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Abstract

We study optimal investment in self-protection of insured individuals when they face inter-

dependencies in the form of potential contamination from others. If individuals cannot coor-

dinate their actions, then the positive externality of investing in self-protection implies that,

in equilibrium, individuals underinvest in self-protection. Limiting insurance coverage through

deductibles or selling “at-fault” insurance can partially internalize this externality and thereby

improve individual and social welfare.
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1 Introduction

This paper is concerned with the question as to how much a consumer or firm who has purchased

insurance should invest in loss reduction measures when they can be contaminated by others due

to interdependencies. To motivate the analysis consider the following two examples:

Example 1: Ms. A is an owner of an apartment in a multi-unit building. Ms. A, who

is required to purchase insurance as a condition for her mortgage, needs to determine how much

she should invest in protective measures (e.g. a sprinkler system) to reduce the likelihood of a

fire occurring in her apartment knowing that there is some chance that one of her unprotected

neighbors could experience a fire that could spread to her apartment and cause damage even if she

invests in these measures.

Example 2: An electric power company that has insured itself against customer law suits from

business interruption due to power failures has to determine how much to invest in risk-reducing

measures given the knowledge that other utilities in the power grid have not taken similar protective

action. More specifically, one weak link in the system can wreak havoc over a much wider area than

the customers served by the utility that failed. In the case of the August 2003, power failures in the

northeastern US and Canada, the initiating event occurred in Ohio, but the worst consequences

were felt hundreds of miles away. Experts believe these could have been greatly reduced if joint

investments would have been undertaken to assure better system stability and decoupling properties

across the boundaries of the several transmission and distribution companies that own and operate

assets that make up the interconnected electric power grid in the northeastern US.1

More generally, our interest is in examining the equilibrium levels of investment in protective

measures when there are interdependencies such as those illustrated by the above examples and

when insurance rates are risk-based. We show that without coordination between those at risk,

individuals and firms will, in equilibrium, underinvest in protection relative to the socially optimal

decision due to the possibility of being contaminated by others. Restricting the amount of coverage

an individual can take by requiring a deductible on insurance policies can encourage investment in

protective measures and often improves both individual and social welfare.

To our knowledge no one has investigated optimal behavior by insureds when they have the op-

1See Kleindorfer (2004) for more details on interdependency of the grid and regulatory problems leading to
underinvestment.
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portunity to invest in protective measures and face interdependent risks. Ehrlich and Becker (1972)

study the interaction between insurance and self-protection when there are no interdependencies.

Schlesinger and Venezian (1986) focus on the joint production of insurance and self-protection in

various market settings without interdependencies between insureds. The problem of optimal pro-

tection when there are interdependencies between agents has been recently studied by Kunreuther

and Heal (2002) and Heal and Kunreuther (2005) when there is no insurance. They developed a

game theoretic model for these interdependent security problems where there are two choices facing

an agent: don’t invest in protection at all or invest in full protection. For the case where there are

negative externalities due to the possibility of contagion from others, they show that there can be

two Nash equilibria–either everyone invests in protection or no-one invests. The key point is that

the incentive that any agent has to invest in risk-reduction measures depends on how she expects

the others to behave in this respect. If she thinks that they will not invest in protection, then this

reduces the incentive for her to do so. On the other hand should she believe that others will invest

in risk reducing measures, then it may be best for her to also do so. So there may be an equilibrium

where no-one invests in protection, even though all would be better off if they had incurred this

cost.

At the core of this problem is a stochastic negative externality–the possibility of being adversely

affected by others in the system who have not invested in protection and hence pose a threat to

others. To the extent that there is a reluctance to invest in mitigation measures because others

have not taken similar measures, there is the potential for catastrophic losses. More specifically

insured losses from natural disasters have increased significantly in recent years in part because

many homeowners in hazard-prone areas have not invested in mitigation measures. One of the

reasons that these measures may not have been adopted is because other homes in the area had

not taken similar protective measures and could cause damage to the property even if it was

mitigated. For example, an earthquake could cause a home that was not reinforced to collapse and

severely damage a neighboring structure that was protected and/or a water heater that was not

appropriately strapped could topple, causing a fire that could spread to other homes in the area

(Levenson 1992).

On a related note, suppose a family in New Orleans was considering whether to elevate its

house to reduce future water losses from hurricane damage. The family may opt not to invest in
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this mitigation measure if it had purchased flood insurance and this was the only structure raised

on stilts. The house would look like an oddity in a sea of homes at ground level. Should the family

choose to move, it would be concerned that the resale value of their home would be lower because

the house was different from all the others. Behaviorally, there is a tendency not to think about a

disaster until after it happens. The family may thus reason that it would be difficult to convince

potential buyers that elevating their house actually increases its property value (Kunreuther 2006).

The interdependency problem we are studying raises the question as to the benefits of coordi-

nating individuals’ and firms’ protective decisions so that one can reduce the externalities due to

contamination and hence improve both individual and social welfare. In this sense it is related to

the study by Shavell (1991) who investigated the optimal decision by individuals to protect their

property against theft, acting alone or collectively, when precautions are observable (e.g. iron bars

on a window) or unobservable (e.g. use of a safe for storing valuables). Ayres and Levitt (1998)

have demonstrated the social benefits of protection when individuals invest in unobservable pre-

cautionary measures. They focus on the Lojack car retrieval system that criminals cannot detect.

This generates positive externalities that lead to a sub-optimal level of private investment.

The paper is organized as follows. We first consider the case of two identical individuals (or

firms) where there is no possibility of contamination from one individual to another and each

individual has an opportunity to invest in mitigation to reduce its losses with premium reductions

reflecting the reduced level of risk. We label this base case the No Contamination case. We

compare this base case with a situation where there can be contamination between the two parties

and where the two parties coordinate their actions. This case is labeled Contamination – First

Best. It will be compared with a situation where the two parties cannot coordinate their actions and

thus each party makes a decision independent of the other. This case is labeledContamination –

Second Best. We then turn to regulatory mechanisms that provide stronger incentives for agents to

invest in self-protection and thereby internalize the externality if the two parties face the possibility

of contamination and cannot coordinate their actions. We show that welfare can be improved by

either a required deductible on each insurance policy or by making agents liable for losses to others

and providing “at-fault” rather than no-fault insurance coverage. The concluding section discusses

the policy implications of these findings by highlighting the importance of coordination between

agents either voluntarily or through external involvement such as building codes. We also suggest
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directions for future research.

2 Model

There are two identical agents, i and j, who maximize expected utility with respect to an increasing,

concave utility function u (·).2 Each policyholder has initial wealth w0 and is exposed to a loss of size

L with probability p0. There is a market for self-protection and a market for insurance. Investing

in self-protection reduces the loss probability and investing in insurance transfers wealth from the

no-loss to the loss state. The cost of reducing the loss probability to pi ≤ p0 is given by a cost

function γ (∆p) = γ (p0 − pi) where γ (0) = 0, γ0 > 0, and γ00 > 0. The policyholder can purchase

insurance coverage I for an actuarially fair premium P . We assume that there is no moral hazard

problem, i.e. the agents’ investments in protection is verifiable and contractible by the insurer.

Optimal Insurance Coverage. As insurance is actuarially fair, it is optimal for the risk-averse

agent to purchase full insurance, i.e. I∗ = L, for any level of investment in self-protection. Hence

one can investigate the decision on how much self-protection to purchase under conditions of no

contamination and contamination independent of the insurance decision. Furthermore since indi-

viduals are fully protected by insurance they do not face any risk. They will thus determine their

optimal amount of self-protection by maximizing their level of final wealth which, in this case, is

equivalent to maximizing their expected utility of wealth. This equivalence does not hold if insur-

ance coverage is restricted and individuals therefore face risk. The optimal level of self-protection

is then derived under the maximization of expected utility of final wealth (see Section 3).

2.1 No Contamination

We first review the situation in which one individual cannot be contaminated by the other. As

noted above, the optimal amount of self-protection and therefore the optimal loss probability p∗ is

determined by maximizing the value of final wealth

max
p

W (p) = w0 − γ (p0 − p)− pL

2One obtains the same qualitative results when considering n rather than two individuals.
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where P = pL is the actuarially fair premium for full coverage. The first and second derivatives

with respect to p isW 0 (p) = γ0 (p0 − p)−L andW 00 (p) = −γ00 (p0 − p) < 0. The objective function

is thus globally concave which implies that we either have a corner solution p∗ = p0 if γ0 (0) ≥ L or

otherwise the optimal loss probability p∗ < p0 is determined by the first order condition

γ0 (p0 − p∗) = L. (1)

The individual thus equates the marginal cost of the loss reduction, γ0 (∆p), with the marginal

benefit in premium reduction, L. We now assume that γ0 (0) < L < γ0 (p0) which implies an inner

solution 0 < p∗ < p0. Note that if γ0 (p0) < L then p∗ = 0 because the marginal cost of eliminating

the probability of a loss is sufficiently small relative to the magnitude of the loss itself that it is

worth investing so there is no exposure to this risk. Similarly if γ0 (0) > L then the marginal cost

of investing in any protection is so high relative to the benefits in reducing the expected loss that

it is optimal not to commit any funds to mitigation.

2.2 Contamination

In this section, we introduce the possibility that one agent can be contaminated by the other agent.

Denote by q (pj) the likelihood that agent i is contaminated by the other agent, j, as a function

of the other agent’s loss probability pj . Contamination thus introduces an externality between the

two agents in the sense that the decision of one policyholder to invest in protection affects the

decision of the other policyholder. We assume that contamination is “perfect” in the sense that if

a loss is incurred by one policyholder it spreads with probability one to the other policyholder, i.e.

q (pi) = pi and q (pj) = pj .3 The loss and final wealth distribution faced by policyholder i is

event prob final wealth

loss pi + (1− pi) pj w0 − γ (p0 − pi)− P − L+ I

no loss (1− pi) (1− pj) w0 − γ (p0 − pi)− P

where the actuarially fair premium is given by P = (pi + (1− pi) pj) I.

3 In Appendix 7.1 we treat the general case by allowing for less-than-perfect contamination. We show that the
same qualitative results obtain under the conditions q (0) = 0, q (p) ≤ p, 0 ≤ q0 ≤ 1, and q00 ≥ 0.
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As above, given that insurance coverage is actuarially fair, it is optimal for the policyholder to

purchase full insurance, I∗ = L, independent of the amount invested in self-protection. Under full

coverage, policyholder i’s level of final wealth is given by

Wi =W (pi, pj) = w0 − γ (p0 − pi)− (pi + (1− pi) pj)L.

In the following two subsections, we consider the optimal investment in self-protection under the

first-best and second-best scenarios in which policyholders can and cannot, respectively, contract

on the level of investment in protection.

First-Best. If policyholders can contract on the externalities, i.e. they jointly determine and

implement pi and pj , the Coase theorem applies and the optimal solution is given by the socially

optimal level that maximizes the aggregate level of final wealth

Wi +Wj = 2w0 − γ (p0 − pi)− γ (p0 − pj)− 2 (pi + (1− pi) pj)L.

The first and second derivative of the aggregate level of wealth with respect to pi is given by

∂Wi +Wj

∂pi
= γ0 (p0 − pi)− 2 (1− pj)L

∂2Wi +Wj

∂p2i
= −γ00 (p0 − pi) < 0.

The aggregate level of wealth is thus globally concave which implies a unique solution p∗i (pj) for

each pj . As the maximization problem is symmetric in i and j, let p∗FB denote the optimal solution

which is determined by p∗FB = p∗i (p
∗
FB) = p∗j (p

∗
FB). If γ

0 (0) ≥ 2 (1− p0)L, then it is optimal not

to invest in protection, i.e. p∗FB = p0. Note that 2 (1− p0)L represents the expected joint loss

to individuals i and j if neither party invests in protection. In this situation the marginal cost of

investing even a penny in protection is greater than the marginal benefit of the joint reduction in

losses to individuals i and j from incurring this cost. Note that the smaller p0 is, the more likely one

invests in protection for any given value of γ0 (0) because the marginal benefits to each individual

of the other investing in mitigation is (1− p0)L which increases as p0 decreases. Otherwise, the
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optimal solution is determined by the first-order condition

γ0 (p0 − p∗FB) = 2 (1− p∗FB)L. (2)

We can interpret this condition by rearranging it into

γ0 (p0 − p∗FB) + p∗FBL = L+ (1− p∗FB)L. (3)

The left hand side of (3) is the marginal cost of investing in protection which is the sum of the mar-

ginal dollar cost, γ0 (p0 − p∗FB), and the marginal increase in the premium, p
∗
FBL, due to indirectly

increasing the likelihood of being contaminated by the other agent. The right hand side of (3) is

the marginal benefit of investing in protection which is decomposed into the marginal reduction in

premium, L, due to the reduced likelihood of a direct loss and the marginal reduction in premium,

(1− p∗FB)L, due to the reduction in the likelihood of contaminating the other agent. The latter

marginal benefit represents the benefit from internalizing the positive externality.

Second-Best. In this section, we examine the setting in which the two policyholders cannot con-

tract on the level of investment in self-protection and determine the pure-strategy Nash-equilibria.

Policyholder i’s best response function p∗i (pj) is given by

p∗i (pj) ∈ argmaxpi
Wi (pi, pj) = w0 − γ (p0 − pi)− (pi + (1− pi) pj)L.

It therefore satisfies the first-order condition

γ0 (p0 − p∗i (pj))− (1− pj)L = 0.

Differentiating with respect to pj yields

−p∗0i (pj) γ00 (p0 − p∗i (pj)) + L = 0

i.e.

p∗0i (pj) =
L

γ00 (p0 − p∗i (pj))
> 0. (4)
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Policyholder i’s strategy is thus a strategic complement to policyholder j’s strategy which implies

that there are only symmetric pure-strategy Nash-equilibria.

If policyholder j reduces the loss probability to zero, i.e. pj = 0, then there is no contamination

to policyholder i and thus p∗i (0) = p∗ which is implicitly determined by (1). Under the assumption

γ0 (0) < L < γ0 (p0) we have an inner solution 0 < p∗i (0) = p∗ < p0. If policyholder j does not

invest in self-protection, i.e. pj = p0, then policyholder i0s best response is determined by

γ0 (p0 − p∗i (p0)) = (1− p0)L.

If γ0 (0) ≥ (1− p0)L then policyholder i’s best response is also to not invest in self-protection, i.e.

p∗i (p0) = p0. Otherwise, if γ0 (0) < (1− p0)L then p∗i (p0) < p0.

Since 0 < p∗i (0) = p∗j (0) < p0 and since the best-response functions are increasing, they can

only cross the 45 degree line an odd number of times. We thus conclude that if γ0 (0) < (1− p0)L

then there exists an odd number of pure-strategy Nash-equilibria, p∗SB = p∗i (p
∗
SB) = p∗j (p

∗
SB),

which are all inner solutions and determined by the condition

γ0 (p0 − p∗SB) = (1− p∗SB)L. (5)

If γ0 (0) ≥ (1− p0)L, then there also exists an odd number of pure-strategy Nash-equilibria with

the only difference that the largest equilibrium is at the corner p∗SB = p0, i.e. there is no investment

in self-protection in this equilibrium.

In both cases, the smallest and the largest equilibrium are stable with respect to a myopic ad-

justment process and the other equilibria alternate in terms of stability and instability. The stability

condition is characterized by p∗0i (p
∗
SB) < 1 which, by equation (4) is equivalent to γ

00 (p0 − p∗SB) > L.

If the best-response functions are concave, then there exists a unique pure strategy Nash-equilibrium

which is stable with respect to a myopic adjustment process. Figure 1 shows a situation in which

there are three Nash-equilibria.
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To interpret condition (5), we rearrange it into

γ0 (p0 − p∗SB) + p∗SBL = L. (6)

The left hand side of (6) is the same as under the first-best scenario (3) , i.e. the sum of the

marginal dollar cost, γ0 (p0 − p∗SB), and the marginal increase in the premium, p
∗
SBL, due to in-

directly increasing the likelihood of being contaminated by the other agent. The right hand side

of (6), however, differs from the first-best scenario (3). The only marginal benefit of investing in

protection is the marginal reduction in premium, L, due to the reduced likelihood of a direct loss.

As policyholders cannot contract on the level of investment in self-protection, it is not possible

for a policyholder to benefit from the positive externality that his investment poses on the other

policyholder as shown in equation (3) for the joint solution.

2.3 Comparison

In the following subsection, we compare the level of investment in any Nash equilibrium with both

the one in the first-best scenario and the one if policyholders do not face contamination.
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Comparing Second-Best with First-Best. In this section, we compare the optimal level of

investment in self-protection in the first-best with the one in the second-best scenario. Suppose it

is optimal to not invest in self-protection in the first-best world, i.e. γ0 (0) ≥ 2 (1− p0)L. Then it

is also not optimal to invest in self-protection in the second-best world, as γ0 (0) ≥ 2 (1− p0)L >

(1− p0)L, since an individual does not take into account the positive externalities provided the

others when making an investment decision. Now suppose it is optimal to invest in self-protection

in the first-best world, i.e. γ0 (0) < 2 (1− p0)L. The optimal solution is then determined by

γ0 (p0 − p∗FB) = 2 (1− p∗FB)L.

This implies

γ0 (p0 − p∗FB) > (1− p∗FB)L

and condition (5) yields p∗SB > p∗FB. In any pure-strategy Nash-equilibrium the level of investment

in self-protection is thus lower compared to the first-best scenario. The intuition behind this

result can be derived from comparing the first-order condition (3) in the first-best scenario under

contamination

γ0 (p0 − p) + pL = L+ (1− p)L

with the first-order condition (5) in the second-best scenario under contamination

γ0 (p0 − p) + pL = L.

We note that in the second-best scenario it is not possible to internalize the marginal benefit

of the policyholder’s effect on the other policyholder, (1− p)L, and he therefore underinvests in

self-protection compared to the first-best scenario.

Comparing First-Best with No-Contamination. Let us compare the optimal level of in-

vestment without contamination with the one in the first-best scenario with contamination. The

first-order condition (1) under no contamination is

γ0 (p0 − p) = L
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and the first-order condition (3) in the first-best scenario under contamination is

γ0 (p0 − p) + pL = L+ (1− p)L.

By comparing the marginal costs and benefits of the two scenarios, we see that contamination adds

both a marginal cost and a marginal benefit of investing in self-protection. The additional marginal

cost, pL, is due to the indirect increase in the likelihood of being contaminated by the other agent

while the marginal benefit, (1− p)L, is due to the internalized positive of effect on the other agent.

This implies that investment in self-protection under contamination can be larger or smaller than

under no contamination depending on whether the additional marginal benefit is larger or smaller

than the additional marginal cost.

Under the condition p0 < 1/2–which seems most relevant for insurance events–the additional

marginal benefit is larger than the additional marginal cost of investing in self-protection. It is thus

optimal to invest more in self-protection under the first-best scenario with contamination compared

to the scenario in which agents cannot be contaminated which yields p∗FB < p∗.

To be more precise, suppose it is optimal to not invest in self-protection if there is no contamina-

tion, i.e. γ0 (0) ≥ L. Then it may still be optimal to invest in self-protection in the first-best world

with contamination since the condition for not investing is γ0 (0) ≥ 2 (1− p0)L and 2 (1− p0)L > L

for all p0 < 1/2. Now suppose that it is optimal to invest in self-protection without contamination.

Then policyholders invest more in self-protection in the first-best world with contamination as the

first-order condition γ0 (p0 − p∗) = L under no contamination implies

γ0 (p0 − p∗) < 2 (1− p∗)L

for all p0 < 1/2 and condition (3) yields p∗FB < p∗.

Comparing Second-Best with No-Contamination. Let us now compare the optimal level

of investment without contamination with the one in the second-best scenario with contamination.

Suppose it is optimal to not invest in self-protection if there is no contamination, i.e. γ0 (0) ≥ L.

Then it is also optimal to not invest in self-protection in the second-best world as γ0 (0) ≥ L

implies γ0 (0) > (1− p0)L. Now suppose that it is optimal to invest in self-protection without
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contamination. Then policyholders invest less in self-protection in the second-best world with

contamination as the first-order condition γ0 (p0 − p∗) = L implies

γ0 (p0 − p∗) > (1− p∗)L

and condition (5) yields p∗SB > p∗. In any pure-strategy Nash-equilibrium the level of investment

in self-protection is thus lower compared to the scenario in which policyholders do not face possible

contamination. The intuition behind this result can again be derived by comparing the first-order

conditions (6) in the second-best scenario under contamination

γ0 (p0 − p) + pL = L

with the first-order condition (1) under no contamination is

γ0 (p0 − p) = L.

In the second-best scenario policyholders, by investing in self-protection, face the additional mar-

ginal cost of implicitly increasing the likelihood of being contaminated by the other policyholder,

pL. The marginal cost equates the marginal benefit of investing in self-protection thus at a lower

level of investment.

We summarize all findings of this section in Table 1 below under the assumption p0 < 1/2.

γ0 (0) ∈ ... ]0, (1− p0)L[ [(1− p0)L,L[ [L, 2 (1− p0)L[ [2 (1− p0)L,∞[

No Contamination p∗ p∗ < p0 p∗ < p0 p∗ = p0 p∗ = p0

First-Best p∗FB p∗FB < p0 p∗FB < p0 p∗FB < p0 p∗FB = p0

Second-Best NE p∗SB p∗SB < p0 p∗SB = p0 p∗SB = p0 p∗SB = p0

holds in all NE is a NE is unique NE is unique NE

Comparison p∗FB < p∗ < p∗SB p∗FB < p∗ < p∗SB p∗FB < p∗ = p∗SB p∗FB = p∗ = p∗SB

Table 1: Equilibrium levels of loss probabilities and comparison if p0 < 1/2.
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3 Improving Welfare

In the section above, we have shown that individuals inefficiently underinvest in self-protection

if they cannot coordinate their activities. This raises the question about regulatory mechanisms

that provide stronger incentives for agents to invest in self-protection and thereby improve both

individual and social welfare. We show that this can be achieved by either restricting insurance

coverage on each policy or if agents are liable for losses to others and at-fault insurance is provided

as opposed to no-fault insurance.

3.1 Restricting Insurance Coverage

In this section, we show that restricting insurance coverage, e.g. by requiring a deductible in the

insurance policy, can improve individual and social welfare in a second best world with contamina-

tion. With a deductible, each individual has to bear part of their own loss and is likely to have more

of an incentive to invest in self-protection than if he had full insurance coverage. The additional

investment in self-protection creates an extra marginal benefit, (1− p)L, through the positive ex-

ternality that exists between individuals. In the following Proposition, we specify conditions under

which this benefit outweighs the cost of bearing part of the loss and implies that partial insurance

is optimal. It is important, however, that the deductible is enforced by some regulatory entity. In

an unregulated environment, an insurer always will deviate by offering full coverage to attract all

customers.4

Proposition 1 Suppose that the stability condition γ00 (p0 − p∗SB) > L holds where p∗SB is the loss

probability in a Nash-equilibrium under full insurance coverage, implicitly defined by (5). Then the

optimally enforced deductible is strictly positive if and only if

(1− p∗SB)
2 L >

³
1− (1− p∗SB)

2
´
γ00 (p0 − p∗SB) . (7)

Proof. See Appendix 7.2.

Imposing a strictly positive deductible and thereby forcing agents to invest more in self-protection

can only be welfare-improving if the marginal benefit of internalizing the externality, i.e. (1− p∗SB)L,

4Since individuals face risk under restricted insurance coverage, the proof requires the maximization of expected
utility of final wealth.
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is relatively large compared to marginal cost of investing in self-protection. By substituting

γ0 (p0 − p∗SB) = (1− p∗SB)L into the necessary and sufficient condition (7) we obtain

(1− p∗SB)L >
³
1− (1− p∗SB)

2
´
L · γ

00 (p0 − p∗SB)

γ0
¡
p0 − p∗SB

¢ .
The left-hand side of this inequality reflects the marginal benefit of internalizing the externality

whereas the right-hand side includes the marginal cost of investing in self-protection, as measured

by the degree of convexity γ00 (p0 − p∗SB) /γ
0 (p0 − p∗SB) of the cost function. We conclude that

the optimally enforced deductible is more likely to be strictly positive the higher the marginal

benefit of internalizing the externality (1− p∗SB)L and the lower the convexity of the cost function

γ00 (p0 − p∗SB) /γ
0 (p0 − p∗SB).

This result should be contrasted with the case of terrorism insurance considered by Lakdawalla

and Zanjani (2005) where protection by one target leads the terrorist to attack a less protected

target. Protection thus creates a negative externality and an inefficient overinvestment in self-

protection. A governmental subsidy of terrorism insurance can improve social welfare by discourag-

ing investment in protection. In our case, there is a positive externality associated with investment

in protection. Social welfare is now improved by limiting insurance through a deductible, thereby

encouraging investment in protection.

Remark 2 Note that inequality (7) does not depend on the specific form of the utility function. As

shown in the proof of Proposition 1, any risk-averse agent will want to invest more in self-protection

under a deductible policy than under full coverage if and only if p∗SB < 1−
p
1/2 which is implied

by the necessary and sufficient condition (7). This improves both individual and social welfare. The

optimal deductible level depends on the specific form of the utility function, i.e. on the degree risk

aversion.

Put differently, if the probability of a loss under full insurance coverage is relatively large, i.e.

p∗SB > 1−
p
1/2, limiting insurance by enforcing a deductible discourages investment in protection.

This is related to the finding of Ehrlich and Becker (1972) who show that the absence of market

insurance can discourage the investment in self-protection if the probability of a loss is relatively

large.
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3.2 At-Fault Insurance

Consider the case where an apartment owner is liable in case the fire in his apartment spreads over

to the other apartment. At-fault insurance would then include coverage of losses to others.5 For

owner i, the overall premium is therefore P = [pi + pi (1− pj)]L. The best-response function of

owner i is given by

p∗i (pj) ∈ argmaxpi
Wi (pi, pj) = w0 − γ (p0 − pi)− pi (2− pj)L.

All features of the best-response function and NE are equivalent to the second-best scenario in

Section 2. The one important difference is that the equilibrium level(s) of loss probability, p∗AF , is

determined by the following condition

γ0 (p0 − p∗AF ) = (2− p∗AF )L. (8)

Comparing equation (8) with the first-order condition in the First-Best case, that is equation (2),

γ0 (p0 − p∗FB) = 2 (1− p∗FB)L < (2− p∗FB)L

implies p∗AF < p∗FB. In any pure-strategy Nash-equilibrium under at-fault insurance, agents ineffi-

ciently overinvest in self-protection. The intuition behind this result can be derived from comparing

the first-order condition (3) in the first-best scenario under contamination

γ0 (p0 − p) + pL = L+ (1− p)L (9)

with the first-order condition (8) in the at-fault scenario under contamination

γ0 (p0 − p) = L+ (1− p)L. (10)

5This is not how current insurance practice operates. An insurer who provides protection to individual i is
responsible for losses incurred by that agent no matter who caused the losses. One reason for this contractual
arrangement between insurer and insured is the difficulty in assigning causality for a particular event. With respect
to fire damage a classic case is H.R. Moch Co., Inc. v Rensselaer Water Co. 247N.Y.160, 159 N.E. 896 which ruled
that “A wrongdoer who by negligence sets fire to a building is liable in damages to the owner where the fire has its
origin, but not to other owners who are injured when it spreads”. We are indebted to Victor Goldberg who provided
us with this case.
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Since the agent is not liable for being contaminated by the other agent under the at-fault scenario,

the marginal cost of investing in self-protection is lower than in the first-best scenario scenario.

Under at-fault, investing in self-protection does not indirectly increase the likelihood of being con-

taminated by the other agent and thereby increase the premium marginally by pL. The reduction

in the marginal cost implies an inefficient level of overinvestment under at-fault insurance.

Welfare Comparison. When the efficient level of investment in self-protection is relatively high,

i.e. p∗FB is relatively low, the marginal cost and benefit under at-fault insurance, see equation (10)

approximate the marginal cost and benefit in the first-best scenario, see equation (9). Under this

condition, welfare can therefore be improved by at-fault insurance or alternatively by a required

deductible, see condition (7) and p∗SB < p∗FB. If, however, the efficient level of investment in self-

protection is relatively low, i.e. p∗FB is relatively high, then the second-best scenario under no-fault

will dominate at-fault insurance coverage.

4 Implications for Policy

The bundling of protection and insurance has a long history dating back to the factory mutuals

founded in the early 19th century in New England (Bainbridge, 1952). These mutual companies

offered factories an opportunity to pay a small premium in exchange for protection against poten-

tially large losses from fire while at the same time requiring inspections of the factory both prior

to issuing a policy and after one was in force. Poor risks had their policies canceled; premium re-

ductions were given to factories that instituted loss prevention measures. For example, the Boston

Manufacturers worked with lantern manufacturers to encourage them to develop safer designs and

then advised all policyholders that they had to purchase lanterns from those companies whose

products met their specifications. In many cases, insurance would only be provided to companies

that adopted specific loss prevention methods. For example one company, the Spinners Mutual,

only insured risks where automatic sprinkler systems were installed. The Manufacturers Mutual

in Providence, Rhode Island developed specifications for fire hoses and advised mills to buy only

from companies that met these standards.

Private insurers today should consider requiring protective measures as a condition for insurance
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with respect to standard homeowners coverage to reduce the negative externalities due to contagion.

However, all insurers would have to find it in their financial interest to follow this strategy because

of the contractual arrangements with respect to claims payments. As pointed out above any insurer

who provides protection to individual i is responsible for losses incurred by this policyholder no

matter who caused the damage. Without protection requirements by other insurers, a competitive

insurer will have to charge premiums that reflect the actions of policyholders who are independently

deciding how much to invest in protection.

One way of coordinating protective decisions of individuals is through a monopolistic insurer

who can require the adoption of such measures or provide premium incentives for those at risk to

adopt them to internalize the externalities due to interdependencies. A competitive insurer may

not be able to do this as easily if others in the industry do not take similar actions. von Ungern-

Sternberg (1996) provides an empirical study of the pricing and performance of insurance markets in

Switzerland and compares the performance of competitive insurers in seven cantons of the country

with local state monopolies in the 19 other cantons. The study finds that for very similar products

the monopolies charge premiums that are 70 percent lower than for the competitive insurance, they

spend substantially more on fire prevention and have much lower damage rates.

Some type of coordinative mechanism may also improve both individual and social welfare with-

out having to rely on the power of the monopolist insurer. One option is for a well-enforced standard

or regulation, such as a building code, that requires individuals and firms to adopt cost-effective

protective mechanisms when they would not do so voluntarily.6 One could also turn to the private

sector to coordinate decisions through an industry association that stipulates that any member has

to follow certain rules and regulations. For example, an apartment owners association could require

that all residents in the building adopt certain fire protective measures such as installing a smoke

alarm and/or a sprinkler system. The association could then arrange to purchase insurance for all

units in the building where the premiums would reflect the required protection that would reduce

the chances of a fire occurring. Today some apartment associations install smoke alarm and/or a

sprinkler system in all their units as a way of detecting and extinguishing a fire at any early stage

before it causes damage to the unit and spreads to surrounding ones.

6Some states require smoke alarm and/or sprinkler systems to be installed.
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5 Future Research

There are a number of questions that could be studied both theoretically and empirically with

respect to the linkages between undertaking investments in mitigation and purchasing insurance

when there are interdependencies and hence negative stochastic externalities.

On the behavioral side there is considerable evidence that individuals misperceive the risk with

respect to a disaster occurring. To the extent that individuals overestimate the probability, they

will want to purchase full insurance even when the premiums are higher than the actuarially fair

rate to the extent that p0L > P (1 + λ) where p0 is the perceived probability of the loss, P is the

actuarially fair premium for full coverage and λ is the loading factor. It would be interesting to

determine empirically what people’s perception of the risk are for different hazards and how it

compares to estimates by experts.

To date there is limited empirical data on how buyers and sellers consider the nature of the

interdependencies in their decision making process. In what ways do homeowners and firms take

into account the possibility of being adversely affected by others and/or the presence of weak links

in the system when they make their decisions on how much insurance to purchase and what risk-

reducing measures to adopt? Do insurers consider the nature of the interdependencies facing them

when they market policies and set premiums for coverage against property damage and business

interruption risk? We are not aware of any empirical evidence indicating that the impact of negative

externalities on future losses are factored into insurers’ coverage and pricing decisions. Yet we do

know that the insurance industry is more concerned today than ever before of the importance of

encouraging those at risk to adopt mitigation measures to reduce losses and is supporting research by

organizations such as the Institute for Business and Home Safety to evaluate the cost-effectiveness

of alternative protective measures (Wharton Risk Center Report, 2007).

On the theoretical side, it would be interesting to determine how the equilibrium solution

with and without coordination is affected when agents are heterogenous so that some create more

negative externalities than others. Can one induce tipping and cascading by inducing one agent to

increase their investment in loss reduction measures through either subsidies or fines. Answers to

these questions will provide more insight into the linkages between insurance and mitigation in a

world where there are intedependencies.
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7 Appendix

7.1 The Case of General Contamination

In this section, we introduce the possibility that one agent can be contaminated by the other agent. Denote
by q (pj) the likelihood that agent i is contaminated by the other agent, j, as a function of the other agent’s
loss probability pj . We assume q (0) = 0, q (p) ≤ p, 0 ≤ q0 ≤ 1, and q00 ≥ 0. If q (p) = 0 for all p then
there is no contamination. If q (p) = p for all p, then contamination is “perfect” in the sense that if a loss is
incurred by one policyholder it spreads with probability one to the other policyholder. Contamination thus
introduces an externality between the two agents in the sense that the decision of one policyholder to invest
in protection affects the decision of the other policyholder. The loss and final wealth distribution faced by
policyholder i is

event prob final wealth
loss pi + (1− pi) q (pj) w0 − γ (p0 − pi)− P − L+ I
no loss (1− pi) (1− q (pj)) w0 − γ (p0 − pi)− P

where the actuarially fair premium is given by P = (pi + (1− pi) q (pj)) I.
As above, given that insurance coverage is actuarially fair, it is optimal for the policyholder to pur-

chase full insurance, I∗ = L, independent of the amount invested in self-protection. Under full coverage,
policyholder i’s level of final wealth is given by

Wi =W (pi, pj) = w0 − γ (p0 − pi)− (pi + (1− pi) q (pj))L.

In the following two subsections, we consider the optimal investment in self-protection under the first-
best and second-best scenarios in which policyholders can and cannot, respectively, contract on the level of
investment in protection.

First-Best. If policyholders can contract on the externalities, i.e. they jointly determine and implement
pi and pj , the Coase theorem applies and the optimal solution is given by the socially optimal level that
maximizes the aggregate level of final wealth

Wi +Wj = 2w0 − γ (p0 − pi)− γ (p0 − pj)− (pi + (1− pi) q (pj))L− (pj + (1− pj) q (pi))L.

The first and second derivative of the aggregate level of wealth with respect to pi is given by

∂Wi +Wj

∂pi
= γ0 (p0 − pi)− (1− q (pj) + (1− pj) q

0 (pi))L

∂2Wi +Wj

∂p2i
= −γ00 (p0 − pi)− (1− pj) q

00 (pi)L < 0.

The aggregate level of wealth is thus globally concave which implies a unique solution p∗i (pj) for each pj . As
the maximization problem is symmetric in i and j, let p∗FB denote the optimal solution which is determined
by p∗FB = p∗i (p

∗
FB) = p∗j (p

∗
FB). If γ

0 (0) ≥ (1− q (p0) + (1− p0) q
0 (p0))L, then it is optimal not to invest

in protection, i.e. p∗FB = p0. Note that (1− q (p0) + (1− p0) q
0 (p0))L represents the expected joint loss to

individuals i and j if neither party invests in protection. In this situation the marginal cost of investing even
a penny in protection is greater than the marginal benefit of the joint reduction in losses to individuals i
and j from incurring this cost. Otherwise, the optimal solution is determined by the first-order condition

γ0 (p0 − p∗FB) = (1− q (p∗FB) + (1− p∗FB) q
0 (p∗FB))L. (11)

We can interpret this condition by rearranging it into

γ0 (p0 − p∗FB) + q (p∗FB)L = L+ (1− p∗FB) q
0 (p∗FB)L. (12)

The left hand side of (12) is the marginal cost of investing in protection which is the sum of the marginal
dollar cost, γ0 (p0 − p∗FB), and the marginal increase in the premium, q (p

∗
FB)L, due to indirectly increasing
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the likelihood of being contaminated by the other agent. The right hand side of (12) is the marginal benefit of
investing in protection which is decomposed into the marginal reduction in premium, L, due to the reduced
likelihood of a direct loss and the marginal reduction in premium, (1− p∗FB) q

0 (p∗FB)L, due to the reduction
in the likelihood of contaminating the other agent. The latter marginal benefit represents the benefit from
internalizing the positive externality.

Second-Best. In this section, we examine the setting in which the two policyholders cannot contract on
the level of investment in self-protection and determine the pure-strategy Nash-equilibria. Policyholder i’s
best response function p∗i (pj) is given by

p∗i (pj) ∈ argmax
pi

Wi (pi, pj) = w0 − γ (p0 − pi)− (pi + (1− pi) q (pj))L.

It therefore satisfies the first-order condition

γ0 (p0 − p∗i (pj))− (1− q (pj))L = 0.

Differentiating with respect to pj yields

−p∗0i (pj) γ00 (p0 − p∗i (pj)) + q0 (pj)L = 0

i.e.

p∗0i (pj) =
q0 (pj)L

γ00 (p0 − p∗i (pj))
> 0. (13)

Policyholder i’s strategy is thus a strategic complement to policyholder j’s strategy which implies that there
are only symmetric pure-strategy Nash-equilibria.

If policyholder j reduces the loss probability to zero, i.e. pj = 0, then there is no contamination to
policyholder i and thus p∗i (0) = p∗ which is implicitly determined by (1). Under the assumption γ0 (0) <
L < γ0 (p0) we have an inner solution 0 < p∗i (0) = p∗ < p0. If policyholder j does not invest in self-protection,
i.e. pj = p0, then policyholder i0s best response is determined by

γ0 (p0 − p∗i (p0)) = (1− q (p0))L.

If γ0 (0) ≥ (1− q (p0))L then policyholder i’s best response is also to not invest in self-protection, i.e.
p∗i (p0) = p0. Otherwise, if γ0 (0) < (1− q (p0))L then p∗i (p0) < p0.

Since 0 < p∗i (0) = p∗j (0) < p0 and since the best-response functions are increasing, they can only cross
the 45 degree line an odd number of times. We thus conclude that if γ0 (0) < (1− q (p0))L then there exists
an odd number of pure-strategy Nash-equilibria, p∗SB = p∗i (p

∗
SB) = p∗j (p

∗
SB), which are all inner solutions

and determined by the condition
γ0 (p0 − p∗SB) = (1− q (p∗SB))L. (14)

If γ0 (0) ≥ (1− q (p0))L, then there also exists an odd number of pure-strategy Nash-equilibria with the only
difference that the largest equilibrium is at the corner p∗SB = p0, i.e. there is no investment in self-protection
in this equilibrium.

In both cases, the smallest and the largest equilibrium are stable with respect to a myopic adjustment
process and the other equilibria alternate in terms of stability and instability. The stability condition is
characterized by p∗0i (p

∗
SB) < 1 which, by equation (4) is equivalent to γ00 (p0 − p∗SB) > q0 (p∗SB)L. If the

best-response functions are concave, then there exists a unique pure strategy Nash-equilibrium which is
stable with respect to a myopic adjustment process.

To interpret condition (14), we rearrange it into

γ0 (p0 − p∗SB) + q (p∗SB)L = L. (15)

The left hand side of (15) is the same as under the first-best scenario (12) , i.e. the sum of the marginal
dollar cost, γ0 (p0 − p∗SB), and the marginal increase in the premium,q (p

∗
SB)L, due to indirectly increasing

the likelihood of being contaminated by the other agent. The right hand side of (15), however, differs from
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the first-best scenario (12). The only marginal benefit of investing in protection is the marginal reduction
in premium, L, due to the reduced likelihood of a direct loss. As policyholders cannot contract on the level
of investment in self-protection, it is not possible for a policyholder to benefit from the positive externality
that his investment poses on the other policyholder as shown in equation (12) for the joint solution.

In the following subsection, we compare the level of investment in any Nash equilibrium with both the
one in the first-best scenario and the one if policyholders do not face contamination.

Comparing Second-Best with First-Best. In this section, we compare the optimal level of invest-
ment in self-protection in the first-best with the one in the second-best scenario. Suppose it is optimal to not
invest in self-protection in the first-best world, i.e. γ0 (0) ≥ (1− q (p0) + (1− p0) q

0 (p0))L. Then it is also
not optimal to invest in self-protection in the second-best world, as γ0 (0) ≥ (1− q (p0) + (1− p0) q

0 (p0))L >
(1− q (p0))L since an individual does not take into account the positive externalities provided the others
when making an investment decision. Now suppose it is optimal to invest in self-protection in the first-best
world, i.e. γ0 (0) < (1− q (p0) + (1− p0) q

0 (p0))L. The optimal solution is then determined by

γ0 (p0 − p∗FB) = (1− q (p∗FB) + (1− p∗FB) q
0 (p∗FB))L.

This implies
γ0 (p0 − p∗FB) > (1− q (p∗FB))L

and condition (14) yields p∗SB > p∗FB. In any pure-strategy Nash-equilibrium the level of investment in
self-protection is thus lower compared to the first-best scenario. The intuition behind this result can be
derived from comparing the first-order condition (12) in the first-best scenario under contamination

γ0 (p0 − p) + q (p)L = L+ (1− p) q0 (p)L

with the first-order condition (14) in the second-best scenario under contamination

γ0 (p0 − p) + q (p)L = L.

We note that in the second-best scenario it is not possible to internalize the marginal benefit of the poli-
cyholder’s effect on the other policyholder, (1− p) q0 (p)L, and he therefore underinvests in self-protection
compared to the first-best scenario.

Comparing First-Best with No-Contamination. Let us compare the optimal level of investment
without contamination with the one in the first-best scenario with contamination. The first-order condition
(1) under no contamination is

γ0 (p0 − p) = L

and the first-order condition (12) in the first-best scenario under contamination is

γ0 (p0 − p) + q (p)L = L+ (1− p) q0 (p)L.

By comparing the marginal costs and benefits of the two scenarios, we see that contamination adds both a
marginal cost and a marginal benefit of investing in self-protection. The additional marginal cost, q (p)L, is
due to the indirect increase in the likelihood of being contaminated by the other agent while the marginal
benefit, (1− p) q0 (p)L, is due to the internalized positive of effect on the other agent. This implies that
investment in self-protection under contamination can be larger or smaller than under no contamination
depending on whether the additional marginal benefit is larger or smaller than the additional marginal cost.

Under the condition p0 < 1/2–which seems most relevant for insurance events–the additional marginal
benefit is larger than the additional marginal cost of investing in self-protection. It is thus optimal to invest
more in self-protection under the first-best scenario with contamination compared to the scenario in which
agents cannot be contaminated which yields p∗FB < p∗.

To be more precise, suppose it is optimal to not invest in self-protection if there is no contamina-
tion, i.e. γ0 (0) ≥ L. Then it may still be optimal to invest in self-protection in the first-best world
with contamination since the condition for not investing is γ0 (0) ≥ (1− q (p0) + (1− p0) q

0 (p0))L and
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(1− q (p0) + (1− p0) q
0 (p0))L > L for all p0 < 1/2. Now suppose that it is optimal to invest in self-

protection without contamination. Then policyholders invest more in self-protection in the first-best world
with contamination as the first-order condition γ0 (p0 − p∗) = L under no contamination implies

γ0 (p0 − p∗) < (1− q (p∗) + (1− p∗) q0 (p∗))L

for all p0 < 1/2 and condition (12) yields p∗FB < p∗.

Comparing Second-Best with No-Contamination. Let us now compare the optimal level of
investment without contamination with the one in the second-best scenario with contamination. Suppose it
is optimal to not invest in self-protection if there is no contamination, i.e. γ0 (0) ≥ L. Then it is also optimal
to not invest in self-protection in the second-best world as γ0 (0) ≥ L implies γ0 (0) > (1− q (p0))L. Now
suppose that it is optimal to invest in self-protection without contamination. Then policyholders invest less
in self-protection in the second-best world with contamination as the first-order condition γ0 (p0 − p∗) = L
implies

γ0 (p0 − p∗) > (1− q (p∗))L

and condition (14) yields p∗SB > p∗. In any pure-strategy Nash-equilibrium the level of investment in self-
protection is thus lower compared to the scenario in which policyholders do not face possible contamination.
The intuition behind this result can again be derived by comparing the first-order conditions (15) in the
second-best scenario under contamination

γ0 (p0 − p) + q (p)L = L

with the first-order condition (1) under no contamination is

γ0 (p0 − p) = L.

In the second-best scenario policyholders, by investing in self-protection, face the additional marginal cost of
implicitly increasing the likelihood of being contaminated by the other policyholder, q (p)L. The marginal
cost equates the marginal benefit of investing in self-protection thus at a lower level of investment.

We summarize all findings of this section under the assumption p0 < 1/2 in Table 2 below.

γ0 (0) ∈ ... ]0, (1− q (p0))L[ [(1− q (p0))L,L[ [L, p̄L[ [p̄L,∞[
No Contamination p∗ p∗ < p0 p∗ < p0 p∗ = p0 p∗ = p0
First-Best p∗FB p∗FB < p0 p∗FB < p0 p∗FB < p0 p∗FB = p0
Second-Best NE p∗SB p∗SB < p0 p∗SB = p0 p∗SB = p0 p∗SB = p0

holds in all NE is a NE is unique NE is unique NE
Comparison p∗FB < p∗ < p∗SB p∗FB < p∗ < p∗SB p∗FB < p∗ = p∗SB p∗FB = p∗ = p∗SB

Table 2: Equilibrium levels of loss probabilities and comparison under p0 < 1/2 where
p̄ = (1− q (p0) + (1− p0) q

0 (p0)).
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7.2 Proof of Proposition 1

The economic environment is as above in the second-best scenario in which individuals cannot contract on their investment in self-protection. The
only difference is that the insurance policy includes a deductible D, i.e., the insurer pays L−D in case of a loss. The loss and final wealth distribution
faced by policyholder i is

event prob final wealth
loss pi + (1− pi) pj w0 − γ (p0 − pi)− P (D)−D
no loss (1− pi) (1− pj) w0 − γ (p0 − pi)− P (D)

where the actuarially fair premium is given by P (D) = (pi + (1− pi) pj) (L−D). Policyholder 1’s expected utility of final wealth is given by

EUi (pi, pj ,D) = (1− pi) (1− pj)u (w0 − γ (p0 − pi)− P (D)) + (pi + (1− pi) pj)u (w0 − γ (p0 − pi)− P (D)−D) .

Policyholder i’s best response function p∗i (pj ,D) is given by

p∗i (pj ,D) ∈ argmaxpi
EUi (pi, pj) .

Let p∗SB (D) denote the symmetric Nash-equilibrium, i.e. p
∗
SB (D) = p∗i (p

∗
SB (D) ,D) = p∗i (p

∗
SB (D) ,D), which satisfies the first-order condition

(1− p∗SB (D)) (u (w0 − γ (p0 − p∗SB (D))− P (D)−D)− u (w0 − γ (p0 − p∗SB (D))− P (D)))

+ (1− p∗SB (D))
2 (γ0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

+p∗SB (D) (2− p∗SB (D)) (γ
0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

= 0. (16)

At D = 0 we get the condition
γ0 (p0 − p∗SB (0))− (1− p∗SB (0))L = 0, (17)

where p∗SB (0) = p∗SB .
Note that

P (D) = p∗SB (D) (2− p∗SB (D)) (L−D)

P 0 (D) = 2 (1− p∗SB (D)) p
∗0
SB (D) (L−D)− p∗SB (D) (2− p∗SB (D))

P 0 (0) = 2p∗0SB (0) γ
0 (p0 − p∗SB (0))− p∗SB (0) (2− p∗SB (0))

P 00 (D) = −2p∗02SB (D) (L−D) + 2 (1− p∗SB (D)) p
∗00
SB (D) (L−D)− 2 (1− p∗SB (D)) p

∗0
SB (D)− 2p∗0SB (D) (1− p∗SB (D))

For a given deductible D, the level of expected utility is given by

EUi (p
∗
SB (D) , p

∗
SB (D) ,D) = (1− p∗SB (D))

2 u (w0 − γ (p0 − p∗SB (D))− P (D)) + (2− p∗SB (D)) p
∗
SB (D)u (w0 − γ (p0 − p∗SB (D))− P (D)−D) .

(18)
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Differentiating expected utility with respect to the deductible level yields

∂EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D
= −2 (1− p∗SB (D)) p

∗0
SB (D) (u (w0 − γ (p0 − p∗SB (D))− P (D))− u (w0 − γ (p0 − p∗SB (D))− P (D)−D))

+ (1− p∗SB (D))
2 (p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (2− p∗SB (D)) p
∗
SB (D) (p

∗0
SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

Evaluating the first derivative atD = 0 and substituting γ0 (p0 − p∗SB (0))−(1− p∗SB (0))L = 0 and P
0 (0) = 2p∗0SB (0) γ

0 (p0 − p∗SB (0))−p∗SB (0) (2− p∗SB (0))
implies

∂EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D
|D=0 = −p∗0SB (0) (1− p∗SB (0))Lu

0 (w0 − γ (p0 − p∗SB (0))− P (0)) . (19)

To determine the sign of the first derivative we implicitly differentiate the first-order condition (16) with respect to D which yields the identity

−p∗0SB (D) (u (w0 − γ (p0 − p∗SB (D))− P (D)−D)− u (w0 − γ (p0 − p∗SB (D))− P (D))) (20)

+(1− p∗SB (D))

µ
(p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)
− (p∗0SB (D) γ0 (p0 − p∗SB (D))− P 0 (D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

¶
−2 (1− p∗SB (D)) p

∗0
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2
(−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D)))u

0 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2 (γ0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D))u00 (w0 − γ (p0 − p∗SB (D))− P (D))

+2 (1− p∗SB (D)) p
∗0
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+p∗SB (D) (2− p∗SB (D)) (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D)))u
0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+p∗SB (D) (2− p∗SB (D)) (γ
0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)u00 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

= 0.

Evaluating at D = 0 and substituting γ0 (p0 − p∗SB (0))− (1− p∗SB (0))L we derive

p∗0SB (0) (L− γ00 (p0 − p∗SB (0))) = 0.

The stability condition γ00 (p0 − p∗SB (0)) > L then implies p∗0SB (0) = 0 and (19) yields

∂EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D
|D=0 = 0.

To determine whether expected utility increases or decreases in the deductible level for small deductible levels, we have to determine the sign of the
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second derivative of expected utility evaluated at D = 0. Differentiating (18) twice with respect to D yields

∂2EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D2

= −2
¡
p∗00SB (D) (1− p∗SB (D))− p∗02SB (D)

¢
(u (w0 − γ (p0 − p∗SB (D))− P (D))− u (w0 − γ (p0 − p∗SB (D))− P (D)−D))

−2 (1− p∗SB (D)) p
∗0
SB (D)

µ
(p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))
− (p∗0SB (D) γ0 (p0 − p∗SB (D))− P 0 (D)− 1)u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

¶
−2 (1− p∗SB (D)) p

∗0
SB (D) (p

∗0
SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2 ¡p∗00SB (D) γ0 (p0 − p∗SB (D))− p∗02SB (D) γ

00 (p0 − p∗SB (D))− P 00 (D)
¢
u0 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2
(p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D))
2
u00 (w0 − γ (p0 − p∗SB (D))− P (D))

+2 (1− p∗SB (D)) p
∗0
SB (D) (p

∗0
SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+ (2− p∗SB (D)) p
∗
SB (D)

¡
p∗00SB (D) γ

0 (p0 − p∗SB (D))− p∗02SB (D) γ
00 (p0 − p∗SB (D))− P 00 (D)

¢
u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+ (2− p∗SB (D)) p
∗
SB (D) (p

∗0
SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)2 u00 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

Evaluating atD = 0 and substituting p∗0SB (0) = 0, γ
0 (p0 − p∗SB (0))−(1− p∗SB (0))L, P

0 (0) = −p∗SB (0) (2− p∗SB (0)), and P
00 (0) = 2 (1− p∗SB (0)) p

∗00
SB (0)L

yields

∂2EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D2
|D=0 (21)

= −p∗00SB (0) (1− p∗SB (0))Lu
0 (w0 − γ (p0 − p∗SB (0))− P (0)) + (1− p∗SB (0))

2
p∗SB (0) (2− p∗SB (0))u

00 (w0 − γ (p0 − p∗SB (0))− P (0)) .

Differentiating the identity (20) with respect to D yields

−p∗00SB (D) (u (w0 − γ (p0 − p∗SB (D))− P (D)−D)− u (w0 − γ (p0 − p∗SB (D))− P (D)))

−p∗0SB (D)
µ
(p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)
− (p∗0SB (D) γ0 (p0 − p∗SB (D))− P 0 (D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

¶
−p∗0SB (D)

µ
(p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)
− (p∗0SB (D) γ0 (p0 − p∗SB (D))− P 0 (D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

¶
+(1− p∗SB (D))

µ ¡
p∗00SB (D) γ

0 (p0 − p∗SB (D))− p∗02SB (D) γ
00 (p0 − p∗SB (D))− P 00 (D)

¢
u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

−
¡
p∗00SB (D) γ

0 (p0 − p∗SB (D))− p∗02SB (D) γ
00 (p0 − p∗SB (D))− P 00 (D)

¢
u0 (w0 − γ (p0 − p∗SB (D))− P (D))

¶
+(1− p∗SB (D))

µ
(p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)2 u00 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

− (p∗0SB (D) γ0 (p0 − p∗SB (D))− P 0 (D))2 u00 (w0 − γ (p0 − p∗SB (D))− P (D))

¶
+2p∗0SB (D) p

∗0
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))
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−2 (1− p∗SB (D)) p
∗00
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D))

−2 (1− p∗SB (D)) p
∗0
SB (D) (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D)))u

0 (w0 − γ (p0 − p∗SB (D))− P (D))

−2 (1− p∗SB (D)) p
∗0
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗0SB (D) γ
0 (p0 − p∗SB (D))− P 0 (D))u00 (w0 − γ (p0 − p∗SB (D))− P (D))

−2 (1− p∗SB (D)) p
∗0
SB (D) (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D)))u

0 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2 ¡−p∗00SB (D) γ00 (p0 − p∗SB (D)) + p∗02SB (D) γ

000 (p0 − p∗SB (D)) + p∗00SB (D) (L−D)− p∗0SB (D)− p∗0SB (D)
¢
u0 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2 (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D))) (p

∗0
SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D))u00 (w0 − γ (p0 − p∗SB (D))− P (D))

−2 (1− p∗SB (D)) p
∗0
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗0SB (D) γ
0 (p0 − p∗SB (D))− P 0 (D))u00 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2 (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D))) (p

∗0
SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D))u00 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2
(γ0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗00SB (D) γ

0 (p0 − p∗SB (D))− p∗00SB (D) γ
00 (p0 − p∗SB (D))− P 00 (D))

·u00 (w0 − γ (p0 − p∗SB (D))− P (D))

+ (1− p∗SB (D))
2 (γ0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)) (p∗0SB (D) γ
0 (p0 − p∗SB (D))− P 0 (D))

·u000 (w0 − γ (p0 − p∗SB (D))− P (D))

−2p∗0SB (D) p∗0SB (D) (γ0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+2 (1− p∗SB (D)) p
∗00
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+2 (1− p∗SB (D)) p
∗0
SB (D) (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D)))u

0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+2 (1− p∗SB (D)) p
∗0
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗0SB (D) γ
0 (p0 − p∗SB (D))− P 0 (D)− 1)u00 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+2p∗0SB (D) (1− p∗SB (D)) (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D)))u
0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+p∗SB (D) (2− p∗SB (D))
¡
−p∗00SB (D) γ00 (p0 − p∗SB (D)) + p∗02SB (D) γ

000 (p0 − p∗SB (D)) + p∗00SB (D) (L−D)− p∗0SB (D)− p∗0SB (D)
¢

·u0 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+p∗SB (D) (2− p∗SB (D)) (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D))) (p
∗0
SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)
·u00 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+2 (1− p∗SB (D)) p
∗0
SB (D) (γ

0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗0SB (D) γ
0 (p0 − p∗SB (D))− P 0 (D)− 1)u00 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+p∗SB (D) (2− p∗SB (D)) (−p∗0SB (D) γ00 (p0 − p∗SB (D)) + p∗0SB (D) (L−D) + (1− p∗SB (D))) (p
∗0
SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)
·u00 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+p∗SB (D) (2− p∗SB (D)) (γ
0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D))

¡
p∗00SB (D) γ

0 (p0 − p∗SB (D))− p∗02SB (D) γ
00 (p0 − p∗SB (D))− P 00 (D)

¢
·u00 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

+p∗SB (D) (2− p∗SB (D)) (γ
0 (p0 − p∗SB (D))− (1− p∗SB (D)) (L−D)) (p∗0SB (D) γ

0 (p0 − p∗SB (D))− P 0 (D)− 1)2 u000 (w0 − γ (p0 − p∗SB (D))− P (D)−D)

= 0.
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Evaluating atD = 0 and substituting p∗0SB (0) = 0, γ
0 (p0 − p∗SB (0))−(1− p∗SB (0))L, P

0 (0) = −p∗SB (0) (2− p∗SB (0)), and P
00 (0) = 2 (1− p∗SB (0)) p

∗00
SB (0)L

yields

− (1− p∗SB (0))
³
1− 2 (1− p∗SB (0))

2
´
u00 (w0 − γ (p0 − p∗SB (0))− P (0)) + p∗00SB (0) (L− γ00 (p0 − p∗SB (0)))u

0 (w0 − γ (p0 − p∗SB (0))− P (0)) = 0.

i.e.

p∗00SB (0) =
(1− p∗SB (0))

³
1− 2 (1− p∗SB (0))

2
´

(L− γ00 (p0 − p∗SB (0)))
· u

00 (w0 − γ (p0 − p∗SB (0))− P (0))

u0 (w0 − γ (p0 − p∗SB (0))− P (0))
. (22)

If p∗SB (0) < 1−
p
1/2 then p∗00SB (0) < 0 and small deductible levels thus increase the investment in self-protection. Note that this condition is implied

by the necessary and sufficient condition. Substitution of (22) into the second derivative of expected utility (21) implies

∂2EUi (p
∗
SB (D) , p

∗
SB (D) ,D)

∂D2
|D=0 =

⎛⎝1− (1− p∗SB (0))
2 −

³
1− 2 (1− p∗SB (0))

2
´
L

(L− γ00 (p0 − p∗SB (0)))

⎞⎠ (1− p∗SB (0))
2
u00 (w0 − γ (p0 − p∗SB (0))− P (0)) (23)

A strictly positive deductible is optimal if and only if expected utility is convex at D = 0, i.e. if ∂2EUi(p
∗
SB(D),p

∗
SB(D),D)

∂D2 |D=0 > 0. Equation (23)
implies the condition

(1− p∗SB (0))
2 L >

³
1− (1− p∗SB (0))

2
´
γ00 (p0 − p∗SB (0)) .
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