



To obtain general expressions for the probability of a
successful transmission, we consider two nodes, A and B.
Without loss of generality, let us assume that Node A becomes
active at some time t = 1 and transmits the k packets of a
message, one in each consecutive slots, all on frequency 1.
Note that this is only one possible realization, the node could
have switched over to any other frequency at any time slot with
probability of 1/F . Next, assume that Node B was inactive
at time t = 1, but it could become active in any of these k
time slots with probability p and choose the same frequency
as Node A with probability of 1/F in any time slot. It can be
shown that the conditional probability that Node A’s message
does not collide with Node B, given that Node A became
active at time slot 1 is

π0

[ k−1∑
n=1

p(1− p)n
(
1− 1

F

)k−n
+ (1− p)k−1

]
(5)

Similarly, we now consider the case where both Nodes A
and B start simultaneously transmitting their first packet of a
message at t = 1. Let fA(i) denote the frequency on which
Node A is transmitting its packet in the (i = 1)-th time slot,
and π1j be the initial state Node B, where j 6= fA(i) so that
its first packet did not collide on the frequency used by Node
A. We then have the conditional probability that Node A’s
message does not collide with Node B’s on any of the next k
time slots, given that Node A became active at time slot 1 is

F∑
i=1,j 6=fA(i)

π1j

(
1− 1

F

)k−1
(6)

Now consider that Node B was already transmitting the
second packet of a message at t = 1 when Node A starts
transmitting the first packet of its message. In this case, there
are two possible configurations for Node B’s transmission
sequence as shown in Figure 3; once Node B finishes trans-
mitting the first message, it can become idle with a probability
of 1 − pB (as shown in Config. 1), or it could immediately
go into transmitting the first packet of a second message
with a probability of p = pB (Config. 2). Since Node A is
assumed to be always transmitting on F = 1 in this illustrative
example, these states which should not be realized by Node
B to avoid a collision are shown with a darker shade. The
resulting conditional probability that Node A’s message does
not collide with Node B in any time slots, given that Node A
became active at time slot 1 is

F∑
i=1,j 6=fA(i)

π2j

[
p
(
1− 1

F

)k−1
+ (1− p)

(
1− 1

F

)k−2]
(7)

As we develop on this logic and consider Node B in the
process of sending the n-th packet of a message when Node
A became active, the possible set of configurations increases
and the expression for the conditional success probability gets
difficult. The possible configurations for n = 3 for Node B at
t = 1 are shown in Figure 4.

Using Eqs. (2) and (3), and following the steps outlined
above, we can write down the expression for the conditional

probability of no collision in multi-packet (k ≥ 2) S-Aloha
system between Nodes A and B during A’s active duration,
pnc(A,B)

, in a generic form as

pnc(A,B)
= π0

[ k−1∑
n=1

p(1− p)n
(
1− 1

F

)k−n
+ (1− p)k−1

]
(8)

+(F − 1)πij

k∑
n=1

[
(1− p)n−1

(
1− 1

F

)k−n

+

max(n−2,0)∑
l=0

p(1− p)l
(
1− 1

F

)k−l−1]
, k ≥ 2

Therefore, given the homogeneity across different nodes,
using Eqs. (2), (3), and (8), we obtain the unconditional
probability that a node’s message does not collide with any
other M − 1 nodes as

Ps = Fπij(pnc(A,B)
)M−1 =

p(pnc(A,B)
)M−1

[1− p(1− k)]
, k ≥ 1 (9)

Notice that for the special case of F = 1, we get back the
expression obtained in Eq. (4) for the single frequency case,
and when k = 1, we get Ps = p

(
1− p

F

)M−1
as expected.

B. Heterogeneous Nodes

Following Eq. (8), in the case of a system with hetero-
geneous nodes, the conditional probability of no collision
between two nodes, t and m, during t’s active duration is

pnc(t,m)
= π0

[ k−1∑
n=1

pm(1− pm)n
(
1− 1

F

)k−n
+ (1− pm)k−1

]
(10)

+(F − 1)πij

k∑
n=1

[
(1− pm)n−1

(
1− 1

F

)k−n

+

max(n−2,0)∑
l=0

pm(1− pm)l
(
1− 1

F

)k−l−1]
, k ≥ 2

Thus, the unconditional success probability for a message
from Node t becomes

⇒ Ps(t) =
pt
∏M
m=1,m6=t pnc(t,m)

[1− pt(1− k)]
(11)

Let Xt be the indicator random variable that determines the
message transmission success or failure of Node t, then

Xt = 1 w.p. Ps(t) (12)
= 0 w.p. 1− Ps(t)

Although Xt are dependent random variables, because
of the additivity of expectation, we have 1

ME(X̄) =
1
M

∑M
m=1E(Xt). Hence, the unconditional probability of

successful message transmission for any node is Ps =
1
M

∑M
m=1 Ps(t), which gives

Ps =
1

M

M∑
m=1

pt
∏M
m=1,m 6=t pnc(t,m)

[1− pt(1− k)]
(13)



C. System Throughput and Load

To calculate the throughput or load of such a system of
nodes (cluster), we first calculate the expected activity period
of a node. On average, the expected number of slots for which
a node is inactive is given by

E(m) =

∞∑
m=1

mpm(1− pm)m−1 =
1− pm
pm

(14)

So for every active k time slots during which a node is
transmitting a message, there is an inactive period of 1−pm

pm
slots. A message transmitted is transmitted in k+(1−pm)/pm
slots on average. The conditional probability of a successful
message transmission is given by may be defined by Ps

πij
.

Therefore, the throughput of a node is given by

Throughput =
k(Ps/πij)

k + (1− pm)/pm
(15)

The load of the entire cluster of nodes is

Load =
M(1− π0)

F
=
(M
F

)
δ (16)

where M/F captures the “group” size in terms of nodes shar-
ing the same frequencies, and δ accounts for their activeness.

V. RESULTS

In this section, we use the analytical expressions obtained
in Section IV to illustrate some key results and numerical
findings. In particular, we consider the question of “grouping”
the POPs into MAC subnets and assigning the available
frequencies to these subnets so as to improve throughput. For
example, given M = 8 nodes and F = 4 frequencies, is
the throughput higher in a “larger” group where all the nodes
share all the available frequencies or “smaller” groups with
a subset of nodes sharing a subset of frequencies. For this
study we restrict ourselves to non-overlapping groups only,
although the analytical results presented in Section IV can be
used to analyze more generic cases. This allocation decision
depends not only on the ratio of M

F but also on the message
length in packets and the system load, which is governed by
the parameter p. For the analytically tractable case of single
packet messages (i.e., k = 1), we provide several results in
Propositions 5.1-5.3 and then consider numerical examples for
more general cases.

Proposition 5.1: For a given set of M nodes and F fre-
quencies, smaller groups are better for low values of p (i.e.,
p→ 0).

Proof: Consider two groups, indexed by i ∈ 1, 2, with a
fixed ratio of nodes and frequency allocation, r = Mi/Fi. The
throughput is p

(
1− p

Fi

)rFi−1. For F2 > F1, the difference in
throughput of the two groups (M2 = rF2, F2) and (M1 =
rF1, F1) in the limit p→ 1 (and neglecting the higher orders)
is p2

(
1
F2
− 1

F1

)
< 0. Hence, a smaller group of size (M =

r, F = 1) is better for low values of p.
The result of the above proposition can be seen in Figures

5(a) and 5(b) which show the node throughputs as a function of
the load for scenarios where the ratio of nodes to frequencies

r = M/F is 2 and 4, respectively. In particular, higher
throughput is achieved with smaller groups when the load is
low because partitioning resources reduce the likelihood of
collision across nodes. For example, Figure 5(a) shows that
for low values of p (i.e. less load), the throughput achieved
with “smaller” groups (i.e., say 16 distinct groups with 2
nodes sharing 1 frequency) is higher, but for higher values
of p→ 1, “larger” groups (i.e., all 32 nodes sharing all the 16
frequencies) can be better. Proposition 5.2 quantifies the latter
observation regarding high load scenarios.

Proposition 5.2: For a fixed ratio of M/F i.e. r = M
F , it is

better to form larger groups for high values of p (i.e., p→ 1),
if r ≥ 2, and smaller groups when r < 2.

Proof: When p = 1, we have the node throughput as T =(
1− 1

F

)rF−1
. We find that T (F ) is a continuously increasing

function (i.e., ∂T
∂F ≥ 0) only if

r ≥ 1

F + (F 2 − F ) ln
(
1− 1

F

) ⇒ 2− 2

3F
+ o
( 1

F

)
The previous expression has two important properties: (a)
saturates to a value of 2 as F →∞, and (b) it is monotonically
non-decreasing in F .

To see the latter property, consider its derivative w.r.t. F ,
which gives −(2+(2F−1) ln(1−1/F ))

[F+(F 2−F ) ln(1−1/F )]2 . The derivative is positive
∀ F because 2 + (2F − 1) ln(1− 1/F ) ≤ 0 ∀ F :

(2F − 1)(1/F + 1/2F 2 + 1/3F 3 + . . .) ≥ 2

=

∞∑
m=2

m− 1

m(m+ 1)Fm
> 0 ∀ F

These properties of the function 1

F+(F 2−F ) ln
(
1− 1

F

) imply that

for r > 2, ∂T
∂F ≥ 0, thus favoring the formation of larger

groups.
Alternatively, ∂T

∂F ≤ 0 if r < 1

F+(F 2−F ) ln
(
1− 1

F

) , then it is

always better to form smaller groups. To see this, consider the
largest possible value of r < 2, which is (2F − 1)/F (since
F and M are integers). We now show that r = (2F −1)/F <

1

F+(F 2−F ) ln
(
1− 1

F

) because

F + (F 2 − F ) ln
(
1− 1

F

)
− 1

2

(
1− 1

2F

)−1

⇒
∞∑

m=2

1−m
2m(m+ 1)Fm−1

≤ 0 ∀ F

Hence, for r = (2F − 1)/F , the throughput will decrease
with F , i.e., smaller groups are preferred.

Proposition 5.3: For r ≥ 2, any two integer numbers F2 =
c2 ≥ F1 = c1, and a given ratio r = M2

F2
= M1

F1
≥ 2, the node

throughput is higher in smaller groups, {M1 = rc1, F1 = c1},
when network load is low (i.e., p → 0), and higher in larger
groups, {M2 = rc2, F2 = c2}, when load is high (i.e., p→ 1).

Proof: This proposition mostly follows from the previous
two. For low values of p, the throughput for a smaller group,
{M1 = rc1, F1 = c1}, is higher than for a larger group,
{M2 = rc2, F2 = c2}, i.e., T1 > T2. When p is high,
then for r ≥ 2, the throughput for the larger group is higher



(a) Node throughput for k = 1 and M/F = 2 groups (b) Node throughput for k = 1 and M/F = 4 groups

Fig. 5. Smaller (larger) groups have higher throughput at lower (higher) loads

Fig. 6. Node throughput for k = 3 and M/F = 2 groups

and the throughput curves intersect. For r < 2, then the
throughput curves do not intersect, i.e., smaller groups have
higher throughput.

Next, we consider the case of multi-packet messages. Figure
6 provides the graph for node throughput for varying load
conditions for multi-packet messages with k = 3. As before,
we observe that the benefits of channel diversity may be lost
due to random access in larger groups, and hence, smaller
groups may indeed be more desirable in such scenarios.

These propositions and illustrations show that the choice of
this group size is very much determined by the level of load
in the system. This observation demonstrates that whether the
availability of channel diversity is beneficial or not depends on
several factors, including network parameters like M/F , p, k
etc. The closed form expressions presented earlier can thus be
useful in determining the efficient partitioning of nodes and
frequencies for maximizing system throughput.

VI. CONCLUSION

This paper studies the issue of partitioning sensor nodes
and frequencies to groups in order to maximize the system
throughput. We model a deployment scenario of low cost
sensor devices that operate in a basic random access mode. We
provide closed form expressions for the throughput in a very

generic setting of a multi-packet, p-persistent S-Aloha system
with finite number of nodes and frequencies. The formulation
is then used to show that the correct partitioning of nodes and
frequencies can vary depending on the load of the system.
This work can therefore help in better planning and allocation
of network resources into logical subsets of sensor nodes.

There are several interesting lines for future extension of
this work. In this work we have not modeled the impact finite
arrival and that of retransmission policies, such as selective
ARQ etc, but these are of particular interest as future work.
Understanding the effect of packet coding on the throughput
and partitioning is another direction for the next step.
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