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ABSTRACT 

FABRICATION AND DYNAMIC TUNING OF PERIODIC STRUCTURES FROM 

HOLOGRAPHIC LITHOGRAPHY 

Jie Li 

Shu Yang 

In this dissertation, I fabricated one-dimensional (1D), two-dimensional (2D) and 

three-dimensional (3D) periodic structures through holographic lithography (HL) and 

backfilling conversion with different materials. Along the line, I investigated their 

intrinsic structure-property relationship, harness and utilize the mechanical instability, 

and explored novel applications as tunable periodic structures. 

In order to mimic butterfly wings which show both structural color and 

superhydrophobicity, 3D diamond photonic crystals with controllable nano-roughness ( 

120 nm) were fabricated from epoxy-functionalized cyclohexyl polyhedral oligomeric 

silsesquioxanes (epoxy-POSS). The nano-roughness was generated due to microphase 

separation of the polymer chain segments in nonsolvents during rinsing, which could be 

tuned by crosslinking density of the polymer and choice of solvents. Such structure offers 

opportunities to realize superhydrophobicity, enhanced dye adsorption in addition to the 

photon management in the 3D photonic crystal. 

Most of current studies on tunable periodic structures show limited tunable optical 

property ranges, which is attractive to be expanded. 2D shape memory polymer (SMP) 

membranes consisting of a hexagonal array of micron-sized holes were fabricated by 
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converting from epoxy-POSS template. Reversible color switching from transparency to 

colorful state was achieved through thermal-mechanical deformation, utilizing shape 

memory effect and mechanical instability induced pattern transformation. Continuum 

mechanical analyses corroborated well with experimental observations. Potential 

applications as displays were demonstrated via two different approaches. 

It is challenging to directly fabricate high aspect-ratio (AR) 1D nano-scale 

structures, due to depth-of-focus (DOF) limitation, pattern collapse from capillary force 

and distortion during solvent swelling. With HL and supercritical drying, high AR 1D 

nano-scale structures were fabricated with epoxy-POSS and SU-8, which avoid DOF 

limitation and pattern collapse. Due to enhanced thermal and mechanical stability of 

epoxy-POSS, 1D nanogratings (AR up to 10) with controllable periodicity, filling 

fraction and surface roughness, were achieved, which could be directly converted to 

silica-like through calcination. By exploiting swelling-induced buckling of 1D SU-8 

nanowalls with nanofibers formed in-between, long-range ordered 2D nanowaves with 

weaker reflecting color were achieved, where degree of lateral undulation could be 

controlled by tuning AR and exposure dosage. Using double-exposure through 

photomasks, patterns with both nanowaves and nanowalls for optical display were 

created. 
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Chapter 1  

Fabrication and dynamic tuning of periodic structures from 

holographic lithography 

1.1 Introduction 

Periodic structures, including one-dimensional (1D), two-dimensional (2D) and 

three-dimensional (3D) ones, offer unique optical, mechanical and surface properties. For 

example, the shiny colors displayed on butterfly wings and opals have been attributed to 

the reflection from 3D periodic structures.
[1]

 Inspired by nature, scientists have developed 

different techniques and materials to create and tailor periodic structures. The concept of 

photonic crystals (PCs) was first proposed in the late 1990’s,
[2-3]

 where certain frequency 

of light can be totally reflected from a crystalline material with periodic undulation of 

refractive index at a length scale comparable to the light wavelength, creating so-called 

photonic bandgaps (PBGs).
[4]

 More recently, it has been suggested that analogy can be 

drawn to phononic crystals, where mechanical waves are modulated, leading to phononic 

bandgaps.
[5]

 Meanwhile, the topography exhibited in the periodic structures are of interest 

to exploit surface wetting, adhesion, and bioadhesion properties.
[6]

 

A number of bottom-up and top-down techniques have been developed to fabricate 

periodic structures of different symmetries, size and materiality, including colloidal 

assembly,
[7]

 layer by layer assembly,
[8]

 two-photon polymerization,
[9]

 direct laser 

writing,
[10]

 and holographic lithography (HL).
[11-13]

  Among them, HL is highly efficient 

and versatile, which records laser interference patterns in a photoresist film over a large 
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area,
[14]

 creating a wide range of 1D, 2D and 3D structures, including 1D line pattern, 2D 

hexagonal pillar array,
[15]

 face center cubic,
[14]

 simple cubic,
[12]

 diamond
[13, 16]

 and 

diamond-like.
[17-18]

  

One unique aspect of bioorganisms is that they are not static: they adapt to the 

surrounding environment. Therefore, it will be interesting to dynamically tune the 

periodic structures, including lattice constant, spatial symmetry, and/or the refractive 

index of the building blocks,
[19]

 in response to an external stimulus, such as 

temperature,
[20-23]

 chemicals,
[24-25]

 mechanical force,
[26-27]

 light,
[28-29]

 electrical force,
[30]

 

magnetic force.
[31]

 In turn, it will change respective photonic, phononic or surface 

properties. While there have been much effort in creating responsive structures, most of 

which are templated from colloidal assemblies and the tuning is often achieved by 

swelling the 2D and 3D structures using a selective solvent, thus, changing the lattice 

constant, or by changing the refractive index of the surrounding medium. The resulting 

change of PBG position ranges from several to a few hundreds of nanometers. 

Nevertheless, the switching of the physical properties remains limited by the 

aforementioned methods, and the use of liquid or solvent may not be favorable for many 

practical applications.  

Here, we summarize the recent advances in the fabrication of periodic structures, 

various material choices for fabrication and application, and different dynamic tuning 

approaches. An overview of the fabrication approaches is given in section 1.2. Typical 

photoresists for holographic lithography and materials for applications are discussed in 

section 1.3. In section 1.4, we discuss different types of tunable periodic structures. The 
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current issues and thesis outline are given in section 1.6. 

1.2 Approaches to fabricate periodic structures 

There are various top-down and bottom-up approaches for fabrication 1D, 2D and 

3D periodic structures with different size, symmetry and materiality. Here, we 

categorized the mainly studied fabrication techniques into 1D, 2D and 3D capability, as 

summarized in Table 1.1. 

Table 1.1 Different approaches for fabrication of periodic structures 

Techniques 
One- 

dimensional 

Two- 

dimensional 

Three- 

dimensional 

Photolithography √ √  

Scanning beam lithography √ √  

Soft lithography √ √  

Wrinkle formation √ √  

Colloidal assembly  √ √ 

Block copolymer self assembly √ √ √ 

Holographic lithography √ √ √ 

Two-photon lithography √ √ √ 

Phase mask interference lithography √ √ √ 

 

1.2.1 Photolithography 

Photolithography is widely used in microelectronics manufacturing. Briefly, the 

photolithographic systems project light through a photomask (e.g. a quartz plate with a 

patterned chromium coating) onto a photoresist at the focal plane. A photoresist is 
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typically a polymeric material that switches solubility upon exposure to high energy light, 

e.g. UV light. By definition, positive-tone photoresists switch from insoluble to soluble in 

a solvent (also called developer) after light exposure, while negative-tone photoresists 

typically crosslink, thus becoming insoluble in the developer.
[32-34]

 Photolitography is a 

parallel process to generate arbitrary patterns on a plane. In current semiconductor 

nanofabrication, patterns with 14-nm wide features have been achieved with 193-nm 

immersion lithography, where imaging resolution could be improved by adding high 

refractive index (n) immersion fluid (e.g. water, n = 1.47) between the lens and imaging 

plane.
[35]

 

Due to the nature of photolithography, it is capable of direct fabrication of 1D and 

2D periodic structures, ranging from nano- to micro- scale with various photoresists. 

However, the structure aspect ratio (AR= height/feature size) is usually limited, 

especially when the feature size shrinks to the nanoscale. For example, AR is typically 

less than 3 in 193 nm lithography.
[36]

 This could be explained by depth of focus (DOF) 

and the critical dimension (CD, also the minimum feature size), which are determined 

by
[37]

  

     
 

  
                         (1.1) 

      
 

                       (1.2) 

where λ is the wavelength of light, NA is the numerical aperture of the lens, and k1 and k2 

are processing related constants. Decreasing λ and increasing NA could decrease CD. 

However, DOF is reduced more rapidly. Therefore, multi-step hard mask etching steps 
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are necessary to create high AR structures for certain inorganic materials, which add 

complexity and cost to the fabrication. 

In addition, high AR structures tend to be distorted due to solvent swelling during 

developing, as the material modulus decreases, and pattern collapse due to the capillary 

force upon solvent drying.[38-40] To address this problem, high AR structures are typically 

dried using supercritical CO2 dryer to minimize surface tension effect. 

1.2.2 Scanning beam lithography 

Scanning beam lithography (also referred as maskless lithography) is a slower and 

more expensive fabrication method compared with photolithography, due to its serial 

writing nature. It is mostly used for producing photomasks or for research purpose rather 

than large scale manufacturing. There are three main types of scanning beam lithography: 

(i) scanned laser beams, (ii) focused electron beams
[41]

 and (iii) focused ion beam (FIB) 

[42]
systems. Among them, e-beam lithography offers pitch size as small as 9 nm.

[41]
 

However, the tools are expensive and the fabrication process is very time-consuming, 

which limits the practical applications. 

1.2.3 Colloidal assembly 

Colloidal assembly is a simple and low-cost process to directly fabricate 2D and 3D 

periodic structures. Mono-dispersed particles could close-packed into hexagonal closest-

packed (HCP) structures or face centered cubic (FCC) structures onto a substrate during 

the slow evaporation of solvent, as a result of attractive capillary forces among the 

colloidal spheres and the convective particle flux during solvent evaporation. The lattice 
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constant of the periodic structures are simply controlled by the particle sizes. Colloids are 

typically made of silica,
[43-45]

 polystyrene (PS)
[46-47]

 and poly(methyl methacrylate) 

(PMMA)
[48-49]

. Several different techniques have been studied for colloidal assembly, 

including dip-coating, spin-coating, sedimentation and epitaxial growing on patterned 

substrate.
[50-53]

 Among them, sedimentation is most commonly employed, however, it has 

very little control over the morphology of top surface and number of layers, which also 

takes relatively long periods of time (days to months).
[54]

 The size distribution of particles 

is very important to quality of the colloidal assembly. If the standard deviation of particle 

sizes is above 4%, no ordered close-packing could be formed.
[55]

 Also, controlling the 

volatility and dielectric constant of the solvent
[56]

 could help to achieve high quality 

structures. 

The advantages of colloidal assembly are low-cost and large area capability (up to 

several centimeters square). However, there are also disadvantages: (i) the colloidal 

crystals are typically poly-crystalline with random defects, and (ii) the structure 

symmetry is typically limited to FCC and HCP structures. 

1.2.4 Block copolymer self-assembly 

Block copolymers (BCPs) are macromolecules with two or more segments 

containing chemically distinct repeating units. They microphase separate into different 

morphologies to achieve minimum energy configurations. For diblock copolymers, four 

common morphologies could be formed, including lamellar, cylindrical, spherical and 

gyroid structures.
[57]

 The equilibrium morphology is mainly determined by the degree of 

polymerization (N), volume fraction of each block (f) and segment-segment (Flory-
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Huggins) interaction parameter (χ). The domain size is typically around 10-100 nm, 

which makes BCP self-assembly attractive to create 1D, 2D and even 3D periodic 

structures that is not possible or costly using top-down approaches.
[58]

 

One concern about BCP self-assembly is the difficulty in fabricating large-scale 

defect-free structures. Recently, directed assembly using lithographically or chemically 

patterned surfaces
[59]

 has made great progress to create defect-free nanostructures over 

100 μm x 100 μm, with miminum feature size as small as 10 nm.
[60]

 This approach is a 

combination of top-down and bottom-up approaches, which offers the advantages from 

both systems. Nevertheless, it remains questionable to fabricate high AR structures with 

long-range ordering using BCP self-assembly.  

1.2.5 Holographic lithography 

Holographic lithography (HL), or multi-beam interference lithography, records the 

interference pattern from multiple coherent beams onto photoresists.
[12, 14]

 Depending on 

the number and alignment of the incident beams, the interference pattern varies from 1D 

to 3D with different symmetries.
[12-13, 15-16, 61]

 The intensity profile generated by the 

interference of N monochromatic plane waves of wave vectors ki, polarization vectors εi, 

phase θi and real amplitudes Ei, is given by 

              
        

   
   
                               (1.3) 

where φlm= arg(εl • εm). Therefore, the structure symmetry and lattice constants are 

controlled by the wave vectors, phase, intensity, wavelength and polarizations of the 

incident beams. 
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The fabrication process is similar to conventional photolithography, except that HL 

is maskless. Briefly, a chemical amplified photoresist solution (containing photoacid 

generators (PAGs) is spin-coated on a clean substrate, soft baked to allow solvent 

evaporation, exposed under interference light to generate photoacids, followed by post-

exposure baked (PEB) above the glass transition temperature (Tg) to allow photoacid 

diffusion and catalyze crosslinking (for negative-tone photoresist) or decomposition (for 

positive-tone photoresist) reactions. The film is then developed in a good solvent to 

dissolve the unexposed or weakly exposed regions in the case of negative-tone resists, 

followed by drying, typically by supercritical drying due to the highly porous nature, to 

generate periodic structures. Figure 1.1 shows the schematics of the HL to create 1D, 2D 

and 3D structures, respectively. 

 

Figure 1.1 Schematic illustration of the 1D, 2D and 3D periodic structures fabricated by 

holographic lithography in negative-tone photoresists.  

 



9 
 

HL offers several advantages compared with other fabrication techniques: (i) it is 

capable of fabricating large-area defect-free structures, (ii) high AR structures are 

possible using HL since it is not limited by DOF as in photolithography, and (iii) it is a 

versatile to fabricate various periodic structures with variable feature sizes by varying the 

incident beam angles and polarization, including 1D line pattern,
[61-62]

 2D hexagonal 

array,
[15, 63]

 quasi-crystals,
[64-65]

 3D simple cubic (sc),
[12]

 face-centered cubic (fcc),
[66]

 

body-centered cubic (bcc),
[67]

 diamond-like
[17]

 and diamond structures.
[13, 16] 

1.3 Material aspects of periodic structures 

In recent years there has been considerable effort to develop methods for fabricating 

periodic structures with different sizes and symmetries. On the other hand, due to the 

requirement of practical applications, the material aspects of periodic structures became 

critical. Here we first discuss two main types of photoresists, which are frequently used in 

this thesis work, and then some important material choices for back-filling or conversion 

from the photoresist structures. 

1.3.1 Photoresists 

1.3.1.1 SU-8 

SU-8 is a multifunctional epoxy derivative of a bisphenol-A novolac resin with an 

average of eight epoxy groups per monomer (Figure 1.2). It is the most commonly used 

negative-tone photoresist in HL, because it is highly transparent in the near-UV and 

visible regions and capable of preparation of ultra-thick films (up to 2 mm). Upon 

exposure, SU-8 becomes crosslinked and exhibits high mechanical (Young’s modulus up 



10 
 

to 5.0 GPa) and thermal (Tg > 200 °C) strength. Thus it has been widely used in micro-

electro-mechanical systems (MEMS) devices, high AR structures and 3D periodic 

structures fabrication.
[17, 68]

 

It is worth mentioned that typically the modulus of crosslinked SU-8 in holographic 

lithography is not as high as in photolithography due to lower crosslinking density. 

During developing, the organic solvent could swell the crosslinked film, which could lead 

to distortion and volume shrinkage in 3D structures
[69]

 and buckling in 1D structures. 

Shrinkage and distortion are undesired features for 3D periodic structures, e.g. as 

photonic crystals, because they could reduce the optical quality. However, understanding 

and controlling the mechanical instability could be attractive for both research and 

applications, such as in the 1D structures, which will be discussed in details in Chapter 5. 

 

Figure 1.2 Chemical structures of SU-8 and epoxy-functionalized polyhedral 

oligomericsilsequioxane (epoxy-POSS). 

 

1.3.1.2 POSS 

HL patterned periodic structures are often used as templates to convert the structures 

into other materials, such as inorganic materials with higher refractive indexes for 
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photonic applications, and functional organic materials. The conversion of the high 

refractive index materials are usually conducted at temperature above 350 °C.
[70]

 for 

typical organic negative-tone photoresists, e.g. SU-8, they start to degrade above 400 
o
C 

and the structures will collapse. They will also swell in an organic solvent, thus, it is not 

possible to use dissolution method to remove the template at room temperature.  

Inorganic-organic hybrid photoresists, such as epoxy-functionalized polyhedral 

oligomericsilsequioxane (epoxy-POSS) (Figure 1.2), have been investigated in our group 

to address the aforementioned problems.
[16, 63, 71-73]

 Similar to SU-8, photocrosslinking of 

epoxy-POSS is also based on ring-opening reactions of the epoxy functional groups 

catalyzed by photoacids. Therefore, it is also a negative-tone photoresist. We have 

fabricated 1D, 2D and 3D periodic structures with POSS via HL.
[16, 63, 72]

 The advantages 

of using POSS are that (i) it offers higher thermal and mechanical strength due to the Si-

O skeleton, (ii) it shows little volume shrinkage up to 400 °C,
[74]

 (iii) it could be 

converted to silica-like material by direct calcination at 500 °C in an oxygen 

atmosphere,
[71, 73]

 (iv) it is dissolvable in hydrofluoric acid (HF) aqueous solution, which 

made conversion to other organic materials at room temperature possible,
[18, 63]

 and (v) it 

is possible to control and tune the surface roughness using different solvents, which could 

bring in new applications.
[75]

 More discussions about the surface roughness tuning, the 

conversion to functional organic materials, and their applications will be presented in 

Chapter 2, 3, and 4. 

1.3.2 High refractive index materials 

As mentioned above, periodic structures offer unique optical properties, and they 
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have been widely investigated for application as photonic crystals (PCs), especially for 

3D PCs. However, a complete PBG requires high refractive index (n) contrast between 

two materials, e.g. 1.9 for diamond structure (the most robust structure symmetry as 

PC).
[76]

 However, the refractive indexes of typical organic materials, or specifically 

photoresists, are not that high. The refractive indexes for SU-8 and POSS are 1.67 and 

1.54, respectively. Thus the contrast between these photoresists and air are smaller than 1. 

As a result, the as-fabricated periodic structures have to be converted to high refractive 

index materials, such as silicon (Si), germanium (Ge), cadmium selenide (CdSe) and 

titania (TiO2), though back-infiltration and template removal. Their refractive indexes and 

typical conversion methods are summarized in Table 1.2. 

Table 1.2 Important material refractive indexes and their conversion methods 

Material Refractive index (n) Conversion method 

Air 1 / 

Water 1.33 / 

SU-8 1.67 / 

Epoxy-POSS 1.52 / 

Silicon (Si) 3.45- 4.20 CVD,
[77]

 chemical reduction
[78]

 

Germanium (Ge) 4.0 CVD
[79]

 

Cadmium selenide (CdSe) 2.50-2.75 ECD
[80]

 

Silica (SiO2) 1.46-1.55 sol-gel,
[81]

 ALD, calcination
[71]

 

Titania (TiO2) 2.2-3.0 sol-gel,
[82]

 ALD,
[83]

 ECD
[84]

 

 

Many techniques have been investigated to convert the periodic structure templates 

into the materials on demand, including chemical vapor deposition (CVD) for 



13 
 

semiconducting materials,
[77, 79]

 atomic layer deposition (ALD) for metal oxide and 

nitride materials,
[83]

 sol-gel reaction for metal oxides,
[81-82]

 electro-chemical deposition 

(ECD),
[80, 84]

 direct calcinations to silica
[71]

 and chemical reduction for silicon.
[78]

 Among 

them, CVD and chemical reduction are high temperature processes, which require a 

double template method by first converting the organic template to silica. Silica template 

is more thermally and mechanically stable, which could be removed later by HF etching. 

Therefore, direct calcinations from POSS structures to silica-like ones could be very 

beneficial for these conversion techniques, since it greatly reduced the steps for achieving 

final material conversion. 

1.3.3 Functional organic materials 

In addition to the applications in photonics, periodic structures are of interests for a 

wide range of applications, including phononic crystals, optical displays and sensors, 

which are responsive to external stimuli. For the latter purpose, it is necessary to convert 

the structure from photoresist template to different kinds of functional organic materials, 

including elastomers, hydrogels, shape memory polymers (SMPs) and liquid crystal 

elastomers (LCEs). 

Elastomeric 1D and 2D structures, such as from polydimethylsiloxane (PDMS), 

could be converted from the photoresist templates via soft lithography (or replica 

molding).
[85]

 For hydrogels, SMPs and LCEs structures, typically they are fabricated via a 

double replicating method using PDMS as a mold.  

For 3D structures, however, it is not possible to use conventional soft lithography 

approaches. If the template is made of positive-tone photoresist, it will be selectively 
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dissolved by choosing a proper solvent. For organic negative-tone photoresists, e.g. SU-8, 

the crosslinked network could only swell but not be dissolved, therefore, thermal 

degradation above 500
o
C is typically applied to remove the template. Thus, it is not 

possible to template polymeric functional structures using negative-tone templates. Using 

hybrid photoresist, e.g. epoxy-POSS (see chemical structure in Fig. 1.2), We 

demonstrated that 3D PDMS
[18]

 and 3D SMP could be fabricated by back-infiltration 

PDMS and SMP precursors into the epoxy-POSS templates, followed by HF etching. The 

image of latter is shown in Figure 1.3, which summaries the epoxy-POSS and SMP 

structures I fabricated with HL in this thesis. More discussion about SMPs conversion 

will be presented in Chapter 3. 

 

Figure 1.3 Examples of periodic structures directly fabricated with HL in epoxy-POSS 

and the converted SMP structures. (a) 1D nanogratings, (b) 2D hexagonal pillar arrary, (c) 

3D diamond-like structure, (d) 3D diamond structure, (e) 2D SMP membrane converted 

from (b), and (f) 3D SMP inversed diamond-like structure converted from (d). Scale bar: 

2 μm. 
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1.4 Tunable periodic structures 

As we mentioned earlier, it is attractive to dynamically tune the periodic structures, 

including 1D, 2D and 3D. In response to an external stimulus, such as temperature,
[20-23]

 

chemicals,
[24-25]

 mechanical force,
[26-27]

 light,
[28-29]

 electrical force
[30]

 and magnetic 

force,
[31]

 the lattice constant, refractive index contrast, ordering and/or spatial symmetry 

of the periodic structures could be altered, leading to change of photonic, phononic or 

surface properties. There have been much effort in creating tunable structures, most of 

which are templated from colloidal assemblies and the tuning is often achieved by 

swelling the 2D and 3D structures using a selective solvent, thus, changing the lattice 

constant, or the refractive index of the surrounding medium. Here, we category the 

tunable periodic structures by types of external stimuli. 

1.4.1 Thermal responsive periodic structures 

Thermal responsive periodic structures, by definition, change their properties 

according to temperature change. It could be achieved in organic materials or inorganic 

materials, by either changing the lattice constant or the refractive index. 

The first type is made by incorporating thermal responsive hydrogels, such as 

poly(N-isopropylacrylamide) (PNIPAAm), into the colloidal assembly. PNIPAAm is a 

temperature-sensitive polymer, which undergoes a reversible volume phase transition 

between a hydrated state and a dehydrated state around the lower critical solution 

temperature (LCST, 32°C) in water. Asher et al.
[20]

 pioneered in this type of research, by 

embedding non-close-packed 3D colloidal crystal into the PNIPAAm network. When the 

temperature increases, the polymer expels water and shrinks so that the inter-particle 
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distance decreases, leading to a blue shift in the diffraction. 

The second type is made of inorganic materials, which have phase transition 

according to temperature change, resulting in significant change in the refractive index of 

the building blocks. Xia et al. fabricated 3D periodic structures by assembling core–shell 

particles comprising α-Se cores and Ag2Se shells.
[23]

 Ag2Se has a phase transition 

between semiconductive β type and conductive α type around 133°C, which results in the 

refractive index change from 2.98 to 2.86 (at 2 m wavelength ). Therefore, the 

diffraction peak had a red-shift from 1392 nm to 1497 nm as the temperature rose from 

110 °C to 150 °C.  

1.4.2 Chemical responsive periodic structures 

Chemical responsive periodic structures include those hydrogel structures 

responsive to solvent, vapor, pH and ionic strength changes, which lead to lattice 

constants change. When hydrogels are chemically attached with a molecular-recognition 

group, e.g. crown ether, which could selectively bind with metal ions, such as Pb
2+

, Ba
2+

, 

and K
+
, the periodic structure lattice constant could be changed according to the osmotic 

pressure variation.
[24, 86-87]

 Similarly, pH responsive periodic structures were made by 

incorporating poly (acrylic acid) (PAA) into the system, which swells more at high pH 

values. The disadvantage of using hydrogel is the relatively long switching time, which 

usually takes several to tens of minutes.  

1.4.3 Mechanical responsive periodic structures 

Investigations on mechanical responsive periodic structures were mainly focused on 



17 
 

colloid – hydrogel / elastomer composite films, which can be stretched or compressed to 

change the lattice constant or symmetry.
[26-27]

 In comparison with thermal and chemical 

triggers, mechanical force is more straightforward and large. However, it requires 

materials with high mechanical robustness to withstand long switching cycles and aging 

effect. 

Recently, we and several other groups have reported pattern transformation in 

periodically porous membranes from PDMS elastomers,
[88]

 pH / thermal responsive 

hydrogels,
[89]

 and shape memory polymers.
[63]

 For instance, under mechanical 

compression by swelling induced osmotic pressure, a PDMS membrane consisting of 

micron-sized circular holes in a square array buckles to elliptics, where the neighboring 

units are arranged perpendicular to each other.
[88, 90-91]

 It is found that both PGB 

properties and mechanical behaviors could be significantly altered by the symmetry 

change during pattern transformation.
[90, 92-93]

 The symmetry-changing periodic structures 

are promising, since it could lead to much larger change in the optical properties, 

compared with lattice constant or refractive index changes in the above mentioned 

approaches, such as from transparency to colorful state. More discussions about 

mechanical instability triggered symmetry change in 1D and 2D periodic structure will be 

presented in Chapter 3 and 5. 

1.4.4 Light responsive periodic structures 

Since light offers better spatial control and energy efficiency compared with thermal, 

mechanical or chemical triggers, there have been many efforts to explore light 

responsiveness in periodic structures. Most of the studies are based on colloidal assembly, 
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where the colloids could be functionalized with photo-sensitive chemicals. These studies 

include a malachite green carbinol base (MG)-infiltrated silica colloidal crystal,
[28]

 a 

spirobenzopyran chromophore-covalently attached polymer/crystal composite,
[94]

 and a 

photochromic liquid crystal-infiltrated silica inverse opal.
[29]

, The structure is tuned by 

changing the surface charges of the particles, or refractive index between aggregated and 

disaggregated states or near the nematic-isotropic phase transition. 

Recently, light responsive periodic structures have also been made from functional 

organic materials, such as liquid crystal elastomers (LCEs), crowned spirobenzopyran 

incorporated polymers and gold nanorods (Au NRs) incorporated SMPs. LCEs 

containing azobenzene groups undergo trans to cis conformational change upon exposure 

to UV light or verse versa via visible light. It has been widely studied as actuators that 

can convert light input at the molecular level to macroscopic volume change, leading to 

reversible contraction and expansion.
[95-97]

 Similarly, vinyl polymers carrying crowned 

spirobenzopyran moieties, show photochromism in the presence of alkali metal ions, due 

to photoisomerization effect.
[98]

 Au NRs are known to have photothermal effect in the 

visible and near IR regions, which convert the absorbed light energy to thermal energy. 

By incorporating Au NRs into the SMPs, the structure tuning mechanism could be altered 

from temperature-mechanical to light-mechanical force.
[99]

 

1.4.5 Electrically responsive periodic structures 

Electrically responsive periodic structures are very attractive for both research and 

applications, since they usually offer fast switching speed, good spatial control, energy 

efficiency and compatibility to the electronic devices in our daily life. There are several 
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types of electrically responsive periodic structures. The first type is by infiltration liquid 

crystals (LCs) into the voids of the assembled colloids. Upon voltage change, the LC 

molecules go through a reorientation along the electric field, thereby changing their 

refractive index.
[100-102]

 

The second type is electrochemical responsive periodic structures. Ozin et al.
[30]

 

constructed such a structure using colloidal assembly and a crosslinked metallopolymer 

network (polyferrocenylsilane (PFS) derivatives with pendant C=C bonds) with a 

continuously variable degree of oxidation. Their previous study have shown that such 

composite film have redox induced solvent swelling. That is, when alternating the electric 

field, the structure swells or deswells according to different redox states. The switching is 

usually done within seconds. 

The third type is polyelectrolyte hydrogels. For instance, a porous poly (N-

isopropylacrylamide-co-methacrylic acid) inverse opal exhibited electrochemically 

triggered switching between two colors, because of the spatial–temporal change in pH 

value that leads to osmotic pressure change, which in turn changes the swelling 

behavior.
[103]

 

1.4.6 Magnetic responsive periodic structures 

The magnetic responsive periodic structures are based on pre-assembled colloids, 

which contain magnetic nanoparticles. For example, superparamagnetic polystyrene (PS) 

colloids, which contain 17 wt% iron oxide nanoparticles, could self-assemble into non-

close-packed crystalline in deionized water in a confined volume.
[31]

 Applying the 

magnetic field could alter the lattice constant of the 3D colloidal assembly. However, due 
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to the small spacing between pre-assembled colloids, the change in spacing is rather 

limited, so is the tuning range. On the other hand, many of the above mentioned tunable 

periodic structures have solvent involved, which might not be desired for many practical 

applications. 

1.5 Current issues and thesis outline 

While there has been much effort to fabricate static and tunable periodic structures 

with different symmetries and materials by various approaches, it remains challenging to 

address several issues, such as the degree of tunability and mechanical instability. In this 

thesis, I aim to investigate the intrinsic structure-property relationship in the periodic 

structures fabricated by HL, harness the mechanical instability to create highly ordered 

structures and utilize large deformation for pattern transformation, which in turn allowing 

me to explore novel applications of tunable periodic structures. 

While many of the current studies of periodic structures have focused on their 

unique optical and mechanical properties, we are interested in multi-functionality of these 

materials. For instance, surface property of periodic structures is also interesting due to 

the intrinsic topography, which is closely related to wetting, adhesion and adsorption 

behaviors. It is known that Morpho butterfly wings are not only colorful but also 

superhydrophobic.
[104]

 Gecko feet hairs show strong dry adhesion and 

superhydrophobicity due to the hierarchical structure consisting of hundreds of 

submicron-sized spatula structures within each micron-sized setae.
[105]

 To mimic them 

while not interfering the optical/mechanical effects of the periodic structures, it is 

important to control surface roughness. In Chapter 2, I will show exploitation of 
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nanoroughness on the surface of 3D diamond structures fabricated by HL, for wetting and 

adsorption of small molecules. 

As I mentioned in the tunable periodic structures section, most of the current 

approaches to tune the photonic properties are based on changing lattice constant or 

refractive index, resulting in change of PBG position up to a few hundreds of nanometers. 

It will be attractive if we could expand this tunable range, for example, from transparency 

to colorful states. In Chapter 3, we explored the pattern transformation and symmetry 

change by compressing 2D SMP membrane with pores arranged in a hexagonal array to 

realize the reconfigurable switching between transparency and colorful states according 

to thermal-mechanical stimulus. 

 Direct fabricating of high AR periodic structures by top-down lithographic 

approaches, especially in the nano-scale, is still challenging, due to limitations of DOF in 

photolithography, pattern collapse from capillary force and distortion due to solvent 

swelling. In Chapter 4 and 5, I discuss the fabrication of nano-scale 1D periodic 

structures via HL from different photoresists, i.e. POSS and SU-8. The 1D structures are 

of interests for gratings,
[106]

 plasma etching masks
[107-108]

 and photonic / phononic crystal 

applications.
[109]

 Using HL and supercritical drying, we could avoid the problems of DOF 

and pattern collapse when fabricating high AR 1D structures. However, solvent swelling 

induced instability could induce buckling of the 1D structures. As shown in Chapter 4, 

high AR (up to 10) straight line patterns were fabricated using epoxy POSS as 

photoresists, which have high thermal and mechanical strength. In Chapter 5, I utilized 

the buckling instability and formation of nanofibers in HL above the exposure threshold 
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to transform the 1D nanowalls to long-range ordered 2D nanowaves. In each chapter, we 

study the pattern formation and deformation mechanisms.  

In Chapter 6, I summarize the studies in this thesis and suggest future directions. 
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Chapter 2  

Exploiting Nano-roughness on Holographically Patterned Three-

Dimensional Photonic Crystals 

2.1 Introduction 

The colorful display exhibited in butterfly wings, beetle scales, and opals,
[1-6]

 due to 

the structural coloration has attracted significant attention in research. Structural color is 

typically caused by the interference, diffraction, or scattering of light by arrays of 

transparent materials, such as multiple thin layers, grating, and particles of a size 

comparable with the wavelength of light. Light is strongly reflected by constructive 

interference between reflections from the different interfaces of a stack of thin films of 

alternately high and low refractive index. When the periodic modulation of refractive 

index is arranged in three dimensions (3D), interference of the light waves leads to 

complete stop bands or photonic band gaps (PBG), where the light of a particular 

wavelength is totally reflected in a photonic crystal.
[7-8]

 Photonic crystals are of interest 

for a wide range of applications, including ultra-high-bandwidth integrated optical 

circuits, lasing, sensing, spectroscopy, and pulse shaping. Besides photonic crystals, 3D 

periodic microstructures are of interest as phononic crystals,
[9-10]

 solar cell electrodes,
[11-13]

 

and catalyst support.
[14]

  

In Nature, bioorganisms often possess hierarchical architecture with multiple 

functions. For example, it is discovered that Morpho butterfly wings, which are known 

for their brilliant blue color as a result of quasi-multilayer interference, are also 

superhydrophobic due to the nano-roughness appeared on top of the multilayers.
[15]

 Dual-
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scale roughness has been found essential to the superhydrohpobic, self-cleaning natural 

surfaces, such as lotus leaves,
[16]

 gecko feet hairs
[17]

 and water strider legs.
[18]

 It is 

suggested that nano-roughness enhances the non-wettability, especially when the feature 

size of the microstrucutres is large and the asperity is small.
[19-23]

 Along with the nano-

roughness is the enlarged surface area, which is highly desirable to improve the 

absorption of functional nanomaterials (e.g. dye molecules, nanoparticles, quantum dots, 

and biomolecules) for potential applications, including solar cells, batteries and catalyst 

support, bio-imaging, and chemical, gas and biosensors.
[12-14, 24-26]

 

Several functional, multi-scaled periodic structures have been reported, including 

dual-scale colloidal assembly as superhydrophobic synthetic opals,
[15]

 3D periodic 

microstructures with internal nanopatterns generated by truncated multi-prism arrays for 

biosensing,
[27]

 and surface functionalized diatoms as gas sensors,
[25, 28]

 and hierarchical 

TiO2 electrode templated from colloidal assembly on a holographically patterned 3D 

microstructures for dye sensitized solar cells (DSSCs).
[13]

 These methods, however, often 

require sophisticated chemical reactions and nano- and microfabrication processes to 

introduce nano-roughness onto the microstructures. Here, we exploit microphase 

separation of crosslinked polymer chains from nonsolvents to generate nano-roughness ( 

120 nm) on holographically patterned diamond photonic crystals. The degree of nano-

roughness can be controlled by tuning the crosslinking density of the polymer network 

via changing the loading of photoacid generators and exposure dosage, and the choice of 

solvent. The nano-roughness does not alter the photonic bandgap position in the infrared 

region. We show that the combination of periodic microstructure and nano-roughness 

could offer new opportunities to realize superhydrophobicity and enhanced dye 
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adsorption on the 3D photonic crystals. 

2.2 Experimental methods 

2.2.1 Holographic lithography 

 The diamond photonic crystal was fabricated by holographic lithography (HL) 

using dual-beam quadruple exposure method 
[29]

. In brief, the photoresist film was 

prepared from 70 wt% epoxy-functionalized cyclohexyl polyhedral oligomeric 

silsesquioxane (epoxy-POSS, EP0408 from Hybrid Plastics) and 0.3-1.0 wt% (relative to 

the mass of epoxy-POSS) Irgacure 261 (visible photoacid generator, Ciba Specialty 

Chemicals) in γ-butyrolactone (GBL, Sigma-Aldrich), which was spin coated on a pre-

cleaned cover glasses, followed by soft bake at 50 °C for 40 min and 95 °C for 2 min, 

respectively. The film was exposed to a diode-pumped Nd:YVO4 laser (λ = 532 nm, 

Verdi-6, Coherent) with 1.0 W laser input for 0.25 s to 1.1 s each time, and was rotated 90° 

after each exposure using a motorized rotation stage (PRM1-Z7E, Thorlabs). After 

exposure, the film was post-exposure baked (PEB) at 50 °C for 20 min to crosslink the 

exposed regions, followed by development in propylene glycol monomethyl ether acetate 

(PGMEA, Sigma-Aldrich) or GBL for 1 h. Before drying in CO2 supercritical point dryer 

(SAMDRI®-PVT-3D, Tousimis®), the wet samples were rinsed in isoamyl acetate (IA, 

Sigma - Aldrich) for 1h or in ethanol (Fisher Scientific) overnight. 

2.2.2 Surface hydrophobilization 

Diamond structures were treated by oxygen plasma (Harrick Plasma Cleaner PDC-

001) for 15 min to generate hydroxyl groups on surface, followed by vapor deposition of 

(tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane (fluorosilane, 0.1 mL, Gelest. Inc) 

in a vacuum desiccator for 1 h.  
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2.2.3 Dye adsorption 

2.2.3.1 Hydrophilic surfaces 

Samples with various surface roughness were treated with oxygen plasma for 15 min, 

then soaked in 0.005wt% rhodamine B (Sigma Aldrich) aqueous solution for 30 min and 

air dried. Then these two samples were placed into separate cuvettes containing of 3.5 mL 

DI water to release the absorbed dye, which was monitored by UV-vis-NIR 

Spectrophotometer (Varian Cary 5000).  

2.2.3.2 Hydrophobic surfaces  

Oxygen plasma treated samples were passivated with fluorosilane, followed by 

soaking in 0.005wt% rhodamine B ethanol solution for 5 min. 

2.2.4 Characterization 

SEM images were taken from FEI Strata DB235 Focused Ion Beam (FIB) system 

and the cross-sectional images were taken from samples milled by the Gallium ion beam. 

The reflection and transmission spectra were acquired by FT-IR spectrometer (Nicolet 

8700, equipped with Nicolet continuum infrared microscope) in the [001] direction at the 

same location of the sample. The reflection spectra were measured using an Au mirror as 

reference. The aperture size was 60 μm × 60 μm. Static water contact angles were 

measured by ramé-hart standard automated goniometer (Model 200). The static contact 

angle was measured from a 3.0 μL water droplet averaged over three different spots on 

each sample. 

2.3 Results and discussion 

2.3.1 3D microfabrication and formation of nano-roughness on 3D structures. 

The diamond photonic crystal (see Figure 2.1a) was fabricated by holographic 
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lithography (HL) using dual-beam quadruple exposure method described before.
[29]

 The 

fabrication steps involved spin-coating, pre-exposure bake, exposure, post-exposure bake 

(PEB), development, solvent rinsing and critical-point drying (CPD). In our study, we 

used epoxy functionalized cyclohexyl polyhedral oligomeric silsesquioxane (epoxy-

POSS) as the negative-tone photoresist (Figure 1d), which crosslinked in the light 

exposed regions after PEB.
[30]

 The film was then immersed in a developer to remove the 

uncrosslinked and lightly crosslinked regions, leaving a 3D microporous structure. The 

microporosity is determined by the solvency of the developer and the crosslinking density 

of the exposed regions. Organic solvents, including PGMEA and GBL have been widely 

used as developers for negative-tone epoxy resists. However, they are not very miscible 

with liquid CO2 in the CPD process, which is commonly used to prevent pattern collapse 

of highly porous 3D microstructures. Therefore, the freshly developed samples were 

transferred to a liquid CO2 compatible solvent, IA or ethanol, as the rinsing solvent before 

CPD.  
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Figure 2.1 Diamond photonic crystals of variable degrees of nano-roughness from 

epoxy-POSS. (a) Top-view SEM image. (b-c) Schematics of photoresist chains swollen in 

a good solvent (b) or collapsed in a nonsolvent (c) within a mesh. (d) Chemical structure 

of epoxy-POSS. (e-f) Cross-sectional SEM images of the diamond structures developed 

in PGMEA and rinsed in (e) IA and (f) ethanol, respectively, followed by critical point 

drying in the same solvent. (g-h) Cross-sectional SEM images of the diamond structures 

developed in GBL and rinsed in (g) IA and (h) ethanol, respectively, followed by critical 

point drying in the same solvent. (i) Cross-sectional SEM image of the diamond structure 

developed in GBL, rinsed in DI water and dried in air. Scale bar: 2μm. 

 

A closer look of the samples showed that while the surface of the diamond crystals 

rinsed in IA were generally smooth regardless of the developer (see Figure 2.1e and 2.1g), 

those rinsed in ethanol had spongy nano-roughness appeared on the skeletons (Figure 

2.1f and 2.1h). The nano-roughness size ranged from 40- 120 nm as measured by AFM 

(see Figure 2.2 and Table 2.1). The highest degree of porosity, although the nano-feature 

a b c 

d 

i h g 

f e 
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size appeared smaller, was observed when the 3D structure was developed in GBL, 

followed by rinsing in water and dried in air (Figure 2.1i). The relationship between the 

degree of nano-roughness and the combination of developer and rinsing solvent was 

summarized in Table 2.1. 

 

Figure 2.2 AFM characterization of the surface topography of diamond structures 

developed in GBL, followed by rinsing in ethanol and CPD. a). Height profile of the 

rough sample, same as sample in Figure 2.1 h. b). Line profile analysis of Figure a. The 

height and width of the surface features are measured from the three line profiles. Note 

that there was 300 nm offset in Y scale between each lines for the purpose of illustration. 

The large valleys in the profiles (> 200 nm) were attributed to 3D microstructure.  

 

Table 2.1 Summary of the heights of surface nano-features measured from line profile 

analysis in Figure 2.2.  

 

Height of surface bumps (nm) 

1
st
  2

nd
  3

rd
  4

th
  

Profile 1 120 40 100 110 

Profile 2 80 50 70 100 
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Profile 3 60 50 60 100 

Roughness range 40-120 

Average roughness size 78±3  

 

Table 2.2 Summary of observed surface roughness on 3D diamond structures from 

different solvents used in development, rinsing and critical point drying process. 

Developer Rinsing solvent 
Critical point 

drying 

Observed surface 

roughness 

Corresponding SEM 

image in Figure 2.1 

PGMEA IA Yes Smooth (e) 

PGMEA Ethanol Yes Rough (f) 

GBL IA Yes Smooth (g) 

GBL Ethanol Yes Rough (h) 

GBL Water No Very rough (i) 

 

2.3.2 Mechanism of nano-roughness formation 

These results clearly indicate that the processing conditions, specifically, the rinsing 

solvent, plays an important role to the nano-morphology appeared on the 3D 

microstructures. It is expected that in a good solvent, polymer chains swell with an 

extended chain conformation (see schematics in Figure 2.1b) but phase separate in a 

nonsolvent. If polymer chains are crosslinked, the mesh size, which is proportional to the 

molecular weight between crosslink points, Mc, that determines the network swellability 

or phase separation domain size in a nonsolvent. At a given crosslinking density, the Mc is 

fixed. Thus, in a nonsolvent the polymer chain segments between crosslink points can 

only locally aggregate within a mesh to minimize the interaction with the nonsolvent 

(Figure 2.1c), leading to the formation of nanoporous structures instead of collapsing the 

whole network. We believe that this explains why the 3D microstructure is maintained 
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even at a very high degree of nanoporosity when rinsed in water and dried in air. 

Previously, similar strategies have been reported to create highly porous 

superhydrophobic coatings, for example, by evaporation a hot solution of isotactic 

polypropylene dissolved a mixture of good solvent and nonsolvent,
[31]

 and by freezing 

electrospinned polymer fibers in a liquid nitrogen bath, inducing a phase separation 

between the polymer and the solvent.
[32]

  

In our system, the epoxy-POSS is soluble in both PGMEA and GBL. Therefore, the 

rinsing solvent should be mainly responsible for the appearance of nano-roughness on 3D 

microstructure. When the swollen polymer network after development was transferred to 

a good solvent, such as IA, for rinsing, polymer chains maintained their extended chain 

conformation, resulting in smooth surface after CPD. In contrast, if the rising solvent was 

a nonsolvent, such as ethanol or water, the swollen polymer chains rapidly microphase 

separated from the nonsolvent. From nano-roughness data (see Figure 2.1h vs. 2.1i), it is 

clear that water is a much poorer solvent than ethanol.  

To support our reasoning on the solvency effect, we estimated the polymer-solvent 

interactions using the Hansen solubility parameters
 [33]

 (see Table 2.3). The Flory-

Huggins polymer-solvent interaction parameter (χ) can be expressed as,  

  
         

  
                            (2.1) 

where V is the molar volume of the solvent, δ is the solubility parameter, R is the gas 

constant, T is the absolute temperature. The difference between the two solubility 

parameters can be further written as 

       
           

           
           

          (2.2) 
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where d is the energy from dispersion bonds between molecules, p is the energy from 

polar bonds between molecules, and h is the energy from hydrogen bonds between 

molecules. The larger the value of        
 , the less compatible between the polymer 

and solvent. The epoxy POSS is an organic-inorganic hybrid material. Here we calculated 

the solubility parameter from the organic component of the epoxy POSS, which is mainly 

responsible to the interaction with an organic solvent, to approximate the whole molecule 

using group contribution method.
[34]

 

Table 2.3 Hansen solubility parameters of epoxy-POSS and different organic solvents.
a
  

 δd (MPa
1/2

) δp (MPa
1/2

) δh (MPa
1/2

) δ (MPa
1/2

) 

Epoxy-POSS 
[a]

 17.7 - - 19.2 

PGMEA 15.6 5.6 9.8 19.3 

GBL 19.0 16.6 7.4 26.2 

IA 15.3 3.1 7.0 17.2 

Ethanol 15.8 8.8 19.4 26.6 

Water 15.5 16.0 42.4 47.9 
a
 Solubility parameters of solvents were obtained from Reference [33], that of epoxy-POSS was 

calculated from the organic component to approximate the whole molecule using group contribution 

method 
[34]

. 

 

As seen in Table 2.3, PGMEA (19.3 MPa
1/2

) and IA (17.2 MPa
1/2

) have similar 

solubility parameters as that of the epoxy-POSS (19.2 MPa
1/2

), while GBL (26.2 MPa
1/2

) 

and ethanol (26.6 MPa
1/2

) have much larger solubility parameters, suggesting that GBL 

and ethanol are relatively poor solvents of epoxy-POSS. However, in experiments we 

observed that GBL could dissolve the epoxy-POSS rather well. We note that the δh value, 

the energy term from hydrogen bonding, of GBL is much smaller than that of ethanol, 7.4 

vs. 19.4 MPa
1/2

, but close to that of PGMEA and ethanol, which may contribute to the 

affinity of epoxy POSS in GBL. Nevertheless, GBL was not as good solvent as PGMEA. 
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Further supporting this is the observed larger nano-roughness from the sample developed 

in GBL (Figure 2.1h) vs. PGMEA (Figure 2.1f) using the same rinsing solvent, ethanol. 

As for water, the solubility parameter (47.9 MPa
1/2

) is far larger than that of the epoxy-

POSS, making it a very poor solvent, in agreement with the observed highest degree of 

nanoporosity in 3D skeletons. Further supporting the solvency effect is that when we 

resoaked the rough samples (see Figure 2.1f and 2.1h) in the respective developer, 

PGMEA or GBL, overnight, followed by CPD drying, the rough surface became smooth, 

presumably that the collapsed chains were restored within the crosslinked network.   

Since surface roughness is the result of chain collapse between crosslinks, the 

crosslinking density of the polymer network should also influence the degree of 

roughness. As seen in Figure 2.3, when increasing the photoacid generator concentration, 

[PAG], and exposure time, the surface of the diamond structures became smoother. This 

again can be explained by the polymer chain morphology between crosslinks. As [PAG] 

increases or exposure time increases, the number of photoacids generated is increased, 

thus, the crosslinking density is increased and the Mc or mesh size is decreased (see 

Figure 2.3a and 2.3b). In a nonsolvent, the available chain segments for collapsing out of 

solvent are dramatically decreased. When the crosslinking density was sufficiently high, 

the surface of the 3D microstructure became smooth (Figure 2.3f). 
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Figure 2.3 Surface roughness on epoxy-POSS diamond structures as a function of chain 

crosslinking density. The samples were developed in GBL and rinsed in ethanol, followed 

by critical point drying.  (a-b) Schematics of the collapsed polymer chains in a poor 

solvent at a low (a) and high (b) crosslinked density. (c) Photoacid generator 

concentration [PAG] = 0.3 wt%, exposure time of 0.6s. (d-f) [PAG] = 1.0 wt%, exposure 

time: (d) 0.25s, (e) 0.30, and (f) 0.35s. 

 

2.3.3 Photonic band gap properties 

Because the nano-roughness generated here ( 120 nm) is much smaller than the 

wavelength of light and the lattice constant of the diamond structure (~2 m), the angle-

dependent structural color and the photonic bandgap position in the infrared region are 

not strongly affected by the introduction of nano-roughness (Figure 2.4). As shown in the 

FTIR reflection and transmission spectra (Figure 2.4b), both the smooth and rough 

diamond crystals have the same reflection peak at ~ 2.1 μm, which is from the first partial 

bandgap in the [001] direction of the diamond photonic crystal.
[29]

 This is reasonable 

since the photonic bandgap position and width is determined mainly by the microscopic 

structure, including structural symmetry, lattice period, volume filling fraction, refractive 
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index contrast between the high and low index materials, most of which remain the same 

except the small change in volume filling fraction. We note that the reflectivity, however, 

does decrease when the nano-roughness is increased. 

 

Figure 2.4 (a) Structural color observed from epoxy-POSS diamond structure (1 cm 

diameter) with nano-roughness. The film was developed in GBL, rinsed and critical point 

dried in ethanol. (b) FTIR reflection and transmission spectra of diamond structures with 

smooth (developed in PGMEA, rinsed and dried in IA) and rough (developed in GBL, 

rinsed and dried in ethanol) surfaces. The shaded area represents the calculated PBGs. 

 

2.3.4 Tunable wetting behaviors 

It is known that surface roughness amplifies hydrophilicity (if the Young’s contact 

angle, is less than 90
o
) or hydrophobicity (if  is greater than 90

o
),

[35]
 as manifested in 

many natural surfaces.
[16-18]

 When the diamond structure was treated with oxygen plasma, 

thus, generating hydroxyl groups on the surface, it became superhydrophilic, with an 

apparent static water contact angle, stat, smaller than 10
o
, regardless of the surface 

roughness. After vapor deposition of a thin layer of low surface energy material, 

tridecafluoro-1,1,2,2-tetrahydrooctyl) trichlorosilane (fluorosilane), on the sample, the 

structure became highly hydrophobic to superhydrophobic depending on the degree of 
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nano-roughness (Figure 2.5). stat was ~120
o
 -130

o
 on a smooth diamond structure, 

decreasing with increasing exposure dosage (Figure 2.5a-d). On a rough structure, stat 

was typically 140
o 

or higher (Figure 2.5e-h). Highly mobile, superhydrophobic surface 

(Figure 2.5e), where the water droplet easily rolled off, was achieved from the samples 

patterned at the lowest exposure time (0.7 s), developed in GBL and rinsed by ethanol. 

Although higher porosity and roughness, thus, superhydrophobicity could be obtained by 

rinsing the samples in water, water is not compatible with CPD process. 3D structures in 

samples that are water rinsed and air-dried tend to collapse. Therefore, we did not use 

those samples for systematic wetting studies.  

 

Figure 2.5 Wetting behaviors of fluorosilane treated epoxy-POSS diamond structures. (a-

c) Samples with smooth surfaces. (e-g) Samples with rough surfaces. Inset: static water 

contact angles. (d) Photo of a water droplet on sample (c). (h) Photo of a water droplet on 

sample (e). The smooth samples (a-d) were developed in PGMEA, rinsed in IA for 1 h, 

and critical-point dried. The rough samples (e-h) were developed in GBL, rinsed in 

ethanol overnight, and critical-point dried. All samples were then treated with oxygen 

plasma for 15 min, followed by fluorosilane vapor deposition. 

 

Porous structures are not new; they have been prepared by many methods to achieve 

Smooth 

Exposure time  0.9s 1.0s 1.1s 

θstat 131.2o 125.7o 123.8o 

Rough 

Exposure time 0.7s 0.8s 0.9s 

θstat 161.4o 142.0o 139.2o N/A 

1μm 1μm 1μm 

1μm 1μm 1μm 

e g f 

c b a d 

h 
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superhydrophobicity.
[36]

 Here we demonstrate combined structural color and self-cleaning 

property, mimicking the multi-functions of butterfly wings, through introduction of 

random nanoporosity on diamond photonic structures simply by varying the solvents 

used in 3D microfabrication steps.  

2.3.5 Enhanced small molecule adsorption 

Another distinct advantage from the dual-scale porous photonic crystal is the 

enlarged surface area, which is attractive to enhance adsorption and release of dye 

molecules, nanoparticles, quantum dots, drugs, and proteins. In DSSCs and quantum dots 

solar cells (QDSCs), the efficiency of electron transport is highly dependent on the dye or 

QD adsorption on the electrode. Meanwhile, microstructures with minimal-surface 

interfacial morphologies, such as the triply periodic bicontinuous structures that can be 

fabricated by HL, have been suggested to offer enhance thermal and electrical 

transport.
[37]

 Moon et al. recently have created hierarchically porous TiO2 electrodes 

templated from HL patterned microscopic structures.
[13]

 Their results suggest that 

synergistic effects of strong scattering from the surface of photonic structure and long 

charge recombination time lead to the efficiency of the solar cell comparable to that of 

traditional DSSC.  

Previously, we
[38-39]

 and others 
[40]

 have created TiO2 3D photonic crystals using 

silica templates fabricated by HL and colloidal crystals, respectively. We also shown that 

epoxy-POSS 3D photonic crystals can be converted to silica photonic crystals.
[41]

 

Therefore, it is possible to create TiO2 electrodes with large surface area for DSSCs using 

the above fabricated epoxy-POSS diamond structures. We note that change of porosity of 

the 3D microstructure will also affect the surface area. Here, we focus on the effect of 
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nanoroughness in dye adsorption and release. We fabricated the diamond photonic 

crystals with both smooth and rough surfaces under the same lithographic conditions but 

using different developing and rinsing solvents for adsorption of rhodamine B dyes. After 

oxygen plasma treatment, the samples were soaked in a rhodamine B aqueous solution 

for 30 min, followed by air-drying. SEM images (data not shown) revealed that the dye 

was uniformly and comformally coated on the 3D structure. As seen in the inset of Figure 

2.6, the rough sample has a much deeper magenta color compared to the light pink color 

from the smooth one. To quantify the dye absorption on the photonic crystals, we 

monitored dye release in water using UV-vis-NIR spectrophotometer. The dye 

absorbance peak at 554 nm as a function of time is shown in Figure 2.6a. It took ~ 300 

min to release all the dyes absorbed on the smooth sample vs. ~ 600 min from the rough 

one. More importantly, the total dye released from the rough sample was more than 6 

times of that from the smooth one.  
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Figure 2.6 Comparison of rhodamine B adsorption on smooth and rough diamond 

structures. The smooth samples were developed in PGMEA, rinsed in IA for 1 h, and 

critical-point dried. The rough samples were developed in GBL, rinsed in ethanol 

overnight, and critical-point dried. (a) Absorbance of dye released from the diamond 

structures in water at 554 nm over time. The samples were treated with oxygen plasma 

for 15 min, followed by soaking in rhodamine B aqueous solutions for 30 min. Inset: 

optical images of dye adsorbed films from rhodamine B aqueous solution. (b) Optical 

images of water droplets sitting on fluorosilane treated diamond structures followed by 

adsorption of rhodamine B ethanol solution for 5 min. Left, smooth surface. Right, rough 

surface. 

 

Lastly, we show that it is possible to combine the high dye adsorption and 

superhydrophobicity on the surface of the diamond photonic crystal. In this regard, we 

immersed the fluorosilane treated samples (both smooth and rough) in a dye/ethanol 

solution. Ethanol is chosen here because it has a lower surface tension (22.1 mN m
-1

) 

compared to that of water, 72.8 mN m
-1

 at room temperature. Therefore, ethanol can wet 

the photonic crystal surface even when it repels water. As seen in Figure 2.6b, the 

wettability of the photonic crystals was not affected by the dye adsorption: the rough 

sample with a high degree of dye adsorption remained superhydrophobic. However, in 

contrast to angle-dependent, highly reflected structural color from the crystal with smooth 

surface, the rough sample in magenta color appeared rather dull. The combined action of 

light reflection and light adsorption is similar to the observation in various species of 

Morpho buttereflies,
[5]

 where the pigment at the bottom of the butterfly scale provides 

change of hue of the structural color without varying the microstructure. 

2.4 Conclusions 

In summary, we have created 3D diamond photonic crystals with controllable nano-

roughness by exploiting microphase separation of the swollen, crosslinked polymer 

chains from a nonsolvent during the rinsing step in the holographic lithography process. 
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The degree of roughness can be tuned by varying the crosslinking density of the polymer 

network and the solvent affinity to the polymer chains. The dual-scale roughness 

(periodic microstructure and nanopores) offers new opportunities previously unstudied, 

that is to combine actions on a 3D photonic crystal, including light interference, light 

absorption and self-cleaning without cross-talk. Further, we demonstrate ~ 6 times of dye 

adsorption enhancement on rough diamond crystals compared to those with smooth 

surface. We believe that 3D photonic structure with controllable nano-roughness will 

open the door for many other applications, such as DSSCs and QDSCs, fuel cells, 

catalysis, and protein/drug delivery.  
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Chapter 3  

Switching Periodic Membranes via Pattern Transformation  

and Shape Memory Effect 

3.1 Introduction 

Shape memory polymers (SMPs) are polymeric smart materials of interest for a 

variety of applications, including deployable space structures, artificial muscles, 

biomedical devices, sensors, smart dry adhesives, and fasteners.
[1-2]

 They form a 

“permanent” shape by chemical or physical crosslinking (e.g. crystallization or chain 

entanglement). Above a thermal phase transition temperature, either a glass transition 

temperature (Tg) or a melting temperature (Tm), SMPs can be deformed to different 

temporary shapes, which can be fixed by cooling the sample. Upon exposure to an 

external stimulus, such as heat, light, and solvent, the temporary shapes can return to their 

original (or the permanent) shape. There has been much effort to develop new chemistry 

for improved shape fixity and shape recovery efficiency, responsiveness to new 

environmental triggers, achieving multi-shape memory effect, and applications to 

biomedical devices.
[1, 3-9]

 Nevertheless, most of the study focuses on shape memory effect 

in bulk SMPs. A few groups have created micropatterns in SMPs, such as 

microprotrusions
[10]

 and microwrinkles
[8, 11]

 by taking advantage of the large modulus 

change near the phase transition temperature. None of them, however, have reported the 

recovery to the original shape from the micropatterns. During the shape recovery process, 

the entropic energy stored in the deformed state is released. It remains to be seen whether 

the deformed shape can be completely recovered as surface energy becomes increasingly 

dominant when the size shrinks to micro- and nanoscale. 
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 Recently, we and several other groups have demonstrated pattern transformation 

in elastic membranes with periodic hole arrays by mechanical compression,
[12-13]

 solvent 

swelling,
[14-15]

 polymerization,
[16]

 and capillary force.
[17]

 For example, when swollen by 

an organic solvent, a poly(dimethylsiloxane) (PDMS) membrane consisting of micron-

sized circular holes in a square array buckles to a diamond plate pattern of elliptic slits 

with the neighboring units perpendicular to each other.
[14]

 As a result, the physical 

properties (e.g. photonic
18, 19

 and phononic
[15]

 band gap
[18-19]

 and mechanical behaviors
[20-

21]
) could be significantly altered due to change of lattice symmetry, pore size, shape and 

volume filling fraction. One question rises whether it is possible to switch a colorful film 

to transparent one via pattern transformation. The latter state will allow for seeing 

through or mingling with the surroundings. Therefore, the dramatic visual contrast 

between colored and transparent states is of interest for applications such as display, 

privacy window, and camouflage. In nature, invisibility is an important strategy for many 

sea creatures to hide from predators in water. For example, bobtail squids are invisible in 

sand during the day with chromatophores in the skin concentrated into small, barely 

visible dots; when the muscle fibers stretch out the skin, thereby enlarging the 

chromatophores, the color becomes visible for signaling or escape from predators.
[22]

 

 Here we report switching a SMP membrane with diffraction color to a transparent 

film via harnessing the mechanical instability and shape memory effect. When hot-

pressed, the SMP membrane consisting of a hexagonal array of circular holes (1.2 μm in 

diameter, 2.5 μm in pitch, and 5.0 μm in depth) underwent pattern transformation to an 

array of elliptical slits to featureless on surface with increasing applied strain, leading to 

the dramatic change of the hole size and shape, and diffraction color, which could be 
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fixed at room temperature, and later recovered to the original pattern (and color) upon 

reheating. Using continuum mechanical analyses, we modeled, for the first time, an out-

of-plane compression of SMP membrane. We observed the hot-press induced deformation 

and pattern transformation of the membrane at different strains, the structure fixation at 

the cooling step, and the complete recovery of the microstructure, in agreement with 

experiments. We also find that the elastic energy stored in the membrane is roughly 2-

orders of magnitude larger than the surface energy, leading to autonomous recovery of the 

structural color upon reheating. Further, we demonstrated two possible applications of 

color and transparency change in our SMP periodic membranes, including 1) temporary 

erasing the pre-fabricated "Penn" logo in the film, and 2) a temporary display of "Penn" 

logo by hot-pressing the film against a stamp.  

3.2 Experimental methods 

Unless specifically noted, all chemicals were obtained from Sigma-Aldrich (St. 

Louis, MO, USA) and used as received. 

3.2.1 Fabrication of the hexagonal pillar array 

The SMP periodic membrane was replica molded from a 2D hexagonal pillar array 

(1.2 μm in diameter, 2.5 μm in pitch, and 5 μm in height), which was fabricated by 3-

beam holographic lithography (HL)
[23-24]

 from epoxycyclohexyl POSS® cage mixture 

(EP0408, Hybrid Plastics®) (epoxy POSS) mixed with 0.9 wt % photoinitiator, Irgacure 

261 (Ciba Specialty Chemicals). In a typical HL experiment, the epoxy POSS photoresist 

was spin-coated on a glass substrate, prebaked at 50 
o
C for 40 min, followed by 95 

o
C for 

2 min. The film was then exposed to three interfering laser beams (= 532 nm, power of 

beam source ~ 1.0 W), followed by post-exposure bake (PEB) at 50 
o
C for 30 s (Figure 
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3.1a). The pillar structures were obtained after development in propylene glycol methyl 

ether acetate (PGMEA), rinsing in isopropanol (IPA), followed by drying in critical point 

dryer (SAMDRI
®

-PVT-3D, tousimis) from ethanol to prevent pillar collapse. The sample 

area was defined by the laser beam size, typically ~1 cm in diameter. By varying the 

dosage of laser exposure and the PEB time and temperature, we obtained holes size 

ranging from hundreds of nanometers to a few microns. 

 

Figure 3.1 Schematic illustration of fabrication and deformation/recovery of a 2D SMP 

membrane. (a) Fabrication of 2D pillar array by holographic lithography. (b) Fabrication 

of SMP membrane with periodic holes by replica molding, followed by etching in HF 

aqueous solution. (c) Hot-pressing of SMP membrane in the vertical direction above Tg. 

The temporary shape could be fixed by cooling down to room temperature under the load. 

The original shape could be recovered upon reheating above Tg. 

 

3.2.2 Replica molding SMP periodic membrane 

The SMP precursor, a mixture with molar ratio 5:1:3 of melted diglycidyl ether of 

bisphenol A epoxy (EPON 826), poly(propylene glycol)bis(2-aminopropyl)ether 
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(Jaffamine D-230) and decylamine (DA), was infiltrate into the template via capillarity at 

50 
o
C followed by thermal curing at 100 

o
C for 1.5 h and 150 

o
C for 1 h, respectively. The 

Tg can be tuned from 40 
o
C to 90 

o
C by varying the ratio of difunctional D230 and 

monofunctional DA.
[25]

 Here, the SMP was formulated to have a Tg of 70 
o
C. After 

crosslinking EPON 826, the epoxy POSS template and the glass substrate were etched 

away by aqueous HF solution (48% wt.), resulting in a free-standing SMP membrane of a 

hexagonal array of holes on a ~500 μm thick bulk film.  

3.2.3 Hot pressing of SMP membranes 

The SMP membrane was compressed in the vertical direction using a manual bench 

top heated hydraulic press (CARVER 4122, Carver, Inc). The sample (> 0.4 mm thick) 

was placed inside of a Teflon sample holder (0.4 mm thick), which was then pressed 

between two Teflon sheets with heated platens. The platens were pre-heated to 100 
o
C for 

10 min to reach equilibrium. Then a pressure of 1000 psi was applied to the sample and 

kept for 15 min before cooling down to room temperature, followed by release of the 

pressure to lock the temporary shape. The strain was calculated by comparing the final 

film thickness with the original one. 

3.2.4 Fabrication of SMP membrane with embedded “Penn” letter 

The membrane was fabricated by replica molding in the way similar to that from the 

hexagonal POSS pillar array. One added step was UV exposure (=365 nm, 400 mJ/cm
2
, 

97435 Oriel Flood Exposure Source, Newport) through a “Penn” logo photomask 

conducted after prebaking and before the three-beam laser exposure. After PEB, the 

“Penn” region was highly crosslinked and appeared nearly flat or with shallow features 

depending on the dosage, while the surrounding areas formed pillar structures.  
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3.2.5 Calculation/modelling 

Numerical simulations of stability of the structure were conducted using the 

nonlinear finite element code ABAQUS/Standard (version 6.8-2) while the thermo-

mechanical loading history of the structures was investigated utilizing the nonlinear finite 

element code ABAQUS/Explicit (version 6.8-2). Each mesh was constructed of 8-node, 

linear, 3D elements (ABAQUS element type C3D8R). In the hexagonal array the voids 

have a radius R = 1 µm and a unit cell spanned by the lattice vectors A1 = [2 0 0] µm and 

A2 = [1 1.732 0] µm and A3=[0 0 0.1] µm is used. RVE consisting of 1x2x1 unit cells is 

considered in the simulations of the thermo-mechanical loading cycle and an 

imperfection in the form of the most critical eigenmode is introduced into the mesh to 

capture the instability upon hot-pressing, the subsequent freezing-in of the transformed 

pattern and then the shape recovery behavior. The stress-strain behavior of the SMP is 

captured using the material parameters reported in Table 3.1 in Results and discussion 

section. 

3.3 Results and discussion 

 The ability to simultaneously change the lattice symmetry, pore size and shape, 

and volume filling fraction through pattern transformation offers an attractive approach to 

drastically alter the materials properties. Most deformation methods reported so far 

involves the use of solvent, either through swelling or drying processes. In comparison, 

application of mechanical force will allow us to independently control the amount, 

direction (uniaxial or biaxial both in-plane and out-of-plane), and timing of strain applied 

to the periodic structures. In the case of in-plane compression, however, additional care 

has to be taken to eliminate the out-of-plane buckling, e.g. by sandwiching the film 
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between two rigid sheets.
[12]

 In most applications, a direct out-of-plane compression is 

easy to implement and desirable, and was thus performed in our experiments.  

3.3.1 Color / Transparency Switching in SMP periodic membranes 

The SMP periodic membrane (1.2 μm in diameter, 2.5 μm in pitch, and 5 μm in 

depth) was prepared by replica-molding from a 2D hexagonal pillar array, which was 

fabricated by 3-beam holographic lithography
[23-24]

 (see Figure 3.1a-b and details in 

Experimental section). The negative-tone photoresist, epoxycyclohexyl POSS® cage 

mixture (epoxy POSS) was chosen here to fabricate the pillar array since it could be 

readily removed by hydrofluoric acid (HF) solution at room temperature
[23]

 after 

templating the SMP membrane. When the latter was heated to 10-30 
o
C above its Tg (70 

o
C), it became softened and was compressed vertically by a hot-press to a temporary 

shape (Figure 3.1c). The load was carefully controlled to deform the membrane at 

different strain levels, here referring to engineering strain, ε = change of film 

thickness/original thickness. The temporary shape was fixed when cooled down to room 

temperature while keeping the loading force constant. Upon reheating to 90 
o
C, the 

hexagonal shape was recovered. During the pattern deformation and recovery, we 

observed reversible switching of color and transparency.  

 Although the bulk SMP film is transparent, the SMP membrane is colorful due to 

the diffraction grating effect (Figure 3.2a, f, k). Because of the Gaussian distribution of 

the laser beam in holographic lithography and possible small misalignment of optics, 

there was gradient laser intensity from center to the edge, resulting in pore size 

distribution and color variation across the sample size. This can be improved using a 

beam shaper or patterning the film by conventional photolithography through a 
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photomask. When the applied strain, ε, was ~13±2%, the circular holes of p6mm 

symmetry were deformed to elliptical slits (width of major axis, 1.25 μm, minor axis, 500 

nm) with p2gg symmetry (Figure 3.2g, l), in agreement with the observation from the 

swelling-induced instability in SU-8 membranes with a hexagonal array of pores.
[15]

 

When the SMP membrane was compressed in the vertical direction, it expanded in-plane 

due to positive Poisson’s ratio, hence generating an equivalent in-plane compressive 

stress to the circular holes. The initial diffraction color diminished significantly after 

compression although it was not completely lost at this strain level (Figure 3. 2b). This 

could be attributed to the smaller pore size and porosity. The width of the minor axes of 

the ellipse further decreased, from hundreds of nanometers to a few nanometers, as the 

strain was increased. When ε was increased to ~20±2%, the holes were almost closed into 

lines (see Figure 3.2c, h and m) and the SMP membrane became quite transparent, much 

like the bulk film. At  ~ 30±2%, the holes were closed-up and the surface became nearly 

featureless (Figure 3.2d, i and n). No further change of transparency was observed. When 

any of the above deformed SMP membranes were reheated to 90 
o
C, the original periodic 

structure was restored nearly to completion (97.6% of the original hole size), as evident 

by the SEM images and the regeneration of strong diffraction color (Figure 3.2e, j and o). 

Surprisingly, even the one with completely closed pores was restored, suggesting that the 

adhesive energy between the pore surfaces was much smaller than the elastic recovery 

energy. The different color displayed in Figure 3.2a (the original film) and 3.2e (the 

recovered one) could be caused by a small misalignment of incident light during photo 

shooting could lead to appearance of a different color. When ε was greater than 50%, the 

2D grating with air holes and its color could no longer be completely recovered due to the 
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permanent deformation of the polymer network.  

 

Figure 3.2 Pattern transformation and recovery in a 2D SMP membrane. (a-e) Optical 

images of the (a) original, (b-c) partially deformed,  ~ 132% (b) and  ~ 202% (c), (d) 

completely deformed,  ~ 302%, and (e) recovered SMP membranes. (f-j) 

Corresponding SEM images of the SMP membranes shown in (a-e). (k-o) Higher 

magnification SEM images of (f-j). 

 

 The reversible switching between the colorful displays to transparency was 

repeated successfully for more than 10 cycles with ε < 50%, and the recovery of 

diffraction color occurred within a few seconds. According to SEM images, the hole size 

of the recovered films decreased slightly to 94.4% and 89.7% of the original one after 

three and ten cycles, respectively. The diffraction color displayed at any of the temporary 

state could be reprogrammed on demand by precise control of the applied strain level and 

temperature/load of deformation. Hence, it is possible to build a color spectrum by 

carefully tuning the mechanical deformation. Further, we may achieve full-color display 

by combining the instability and design of the original microstructures with variable 

structural parameters. 
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During the pattern transformation and recovery process, the air holes were squeezed 

out and restored, respectively, which would result in a dramatic transparency change. As 

a proof-of-concept, we placed two SMP membranes on a paper printed with “Penn” logos: 

one was hot-pressed at ε ~ 30±2% (the left one), and the other was the original, non-

deformed one (the right one, see illustration in Figure 3.3a). Due to diffraction from the 

surface of the original membrane with pores in hexagonal array, the “Penn” letters 

beneath it could not be clearly viewed, in sharp contrast to that beneath the deformed 

membrane (see Figure 3.3b). The transparence change was further investigated by UV-

Vis spectroscopy at different thermal and mechanical treatments (Figure 3.3c) using bulk 

SMP film as a reference. As expected, the original sample (A) has the lowest 

transmittance (e.g. 28.1% at  = 600 nm). For the hot-pressed samples, sample (B) that 

was deformed at  ~ 13±2% shows improved transmittance, 46.9% at 600 nm, and the 

sample (C), which was deformed at  ~ 30±2% with closed voids, has the highest 

transmittance, 88.8% at 600 nm, in comparison with the bulk SMP film The slightly 

lowered transparency may be attributed to the surface roughness of the SMP membrane 

introduced by the Teflon sheets and dust particles trapped on the sample surface during 

hot-pressing and press release. Finally, the recovered sample (D) shows low 

transmittance (32.5% at 600 nm), very close to that of the original membrane in the UV-

visible region.  
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Figure 3.3 Display of “Penn” logos underneath 2D SMP membranes. a. Schematic 

illustration of transparency comparison between the deformed and the original SMP 

membranes. b. Optical images of the deformed and original SMP membranes on top of 

the “Penn” logo. The “Penn” underneath the original membrane is hardly legible but 

clearly visible in the deformed sample. c. UV-Vis spectra of different 2D SMP 

membranes (A-D) using bulk SMP film as reference. A. Original. B. Deformed at  ~ 

132%. C. Deformed at  ~ 302%. D. Recovered one. 

 

3.3.2 Finite Element Analysis 

Since the deformation results presented here are the first demonstration of 

instabilities induced by loading in the direction perpendicular to the voids, we built a 3D 

mechanical model to quantitatively investigate the buckling and post-buckling behaviors. 

The structure is modeled as an infinite array of infinitely long voids in the x1-x2 plane. 3D 

analyses are conducted and the constraining effect given by the substrate is accounted for 

by setting the lateral expansion equal to zero. A periodic representative volume element 

(RVE), as shown in Figure 3.4a, is considered and a series of constraint equations are 
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applied to the boundaries of the model providing general periodic boundary conditions.  

 

Figure 3.4 Numerical results for the SMP thermo-mechanical cycle. Snapshots of the 

hexagonal lattice during Step 1, hot-pressing at different strain levels (a-d), and at the end 

of Steps 2, cooling down (e), 3, un-loading (f) and 4, reheating (g). The color gives 

indications of the maximum principal strain distribution. 

 

 The stress-strain behavior of the SMP is captured using a two-mechanism 

constitutive model.
[15]

 The stress response is decomposed into two contributions: the 

resistance due to stretching and orientation of the molecular network (σN), mechanism N, 

and the resistance due to intermolecular interactions (σv), mechanism V. At the applied 

temperature T, the total stress acting on the material is given by  

                           (3.1) 

where        
 

       
       

  
 
 with A1 and A2 as material parameters defining the 

position and width of the zone where mechanism V becomes significant. 

The shape memory behavior is taken into account by having σv depend on (T-Tg). 

When T > Tg the material is characterized by a rubbery behavior; as T decreases toward 
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Tg, the material becomes increasingly glassy and locked into the deformation. The 

constitutive model is implemented into a user-defined subroutine (VUMAT) of the 

commercial finite element code ABAQUS, and numerical simulations of the whole 

thermo-mechanical loading history of the structures are performed in four steps (see 

Figure 3.4) using the model parameters summarized in Table 3.1.  

Table 3.1 Material constants for SMP used in the mechanical models.  

Rubbery Phase 

(Mechanism N) 

Glassy Phase 

(Mechanism V) 

Temperature Related 

Constants 

          

       

          

          

       

               

             

         
          

         

        

       

      

μ is the elastic shear modulus, N is the parameter relating to the limiting chain extensibility, K is the 

bulk modulus, E is the Young’s modulus, ν is Poisson’s ratio,     is pre-exponential shear strain rate 

factor, ΔG is activation energy, s0 is the initial athermal deformation resistance, sss is the athermal 

deformation resistance value at the steady state, h is the softening slope (the slope of the yield drop 

with respect to plastic strain). 

 

 Step 1) Hot-pressing. T increases above Tg, so σv vanishes and the material 

exhibits rubber-like behavior. The stability of the structure is investigated by conducting a 

Bloch wave analysis.
[26]

 At an applied strain,  = 11%, a critical instability is detected, 

leading to the same pattern previously observed under constrained swelling,
[15]

 which is 

characterized by sheared voids where the shear direction alternates back and forth from 

row to row (see Figure 3.4a-c). Further compression leads to complete closure of the 

voids at  = 22% (Figure 3.4d), in agreement with experimental observation (Figure 3. 

2h). In the simulations, further compression was avoided to prevent too much mesh 
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distortion. 

Step 2) Cooling down. T decreases to 20 
o
C, and σv increases, making the material 

much stiffer and preserving the pattern (Figure 3.4e);  

Step 3) Unloading. The press is removed, but the holes remain completely closed 

(Figure 3.4f), and the elastic energy is stored in the material;  

Step 4) Reheating up. T increases above Tg so that the structure again exhibits a 

rubbery behavior (σv vanishes again) and the initial shape and pattern are elastically 

recovered (see Figure 3.4g). 

 As seen in Figure 3.4, the numerical analysis nicely captured the deformation, 

pattern transformation and recovery of the SMP structures. Moreover, the analysis 

revealed a strong dependency of the onset of instability on the porosity of the structure. 

Thus the discrepancy between experiments and simulations observed close to the onset of 

instability at  = 13% (Figure 3.2g and 3.4b) may be attributed to a small difference in 

porosity between the model and the tested sample. Additionally, we find that for the 

considered structures with voids of 1m in diameter the surface energy (22.8 mJ/m
2
 

measured by goniometer) is roughly two orders magnitude smaller than the elastic 

recovery energy, making the recovery autonomous upon reheating. Since the strain 

energy is proportional to L
3 
(with L denoting the characteristic material dimension), while 

the surface energy is proportional L
2
, a decrease of the voids diameter will increase the 

contribution of the surface energy. An approximate analysis suggests that the surface 

energy will play an important role for voids 10 times smaller than those considered in this 

study. 
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3.3.3 Color displays with SMP periodic membranes 

To demonstrate the flexibility of color and transparency change in our SMP periodic 

membranes and their potential applications, we exploited two possible renderings of the 

SMP membranes. First, a “Penn” logo was pre-fabricated within the 2D membrane 

(Figure 3.5a, b). The template for replica molding was fabricated by exposing the 

negative-tone photoresist, epoxy POSS, to UV light through a photomask with “Penn” 

logo, followed by 3-beam holographic lithography to create hexagonal array of pillars in 

the surrounding area (Figure 3.5c). Since the region with “Penn” was mostly crosslinked 

in the first step, the second exposure did not produce any pillar in this region but shallow 

voids (Figure 3.5d). After replica-molding the template to SMP membrane, there was no 

or little color diffracted from this region in sharp contrast to the bright color from the 

surrounding area (Figure 3.5e, g). When the SMP membrane was hot-pressed above Tg, 

“Penn” logo disappeared as the film became transparent (Figure 3.5f). When reheated, the 

“Penn” logo reappeared together with its colorful background, confirming the success of 

shape recovery. Here, the logo was pre-fabricated in the permanent shape, which could be 

temporarily erased upon deformation.  
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Figure 3.5 Display of “PENN” embedded in a 2D SMP membrane. (a) Schematic 

illustration of the fabrication of template. (b-d) SEM images of the photoresist template 

before replication to the SMP membrane. (b) A low magnification SEM image of the “P” 

character in the template. (c) SEM image of the structure outside “P” character, yellow 

square, showing tall pillars. (d) SEM image of the structure inside the “P” character, red 

circle, showing nearly flat film with shallow voids. e-g. Optical images of the original (e), 

deformed (f) and recovered (g) SMP films. 

 

 In a second approach, the “Penn” logo was introduced as a temporary shape by a 

rubber stamp indented into the SMP membrane during heating (Figure 3.6a) at 90 
o
C. The 

stamp was released after the film was cooled down to room temperature. As seen in 

Figure 3.6b and 3.6d, the indented region was transparent, especially at the sharp corners 

of the letters, presumably receiving higher stress, while the background remained colorful. 

When reheated, the “Penn” logo was erased (Figure 3.6c, e). In this way, different letters 

or patterns could be “finger-printed” and reprogrammed into the same SMP membrane 

repeatedly, which could be extremely useful as a user-friendly touch screen display or 
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fingerprinting by tailoring the SMP Tg near the body temperature. It should be noted that 

all the displays presented here require no extra energy to maintain the displayed state.  

 

Figure 3.6 Indentation display on the SMP membrane. Schematic illustrations of (a) 

indentation of a stamp with a letter “P” into a heated SMP membrane, (b) the display of 

letter “P” in the SMP membrane in the deformed region and (c) structural recovery upon 

reheating. (d-e). Corresponding optical images of the indented “Penn” in the colored 

SMP membrane (d) and its erase after reheating the SMP membrane to 90 
o
C (e). 

 

3.4 Conclusions 

We prepared 2D periodic membrane in SMPs, and studied the mechanical instability 

and shape memory effect. When hot-pressed, the membrane underwent pattern 

transformation from a p6mm hexagonal lattice of circular holes (1 μm diameter) to a p2gg 

pattern of elliptical slits (width varied from a few hundreds of nm to a few nm), and 

eventually the holes were completely closed. The original film is colorful because of the 

diffraction from the periodic micropattern and can be reversibly switched to a transparent 

state by mechanical deformation above the material’s Tg. Upon reheating, the deformed 

patterns were able to recover, hence, restoring the diffraction color. The combination of 

pattern transformation and shape memory effect in a 2D periodic membrane offers 

several distinctive characteristics. 1) It is the first demonstration of instabilities induced 

by loading in the direction perpendicular to the voids in microstructured SMPs, which is 
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more desirable in practical applications than approaches such as solvent swelling and in-

plane compression. 2) The temporarily deformed structure and the resulting color can be 

fixed without the need for continuous input of external trigger; they can also be 

programmed continuously by varying the mechanical strain level. 3) The continuum 

mechanical analyses have faithfully captured the buckling and post-buckling behaviors of 

the SMP membrane observed experimentally. Importantly, the model suggests that the 

surface energy plays a negligible role comparing with elastic energy when the void 

dimension is comparable to the wavelength of light, leading to autonomous and fast 

shape recovery of the microstructure. 

We emphasize that while the diffraction color change is demonstrated in temperature 

responsive SMPs here, there are a broad range of stimuli responsive material systems in 

the literature, allowing for fine-tuning the transition temperature, switching speed, degree 

of responsiveness, number of temporary states, and the type of stimulus. For example, the 

Tg of the epoxy SMP used in our system could be lowered (e.g. to 30 
o
C) by increasing 

the concentration of more flexible crosslinker, decylamine.
[25]

 SMPs that can store up to 

three different shapes in temporary states have been reported.
[7, 27]

 We expect that the 

study of tuning periodic structures via combined pattern transformation and shape 

memory effect will shed new light in harnessing the mechanical response of soft 

materials and advancing a wide range of technologies, including color displays, sensors, 

camouflage, and energy efficient building components (e.g. smart windows and 

responsive façade). 
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Chapter 4  

Fabrication of High-Aspect-Ratio One-Dimensional Organic/inorganic 

Hybrid Nanogratings via Holographic Lithography 

4.1 Introduction 

One-dimensional (1D) periodic structures in micron- and nano- scale have been of 

interest for many applications, including diffraction gratings, linear polarizers,
[1-3]

 

plasma etching masks,
[4-5]

 photonic
[6]

 and phononic crystals.
[7]

 There have been 

extensive studies to fabricate 1D structures using techniques, including 

photolithography,
[4,8]

 e-beam lithography,
[9-10]

 replica molding,
[11]

 holographic 

lithography (HL),
[12-13]

  and nanoimprint lithography
[14]

 in different materials.
[2, 4-6, 15]

 1D 

structures with high aspect ratio (AR = height/ width) are desired for many applications. 

For example, as plasma etching masks, high AR structures that offer better etch 

resistance and structure fidelity are often desired.
[4-5]

 As grating structures, high AR 

could lead to new properties, such as blazed transmission gratings via total external 

reflection on the grating sidewalls for x-rays incident at graze angles.
[2]

 As 1D photonic 

crystals, high AR structures could offer higher intensity reflection peak at the photonic 

stop band.
[6]

 

 However, direct fabrication of high AR structures has been challenging using 

conventional organic polymer resists, especially in the nanoscale. First, the major 

limitation is the depth-of-focus (DOF), which defines the maximum photoresist 

thickness. In photolithography, DOF and the critical dimension (CD, also the minimum 

feature size) are determined by
[16]
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                          (4.1) 

      
 

                        (4.2) 

where λ is the wavelength of light, NA is the numerical aperture of the lens, and k1 and 

k2 are processing related constants. Decreasing λ and increasing NA could decrease CD. 

However, DOF is reduced more rapidly.  For 193 nm lithography the AR is typically 

less than 3.
[17]

 Therefore, multi-step hard mask etching steps are necessary to create high 

AR structures for certain inorganic materials, which add complexity and cost to the 

fabrication.  Secondly, high AR structures tend to pattern collapse due to the capillary 

force during solvent drying. 
[18-21]

 To address this problem, high AR structures are 

typically dried using supercritical CO2 dryer to minimize surface tension.  

Unlike photolithography, where DOF is closely related to lenses, depth-of-

penetration in holographic lithography (HL) is solely dependent on λ of the incident 

light and the optical density (OD) of photoresist at the given λ. Thus, it is possible to 

create high AR structures with AR> 3 by carefully choosing photoresist with high 

transparency.  

Here, we fabricated organic/inorganic hybrid high AR (up to 10) 1D nanogratings 

with variable feature size via HL. Epoxy-functionalized polyhedral oligomeric 

silsesquoxane (epoxy-POSS) was used as photoresist due to its high thermal and 

mechanical stability. The periodicity of the nanograting was controlled by the incident 

beam angle, while the filling fraction could be altered by exposure dosage. We also 

discussed the surface roughness formation mechanism in the POSS nanogratings, and 

demonstrated roughness reduction by increasing exposure dosage. Furthermore, we 
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showed that the epoxy-POSS nanogratings could be directly calcinated to silica-like 

nanogratings.  

4.2 Experimental Methods 

4.2.1 Fabrication 

The 1D nanogratings were fabricated with controllable periodicity using the set-up 

and fabrication process shown in Figure 4.1a. Epoxy polyhedral oligomeric 

silsesquoxane (epoxy-POSS, EP0408 from Hybrid Plastics) (Figure 4.1b), an 

organosilicate, was used as photoresist, following the HL procedure reported earlier.
[22-26]

 

In brief, the photoresist film was prepared from 50-70 wt% Epoxy-POSS and 0.9 wt% 

(relative to the mass of Epoxy-POSS) Irgacure 261 (visible photoacid generator (PAG), 

Ciba Specialty Chemicals) in γ -butyrolactone (GBL, Sigma-Aldrich), which was spun -

coated on pre-cleaned cover glasses, followed by soft bake at 50 °C for 40 min and 

95 °C for 2 min, respectively. The film was exposed to a diode-pumped Nd:YVO4 laser 

(λ = 532 nm, Verdi-6, Coherent) with overall 1.0 W laser input (before beam splitting) 

for 2 s to 6 s. The angle between two laser beams could be varied to achieve different 

feature sizes. After exposure, the film was post-exposure baked (PEB) at 50 °C for 35 s 

to crosslink the exposed regions, followed by development in propylene glycol 

monomethyl ether acetate (PGMEA, Sigma-Aldrich) for 30 min. Before drying in CO2 

supercritical point dryer (SAMDRI®-PVT-3D, Tousimis), the wet samples were rinsed 

in isopropanol (IPA, Sigma-Aldrich) for another 30 min. 
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Figure 4.1 Holographic lithography (HL) process to fabricate 1D high AR structures. (a) 

Schematics of HL fabrication process. (b) Chemical Structure of epoxy polyhedral 

oligomeric silsesquoxane (epoxy-POSS). (c) Two-beam interference intensity profile. 1D 

periodic structure is formed in the regions, where the light intensity is higher than the 

threshold. (d) Top-view and cross-sectional view (inset) SEM images of the 1D grating 

with 300 nm line width, 600 nm pitch and AR= 10. 

 

4.2.2 Characterization 

High resolution SEM images were taken from FEI 600 Quanta FEG Environmental 

Scanning Electron Microscrope (ESEM). The chemical compositions in the 1D 

structures were determined by energy-dispersive X-ray (EDX) analysis coupled on the 

same ESEM. The 1D nanogratings with thickness ~2 μm were supported on silicon 

wafers for EDX measurement. 

4.3 Results and discussion 

The 1D nanograting was fabricated by two-beam interference lithography (see 

Figure 4.1) with an intensity profile shown in Figure 4.1 c. During exposure, photoacids 

were generated, which catalyzed the ring-opening reactions during the PEB process. In 

the regions where the exposure dosage is higher than the threshold value, epoxy-POSS 
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becomes fully crosslinked. In the regions where the exposure dosage is below the 

threshold, the epoxy-POSS is not crosslinked or partially crosslinked, therefore, could 

be removed by an orangic solvent during developing, leaving the high AR nanograting 

(AR=10 in Figure 4.1 d). 

Compared to conventional organic photoresist, e.g. SU-8, which is commonly used 

in ultrathick films to create high AR microstructures, epoxy-POSS offers three 

advantages: 1) as an organic-inorganic hybrid material, it has thermal and mechanical 

stability in-between silica and polymers,
[22-23]

 2) it can be directly converted to silica-

like material by calcinations in O2, and 3) it can serve as a template to backfill both 

inorganic and organic materials, where the template can be removed using hydrofluoric 

(HF) aqueous solution at room temperature.
[24-25]

 Typically, the organic template has to 

be removed by calcination above 500 
o
C, making it impossible to template functional 

structures from another organic materials.   

In HL, periodicity of the 1D structure is determined by  

                             (4.3) 

where d is the periodicity of the 1D structure. θ is the half angle between two incident 

laser beams, and λ is the wavelength of the light, which is 532 nm in our system. At this 

wavelength, epoxy-POSS was completely transparent. According to Eq. 3, the minimum 

periodicity in our case is 266 nm, half of λ. The calculated periodicity from different 

incident angles is summarized in Table 4.1.  
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Table 4.1 Theoretical periodicity of two-beam interference lithography from variable 

incident beam half angles.  

θ (°) sin(θ) d (nm) 

1 0.0175 15,241 

15 0.2588 1,028 

30 0.5000 532 

45 0.7071 376 

60 0.8660 307 

89 0.9998 266 

 

From Table 4.1 we could see that periodicity as large as 15 μm is feasible with 532 

nm HL with  =1
o
. However, when   is very small, it becomes difficult to accurately 

control the incident angle. To demonstrate the flexibility of HL, we varied θ to create 1D 

gratings of different periodicities. As seen in Figure 4.2, both samples had the same 

height, 2 μm. With θ = 7.5°, sample with pitch of 2 μm (in agreement with calculated 

value), line width of 500 nm, and the AR of 4 was obtained (Figure 4.2a). With θ = 26°, 

the sample had pitch of 600 nm, line width of 250 nm, and the AR of 8 (Figure 4.2b). In 

both cases, high AR 1D gratings were observed with long-range order.  

 

Figure 4.2 Top-view SEM images of 1D structures fabricated with different incident 

beam half angles, = 7.5° and 26°, respectively. Inset: schematics showing the beam 



77 

position. (a) Line width 500 nm, pitch 2 μm, height 2 μm, and AR =4. (b) Line width 250 

nm, pitch 600 nm, height 2 μm, and AR=8. 

 

While periodicity is tuned by θ, the line width can be altered by parameters, 

including exposure dosage, PAG concentration and PEB duration, all of which are 

closely related to the epoxy-POSS crosslinking density. As illustrated in Figure 4.1c, 

when the interference intensity is higher than the threshold, epoxy-POSS would be 

sufficiently crosslinked and not soluble in the developer. Longer exposure time increases 

the amplitude of entire intensity profile, thus, a larger portion of POSS remains after the 

development, leading to larger line width. Similarly, higher PAG concentration and 

longer PEB duration would also result in more crosslinking and larger line width. As 

seen in Figure 4.3, when increasing the exposure time from 3s, 4s to 5s, while keeping 

other parameters constant, 600 nm pitch, 2 μm height, [PAG] = 0.9 wt%, exposure 

power 1.0 W and PEB at 50°C for 35 s, the line width increased from 200 nm to 230 nm 

and 260 nm, respectively. Given the same sample height, the smallest line width gave 

rise to the highest AR. Here, with the 200 nm line width, the AR of sample in Figure 

4.3a is 10. In comparison, while AR as high as 100 can be achieved by SU-8 in the 

micron scale, high AR (up to 10) can only be achieved by X-ray LIGA process for 

submicron features, 
[27]

 which is not easily accessible for most research groups. 1D 

nanostructures with AR > 10 will be difficult to achieve since the nanowalls are too thin 

and highly unstable. They can be easily distorted or collapsed due to solvent swelling by 

the developer, which decreases the film modulus, or by capillary force during drying.  
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Figure 4.3 Top-view SEM images of 1D structures with exposure duration of 3 s, 4 s and 

5 s, respectively. (a) Line width 200 nm, AR=10. (b) Line width 230 nm, AR= 8.7. (c) 

Line width 260 nm, AR= 7.7. 

 

We found that the epoxy-POSS nanogratings fabricated here show different extent 

of surface nanoroughness (20-50 nm in diameter), which is not desired for applications 

such as optical gratings or etch masks. The sidewall roughness in gratings could lead to 

undesired phase shift, thus influence the overall performance.
[28]

 As for plasma etching 

masks, the protrusions of the rough sidewall act as a shadowing mask for the incident 

ions, which induces the striations at the sidewalls of both the underlayer and the resist.
[29]

 

Thus, it is important to control and minimize such surface roughness.  

Previously, we showed that epoxy-POSS is less crosslinked than SU-8 and the 

nanoroughness could be generated due to microphase separation of the polymer chain 

segments in a nonsolvent during the rinsing step in HL process. 
[26]

  When immersed in 

the developer, PGMEA, which is a good solvent, the polymer network swells. In the 

rinsing solvent, IPA, which is a poor solvent, the loosely crosslinked epoxy POSS 

network deswells, resulting in microphase seperation.  The degree of roughness can be 

tuned by the crosslinking density of the polymer network, which is dependent on the 

loading of photoacid generators, the exposure dosage, and the choice of developer and 

rinsing solvent. When the crosslinking density was sufficiently high, the molecular 

1 µm 

a b c 
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weight between crosslinks (Mc) or the mesh size, as well as the available chain segments 

for collapsing out of solvent are dramatically decreased, the surface of the 

microstructure becomes smooth. 

Similarly, we believe the rough surface was also due to low crosslinking density of 

the epoxy-POSS network. Therefore, surface roughness can be reduced by increasing 

exposure dosage, which in turn leads to higher crosslinking density. As shown in Figure 

4.4, the surface obtained from 3 s exposure time (Figure 4. 4a) was much rougher than 

the one exposed for 6 s (Figure 4. 4b), while all other fabrication parameters were kept 

the same. 

 

Figure 4.4 Side-view SEM images of the 1D structures fabricated by HL, showing 

smooth and rough surfaces. (a) Very rough surface fabricated with 3 s exposure duration. 

(b) Relatively smooth surface fabricated with 6 s exposure duration. Other Fabrication 

parameters were kept the same. 

 

Previously, we have converted epoxy-POSS 3D structures fabricated by 4-beam HL 

to silica-like ones by oxygen plasma or calcination in oxygen for backfilling to create 

3D polymeric photonic crystals,
[23]

 and high-temperature (up to 1300 
o
C), high 

refractive index silicon carbide (SiC) photonic crystals.
[24]

 Because the 3D structures are 

interpenetrated network, thus, providing mechanical support during conversion and 
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backfilling, the 3D silica structures and their replicas are able to maintain the structure 

integrity during the multiple processing steps.   In comparison, there will be no such 

support for 1D structures.  

According to thermogravimetric analysis (TGA) from literatures,
[22, 30]

 epoxy-

POSS is thermally stable up to 350 °C in air, above which the organic moieties start to 

decompose.  Here we attempted calcinations in O2 at 500°C for 2 h, since the organic 

part of epoxy POSS could be decomposed, leaving mainly Si-O skeleton. For 

comparison, we calcinated half of the sample and examined the structure using SEM and 

chemical composition using energy-dispersive X-ray (EDX) spectroscopy. As seen in 

Figure 4.5, carbon was nearly removed after calcination. The ratios of different elements 

are summarized in Table 4.2. The measured compositions were SiC6.2O2.4 for the 

original sample and SiC0.3O2.5 for the calcinated one, close to SiO2 assuming carbon was 

completely removed. The measured chemical composition of the original epoxy-POSS 

slightly deviated from the ideal cage, SiC8O2.5, since  epoxy-POSS precursor used in our 

experiments was a cage mixture, (C8H13O)n(SiO1.5)n (n= 8, 10 or 12). By increasing the 

calcination time to 10 h, the tracing amount of carbon could be completely removed.  As 

seen in the inset of Figure 4.5, the high AR 1D silica-like structure remained in a good 

shape after the conversion.  
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Figure 4.5 Energy-dispersive X-ray spectra and top-view SEM images (inset) for high 

AR 1D structures before and after calcination. (a) Original POSS structure, showing C, 

O and Si peaks. (2) After the calcinations at 500°C in O2 for 2 h, the carbon peak 

disappeared. Line width 200 nm, pitch 600 nm, height 2 m, and AR=10. Scale bar: 1 

μm. 

 

Table 4.2 EDX element analysis data of the original and calcinated samples. 

 C O Si Ideal composition Measured composition 

Original POSS 65.32 25.18 10.50 SiC8O2.5 SiC6.2O2.4 

Calcinated POSS 6.97 66.45 26.57 SiO2 SiC0.3O2.5 

 

4.4 Conclusions 

In summary, we have fabricated high AR 1D nanogratings with feature size ranging  

from 200 nm to 500 nm in line width, 600 nm - 2 μm in pitch, AR up to 10 via two-

beam HL. The hybrid material, epoxy-POSS, was used as the negative-tone photoresist, 

which offered high thermal and mechanical stability. The periodicity of nanograting was 

tuned by incident beam angle, while the filling fraction was altered by several 
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parameters, including exposure dosage, PAG concentration and PEB duration. The 

undesired surface roughness could be reduced by increasing POSS crosslinking density 

with longer exposure time. Furthermore, we showed that the epoxy-POSS nanogratings 

could be directly converted to silica-like nanogratings upon calcination. We believe the 

hybrid nanostructures fabricated here would benefit other applications, such as 

hypersonic (GHz) phononic crystals
[31]

 by backfilling an elastomeric (e.g. PDMS) or 

stiff material (e.g. spin on glass) that have very different elastic constants. Compared to 

1D lamellar multilayers,
[7]

 the vertical nanowalls could potentially offer larger bandgaps 

and Q values. Further, it is possible to convert the high AR 1D structure from epoxy-

POSS to other inorganic materials with high refractive index, such as SiC, 
[24]

 for 

ultrahigh temperature photonic applications. 
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Chapter 5  

Transforming One-Dimensional Nanowalls to Long-Range Ordered 

Two-Dimensional Nanowaves – Exploiting Buckling Instability and 

Nanofibers Effect in Holographic Lithography 

5.1 Introduction 

Periodically structured materials, whose physical properties are functions of the 

structural parameters, including shape, geometry, size, orientation and arrangement, are 

of wide interests for applications, such as controlling the light, sound or heat wave 

propagation,
[1-2]

 wetting,
[3-4]

 adhesion,
[5-6]

 and cell sensing and proliferation.
[7]

 In many 

applications, high aspect ratio (AR = height/width) structures are desired. For example, as 

plasma etching masks, they offer better etching resistance and structure fidelity.
[8-9]

 As 

grating structures, high AR could lead to new properties, such as blazed transmission 

gratings via total external reflection on the grating sidewalls for x-rays incident at graze 

angles.
[10]

 As photonic crystals, high AR structures have higher intensity reflection peak 

at the photonic stop band.
[11]

  

However, high AR structures are mechanically unstable. When the film is developed 

in the lithographic process it tends to collapse due to capillary force
[12-15]

 or to be buckled 

due to anisotroically swelling.
[16-17]

 Specifically, it has been shown that 1D structures can 

be laterally buckled into irregular two-dimensional (2D) wavy patterns due to 

compressive residual stress generated in the film confined on a rigid substrate, for 

example, by deposition of a thin layer of metal or semiconductor,
[18-19]

 or by swelling.
[16]

 

Because the compressive stresses induced by swelling and heating/cooling are isotropic 
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laterally, most of the buckling structures reported in literature are random. It will be 

intriguing to harness such instability for pattern transformation, specifically, to create 

highly ordered, high AR 2D wavy patterns by lateral buckling of 1D high AR structures, 

leading to very different physical properties.  

Here, we created highly ordered 2D nanowaves from a commonly used negative-

tone photoresist SU-8 during two-beam HL by buckling of high AR (up to 6) 1D 

nanowalls (periodicity of 600 nm). During the development stage, the 1D pattern went 

through a constrained swelling in the good solvent, leading to the global buckling. The 

degree of lateral undulation could be controlled by tuning the pattern AR and exposure 

dosage. Different from literature, the nanowalls in our system were buckled in the same 

direction with long-range ordering. Between the nanowalls, interconnecting nanofibers 

(30-50 nm in diameter) were formed between nanowalls when exposed to high dosages. 

By comparing experimental results with finite-element analysis, we confirmed that 

nanofibers formed only in the buckled film when the neighboring walls were close 

enough; they prevented the recovery of the deformed nanowalls to their original state, 

thus, minimizing random instability after critical point drying. The nanowave structure 

showed weaker reflecting color under an ambient light and lower transmittance compared 

to the nanowalls. Using double exposure through a photomask, followed by development, 

we created patterns consisting of both nanowaves and nanowalls for optical display by 

harnessing the distinct optical properties in the two regions. 

5.2 Experimental Methods 

5.2.1 Holographic lithography 

The 1D periodic nanowall pattern was fabricated by two-beam holographic 
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lithography (HL) (see Figure 1a). In brief, the photoresist film was prepared from 40-58 

wt% EPON SU-8 (from Shell Chemical) and 2.0 wt% (relative to the mass of SU-8) 

Irgacure 261 (visible photoacid generator, Ciba Specialty Chemicals) in γ-butyrolactone 

(GBL, Sigma-Aldrich). The solution was spin coated on a pre-cleaned cover glass, 

followed by soft bake at 65 °C for 5 min and 95 °C for 15 min, respectively. The film was 

exposed to a diode-pumped Nd:YVO4 laser (λ = 532 nm, Verdi-6, Coherent) with overall 

1.0 W laser input (before beam splitting) for 15 to 20 s. The angle between two laser 

beams could be varied to achieve different feature size. After exposure, the film was post-

exposure baked (PEB) at 65 °C and 95 °C for 2 min, respectively to crosslink the exposed 

regions, followed by development in propylene glycol monomethyl ether acetate 

(PGMEA, Sigma-Aldrich) for 30 min. Before drying in critical point dryer (CPD, 

SAMDRI®-PVT-3D, Tousimis), the wet samples were rinsed in isopropanol (IPA, 

Sigma-Aldrich) for 20 min. 

 

Figure 5.1 Fabrication of 1D nanowalls and 2D nanowaves via two-beam holographic 

lithography. (a) Schematics of the holographic lithography process. (b-c) Top-view SEM 
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images and schematics of (b) 1D nanowalls (width 300 nm, pitch 600 nm, AR ~2) and (c) 

2D nanowaves (width 300 nm, pitch 600 nm, AR ~6). (d) Higher magnification SEM 

image of (c) with indication of the amplitude and wavelength of the nanowaves. 

Amplitude (yellow arrow) is indicated as the distance between center of the original wall 

to that of the maximum buckled position. Wavelength (green arrow) is the longitudinal 

periodicity of the nanowaves. 

 

5.2.2 Fiber removal and re-swelling 

A buckled sample with many connecting fibers (width 30-50 nm, AR=6) was half 

covered with aluminum foil and half exposed to oxygen plasma (Harrick Plasma Cleaner 

PDC-001) for 15 min to remove the nanofibers. Then the aluminum foil was removed 

and the whole sample was developed in PGMEA for 1 h to re-swell the sample, followed 

by rinsing in IPA for 30 min, and critical point drying. 

5.2.3 Double exposure 

The sample was first exposed to interference beam at 532 nm to create 1D nanowall 

pattern, followed by UV exposure (λ = 365 nm, 400 mJ/cm
2
, 97435 Oriel Flood Exposure 

Source, Newport) through a photomask, including a line pattern with 10 μm width and 20 

μm pitch, and a “N” letter pattern in millimeter. The film was then PEB, developed in 

PGMEA and CPD dried as described earlier. 

5.2.4 Characterization 

SEM images were taken from FEI Strata DB235 Focused Ion Beam (FIB) system 

and the cross-sectional images were taken from samples milled by the Gallium ion beam. 

The transmission spectra were acquired by UV-Vis spectrometer (Varian Cary 100). 

5.2.5 Finite-element analysis 

ABAQUS/Standard,
[32]

 a commercial finite-element analysis software, was used. 

Young's modulus and Poisson's ratio of SU-8 were chosen to be 1.7 GPa and 0.49 
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according to the experimental measurement. Nonlinear static analyses were performed 

for the post-buckling prediction based on the buckling analysis. Three-dimensional 

continuum element (C3D8) was adopted with 50 nm in characteristic element length. The 

swelling ratio of SU-8 was assumed to vary from 1.0 to 1.2 throughout the analyses.  

5.3 Results and discussion 

The 1D nanowalls were fabricated by two-beam interference lithography (see 

experimental section and Figure 5.1a), including photoresist spin-coating, pre-exposure 

bake, exposure, post-exposure bake (PEB), development, solvent rinsing and critical-

point drying (CPD). By recording the interference pattern into a selective photoresist, HL 

has been used to fabricate 1D, 2D, and 3D periodic structures over a large area.
[20-21]

 The 

periodicity of the 1D structure could be tuned from a hundred of nanometers to several 

microns using the green laser by varying the angle between two incident laser beams.
[22]

 

Here, we kept the periodicity constant at 600 nm and the line width around 300 nm for 

the interest of grating color in the visible to infrared wavelength. The AR of 1D structure 

was varied by the concentration of SU-8 solution and spin-coating speed, which 

determined the film thickness.  

SU-8, a multifunctional epoxy derivative of a bisphenol-A novalac,
[23]

 was chosen as 

the model photoresist (Figure 5.2) because of its compatibility with conventional 

photolithography and HL,
[24]

 and high solubility in many organic solvents, allowing for 

preparation of thick films with high AR. When SU-8 films of different thickness were 

exposed to the same HL conditions, followed by development in propylene glycol 

monomethyl ether acetate (PGMEA) and CPD, different types of nanostructures were 

observed depending on AR (see Figure 5.1). For AR=2 samples, 1D pattern of straight 
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walls (Figure 5.1b) were observed as expected from two-beam interference. However, for 

AR=6 samples, highly ordered 2D nanowaves were observed (Figure 5.1c) with 

wavelength of 3 μm and amplitude of 300 nm (see schematic in Figure 5.1d).  

 

Figure 5.2 (a) Chemical structure of the negative-tone photoresist, SU-8. (b) Top-view 

SEM image of large area of long-range ordered nanowaves with a few anti-phase 

boundaries. (c) Cross-sectional SEM image of the nanowaves showing high aspect ratio 

(AR = 6). 

 

Buckling of 1D lines to 2D wavy patterns has been reported, typically via thermal or 

solvent swelling induced stress.
[16-19]

 The 1D lines generally buckle randomly in the xy 

plane due to isotropic lateral force. In comparison, the nanowaves formed in our system 

were all bent in the same direction and persisted over a large area (5 mm in diameter). A 

closer look showed that there were many nanofibers formed between the nanowalls in the 

AR=6 sample (Figure 5.1d). The role of the fibers will be discussed in detail later.   

Swelling-deswelling of SU-8 thin films have been investigated to optimize the 

processing conditions in photolithography,
[25-26]

 to study pattern transformation in 2D 

membranes,
[27-28]

 and 3D phononic crsytals,
[29]

 and to enhance grafting of polymer 

brushes on 2D and 3D structures.
[30]

 Typically in photolithography of 1D structures, 

pattern collapse of high AR structures is observed due to capillary force during drying. 

Since we dried the films using CPD, the effect of capillarity should be minimal. We 

suspect that the buckling occurred in our 1D structures should be attributed to solvent 
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swelling in the development stage. 

Because SU-8 film was confined on the rigid glass substrate, the outer layer would 

swell more, generating an anisotropic osmotic pressure. Meanwhile, the glassy SU-8 was 

softened by the developer, thus, lowering the buckling threshold. When the AR is large 

enough, the compressive force generated at the top of the structure will go beyond the 

buckling threshold, thus, triggering global buckling of the 1D lines. Supporting this, we 

observed the buckling of 1D structure under the optical microscope from the developed 

film immersed in the rinsing solvent, isopropanol (IPA) (Figure 5.3). We did not directly 

observe the developed film in PGMEA, which was not compatible with the optical 

microscope. The extent of buckling and morphology could be controlled by material 

properties, including crosslinking density and modulus, pattern geometry, and polymer-

solvent interaction in a nonlinear manner.  

 

Figure 5.3 Optical image of the developed film immersed in the rinsing solvent, IPA.  

 

The modulus of the as-fabricated SU-8 was measured by AFM nano-indentation, 1.7 

GPa, and the swelling ratio in PGMEA was ~ 1.05-1.1, which agreed well with 

literature.
[25]

 If keeping AR constant, but exposing the SU-8 film at a higher dosage, more 

photoacids will be generated, leading to higher crosslinking density and higher filling 
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fraction. Thus, we should expect higher film stiffness, which is less prone to buckling. 

The effect of exposure dosage is shown in Figure 5.4, where samples had the same film 

thickness (1 μm) but different exposure time (16 s vs. 17 s). Although we did observe 

increased filling fraction in the film exposed for 17s (Figure 5.4b) compared to that from 

16 s (Figure 5.4a), the nanowaves were found formed in the 17 s film, contrary to the 

prediction. Comparing the straight 1D nanowalls and 2D nanowaves, it was clear that the 

buckled films all had nanofibers (30-50 nm) (see Figure 5.1 and Figure 5.4); the longer 

exposure time, the more nanofibers were generated. Nanofiber formation is known to be 

a byproduct of long exposure during HL.
[31]

 As shown in Figure 5.4c-d, such effect can 

be explained by the intensity profiles at different exposure dosage. When the exposure 

time is increased, interference beam intensity increases. The originally weakly 

crosslinked regions under shorter exposure time, which would have been removed by 

developer, now received interference intensity above the critical threshold and become 

partially crosslinked. Not only the volume-filling fraction is increased but the spacing 

between neighboring lines becomes smaller due to increase of weakly polymerized 

regions. It was reported that nanofibers formed and bridged the neighboring 

nanostructures by networking between the weakly polymerized regions of the 

nanostructures once the weakly polymerized regions became overlapped withthin an 

optimized distance.
[31]

 Hence, we speculate that the highly dosaged walls had large 

enough weakly polymerized regions, which was overlapped during global buckling of the 

1D walls. Once the distance of the neighboring walls reaching the threshold, the 

nanofibers began to form from the walls and finally connected the neighboring walls as 

shown in the Figure 5.2b. We also hypothesize that the formation of nanofibers would 
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prevent the buckled SU-8 film from returning to the original straight nanowalls as evident 

by the broken fibers in nearly straight-line patterns (Figure 5.4a), thus, minimizing 

random lateral buckling of the 1D structure.    

 

Figure 5.4 Effect of exposure dosage on the degree of buckling of the 1D nanowalls. (a-b) 

Top-view SEM images and schematics (insets) of nanowaves obtained from HL with 

exposure time of (a) 16 s and (b) 17 s, resulting in line width of 250 nm and 350 nm, 

respectively, and different degree of buckling. The later has significant amount of fibers 

formed between the walls. (c-d) Schematics of two-beam interference intensity profile at 

different exposure dosages. Regions exposed with intensity higher than the threshold are 

more crosslinked and remained on the substrate after developing in a good solvent. 

 

To support our hypothesis, we carried out finite-element simulation to better 

understand the formation of the nanofibers in association with the buckling behavior. We 

simulated structures with AR = 2, 4 and 6, as a direct comparison to the experimental 

results shown in Figure 5.1. The simulation results show coinciding relationship between 

the AR and the buckling magnitude (Figure 5.6a-c). In the plots, the undulation amplitude 

increases as the swelling ratio increases. It also shows that the amplitude increases faster 
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when AR is higher. The post-buckling shapes with swelling ratio 1.1 were shown in 

Figure 5.6d, which also matches the measured amplitudes well. 

Finite-element analyses indeed provide more insights on the formation of nanofibers. 

As seen in Figure 5.1c and Figure 5.4b, the distance between nanowalls, which was 

initially identical along the wall before buckling, varied as the buckling occurred.  There 

are two causes that make the wall distance to be different in buckled configuration. 

 

Figure 5.5 Finite element model and buckling prediction, assuming perfect adhesion 

between the wall and the rigid substrate. (a). Dimension of the wall on the rigid substrate 

was set according to experiments (pitch 600 nm, width 250-350 nm, height 600-1800 nm, 

undulation period 2-3 μm). The periodic boundary condition (PBC) was applied on the 

front (indicated with yellow box in the figure) and rear side of the wall. (b) The predicted 

buckling mode under swelling. Due to the imposed PBC, the apparent length of the wall 

(distance between the front and rear side or simply undulation period in the figure) does 

not change although the actual length of the wall increases during swelling. 
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Figure 5.6 Finite-element simulation of the buckling behaviors of 1D nanowalls. (a-c) 

Changes in the maximum distance (), minimum distance between walls (), and the 

undulation amplitude () of the same wall width (300 nm) but different aspect ratios, (a) 

AR=2. (b) AR= 4. (c) AR=6 as a function of the swelling ratio. (d) The corresponding 3D 

images of the predicted buckling behaviors of 1D walls of different aspect ratios with 

swelling ratio of 1.1. (e) Top-view simulated images of the wall distance evolution during 

buckling. (f) Illustration of nanofibers (yellow) formed mainly in the regions where wall 

distances are smaller than 200 nm. 

 

Because the bottom of the 1D walls is constrained on the substrate, the 1D walls are 

not only buckled in the longitudinal direction but also twisted with out-of-plane 

displacement (See Figure 5.7).  Hence, the crest region has the maximum wall distance, 

and the middle point between two adjacent crest points has the minimum wall distance 

after buckling (see schematic in Figure 5.6d). The experimental results matched well with 

the simulations. At the swelling ratio 1.1, the wall distance appears to be larger than 250 

nm along the entire structure. This relatively large gap between the walls gave only a few 

fiber formations as shown in Figure 5.1b. In the case of 300 nm width and AR=6 (Figure 

5.6c), however, the minimum wall distance is only about 120 nm at swelling ratio 1.1, 

while the maximum distance is around 280 nm. In the experiment, the nanofibers were 

mainly observed in the middle region between two adjacent crest points, of which wall 
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Min.	distance 

Max.	
distance 

a b c d 

e f 
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distance was smaller than 200 nm (Figure 5.1c). A top-view of the wall distance evolution 

during buckling, as well as the nanofiber distribution can be found in Figure 5.6 e and f. 

Hence, we clearly demonstrated that the buckling of 1D walls modulated the distance 

between the neighboring walls and the nanofibers formed only where the distance 

between the walls was close enough. 

 

Figure 5.7 The predicted buckled shape. (a) Top, (b) side, (c) front, (d) overall, and (e, f) 

cross-sectional views of the buckled walls. The cross-sectional view in (e) indicates slight 

undulations along y-axis (wall height direction) as well as the obvious undulations along 

x-axis in (a). 

 

As we mentioned earlier, more fibers were generated in the longer exposure sample 

as a result of decreased gap size because the higher AR should give larger amplitude of 

buckling. Upon drying, the buckled walls have a tendency to deswell and return to the 

original straight line geometry, and the distance between neighboring walls increase. 
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However, with large quantities of fibers connecting the neighboring walls, the walls have 

to overcome the constraint imposed by the connected fibers to return to their original 

straight alignment when the walls deswell. Thus, the nanofibers could help to maintain 

the buckled shape and stabilize the long-range ordered nanowaves. In order to further 

confirm the effect of fibers, we conducted experiments to remove the fibers, followed by 

re-swelling in PGMEA. A closer look of these fibers is shown in Figure 5.8a, a cross-

sectional SEM image cut by focused ion beam (FIB). The nanofibers appeared 

throughout the sample from top to bottom. We took a buckled sample with many fibers 

(AR=6), and covered half of it with aluminum foil while leaving the other half exposed to 

oxygen plasma (OP) treatment. The SEM image after OP is shown in Figure 5.8b, where 

the nanofibers were nearly completely removed in the exposed region. After removal the 

aluminum foil, the whole sample was put in the developer, followed by rinsing and 

drying steps performed before. For the half that still had fibers, the buckled morphology 

remained the same as before (Figure 5.8c). However, for the other half where fibers were 

removed, buckling lost the long-range ordering (Figure 5.8d), which unquestionably 

supported the role of nanofibers in maintaining the long-range ordering of nanowaves. 

When there were no fibers connecting the neighboring walls, each wall would buckle and 

compete with the neighboring ones for buckling space. On the other hand, since the space 

between each wall is very limited in our system comparing to the buckling amplitude, 

there is not enough space for the walls to deform in a completely random manner.  
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Figure 5.8 Effect of nanofibers in between nanowaves (AR=6) to maintain the buckled 

structure during swelling. (a) Cross-sectional SEM images of nanowaves with a large 

quantity of interconnecting nanofibers. (b) Top-view SEM image of the nanowaves 

shown in (a) after 15 min oxygen plasma treatment, showing nearly no nanofibers left. (c-

d) Corresponding top-view SEM images of the nanowaves shown in (a) and (b) after re-

swelling in PGMEA and drying.  

 

 Since both 1D nanowalls and its buckled 2D nanowaves are highly ordered with 

sub-micron periodicity, they should have distinct optical properties. First, we compared 

the transmittance of the straight nanowalls, nanowaves, and random deformed line 

pattern from 350- 800 nm (Figure 5.9a) and their corresponding photos were taken under 

ambient lighting (Figure 5.9b-d). The 1D nanowalls showed bright, reflected color, which 

was angle-dependent. Its transmittance spectrum dipped around 500- 600 nm (near its 

periodic feature size), corresponding to the partial stop band of the 1D photonic structure. 

The sample with long-range ordered nanowaves also appeared colorful, although the 

reflectivity was not as strong as the straight nanowalls. Its transmittance was lower than 

that of the straight nanowall sample, and did not have the characteristic valley. As for the 
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randomly deformed sample, it appeared white due to the random scattering from the film 

surface, thus, had the lowest transmittance among the three.  

 

Figure 5.9 Comparison of the optical properties between straight 1D nanowalls, 2D 

nanowaves with long-range ordering, and randomly collapsed nanowaves. (a) UV-Vis 

transmittance spectra. (b-d) Photos and corresponding top-view SEM images of various 

nanostructures. Scale bar: 2 m. 

 

Lastly, we fabricated complex patterns using double exposure method for optical 

display. First, the SU-8 film was exposed to interference beams to create the 

nanostructures, followed by UV exposure through a photomask with micron-sized 

patterns before PEB (see Figure 5.10a). After the development and CPD, the regions that 

were not double exposed would go through typical global buckling to form nanowaves, 

whereas the regions received double exposure would have higher crosslinking density 

and volume filling fraction, thus, forming straight nanowalls. As a proof-of-concept, we 

used two types of photomasks: one with 10 μm line width and 20 μm pitch, and the other 

with a character “N” in millimeter size. The sample double exposed from the 1D 

photomask showed alternating regions of nanowalls and nanowaves (Figure 5.10b-c) as 



100 

expected. To better illustrate the color contrast in the nanowall and nanowave regions, we 

used a letter “N” photomask as shown in Figure 5.10d. The region within the character 

was double exposed and appeared more transparent than the surrounding region, which 

appeared orange. The double exposed regions had higher volume filling fraction of SU-8 

and the straight nanowalls were nearly connecting with each other. Therefore, they 

appeared more like a flat film, which was transparent. The color from the surrounding 

regions was the reflection color from the nanowaves.  

 

Figure 5.10 Double exposures to pattern nanowaves together with nanowalls. (a) 

Schematic illustration of the double exposure process, including HL at visible light first, 

followed by UV exposure through a photomask. (b-c) SEM images of the hierarchical 

structure, consisting of nanowaves and nanowalls (width 300 nm, pitch 600 nm, AR ~6) 

in a microscaled 1D grating (width10 μm, pitch 20 m). (c) Double exposed regions 

showing straight lines with higher filling fraction, while the single exposed regions 

showing typical nanowaves. (d) Photo of a film double exposed with photomask of letter 

“N”. Inset: optical image of the photomask. The double exposed region appeared more 

transparent than the surrounding due to higher filling fraction. The latter appeared orange 

due to reflection from the nanowaves. 

 

5.4 Conclusions 

In summary, we have fabricated long-range ordered 1D nanowalls and 2D 
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nanowaves via holographic lithography and confined buckling. The extent of lateral 

undulation could be controlled by varying structure geometry and exposure dosage. 

Nanofibers were generated between the buckled nanowalls due to overlapping of the 

neighboring weakly crosslinked regions. By comparing experimental results with finite-

element analysis, we investigated the buckling mechanism and confirmed that the 

nanofibers played a significant role that prevented deformed nanowalls from recovering 

to their original state, resulting in long-range ordered wavy structures. The ordered 

nanowave structure showed weaker reflecting color under an ambient light and lower 

transmittance compared to its straight counterpart, nanowalls; whereas the randomly 

deformed nanowaves appeared white. By combining HL and photolithography through a 

photomask, we demonstrated micropatterning of nanowaves vs. nanowalls for optical 

display. We believe that the investigation of buckling mechanism in 1D structures via 

nanofiber formation will provide new insights to fabricate highly ordered 2D and 3D 

structures by harnessing instability and pattern transformation. It will also allow us to 

create a rich library of complex patterns for advance applications, such as displays, 

waveguides, wire-grid linear polarizers, sensors, and substrates for guiding cell 

proliferation.  
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Chapter 6  

Summary and outlook 

6.1 Summary 

In this thesis, I use HL to fabricate 1D, 2D and 3D periodic structures with various 

material choices, including organic negative tone photoresists SU-8, hybrid photoresist 

POSS, shape memory polymer and inorganic material, e.g. silica. The goal of my thesis is 

to investigate their intrinsic structure-property relationship, harness and utilize the 

mechanical instability, and explore novel applications as tunable periodic structures. 

While many of the current studies of periodic structures have focused on their 

unique optical and mechanical properties, we are interested in multi-functionality of these 

materials. For instance, surface property of periodic structures is also interesting due to 

the intrinsic topography, which is closely related to wetting, adhesion and adsorption 

behaviors. To mimic the surface property of butterfly wings while not interfering the 

optical/mechanical effects of the periodic structures, it is important to control surface 

roughness. In Chapter 2, I created 3D diamond photonic crystals with controllable nano-

roughness by exploiting microphase separation of the swollen, crosslinked polymer 

chains from a nonsolvent during the rinsing step in the HL process. The degree of 

roughness can be tuned by varying the crosslinking density of the polymer network and 

the solvent affinity to the polymer chains. The dual-scale roughness (periodic 

microstructure and nanopores) offers new opportunities previously unstudied, that is to 

combine actions on a 3D photonic crystal, including light interference, light absorption 

and self-cleaning without cross-talk. Further, we demonstrate ~ 6 times of dye adsorption 

enhancement on rough diamond crystals compared to those with smooth surface. We 
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believe that 3D photonic structure with controllable nano-roughness will open the door 

for many other applications, such as DSSCs and QDSCs, fuel cells, catalysis, and 

protein/drug delivery.  

For tunable periodic structures, most of the current approaches to tune the photonic 

properties are based on changing lattice constant or refractive index, resulting in change 

of PBG position up to a few hundreds of nanometers. It is attractive to expand this 

tunable range, for example, from transparency to colorful states. In Chapter 3, we 

explored the pattern transformation and symmetry change by compressing 2D SMP 

membrane with pores arranged in a hexagonal array to realize the reconfigurable 

switching between transparency and colorful states according to thermal-mechanical 

stimulus. When hot-pressed, the membrane underwent pattern transformation from a 

p6mm hexagonal lattice of circular holes (1 μm diameter) to a p2gg pattern of elliptical 

slits (width varied from a few hundreds of nm to a few nm), and eventually the holes 

were completely closed. The original film is colorful because of the diffraction from the 

periodic micro-pattern and can be reversibly switched to a transparent state by 

mechanical deformation above the material’s Tg. Upon reheating, the deformed patterns 

were able to recover, hence, restoring the diffraction color. The combination of pattern 

transformation and shape memory effect in a 2D periodic membrane offers several 

distinctive characteristics. Firstly, it is the first demonstration of instabilities induced by 

loading in the direction perpendicular to the voids in microstructured SMPs, which is 

more desirable in practical applications than approaches such as solvent swelling and in-

plane compression. Secondluy, the temporarily deformed structure and the resulting color 

can be fixed without the need for continuous input of external trigger; they can also be 
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programmed continuously by varying the mechanical strain level. Thirdly, the continuum 

mechanical analyses have faithfully captured the buckling and post-buckling behaviors of 

the SMP membrane observed experimentally. Importantly, the model suggests that the 

surface energy plays a negligible role comparing with elastic energy when the void 

dimension is comparable to the wavelength of light, leading to autonomous and fast 

shape recovery of the microstructure. 

On the other hand, direct fabricating of high AR periodic structures by top-down 

lithographic approaches, especially in the nano-scale, is still challenging, due to 

limitations of DOF in photolithography, pattern collapse from capillary force and 

distortion due to solvent swelling. In Chapter 4 and 5, I discussed the fabrication of nano-

scale 1D periodic structures via HL from different photoresists, i.e. POSS and SU-8. The 

1D structures are of interests for gratings, plasma etching masks and photonic / phononic 

crystal applications. Using HL and supercritical drying, we could avoid the problems of 

DOF and pattern collapse when fabricating high AR 1D structures. However, solvent 

swelling induced instability could induce buckling of the 1D structures. In Chapter 4, we 

fabricated high AR 1D nanogratings with feature size ranging from 200 nm to 500 nm in 

line width, 600 nm - 2 μm in pitch, AR up to 10 via two-beam HL. The hybrid material, 

epoxy-POSS, was used as the negative-tone photoresist, which offered high thermal and 

mechanical stability. The periodicity of nanograting was tuned by incident beam angle, 

while the filling fraction was altered by several parameters, including exposure dosage, 

PAG concentration and PEB duration. The undesired surface roughness could be reduced 

by increasing POSS crosslinking density with longer exposure time. Furthermore, we 

showed that the epoxy-POSS nanogratings could be directly converted to silica-like 
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nanogratings upon calcination. We believe the hybrid nanostructures fabricated here 

would benefit other applications, such as hypersonic (GHz) phononic crystals by 

backfilling an elastomeric (e.g. PDMS) or stiff material (e.g. spin on glass) that have very 

different elastic constants. Compared to 1D lamellar multilayers, the vertical nanowalls 

could potentially offer larger bandgaps and Q values. Further, it is possible to convert the 

high AR 1D structure from epoxy-POSS to other inorganic materials with high refractive 

index, such as SiC, for ultrahigh temperature photonic applications. 

In Chapter 5, I fabricated long-range ordered 1D nanowalls and 2D nanowaves via 

holographic lithography and confined buckling. The extent of lateral undulation could be 

controlled by varying structure geometry and exposure dosage. Nanofibers were 

generated between the buckled nanowalls due to overlapping of the neighboring weakly 

crosslinked regions. By comparing experimental results with finite-element analysis, we 

investigated the buckling mechanism and confirmed that the nanofibers played a 

significant role that prevented deformed nanowalls from recovering to their original state, 

resulting in long-range ordered wavy structures. The ordered nanowave structure showed 

weaker reflecting color under an ambient light and lower transmittance compared to its 

straight counterpart, nanowalls; whereas the randomly deformed nanowaves appeared 

white. By combining HL and photolithography through a photomask, we demonstrated 

micropatterning of nanowaves vs. nanowalls for optical display. We believe that the 

investigation of buckling mechanism in 1D structures via nanofiber formation will 

provide new insights to fabricate highly ordered 2D and 3D structures by harnessing 

instability and pattern transformation. It will also allow us to create a rich library of 

complex patterns for advance applications, such as displays, waveguides, wire-grid linear 
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polarizers, sensors, and substrates for guiding cell proliferation.  

6.2 Outlook 

The study presented in this thesis offers critical insights new opportunities for many 

fundamental researches and practical applications. Besides the self-cleaning nature, 3D 

photonic structures with controllable roughness and high surface area are essentially 

attractive for energy related applications, such as dye sensitized solar cell (DSSC).
[1]

 

DSSC is typically composed of a porous layer of TiO2 as the electrode and a monolayer 

of charge-transfer dye coated on TiO2 for light harvesting. To enhance surface area for 

change transport, TiO2 nanoparticles assembly is used in conventional DSSC. Recently, it 

has been demonstrated that when the holographically patterned 3D photonic structure is 

converted to TiO2 as an electrode for DSSC, enhanced light efficiency was observed 

compared to inverted colloidal crystalline TiO2 attributed to the bi-continuous micro-

scale structure.
[2-3]

 Nevertheless, the overall efficiency of the solar cell, ~ 5%
[2]

, still lags 

behind that of the best DSSC. Now, we can convert the rough 3D POSS template to 

inverse TiO2 3D structures with roughness for absorbing more dyes, and they are 

expected to have higher efficiency as DSSC. 

As for the 2D tunable periodic structures, although we only demonstrated the 

diffraction color change in temperature responsive SMPs, there are actually a broad range 

of stimuli responsive material systems in the literature, allowing for fine-tuning the 

transition temperature, switching speed, degree of responsiveness, number of temporary 

states, and the type of stimulus. For example, light will offer better spatial control of the 

mechanical deformation and potential reversibility. We can synthesize Au nanorod 

(AuNR) with SMP composites by taking advantage of the photothermal effect of Au NRs 
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in the visible and IR region.
[4]

 The light responsiveness in such system has already been 

demonstrated by us with a 2D micro-pillar array. We can also incorporate this composite 

material into different periodic structures, and investigate the property change according 

to reversible tuning. 

For high AR 1D structures, there is strong interest using them as 1D hypersonic 

(GHz) phononic crystals, which will allow for manipulation of acoustic wave 

propagation.
[5]

 We are already collaborating with Prof. Fytas at Max Planck Institute to 

study hypersonic phononic behaviors from these structures, which already show 

promising results. Compared to 1D lamellar multilayers they worked before, the 1D 

vertical walls could potentially offer large bandgaps and Q values. It would be attractive 

to continue in this direction by varying the structure dimensions and material choices. On 

the other hand, the 2D nanowave structures could also benefit many fundamental studies, 

such as liquid crystal anchoring and guiding cell proliferation. 
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