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ABSTRACT 

 

LOCAL OPTOELECTRONIC PROPERTIES OF  

ZINC-PORPHYRIN/GOLD MOLECULAR INTERFACES 

 

Xi Chen 

Dr. Dawn A. Bonnell 

 

 

This research consists in designing a series of experiments to determine the 

molecular orbital energy levels of zinc-porphyrin molecule when vertically attached to 

Au(111) substrate.  To study the zinc-porphyrine molecular orbitals we use visible light 

of different wavelengths. Thiolated zinc-porphyrin oligomer molecules link to Au(111) 

surface, embedded within an 1-octanethiol self-assembled monolayer. Current-Voltage 

characterization technique allow us to determine the electronic orbital structures of 

different zinc-porphyrin oligomer single molecules via scanning tunneling microscope. 

Coupling lasers of different wavelengths and the tunneling junction, illumination effect 

on the molecular orbital energy levels of zinc-porphyrin molecules is investigated. The 

results  indicate that the experimental zinc-porphyrin orbital energy levels are 

qualitatively consistent with previous calculations and experiments of similar porphyrin 

molecules. With illumination at given wavelengths, HOMO-LUMO gaps decreases for 

zinc-porphyrin molecules, and under dark condition the dimer zinc-porphyrin molecule 
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shows a larger HOMO-LUMO gap than the monomer counterpart. We propose a charged 

molecule model to explain the light illumination effect, and we attribute the larger 

HOMO-LUMO gap in dimer molecule to a mixing of face-to-face bundling and tilting of 

the molecules. 
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CHAPTER 1 Introduction 

The past several decades witnessed the swift development of silicon-based micro- 

and nano-scale electronics. Taking advantages of the improvement in the “top-down” 

nanofabrication techniques [1], the size of metal-oxide-semiconductor field effect 

transistor (MOSFET) [2], the individual building block of the device chips, is getting 

smaller rapidly, resulting in the exponential growth in the processing power and speed, as 

described by Moore’s law [3]. However, the downsizing of silicon-based devices cannot 

continue forever, as the physics of materials and fabrication techniques reach their limits: 

electrons leak from one device to another; silicon cannot be doped uniformly at these 

scales; and photolithography process limits the device size due to diffraction. To further 

scale down other ideas emerged, such as adoption of high-k oxides [4] and development 

of novel device structures such as FinFETs [5].  

Scientists also looked beyond traditional semiconductor materials. Organic 

molecules can behave like electronic device components when attached to electrodes, as 

Aviram and Ratner proposed in their idea of a molecular rectifier in 1974 [6], and the 

invention and development of the scanning tunneling microscope provided a powerful 

tool to experimentally study the electron transport properties of single molecules. 

Research in molecular electronics intensified ever since [7], with devices such as 

molecular diodes [8-10], molecular transistors [11-16], and molecular switches and 

memory [17-22].  

Molecular electronics offers advantages such as smaller size, self-assembly, 

dynamical stereochemistry, and high tailorability through composition and geometry 
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[23]. Among different organic molecules, porphyrin molecules exist extensively in 

natural biological systems and manifest rich electronic and optical properties, and thus 

have been extensively studied. Previous work done on porphyrin molecule and its 

derivatives have moved the goal of molecular electronic devices closer to realization. 

With self-assembly, porphyrin networks on substrates can be constructed, structurally 

creating molecular electronic circuitry. Certain knowledge of electronic properties of 

porphyrin molecules has been achieved, revealing the electronic structures and transport 

mechanisms theoretically and experimentally. Light interaction with molecular 

conduction junction [24-27], and also, micro-scale nanoparticle based devices [28-

31]exploiting both the electronic and photonic properties of porphyrin molecules have 

been investigated, fabricated and characterized, further pointing to the possibilities of 

molecular optoelectronic devices realization. However to accomplish understanding and 

improving organic optoelectronic devices, we still need to understand the interaction of 

single porphyrin molecular electronic structure with light of different wavelengths, within 

a device configuration. 

The goal of this research is to use zinc-porphyrin as a model probe system to 

experimentally determine the molecular orbital energy levels of zinc-porphyrin 

molecules, as well as to understand the illumination effect on the modulation of 

porphyrin electronic structures. We want to explore, investigate, and address the 

following questions: What is the single porphyrin molecule electronic structure when 

chemisorbed on the substrate in a vertical configuration? How will the energy of the 

HOMO or LUMO levels change when porphyrin molecules absorb photons? What is the 

effect of the number of oligomers in the porphyrin wire on the molecular electronic 
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states? We carefully design a set of experiments to answer the above questions, exploring 

the optoelectronic properties of zinc-porphyrin single molecules under a device 

configuration using photo-assisted scanning tunneling microscope.  

The research goal presents us several challenges to be met. First regards the 

sample preparation. In order to measure the properties of the porphyrin molecules in a 

device configuration, we need to ensure that the porphyrin molecular wire is 

perpendicular to the substrate. Second and third challenges lie in the experimental setup 

of photo-assisted scanning tunneling microscopy. The laser needs to be properly aligned 

to illuminate the zinc-porphyrin molecules under the scanning tip, and to ensure the 

optimization of the illumination. Furthermore, we want to achieve a stable tunneling 

junction under light illumination, so all scanning tunneling spectra can be acquired under 

a stable condition to reveal correct information about the molecule.  

Through carefully designed experiments we are able to meet the challenges 

mentioned above. The first challenge is met by using 1-octanethiol molecule self-

assembled monolayers as hosting matrix, of which the zinc-porphyrin molecules are 

inserted in the defect areas. The second challenge is met by adjusting the laser spot 

position to maximize the zero voltage offset of the I-V spectra taken from an n-doped 

GaAs(100) sample. The third challenge is met by monitoring the Z piezo position of the 

scanning tunneling microscope to ensure a new thermal equilibrium state is reached after 

changing the illumination conditions.  

This dissertation is organized in the following manner. Chapter 2 serves as an 

introduction on porphyrin molecules, which covers the basics of the porphyrin molecule, 

and summarizes the current state of research. Section 2.1 describes the structure of the 
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most simple porphine molecules, as well as metalloporphyrins. Section 2.2 discusses 

optical spectroscopic properties of porphyrin molecules and how it is explained by M. 

Gouterman’s four-orbital model. Section 2.3 covers previous theoretical and 

experimental research on electronic properties of porphyrin molecules. 

Chapter 3 describes the experimental methods and procedures adopted in this 

research, and addresses challenges. Section 3.1 describes the preparation of mixed 

monolayer samples, where zinc-porphyrin molecules align perpendicular to the substrate 

with the assist of the 1-octanethiol self-assembled monolayer hosting matrix. Section 3.2 

describes the experimental setup and operation of photo-assisted scanning tunneling 

microscopy, including tuning the laser toward the tip-sample junction and relaxation of 

laser-induced heating. 

Chapter 4 presents all the results obtained using the experimental methods 

described in Chapter 3. Section 4.1 describes the optical absorption spectroscopy results 

on the PZnn molecules in solution, which provide some insights on the molecular orbital 

energy levels. Section 4.2 demonstrates the topography information of the mixed 

monolayer sample, confirming the insertion of PZnn molecules. Section 4.3 presents the 

scanning tunneling spectroscopy data under different illumination conditions, of different 

organic molecules: 1-octanethiol in Section 4.3.1, PZn1 molecule in Section 4.3.2, and 

PZn2 molecule in Section 4.3.3. 

Chapter 5 discusses the results associated with different molecules under different 

experimental conditions. Section 5.1 describes capacitive and resistive models used to 

obtain the molecular orbital energy levels from differentiated scanning tunneling 

spectroscopy measurements. Sections 5.2 and 5.3 describe the illumination effects on 
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PZn1 and PZn2 molecule electronic structures, especially HOMO-LUMO gaps, 

respectively. Section 5.4 covers the macrocycle coupling effect on molecular orbital 

energy levels of the zinc-porphyrin molecules in this research.  

Chapter 6 summarizes the major conclusions of this research, and proposes some 

possible future research directions, such as to improve the experiments, to theoretically 

calculate the electronic structures of the zinc-porphyrin molecules when vertically 

attached, to further study the light interaction with the zinc-porphyrin molecules, and to 

fabricate zinc-porphyrin based optoelectronic devices. 

Let us start with our research in the field of organic optoelectronic where we 

address fundamental aspects of the interaction of Zn-porphyrin molecules and visible 

light. The relevance of porphyrin encompasses several fields in science, from biological 

systems to chemical and physical properties that is the focus of the present work. Such 

broad scientific output is motivating and encouraging to contribute fundamentals aspects 

of porphyrin-light interaction to several branches of the scientific community. Next 

chapter addresses the necessary introduction to porphyrin molecules. 
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CHAPTER 2 Structure and Properties of Porphyrin Molecule 

Research on molecular electronics has intensified since Aviram and Ratner’s 

theoretical proposal of a molecular rectifier in 1974 [6], and now has grown into a 

prosperous interdisciplinary field. With the high tunability of electronic properties via 

control of the chemical structures and the highly-dense integration possibility via self-

assembly, organic molecules present great potential toward the realization of the next 

generation of electronic devices. Among all classes of organic molecules, natural photo-

activated proteins, with porphyrin macrocycles as active cores, manifest rich electronic 

and photonic properties and thus have raised the possibility of optoelectronic device 

applications. This chapter serves as an introduction on porphyrin molecules. Section 2.1 

describes the structure of porphyrin molecule, while section 2.2 and 2.3 discusses 

previous research done on the optical spectroscopy and electronic properties of porphyrin 

molecules respectively.  

2.1 Structure of Porphyrin 

Porphyrin molecules comprise a family of organic compounds that exist 

extensively in natural biological systems. The simplest porphyrin molecule is porphine, 

which is structurally tetrapyrroles, as shown in Figure 2.1. The porphine is a planar 

macrocycle formed by four pyrrole molecules interconnected via methine bridging units. 

The carbon atoms are labeled depending on their positions; a) α positions, next to 

nitrogen, b) β positions, opposite to nitrogen in the pyrroles, and c) meso-carbons, in the 

bridging methine. 

The alternating double bonds in the porphine macrocycle provide the delocalized 

π electrons. The porphine macrocycle has a total of 22 π electrons; however, only 18 of 
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them are delocalized (bold bond in Figure 2.1 left), making the macrocycle a highly 

conjugated system. Two double bonds located on the two diagonal pyrrole rings 

respectively are excluded from the conjugated system and, therefore, can be easily 

reduced, forming chlorin, or bacteriochlorin (Figure 2.2), depending on which double 

bond is reduced.  

  

Figure 2.1 Simplest porphyrin: Porphine. Left: Molecular structure. Bonds in bold line 

represent the π electron circuit. Right: 3D structure. Blue: Nitrogen; Dark gray: Carbon; 

Light Gray: Hydrogen. Dash line shows the π electron circuit. 

 

Figure 2.2 Chlorin (Left) and Bacteriochlorin (Right) structures.  
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The size of the porphyrin macrocycle makes it easy to accommodate different 

metal ions, such as Zn, Fe, Co, Ni, etc. in the center, producing metalloporphyrins [32]. 

The two diagonal nitrogen atoms deprotonate and bind to the metal ion forming a 

dianionic ligand (Figure 2.3). Due to the size of the incorporated metal, the molecule 

might not remain planar, but can be distorted. Although the color from the porphyrin 

mainly comes from electron transition from the π* to π porphyrin ring orbitals, the bound 

metal’s d orbitals do interact with π orbitals, affecting their energies; therefore, causing 

color differences [33].  

 

Figure 2.3 Structure of metalloporphryin cycle. M is the incorporated metal atom.  

 

Metalloporphyrins not only give multiple colors to the compound, but also serve 

as active components in compounds or protein complexes, which play crucial roles in 

biological processes [34]. Depending on the metal ions bound to the porphyrin 

macrocycles, the functions vary from diatomic gas transfer (heme in hemoglobin), to 

light harvesting and energy conversion (Mg-chlorin in chlorophyll), to electron transfer 

(heme in cytochrome c). 
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Chlorin plays the crucial role in photosynthesis, converting solar energy into 

chemical energy. Such capability of light harvesting, electron and energy transfer 

motivate researchers to study the optical and electronic properties of porphyrin 

macrocycles. 

2.2 Optical Spectroscopy Properties of Porphyrin 

Multiple efforts were taken to study optical properties of porphyrin. Since 

porphyrins often exhibit intense absorption bands within the wavelength range of visible 

light, which is the basis of the characteristic colors, UV-Visible absorption spectroscopy 

is, therefore, one of the most prevalent experiments on porphyrin. Figure 2.4 shows 

typical tetraphenylporphyrin (H2TPP) and zinc-tetraphenylporphyrin (ZnTPP) UV-visible 

absorption spectra [35].  

 

Figure 2.4 Steady state absorption spectra in hexane at 300 K of (a) H2TPP (b) ZnTPP. 

Adapted from Ref. [35]. 

Generally, two distinct regions present in the UV-visible absorption spectrum of 

porphyrin, similar to Figure 2.4. The first involving an intense peak around 400nm is 

referred as B band or Soret band, and involves a strong electronic transition from the 
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ground state, S0, to the second excited state, S2. The second region with weak peaks in a 

range around 550nm are referred to as Q bands, and involve weak electronic transitions 

from the ground state, S0, to the first excited state, S1. As shown in Figure 2.4, Q bands 

can present between two and four weak peaks with different intensities. The number and 

intensity of the Q bands are affected by the metalation and substitution groups on the 

macrocycle.  

 

Figure 2.5 Gouterman four-orbital model, explaining the optical absorption spectra of 

simple porphryin molecules. Adapted from Ref. [36]  

 

To explain Q and B band positions and multiplicities of porphyrin optical 

absorption spectra, M. Gouterman proposed a four-orbital model in the 1960s [37] . The 
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theory states that the absorption bands involve transitions between two highest occupied 

molecular orbitals (HOMO) and two lowest unoccupied molecular orbitals (LUMO), and 

the metal centers, as well as the substituents on the macrocycle, affect the energies of 

those orbitals. Figure 2.5 describes the HOMO and LUMO levels for porphyrin without a 

metal center. Further details in the porphyrin energy levels indicate that the LUMOs (b1, 

b2) are degenerate while the HOMOs (c1, c2) consist of two non-degenerate orbitals, 

owing to the molecular vibrations within the porphyrin macrocycle, see Figure 2.6.  

 

Figure 2.6 Electron transitions from ground state to excited states of porphyrin 

molecules, described by Gouterman four-orbital model.  

A mathematical technique called configuration interaction (CI) can find the best 

molecular orbital wave functions (more stable) for the ground and excited states. CI 

describes the interaction of different electronic states (configuration), by mixing bonding 

and antibonding wave functions with same symmetry. The mixing of wave functions 

gives rise to energy splitting of two excited states, one corresponding to the Soret or B 

band, the other associated with the Q bands. The singlet states from transitions of c1 to b1 
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and c2 to b2 have similar symmetry, while singlet states from c2 to b1 and c1 to b2 

transitions have similar symmetry. Therefore, by mixing wave functions with similar 

symmetries, CI generates a new set of more stable wave functions, which represent the 

excited states. All singlet states have similar energy, and consequently constructive 

interference corresponds to one strong B band, while the destructive interference yields 

two transitions with different intensities, corresponding to weak Q bands. 

Metalloporphyrin macrocycles are structurally equivalent in y and z directions and 

therefore have higher symmetry compared to free base porphyrin (Figure 2.1, 2.3), thus 

resulting in the two peaks of Q bands (Figure 2.4b). For free base porphyrin, the y and z 

components each have two Q bands, resulting in a total of four peaks (Figure 2.4a).  

At this stage we see how porphyrin molecule interacts with UV and visible lights. 

With optical spectroscopy of the porphyrin molecule, the preliminary electronic structure 

information is revealed. More powerful theoretical and experimental tools have been used 

to examine the electronic properties of porphyrin macrocycles, and are reviewed in the 

next section.  

2.3 Electronic Properties of Porphyrin 

Applications in molecular electronic devices dictate that porphyrin molecules 

need to be attached to solid surfaces and to operate in ambient environments. The 

properties of porphyrin molecules, as well as the porphyrin-substrate interface, in 

ambient conditions need to be understood. J. Otsuki describes achieving molecular 

electronics with porphyrin (Figure 2.7) in his review [38]. Considerable progress has 

been made on the structure side, including designed order self-assembled porphyrin 

monolayers on highly ordered pyrolytic graphite (HOPG) and metal substrates. For the 
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much more challenging step of constructing non-periodic surface assemblies, which is 

essential toward the realization of molecular electronic circuits, no practical approaches 

have been demonstrated via the bottom-up approach to date. When it comes to the 

perspective of function in molecular electronics, research hasn’t reached beyond the 

initial stage, and is still focused on the investigation of electronic properties of porphyrin-

related molecules. 

 

Figure 2.7 Map toward realization of molecular electronics in porphyrin. Achievements 

have been made in the area in bold font, while topics in plain letter are future challenges. 

Adapted from Ref. [38] 

Toward understanding functional aspect, there are a number of investigations of 

the porphyrin molecular electronic properties theoretically via density functional theory 

(DFT) [39-42] and symmetry adapted cluster – configuration interaction (SAC-CI) [43], 

and also experimentally via scanning tunneling microscopy/spectroscopy (STM/STS) 

[44-56] and STM breakjunctions [57-62]. 

As previously stated in Section 2.2, the Gouterman four-orbital theory explains 

the optical spectroscopy of porphyrin molecule well in terms of peak intensities and 

multiplicities. Although it reveals important information, the theory only covers four 

orbitals that are close to the HOMO/LUMO levels, and does not describe the whole 

molecular orbital structure of porphyrin.  
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Figure 2.8 Structure (Top) and molecular orbital energy level diagram for the free base 

porphyrin and porphyrins with different meso-substituents. Solid lines represent HOMOs 

while dotted lines represent LUMOs. Adapted from Ref. [39] 

DFT calculations have been carried out on different porphyrin molecules in an 

attempt to determine the full molecular orbital structure. N. Venkataramanan et al. [39] 

used DFT and time-dependent DFT to study the electronic structure of different 

symmetries of meso-substituted porphyrin molecules, and constructed a frontier 

molecular orbital energy level diagram (Figure 2.8). It shows that the degeneracy of 
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HOMO and HOMO-1 orbitals varies with different meso-substituents. HOMO and 

LUMO levels are lower for electron-withdrawing (CyP, ChP, FlP) meso-substituent 

groups, while higher for electron-donating (MeP, PP) meso-substituent groups. Simulated 

absorption spectra were also constructed, showing that porphyrins with meso-substituted 

electron donating groups exhibit redshift in Q bands, while an increase of peak intensity 

in B band is associated with electron withdrawing group substituents.  

 

Figure 2.9 Molecular orbital energy levels for TPP and MTPPs. Moving from Fe to Zn 

across the periodic table, the energies of the metal d-orbitals become lower. Adapted 

from Ref. [40] 
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M. -S. Liao and S. Scheinera performed systematic DFT calculations [40], 

determining not only molecular orbital structures, but also binding energies, ionization 

potentials, and electron affinities of a porphyrin molecule with different metalations, 

charges, axial ligands and peripheral substitutions. Results show that (Figure 2.9), 

molecular orbitals of porphyrin molecules vary with d orbitals of the incorporated metal 

ion. For Fe, Co, Ni, and Cu, the HOMOs are metal 3d-like, while for Zn the 3d-orbitals 

are lower than the porphyrin π orbitals in energy. 

 

Figure 2.10 Structure, experimental spectrum and theoretical spectrum of zinc porphyrin 

meso-meso linked dimer Zn2PMM (left) and zinc porphyrin doubly fused dimer Zn2PDF 

(right). Adapted from Ref. [43] 

T. Miyahara et al [43] studied ground and excited states of zinc porphyrin 

monomers, meso-meso linked (Zn2PMM), and doubly fused (Zn2PDF) zinc porphyrin 

dimers with SAC/SAC-CI method. Electronic orbital level diagrams of all three 
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molecules were constructed, and such information was further used to study the 

molecular excited state energies and optical spectra. For Zn2PMM, the dimerization 

further splits the HOMO and HOMO-1, as well as LUMOs, resulting in the split of the 

Soret band (Figure 2.10 left). For Zn2PDF, molecular orbital levels became more 

complicated since the coupling of two macrocycles brought in more delocalized π 

electrons, resulting much smaller HOMO-LUMO energy gap, and a further split of the 

Soret band (Figure 2.10 right).  

 

Figure 2.11 STM topography image of (a) CoTPP and (b) NiTPP on Au(111). Combined 

results of UPS (curve C), STS (curve A), and Normal tunneling intensity vs. voltage 

(curve B) of (c) CoTPP and (d) NiTPP. Curvepositions on the x-axis are adjusted for 

differences in device work function. Adapted from Ref. [44, 45] 
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In addition to theoretical calculations, a variety of experiments have been carried 

out to probe the electronic structures of porphyrin molecules. L. Scudiero et al. [44, 45] 

conducted a series of experiments performing STM and STS on Ni and Co 

tetraphenylporphyrin (NiTPP and CoTPP) self-assembled monolayers on Au(111) 

surface. STS indicates π HOMO and π* LUMO for NiTPP and CoTPP lie at about -

1.2eV and 1.7eV with respect to the Fermi level of the Pt/Ir tip, as shown in Figure 2.11. 

In CoTPP STS a small peak at -0.1eV was also observed, and is attributed to half-filled 

dz
2
 orbital on the Co atom. Such a peak was not present in STS spectra of NiTPP since 

dz
2
 orbital of Ni atom is filled. Similar results have been published on Ni 

octaethylporphyrin as well [46]. 

 

Figure 2.12 STS spectrum and conductance maps of different energies of single AuTPP
+
 

cations on Au(111). Multiple Gaussian peaks are fitted to data and assigned to different 

states. Adapted from Ref. [49] 

S. Müllegger et al. [48, 49] did low temperature STS studies on AuTPP single 

molecules on the Au(111) surface. The research investigated the HOMO-LUMO 

structure both theoretically and experimentally, and produced electronic state maps under 
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constant current conditions, showing spatially resolved density of states within a single 

porphyrin macrocycle (Figure 2.12). The STS spectra exhibit a significant deviation of 

HOMO-LUMO gap energy from DFT calculated value in gas phase, pointing to 

molecule-substrate interaction. The STS dI/dV spectra was further deconvoluted into 

multiple Gaussian peaks with each peak associated with different molecular orbitals and  

Au(111) surface or interface states. DFT calculations were also conducted, investigating 

the interaction of the porphyrin and Au(111) surface. It was concluded that Au(III) d 

states mix to HOMO and LUMO of the porphyrin molecule.  Furthermore, the 

contribution of Au d orbitals can be tuned.  

A particular interesting study was performed by Y. Majima et al [50] on 

Tribenzosubporphine via STM/STS. Tribenzosubporphine is a triangular shaped 

molecule with 14 delocalized π electrons, which makes it aromatic. Reacted with a self-

assembled monolayer of 1-heptanethiol molecules on Au(111) surface, the subporphine 

molecule was anchored to the substrate and electronically decoupled from the gold 

surface (Figure 2.13a). STS measurements were performed with tungsten tip both on the 

subporphine molecule and bare SAMs (Figure 2.13c). A capacitor in series model was 

used to evaluate the HOMO-LUMO energy gap, with the SAM as one insulating 

capacitance layer, and the tip-molecule vacuum distance as the other. The HOMO-

LUMO gap was evaluated as 2.5eV. Negative differential resistance (NDR) was observed 

when the subporphine adsorbed onto the STM tip (Figure 2.13d). Such NDR phenomena 

result from resonant tunneling through the frontier molecular orbitals of the 

tribenzosubporphine and its cation adsorbed on the tip.  
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Figure 2.13 (a) Molecular structure of Tribenzosubporphine and schematic of its 

attachment to the self-assembled monolayer. (b) DFT calculated molecular orbitals and 

their energy levels. (c) STS measurements (I-V and dI/dV -V) on 1-heptanethiol (top) and 

tribenzosubporphine (bottom) with bare W tip. (d) STS measurements (I-V and dI/dV -V) 

on 1-heptanethiol (top) and tribenzosubporphine (bottom) with the subporphine cation 

anchored to the tip. Notice the NDR happens with the subporphine cation attached to the 

tip when scanning over the subporphine. Adapted from Ref. [50] 

Other studies attempted to examine perpendicular configuration of the porphyrin 

at the substrate [51, 52]. To achieve the perpendicular geometry, alkanethiol self-
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assembled monolayers act as a matrix and support for thiolated porphyrin macrocycles. 

Current voltage spectra were collected to demonstrate the difference of transport between 

porphyrin molecule and the alkanethiol supporting matrix; however, there were no 

attempts to show detailed electronic state structures. 

 

Figure 2.14 (a) Charge transport pathways through a single tetrapyridylporphyrin (TPyP) 

molecule in an STM break junction. Left: the longer “para” position, Right: the shorter 

“ortho” position. (b) Current histogram of Top: para-DPyP, Bottom: ortho-DPyP  fitted 

by a gaussian plus exponential function as a guide to the eye (yellow curve). Inset: 

molecular structure. (c) Schematic of STM break junction-based single molecule 

conductance measurements for dithiol terminated PZnn compounds. (d) Resistance vs 

length of the molecule. The red and blue lines correspond to high conductance (HC) and 

low conductance (LC) data. The β values are calculated based on R = R0exp(βL). 

Adapted from Ref. [58, 59] 
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STM breakjunctions were adopted to study the charge transport within single 

porphyrin or porphyrin oligomer molecular wires. Z. Li et al. [58] performed STM 

breakjunction study of porphyrin with four pyridyl meso-substituents (TPyP) and similar 

structures (ortho-DPyP and para-DPyP). By comparing current histograms of all three 

molecules, it was found that the charge transport pathway was dominated by the farther 

anchoring groups in “para” position, rather than the shorter path between the neighboring 

groups in “ortho” positions (Figure 2.14a, b). The same group also conducted research on 

dithiolated porphyrin oligomer molecular wires [59]. Each wire exhibits dual molecular 

conductance, while molecular resistance across the break junction increases linearly with 

respect to the molecular wire length in each conductance regime. These properties are 

described with the incoherent hopping transport mechanism (Figure 2.14c, d). In the low 

conductance regime, charge carriers transport through fully stretched molecules, while in 

the high conductance regime, charge carriers transport through the molecules bound now 

at an angle to the electrode surface normal. 

With fundamental electronic properties of porphyrin molecule being probed 

optically and electronically, few experimental efforts were made to understand the effect 

of the interaction with light on porphyrin electronic structures. To achieve that goal, 

experiments were conducted, with the procedures described in the next Chapter. 
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CHAPTER 3 Experimental methods and Procedures 

The work on the porphyrin molecule and its derivatives brings the goal of 

molecular electronic devices closer to realization. To exploit porphyrin electronic and 

photonic properties to make optoelectronic devices, we need to understand the interaction 

of porphyrin electronic structure with light within a device configuration. Section 3.1 

includes the preparation of the mixed monolayer sample where the porphyrin achieves 

the device configuration, and section 3.2 describes the setup and operation of scanning 

probe microscopy/spectroscopy with light illumination at tip-sample junction.  

3.1 Mixed Monolayer Preparation 

To explore porphyrin based optoelectronic devices, we need to understand the 

interaction of the porphyrin electronic structure with light. The sample needs to be 

prepared with the porphyrin molecules in a device configuration with the longitudinal 

axis of the porphyrin molecule perpendicular to the substrate. To achieve the 

configuration a mixed monolayer of alkanethiol and zinc-porphyrin molecules were 

prepared. First, α-thiol terminated meso-to-meso ethyne bridged (porphinato)zinc(II) 

supermolecules (PZnn molecule) were synthesized as previously reported [28-30, 63-66], 

as shown in Figure 3.1. Such molecules are fully conjugated, have large absorption cross-

sections and demonstrate near barrier-less charge transport properties [64-66].  
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Figure 3.1 Synthesis of a-Acetythio-Terminated (Porphinato)Zn(II) Arrays. (i) 

Pd(PPh3)4, THF/DIEA, 35-40C; (ii) Pd2dba3, P(o-tol)3, THF/Et3N, 60C; (iii) TBAF, 

THF, 0C; Adapted from Ref. [63] 

3.1.1 Alkanethiol Self-Assembled Monolayer 

Self-assembled monolayers (SAMs) are ordered molecular monolayers formed 

spontaneously through chemisorption of the head group of a surfactant molecule onto the 

substrate. Of all molecular thin films, one of the most studied are the self-assembled 

monolayers of alkanethiol molecules on Au(111) surface [67, 68].  

Alkanethiol is a hydrocarbon chain of variable length with a sulfur head group, as 

show in in Figure 3.2. Once adsorbed on Au(111) surface, the molecule loses a hydrogen 

atom and binds to the substrate through the sulfur head group, forming a thiolate (Au-S) 

bond [69]. Driven by the high affinity of the thiolate bond, as well as hydrophobic 

intermolecular interactions between hydrocarbon chains, alkanethiol molecules form 

closed packed structures on Au(111) surfaces [68]. Due to the simplicity and flexibility of 

the preparation procedure, the stability of the monolayer, and the tunability of surface 
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properties, alkanethiol SAMs were often adopted to build more complex nanoscale 

structures [70]. 

 

Figure 3.2 Schematic of a 1-octanethiol molecule bound to substrate via thiol group. 

Yellow: sulfur atom; Gray: carbon atoms; White: hydrogen atoms. Here θ refers to the tilt 

angle of the molecular axis from surface normal of the substrate; χ describes the angle of 

precession and ψ is the twist angle which defines the angle of rotation around the 

hydrocarbon chain axis. 

Previous studies [71-73] showed that the alkanethiol molecules tilt ~30° from the 

surface normal, forming a (√3×√3)R30° hexagonal closed-packed overlayer with unit cell 

spacing of 4.97 Å. The overlayer structure was confirmed via low energy helium 

diffraction [71], atomic force microscopy [74] and scanning tunneling microscopy [75] 

studies. A superstructure of c(4×2) also presented in STM studies, showing larger 

apparent height than (√3×√3)R30° structure [75, 76]. The origin of the c(4×2) 

superstructure has been discussed in the context of hypotheses such as; a) different 
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molecular tilt angles θ [77], b) different twist angles ψ of hydrocarbon chain [78], and c) 

unsymmetrical location of the sulfur headgroups [79]. However, the underlying principle 

for the formation of the c(4×2) superlattice is still under discussion. Defect sites such as 

vacancies of the adsorbate or grain boundaries usually exist and can be observed from 

STM images, and are crucial for the next step of the mixed monolayer preparation.  

In our experiment we choose 1-octanethiol (Alfa Aesar, 98%) as the molecule to 

form SAMs structure. Au(111) thin films on mica (purchased from Agilent Technologies) 

were first cut to fit in the STM sample holder, then flame annealed with hydrogen for 30 

seconds to achieve an atomically flat Au(111) surface. About 0.05 ml (one drop) of 1-

octanethiol was dropped on the bottom of the micro reaction vessel, where the Au(111) 

samples were inserted. The reaction vessel was capped and incubated in oven at about 

75°C for 15 minutes. Longer time will reduce the density of defects of SAMs, which is 

disadvantageous for the subsequent steps. The preparation of SAMs is finished by a rinse 

and dry step with 2-propanol and ultra high purity nitrogen. After this procedure the 1-

octanethiol SAMs were ready for the insertion of the PZnn molecule (Figure 3.3). 

 

Figure 3.3 Schematic of 1-octanethiol SAMs on substrate. Condensed phase forms while 

defects such as vacancies and grain boundaries exist. 
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3.1.2 Zinc-Porphyrin Molecule Insertion 

In order to measure the electronic properties of isolated single porphyrin 

molecules while attached to an electrode, the molecules need to be separated on the 

substrate with the long axis of the molecules aligned perpendicular to the substrate. To 

ensure the vertical alignment as well as individual molecule separation, 1-octanethiol 

SAMs were used as host matrix. 

The adsorption process of the alkanethiol SAMs is highly dynamic; the 

alkanethiol molecules on the surface exchange with thiol molecules in the solution [80]. 

Multiple types of defects are found in SAMs, such as molecular vacancies, gold surface 

step edges and monolayer grain boundaries. In the vicinity of those defect sites, 

molecular exchange is expected to be more active, since at those sites adsorbed 

alkanethiol molecules are more accessible to the solvent [70]. As a result the defects can 

be utilized to achieve selective chemisorption of a second adsorbate molecule. The above 

mentioned methods have been previously adopted and demonstrated with different 

molecules such as: a) phenylene ethynylene [81], b) 11-mercaptoundecanoic acid [82], 

and c) other porphyrin molecules [51, 52]. We refer to “insertion” as the process of 

attaching the PZnn molecules in the SAMs-substrate ensemble. 

As shown schematically in Figure 3.4, thiolated PZnn (only n=1 shown in figure) 

molecules were chemisorbed on the Au(111) surface via the Au-S bond, within or in the 

vicinity of defects of the 1-octanethiol SAMs.  
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Figure 3.4 Schematic of mixed monolayer of PZn1 molecules and 1-octanethiol 

molecules on substrate. 

 

To achieve the insertion, approximately 1µM concentration solution of S-acetyl-

protected PZnn molecules was prepared in distilled THF, and then 6-10µL NH4OH 

solution (28 to 30 w/w %, Certified ACS Plus, Fisher Chemical) per 1mL of THF was 

added, exposing the thiol functional group. The freshly prepared 1-octanethiol SAMs on 

gold film was then immersed into PZnn solution for a specified time between 1 hour and 

48 hours. A list of experimental parameters used in order to optimize the PZnn 

chemisorption, is shown in Tables 3.1 and 3.2. Then the sample was removed from the 

solution and repeatedly rinsed with distilled THF and dried with flowing nitrogen (3 

times). All procedures involving PZnn molecules were accomplished in a glove box 

purged with ultra high purity nitrogen.  
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Table 3.1 Parameters used in attempt to achieve PZn1 molecules insertion into 1-

octanethiol matrix. 

NH4OH 

solution/THF 

4µL/mL 6µL/mL 8µL/mL 10µL/mL 

NH4OH/THF 

Time 

1.03g/L 1.55g/L 2.07g/L 2.58g/L 

1hr No PZn1 No PZn1 Low Density 

PZn1 stable 

occasionally 

2hrs No PZn1 No PZn1 PZn1 not stable N/A 

3hrs No PZn1 Low Density PZn1 not stable N/A 

24hrs Low Density Low Density 

PZn1 stable 

occasionally 

PZn1 stable 

48hrs Low Density Low Density PZn1 stable N/A 
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Table 3.2 Parameters used in attempt to achieve PZn2 molecules insertion into 1-

octanethiol matrix. 

NH4OH 

solution/THF 

4µL/mL 6µL/mL 8µL/mL 10µL/mL 

NH4OH/THF 

Time 

1.03g/L 1.55g/L 2.07g/L 2.58g/L 

1hr No PZn2 N/A N/A N/A 

2hrs N/A No PZn2 N/A N/A 

24hrs Low Density Low Density PZn2 stable No PZn2 

48hrs Low Density PZn2 stable PZn2 stable N/A 

 

3.2 Scanning Tunneling Microscopy/Spectroscopy 

Scanning tunneling microscopy/spectroscopy (STM/STS) is a powerful tool in 

studying 3D information about sample surface structure at atomic or molecular levels. 

Since the original development by Gerd Binnig and Heinrich Rohrer [83], the application 

of STM has expanded to include topography images at atomic resolution [84], electronic 

structure information [85], atom and molecule manipulation [86], lithography [87].  

STM operates with precise control of tip-sample junction distance at the sub-

nanometer scale. Figure 3.5 shows a typical STM setup. Under the applied voltage, the 

electrons tunnel through the tip-sample gap, forming a current flow. The current scales 

exponentially with the tip-sample distance, and thus can be monitored and used as the 

feedback mechanism for maintaining the constant tip-sample gap. With a biased tip raster 
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scanning across the surface under a setpoint of tunneling current, surface topographical 

information can be investigated at the atomic level.  

 

Figure 3.5 Schematic drawing of Scanning Tunneling Microscopy/Spectroscopy setup. 

Spheres in the sample represent atoms. Topographical information can be acquired as 

illustrated by the solid line with bumps.  

At locations of interest, while the tip-sample distance fixed, measurement of the 

current is taken as a function of voltage, yielding information on the local electronic 

structure. Such measurements are referred to as scanning tunneling spectroscopy (STS). 

The measured tunneling current contains the information of local density of states 

(LDOS) of the sample ρS and tip ρT, according to the equation 3.1 [88], 

                          
  

 
                                                            (3.1) 

where EF is Fermi energy of the tip and V is the applied bias across the tip-sample 

junction. With the approximation of a constant tip DOS, the IV curve is essentially 

probing the LDOS of the location of interest. The derivative dI/dV can be directly related 

to LDOS as described in equation 3.2.  

  

  
                                                                                                    (3.2) 
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In our experiment, by varying the applied voltage, the Fermi energy level of the 

tip with respect to the sample changes, thus different electronic orbitals of the PZnn single 

molecule can be probed. As illustrated in Figure 3.6, when the sample is under positive 

bias, the EF of the tip will be lower than that of the substrate and could be in the same 

energy level as the PZnn HOMO, so electrons can transport through resonant tunneling 

from the PZnn HOMO into the STM tip. When the tip is under negative bias, the EF of the 

tip will be higher than the substrate and, consequently, could match the energy level of 

PZnn LUMO, injecting electrons into the PZnn molecule. This enables us to examine the 

electronic structure of the ground state, as well as the excited state of PZnn single 

molecule.  

 

Figure 3.6 Illustration of how STS probes electron orbital alignment. Left: negative 

sample bias. Right: positive sample bias. 

In our experiments all STM/STS measurements were acquired under high vacuum 

(HV) conditions and room temperature. Pt/Ir (80/20) tips were mechanically prepared 

with a wire cutter (Tronex Technology Inc.). Mixed monolayer sample were prepared as 

mentioned in Chapter 3.1, and then loaded in the custom made sample holder (Figure 3.7) 

so the sample bias would be directly applied to the Au(111) surface. After the sample and 

tip were loaded, the vacuum chamber was pumped down with a mechanical pump then a 
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turbo pump to a typical pressure of about 10
-5

 Torr. At this pressure molecular resolution 

images can be achieved using an Omicron UHV STM 1 system operated by an RHK 

SPM1000 control system. Typical imaging conditions of the current setpoint and sample 

bias voltage were 300pA, +2.5V.  

 

Figure 3.7 Image of STM sample holder. Since gold film was deposited on the insulating 

mica, to ensure contact with Au(111) film, four pieces of Ta strips were spot welded on a 

Omicron STM Ta sample substrate to hold the sample in place. 

To aqcuire spectroscopy data on the molecule of interest, a series of STM scans 

were conducted. A topographical image was first scanned to ensure the successful 

formation of the alkanethiol SAMs, and to locate isolated PZnn molecules. The possible 

thermal drift was then quantified by comparing subsequent scan of the same area, which 

could be as large as 5nm/frame, depending on scanning speed. A third scan was done, 

during which IV spectra were collected over a voltage range of -2.5V to 2.5V at the 

defined locations, with the feedback loop temporarily turned off, maintaining a fixed tip-

sample gap distance during the voltage ramp. Current data collected over the molecule of 



 

34 
 

interest (alkanethiol or PZnn) of each defined region (Figure 3.8) were then averaged 

respectively, eliminating the occasional spikes caused by instrumentation. The derivative 

of IV curves was then calculated (Nanotec WSxM 5.0 and OriginPro 8.0) and plotted to 

show the information of local density of states. Such STM/STS experiments were 

performed under both dark and different illumination conditions, on different PZnn 

molecules.  

 

Figure 3.8 STM Images of different PZn1 single molecules embedded in SAM matrix. IV 

spectra were collected at the blue spots in (a) defined region; (b) defined line. Spectra 

from the blue spots on top of PZn1 molecule were averaged to give the electronic states 

information of PZn1 molecule, while spectra from the blue spots on top of 1-octanethiol 

were averaged and used as reference.  

3.2.1 Photo-assisted Scanning Tunneling Microscopy/Spectroscopy 

STM is able to provide atomic level spatial resolution, yet when it comes to 

acquiring information of different chemical species STM has a limit. While optical 

spectroscopy can access detailed electronic states to the vibrational chemical bond level, 

it hardly provides localized information. To gain high spatial resolution and detailed 

information of the electronic structure simultaneously, a combination of STM and optical 

excitation was proposed and described as “photo-assisted STM”.  
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In general there are three fundamental methods of photo-assisted STM [89]: (a) 

STM/STS measurement before and after light irradiation; (b) STM/STS measurement 

with and without light irradiation; (c) STM/STS measurement with irradiation of light 

with different parameters (such as wavelengths).  

In 2002 Grafström reviewed [90] the progress in the field since the first 

photoassisted STM measurement in 1987 [91], covering the research done on light-

induced effects in STM including thermal effects, nonlinear effects, surface photovoltage 

on semiconductors, surface plasmon effects and others. The majority of the photoassisted 

STM measurements were conducted on semiconductors, investigating surface photo-

voltages and surface density of states.  

A decade has passed since, yet not many photoasisted STM studies have been 

carried out on organic molecules [25, 92-97]. As summarized in Chapter 2, the porphyrin 

molecule, as one of potential optoelectronic device candidates, was the target of STM 

research, yet with the exception of the Ho group [98], photoassisted STM research on 

porphyrin has not been reported. Ho’s experiments coupled laser to the STM junction, 

achieving high spatial resolution at atomic scale within single Mg porphyrin molecule on 

oxidized NiAl(110) surfaces. With the double barrier junction the single porphyrin 

molecule can be charged and discharged at certain threshold voltage, and such threshold 

voltage varies with the energy of the coupling light, providing information on the energy 

level of a higher LUMO+1, which was 1.55eV above the LUMO experimentally, 

consistent with the 1.6eV from DFT calculations. However in Ho’s experiments the 

porphyrin macrocycle lied parallel to the substrate, so that the properties were not 

investigated under a device configuration.  
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In our experiments diode lasers of wavelengths of interest were mounted outside 

the vacuum chamber with an x-y-z translational mini-stage, and adjusted to an angle so 

incident light was brought to tip-sample junction through a viewport, as shown in Figure 

3.9. STM tip was brought to vicinity of the sample surface, and then laser was turned on 

and tuned to tip-sample junction, and kept on for the final tip approach and data 

acquisition. The data under dark and different illumination condition were then 

compared. The specifications of the laser used in the experiments are listed in table 3.3. 

 

 

 

Figure 3.9 Schematic drawing and photo of STM/STS setup 
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Table 3.3 Specifications of continuous wave diode Lasers used in the STS 

measurements.  

Laser Color Wavelengths (nm) Power (mW) Photon Energy (eV) 

Blue 405 5 3.06 

Green 533 3 2.33 

Red 655 5 1.89 

To combine the STM with light illumination, several issues need to be addressed 

including laser tuning and achieving a stable tunneling gap under illumination. 

3.2.2 Tuning the Laser toward the Tip-Sample Junction 

The first challenge is tuning the laser to properly illuminate the sample surface 

below the tip, and optimize the angle of irradiation, as well as the position of light spot to 

maximize the effect of the light. Possible shadowing effect by the STM tip might 

influence the illumination of the molecule. Also the laser beam has an intensity profile 

with a width larger than the tunneling gap distance, so ability to adjust the alignment of 

the laser beam is required to make sure the local area probed by STM is illuminated 

under the beam intensity maximum.  

Using an x-y-z translational mini-stage attached directly on the STM chamber, we 

were able to tune the position and angle of laser irradiation with high precision, as shown 

in Figure 3.9. A 405 nm 20mW laser was first tuned toward the tip-sample junction 

coarsely with observation by eye, and then finely adjusted with position monitored via a 

CCD camera. The wavelength of the laser was chosen because it overlaps with the optical 
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absorption B-band (peaked around 440nm) of PZnn molecule, and we expect to see light 

induced effect in STS. To optimize the laser alignment, IV spectra were repeatedly 

collected on an n-doped GaAs (100) sample under illumination, and laser spot position is 

adjusted until current offset at zero voltage can be maximized.  

To ensure that the spectra changes are a direct effect of light absorption (instead 

of heating of the tip or sample or other possible effects), control studies with an n-doped 

GaAs (100) sample, as well as a bare Au (111) thin film on mica were compared. During 

the experiment, IV spectra were collected on both samples first without optical 

illumination. Then with laser directed at the tip-sample junction, after the system reached 

to equilibrium, IV spectra were collected again under the same scanning conditions. It 

can be seen (Figure 3.10), for the Au(111) surface, the IV spectra were almost straight 

lines and showed no change upon illumination. The IV curves did have slight offsets 

about 1pA at zero voltage (Figure 3.10 inset), the value of which also did not vary with 

changing of the illumination condition, and can be attributed to instrumentation 

capacitance coupling. This was as expected since the incident photon energy (3.1eV) is 

much smaller than the work function of gold (5.1eV) so the photoelectric effect was not 

present. However, for the n-doped GaAs(100) sample (Figure 3.11), with laser 

illumination at the tip-sample junction, the zero voltage offset changed from ~2pA to 

~7pA, more than 3 times larger than seen in dark IV spectra (Figure 3.11 inset). Similar 

effects can be seen with other lasers used in the experiments. Photons with energy larger 

than a typical 1.4eV direct bandgap of GaAs can be absorbed, resulting in carrier 

generation in the semiconductor surface. Thus, even at zero bias, more carriers were 

generated in the GaAs and tunnel through the tip-sample gap to cause an increase in 
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current. With the above control study, the illumination was optimized and the current 

voltage spectra change can be attributed to the introduction of laser at the tip-sample 

junction as a direct effect of illumination.  

 

 

 

 

Figure 3.10 IV spectra of bare Au(111) sample with and without Laser illumination 

(405nm, 20mW). Tunneling setpoint is 0.5V, 500pA. Inset: Zoomed in detail of rectangle 

area. 
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Figure 3.11 IV spectra of n-doped GaAs(100) sample with and without Laser 

illumination (405nm, 20mW). Tunneling setpoint is 0.5V, 500pA. Inset: Zoomed in detail 

of rectangle area. 

3.2.3 Relaxation of Laser-induced Heating 

A second challenge is achieving a stable tunneling gap under light illumination. 

The illumination of the tip-sample junction will unavoidably generate heat, thus inducing 

temperature variation at local area. The tip, sample and possibly components of the STM 

head may heat and expand. Meanwhile, the system adjusts to maintain the tunneling 

setpoint. The feedback loop will be responsible for the control and, therefore, the Z piezo 

position constantly changes, until the system reaches to a new thermal equilibrium state.  

To exclude the interference of thermal expansion, the spectra collection should be 

done after equilibrium is achieved. The relaxation time of system was therefore measured 

by monitoring the Z piezo position using the oscilloscope function within the STM 

controller, with the n-doped GaAs(100) sample. As shown in Figure 3.12, under a 
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tunneling setpoint of 0.5V, 500pA, the Z piezo position was tuned to zero, and the system 

was in equilibrium. The laser was then turned on at t=60s. This induced an immediate 

gap distance hike of ~50nm (Note this is the value of Z piezo position calibrated to the 

applied voltage on Z piezo, not necessarily the exact value of the gap distance.), which 

can be attributed to the increase of carrier density thus the current, causing the feedback 

loop to respond by increasing the distance to reach the original tunneling setpoint. With 

time, a slow but steady decrease in the Z piezo position can be seen, as the system adjusts 

to the environment. At about 10 minutes later, the piezo position reaches a steady value, 

indicating equilibrium had been achieved.  

 

Figure 3.12 Z-Piezo position with respect to time. Measurement was done on n-doped 

GaAs(100) sample with feedback on, controlling the tunneling setpoint to be 0.5V, 

500pA. Laser illumination started at t=60s and turned off at t=1260s. 

Since the final fine approach usually took more than 10 minutes and most of the 

time it was conducted with the laser illumination already on the junction, it was 

concluded that equilibrium would be achieved once the tip is engaged tunneling to the 



 

42 
 

sample surface. This was confirmed experimentally by the lack of large scale Z-piezo 

position variation. For the rare times that laser was turned on after tip engagement, the 

data acquisition generally took place after a wait time of 10 minutes.  

With the mixed monolayer sample prepared and photo-assisted STM/STS setup 

ready, data of topography, electronic structures were collected and analyzed, and 

discussed in the following chapters.  
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CHAPTER 4 Optoelectronic Properties of PZnn Molecules 

The primary goal of this research is to determine the molecular electronic 

structure of different zinc-porphyrin oligomers under different illumination conditions. In 

order to probe the porphyrin optoelectronic properties we perform the following 

procedure systematically: a) determine the single porphyrin molecular electronic 

structure when chemisorbed on the substrate in a vertical configuration; b) understand the 

effect of the number of oligomers in the porphyrin wire on the molecular electronic 

states; c) understand the change of the molecular orbital energy levels when porphyrin 

molecules absorb photons of different energy. Using the experimental methods described 

in Chapter 3 we proceed to show the results obtained in the following sections; section 

4.1 describes the UV-vis optical spectroscopy on the PZnn molecules in solution, section 

4.2 demonstrates the topography information of the mixed monolayer sample, and section 

4.3 presents the scanning tunneling spectroscopy data of 1-octanethiol and PZnn 

molecules, with light of different wavelengths illuminating the tip-sample junction.  

4.1 Optical Spectroscopy 

The UV-vis absorption spectra of the zinc-porphyrin molecules are shown in 

Figure 4.1. Apart from the difference in the meso-position substitute groups, the 

absorption spectra are similar to those of other zinc-porphyrin molecules, presenting an 

intense B band around blue light wavelength, and two weak Q band peaks around the red 

light wavelength [28, 29, 35, 64, 65, 99, 100].  

PZn1 molecules manifest a large sharp absorption peak at 440 nm (B band) with a 

broaden shoulder extending to 400 nm, and two small absorption peaks centered at ~580 

nm and ~650 nm (Q bands). With an extra macrocycle linked at meso- position, PZn2 
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molecules show a broad B band absorption peak at ~400-520 nm and redshifted Q bands: 

with the weaker Q band stayed at ~580 nm, the relatively stronger Q band shifted to 

~750nm. Similar broadening of the B band and redshifting of the Q bands associated with 

the dimer molecules were presented in multiple references and discussed extensively [64, 

99]. As more macrocycles couple via the ethynyl bridge, which keep the molecule planar, 

the charges are more delocalized and the HOMO-LUMO gap decreases, resulting in the 

differences of the UV-Vis spectra between monomer and dimer zinc-porphyrin 

molecules. Differences between monomer and dimer are explored optoelectronically in 

next sections and discussed further in subsequent chapters. 

 

Figure 4.1 Optical absorption spectra of PZn1 (purple) and PZn2 (cyan) molecules in 

THF solution. Arrows of different colors indicate the wavelengths of illumination used in 

the research. 
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4.2 Topography Information 

STM was used to investigate the structure of mixed monolayers of 1-octanethiol 

SAMs and inserted PZnn molecules. Before I-V spectroscopy was performed, topography 

information was acquired to confirm the formation of the SAM and the insertion of the 

zinc-porphyrin. 

4.2.1 1-octanethiol Self Assembled Monolayer 

Figure 4.2 shows that topographic image of 1-octanethiol SAMs. 1-octanethiol 

molecules form large scale monolayers, as shown in Figure 4.2a, with boundaries along 

three major directions intersecting each other at 120 degrees. Defects, which are regions 

devoid of SAMs, appear as dark contrast in the images since the Au surface is lower than 

the top of the molecular layer. Cross section measurements confirm that defect area is 

typically 0.3 to 0.4 nm deep below the SAM surface (Figure 4.2c). Molecular resolution 

of the SAM is shown in Figure 4.2b, in which the image was filtered with a 2D Fast 

Fourier Transform, excluding the zero frequency information.  The 2D surface structure 

agrees with previous research as described in section 3.1.1 [71-76]. 
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Figure 4.2 (a) Topography image of 1-octanethiol self-assembled monolayer in large 

scale. Full Z scale: 1.3 nm. Scanning condition is 1.0V, 100pA. (b) Molecular resolution 

image of 1-octanethiol SAM. Z scale: 0.1 nm Inset: Fourier transformation of the 

topography image. Circles represent (√3×√3) structures while squares represent (3×2√3) 

(or c(4×2)) superlattice. Scanning condition is 1.0V, 100pA. (c) Cross section of the 

defect area indicated by line in (a). (d) Schematic of surface molecular arrangement 

showing surface superlattice structure (√3×√3) and (3×2√3).Yellow: Au atoms; Blue: 1-

octanethiol molecules.  
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The 1-octanethiol SAMs on Au(111) surface exhibits a highly ordered close-

packed structure of (√3×√3)R30° with molecular spacing of ~0.5 nm. Some of the 

molecules appears brighter than others, exhibiting a (3×2√3) surface superlattice 

(commonly known as c(4×2) superlattice) typically observed in 1-octanethiol SAMs [75, 

76, 101]. The structure is also evident in the fourier transform of the STM contrast 

(Figure 4.2b inset), where the bright spots in circles on the hexagonal position represents 

(√3×√3) structure, while the spots in squares represents (3×2√3). Such surface 

superstructure is schematically described in Figure 4.2d.  

4.2.2 PZn1 Molecule 

PZn1 molecules are found next to or in the defects of the 1-octanethiol matrix, and 

appear higher than the 1-octanethiol SAM layer as a bright spot (Figure 4.3a). The 

apparent lateral size of PZn1 molecules is found to vary from 2nm to about 5nm. While 

the physical width of the PZn1 molecule is 1.75nm (Figure 4.4a) [102], the larger 

apparent size is indicative of the aggregation of several PZn1 single molecules. Note that 

the PZn1 molecule appears as a round spot in the image. This can be attributed to the non-

planar conformation of the molecule: the phenyl groups on each side are perpendicular to 

the porphine macrocycle so the single molecule appears larger from “top view” (Figure 

4.4b) [102].  

The apparent height difference of the PZn1 molecule and the 1-octanethiol SAM 

layer is about 0.6-0.7 nm, as measured in cross sectional profile of the PZn1 molecule in 

Figure 4.3b. The theoretical value of the height difference is 0.4 nm (Calculated via data 

given in [63, 103]), showing a discrepancy with the experimental value. Note that the 
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topographic image also contains electronic information that is convoluted with the height 

information. 

 

Figure 4.3 (a) 1-octanethiol SAM matrix with PZn1 single molecule inserted in its defect. 

Z scale: 1.1 nm. (b) Height difference profile of a PZn1 single molecule over the 1-

octanethiol SAM. Scanning condition is 2.5V, 300pA. Scale bar: 2nm.  

 

 

Figure 4.4 Porphyrin molecule similar to PZn1 molecule used in this research (excluding 

the α-acetythiol substituent and incorporated Zn atom) (a) chemical structure; (b) crystal 

structure with key molecular dimensions. Adapted from Ref. [102]  
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4.2.3 PZn2 Molecule 

The topography image of a PZn2 molecule in 1-octanethiol SAM is shown in 

Figure 4.5a. As is the case for the PZn1 molecules, PZn2 molecules are found next to or in 

the defects of the 1-octanethiol matrix. The lateral size of the PZn2 molecule appears 

similar to that of the PZn1 molecule.  The apparent lateral size similarity is expected due 

to same anchoring mechanism as that of the PZn1. The vertical geometry of PZn2 is 

ensured by the ethynyl bonding between the two macrocycles, thus keeping the molecule 

straight.  Consequently PZn2 and PZn1 single molecules should appear the same lateral 

size from “top view”. From the profile of the PZn2 molecule shown in Figure 4.5b, the 

lateral size is ~4 nm.  

PZn2 appears higher than PZn1 in the topographic image. The apparent height 

difference of the PZn2 molecule and the 1-octanethiol SAM is about 1.2 nm as seen in 

cross sectional profile in Figure 4.5b, 0.5 nm higher than the 0.7 nm difference of PZn1 

molecule (Figure 4.2c). The higher profile for the dimer molecule is consistent with a 

geometrically taller PZn2 molecule, which contains one more PZn macrocycle than the 

PZn1. The theoretical value of the length difference between the PZn1 and PZn2 

molecules is 1.1 nm [63]. Again, the discrepancy here is certainly due to a contribution of 

electronic information in the STM measurement. 
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Figure 4.5 (a) 1-octanethiol SAM matrix with PZn2 molecules. Z scale: 1.6 nm. (b) 

Height difference profile across the line in (a) of an aggregation of PZn2 molecules over 

the 1-octanethiol SAM. Scanning condition is 2.5V, 300pA.  

Topography measurements with STM confirmed the formation of 1-octanethiol 

SAMs and the insertion of PZnn molecules. With PZnn molecules in a device 

configuration, scanning tunneling spectroscopy was performed to gain detailed 

information of molecular orbital structures.  

4.3 Scanning Tunneling Spectroscopy 

After the first scan to locate the molecules of interest, scanning tunneling 

spectroscopy experiments were performed under both dark and illuminated conditions at  

laser wavelengths of blue (405 nm), green (533 nm), and red (655 nm) on 1-octanethiol 

and PZnn molecules. I-V curves and dI/dV spectra were acquired and analyzed to reveal 

the molecular orbital energy levels.  

4.3.1 1-octanethiol Self Assembled Monolayer 

The 1-octanethiol molecule was studied as a control, since the alkanethiol 

molecular electronic structure is well known [104-107]. Figure 4.6 shows a specific case 

where I-V spectra were collected in a rectangle region containing only 1-octanethiol 
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molecules. The I-V curve manifests characteristics previously reported [104, 105], 

showing tunneling behavior through a non-rectangular smooth barrier, which can be 

described via the Simmons model [104, 108]. Therefore, observation of such I-V curves 

indicates that the measurement is showing true characteristics of 1-octanethiol molecule. 

Such observation can be used as an indication of a stable tip-sample tunneling junction, 

which usually results from a well prepared tip. I-V curves of the 1-octanethiols 

sometimes differ from the one shown in Figure 4.6b. Variations may include the 

asymmetry around zero voltage, sudden increase of current curve slope at certain voltage, 

current jumps, and zero current. These variations are indicative of a contaminated tip, 

hence discarded, and a new tip would be installed. While the latter two variations were 

easy to distinguish, we impose some quantitative criteria for the former two variations: 1) 

According to the scanning set point of 2.5V, 300pA, when the voltage is -2.5 V, due to 

the symmetry of the I-V curve, the current should be within (-300 ± 100) pA; 2) The 

current cannot change more than 150 pA within any 0.5V range. If either criterion is 

violated, the tip is replaced with a new one. An example of the I-V curve showing a bad 

tip is in Figure 4.7, where both criteria were violated: the current at -2.5V is -450pA, and 

current increased by ~200pA from -2.5V to -2.0V.  
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Figure 4.6 (a) Image of 1-octanethiol SAM matrix. Blue dots indicate the spots where I-

V spectra were collected, Z scale: 0.4 nm. (b) I-V spectrum measured with a good tip, of 

1-octanethiol molecule under dark condition averaged from 50 I-V curve measurements. 

Scanning condition was 2.5V, 300pA 

 

Figure 4.7 (a) Image of 1-octanethiol SAM matrix. Blue dots indicate the spots where I-

V spectra were collected. Z scale: 0.4 nm. (b) I-V spectrum with a contaminated tip, of 1-

octanethiol molecule under dark condition averaged from 40 I-V curve measurements. 

Scanning condition was 2.5V, 300pA.  

 

A direct comparison of I-V curves of 1-octanethiol molecule between dark and 

illumination under light of different wavelengths (Figure 4.8) shows that within the 
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applied voltage range, only mild slope changes are observed in 1-octanethiol molecule, 

wavelength.  Considering the HOMO-LUMO gap of about 8 eV in 1-octanethiol 

molecules [104, 105], the applied voltage range is simply too small to reach resonant 

tunneling with either electronic orbital of the 1-octanethiol molecule. Therefore minimal 

slope change was observed, and the spectra exhibit similar LDOS.  

 

Figure 4.8 I-V spectra of 1-octanethiol molecule under dark and illuminations with light 

of different wavelengths. The color matches the light used (blue 405nm, green 533nm 

and red 655nm), and black curve corresponds to the dark conditions. I-V spectra were 

averaged over 50 (dark), 24 (blue), 68 (green), 14 (red) I-V curves over 1-octanethiol 

SAMs. Scanning condition was 2.5V, 300pA. 

 

4.3.2 PZn1 Molecule 

STM images in Figure 4.9 show a typical PZn1 single molecule inserted in 1-

octanethiol SAMs and I-V spectra were acquired at defined spots as indicated. The 
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defined regions or lines usually cover both PZn1 molecule as well as 1-octanethiol 

molecule, and two I-V spectra were acquired at each spot. Representative curves 

corresponding to each type of molecules are also shown.  

 

Figure 4.9 STM image of zinc-porphyrin single molecule embedded in 1-octanethiol 

SAM matrices. I-V spectra were collected at the black or blue spots while scanning. 

Scanning condition: 2.5V, 300pA. (a) Z scale: 1.4 nm. X axis: voltage, range: -2.5V to 

2.5V; Y axis: current, range -1.2 nA to 0.6 nA. (b) Z scale: 1.5 nm. X axis: voltage, 

range: -2.5V to 2.5V; Y axis: current, range -0.3 nA to 0.6 nA.  
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Figure 4.10 I-V spectra of the PZn1 single molecule shown in Figure 4.9a. The position of the I-V curve corresponds to the spot it was 

acquired in Figure 4.9a. I-V spectra exhibit two distinct behaviors. X axis: voltage, range: -2.5V to 2.5V; Y axis: current, range -1.2 

nA to 0.6 nA.  
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I-V spectra collected over each spot in Figure 4.9 were shown in Figure 4.10. 

Based on the features, I-V curves can be separated into two distinct groups. In I-V curves 

on the top right section and in the second row, there are sudden current increments at 

both 0.7V and -0.7V, while the rest of the I-V curves manifest a smooth and slow current 

increase with the voltage. Since there are only two different molecules on the surface, one 

group must be associated with zinc-porphyrin molecules, while the other group of I-V 

curves was acquired from 1-octanethiol. With knowledge of I-V curves of 1-octanethiol 

molecules, it can be concluded that the I-V curves from top right section and in the 

second row were collected from the zinc-porphyrin molecule. Note that the location of 

the two groups doesn’t necessarily correspond to the location of the molecules according 

to the topography image. Also, data sets with I-V curves of 1-octanethiol that are not 

consistent (as shown in Figure 4.10) with previous studies are not included in subsequent 

analysis, according to the criterion described in Section 4.3.1. I-V curves that satisfy the 

criterion are considered successful measurements, and thus are selected and averaged for 

analysis. 

4.3.2.1 Under Dark Condition 

Figure 4.11 shows an I-V spectrum averaged from 26 I-V spectra collected from 

different PZn1 molecules under dark conditions. Although in general the curve appears 

similar to that of the 1-octanethiol, differences exist that yield information about 

electronic density of states of the PZn1 molecule. As Figure 4.11b shows, at around +2V 

and -2V, there are sudden increases in the slope of the I-V curve, indicating a larger local 

density of states at the corresponding energy level that potentially originates from 

molecular orbitals. In principle, we would interpret the increased slope as an indication 
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that the Fermi energy of the tip is of the same energy as the LUMO or the HOMO, and 

electrons transport into the LUMO or from the HOMO via resonant tunneling. 

 

Figure 4.11 (a) Image of 1-octanethiol SAM matrix with PZn1 molecules. Blue dots 

indicate the spots where I-V spectra were collected. Z scale: 1.4 nm. (b) Dark condition I-

V spectrum, of 1-octanethiol (light gray, averaged from 50 I-V spectra) and PZn1 

molecule (black, averaged from 26 I-V spectra). Note that the I-V curves are not 

necessarily measured from the molecule shown in (a). Scanning condition was 2.5V, 

300pA. 

 

Figure 4.12 Differentiated I-V spectrum of PZn1 molecule. As peaks at ~-1.0V and 

0.75V are considered Au(111) substrate or the Au-thiol interface states [49, 62], and 

typical HOMO-LUMO gap of similar porphyrin molecules are from 2 to 3 eV, vertical 
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lines are positions where peaks associated with PZn1 molecular orbital appear. Scanning 

condition was 2.5V, 300pA. 

Differential analysis of the spectrum reveals details of the electronic structure 

(Figure 4.12). As outlined in Chapter 3, the differential analysis enables us to examine 

the electronic structure of the PZn1 molecule. The dI/dV-V spectrum exhibits multiple 

peaks, indicative of the local density of states. Two broad peaks at ~-1.0V and 0.75V are 

believed to be the contribution of Au(111) substrate or the Au-thiol interface states, 

which lie within the HOMO-LUMO gap [49, 62]. Theoretical calculation as well as 

previous experiments on similar porphyrin molecules [40, 49, 62] show that the HOMO-

LUMO energy gap varies from 2 to 3eV. Applying the knowledge of the HOMO-LUMO 

energy gap of porphyrin molecules and considering the peak positions in dI/dV spectra 

under different illumination conditions, the peaks at -1.5V and 1.5V are attributed to the 

contribution of HOMO and LUMO of PZn1 molecule, and thus the HOMO-LUMO 

energy gap is about 3.0 eV. The peaks ~-1.9V and 2.1V are also attributed to PZn1 

molecular orbitals, and were labeled with vertical lines. Though no theoretical 

calculations of molecular orbital energy levels were directly performed for the molecule 

attached to substrate in our experiment, our measurements of HOMO-LUMO gap and 

other molecular orbital energies are similar to previous results [40, 49, 62] .  
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4.3.2.2 Wavelength (Energy) Dependence of Electronic Structure 

STS spectra of PZn1 molecules under different light illumination are shown in 

Figure 4.13. With illumination, the I-V curves differ from those acquired under dark 

conditions. The slopes of the spectra in the presence of light are small and stable within 

the range from -1.0V to 1.0V, indicating low conductance; while in the vicinity of -1.5V 

and 1.5V, the slopes show sudden increases, indicating the energies of the HOMO and 

LUMO of the molecule.  

 

Figure 4.13 I-V spectra of PZn1 molecule under dark and illuminations with light of 

different wavelengths. The color matches the light used (blue 405nm, green 533nm and 

red 655nm), and black curve corresponds to the dark conditions. I-V spectra were 

averaged over 26 (dark), 12 (blue), 10 (green), 18 (red) I-V curves over PZn1 molecules. 

Scanning condition was 2.5V, 300pA. 
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Figure 4.14 Differentiated I-V spectra of PZn1 molecule under different illumination 

conditions. Vertical lines are positions where peaks associated with PZn1 molecular 

orbital appear under dark condition. The color matches the light used, and black curve 

corresponds to the dark condition. Curves were vertically shifted to avoid overlapping. 

Scanning condition was 2.5V, 300pA 

Differentiated STS spectra reveal further details, as shown in Figure 4.14. With 

blue light (405 nm) illuminating the tip-sample junction, the LUMO peak at +1.5V in 

dark condition shifts to +1.2V, suggesting a slight decrease in the HOMO-LUMO gap. 

With red light (655 nm), while HOMO-LUMO gap remained constant, the peak at 2.1V 

in dark conditions shifts ~ 0.3V. With green light (533 nm) illumination, the peak 

positions do not change. This is consistent with the UV-Vis spectrum of PZn1 (Figure 

4.1), the molecule does not absorb photons at 533 nm. However, with green light, it 

seems that the intensity of the LUMO peaks increased, showing larger density of states.  
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4.3.3 PZn2 Molecule 

Similar to the results shown in Section 4.3.2, STS measurements were performed 

on PZn2 molecule. The I-V curves at defined regions were acquired, and those associated 

with PZn2 molecule were averaged, and differentiated to obtain the dI/dV spectra.  

4.3.3.1 Under Dark Condition 

 Figure 4.15 shows an I-V spectrum collected from PZn2 molecules under dark 

conditions. It can be seen from the spectrum that compared to the PZn1 molecule, the 

slope variation of the I-V spectrum of PZn2 is more apparent. As Figure 4.15 shows, the 

current remains small from 0V to approximately 1.0V. Moreover, at around +2.0V and -

1.5V, there are sudden increases in the slope of the I-V curve, indicating a larger local 

density of state at the corresponding energy level. 

 

Figure 4.15 (a) Image of 1-octanethiol SAM matrix with PZn2 molecules. Blue dots 

indicate the spots where I-V spectra were collected. Z scale: 1.6 nm. (b) I-V spectrum of 

1-octanethiol (light gray, averaged from 50 I-V spectra) and PZn1 molecule (black, 

averaged from 12 I-V spectra) under dark condition. Note that the I-V curves are not 
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necessarily measured from the molecule shown in (a). Scanning condition was 2.5V, 

300pA. 

 

Figure 4.16 Differentiated I-V spectrum of PZn2 molecule. Vertical lines are positions 

where peaks associated with PZn2 molecular orbital appear. Scanning condition was 

2.5V, 300pA. 

More details are evident in the differential analysis of the I-V curves as shown in 

Figure 4.16. Multiple peaks are present in the dI/dV-V spectra, with each peak indicating 

an increase of local density of states. Applying knowledge of HOMO-LUMO energy gap 

of porphyrin molecules and considering the peak positions in dI/dV spectra under 

different illumination conditions, the peaks at -1.6V and 1.9V are attributed to HOMO 

and LUMO of PZn2 molecular orbitals, and another peak at -2.3V also correspond to a 

PZn2 molecular orbital, as indicated with the vertical lines. Therefore, STS shows a 

HOMO-LUMO gap of about 3.5eV, 0.5eV larger than its monomer counterpart. The 
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broad shoulder around 1.0V could indicate electronic states due to interaction between 

the Au(111) surface and thiolate bond of the PZn2 molecule [49, 62]. The higher HOMO-

LUMO gap in the dimer compared to the monomer is counterintuitive since the bonding 

between the two PZn macrocycles in the dimer molecule should bring the HOMO and 

LUMO energies closer, according to previous DFT calculation [43, 64, 99]. Such 

behavior will be discussed in the next chapter.  

4.3.3.2 Wavelength (Energy) Dependence of Electronic Structure 

 

Figure 4.17 I-V spectra of PZn2 molecule under dark and illuminations with light of 

different wavelengths. The color matches the light used (blue 405nm, green 533nm and 

red 655nm), and black curve corresponds to the dark conditions. I-V spectra were 

averaged over 12 (dark), 14 (blue), 13 (green), 15 (red) I-V curves over PZn2 molecules 

Scanning condition was 2.5V, 300pA. 
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STS spectra of PZn2 molecules under different light illumination are shown in 

Figure 4.17. With illumination, I-V curves differ from those acquired under dark 

conditions. The slopes of the spectra with light are less and stable within the range from -

1.0V to 1.0V, while in the vicinity of -1.5V (except for the blue light case) and 1.5V, the 

slopes show sudden increases, indicating the energies of the HOMO and LUMO of the 

molecule. Differentiated STS spectra are shown in Figure 4.18. With blue light (405 nm) 

illuminating the tip-sample junction, the LUMO peak at +1.9V in dark condition shifts to 

+1.3V, and the HOMO peak at -1.6V shifts to -1.3V, indicating a decrease of 0.9 eV in 

HOMO-LUMO gap. With red light (655 nm), the HOMO and LUMO shift slightly 

farther apart from 3.5eV to 3.6eV, that is within our experimental error. With green light 

(533 nm) illumination, the peak positions around HOMO and LUMO levels do not 

change; however, the peak below the HOMO shifts toward the HOMO energy level by 

0.3 eV.  
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Figure 4.18 Differentiated I-V spectra of PZn2 molecule under different illumination 

conditions. Vertical lines are positions where peaks associated with PZn2 molecular 

orbital appear under dark condition. The color matches the light used, and black curve 

corresponds to the dark condition. Curves were vertically shifted to avoid overlapping. 

Scanning condition was 2.5V, 300pA 

In summary, when adsorbed on SAM-Au(111) substrate, the HOMO-LUMO gap 

for PZn1 molecule is 3.0eV under dark condition, while the PZn2 molecule exhibits a 

larger 3.5 eV HOMO-LUMO gap. Under blue laser (405nm) illumination HOMO-

LUMO gaps for both monomer and dimer zinc-porphyrin molecules is narrower than in 

dark conditions.  Under other wavelength illumination results vary. With all experimental 

data at hand, the interpretation of all results will be discussed in the following chapter.  
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CHAPTER 5 Illumination effect and Macrocycle Coupling on Molecular Orbital 

Energy Levels 

Scanning tunneling spectroscopy was performed on different zinc-porphyrin 

oligomers as a function of illumination conditions, and results were presented in Chapter 

4. With these results we aim to determine the molecular orbital energy levels, and 

consequences of molecular structure to optoelectronic properties. Section 5.1 describes 

the different models adopted to obtain the molecular orbital energy levels from measured 

differentiated scanning tunneling spectra; section 5.2 and section 5.3 discuss the 

illumination effect on PZn1 and PZn2 molecular orbital levels respectively, using a 

charging molecule model; and section 5.4 discusses the macrocycle coupling effect on 

zinc-porphyrin molecular orbital levels. 

5.1 Capacitive and Resistive Model 

The peak positions in scanning tunneling spectra do not directly match the 

molecular orbital energy levels directly, due to the nature of the molecule, possible 

charging and the interface coupling between the molecule and the substrate. Therefore, to 

determine the energy levels of an organic molecule, the relationship of the peak 

positionsand the true orbital energy levels need to be understood. The issue is how the 

value of the bias applied in the measurement relates to the bias on the molecule. Two 

distinct models are examined in this section, in one model the zinc-porphyrin molecule is 

treated as a capacitor, while in the other model it is treated as a resistor.  
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5.1.1 Capacitive Model 

With the Au(111) substrate-porphyrin-vacuum-tip tunneling junction, the voltage 

distribution across each component needs to be calculated to relate the peak positions to 

the electronic structure of the molecule. When the local density of states is negligible, for 

example, between the HOMO and LUMO, molecules can be treated as electrically 

insulating materials, and thus a capacitive equivalent circuit model can be applied [109].  

Figure 5.1 shows the structure of the Au(111) substrate-porphyrin-vacuum-tip 

tunneling junction. The vacuum gap and the molecule are both treated as parallel plate 

capacitors. Therefore, the capacitance of the molecule and the vacuum gap can be 

calculated by the standard capacitor plate model with C =εA/d, where the capacitance C 

is given by the permittivity ε between the plates, and the area and separation of the plates, 

A and d, respectively.  We obtain the following equations:  

     
   

    
                                                                                                        (5.1) 

     
       

    
                                                                                                   (5.2) 

       
        

         
                                                                                             (5.3) 

where Cgap and Cmol are the capacitances of the vacuum gap and PZnn molecule; A is the 

area of the PZnn molecule; Zgap and Zmol are the length of the vacuum gap and PZnn 

molecule; ε0 and εmol are the vacuum permittivity and relative permittivity of the PZnn 

molecule. 
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Figure 5.1 Schematic diagram of the Au(111) substrate-porphyrin-vacuum-tip tunneling 

junction, and the capacitive equivalent circuit model. Zgap is the tip-molecule gap distance 

and Zmol is the length of the molecule.  

The capacitor model requires that the voltage between the tip and the substrate be 

distributed across the gap and the zinc-porphyrin molecule. When in series, the charge on 

each capacitor is the same, so the voltage distribution should follow equation 5.4: 

                                                                                              (5.4) 

Using the Fermi energy level of the tip as a reference (since the sample is biased 

in the experiment), the energy for the LUMO and HOMO level (ELUMO and EHOMO) 

should be the value of the peak voltages in the STS, distributed on the vacuum gap [50]. 
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The relations between the energy and the measured voltage peak are described by 

equations 5.5 and 5.6:  

                  
      

    
       

        

         

    
       

    

         
      (5.5) 

            
    

         
                                                                               (5.6) 

Where VLUMO and VHOMO are the peak voltages measured in the STS, which is the Vtotal in 

Equation 5.4. Figure 5.2 illustrates the energy levels of the tip-sample structure. Note 

equations 5.5 and 5.6 apply to other molecular orbital levels as well.  

 

Figure 5.2 Schematic diagram of the energy levels of the Au(111) substrate-porphyrin-

vacuum-tip structure.  

Now we proceed with the molecular orbital energy level analysis by applying the 

capacitive model to the experimental data. To start we applied the model to PZn1 

molecules under dark condition and blue light (405 nm) illumination. The theoretical 
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value of the length of the PZn1 molecule Zmol is 1.56 nm [63]. We consider the cross-

section area, A, as 2 nm
2
 and the vacuum gap distance Zgap as 1 nm. The dielectric 

constant for PZn1, εmol, istaken as that of a similar zinc-porphyrin monomer molecule, 

about 4.2 [110]. Applying those parameters to equation 5.1 and 5.2, Cmol and Cgap are 

estimated to be 0.048 aF and 0.018 aF, respectively.  

 

Figure 5.3 Differentiated I-V spectrum of PZn1 molecule under dark conditions. Vertical 

lines are positions of the peaks associated with PZn1 molecular orbitals. Peak values were 

picked using OriginPro 7.5. 

To obtain the molecular energy levels, in addition to the estimation of the 

capacitance we need the precise peak positions in STS spectra. Figure 5.3 shows the 

differentiated I-V spectrum of PZn1 molecule under dark conditions. The peak voltages at 

HOMO and LUMO levels as well as the ones beyond are labeled in the figure. Using 
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equation 5.5 and 5.6, applying the estimated values of the capacitance of the molecule 

and the vacuum gap, the molecular orbital energy levels in the table 5.1 result: 

Table 5.1 Voltage peaks and molecular orbital energy levels according to capacitive 

model under dark condition. 

Voltage peak positions (V) -2.33 -1.92 -1.46 1.51 2.11 

Molecular Energy Levels (eV) -1.69 -1.40 -1.06 1.09 1.53 

Similarly, we applied the model to PZn1 molecules under blue light (405 nm) 

illumination. Here the length of PZn1 molecule Zmol, the cross-section area A, and vacuum 

gap distance Zgap were all assumed unchanged. As for the dielectric constant for PZn1, we 

note that previous results show that photoinduced polarizability of similar zinc-porphyrin 

molecules increases by 117–267% [111]. She et al showed that polarizability volume for 

a similar zinc-porphyrin monomer changes from 90 Å
3
 in ground state to 150 Å

3
 in 

excited state [112]. Assuming with the PZn1 molecule in our experiment, that the 

polarizability α increases by the same ratio 150/90 = 5/3 when the molecule is excited, 

then εmol in the blue light illumination can be estimated to be 6.33. Applying all 

parameters to equation 5.1 and 5.2, we obtain that Cgap remains 0.018 aF, and that Cmol 

increases to 0.072 aF.  

To obtain the energy levels we also need the precise peak position in STS spectra. 

Figure 5.4 shows the differentiated I-V spectrum of PZn1 molecule under blue light 

illumination. Using equation 5.5 and 5.6, applying the new estimated values of the 
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capacitance of the molecule and the vacuum gap, we obtain the molecular orbital energy 

levels in table 5.2: 

 

Figure 5.4 Differentiated I-V spectrum of PZn1 molecule under blue light (405 nm) 

illumination. Vertical lines are positions where peaks associated with PZn1 molecular 

orbital under dark conditions. Peak values were picked using OriginPro 7.5. 

Table 5.2 Voltage peaks and molecular orbital energy levels according to capacitive 

model under blue light illumination. 

Voltage peak positions (V) -2.36 -1.95 -1.50 1.31 2.06 

Molecular Energy Levels (eV) -1.89 -1.56 -1.20 1.10 1.65 

With values of adjusted energy levels in table 5.1 and table 5.2, we can 

reconstruct the molecular orbital energy levels under dark conditions and blue light 
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illumination, using the capacitive model. Figure 5.5 shows the molecular energy levels. It 

can be seen that under illumination, the HOMO-LUMO gap of the molecule increases.  

 

Figure 5.5 Adjusted energy levels of PZn1 molecule under dark conditions and blue light 

illuminations. Vertical lines indicate the energy levels and the arrows indicate the 

HOMO-LUMO gaps. 

 

5.1.2 Resistive Model 

A alternative approach is to consider the Au(111) substrate-porphyrin-vacuum-tip 

tunneling junction, as a resistive equivalent circuit. This occurs when the local density of 

states is large (especially as in metal). Since PZn1 is a conjugated molecule, the molecular 

conductivity is high compared to other insulating organic molecules, the resistive 

equivalent circuit model may apply. A voltage distribution among each component will 

be calculated to further analyze the peak position of the STS.  

Figure 5.6 shows the structure of the Au(111) substrate-porphyrin-vacuum-tip 

tunneling junction with a resistive equivalent circuit model. Now the vacuum gap and the 

molecule are treated as two resistors in series. The voltage between the tip and the 

substrate is still distributed across the gap and the zinc-porphyrin molecule. Since the 

current flow through a series of resistors is the same, the voltage distribution can be 

described in equation 5.7: 
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                                                                                          (5.7) 

 

 

Figure 5.6 Schematic diagram of the Au(111) substrate-porphyrin-vacuum-tip tunneling 

junction, and the resisitive equivalent circuit model.  

where Rtotal is the total resistance across the tip and substrate and is the sum of Rgap and 

Rmol. Using the Fermi energy level of the tip as a reference, the energy for the LUMO and 

HOMO level (ELUMO and EHOMO) should be the value of the peak voltages in the STS, 

distributed on the vacuum gap. The relations between the energy and the measured 

voltage peak are described by equations 5.8 and 5.9:  

                  
    

      
       

    

         
                                       (5.8) 

            
    

         
                                                                               (5.9) 
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where VLUMO and VHOMO are the peak voltages measured in the differentiated STS, and 

Rgap and Rmol are resistances of the vacuum gap and PZnn molecule.  

 

Figure 5.7 A narrower range view of the I-V spectra of PZn1 molecule under dark 

conditions shown in Figure 4.13. At 100 mV the current is about 4 pA. Scanning 

condition was 2.5V, 300pA.  

To apply this model we need the resistance of the molecule. We first consider 

PZn1 molecule under dark conditions. For the resistance of the molecule we don’t have 

the direct measurement; however, from previous research [61], the mechanical 

controllable break junction technique was applied to similar zinc-porphyrin single 

molecules, and under 100 mV applied voltage, the conductance of a single zinc-porphyrin 

molecule is about 10
-4

 G0, where G0 is the conductance quantum. Therefore, the Rmol is on 

the order of 10
8
Ω. Figure 4.13 shows the I-V spectrum measured under dark conditions, 
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where the total resistance of the series of vacuum gap and PZn1 single molecule can be 

extracted from. To compare at the same applied voltage, a detailed I-V curve from -0.2V 

to 0.2V was extracted from Figure 4.13, and shown in Figure 5.7.  From the I-V spectrum 

the current at 100 mV applied voltage is about 4 pA, giving a resistance on the order of 

10
10

Ω, which is the sum of Rmol and Rgap. This means that the main contribution to Rtotal is 

from Rgap Since Rmol is 2 order of magnitude smaller than Rtotal, equation 5.8 and 5.9 

became: 

            
    

      
       

           

      
                                       (5.10) 

                                                                                                         (5.11) 

i.e. the positions of the voltage peaks can be directly considered as the energy 

displacements from the tip Fermi energy, or the molecular orbital energy levels. The 

energy levels, which are the peak positions in differentiated STS are shown here in Table 

5.3 and 5.4: 

Table 5.3 Voltage peaks and molecular orbital energy levels according to resistive model 

under dark conditions. Values are indicated for completeness only considering peak 

positions show no adjustment on this model. 

Voltage peak positions (V) -2.33 -1.92 -1.46 1.51 2.11 

Molecular Energy Levels (eV) -2.33 -1.92 -1.46 1.51 2.11 
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Table 5.4 Voltage peaks and molecular orbital energy levels according to resistive model 

under blue light illumination. Values are indicated for completeness only considering 

peak positions show no adjustment on this model. 

Voltage peak positions (V) -2.36 -1.95 -1.50 1.31 2.06 

Molecular Energy Levels (eV) -2.36 -1.95 -1.50 1.31 2.06 

 

To summarize, two models were applied to differentiated STS spectra to obtain 

the molecular energy levels. Under the capacitive model, because the vacuum gap 

capacitance is comparable to the molecular capacitance, each molecular orbital energy 

level is adjusted with respect to the corresponding differentiated STS peak position. 

Applying the capacitive model to both dark and blue light illumination conditions, such 

adjustment was smaller under the blue illumination compared to dark conditions. Under 

the resistive model, since the molecular resistance is two orders of magnitude smaller 

than the vacuum gap, the adjustment is negligible, i.e. the differentiated STS peak 

position is the molecular orbital energy level. Correction to the HOMO-LUMO gap under 

capacitive model is lower than the gap under resistive model. Also, comparing dark and 

blue illumination, the HOMO-LUMO gap increases under the capacitive model, while 

decreases under resistive model.  

It is not intuitive to choose between the two models based on the coupling at the 

interface or the intrinsic properties of the zinc-porphyrin molecules; however, the 

different consequences of illumination on HOMO-LUMO gap from two distinct models 

do provide information. It is widely accepted that the optical band gap of an organic 

semiconductor is narrower than the electronic band gap [113], and the difference of these 
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two band gaps is usually equal to the exciton binding energy. So with photon excitation, 

the resulted energy gap could be smaller than that in dark condition, and resistive model 

seems to fit in this scenario. Therefore, the resistive model is applied to the data, and the 

results fit well with the charged molecule model discussed in the next section.  

5.2 Illumination Effect on PZn1 Molecular orbital levels 

The purpose of our measurements is to understand the illumination wavelength 

dependence of the PZn1 molecular electronic structure.  In section 4.3.2 we investigated 

the scanning tunneling spectroscopy measurements of the PZn1 molecule under dark and 

different illumination conditions.  We observe that through absorption of photons, 

molecules enter into excited states, which then become charged, exhibiting different 

molecular electronic structure. 

5.2.1 Charging of Porphyrin Molecules 

Studies of charged  porphyrins and porphyrin derivatives were conducted 

previously with STM, with the organic molecules mostly within a sandwich structure, 

between two insulating layers; usually one being the vacuum between tip and the 

molecule, the other being an insulating thin film such as oxidized NiAl(110) [98] or NaCl 

[114, 115] . Here the charging and discharging of the molecule was achieved via electron 

tunneling through the double barrier junction: when the sample voltage is positive, 

electrons tunnel through the tip-sample vacuum junction and the molecule is negatively 

charged with one extra electron, when the sample voltage is negative electrons are pulled 

out from the molecule into the tip leaving the molecule neutral. Such charging leaves the 

molecule with a new occupied state.  
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In our research, the charging of PZn1 molecule was not achieved by the injection 

or withdrawal of the electron via the tip. The thiolate-Au bond offers strong coupling 

between the molecule and the substrate, and thus there would be no double barrier 

junctions. However, the laser illumination at certain wavelengths can facilitate the 

charging process of the molecule. 

 

Figure 5.8 Schematic diagram of the charging process of the molecule facilitated by laser 

illumination. 

Charging of the molecule is illustrated in Figure 5.8. With illumination at certain 

wavelengths, the impinged photon energy is larger than that of the HOMO-LUMO gap of 

the PZn1 molecule (Refer to the optical absorption spectra of PZnn molecules in Figure 

4.1), and thus was absorbed by the molecule, forming an electron-hole pair (exciton). 

Now the molecule is in an excited state. However, with strong coupling between the 

molecule and the Au substrate, the molecule is connected to an electron reservoir; 

therefore, one electron transfers from the substrate to the HOMO level of the molecule, 

filling the hole created by the laser excitation. The PZn1 molecule is left with an extra 
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electron on the LUMO level, and is therefore negatively charged as PZn1
-1

. Since the 

laser used for illuminating the tunneling gap was continuous wave, this charged state is 

considered to be a steady state under our experiment conditions.  

In the charged state the molecular energy levels are arranged differently due to the 

extra electron.  

 

5.2.2 Charging effect on HOMO-LUMO gaps 

Molecular energy structures of PZn1 molecule differ under different probing 

conditions, as described in Section 4.3.2. Among the differences the most prominent one 

is the HOMO-LUMO gap of the molecule.  

, The HOMO-LUMO gap differences can be observed from the STS spectra, 

Figure 5.9. While under dark condition we conclude the HOMO-LUMO gap is 3.0 eV, 

under blue light (405 nm) illumination, the LUMO peak shifts 0.3 V towards zero, 

showing a slight decrease of the HOMO-LUMO gap, 2.7 eV. The difference can be 

explained via the charged molecule model.  
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Figure 5.9 (Reproduced from Figure 4.14) Differentiated I-V spectra of PZn1 molecule 

under different illumination conditions. Vertical lines are positions where peaks 

associated with PZn1 molecular orbital appear under dark condition. The color matches 

the light used, and black curve corresponds to the dark condition. Curves were vertically 

shifted to avoid overlapping. Scanning condition was 2.5V, 300pA. 

With blue light at 405 nm, the corresponding photon energy is about 3.06 eV, 

well above the measured HOMO-LUMO gap of the PZn1 molecule. And from the optical 

absorption spectra of PZn1 molecule we know that this wavelength falls in the vicinity of 

the Soret band of the absorption spectrum. Therefore, we can assume that the molecule 

can absorb photons, and become charged. According to previous theoretical research, the 

molecular orbitals of charged organic molecule will rearrange [116], causing a difference 

in the HOMO-LUMO gap. Similar Zn-porphyrin molecules (ZnTPP and ZnP) show a 

decrease of the HOMO-LUMO gap when negatively charged, compared to the neutral 

state, according to the theoretical calculation [40]. Let us consider the calculated energy 
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gaps in the case of one extra electron in the neutral molecule, i.e. singly negatively 

charged molecule. For ZnTPP the HOMO-LUMO gap decreases from 2.49 eV to 1.47 

eV, while for ZnP (porphine) the gap decreases from 2.60 eV to 1.74 eV. The extra 

electron in both cases is accommodated in the porphine π* orbital. Calculation also shows 

evidence of little mixing between metal and macrocycle molecular orbitals. In our 

experiment, a decrease of the energy gap of 0.3 eV is consistent with the trend of 

HOMO-LUMO gap indicated by calculations on related charged molecules. By analogy 

we can postulate in our case: 1) there is little interaction between the metal and the 

porphine π orbitals, 2) the decrease in HOMO-LUMO gap is due to the negative charging 

of the macrocyle and electrostatic interaction therefrom, and 3) the extra electron goes 

into the porphine π* orbitals. The consideration that the extra electron goes into the 

porphine π* orbitals is consistent as well with full Zn 3d orbital in the neutral ZnTPP 

[40], in which the extra electron cannot occupy an already full 3d shell. Other ligands in 

the macrocycle are not expected to introduce substantial reorganization in the porphyrine 

electronic structure. In fact, a single metal porphine compared to a metal porphine with 

four phenyl ligands (ZnTPP) has similar results in terms of Zn 3d occupancy and 

interactions in macrocycle constituents [40]. Analogously, in our case the addition of 

larger ligands (bis[3,5-bis(3,3-dimethyl-1-butyloxy)phenyl) to porphine should not 

change the small interaction of Zn 3d low-lying orbitals and porphine and ligands. Thus, 

the postulate above seems a reasonable analogy. 

With green light (533 nm) illumination, the shift of peak positions of STS spectra 

was absent. The HOMO-LUMO gap of the PZn1 molecule therefore remains 3.0 eV. This 

could be explained by the lack of light absorption of the molecule at corresponding 
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photon energies. The HOMO-LUMO gap of 3.0 eV is much larger than the incident 

photon energy of 2.33 eV, and also, according to the UV-Vis spectrum of PZn1 in Figure 

4.1, no absorption peak was present around 533 nm.  

With red light (655 nm, 1.89 eV) illumination, from the dI/dV spectra we can see 

that compared to the dark conditions, the HOMO has a slight peak shift of about 0.1 eV 

to higher energy, while the LUMO peak also shifted toward a lower energy of about 0.1 

eV. Also, the peak at 2.1V in dark conditions shifts to positive direction by ~0.3eV. 

Referring back to the UV-Vis absorption spectrum (Figure 4.1), the PZn1 molecule does 

exhibit an absorption peak around 650 nm, but the lower absorption peak indicates fewer 

photons are absorbed. While here the slight shift of HOMO and LUMO peak could be 

attributed to experimental error, an alternative explanation is that the observed energy 

shifts were an averaged effect between charged and uncharged molecules, therefore 

showing a decrease in HOMO-LUMO gap, but not as prominent as that of the case 

illuminated at 405 nm.  

5.2.3 Other Effects 

Another result is that under dark conditions, two broad peaks exist at ~-1.0V and 

0.75V within the HOMO-LUMO gap, and are believed to be the contribution of Au(111) 

substrate or the Au-thiol interface states. When under illumination, such peaks seem to be 

absent. We believe the absence of these peaks comes from the STS measurement. When 

the light illumination is on, as shown in Figure 3.12, even after reaching the equilibrium, 

the tip-sample distance will increase slightly to keep the same scanning setpoint. As a 

result, in the STS spectra, the current in the voltage region within the HOMO-LUMO gap 
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decreases (Figure 4.13). Therefore, the peaks within the HOMO-LUMO gap cannot be 

observed under illumination, due to the low current due to the increased tip-sample 

distance.  

5.3 Illumination Effect on PZn2 Molecular orbital levels 

We aim to explain the illumination effect on PZn2 molecular orbital energy levels 

as well. Similar to the description in Section 5.3, laser illumination of certain 

wavelengths results in photon absorption of the molecules, the zinc-porphyrin molecules 

are excited and end up in charged states, which have different molecular energy levels 

than the neutral molecules.  

5.3.1 Charging effect on HOMO-LUMO gap 

We investigated the PZn2 response under dark and laser illumination conditions to 

address optoelectronic properties in the dimer itself and to compare them to PZn1 

properties. Figure 5.10 shows the STS spectra for PZn2 molecule under dark and different 

illumination conditions, and the HOMO-LUMO gap difference is readily observed. 

Under dark conditions the HOMO-LUMO gap is 3.5 eV; under blue light (405 nm) 

illumination, the LUMO peak shifts from +1.9V in dark condition to +1.3V, and the 

HOMO peak shifts in the positive direction for ~0.3V, from -1.6V to -1.3V, showing a 

decrease of 0.9 eV in HOMO-LUMO gap, which is now 2.6 eV. This phenomenon could 

be explained by the charged molecule model, as in the case of PZn1 molecule.  
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Figure 5.10 (Reproduced from Figure 4.18) Differentiated I-V spectra of PZn2 molecule 

under different illumination conditions. Vertical lines are positions where peaks 

associated with PZn2 molecular orbital appear under dark condition. The color matches 

the light used, and black curve corresponds to the dark condition. Curves were vertically 

shifted to avoid overlapping. Scanning condition was 2.5V, 300pA 

 

The optical absorption spectrum of PZn2 molecule (Figure 4.1) shows a broad 

Soret band peak around 405 nm region, therefore upon illumination the PZn2 molecule 

absorb a photon and was excited. As described earlier in Section 5.3.1, the excited 

molecule would acquire an electron from the electron reservoir which is the Au(111) 

substrate so the HOMO is still filled. Molecular orbitals of the charged organic molecule 

will differ in energy [116] , yielding a different HOMO-LUMO gap. Although there was 

no theoretical calculation of HOMO-LUMO gap energies for charged dimer zinc-
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porphyrin molecule, we believe the dimer zinc-porphyrin should have a similar trend as 

the monomer zinc-porphyrin, which is the case in our experimental observation.  

With red light (655 nm), the HOMO and LUMO shift slightly farther apart from 

3.5eV to 3.6eV, that is within our experimental error. With green light (533 nm) 

illumination, the peak positions around HOMO and LUMO level do not change. This 

behavior could be attributed to an absence of photon absorption, since neither 655 nm nor 

533 nm were close to the peaks in the UV-Vis absorption spectra for PZn2 molecules. 

However, in both illumination cases, the peak right below HOMO shifts toward the 

HOMO energy level by 0.2 (red) to 0.3 (green) eV. 

 

5.4 Macrocycle coupling effect on Molecular orbital levels 

In our experiments we used two different molecules: PZn1 and PZn2, monomer 

and dimer, respectively. The difference between the two molecules is that PZn2 has an 

extra zinc-porphyrin macrocycle, coupled through the ethyl bridge. The coupling between 

the two porphyrin macrocycles will affect the molecular orbitals of the molecule, 

changing the energy levels of certain orbitals.  
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Figure 5.11 I-V spectra of PZn1 (monomer, red) and PZn2 (dimer, black) molecule under 

dark conditions. Scanning condition was 2.5V, 300pA.  

Figure 5.11 shows the I-V spectra of PZn1 and PZn2 single molecule under dark 

conditions. For PZn2 molecules, the absolute value of current does not increase until over 

1V or -1.5V; however, for the PZn1 molecule the current is larger around zero voltage. 

More details can be seen in the differentiated STS spectra, shown in Figure 5.12. 

Compared to the PZn1 molecules, the LUMO and HOMO of PZn2 molecule both shift 

further away from Fermi energy of the tip, showing an increase of 0.5 eV in the HOMO-

LUMO gap. As stated in Chapter 4, the higher HOMO-LUMO gap in the dimer 

compared to the monomer is counterintuitive, since the bonding between the two PZn 

macrocycles in the dimer molecule should bring the HOMO and LUMO energies closer, 

according to previous DFT calculation [43, 64, 99] and experiment results [117]. We 
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propose several possible explanations of the differences and similarities between our 

measurement and previous results. 

 

Figure 5.12 Differentiated I-V spectra of PZn1 (monomer, red) and PZn2 (dimer, black) 

molecule under dark conditions. Vertical lines indicate HOMO and LUMO orbitals. 

Scanning condition was 2.5V, 300pA.  

One explanation is based on the consequence of PZn2 molecules’ bundling during 

sample preparation. In topography images the PZn2 molecules appear to have larger 

lateral sizes than expected for single molecules, and this may arise from several PZn2 

molecules bundling together. According to previous experimental research [118], when 

porphyrin macrocycles bundle together face-to-face, as shown in Figure 5.13, the Soret 

band peak position in UV-Vis absorption spectrum differs among monomer, dimer, and 

trimer. In dichloroethane (DCE) solvent, with the monomer configured as in Figure 

5.13a, the Soret band peak is at 420.0 nm (2.95 eV); while for the dimer configured as in 
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Figure 5.13b, the Soret band peak blue shifts to 414.9 nm (2.99 eV), and for the trimer 

configured as in Figure 5.13c, the Soret band peak blue shifts further to 408.4 nm (3.04 

eV). Knowing that the Soret band is correlated to the HOMO-LUMO gap according to 

Gouterman four orbital theory [37], it can be conclude that with the face-to-face 

bundling, the HOMO-LUMO gap increases. Although the increase is small, the trend 

matches our results. In our experiment, it cannot be ruled that the STS spectra were taken 

with the PZn2 molecules bundled with face-to-face configuration, resulting in an increase 

of HOMO-LUMO gap compared to the PZn1 single molecules.  

 

Figure 5.13 Structure of the face-to-face coupled porphyrins. Adapted from Ref. [118] 
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Figure 5.14 Schematic illustration of PZn2 molecule tilting in the 1-octanethiol matrix. 

Two different possible tilting directions of the zinc-porphyrin molecule are shown in: a) 

tilting within the macrocycle plane, and b) tilting out of the macrocycle plane. Purple 

arrow (thicker line) shows the current pathway through the PZn2 molecule while the red 

arrow (thinner line) shows the current pathway through the 1-octanethiol SAMs.  

An alternative originates from the configuration of the inserted PZn2 molecules. 

Compared to PZn1, the PZn2 molecule is 1.1 nm longer, theoretically. Thus, it is much 

higher than the surrounding 1-octanethiol molecule matrix. It is conceivable that the PZn2 

molecule is tilted at an angle from surface normal, and therefore the higher part of the 

PZn2 molecule is on top of the 1-octanethiol SAM, as shown in Figure 5.14. When the I-

V spectra are acquired, the current may follow two different pathways: 1) current flow 

through the PZn2 molecule and electrons tunnel directly to the Au substrate (Purple 

arrows in Figure 5.14), 2) current flow into the PZn2 molecule and electrons tunnel 

through the 1-octanethiol molecules right beneath the PZn2 molecule to further continue 

into the Au substrate (Red arrows in Figure 5.14). Since the STS spectra are subsequently 

averaged, the measured curves are actually the I-V response of mixed PZn2 molecules 
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and 1-octanethiol molecules. Since 1-octanethiol molecules have a much larger HOMO-

LUMO gap, such mixing results in an enlarged HOMO-LUMO gap in the measurement. 

The two possibilities mentioned above, bundling and tilting, are mechanisms that 

are potentially at play in our molecular configuration. In our experiments it is not 

possible to separate the contribution of bundling and tilting; however, considering both 

geometries produce the measured response we expect a combination of the two.  

 

In this chapter we discussed the STS measurements from Chapter 4. Two 

different models were applied to relate the molecular orbital energy levels to the 

measured STS spectra and resistive model was chosen to further analyze the data, since 

the analysis with this model shows decreased HOMO-LUMO gap under light excitation, 

which fits the typical smaller optical band gap in organic semiconductors. To further 

explain the illumination effect on PZn1 and PZn2 molecular orbital energy levels, 

especially the decrease of the HOMO-LUMO gap, the charged molecule model was 

introduced: on absorption of photons, molecules reach excited states, which then become 

negatively charged molecules, exhibiting smaller HOMO-LUMO gaps. Under dark 

conditions, measurements showed that PZn2 exhibits a larger HOMO-LUMO gap than 

PZn1 molecules, which is counterintuitive. Two different hypotheses of face-to-face 

bundling of the molecule, or tilted molecule were introduced to explain the 

measurements.  
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CHAPTER 6 Conclusion and Future Directions 

6.1 Conclusion 

This research is a contribution to optoelectronics where there are few 

experimental efforts focused on understanding the effect of the interaction with light on 

porphyrin electronic structures, in the context of organic molecular electronic devices. 

This research experimentally determined the molecular orbital energy levels of zinc-

porphyrin molecules attached to electrodes, as well as the illumination effect on the 

modulation of porphyrin electronic structures. 

To achieve our research goal, several challenges have been met. The first is to 

prepare the sample with the porphyrin molecules in a device configuration, with the 

longitudinal axis of the porphyrin molecule perpendicular to the substrate. To achieve the 

configuration, 1-octanethiol molecule was used to form self-assembled monolayers, and 

zinc-porphyrin molecules were inserted in the defects of the 1-octanethiol SAMs. The 

second challenge is to adjust the laser to properly illuminate the zinc-porphyrin molecule 

below the scanning tip, and to maximize the effect of the light. We used control studies 

with an n-doped GaAs (100) sample to maximize the zero voltage offset, therefore 

ensuring the optimization of the illumination. The third challenge is to achieve a stable 

tunneling gap under light illumination. To overcome this challenge, the relaxation time of 

system was measured by monitoring the Z piezo position, and the spectra collection were 

all done after equilibrium was achieved, usually 10 minutes after turning on the 

illumination. 
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In our research, optoelectronically active porphyrin complexes were isolated, and 

individual molecules and clusters uprightly/vertically attached to electrodes. The density 

of states of the zinc-porphyrins were quantitatively determined from scanning tunneling 

probe techniques at room temperature, and were qualitatively consistent with calculations 

and experiments of similar porphyrin complexes.  

Optical excitation at relevant energies resulted in differences in the local density 

of states. Under blue laser (405nm) illumination HOMO-LUMO gaps for both monomer 

and dimer zinc-porphyrin molecules is narrower than in dark conditions. Measurements 

were analyzed using a resistive model for voltage distribution, and charged molecule 

model was introduced to explain the decrease of HOMO-LUMO gap under light 

illumination: molecules achieved excited states after absorption of photons and then 

become negatively charged as electrons from the metal electron reservoir fills the hole 

left by the excited electron. The electronic structure of the charged molecule rearranges 

and thus yields the narrower HOMO-LUMO gap.  

Also, we looked into the macrocycle coupling effect of the zinc-porphyrin on the 

molecular orbital energy levels. Measurements on PZn1 and PZn2 molecules were 

performed under dark conditions and showed a counterintuitive result that the HOMO-

LUMO gap of PZn2 molecules is larger than that of PZn1 molecules. We explain these 

results with the mixing of two geometries for the molecules: face-to-face bundling and 

tilting.  
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6.2 Suggestion for Future works 

Future work in this area could lie in several directions: 1) To improve the 

insertion mechanism and experimental conditions, 2) To better model the electronic 

structure of the zinc-porphyrin molecule in our research, 3) To further understand light 

interaction with the zinc-porphyrin molecules, and 4) To further exploit the zinc-

porphyrin molecule to fabricate the electronic devices.  

First, in our research, thiolate bond was used to achieve the chemisorption of the 

zinc-porphyrin molecules to the Au(111) substrate. We tried to optimize the output of the 

stably chemisorbed molecules, to make sure scanning tunneling spectroscopy 

measurement can be successfully conducted over the target molecules. However, the 

yield of good samples remains low. It would be possible use other groups to bond the 

molecule to the Au(111) substrate to improve the yield, thus improving the statistical 

validity of the electronic structure data. Also, our measurements were conducted under 

room temperature and high vacuum condition. To improve the measurement, the 

experiments could be conducted under low temperature and ultra-high vacuum 

conditions.  

Second, theoretical calculation can be performed with the zinc-porphyrin 

molecules in our research. Calculation of electronic structures based on individual 

molecules were performed previously, however chemisorption onto Au(111) substrate via 

thiolated bond may change the molecular orbital energy levels. Also, how light interacts 

with the porphyrin molecule can also be theoretically modeled and calculated. Under the 

charged molecule model, the calculated electronic structures of negatively charged 
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molecule can show more information beyond the HOMO-LUMO gap, and therefore 

provide deeper insight on the molecular orbital energy levels.  

Third, the light interaction with the zinc-porphyrin molecule could be further 

understood by designing new experiments. In our results, it can be expected that the zinc-

porphyrin molecules under light illumination will stay under ground states most of the 

time, since the photon flux from the incident laser is not enough to keep the molecule at 

an excited state. However, we did observe differences under light illumination compare 

to under dark conditions. It could be possible that the adsorption to the Au(111) substrate 

will increase the lifetime of the excited states, or that tip field focusing effects or tip 

plasmonic enhancement become significant. Such hypothesis could be confirmed with 

future optical STM experiments.  

Last but not the least, the goal to fabricate electronic/optoelectronic devices with 

zinc-porphyrin molecules remains to be accomplished. We could potentially try to 

fabricate single electron transistor (SET) with zinc-porphyrin molecules, and the 

properties of such SET devices could be understood from our experimental results of the 

molecular orbital energy levels. It is also possible to introduce optical modulation of the 

SET devices, to achieve possible optical gating SET devices.  

In summary, more research could be performed to further explore the assemblies, 

the electronic properties, and the applications of the zinc-porphryin molecules. With 

improvement on the device fabrication technique, as well as deeper understanding of the 

electronics and optoelectronics of zinc-porphyrin molecules, we believe the porphyrin-

based organic molecular devices have a bright outlook.  
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