— e — ¢ —— — —— - ——

University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING
Technical Report

AUTOMATIC GENERATION OF DATA CONVERSION-PRNGRAMS
USING A DATA DESCRIPTION LANGUAGE (DDL)

VOL. I SYSTEM DESCRIPTION
AND DOCUMENTATION

VOL. II APPENDICES -
USER GUIDE

by

Jesus Arturo Ramirez

Project Supervisor
Necah S. Prywes

May 1973

Prepared for the
Office of Naval Research
Information Systems
Arlington, Va. 22217

under

Contract NO0014-67-A-0216-0014
Project No. NR 049-153

DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Moore School Report # T73-08

Security Classification

DOCUMENT CONTROL DATA-R&L D

(Security clansilication of title, body of sbetens) and indering annotation musi be entered when the overall re 10 cinpailie
' ORIGINATING ACTIVITY (Corporate auther) 28, ARPOAT SECURITY CLASHIFICA 710N
UNCLASSIFIED

University of Pennsylvania
The Moore School of Electrical Engineering 6. crour

| __Philadelphia, Pennsylvania 19104
3 REPFORT TITLE

AUTOMATIC GENERATION OF DATA CONVERSION PROGRAHS USING A DATA DESCRIPTION
LANGUAGE (DDL) - Vol. 1

4 DESCRIPTIVE NOYES (Type of report and inclusive dates)
Technical Report

9 AU THORS) (ﬂnc NOme, middie initial, last nowme)
Jesus A. Ramirez

6 REFPORY DaATE 70, VYOi.L fo r PAGES 5. NO. OF REPY "
May 1973 ol- 1, Vol. 1, 34
Ta. CONTRACTY OR GRANT NO. %e. CRIGINATOR'S RESORT NUMBERMS) '
N0O0014-67-A-0216~-0014 Moore School Report No. 73-08
b. PROJECT NO
NR 049-153

ob. ® REPOR 8|
g‘t.ul s T NO(S) (Any other aumnbeve het! may be sssigred

ki

10 DISTRIBUTION STATEMENT

Reproduction in whole or in part is permitted for any purpose of the United
States Government

12. SPONSORING MILITARY ACTIVIYY
Office of Naval Research
Information Systems
Arlington, Virginia 22217

1. SUPPLEMENTARY NOTES

'3 ABSTRACT

The report describes a DDL/DML Processor and a methodology to automatically
generate data conversion programs. The Processor, accepts as input descriptions
of source and target files in a Data Description Language (DDL) and a Data
Manipulation Language (DML). It produces an output conversion program in PL/1
capable of converting the source file and producing the target file.

DD '2V.1473

romm ‘PAGE " - B - bt e e ‘

CIA D10 RO RS . e P - SRS & T E—

o Tecunity Classificstion
) LINK A

Linx » e
REY WORDS

NOL & wy ROLE wy L1- 1% § LR

Compilers, Generators, Problem Oriented
Languages, Syntax Analysis, lexical
Analysis, Data Description Languages,
Data Manipulation Language, Conversion
Programs, Automatic Programming, I/O
Utility

DD .'&?..'473 {BACK)

AUTOMATIC GENERATION OF DATA CONVERSION-PROGRAMS

USING A DATA DESCRIPTION LANGUAGE (DDL)

Jesus Arturo Ramirez

A DISSERTATION
in

Computer and Information Sciences

Presented to the Faculty of the Graduate School of Arts and Sciences
of the University of Pennsylvania in Partial Fulfillment of the
lequiremonts for the Degree of Doctor of Philosophy.

May 1973

N oA Ty wosms

Supervisor of Dissertation

-

_____ ey

Graduate Grouwp £hairman

L¥

ABSTRACT

AUTOMATIC GENERATION OF DATA CONVERSION-PROGRAMS
USING A DATA DESCRIPTION LANGUAGE (DDL)

by Jesus A. Ramirez

Supervisor: Noah S. Prywes

The ultimate goal of the research described in this

dissertation is generally directed towards the automatic
generation of programs to perform data processing, based on
specifications of the desired functions and systems. The
dissertation describes a Processor which has been developed
to generate such programs in the context of file conversion.
The Processor accepts as an input &escriptions of Source and
Target Files in a Data Description Language (DDL). It pro-
duces as an output a conversion program capable of converting
the Source File and producing the Target File. To specify
validation criteria, data security, summaries and reports, the
user utilizes a Data Manipulation Language (DML). This report
describes the Data Description and Data Manipulation Languages
(DDL/DML), the operation of the Processor, and includes a user
guide and fu;l documentation of the processing system. The
research was conducted in the Moore School of Electrical
Engineering, University of Pennsylvania and utilized the UNICOLL
IBM 370/165 computer system.

The contributions of the research are in several directions,

primarily in providing a useable Processor that has been

-1i-

4
)

R N

Yo

-

adequately documented and tested for its reliability and -
dependability. Novel methods of implementation have been
used to implement the Processor itself. In particular, methods
have been employed to automatically generate major portions
of the Processor using compiler-compiler methodology. In
conjunction with this latter activity a new meta-language
to describe the syntax and encoding of the DDL was developed.
The DDL that has been developed is to a large extent
similar to data definition facilities of COBOL or PL/l. The
DDL is in that respect English-like; howeQer, it possesses
much more extensive facilities to describe data structure and
organization than those provided in COBOL or PL/1.
The Processor automatically produces conversion programs

in PL/1, and has itself been programmed in PL/1. .

-1

ACKNOWLEDGEMENTS

I would like to express my gratitude to my Supervisor,
Professor Noah S. Prywes, who first introduced me to this area
of research and for his guidance and support throughout its
development. I am grateful to the Information System Branch
of the Office of Naval Research for supporting this research
under contract N00014-67-A-0216-0007 Project No. 049-272,

I would like to thank the many members of the DDL Project,
past and present, with whom I have worked over the past three
years. In particular, I would like to mention Messrs., Harold
Solow and N. Adam Rin with whom I have had many interesting
discussions and who helped me in the editing of this dissertation.
Also Mr. N. Adam Rin worked with me in the area of Code
Generation for the DDL Processor. Thanks are due to Messrs.
Andy French and Peter Gross for their assistance in the develop-
ment of the Syntactic Analysis Program Generator and Internal
Table Creation Routines respectively, and to Mr. Tom Reimer
for his help in the writing of the User Guide for DDL & DML.

The author would like to express his appreciation of the
excellent secretarial help from Miss Barbara Weber.

I would like to acknowledge the support and encouragement
of my parents.

Finally, and most importantly, I wish to thank my wife,
Glorilu, for she has constantly supported me by her love,

her confidence, and her devotion.

-iv-

INDEX

ALGOL 13, 26, 49, 55, 57, 257-259, 264

ANALIZER 53-54

APL 13, 259

ASCII 47, 145, 180-181, 195, 211, 214-215, 220, 261-262
assembler languages 13, 257-258

BCD 47, 145, 180-181, 195, 198, 211, 214-215, 220, 261

BNF 12, 26-32, 45, 53-54, 253

balanced tree 131, 139
based storage 258
binary tree 131

COBOL 2, 3, 6, 13-15, 34, 252, 259

CODASYL 3, 6, 34, 251

code generation 5, 12, 18, 23, 54-55, 72, 80, 106, 119,
143, 176, 179, 215, 257, 260, 262

compiler 2, 5, 49-50, 52-53, 57, 105, 109, 252, 265

compiler-compiler 4, 11, 14, 52

compiler generator 9, 264, 266

compiler writers 2, 11, 44-45, 48-49, 54, 123, 129, 143, 255
computer system 2, 3

contex-free 27

controlled storage 153-154, 258

.w

INDEX (continued)

conversion 2, 8-9, 14, 34, 105, 160, 166, 216, 227,

235, 251, 262

conversion program 4-5

cross reference 20, 143, 134, 171, 255-256

cross reference table 162-163, 165, 171, 255, 260
DD-card 205, 208

DDL 1-11, 33-34, 44, 53-55, 59, 63, 102, 105-106, 109-111,
114-115, 119, 125-126, 130, 147-148, 160, 252, 254-255,
260, 265-266

DML 6, 8, 11, 15, 33-34, 41, 166, 195, 201

data base 6, 11, 34, 262

data conversion 7, 251, 253

data conversion processor 9, 14-15, 23-24, 253
data conversion program 3, 17-18, 23-24
data description language 1, 3, 251

data interchange 7

data management systems 2-3, 251-252, 263
data manipulation language 1, 6, 15

data movement 176

data parsing 176, 180

data structures 6-7, 34, 258

-vi-

INDEX (continued)

data table 20, 23, 106, 127, 130, 143, 147, 150-156,
160-166, 170-174, 179-180, 210, 215-216,
220-221, 235-237, 256

data translation 7

DDL compiler 9-24, 59-60, 105, 110, 118, 139, 150, 154,
160, 176-178, 185, 195, 215, 253, 262, 265

DDL language 6, 9, 12, 15, 109, 262

DDL name 109, 178, 256

DDL processor 4-5, 8, 11-15, 23, 34, 253

DDL program 109, 205, 208

DDL statements 1, 5, 9, 11-12, 17, 20, 24, 54, 119, 143,

' 148, 150, 152-153, 156, 158, 160, 162, 174,
215, 265

DDL user 222, 229

DML name 173, 174

DML procedure 109, 154, 158, 166, 173

DML routine 23, 108, 158, 160, 165, 177, 216, 227, 262

DDL/DML 1, 5, 7, 252-254, 261-262

DDL/DML compiler 261

DDL/DML processor 6-7, 12-13, 251

DDL/DML. program 262

DDL/DML system 12

-—vii~

INDEX (continued)

EBCDIC 46, 62, 145, 180-181, 195, 198, 211, 214-215, 220

EBNF 9, 12, 18, 27-32, 44-45, 48, 52, 55, 61, 63, 74, 80,
90, 100-102, 110, 114, 118, 123, 125-127, 144, 253-254

EBNF/WSC 11-12, 44-45, 53, 57, 59, 69, 147-148, 150-152,

254-255, 265

encoded table 69, 72, 74, 77-80, 83, 89, 93

error message 96, 123, 173, 227

error stack 46-48, 78, 90, 119-121, 123, 125, 128, 151

FORTRAN 2, 5, 13-14, 252, 257-259

file conversion 1

formal semantic language 52

global syntax errors 119

growth algorithm 138

INBUF 210-211, 214-215

INBUFS 210-211, 214-215

intermediate language 260, 265

interpreters 265

JCL language 205

Kleene asterisk 30-33, 96, 100

LEX 20, 60-61, 108, 110-111, 114-115, 151

LEXBUFF 86, 110, 114-115, 123, 133

LEXEBNF 60, 62-63, 72, 94, 110-111

-viii-

INDEX (continued)

LEXENAB 110, 128

LISP 13, 259

left recursion 54, 100, 102, 254

lexical analysis 11, 17-18, 20, 54, 57, 59, 61-62, 69, 106,

108-110, 114, 255

lexical analyzer 59-60, 109-110, 255

lexical errors 60

lexical routine 101, 110-111, 255

lexical units 69, 109-110, 114

local syntax errors 154, 254

mappings 166, 170, 215, 227, 229, 233, 235
machine code 1, 260, 262

mechanical translator 49

meta-language 4, 26-27, 44, 53, 261, 265-266
meta linguistic symbols 26-28, 31, 60-62, 89, 93, 96
meta linguistic variables 27-29

meta semantic 5

meta syntactic language 9

non-singular 86

non-terminal symbol 54, 60-62, 69, 93, 100
OUTBUF 247-248

LA

INDEX (continued)

object language 1, 26-27, 30, 48, 176, 260

object program 105, 260

operating systems 2, 87, 105, 251, 259

optionality group 33, 177

PL/1 1-6, 13-18, 34, 80, 105-106, 126, 146, 176, 190, 215,
241, 252, 256-260, 262, 265

PL/1 code 83, 179, 185-186, 188, 190, 192, 195, 198, 205,

210-211, 214-216, 220-221, 225, 227, 229, 231, 233,

235-236, 241, 249, 247-248, 260, 265

PL/1 compiler 17-18, 23, 105, 260

PL/1 declare statements 20, 176-177, 181, 185-186, 190, 192,
| 216

PL/1 machine 259

PL/1 name 195, 198, 237

PL/1 procedure 74, 180

PL/1 statements 178-180, 186, 198, 205, 210, 216, 230

PL/1 structure 176, 178-179, 181, 192, 195, 220-222, 225, 255

processor 1-2, 4, 7, 50, 262

programming language 3, 8, 14, 49, 251-253, 257

RPG 2

recognizer routine 86, 93, 110, 119, 121, 125, 127-128

recursion 28-30, 32, 87, 100, 139, 185-186, 222

X

reference name

regular expression

report generation

INDEX (continued)

16

6, 170, 171, 201, 236, 241
30, 33

8, 17, 34, 262

SAP 4, 18, 20, 45, 47, 54-55, 57, 80, 87, 97, 100-101,

108, 114, 118-119, 121, 128-130, 260

SAPG 14-17, 18, 52-57, 60, 63, 69, 72, 74, 80, 93, 96

100-102, 118-119, 121, 128-130, 253-254, 256, 262,

SNOBOL 13, 2

59

semantics 5, 49-50, 261-262, 264, 266

semantic loader

5

2

semantic meta-language 50

singular production

source field
source file
source name
source program

source record

74, 77-78

5, 34, 225, 227, 235

1, 6, 15, 17, 23, 34, 176, 180, 210

170-171, 225, 227, 229, 231, 235, 241

SKELETON 53-54

subroutine calls

10

216

5

18, 27, 44, 48, 52, 55, 69, 72, 78, 86,

93-94, 129

stack 77-78, 96, 101, 121, 201

state table

62

266

i*

INDEX (continued)

symbol table 20, 72, 74, 77, 106, 127, 130-131, 147-148,
151-154, 160-166, 171, 174, 179, 188, 215-216,
221, 236, 256

syntactic supporting routine 125, 256

syntactic unit 48, 80, 83, 97, 101, 125, 128, 147

syntax 4-5, 8, 12, 26, 33-34, 48-49, 55, 129, 150, 253-254,

261-262, 265
syntax analysis 14, 18, 45, 53, 55, 74, 93, 106, 114, 118,

123, 125, 129-130, 154, 156

syntax analysis program 4, 15, 17-18, 20, 45, 54, 57, 253

syntax analysis program generator 4, 9, 11-12, 14-15, 18, 44,
52, 55, 253

syntax analyzer 50, 54

table creation 111, 118, 127

table driven techniques 49

table driven translator 52

table generation 147, 150

target field 5, 9, 34, 152, 225, 227, 233, 235-236

target file 1, 15, 17, 23, 215-216

target record 216, 220, 225, 230, 233

terminal symbol 48, 60, 69, 72, 83, 89, 90, 96, 110, 119, 121,

125, 129, 151

INDEX (continued)
top-down 118
transition matrices 11, 60, 65
tree 132, 133, 137-140
tree structure 130-131, 137, 150
UNCOLL 260
utility 3, 8
validation criteria 34
work table 69, 74, 77
XREF 20, 154, 158, 160

XPL 53-54

-xii{~-

TABLE OF CONTENTS
VOL. I - SYSTEM DESCRIPTION AND DOCUMENTATION

Page
CHAPTER 1 INTRODUCTION 1
1.1 Summary of Research Reported 2
1.2 Summary of Contributions 4
1.3 Summary of Capabilities of the 6
DDL/DML Processor
1.3.1 A Language for Communication
Between Humans About Data
Structure 7
1.3.2 Restructuring and Conversion
of Files h 8
1.3.3 Interfacing Files With
Different Programs and Pro-
gramming Languages 8
1.3.4 Validation of a File 8
1.3.5 Aid in Report Generation 8
1.4 Important Features of the Design
and Implementation 8
1.5 Organization of this Dissertation 12
1.6 Selection of Computer and
Programming Language 13
CHAPTER 2 OVERALL DESCRIPTION OF THE "DDL
PROCESSOR" 14
2.1 Major Components 14
2.2 Overview of the DDL Processor 15
2.3 The Syntactic Analysis Program 18
Generator
2.4 The DDL Compiler 18
2.4.1 Phase 1 of the DDL Compiler 20

~xiv-

CHAPTER 3
3.1
3.2
3.3
3.4
3.5

CHAPTER 4

4.1

4.2

2.4.,2 Phase 2 of the DDL Compiler

2.4.3 Phase 3 of the DDL Compiler

DDL AND DML SPECIFICATION

Introduction: Extended 3ackus-Naur Form
EBNF Without Subroutine Calls

Formal Specification of DDL

Formal Specification of DML

EBNF With Subroutine Calls (EBNF/WSC)

THE SYNTACTIC ANALYSIS PROGRAM
GENERATOR

Introduction

4.1.1 Comparison of SAPG to the XPL
System

The Syntactic Analysis Program
Generator

4.2.1 Lexical Analysis for EBNF/WSC

4.2.2 Pass 2 of the SAPG (Syntax
Analysis of EBNF)

4.2.3 Pass 3 of the SAPG (Code
Generation)

4.2.3.1 Step 1
4,2.3.2 Step 2
4.2,3.3 Step 3
4.2.3.4 Step 4
4.,2.3.5 Step 5
4.2.3.6 Step 6
4.2.3.7 Step 7

$.2,3,.8 Step 8
-xv-

Page
20

23
26
26
27
35
41
44

49
49

53

55

57

74

80
83
83
86
87
89
89
90
93

4.3

CHAPTER 5

5.0

5.1

5.2

5.3

4.2.3.9 Step 9
4,2.3.10 Step 10
4,2,.3.11 Step 11
4.2.3.12 Step 12
4.2.3.13 Step 13
SAPG Implementation Restrictions on EBNF
THE DDL COMPILER
Introduction - An Overview of Compiling
The Components of a Compiler
Lexical Analysis
Phase 1 of the DDL Compiler
5.3.1 Entry Points to the SAP
5.3.1.1 The Entry Point $MARK
5.3.1.2 The Entry Point $POPF
5.3.1.3 The Entry Point $SUCCES
5.3.1.4 The Entry Point $FAIL
5.3.1.5 The Entry Point $PUSH_F
5.3.1.6 The Entry Point CLRERRF
5.3.2 Syntactic Supporting Routines
5.3.2.1 Error - Stacking Routines
5.3.2.2 Recognize Routines
5.3.3 Error Recovery
5.3.4 Sywbol Table

5.3.4.1 Tree Structure
..m-

Page

94

94

96

96

97
100
105
100
100
109
118
119
119
119
121
121
123
123
125
125
127
129
130
13

5'4

5.5

5.3.4.2

5.3.4.3

Growth and Search Tree
Algorithms

The Tree Restructuring
Algorithm

5.3.5 Data Table

5.3.6 Mechanics of Table Generation

Cross-reference and Global Syntax

Checking

5.4.1 XREF
5.4.1.1
5.4.1.2
5.4.1.3
5.4.1.4
5.4.1.5
5.4.1.6
5.4.1.7
5.4.1.8

5.4.1.9

CONVERT_STMT Entry
FILE_STMT Entry
CARD_STMT Entry
TAPE_STMT Entry
DISK_STMT Entry
RECORD_STMT Entry
GROUP_STMT Entry
FIELD STMT Entry

PARSE_REF_NAME

5.4.2 PARSE_SOURCE_NAME

5.4.3 ENTER_TAB

5.4.4 ENTER_PROCS

5.4.5 PRINT_TAB

Phase 2A of the DDL Compiler-Code Generation

(Data Parsing)

5.5.1 CODE_GEN_PARSE

5.5.2 WALK

5.5.3 GEN_PARSE_MEM

-xvii-

Page

132

138
143

147

154
158
160
162
163
163
163
163
165
166
170
171
171
173
174

174

179
186

188

5.6

5.5.4
5.5.5
5.5.6
5.5.7
5.5.8
5.5.9
5.5.10
5.5.11
5.5.12
5.5.13
5.5.14
5.5.15

5.5.16

Phase 2B of the DDL Compiler-Code

GEN_DCL_GROUP
GEN_FLD DCL

CALL_SUB

GEN_PARSE_FLD
GEN_CALC_LEN: ZERO_LEN
GEN_MATCH_ENDS
GEN_FLD_NAME
CALC_FLD_LEN

INIT LEN: INIT_CNT
GEN_INCR_COUNT

SET_POS

GEN_DD

GEN_READ

Generation (Data Movement)

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.6.10

CODE_GEN_MOVE
OUT_WALK
SET_UP_MOVE_FLD
GET_SOURCE_NAME
SET_MIN_MAX
GEN_MOVE
COMP_DDL_REF_NAME
COMP_DDL_PARAM
GEN_MATCH_END_TAR

FORM_SUB
~xviii-

Page

190
192
192
192
198
198
198
201
201
205
205
205
210

215

215
222
225
227
231
233
235
239
239
241

CHAPTER 6

6.1

6.2

6.3

6.4

VOL.

A

5.6.11 FORM_REF_NAME

5.6.12 GEN_WRITE

5.6.13 OUT_PROC

5.6.14 MERGE_OUT_FILES
CONCLUSIONS AND RECOMMENDATIONS

Background and Need for the DDL/DML
Language and Processor

Techniques Used to Design and Implement
the DDL Processor

6.2.1 Syntax Specification and Analysis

6.2.2 The Use of PL/1 As A System
Programming Language

6.2.3 PL/1 As An Intermediate Object
Language

Experience With DDL/DML

Future Trends and Developments

IT APFPENDICLS

User Guide For DDL and DML
How To Call SAPG

Overlay Tree Used To Form Load-Module For
The DDL Compiler

Data Table Formats For DDL Statements

EBNF/WSC For DDL and The Description Of
All The Supporting Routines

-xix-

Page

241
241
248
250
251

251
253
253
256

261
261

262

268

415

417

419

433

Figure

Figure

Figure

Figure

Figure

Figure
Figure
Figure
Figure

Figure

Figure

Figure

Figure

1-1

2-1

2-2

2-3

2-5
4-1

4-2

4-4

4-5

4-5A
4-5B
4-5C
4-5D
4-5E
4-5F

4-6A

4-7A
4-7A1
4-7A1
4-78
4-7C
4-7D
4-7E

LIST OF FIGURES
VOL. I

Comparison of DDL Processor and
Compiler-Compiler Systems Design

Major Components of the DDL-Pro-
cessor System

Overview of the DDL-Processor

Syntax Analysis Program
Generator (SAPG).

DDL-Program, DDL Compiler,
Data Conversion Processor

Data Conversion Processor

A Compiler~Compiler

A Compiler-Compiler for DDL
The SAPG

Lexical Analysis for EBNF/WSC
(LEXBNF)

Passl of SAPG

ENCOD
ENT_WTAB
ENT_SYM
ENT_SUBCALL
ENT_TER
DISCARD

Pass2 of the SAPG
FIND
STEP1 of Pass3 of SAPG

TEST (I)
XMATCH (K)

STEP2 and STEP3 and STEPY9 of Pass3

STEP3 of Pass3
STEP4 of Pass3
STEP6 of Pass3

-XX-

Page

10

16

19

21

22
25
51
56

58

61
67-68

70
70
71
71
73
73

75-76
79
81
82
82
84
85

88

Figure

Figure

Figure

Figure

Figure

4-7F
4-7G
4-7H
4-71
4-7J
4-7K
4-7J-1

5-1
5-2
5-2A

5-3A
5-3B
5-3C
5-3D
5-3E
5-3F
5-3H
5-31

5-3J
5-3JJ
5-3K
5-3L
5-3M
5-3N
5-3p

5-3Q

S-4A
5-4B

S5-4C
5-4D

LIST OF FIGURES (continued)

STEP7 of Pass3
STEP10Q of Pass3
STEP8 of Pass3
STEP11l of Pass3
STEP12 of Pass3
STEP13 of Pass3
ELSEEND,PUSH(I), POP

DDLCOMP
LEX Flow-Diagram
STMT_FL

$MARK

$POPF

$SUCCES

$FAIL

S$PUSH F(ERRORS)

CLRERRF ~

Tree Structure

Tree Structure (before key is
added)

Tree Structure (after key is added)

Growth and Search Algorithm

Order BAC

Order BCA

Unbalanced Tree

Balanced Tree

Tree Structure Corresponding

to DDL in Example 1 in

Section 5.3.6

Symbol and Data Tables

DT_PTR_LIST_LINK

XREF
CONVERT_STMT,
FILE_STMT

CARD_STMT, TAPE_STMT,
DISK_STMT, RECORD_STMT
GROUP_STMT, FIELD_STMT

-xxt -

Page

91
91
92
95
98
98
99

107
112
113

120
120
122
122
124
124
132

132
137
134-135
138
138
141
142

149
155
157
159
161

164
167-169

[
e

LIST OF FIGURES (continued)

Page
Figure 5-4E ENTER_TAB, ENTER_PROCS 172
5-4F PRINT_TAB 175
Figure 5-5A CODE_GEN_PARSE 182-184
5-5B WALK 187
5-5C GEN_PARSE_MEM 189
5-5D GEN_DCL_GROUP 191
5-5E GEN_FLD_DCL 193
5-5F CALC_SUB 194
5~5G GEN_PARSE_FLD 196-197
5-5H GEN_CALC_LEN, ZERO_LEN 202
5-51 GEN_MATCH_ENDS 199
5-5J GEN_FLD_NAME 200
5-5K CALC_FLD_LEN 203
5-5L INIT_LEN, INIT_CNT 204
5-5M GEN_INCR_COUNT 206
5-5N SET_POS 207
5-5P GEN_DD 209
5-5Q GEN_READ 212-213
Figure 5-6A CODE_GEN_MOVE 217-219
5-6B OUT WALK 223-224
5-6C SET_UP_MOVE_FLD 226
5-6D GET_SOURCE_NAME 228
5-6E SET_MIN_MAX 232
5-6F GEN_MOVE 234
5-6G COMP_DDL_REF_NAME 237
5-6H COMP_DDL_PARAM 238
5-61 GEN_MATCH_END_TAR 240
5-6J FORM_SUB 242
5-6K FORM_REF_NAME 243
5-6L GEN_WRITE 245-246
5-6M MERGE_OUT_FILES 249
Figure 6-1 DDL Compiler Generator 267

-xxii-

BIBLIOGRAPHY

[AHO 72] Aho, A.V., and Ullman, J.D.: The
Theory of Parsing, Translation and
Compiling, Vol 1. Prentice Hall, 1972.

[BAC 59] Backus, J.W.: The Syntax and Semantics
of the Proposed International Language
of the Zurich ACM - Gamm Conference,
Proceedings of the International
Conference on Information Processing,
UNESCO, 1959.

[BRO 63} Brooker and Morris.: The Compiler-
Compiler. Annual Review in Automata

Programming., Vol. 3, 1963.

[CAR 69] Carr, J.W., and Weiland, J.: A Non-
Recursive Method of Syntax Specification,
Comm. ACM., Vol. 9, No. 4, 1969.

[CHE 62] Cheatham, T.E., and Warshall, S.: Trans-
lation of Retrieval Requests Couched In A
"Semiformal" English - Like Language.
Comm. ACM., Vol. 5, 1962.

[CODASYL 71] "Codasyl System Committee Technical
Report." Feature Analysis of Generalized
Data Base Management Svstems, May, 1971.

[CON 63] Conway, M.E.: Design of A Separable
Transition - Diagram Compiler. Comm. ACM.,
Vol. 6, No. 7, 1963.

[COR 69] Corbato, F.J.: PL/1 As A Tool For System
Programming, DATAMATION., Vol. 15, No. 35,
1969.

[FAN 72} Fang, Isu.: Folds, A Declarative Formal

Language Definition System, Ph.D,
Dissertation, Stanford University, 1972.

[FEL 68] Feldman, J., and Gries, D.: Translator
Writing Systems, Comm. ACM., Vol. 11, 1968.

-xxiii- -

[FEL 66] Feldman, J.: A Formal Semantics For
Computer Language and Its Application In
A Compiler-Compiler, Comm. ACM., Vol, 9,
1966.

[FLO 64] Floyd, R.W.: The Syntax Of A Programming
Language - A Survey, IEEE Trans., 1964.

[FRE 71] French, A,, Ramirez, J.A., Solow, H,.,
and Prywes, N.S.: Design Of The Data
Description Language Processor, Annual
Report., The Moore School of Electrical
Engineering, University of Pennsylvania,
j971.

[FRE 72] French, A.H.: A Syntactic Analysis
Program Generator. M.Sc. Thesis, The
Moore School of Electrical Engineering,
University of Pennsylvania, 1972,

[ING 66] Ingerman, P.: A Syntactic - Oriented
Translator, Academic Press, New York,
1966.

[IRO 61] Irons, E.T.: A Syntax Directed Compiler

For ALGOL 60, Comm. ACM., Vol. &4, 1961.

[ITU 66] Iturniaga, R., and Standish, T.A.:
Techniques and Advantages of Using The
Formal Compiler Writing System (FSL) To
Implement A Formula ALGOL Compiler. Proc.
AFIPS, SJCC., Vol. 28, 1966.

[JOH 68] Johnson, W.L., Porter, J.H., Ackley, S.I.,
and Ross, D.T.: Automatic Generation
Of Efficient Lexical Processors Using
Finite State Techniques. Comm. ACM.,
Vol. 11, 1968.

[KNU 68] Knuth, D.E.: The Art of Computer
Programming, Vol. 1/ Fundamental Algorithms.
Addison-Wesley Publishing Company, 1968.

[KNU 73] Knuth, D.E.: The Art Of Computer
Programming, Vol. 3/ Sorting and Searching.
Addison-Wesley Publishing Company, 1973.

=xxiv-

[LAN 70] Lang, C.A.,: ''Languages For Writing
Systems Programs" in Software Engineer-
ing Techniques, ed. Buxton and Randell,

1970.

[LEA 64] Leavenworth, B.M.: TFortran IV As A
Syntax Language. Comm. ACM., Vol. 7,
1964,

[LED 62] Ledly, and Wilson.: Automatic - Pro-

gramming Language Translation Through
Syntactical Analysis. Comm. ACM.,
Vol. 5, No. 3, 1962,

[McC 65] McClure, R.M.: TMG - A Syntax -
Directed Compiler. Proc. ACM 20th
Natl. Conf., 1965.

[McK 70] McKeeman, W.N., Horning, J.J., and
Wartman, D.B.: A Compiler Generator
Prentice Hall, Inc., 1970.

[NAU 60] Naur, P. (ed). Report On The Algorithm
Language ALGOL 60. Comm. ACM.,
Vol. 3, 1960.

[PRY 72} Prywes, N.S., and Smith, D.P.:
"Organization of Information In Annual
Review of Information Science and
Technology, ed. Carlos A. Cuadra, 1972.

[RAN 64] Randall, B., and Russell, L.J.: ALGOL
60 Implementation. Academic Press,
New York, 1964,

[RIC 69] Richards, M.: BCPL: A Tool For
Compiler Writing and System Programming.
Proc. SJCC, AFIPS, 1969.

[sMI 71] Smith, D.P.: An Approach To Data
Description and Conversion, Ph.D.
Dissertation, University of Pennsylvania,
1971.

[STE 61] Steel, T.B.: A First Version Of UNCOL.
Proc. of the WJCC, ACM, New York, 1961.

—XXV=-

[STR 58]

[TRO 67]

[WEG 72]

Strong, J., Wegstein, J., Tritte, A.,
Olztym, J., Mock, O., and Steel, T.B.:
The Problem of Programming Communication
With Changing Machines - A Proposed
Solution. Comm. ACM., Vol. 1, Nos.

8 and 9, 1958.

Trout, R.G.: A Compiler-Compiler System
Proc. ACM 22nd Natl. Conf., 1967.

Wegner, P.: The Vienna Definition
Language. ACM Computing Surveys, Vol. &,
1972,

-1-

CHAPTER 1

INTRODUCTION

1.1 Summary of Research Reported

The ultimate goal of the research described in this
dissertation is generally directed towards the automatic
generation of programs to perform data processing, based on
specifications of the desired functions and systems. The
dissertation describes a Processor which has been developed to
generate such programs for the limited application of file
conversion. The Processor accepts as an input descriptions of
Source and Target Files in a Data Description Language (DDL). It
produces as an output a conversion program capable of converting
the Source File and producing the Target File. To specify
validation criteria, data security, summaries and reports, the user
utilizes a Data Manipulation Language (DML). This report describes’
the Data Description and Data Manipulation Languages (DDL/DML),
the operation of the Processor, and includes a user guide and
full documentation of the processing system. The research was
conducted in the Moore School of Electrical Engineering, University
of Pennsylvania and utilized the UNICOLL IBM 370/165 computer system.

The Processor automatically produces conversion programs
in PL/1, i.e., we use PL/1 as an intermediate object language in
the compilation process of DDL statements into machine code. The

main reason is that in generating PL/1 object code it is much easier

for the compiler writer to debug the compiler.

The Processor itself has been programﬁed in PL/1, basically
since it allows us to produce a much better documented system
description. '

The need for an efficient method of converting data
organization in view of new user needs or for use with different
programs or different computers has been recognized by the
community of EDP users. Presently, a user can re-organize data
by either writing his own special software, i.e., writing a new
program for each file to be translated, or by using the data
description facilities contained in the programming languages -
such as COBOL, FORTRAN, PL/1l, RPG, etc., operating systems and
data management systems available for a particular computer.

The Stored Data Description and Translation (SDDT), task
group of the CODASYL Systems Committee have defined Data
Translation as:

“"the process whereby data stored in a form that can be

processed on one computer (the source file) can be translated
into a form (target file) which can be used by the same or

different processing systems on a possibly different computer.

There are two main approaches to the solution of the Data
Translation (conversion) problem. One consists of building the
capability of converting data from external sources and formats
into specific data management systems or programming languages.

This capability is then limited to the specific computer system

1

-3-

and data management system or programming language when it has
been incorporated. The other approach which has been adopted
here is to develop a general "Utility" which will convert data
between programs and/or computer systems. Its power, then, will
be general and not limited to a specific programming or computer
system.

The first step towards the solution of the general Data
Conversion program was the design of a Data Description Language
(DDL). As Prywes and Smith [PRE 72] have said:

"Simply speaking, a DDL is a language which enables a

person to describe every aspect of a data organization,

from the interrelation among elements of the organization

to its representation as a linear string and its positioning

on a specific storage medium. Such descriptions can serve

as a basis for organizing or converting the respective

data bases automatically."

Work on this area is reported by Taylor [TAY 71] and
Smith [SMI 71]. Taylor's research was directed toward the
specification of the mapping of data structures to linear storage
spaces. Smith's research was directed toward the generalized data
translation problem. Concurrent to this work the research has
been done by the CODASYL Data Base Task Group [CODASYL 71]. They
have defined a DDL and a DML using COBOL as their framework.

The DDL that has been developed is to a large extent similar

to data definition facilities of COBOL or PL/l., The DDL is in

that respect English-like; however, it possesses much more extensive

4=

facilities to describe data structure and organization than
those provided in COBOL or PL/1.
1.2 Summary of Contributions

The contributions of the research are in several directions,
primarily in providing the first useable Processor to convert
data using a Data Descriptive language. The Processor has been
adequately documented and tested for its reliability and
dependability. Novel methods of implementation have been used to
implement the Processor itself. In particular, methods have been
employed to automatically generate the Syntactic Analysis Program
(SAP) using compiler-compiler methodology i.e., a Syntactic Analysis
Program Generator (SAPG) was built and in conjunction with this
latter activity a new meta-language to describe the syntax and
encoding of the DDL language was developed. The SAPG provides an
overriding advantage over hand-coded SAP's in that it easily allows
changes to the syntax of a language. In the case of DDL, a
completely successful change (from the DDL designed by D. Smith
[SMI 71] to the DDL used in this dissertation) was accomplished
in less than a week. We also found that automatic generation of
the Syn;ax Analysis Program via SAPG greatly speeds up and reduces
the work required to implement the Processor.

We did not attempt to use a methodology for automatic code
generation in the Processor, since the DDL Processor is built to

generate specifically conversion programs, and therefore we

-5-

concluded that research on automatic generation of code for
general purpose Language compilers, such as FORTRAN, would not
apply to the DDL Processor. Therefore, we hand-coded the code
generation of the DDL Processor in PL/1 We assume that therchy
we achieved better efficiency in the ge;eration of the conversion
program from the DDL source statements,

At the conclusion of the research we came across thé work
of Fang [FAN 72] where he presents the system FOLDS. This system
is the first attempt at describing the code generation (semantics)
of a compiler via a procedural meta-semantic language in addition
to a syntactic description. Nevertheless given the nature of
the DDL Processor the utilization of such meta-semantic language
will not simplify the problem of building the Processor since the
compiler writer will end up writing almost exactly the same logic
we wrote in PL/1l in the meta-semantic language.

The DDL used in this dissertation is based on a subset‘of
the DDL designed by Smith [SMI 71], but improvement in the latter
were made to remove difficulties of use and in implementation.
We later modified it for the purpose of simplifving it for ease of
use and ease of implementation, and called it DDL/DML version 1.0.
By changing the syntax of Smith's DDL we reduced the amount of
writing, for example, in the specification of source field to tar-
get field association. Moreover, we added new capabilities'and
flexibility to such things as the movement of repeating fields,

and simplified the specification of such items as physical storage.

-6-
The concept of default parameters was furthermore introduced.
In summary, while the soul of the present DDL language is
based on the DDL of Smith, we feel that we have made significant
improvements to aid its use and implementations. In changing
the DDL syntax we capitalized on the Data Descriptive facilities
of COBOL, PL/1 and on the DDL designed by the CODASYL Data Base
Task Group.

DML (Data Manipulation Language) was introduced to replace
the criteria language which was part of the DDL designed by
Smith. In that DDL we found that specifying conversion or
validation criteria was not only cumbersome but incomplete in
that it was unable to express several real-world problems we
faced. In the present version 1.0 on the other hand, DML is a
subset of PL/1 to allow maximum manipulative flexibility and it
is used to test criteria, perform security procedures - to open
"Locks" - before translation of the Source File is attempted, and
to aid in the verification of Data Bases. DML can also be used
as an aid to report generation. May we also add that by separating
DML from DDL, we drew a distinct line between a descriptive
language defining data structures (DDL), and a prescriptive
procedural language for criteria specification, conversions, and
manipulation (DML). In Appendix A of this dissertation we pre-
sent the User-Guide for DDL and DML.

1.3 Summary of Capabilities of the DDL/DML Processor

The DDL/DML processor is designed to satisfy two require-

-7-

ments of data interchange: (a) data (organization) definition
and (b) data translation. The first step toward simplifying

data interchange is to make data and its organization explicit
and independent of machines and their processors. This can

be done by using a language for describing data (separate from
the language used to process that data). The second step consists
of developing a processor for interpreting the description and
translating the data to a format appropriate for the executing
machine. The DDL/DML version 1.0 satisfies the first requirement.
The DDL/DML processor described in this dissertation is a set

of computer programs which will perform the interpretation and
translation. It processes data definitions and data translation
commands, produces a computer program to perform the required
data conversion and then executes this program, thereby doing the
. data conversion specified.

The capabilities of DDL/DML are summarized below

1.3.1 A Language For Communication Between Humans About Data
Structure.

One important application of a DDL is as a means of
communication between humans about the structure of data. For
_ example, using a DDL a designer of a Data Base can describe
precisely to an applications programmer the exact structure of
the data the programmer wants to use. Just an BNF is now used
to describe the syntax of a language so can DDL be used to describe

data structures.

-8~
1.3.2 Restructuring and Conversion of Files

As a utility, the DDL processor in conjunction with DML,
enables the user to redefine the structure of his file and
have it converted accordingly. Furthermore, conversion of a
file can be done selectively; i.e., those portions of a file
that meet a user's criteria can be selectively converted or
copied to a new file.

1.3.3 Interfacing Files With Different Programs and Programming
Languages

Frequently files created by one program cannot be processed
by another program or by another program in a different pro-
gra?ming language. With the DDL processor, the files can be
converted into a structure which can be processed by the other
program. In this manner files can be interfaced across pro-
gramming languages.

1.3.4 Validation of a File

By defining a file in DDL, one can validate it according to
user-provided criteria written in DML.

1.3.5 Aid In Report Generation

By defining the source file to be the user data ﬁase and
defining the target file to be a report form the DDL-DML processor
facilitates report generation.

1.4 Important Features of the Design and Implementation
The DDL Processor System consists of three major parts. The

first part uses syntax and hand coded definitions to generate the

-9-

the second part - the DDL compiler. The DDL compiler formats
and translates DDL statements and produces a computer program
which will do the file conversion. The third part of the
processor actually processes the source file and produces as an
output the target file. This three - part structure is
illustrated in Figure 1l-la.

Changes in the definition of the DDL language occur only
infrequently after an initial language development phase. And
the compiler generator (Syntactic Analysis Program Generator)
facility is primarily intended for DDL language development.

Changes in the definition of a particular data base to
which the data conversion processor is applied will occur more
frequently. For instance, one may wish to change definitions
that are used in the conversion of data between computer systems.
In this case only the sequence of DDL statements would be
changed and the DDL compiler would be used to create a new Data
Conversion Processor. '

If the description of the data to be converted does not
change, the DDL compiler need not be used, and the previously
created Data Conversion Processor may be used again.

There are several features in the design which are of special
interest.

(1) The use of EBNF (a meta syntactic language).

The EBNF is to be used as: (a) an aid in specifying the

Extended BNF
SYNTAX
DEFINITIONS

Semantics And
Code Generation
Logic

SYNTACTIC ANALYSIS
PROGRAM
| GENERATOR

Description

Data Definitions

(DDL & DML ——— DDL~-COMPILER
STMTS)

Source DATA CONVERSION
Data PROCESSOR

i

TARGET DATA

1-1la The DDL PROCESSOR

Syntax Definition

COMPILER-COMPILER

Semantics and Code —id
Generation Rules
USERS SOURCE —————* COMPILER
STATEMENTS

SERS PROGRAM
INPUT DATA » U

|

OUTPUT DATA

1-1p COMPILER-COMPILER SYSTEM

COMPARISON OF DDL PROCESSOR AND COMPILER~-COMPILER

SYSTEMS DESIGNS

FIGURE 1-1

_O'[—

~-11-

language; i.e., a tool for compiler writers, (b) an aid

to implement a syntactic analysis program generator; {.e.,

for the purpose of recognizing whether or not a given string
belongs to the language, (c) as an aid to the user in learning
how to use the language correctly (see Appendix A for the
User-Guide of DDL & DML).

(2) The applications of the concept of a compiler-compiler
to the DDL processor. See Feldman [FEL 68], Irons [IRO 61],
Brooker and Morris [BRO 63].

This is illustrated in Figure 1-1 where the design of
the DDL Processor is shown on the left (Figure 1-la) and an
analogy is drawn to a design of a compiler-compiler system
as shown on the right (Figure 1-1b).

Note that the input is shown as horizontal lines and output
is shown as vertical lines, thus the output of the DDL Compiler-
Generator is not the input to the DDL compiler; it is, rather,
the DDL compiler itself.

The Data Definition (in DDL) of a Data Base is considered
analogous to the users source statements which are input to the
compiler. The Data Conversion Processor is the analogue of the
user's object program, output from the compiler.

(3) Transition - Matrices On Lexical Analysis

The implementation of the ideas of Floyd [FLO 69], Presser
[PRE 69] and Conway [CON 63] of using transition - matrices

to perform Lexical analysis for EBNF/WSC and for DDL statements.

-12-

(4) Use of EBNF with subroutines calls (EBNF/WSC) for
encoding the DDL source statements.

Using EBNF/WSC - to describe the syntax of the DDL language-
as an input to the Syntactic Analysis Frogram Generator -
facilitates the encoding of DDL statements into internal tables,
thus reducing the amount of work performed by code generation.
1.% Organization of this Dissertation

Chapter 1 has attempted to give an overview of the need for
the DDL/DML system, the language, and the techniques used to
implement the DDL processor.

After presenting an overview of the DDL/DML processor,
the bulk of the text of this dissertation deals with the
design and implementation of the DDL/DML Processor System, while
the Appendices contain user guides for the use of the system
and related detailed documentation.

Chapter 2 provides an overview of the design of the DDL/DML
processor. Chapter 3 presents an introduction to BNF, EBNF/WSC
and the formal specification of DDL and DML (see also Appendices
A and E). Chapter 4 describes the Syntactic Analysis Program
Generator (see also Appendix B). The DDL compiler is presented
in Chapter 5 (see also Appendix C and D). The Conclusions and
Recommendations are given in Chapter 6.

Thus, the reader interested only in the overall description
of the DDL and DML and DML Languages and in the DDL/DML Processor

System need read only Chapters 2, 3 and 6.

-13-

The reader who is interested In a more detailed description
of the capabilities of the system and wants to learn how to
use it should read the user guide in Appendix A.

Finally, the reader interested in thorough documentation
of how the DDL/DML Processor System was built should read
Chapter 4 and 5 and the remaining Appendices.
1.6 Selection of Computer and Programming Language

Two computer systems available at the University of
Pennsylvania that could satisfy requirements were evaluated,
the RCA Spectra 70/46 Time Sharing System, and the IBM 370/75
operating under 0S/370. The RCA system includes support for
ALGOL, COBOL, FORTRAN, SNOBOL, and Assembler languages. The
IBM system supports these and also PL/1, APL, LISP. Since
both systems meet the hardware and operating system requirements,
the programming language was the determinant. Assembly language
programming was unsatisfactory because of programming costs,
lack of machine independence, and poor readability., PL/1 was
considered, by far, the best, especially in the area of memory
allocation, and data management commands. The IBM 370 computer

system was selected because of PL/1 availability.

CHAPTER 2
OVERALL DESCRIPTION OF THE "DDL PROCESSOR"
2.1 Major Components
The "DDL Processor" is actually three processors (sets of

computer programs). The first is the Syntactic Analysis Program

Generator (SAPG), the second is the DDL Compiler, and the third is

the Data Conversion Processor (see Figure 1-1). When the term DDL

Processor is used, it refers to the latter two processors ~ the
DDL Compiler and the Data Conversion Processor.

An analogy with existing computer programming language systems
was made in Figure 1-1; the Data Conversion Processor corresponds
to an executable user program, the DDL compiler corresponds to a
programming languagé processor such as a Cobol, Fortran or PL/1
compiler, and the Syntax Analysis Program Generator corresponds to
a Compiler-Compiler's - syntax analysis generation modules which are
used to produce the Cobol, Fortran or PL/1l syntactic analyzers. The
relationships between and the use of the three processors in the
DDL systems is readily seen from the analogy. The Data Conversion
Processor is the program which reads data from existing files and pro-
duces new files. Like most data processing programs, each Data
Conversion Processor is designed for a specific function, (e.g.
conversion of a file in format A to a file in format B). The DDL
Compiler aids in the generation of Data Conversion Processors.

To produce a Data Conversion Processor one writes a Data

-15-

Definition (a series of statements in the DDL language) for each
of the source and target files. If Data manipulation is needed
a series of routines are written in DML (Data Manipulation Language).
These statements are read by the DDL Compiler, which produces a Data
Conversion Processor. Just as 1t is not necessary to compile a
Cobol program each time it is used. It is important to note that it
is not necessary to create a New Data Conversion Processor each time
it is used.

The DDL Compiler, and the Data Conversion Processors produced
by it, are the only components of the DDL Processor System that
most users will need. The other component, the Syntactic Analvsis
Program Generator, is the program used to create the Syntax Analysis
Program, which is in turn part of the DDL Compiler. The "Generator"
is a very valuable tool in the development of the DDL Compiler, and
is equally valuable in enhancing and modifying the Compiler. Further-
more, it would be a "stand alone" valuable tool in writing any syntax
analysis program.

The components of the DDL Processor System are shown in Figure 2-1.
Each processor is surrounded by a broken line. A rectangle with a
missing side represents an input, while outputs are shown in trapezoids.
When the output is a program, double lines are used to show the
destination of the output.
2.2 Overview of The DDL Processor

In Figure 2-2 an overview of the DDL Processor is shown.

(5) (6)

The inputs to the PL/1 compiler to produce the DDL compiler in

DDL g DML
STATEMENTS

SOURCE
FILE

SYNTAX SPECIFICATION

CODE GENERATION

OF LOGIC FOR DDL-

DDL

r
]
]
]
]
'

S S

SYNTAX ANALYSIS PROGRAM

'
{
GENERATOR !
1

4

DDL SYNTAX

I
1
- DDL COMPILER
[}
1
DATA CONVERSION
PROGRAM
pmmmemmmm e e m e mmemmmmme e Y e ——
]
={ DATA CONVERSION PROCESSOR
]
haeomemoeumooen = on ov o o B L T T T N SISSSSS———

L e e e I

DDL CODE

MAJOR COMPONENTS OF THE
DDL-PROCESSOR SYSTEM

FIGURE 2-1

-9'[—

TARGET

FILE

-17-

in machine code for the IBM/370 are the following:
1) The Lexical Analysis Subroutine for DDL, coded in PL/1.
The full description is presented in Section 5.2.1.
2) The Syntax Analysis Program (SAP) produced by the SAPG
in PL/1.
3) Supporting subroutines - written in PL/1, perform services
required by the SAP. Services include recognition of syntactic
elements, diagnostics of syntax errors creation of Internal
Tables (symbol and data tables) and if specified a cross-reference
table of the identifiers used in the DDL program. (See Section 5)
4) Code Generation Program - written in PL/1, forming the
basis of the code generation phase of the DDL compiler. 1In it
is contained the logic required to interpret the information
stored in the internal tables and to generate PL/1 statements
which will perform the data conversion indicated by the DDL
Program.

The output from the PL/1 compiler is the DDL compiler in
IBM/370 machine code. (6)

The inputs to the DDL compiler (6) to produce the Data
Conversion Program (8) in PL/1 are the following:
- The DDL & DML source statements (7). The DDL statements given
by the user describe the structure of his source and target files.
The DML statements describe the file manipulations to be prepared
on the source file, such as; criteria tesging, conversion methods,

security testing, report generators and statistical gathering

-18-

of data.

The Data Conversion Program, in PL/1 is the input to
the PL/1 compiler (9) this produces the Data Conversion Program (10)
in machine code for the I1BM/370.

Finally the Data Conversion Program (10) accepts as input
the source file (11) and outputs the target file (12).

2.3 The Syntactic Analysis Program Generator

Figure 2.3 shows the Syntactic Analysis Program Generator
(SAPG). The description of SAPG is given in Chapter 4. The
SAPG is indeed a compiler in its own. It consists of (a) a
Lexical Analysis Module, (b) the Syntax Analysis Module and Code
Generation Module. All of these are hand coded in PL/l. They
are compiled into IBM/370 machine code using the PL/1 compiler (c),
whose output is the Syntax Analysis Program Generator in IBM/370
machine code (e).

The input to SAPG is the DDL syntax specification, written
in EBNF with subroutine calls (d). The output (f) is a Syntax
Analysis Program (SAP) - in PL/1, which will perform the syntax
analysis on statements written in DDL.

2.4 The DDL Compiler

An overview of the DDL Compiler is shown in Figure 2-4.
The DDL Compiler contains four major parts:

(1) a Lexical Analysis Program (LEX),

(2) a Syntactic Analysis Program (SAP)

(3) a Code Generation Program (CGP)

(4) a series of supporting subroutines

OVERVIEW OF THE DDL-PROCESSOR

© Q@ ©)

©

LEXICAL SYNTAX ANALYSIS SYNTAX SUPPORTING CODE
ROUTINE FOR PROGKAM FOR DDL ROUTINES, CROSS- GENERATION
DL (PL/1) (PL/1) REFERENCE ROUTINES LOGIC
(PL/1) (PL/1)
P I D R ...

DDL COMPILER
(IBM/370 CODE)

DDL & DML
STATEMENTY

o

DATA CONVERSION
PROGRAM (PL/1)

L e e e

DATA CONVERSION
PROGRAM
(IBM 370 CODE)

-6‘-

o+ DATA CONVERSION PROCESSOR (&L
L

SOURCE
FILE

g S |

TARGET
FILE

FIGURE 2-2

-20-

The full description of the DDL Compiler is given in
Chapter 5.
2.4.1 Phase 1 of the DDL Compiler

In phase 1, DDL statements are read by the Lexical Analysis
Program (LEX) that forms tokens which are in turn the input to
the Syntax Analysis Program (SAP). The SAP examines the string
of tokens to determine whether or not, the string obeys certain
structural conventions explicit in the syntactic definition of
the language. Should an error be discovered, the error-diagnostics
routines will be called to output a message inform;ng the user
the location and nature of the misconstruction.

Concurrent with this error detection is the internmal table
generation. At this time, routines are called whose functions
are the capturing of information contained in the DDL source
statements and the building of tables to preserve this data in
coded form for use during code generation, as well as in the
detection of global syntax errors. The internal tables that are
formed are the Symbol and Data Tables. If no errors were detected
and if the XREF option was specified to the DDL Compiler, then
the cross -reference table is generated.
2.4.2 Phase 2 of the DDL Compiler

Phase 2 is code generation. The first part of Phase 2 is the
execution of a series of programs which steps through the Data
Table and generates PL/1 declare statements. When compiled, these
will produce a Description Table that contains the following

for each field of the source record: (1) data descriptor

©

DDL SYNTAX
SPECIFICATION
(EBNF/WSC)

SYNTAX ANALYSIS PROGRAM

CENERATOR
(SAPG)
LEXICAL SOUTIHE) SYNTAX ANALYSIS PROGRAM
EBNF/WSC (PL/1) CENERATION 10GIC To
PRODUCE SAP (PL/1)
IR SIS EIPPEPIPIIS SIS '
[}
' PL/1 COMPILER ‘
] J
[pduininininiindiaiin i) | Siniaiatatia e sETEEesssEEEesssEE
o :
' LEXICAL ANALYSIS SYNTAX ANALYSIS v
[FOR EBNF/WSC T ; """ ! PROGRAM FOR EBNF/WSC ' '
|} ' AN H] ~
: L T X v
. T ' '
: v, N ! ¢
' t A8 AL | CODE GENERATION LOGIC TO '
! ! l‘ss | ProDUCE saP '
' e i :
']
b e e e Jﬁ------,_fﬁ’.c_-_---.:

FIGURE 2-3

DDL
SOURCE
STMTS

DDL-PROCESSOR
DDL COMPILER
DATA CONVERSION PROCESSOR

DDL-COMPILER

DML SOURCE
STMTS

ERROR DIAGNOSTICS
‘}:g: g.gi STMT ENCODING ROUTINES
X I * CROSS-REFERENCE
ROUTINES
po=e-e L. 5
(SYMBOL X CODE GENERATION
{DATA TABLES re———={ PROGRAM
]
Lo eem s J l
DATA CONVERSION
PROGRAM
(PL/1) 5
N
t
\’
NN R Voo ceeme e
' [
'PL/1 COMPILER |
Leccrcavacnaaw I ----------- -d
SOURCE DATA CONVERSION TARGET
FILE PROCESSOR FILE

FIGURE 2-4

-23-

information, and (2) space for placing pointers to the field
at execution time.

After each entry of the Descriptor Table has been produced,
a call is made to the Data Parsing code generation routines.
These routines generate the code which will fill in the data
pointer in the descriptor table entry at run time.

The second part of Phase 2 is a program which uses the Data
Table entries for the target file and generates the data move-
ment code. This completes Phase 2 of the DDL compiler. At this
point the DML statements are read by the DDL compiler and they
are merged with the code produced during code generation phase.
2.4.3 Phase 3 of the DDL Compiler

Phase 3 of the DDL Processor is the creation of the Data
conversion program in IBM/370 machine language. This phase is
performed by the DDL compiler. The input to the PL/1 compiler is
the PL/] text produced in Phase 2.

2.5 Data Conversion Processor

The Data Conversion Processor is a set of programs and data
which was produced by the Code Generation logic of the DDL compiler
and the DML routines supplied by the user. It is composed of:

(a) a Data Conversion Program

(b) a Data Structure for the source file, and

(c) a set of DML subroutines

The Data Structure for the source file - which was produced

24—

by the DDL Compiler from the DDL statements, is used by the
Data Conversion Program to aid in parsing the source data. The
other component of the Data Conversion Processor, the DML sub-
routines, perform functions such as character set conversion,
extension or truncation of fields, data type conversion criteria
testing, security testing, report generators, gathering of
statistical data.

An overview of the Data Conversion Processor is shown in

Figure 2-5.

SOURCE
FILE

DATA
STRUCTURE

FOR
SOURCE FILE

DML
PROCEDURES

DATA CONVERSION PROCESSOR
FIGURE 2-5

TARGET
FILE

—gz-

26~
CHAPTER 3

DDL and DML SPECIFICATION

3.1 Introduction: - Extended Backus-Naur Form

During the past decade, one of the most significant problems
in the theory of programming has been the search for suitable
formalisms for programming language definition.

Backus [BAC 59] has devised a technique for describing the
syntax of artificial languages, i.e., a way of specifying precisely
and unambiguously the grammatical or well-formed formulas of a
language. The method takes the form of a language which has come
to be called Backus Normal Form, usually abbreviated BNF.
Historically, BNF was devised for the specific purpose of describing
the syntax of ALGOL 60, and the ALGOL 60 report [NAU 60] is a
conspicuous use of BNF. There are others, e.g. [LEA 64], and
[CHE 62].

When describing an artificial language, one must distinguish
clearly two levels of language: 1) the language being defined,

usually called the object language; and 2) the language in which the

describing is done, usually called the meta-language. Thus BNF

is really a meta-language.

In BNF the following four meta-linguistic symbols are

introduced:

-27-

These are called meta-linguistic symbols since they must
not appear in the alphabet of the object language. These
symbols make it possible to distinguish the characters of the
object language from those of the defining meta-language.

Strings of characters enclosed in the brackets < > are

called meta-linguistic variables. A meta-linguistic variable

is a2 name given to a class of strings in the object language. The
value of a meta-linguistic variable is a string of symbols. The
symbol | may be read as "or" and the symbol ::= may be read as
"is defined as."
3.2 EBNF Without Subroutine Calls

Here at the Moore School of Electrical Engineering, the DDL
group (H. Solow, A. French and the Author of this Dissertation)
have extended BNF, calling it EBNF.

The extension of BNF is through the use of square brackets
[] and the symbol *. The square brackets are used to indicate
that the item enclosed may appear zero or one times. If the right
bracket] is followed by a *, the item enclosed may appear zero
or more times. Any set of characters appearing in a formula which
is neither a variable nor one of the above symbols denotes itself,
and concatenation of strings of symbols is denoted by juxtaposition
of such characters and/or variables.

It is well-known that BNF can be used to describe the context-
free languages. The class of languages describable by EBNF is also

the context-free languages. The extensions to BNF do not add to the

~28-

class of languages describable by BNF, since, as will be shown
below, the syntactic extensions only give more flexibility in
syntactic description. However, one ex*“ension allows information
obtained during syntactic analysis to be encoded for more
convenient processing during later stages of compilation [FRE1].

The use of the meta-linguistic symbols is best illustrated
by example.
Example 1.

< DIGIT > ::= 0]1]2]|3]4]5|6]|7|8]|9|

This meta-linguistic definition may be read as "A member of the
meta-linguistic class DIGIT is defined as 0 or 1 or 2 or 3 or 4
or 50or 6 or 7 or 8 or 9." Thus an occurrence of < DIGIT > in a
meta-linguistic definition stands for any one decimal digit.

Both BNF and EBNF ailows the use of recursion in a formula.
This means in this context that the meta-linguistic class being
defined may be included in its definition.
Example 2.

< INTEGER > ::= < DIGIT > | < INTEGER > < DIGIT >
This may be read as "A member of the meta-linguistic class < INTEGER >
is defined as a member of the meta-linguistic class DIGIT or a
member of the meta-linguistic class < INTEGER > followed by a member
of the meta-linguistic class < DIGIT >." More informally one
might say "An integer is either a digit or an integer followed by
a digit." Alternatively one might say |

l. - Every digit is an integer.

-29-

2, - If 1 is an integer and D is a éigit, then the

string ID is also an integer.

Observe that the meta-linguistic variable INTEGER appears
on both the left and right side of the ::= and this makes the
definition recursive. But the definition is not circular,
although it may appear so at first glance. This 1s an analogous
to the usual recursive definition of factorial:

1t =1

N! = N X (N-1)!

The difference between BNF and EBNF is that the lattér
allows repetition. In EBNF the definition of the meta-linguistic
variable INTEGER can be stated as:

< INTEGER > ::= < DIGIT > [< DIGIT >]*

This may be read as "A member of the meta-linguistic class
INTEGER is defined as a member of the meta-linguistic class
DIGIT followed by zero or more members of the meta-linguistic
class DIGIT."

Of course, it is not always possible to avoid recursion in
definitions. An example of a definition in which recursion cannot
be replaced by repetition is the following:

Example 3:
< SIMPLE_ARITH_EXP > ::= [<UNARY OP >]
< PRIMARY > [< ADD_OP> < PRIMARY >]*
< PRIMARY > ::= < INTEGER >
| NaME

| (< SIMPLE_ARITH_EXP>)

-30-

< NAME > ::= < ALPHA CHAR > [< ALPHAMERIC >]*

< ALPHAMERIC > ::= < ALPHA CHAR > | < DIGIT >

< ALPHA CHAR > ::= A|B|c|p|E|F|c|H|1|J|K|L|M|N]O

| elalr|s|z[u|viw|x|v]z|s]#|_|e

< ADD_OP > ::= +|-

< UNARY OP > ::= -|+

This definition is recursive since < SIMPLE_ARITH_EXP > is
defined in terms of < PRIMARY > and vice versa. Some values
of < SIMPLE_ARITH_EXP > are:

16

~324
-A
A+B
(A+B)
-(A+B) + 16 - (-324)
((A+B) + 16) - (A+(C-25))

EBNF includes features of regular expressions, a short
discussion of one of these follows. This feature is the Kleene
asterisk. It allows a given substring to occur zero or more times
to form a string in the object language. For example, (A)* means
that the null string (i.e., the string of length zero) is in the
object language, the string "A" is in the object language, the
string "AA" is in the object language, etc. The language is all
strings composed of any number of occurrences, of the character
"A" (including zero). This feature has been combined with BNF

to form EBNF in the following way. The regular expression characters

-3]1-

"(" and ")" have been replaced by "[" and "]" respectively.

These latter characters are always regarded as meta-linguistic
symbols. They indicate that the string of characters represented
by the terminal and/or non-terminal symbols which appear between
them occurs optionally in a string which is a valid result of
applying that production. For example:

< example 1 > ::= A [B]
means that < examplei{> may be replaced by either "A" or "AB" in
any production which contains < example 1 > to the right of the
production sign, such as:

< example 2 >::= < example 1 > C
< example 2 > represents either the string "AC" or the string
"ABC." An asterisk which appears immediately following the symbol
"]" is interpreted as the Kleene asterisk. For example:

< example 3 > ::= A [B]*

< example 4 > ::=< example 3> C
means that < example 4 > represents the strings "AC'", "ABC", "ABBC",
"ABBBC", etc.

It is well-known that regular expressions represent exactly
the set of finite-state languages. Since the finite-state languages
are a proper subset of the context-free languages, they are
representable by BNF without the extensions found in EBNF. However,
EBNF provides an easy way to specify optionality and repetition by

means of the optionality brackets, "[" and "]", and the Kleene

-32-
asterisk. In BNF, this must be accomplished using recursion
and making a special case of the production for the null string.
This is often cumbersome to write and even more difficult to
understand. This point is better illustrated by example.
Example 4.
Let the alphabet A= { 1, 2, 3 }. Let CA be the language

over A given by the following BNF specification.

CA ::= 1 |<cCA>2
2 = 2 |<2> 3
3 = 3 |<3> CA

The purpose of recursion in the above productions is, to achieve
repetition. The corresponding specification in EBNF could be
written as:

<CA > ::= 1 [2[3[<CA >] *]*]*
In this case the number of productions has been reduced from
three to one. The structure of the words of the language is
more obvious from the EBNF specification than from the BNF
specification. The optionality and repetition are clearly indicated.
Recognition of good strings in the language can be accomplished in
a single pass of the input string, scanning from left to right
(in this case with no look ahead) and without the use of a push-
down to retain any of the input. Once a character in the input
string is successfully recognized, it may be discarded. This will

be shown in Chapter S.

-33-
One point must be made concerning the strings of symbols
which appear inside the optionality brackets. These symbols are

' and as such they

considered as a group, an '"optionality group,'
must appear in toto or not at all. I.e., the string is bad if
only part of the optionality group appears. For example, if
<example 5 > ::= A[BC] then < example 5 > represents the strings
"A" and "ABC", but not the string "AB". However, optionality
groups may be nested inside one another such as: < example 6 >
::= A[B[C]]. 1In this case < example 6 > represents the strings
"A", "AB", and "ABC". There is theoretically no limit to the
depth of such nesting. Further, the Kleene asterisk may always
appear after the symbol "]", no matter at what level of nesting
it appears. (See Example 4).

As in regular expressions A[B[C]*]* is not equivalent to
A[B]*[C]*. The latter represents strings containing an "A",
followed by any number of '"B"'s, followed by any number of "C'"'s.
The former represents strings containing an "A", followed by any
number of strings which contain a "B" followed by any number of
"c"'s.

In the following Sections 3.3 and 3.4 we present the formal
specification of version 1.0 of DDL and DML respectively.

Version 1.0 of DDL/DML is a modification made to the DDL
designed by D. Smith [SM 71]. The syntax of DDL has been changed

to the present one in order to simplify its use and the

-34-
implementation of the DDL Processor. We reduced the amount
of writing, for example, in the specification of source field
to target field association. Moreover, we added new capabilities
and flexibility to such things as the movement of repeating
fields, and simplified the specification of such items as physical
storage. The concept of default parameters was furthermore
introduced. In summary, while the soul of the present DDL language
is based on the DDL of Smith, we feel that we have made significant
improvements to aid its use and implementation.

In changing the DDL syntax we capitalized on the Data
Descriptive facilities of COBOL, PL/1 and the DDL designed by the
CODASYL Data Base Task Group [1.

DML was introduced to replace the criteria language which
was part of the DDL designed by Smith. In that DDL we found that
specifying conversion or validation criteria was not only
cumbersome but incomplete in that it was unable to express several
real-world problems we faced. In the present version 1.0 oa
the other hand, DML is a sub-set of PL/1 to allow maximum
manipulation flexibility and it is used to test criteria, perform
security procedures - to open "Locks" before translation of Source
File is attempted, and to aid in the verification of Data Bases.
DML can also be used as an aid to report generation. May we also
add that by separating DML from DDL, we drew a distinct line between

a descriptive language defining data structures (DDL), and a

-36-

< POSITION > ::= < LABEL >
| < INTEGER >
< CONVERT_STMI> ::= CONVERT (< FILE NAME > INTO< FILE_NAME>)

< FILE NAME > ::= < NAME >

A

FILE STMT > ::= FILE (< RECORD_NAME >
[,CHAR_CODE = < CODE >]

»STORAGE = < NAME >)

A

CODE > ::= BCD
] ASCII [»OPT_BLOCK_PREFIX = < INTEGER >]

| EBCDIC

A

RECORD_STMT > ::= RECORD (< NAME LIST > [, < NAME LIST >]*
[,LOCK = < PROC_CALL>]

[,SIZE =< REC_SIZE >])

A

REC_SIZE > ::= FIXED (< INTEGER >)

VARIABLE (< INTEGER >)

A

NAME _LIST > ::= < NAME > [< OCCURRENCE >]

A

OCCURRENCE > ::= (< MIN_OCC >)
| (<MIN_OCC > : <MAX 0OCC >) < CRITERION >
< MIN_OCC > ::= < INTEGER >
< MAX_OCC >::= < INTEGER >
< CRITERION > ::= ,PRE_CRIT = '< NAME >'
| ,POST_CRIT = '< NAME >'
< GROUP_STMT > ::= GROUP (<NAME_LIST > [, < NAME_LIST >]*)

< FIELD_STMT > ::= FIELD (< TYPE > [< DELIMETER >] [< CONV >])

-37-

< TYPE > ::= BIT (< LENGTH >) [< BIT_ASSGN >]
| CHAR (< LENGTH >) [< CHAR_ASSGN >]
| NUM_PICTURE = '< NUM_PICTURE_SPEC >' [< NUM_ASSGN >]
| CHAR_PICTURE = ' < CHAR_PICTURE_SPEC >' [k CHAR_ASSGN>]
< LENGTH > ::= *
| < INTEGER >
| < PARAM STMT >
| < REF_NAME >
| <PROC_CALL >
< NUM_PICTURE_SPEC > ::= < INTEGER SPEC >
| < SIGNED_INTEGER SPEC >
| < FIXED_NUM_SPEC >

| < FLOT_NUM_SPEC >

< INTEGER_SPEC > ::= 9[9]*
< SIGNED_INTEGER_SPEC > ::= [S] < INTEGER_SPEC >
< FIXED_NUM SPEC > ::= (S] [< INTEGER_SPEC >] [< P>]

[< INTEGER_SPEC >]
< FLOAT_NUM_SPEC > ::= < FIXED_NUM_SPEC > < EXP> < SIGNED_INTEGER_SPEC >
<P >::= I)
<EXP >::= E|K
< CHAR_PICTURE_SPEC > ::= < SINGER_CHAR > [< SINGLE_CHAR >]*
< SINGLE_CHAR >::= A|X|9
< CHAR_ASSGN >::=< ~ '< CHAR_STRING >'

| <= ' < SOURCE_NAME >

-38-—-

< BIT_ASSGN > ::= <= ' < BIT_STRING > '

A
[}

' < SOURCE_NAME >'

< NUM_ASSGN > ::= <- "< NUM_STRING > '

A
L]

' < SOURCE_NAME >'

< DELIMETER > ::= ,DELIM= ' <PUNCT_MARK >'

< PUNCT_MARK >::= < CHAR STRING >
<CONV >::= ,CONV= < PROC_CALL >
< SOURCE_NAME > ::= < PARAM STMT >
| <NAME > [< SUBSCRIPT >]
[. <NAME > [< SUBSCRIPT >]]*
< SUBSCRIPT > ::=< BOUND > [: < BOUND >]
< BOUND > ::= < INTEGER >
| < PARAM_STMT >
| < REF_NAME >
< PARAM STMT > ::= < LENGTH STMT >
| < COUNT_STMT >
< LENGTH_STMT > ::= DDL_LENGTH (< DATA_NAME >)
< COUNT_STMT >::= DDL_COUNT (< DATA_NAME >)
< DATA NAME > ::= < REF_NAME >
< CARD_STMT > ::= CARD
< TAPE_STMT > ::= TAPE (< TAPE_DATA_CTL_BLOCK >)
< TAPE_DATA_CTL_BLOCK > ::= < RECORD_FORMAT >
»VOL_NAME = < NAME >
[,NO_TRKS = < NO_TRKS >]

[,DENSITY = < DENSITY >]

[,REC_MODE = < REC_MODE >

[,TAPE_LABEL

< TAPE_LABEL >]

[,START_FILE

< INTEGER >]
[,CTL_CHAR = < CTL_CHAR >]
< RECORD_FORMAT > ::= FIXED (< BLOCK_SIZE > [, < RECORD_SIZE >
[,PAD = <NAME >]])

| VARIABLE (< MAX_BLOCK_SIZE >[, < MAX_RCD_SIZE >])

| VAR_SPANNED (< MAX BLOCK SIZE >
[, < MAX_RCD_SIZE >])
| UNDEFINED (< MAX BLOCK SIZE >)
< NO_TRKS > ::= 7|9
< PARITY > ::= ODD|EVEN

< DENSITY > ::= 200|556| 8001600

..
i

< REC_MODE > ALL_BIN |ALL_CHAR |MIXED

< TAPE_LABEL

v
e

:= IBM_STD ,INT_NAME = < NAME >
| ANSI_STD ,INT_NAME =< NAME >
| NONE

| BYPASS [,INT_NAME = < NAME >
< CTL_CHAR > ::= A|M

< BLOCK_SIZE >::= < INTEGER >

< RECORD_SIZE > ::=< INTEGER >

< MAX_BLOCK_SIZE >::= < INTEGER >

< MAX RCD_SIZE > ::=< INTEGER >

-40-

< DISK_STMT > ::= DISK (< DISK_DATA CTL_BLOCK >)

< DISK_DATA_CTL_BLOCK > ::= < RECORD_FORMAT >,VOL_NAME =< NAME >
,INT_NAME =< NAME >
[,UNIT = < TYPE DSK >]
[,SPACE = (< PARA METERS >]]

< PARAMETERS > ::= < UNITS >, < QUANTITY > [, < INCREMENT >

[,RISE]
< UNITS > ::= TRACKS
| CYLINDERS
|~ INTEGER

< QUANTITY > ::= < INTEGER >

< INCREMENT > ::= < INTEGER >

< TYPE DSK >::= 2314]3330|2305

< BIT_STRING > ::=< BIT >[< BIT >]*

< CHAR_STRING > ::= < FULL_CHAR SET > [< FULL_CHAR_SET >]*

< NUM_STRING > ::= [< SIGN >] [<DIGIT >]* [.] [< DIGIT >]*

[E [<SIGN >] <DIGIT> [<DIGIT >]*]

< INTEGER>::= < DIGIT > [< DIGIT >]*

< NAME > ::= < ALPHA CHAR > [< ALPHMERIC >]*

< SUB_NAME > ::= < NAME >[(< SUBSCRIPT >)]

< REF_NAME > ::= < SUB_NAME > [.< SUB_NAME >]*

< SUBSCRIPT > ::= *| < INTEGER >

<LABEI; > 1= < NAME >

<PROC_CALL > ::= ' < LABEL >'

< SIGN > ::= +|-

~41-

< FULL_CHAR_SET > ::=< ALPHAMERIC >

| < SPEC_CHAR >

< ALPHAMERIC > ::= < ALPHA CHAR >
| < bpIGIT >
< ALPHA CHAR > ::= A|B|c|D|E|F|c|H|I

| alx|r|u|x|olp|q|r
| slT|vjviwlx]y|z[$]-|#]e
DIGIT > ::= 0|1|2|3]|4|5]|6]7|8]9
BIT > ::= 0|1
<SPEC_CHAR > ::= ,|;|:|.[2]|!]"|"
| (DI #lx]*|els]-
| +l=171=1 < >| %]-
3.4 FORMAL SPECIFICATION OF DML
< DML_PROGRAM >::= [< DML_BODY_STMIS >]* < DML_PROGRAM >
< DML_BODY_STMIS > ::= < DATA_MANIPULATION STMIS >
| < CONTROL_STMTS >
| <END_STMT >
< DATA_MANIPULATION_STMTS > ::= < ASSIGNMENT STMTS >
< DECLARE_STMT >
< CONTROL_STMIS > ::= < GO_TO_STMT >
| < po_GRrouPSs >
| < IF_STMT >
| < PROCEDURE_STMT >
| < CALL_STMT >

| < RETURN_STMT >

42—

A

ASSIGNMENT_STMTIS > ::= < VAR ASSIGN STMT >
| < POINTER_ASSIGN_STMT >
< VAR_ASSIGN_STMT > ::= [< STMT_LABEL >:] < VARIABLE >=

< EXPRESSION > ;

A

POINTER_ASSIGN_STMT > ::= [< STMT LABEL > :] < SIMPLE_POINTER >

= < POINTER_EXP > .PTR;

A

POINTER_EXP > ::= < VARIABLE > [. < VARIABLE > }*
< DECLARE_STMT > ::= DCL < ARRAY _NAME > [< ATTRIBUTES >]
[BASED (< SIMPLE_POINTER >)];
| DCL < FUNCTION NAME > ENTRY
[RETURNS (< ATTRIBUTES>)];
< ARRAY NAME >::= < NAME > [(< INTEGER > [: < INTEGER >])]
< ATTRIBUTE > ::= BIT (< STRING_LEN >) [VARYING]
| CHAR (< STRING LEN >) [VARYING]
| PICTURE ' < PICTURE_SPEC >'
< STRING_LEN > ::= *
| <EXPRESSIONS >
< PICTURE_SPEC > ::= <NUM_PICTURE_SPEC >
| < CHAR_PICTURE_SPEC >
< SIMPLE_POINTER > ::= < NAME > [. <NAME >]*
< EXPRESSION > ::= <ARITH_EXP >
| <STRING_EXP >

<STRING_EXP > ::= <STRING_TERM > [|| <STRING_TERM >)*

43—

< STRING_TERM > ::= < STRING >
| < VARIABLE >
| < FUNCTION_CALL >
< ARITH_EXP > ::= [< UNARY_OP >] < TERM > [< ADD OP > < TERM >]*
< TERM > ::= < FACTOR > [< MULT OP > < FACTOR > J*
< FACTOR > ::= < PRIMARY > [** < PRIMARY >]*
< PRIMARY > ::= < UNSIGNED_ NUMBER >
| < VARIABLE >
| < FUNCTION_CALL >

| (< ARITH_EXP >)

< FUNCTION_CALL > ::= < FUNCTION NAME > [(< ARG_LIST >)]

< FUNCTION_NAME > ::= < LABEL >
< ARG_LIST > ::= < EXPRESSION > [, < EXPRESSION > J*

< UNARY OP > ::= +|-

< ADD OP > ::= +|-

<MULT_OP > ::= *|/

<GP TP STMT > ::= [< STMT_LABEL > :] GO T@ < STMT_LABEL >;

< DO_GROUP > ::= < DO_STMT > <pHRASE> [< PHRASE >]}* < END_STMT >
<DO_STMT > ::= [< STMT_LABEL > :] DO;

| [<STMT_LABEL > :] DO< VARIABLE > = < INIT_VALUE >
TO < MAX_VALUE >
[BY < INCREMENT >];
< PHRASE > ::= < DML_BODY_STMT >

| < DO_GROUP >

44—

< INIT_VALUE > ::= < ARITH_EXP >

<MAX VALUE > ::= < ARITH_EXP >

< INCREMENT > ::= < ARITH_EXP >
< IF_STMT > ::= [<STMT_LABEL> :] IF < COND_EXP > THEN < CLAUSE > ;
[ELSE [< CLAUSE >];]
< COND_EXP > ::= < ARITH_EXP > < COND_OP > < ARITH_EXP>
SCOND OP > ::= = | <|> | a=]a<|a>]| <=] <=]>-=
< CLAUSE > ::= < DML_BODY_STMT >
| < Do_GROUP >
< PROCEDURE_STMT > ::= < PROC_NAME > : PROC [(< PARAM LIST >)]

[RETURNS (< ATTRIBUTES >)];

< PROC_NAME > ::= < LABEL >
< PARAM_LIST > ::= < NAME > [, <NAME >]*
< CALL_STMT > ::= [< STMT_LABEL > :] CALL < PROC_NAME >

[(<ARG_LIST >)];

< PROC_NAME > ::= < LABEL >
< ARG_LIST > ::= < EXPRESSION > [,< EXPRESSION >]*
< RETURN_STMT > ::= [< STMT_LABEL > :] RETURN [(< VALUE >)];
< VALUE > ::= < EXPRESSION >
< END_STMT > ::= [< STMT_LABEL > :] END;
3.5 EBNF With Subroutine Calls (EBNF/WSC)

EBNF/WSC is the input to the Syntactic Analysis Program
Generator, it is a prescriptive as well as descriptive meta-language.

By using EBNF/WSC to describe DDL, the compiler writer has a

45—

powerful technique to create and maintain internal tables as
is explained in Section 5.3.6, this is carried out by the
Syntactic Analysis Program (SAP), which is in turn generated by
the SAPG whose input is EBNF/WSC.

It is the addition of subroutine calls to BNF that gives
EBNF the capability of permitting the encoding of information from
syntactic analysis for later processing. This is done by embedding
these calls in the syntactic specification of the language. Doing
so provides the capability to branch to a subroutine upon successful
recognition of a syntactic unit in order to allow it to be encoded
in a form convenient to the compiler writer. This capability can
also be used in a Syntactic Analysis Program (SAP) to produce error
diagnostics (see Section 5.2.3.1). The use of subroutine calls is
illustrated by the following example:
< FILE_STMT > ::= FILE/DFILE /(< RECORD NAME > /FRN/

[,CHAR_CODE = < CODE >]
»STORAGE = NAME /FSN/)
< CODE > ::= / FILCODE / BCD / FC3
I ASCII / FC 2 / [,OPT_BLK PREFIX = /BLKPRF /
< INTEGER > / 0C /]
| IBCDIC / FCl /

After successfully recognizing the keyword FILE the SAP calls
on DFILE, this routine is used to fill the error stack to produce
error diagnostics, if any. The error codes that DFILE pushes into

the error stack are the following:

46—

Error Code Meaning

FIL_O1 open parenthesis missing after
keyword 'FILE

FIL 02 invalid record name specification
in FILE stmt

FIL 03 keyword '",STORAGE="" not found
in FILE stmt

FIL 04 invalid storage specification in
FILE stmt.

FIL 05 close parenthesis for FILE stmt
missing

Then DFILE calls on the routine DFILETG which is used to allocate
an entry to store the pertinent information in the FILE statement.
This routine also sets the type of the entry just allocated to FILE
and the character code to its default value EBCDIC. After (" has
been recognized the error stack is popped-up (i.e., FIL 02 is now
at the top of the stack). Then if < RECORD_NAME > is also recognized
the error stack is popped-up and SAP calls on the FSH. FSH is
a routine that sto;es (in the entry for the FILE statement) the
record name just recognized. If the routine that recognizes < RECORD_
NAME > exists false, then give error code in top of stack (FIL_02)
and stop the recognition process for < FILE STMT >.

If the next unit to be recognized is ",CHAR_CODE=" then SAP
calls on the routine to recognize < CODE > . The procedure CODE calls
on the routine FILCODE, which pushes into the error-stack the
following error code:

FIL_06 . Invalid character code specification.

-4 7~

If < CODE > is BCD the error-stack is pop-up and the routine
FC3 is called, this routine sets the character code field in the
FILE entry to BCD. If < CODE > is ASCII the error stack is pop-
up and the routine FC2 is called. This routine sets the character
code in the FILE entry to ASCII, if ",OPT_BLK PREFIX=" is found
in the input then the SAP calls on BLK PRF which is a routine
that pushes the following error code into the error stack:

FIL 07 invalid block prefix specification for ASCII
in FILE statement.

BLK PRF also set a flag in the FILE entry to indicate that the
optional prefix block is present. Then after < integer > has been
recognized the routine OC stores the integer in the FILE entry.
Note that failure to recognize ",0PT_BLK PREFIX=" does not cause
the recognition process for < FILE STMT > to terminate. However,
if ",OPT_BLK_PREFIX=" was recognized, then failure to recognize
< INTEGER > would cause SAP to give an error code (the code on
top of the error stack FIL 07) and the process to recognize
< FILE_STMT > to stop. Finally in recognizing < CODE > if it
was EBCDIC the routine FC2 is called. This routine sets the
character code in the FILE entry to EBCDIC. Note again that
failure to recognize ",CHAR CODE=" does not cause the recognition
process of < FILE_STMT > to terminate.

Finally after ",STORAGE=" has been recognized the error stack
is popped-up (i.e., FIL 04 is now on top) and the routine to

recognize NAME is called. If < NAME > was recognized, the

~48~
error-stock is popped-up (i.e., FIL 05 is now on top) and
the routine FSN is called. This routine stores the "storage
name" in the FILE entry. Successful recognition of ")" causes
SAP to pop-up the error-stack (i.e., now it is empty) this means
that <FILE STMT > has successfully been recognized.

Two points should be mentioned with regard to subroutine calls
and EBNF syntax:

(1) Subroutine calls may appear anywhere except between

"<'" and "> ".
(2) An EBNF production may consist of nothing but subroutine
calls as the right side of the production,
Note that subroutine calls are indicated by enclosing the subroutine
name in "/"'s. Use of the '"/" in any other context causes it to
be treated literally, i.e., as a terminal symbol in the object
language.

Internal table creation and maintenance is completely at the
compiler writer's discretion. See Section 5.3.6. Subroutine calls
are made only if everything specified by the EBNF production in
which the subroutine call appears has been successfully recognized
up to the point of the subroutine call. This information should
enable the compiler writer to plan what he must do with a syntactic

unit after it has been recognized.

-49-
CHAPTER 4

THE SYNTACTIC ANALYSIS PROGRAM GENERATOR

4.1 INTRODUCTION

One of the main problems in using computers is that of
effective programming. An important advance was made with the
introduction of mechanical translators as an aid in preparing
programs. An easy way to use artificial language was developed
and a translator written to translate that language into a
machine language. Initially these translators were handwritten
in an "ad-hoc'" manner for a particular machine and language.
But using the theory of automata and formal linguistics as tools
compiler writers were able to develop better techniques for
translator construction. An important step was the development of
a formal language in which to describe the syntax of a programming
language.

fhe definition of the ALGOL syntax [NAU60) was an early and
successful attempt to describe programming languages in a formal
way. The automatic construction of compilers is based on such a
formalization.

Table driven techniques included in this broad category are
all of the techniques reviewed by Feldman and Gries [FEL 68].
Broadly speaking, some formal description of the language to be
compiled with perhaps the semantics of each production, usually

in table form, serve as one input to the compiler. The compiler

-50-
uses this input to parse the source statements.

The main advantage of this approach is that the tables
can be changed to those for another language; these tables are
usually highly stylized and rewriting them requires much less
work than the rewritting of an entire compiler.

Such compilers therefore can be looked upon as the framework
for the production of a processor for any particular language.
Table driven compilers essentially use the tables in an inter-
pretive way, i.e., scanning the source and matching it with
production in the tables.

The following excerpt from a paper by J.A. Feldman [FEL 66]
on Formal Semantic Language (FSL), will help us in the explanation
of the operation of a compiler writing system.

"When a compiler for some language, L, is required, the

following steps are taken. First the formal syntax of L,

expressed in a syntactic meta-language, is fed into the syntax

loader. This program builds tables which will control the
recognition and parsing of programs in the language L. Then
the semantics of L, written in a semantic meta-language, is
fed into the semantic loader. This program builds another
table, this one containing a description of the meaning of
statements in L. Finally, everything to the left of the
double line [in Figure 4-1] is discarded leaving a compiler

for L."

The compiler writing system uses two formal languages to

describe a compiler. First, a syntax analyzer for the source

language L is written as a program in the "production language."

This program is processed by a translator called production loader
producing as output a set of driving tables which are stored for

later use. Second, a collection of semantic routines is defined

-35-

prescriptive procedural language for criteria specification,
conversions, and manipulation (DML).
In Appendix A of this dissertation we present the User
Guide for DDL and DML.
3.3 FORMAL SPECIFICATION OF DDL
< DDL_PROGRAM > ::= [< DDL_BODY_STMTS >]* < DDL_PROGRAM >
< DDL_BODY_STMIS > ::= END;
| < COMMAND STMTS >;
l< NAME > IS < DESCRIPTION_STMIS >;
< COMMAND STMTS > ::= < CONVERT STMT >
| < scan_smMr >
< DESCRIPTION_STMIS > ::= < RECORD_SPEC_STMT >
| < FILE_SPEC_STMT >
| < STORAGE_SPEC_STMT >
< RECORD_SPEC_STMT > ::= < FIELD_STMT >
| < GROUP_STMT >
| < RECORD_STMT >
< FILE_SPEC_STMT > ::= < FILE_STMT >
< STORAGE_SPEC_STMT > ::= < CARD_STMT >
| < TAPE_STMT >

| <DIsk_ST™MT >

< SCAN_STMT > ::= SCAN (REC = < RECORD_NAME > : < GROUP_NAMES >
[, < GROUP_NAMES >]%)
< RECORD_NAME > ::=< NAME >

< GROUP_NAMES > ::= < NAME > [(< POSITION >)]

SOURCE CODE

SYNTAX
OF

SEMANTICS
OF
L

IN
L
T, LEX
SYNTAX B
. L
E
LOADER
COMPILER
KERNEL
T
SEMANTTC _ By
LOADER >~ o
y
MACHINE
CODE
FIGURE 4-1

A COMPILER-COMPILER [FEL 66]

THIS BOX IS
THE COMPILER

-.'[g_

-52-

by writing a program in the "formal semantic language" (FSL).

Another translator called the semantic loader then translates

this collection of routines into a set of tables and a block of
code, which code is compiled for use as part of the compiler
itself. This output is also intermediate and stored for latter
use.

The compiler itself (Figure 4.1) is another program which
reads in both the syntax tables and the semantic tables and code,
and by using these translates a source language program into
an object program. For the sake of efficiency a preliminary lexical
transformation is performed on source language text as it is
read in by a routine called LEX.

The compiler which is the result of this process is a table-

driven translator. The compiler kernel includes input-output,
code generation routines, and other facilities used by all trans-
lators. Examples of this type may be found in the work of
E.T. Irons [IRO 61]; Ledly and Wilson [LED 62]; Brooker and
Morris [BRO 63]; M.E. Conway [CON 63]; R.W. Floyd [FLO 64];
R.M. McClure [McC 65); W.L. Johnson, J.H. Porter, S.I. Ackley
and D.T. Ross [JOH 68); R. Iturniaga and T.A. Standish [ITU 66];
P. Ingerman [ING 66]; R.G. Trout [TRO 67]; M. Richards [RIC 69]
and W.M. McKeeman, J.J. Harning and D.B. Wortman [McK 70].

The Syntactic Analysis Program Generator (SAPG) corresponds

to part of the compiler-compiler described by Feldman. The formal

-53-
meta-language for describing syntax is Extended Backus-Naur
Form (EBNF) with subroutine calls. Figure 4-2 shows this
correspondence. Everything to the left of the double line in
Figure 4-? is discarded leaving a compiler for DDL.

Section 3.1 presents the syntax of the meta-language EBNF,
along with examples of its use. Section 3.2 describes its use
for purely describing syntax. Section 3.5 presents its use
for internal table creation and maintenance and producing error
diagnostics.

4.1.1 Comparison of SAPG To The XPL System

Similar principles as those found in SAPG can be found in
the XPL system [McK 70]. The syntax analysis is done in XPL
by using two modules; the ANALYZER and the SKELETON., The ANALYZER,
is a program which reads a BNF grammar, determines whether it is
acceptable, and constructs parsing decision tables for that
algorithm.

The input to the ANALYZER is the BNF grammar (in a somewhat
machine oriented form) punched one production per card. It requires
that all cards containing productions with the same left part be
grouped together and restricts right parts to strings of one to
five symbols. The beginning of a production must start in column 1.

The input to the SAPG is the EBNF/WSC grammar also via punched
cards, but it is more human oriented. A production is punched in
free format (extra blanks between symbols are ignored) and the

user can use as many cards as neceséary to describe a production.

54—

The name of non-terminal symbols can be up to 31 symbols,
The beginning of each production must start in column 1.

One interesting feature of the XPL system is specific
the ANALYZER is that it reduces the tables for lexical analysis
from the BNF grammar. In the case of DDL the compiler writer
must design the tables for lexical analysis.

The function of the SKELETON is to check the input (source
language) according to the BNF grammar. The ANALYZER produces
a set of tables for SKELETON. The tables are physically
inserted into the body of the SKELETON.program.

The function of the SAP presented in this dissertation is
to check the input (source DDL statements) and to produce the
internal tables (to be used during code generation) according
to the EBNF/WSC grammar. The SAPG produces the program SAP,

In conclusion, while the XPL system has some features
not present in SAPG (e.g. automatic generation of lexical
analysis tables, left recursivity, etc.), SAPG has the following
advantages: it produces a specific ad-hoc syntax analysis pro-
gram (SAP) for a particular language, as opposed to XPL's
SKELETON which is a general purpose syntax analyzer; furthermore,
with the subroutine call features, it facilitates encoding of
source statements ylelding greater fleiibility to the compiler-

writer and facilitates code-generation.

-55-~

4.2 The Syntactic Analysis Program Generator

The Syntactic Analysis Program Generator, is a
program which inputs a formal description of the syntax
of a Language "L" (e.g., DDL), outputs code (in PL/1) to
perform syntax analysis on statements in the Language 'L"
and coordinates the creation and maintenance of internmal
tables for use in code generation phases of compilation of

the language '"L'", if required.

For example, assume that the SAPG is to be used to
produce a SAP for the simple arithmetic expression used in
ALGOL 60. The input to SAPG is the formal description of
simple arithmetic expression in EBNF with subroutine calls,

it is the following:

< SIMPLE_ARITH _EXP > ::= [< ADD OP >] < TERM > [« ADD_OP >
< TERM >]*
< TERM > ::= < PRIMARY > [<MULT OP > < PRIMARY >]*
< PRIMARY > ::= < INTEGER >
| < NAME >

| (< SIMPLE_ARITH_EXP >)

SOURCE CODE

IN
DDL
SYNTAX SYNTACTIC 4
ANALYSIS
OF DDL PROGRAM LEX
(EBNF/WSC) GENERATOR (in PL/1)
(SAPG) SYNTACTIC
ANALYSIS
PROGRAM (SAP)
(in PL/1)
COMPILER
CODE KERNEL
GENERATION
PROGRAM CODE
GENERATOR GENERATION
FOR DDL PROGRAM
(CGP)
(in PL/1)
DDL
COMPILER
Y
DDL OBJECT
¥I7URE 4-2 CODE (IN PL/1)

A CTUPILER-COM2ILEP FOR TRIL

9g

-57-

< MULT OP > ::= *l/

<ADD_OP > ::= +|-

< INTEGER >::= / INTREC / < NAME > ::= /NAMEREC/

Note: < INTEGER > represents an integer constant; < NAME >

represents a variable name conforming to the ALGOL 60 naming
conventions. Both INTREC and NAMEREC are recognizer routines

which recognize valid integers and ALGOL variable names, respectively.
They would have to be written, compiled, and incorporated into the
SAP module in order for the SAP to run properly.

The output of SAPG, i.e., the SAP is presented in Figure 4-8
at the end of Section 4.3,

The SAPG is a three-pass compiler (Figure 4-3). These three
passes, along with a description of the generated code and necessary
supporting routines, are described in the following sections.

4.2.1 Lexical Analysis for EBNF/WSC

Lexical analysis with some exceptions, has been regarded as

a minor part of the implementation of computer language translator
(see[WAL 68]), and lexical analysis has been incorporated as an
incidental part of Syntax Analysis Programs. Floyd [FLO 69] points
out some good reasons for separating these functions, both logically
and programmatically, they are:

1) A large portion of compiler time is consumed in lexical

analysis, making it essential that this function be as
efficient (fast) as possible. See Presser [PRE 69] and

Conway [CON 63].

~-58-

(:;TART :)

PASS]

PASS2

Y

C FRRORS ? >___.<Y STOP

N

PASS3

G

THE SAPG

FIGURE 4-3

-59-

2) Separation allows the development of systems for automatic

syntactic and lexical analysis.

The last point was very important in this work since the
existence uf such systems allowed us to experiment with various
lexical and syntactic schemes, without the burden of the immense
programming times which would otherwise be required.

It is the job of the lexical analyzer to group together certain
terminal characters into single syntactic entities called tokens.

A token is a string of terminal symbols with which we associate a
lexical structure consisting of a pair (token type, content). For
a given language the number of token types will be presumed finite.
Thus the lexical analyzer is a translator whose input is the string
of symbols representing the source language (e.g. for the Processor
SAPG the source language is EBNF/WSC and for the DDL compiler the
source language is DDL), and whose oﬁtput is a stream of tokens.
This output forms the input to the Syntax Analysis.

Lexical analysis is important in compilations for several
reasons. Perhaps most significant, replacing identifiers and con-
stants in a program by single tokens makes the representation of a
program much more convenient for later processing. Lexical analysis
further reduces the length of the representation of the program
by removing irrelevant blanks and comments from the representation of
the source program. During subsequent stages of compilation, the
compiler may make several passes over the internal representation of
the program. Consequently, reducing the length of this representation

by lexical analysis can reduce the overall compilation time.

-60-

The Lexical analyzer implemented here is based on the finite
state machine concept [CON 63]. Each state of a '"'machine'" correspond
to a unique condition in the lexical processing of a character string.
At each state a character is read, and the machine changes to a
new state. At each transition, appropriate actions are taken based
on the particular character read, a process controlled via a
transition Matrix.

In the construction of such processor our goals were to:

a) Completely eliminate backup or re-reading,

b) Perform analysis of the language to detect lexical errors,

and

c) Make it convenient and easy to use.

The lexical analyzer used in SAPG is called LEXEBNF and the
lexical analyzer used by the DDL compiler is called LEX.

The implementation of LEXEBNF is given below, the implementation
of LEX is given in Section 5.2 .

LEXEBNF is the lexical analyzer for EBNF with subroutine calls.
(see Figure 4-4) This routine is called from pass-1 in SAPG and
it returns the next token in the input stream as well as an indication
of the beginning of a new production and the end of input. For
LEXBNF a token has been defined as

a) metalinguistic symbol,

b) a non-terminal symbol - a string of characters beginning

with " < " and ending with " > ",

c) a separator - a character such as ",", "(", ™", ";", and

d) a terminal symbol - any string of characters which does

-61-

‘ LEX EBNF >

S < S SAVE

“'—C IS I > 80?

‘:)EL*—

4

C(BEGSTR)
)

i =1 to 80

LINEND <
LINEND +

y

PRINT, LI

AND, Ci i

NEND
= 1 to 80

y

NEXT_STATE < 1

CURR_STATE <
NEXT_STATE
LEFT < c(D)

/

NEXT_STATE <
MAP (LEFT)

LABEL (STATE_TABLE

(NEXT_STATE,CUPR_STATE))

y

FUNCTION 1 -> 9

TRANSFER TO APPROPRIATE

A

LENGTH < LENGTH(S)

A

(RETURN >

I «1
READ C1 LINEXD «
te1 to 80 LINEND + 1

PRINT
¢

. LINEND AND
il to 80

T «-1
BEGSTR <1

LEXICAL ANALYSIS FOR EBNF/WSC

(LEXBNF)

FIGURE 4-4

-62-

not include a metalinguistic symbol, a non-terminal

symbol, a separator, or embedded blanks. LEXEBNF ignores

all blanks.

LEXEBNF contains two tables which it uses in lexical analysis.
The first of these is MAP. This array partitions the character
set into classes, including the class of invalid characters. The
separators mentioned in the previous paragraph are indicated in
this table. As the members of this class change due to differing
languages, this table must be updated to reflect the differences.
The table is indexed by the internal character code representation,
in this case Extended Binary Coded Decimal Interchange Code
(EBCDIC). The position in the table corresponding to a character
contains the number of the partition class of which it is a member.
If a character is invalid the message printed will be "INVALID
CHARACTER OR COMBINATION OF CHARACTERS IN COLUMNS i, j OF LINE
NUMBER k. PRODUCTION DISCARDED." Column "j" contains the offending
character and "k" is the line number which appears immediately to
the left of the input record in which the error occurred in the
source listing. (Note: LEXEBNF assumes fixed length records of
80 bytes for its source program input stream.). The entire pro-
duction in which such an error occurs is eliminated by the routine
DISCARD.
The second table used by LEXEBNF is STATE TABLE. This array

is indexed by the partition class numbers of the current input

character and the immediately preceding one. This doubly-indexed

-63-

array determines the function performed by LEXEBNF, such as
concatenating the current input character to the string obtained
so far by previous iterations or returning the current input
characters. In otherwords, in EBNF (as well as in DDL) two
adjacent characters suffice to determine the appropriate action
to be taken in order to produce the token. If the lexical
functions are changed, this table may also have to be changed.
If an illegal combination of partition class numbers occurs,
the message which occurs for an illegal character is printed.
In this case "1i" and "j" refer to the card columms in which the
two characters forming the offending combination may be found.
LEXEBNF inputs source records as necessary to fulfill the
requests of SAPG for a new token. The line number count is
incremented after each source record is read. Every error
encountered by LEXEBNF causes an error count to be incremented.

This error count is used by SAPG.

10

11

12

-64-

The Transitions Matrix (STATE-TABLE) For LEXBNF'S:

o 1 2 3 4 5 6 7 8 9 10 11 12
1 2 4 1 1 4 4 4 4 4 4 4 8
1 3 1 4 5 1 1 9 1 5 5 1 8
1 8 8 8 7 8 8 8 8 8 7 8 8
4 2 4 8 4 4 4 4 4 4 4 4 8
4 2 4 8 8 4 4 4 B 4 8 8 8
4 2 4 8 8 8 7 4 8 4 8 4 8
8 8 8 8 8 7 8 8 8 8 8 8 8
6 2 8 8 8 8 8 6 8 8 8 8 8
4 2 4 8 7 4 4 4 1 8 8 8 8
4 2 4 8 8 4 4 4 4 4 4 4 8
4 2 4 8 8 4 4 4 8B 4 8 8 8
1 2 4 8 8 4 4 4 8 4 8 8 8
8 8 8 8 8 8 8 8 8 8 8 8 8
The character mapping table is as follows:
CLASS CHARACTER

0, ABC...z O0l....9_$

1 b (space)

2 <

3 >

-65-

CLASS CHARACTER
5 "
o
6 multipunch 12
7 /
8 :
9 +#C) ;x| .
10 -
11 J
12 "any other character non-

mentioned above"
The lexical functions are determined by the entries
in the transition matrix given above. These entries are used

to index an array of labels. The contents of this array is as

follows:

LABEL (1) = F1 LABEL (6) = F6
LABEL (2) = F2 LABEL (7) = F7
LABEL (3) = F3 LABEL (8) = F8
LABEL (4) = F4 LABEL (9) = F9
LABEL (5) = F5

The lexical functions performed are:
Fl: 1I=I+1;

F2: S=S || SUBSTR (D, BEGSTR,I-BEGSTR); I=I+l
S-SAVE="'; GO TO RETURN,

F3: DO I=I+1 TO 80;
IF C(I) ~= '' THEN DO; BEGSTR=I; GO TO SCAN; END; END;
I=0; GO TO F3;

Www

-66-

F4: 8=§ [I SUBSTR(D,BEGSTR, I-BEGSTR) ;
I=1+1;
S-SAVE=LEFT;
G® TO RETURN;

F5: S=LEFT; LENGTH,NEXT_STATE=1; I=I+l; S-SAVE=''; RETURN;

F6: J=INDEX (SUBSTR (D,I,8),'/');
IF J=0 THEN DO; CALL DISCARD; ERRORS=ERRORS+1;
FIN5=FIN5-1; FIN1=FINl=1;
IF - INDC THEN GO TO SCAN; ELSE RETURN; END;
ELSE DO;
S=S || SUBSTR (D,I,J); NEXT STATE=1; S-SAVE= '';
I=I+J; GO TO RETURN; END;

F7: 1I=I+1; S=S || SUBSTR(D,BEGSTR,I-BEGSTR);
S-SAVE= ''; NEXT_STATE=1; GO TO RETURN;

SE: IF BECGSTR -= 1 THEN DO; FIN1=FINl-1; FIN5=FINS5-1; END;
" ELSE IF SUBSTR (D,1,1) = ' < ' THEN DO; FIN1=FINl-1;
F8: FINS5=FIN5-1; END;
CALL DISCARD; ERRORS=ERRORS+1;
IF - INDC THEN GO TO SCAN; ELSE RETURN;
F9: S=LEFT; BEGSTR,I=I+1; GO TO SCAN;
RETURN is a label which begins the following code:
RETURN: BEGIN;
DCL LENGTH BUILTIN;
J=LENGTH(S); END;
LENGTH=J; RETURN
(Note: the code which generates error messages and listings
has been omitted from the above code. SCAN is the label which
begins the loop which performs the scanning of the individual

characters in the input.)

W

-67~

THE SYNTACTIC ANALYSTS PPOCRAM GENEPATAR

START
FINI, FIN2, FIN3, FING,
FISS «0 NEXT_STATE «1 rassi

CLRR_STATE <1
S_SAVE <NULL

FRRCRS <=0 CALL
1 81
LINESD <0 LEXFSNF

L,

N TS Toe CRooicTEs IS 2nd CPARACTEP X
————1v's £neaL 10 " 42 ENUAL 0 T=" or
4
Y /1S Ist CHATACIER IN), + Y
‘ S EQUAL TO "/"?) ;
CALL
9 ENT_TEP
‘ 1S LENGTH > 1 ? : SYM <
stRsTR (5,2,
1’ LEemi - 1)

R CEITED B

SYM < SUBSTR(S,2,) CALL
LENCTH-) EXCrD ""'(;ssx) IS MEGSTR = 17

4 e

- CALL
—-stm - 'Sveait] FNT_WTAR

CALL

PASS1 OF SAPG

FIGURE 4-3

-68-

\ Y
(;s FINS > 1 ? J
N Y
! N
“‘“fE;VCOUNT(FINS) =37

FIN5S < FINS + 1 v

\ 4
IS TOK TYPE

(FIN5,3) EQUAL TO 47

Y

Y

FLAG(FIN5) <-1
FLAG1(FINS) <1

Y ~(ERROR
RETURN

A

IS FINS > MAX.NO.
OF PPODUCTIONS ?

o’

CALL
ENT_SYM

‘ CALL
TYPE < 1 ENCOD ‘ PASS 2

FIGURE 4-5 (CONT)
PASS1 OF SAPG

-69-

Pass 1 of the SAPG (see Figure 4-5) performs the lexical
analysis of the EBNF/WSC source statements (productions) by
calling the routine LEXEBNF and encodes such productions in a
table called the "Encoded Table." (This table is one of the
five internal tables which the SAPG maintains).

The Encoded Table is organized by production. Tokens
(lexical units) are placed in the encoded table by calling the
routine ENCOD (see Figure 4-5a) as they are encountered. The

tokens are divided into the following classes:

CLASS TYPE

a) Terminal symbols 2

b) Subroutine calls 3

¢) non-terminal symbols 1 and 4

The entry for each lexical unit in the Encoded Table consist

of two parts:
[TYPE | POINTILR]

There is a table corresponding to each type, and the pointer
is used to index the appropriate table. This is done to conserve
space in the tables, since the same entry in a table may be
referred to by different entries in the Encoded Table. Non-
terminals appearing on the left side of a production are typed
as 1 and placed in the Symbol Table by the routine ENT_SYM (see
Figure 4-5c). Non-terminals appearing on the right side of the
production symbol are typed as 4 and pla;ed in the Work Table by

the routine ENT WTAB (see Figure 4-5b). Entries in the Work Table

are references to other productions in the language specification

-70-

‘ ENCOD)

COUNT(FINS) <
CullT(FINS) +1

3

J <J+1

ENT_WTAB

TCD M.NY LLEMENTS Y [ERROR . g?;"é}\m
IN PRODUCT? MESSAGE
TOK_TYPE (FINS,COUNT (FINS) -
< TYPE FINS <« FIN5-1
TOK_OFFSET (FIN5,COUNT FIN] < FIN1-1
(FINS) ERRORS < ERRORS + 1
< PTR
1
RETURN)t
FIGURE 4-5A
ENCOD
4 ERROR
J o<1 RETURN
Y ~
Y FIN2 <«)
\{ ? 2
‘_____.C IS J > FIN2 ?).__.- FIN? 4 1 —s{ IS SWTAB FULL ?
4 r
FIN2)
.’-’-Cls SY = SWTAB(J)?) s;‘_”g?,f, IN2)
1
Y
PIR < J VLINK (FIN2) <0
PTR <-FIN2
3
(RETURN Je
FIGURE &4-5B

‘——-.——--CIS J > FIN1 ?
N

(Ext_syu)

A

-71-

FIN1 <« FIN1 + 1

Y STAB(FIN1) < SYM
_}——4« SLINK(FTN1) < FINS RETURN
PTR < FIN2

IS SYM = STAB(J) ?

D

Y

J <« J+l ERROR MESSAGE CALL

—'——.(IS J > FIN&

DISCARD

!

FINS < FIN5-1
ERRORS < ERRORS + 2

FIGUPE 4-5C
EST_SYM

(Ext_suscarL

)

A

J <1

Y
)'—" FIN4 <~ FING + 1

FePoR
PETURN

?
} N
N IS ST = SUR(J) ? I8 FINA ~ SUR LIMIT? y
J <J+l h b SUB_LI: h
p N +N
SUR(FING) <= SYM
PTR <« J PTR < FIN4

FIGURE 4-5D

ENT SUBCALL

-72-

which must be resolved before the code generation phase

(Pass 3) of the SAPG can proceed. Subroutine calls and
terminal symbols are typed as indicated above and placed in
separate tables by the routines ENT_SUBCALL (see Figure 4-5d)
and ENT_TER, (see Figure 4-5e) respectively. (Note: in the
current SAPG these tables are implemented as arrays of size 100.
Each production is limited to 75 elements.

Each of the entries appearing in the tables, except for
the Encoded Table, is unique. The tables are organized
sequentially, so that a simple sequential search will determine
if an entry already exists in the table. If it does not, it
is placed at the end of the appropriate table.

The entries in the Symbol Table are the syntactic units of
the language being specified. Entries in the Symbol Table are
always the first symbol in a production. LEXEBNF recognizes them
as such because the symbol defining a new production must always
begin in column 1 of the input record. If a symbol already
appears in the Symbol Table, an ambiguity is present in the
language, and the entire production is rejected by the routine
DISCARD (see Figure 4-5f). (Rejected productions are noted, but
not analyzed, during Pass 2 of the SAPG). The message '"MULTIPLY
DEFINED PRODUCTION < symbol >. PRODUCTION DISCARDED.'" will appear

on the listing when this occurs, where "symbol" is the name of

< ENT_TER)

-73-

(Is s - ll.'l ?

Y
}__. § < Wrm

N

g <~ " " ” S ”,n.n

-

< PISCARD)

Y
PTR < J

+
J <1 __.Qs J > FIN3 ? FIN3 < FIN3 + 1
t N 3
N IS FIN3 > Y
J o« an -—-(IS STM = TER(J) ?) TER LIMIT ?

N

A

TER(FIN3) < SYM

< PETURN ’

FIGUPE 4-SE
ENT_TER

ERROR MESSAGE

READ C

i=1 to 80

< PETURN)

PTR < FINJ3

!

LINEND <~ LINEND + 1

A

PRINT LINEND,
and Cl i=1 to €0

NEXT_STATE <1
I <1
BEGSTR < 1
S_SAVE « NULL

..l(ls cQQ) = '< 7

D

FIGURE 4-SF
DISCARD

FPROR
RETURN

-74-
the offending production.

Each production is also checked to see if it is '"singular".
A singular production is one of the form < productionl > ::=
< production2 >. This type of production makes < productionl >
and < production2 > equivalent. A reference to < production2 >
may be substituted for a reference to < productionl > in any
other production which makes a reference to the latter. Doing
so eliminates unnecessary intermediate levels of the language
specification and wasted time during the execution of the SAP,
since each EBNF production is translated into a PL/1 procedure
(see Section 4.2,3). Singular productions are flagged for
PASS 2 of the SAPG so that all possible intermediate levels may
be removed. Note that productions of the form < production3 >
: := TERMINAL-SYMBOL and < production4 > ::= /SUBCALL/ are not
treated as singular productions, even though no code will be
generated for the latter (see Section 5.3.2.2).

4.2.2 Pass 2 of the SAPG (Syntax Analysis of EBNF)

Pass 2 (see Figure 4-6) of the SAPG scans the Encoded Table
output by Pass 1 to resolve all symbolic references that were
placed in the Work Table. Each entry in the Work Table has a
link to the Symbol Table. This link is initially set to zero.
Scanning begins with the first production in the Encoded Table.
Each reference to an entry in the Work Table (indicated by a type
4 entry) causes Pass 2 to call on the routine FIND (see Figure
4-6a). If the link to the Symbol Table is zero, the reference has

not yet been resolved. The Symbol Table is searched for the symbol

Ve e

< PASS 2)

-75-

IS TOK_TYPE (FINS,3)

Y
(IS COUNT (FINS) = 3?)—.(b

h
FLAG(FIN5) < 1
FLAG1(FINS) <-1

J <1

N

v

‘Jﬂ. L <1

——!—(IS L > COUNT(J)?

Y [TLIST SUBPOUTINE
——-—C IS J > FINS? }-—- CALLS

CIS ERRORS = 0?

PENCID.

F N

PRINT,
EPFOR MESSAGE

‘ N
) & TOK_TYPE , L) N
EQUAL T0 47 L < L+l —C)
3 Y
K < TOK_OFFSET (J,L)
SC <~ 0
Y
CALL - 07 \ N
FIND IS P 0?

PASS2 CF THE SAPG
FIGURE 4-6

Q < SLINK(P)

¢ | sc =scen
st FLAG(Q) = 12)——— STACK(SC) < P

N

K «1

Y
A—-—Qs SC =017 }--—@
CALL
N

-76-

R ok_oFFsET (0.3)

FIND

bl'QSK’SC? _)4-

N

SLINK(STACK(K)) <«Q

FLAG(STACK(K)) <-0

TCK_TYPE (STACK(K), 3]
<« 1

K «K+1

Q < SLINK(P)

N

Y
{IS I > sc? ‘}—_

Y

CIS STACK.(I) = P?)
J

N

Y

I <1+ rQSP>SC?

)

v N
‘—Qs FLAG(J) = 0 ?)——-

N
(rs COUNT(Q) = 3? }—-
N

st TOK_TYPE(Q, 3) -g__,

Y

PRINT WARNING

TOK_QFFSET(J,L) <«-Q

4

P < P+1
FrROPS <
ERRORS + 1

FLAC(J) <« 0
SLINX(J) <« 0O

PRINT,
FPRAR “MESSAGF

TOK_TYPE(J,L) <1

FIGURE: -6 (CONT)

PASS2 OF THE SAPG

-77-

in the Work Table. If a match is found, FIND returns a pointer

to the appropriate entry in the Symbol Table. If a match is not
found, the symbol is undefined. The message "< symbol > IN
PRODUCTION < production > IS UNDEFINED." is printed, where '"symbol"
is the Work Table entry which is unmatched in the Symbol Table

and "production" is the production currently being scanned. 1In

this latter case a pointer of zero is returned to Pass 2.

If the production referenced is defined and is singular,
(indicated by a flag set during Pass 1), a pointer to the
referenced production is placed on a simulated stack and an attempt
is made to resolve the reference made by the singular production
using the resolution process just described. The process terminates
either by encountering an undefined symbol or by a reference to
a non-singular production. (During the stacking process, a check
is made to see if the production just referenced is already on
the stack. If it is a condition of circular definition exists in
the language. The name of every production on the stack from the
point at which the match is found to the top of the stack is
printed in the following error message: ''PRODUCTION < name > IS
A MEMBER OF A RING OF CIRCULAR, SINGULAR PRODUCTIONS.'". A Symbol
Table pointer of zero is returned to Pass 2.)

Every entry in the Symbol Table has a link to the Encoded
Table pointing to the production which defines it. Upon termination
of the resolution process, one of the singularity flags of each

singular production on the stack (there are two such flags

- -78-

assd;iatéd with each production) is reset, the link to the
Encoded Table is set to the value returned by FIND (see
Figure 4-6a), and the type of the symbol on the right side of
the production is set to 1.

The singularity flag of the original production which
started the resolution process is checked. If the flag is
set, the production is treated in the same manner as the
singular productions which were on the stack. If the production
is not singular, the pointer of the symbol currently being scan-
ned is set to the value returned by FIND and the type is set to 1.
Scanning proceeds with the next type 4 symbol in the current
production, if there is such a symbol. In this case, if the
production at the lowest level of reference is of the form
< production > ::= /subcall/, where "subcall" is a subroutine
call, then the following warning is printed on the data set
referenced by the ddname WARNING: '"AN ENTRY ON THE ERROR STACK
MAY BE REQUIRED FOR < symbol > IN PRODUCTION < current
production >.", where 'symbol" is the symbolic reference just
resolved and "current production" is the production in the Encoded
Table currently being scanned. (A discussion of the Error Stack
is given in Section 5.3.1). Note that resetting the singularity
flag of the singular productions prevents a future erroneous
attempt at resolution should they be referenced again, and setting

the type to 1 prevents a future erroneous resolution attempt

-79-

(:_FIND :)
<:IS WLINK(K) = 0 ? <:>_§_.1P < WLINK(K)

4 Y Y

P <1 (RETURN)

(:IS P > FINL ? ‘:>b31-<:i§ASWTAB(K) = STAB(P) ?‘)—-—’f---1
VY yN
(:IS SC =027 A:)——z— P <P+ 1 Nl
pl‘ y
I < STACK(SC) WLINK(K) <P
PRINT
ERROR MESSAGE
4
9
P «0 (RETURN
ERRORS < ERRORS + 1 \o

FIGURE 4-6A
FIND

-80-
should they be encountered later during the sequential scan
of the Encoded Table.

If no errors are encountered by the first two passes,
processing continues with code generation phase, Pass 3, of
the SAPG. Otherwise, processing terminates with an error
message indicating the number of errors detected and returning
a non-zero code to the operating system.

4.2.3 Pass 3 of the SAPG (Code Generation)

Pass 3 of the SAPG is the code generation phase; it outputs
the PL/I~coded SAP. Pass 3 operates under the assumption of
an error-free environment. Thus, it is not called unless the
first two passes have detected no errors. The SAP depends
heavily upon the PROCEDURE- and DO-blocks and IF-THEN-ELSE-clause
features of PL/I. Each production is encoded as a PROCEDURE
which returns a bit string of length 1. The returned value is
0 if recognition fails on the first syntactic unit of the
production. Otherwise, the returned value is 1, with an error
message being printed if an error is detected after the first
syntactic unit is recognized (see Section 5.3.1).

The scan for syntactic units is accomplished by nested IF-
THEN-ELSE clauses using DO-groups. (Optionality groups also use
the GO TO statement to cause the SAP to scan for the first syntactic
item of the group again). The exclusive nature of the EBNF
descriptions is implemented by the exclusive nature of the THEN-

ELSE clauses of the PL/I IF statement.

-81-

< PaSS 3)

CALL
TEST(I)

PRINT: PFCUPSI''E
PRCDUCTICNS XAMES

SFET TO ZERC:

BLXCNT, OFTSY, OPTOCC
ELSECNT, IXDC

SET TO ONE:

I, COUNT(FINS + 1)

\ ¥ STCP .
S > FINS + ? >
_____(11 INS + 1) { ’
N
(1s1=rmvs sy) Y - J =1 J o«
J
N

an

X Y
st COUNT(I) = 3?)_.. __(Is 1> COINT(D) ?)__J
T
@—-—u I <« 14+ <

N !

(IS I = FINS + 17).Y_.Csm’ 3)

-82-

‘ TEST(I) ’

QS REC(I) = 1?

CALL
PUSH(T)

Y RETURN

J <~ H1

Y

f{ ;fmz‘l*‘ﬁ: 2 NeX }——{ 15 3> couNT(D) _)l‘_

K < TOK_CFFSET (I,J)

CALL
¥MATCH (K)

-—-——-C[SJ<1?

Y {~ IS XYATCH = 1?
_
N
CALL
TEST (K)
FIGURE 4-78-1 - TEST(I)

Qcmtcn(x))

J <« CNI1

1

N

J <« K1

N
~——Q$ ARRAY(J) = K?)

Y

Jl <« J

-OCIS J1l > CXT1?

REC (APRAY(J1) <« 1

Jl «Jl +1

)X——G‘ETUP_\’ ('0'B)

D)

).Y_...Cnﬁnms ("'1'B)

D,

FIGUPE 4-7A-1

XMATCH(K)

-83-

The following subsections describe the algorithm used
for converting the Encoded Table into PL/I code.
4,2.3.1 Step 1 (see Figure 4-7a)

This step is the initialization step for Pass 3. Storage
which contains the following information is allocated and/or
initialized:

(1) A count of the number of syntactic units to be
recognized within a given alternative or optionality
group (BLKCNT);

(2) An indicator for recording the occurrence of the
optionality brackets "[" and "]" (OPTSW);

(3) An indicator for recording the immediate occurrence
of the optionality bracket "[" (OPTOCC);

(4) A count of the number of alternatives in the current
production (ELSECNT);

(5) A table of indicators for the type of each syntactic
unit in the alternative or optionality group, i.e.,
terminal symbol or recognizer routine (see Section
5.3.2.2) or neither of these two.

4.2,3.2 Step 2 (see Figure 4-7B)

Step 2 gets the next Encoded Table entry and determines if
a new production is being started or if the current one is still
being analyzed. In the former case the algorithm proceeds with
Step 3. Otherwise, control is transferred to Step 5 for a

determination of the type of the Encoded Table unit currently being

-84~

‘ STEP2 >

K < TOK_OFFSET (I1,J)

<:;NEH PRODUCTLON? ;:>x__<:?rzr3 4:)

N
IS CUPRENT ONE STILL Y
BEING ANALIZED?
N
Y
STEPS IS TOKEN A NON TERMIZ;IAL STEP8
N

N (IS SUBROUTINE CALLD__Y_CIS OPTSW = 27)__Y‘@EPIJ)
GENERATE:

CALL "SUB(K)"
(IS ")" 2 Y STEP10

N

< 1s "!" ? Y /stER12

N

(STEP7 >

STEP9

OPTOCC <0

STEP2 & STEPS & STEPY9 OF PASS3

FIGURE 4-7B

t
|
|
1
I
|

‘ STEP3 ’

v/ 1S OPTSW STACK
EMPTY?

N CALL
YOP 2
..txs BLKCNT > 0 ?)

-85-

CALL
PoP_1
GENERATE:
"END;ELSE;"
__.(xs INDC = 1 >)__N_. GOAL <-I
GENERATE: CENEPATE: PROCEDURE
rEMRN T TPESA PROCEDURE. AND DECLARE
STMTS FOR PRODUCTION
. PROCEDURES AND
AL RECOGNIZER ROUTINES.
CemEND AND FOR LEXBUFF,
ERRORSW AND FINSW
N
IS BLKCNT > 0 ?
GENERATE: GENERATE:
"END; ELSEDC; "CALL DDLOPT;"
CALL SFAIL
RETURN('0'B); END;"

BLKCNT < O

r

GENERATE : "END;"

Y

‘—.Cls L > ELSECNT » }—-

INDC <« 1

GENEPATE:
“IF" STAB(GOAL)
"THEN RETURN;"

STFP3 OF PASS3
FIGUPE 4-7C

STEP4

ELSECNT <~ 0

'_‘GS J=FINS + 17

:>_§J

4

L ~L+1

Y

-86-

scanned. Productions which are singular or involve only a single
subroutine call are skipped, i.e., no code is generated for

them.

4.2.3.3 Step 3 (see Figure 4-7c¢)

Step 3 first checks to see if the last unit of the previous
production was "]". If so, the code described in Step 12 (see
Section 4.2.3.12) is generated. Otherwise, a check is made to
see if any code has been generated, i.e., if the current pro-
duction is the first non-singular one. Before code for the first
production can be output, preliminary PL/I declarations must
be made. Each production procedure and recognizer routine (see
Section 4.2.3.12) is declared to return a bit string value of
length 1. This is to prevent the PL/I compiler from assuming
default attributes for the procedure name when the procedure
is invoked. The global variables LEXBUFF, ERRORSW, and FINSW
are then declared. (LEXBUFF contains the lexical unit currently
being scanned. Its maximum length is 31 characters. ERRORSW
is set when an error is detected and must be reset by subroutine
call before the next statement 1s analyzed. FINSW is set upon
the detection of the end-of-program statement). Finally, code
to call the SAP initialization routine, DDLOPT, and invoke the
goal procedure are generated. (The goal procedure is the
procedure generated for the first non-singular production). The

algorithm proceeds with Step 4.

-87-

If the code described above has already been generated,
i.e., the current production is not the goal production, code
to end successful execution of the procedure ('CALL $SUCCES;
RETURN('2'B);") is generated, and every generated code block
which was opened is closed. (The routine $SUCCES is described
in Section 5.3.1). Each opened DO-block within the last
alternative, except the first, is closed with the following code:
"END; ELSE DO; CALL end-routine; RETURN('1'B); END;", where
"end-routine" is $FAIL (see Section 5.3.1) if the DO-block was
opened for a terminal symbol or recognizer routine and $SUCCES
otherwise. The PROCEDURE-block is closed with "END; ELSE DO;
CALL S$FAIL; RETURN('1'B); END; count-ends END proc-name;",
where "proc-name'" is the name of the procedure and "count-ends"
is the string "END;" repeated a number of times equal to the
number of alternatives in the production minus 1. If the current
production is the last one, compilation terminates with outputting
the code to terminate the external procedure of the SAP and
returning a return code of O to the operating system.
" 4.2.3.4 Step 4 (see Figure 4-74d)

This step opens the PROCEDURE-block for each production.
The code generated is as follows: 'name: PROCEDURE RETURNS
(BIT(1));", where "name" is the name of the production. If the
production is recursive, as determined during the prologue to

Pass 3 by the routine TEST (see Figure 4-7a-1), the procedure

-88-

(Csmpa)
__ll_(:Ef REC(I) = 1? v:)___ﬂ__

i

GENERATE: GENERATE:
STAB(K)" : PROCEDURE STAB(K)'" :PROCEDURE
RECURSIVE RETURNS BIT(1);"

RETURNS BIT(1);"

GENERATE:
"CALL $MARK;" %—-’<::)

STEP4 OF PASS3
FIGURE 4-7D

=
Y
(:}s OPTSW = 2? A4:>~——-<:§TEP 13 4:)

CALL GENERATE:
PUSH-2 ETIQ":"
CALL
GEN_ETIO
4
CALL OPTSW <~ 1
PUSH_1 OPTOCC < 1

BLKCNT < O ‘ —’®

STEP6 OF PASS3
FIGURE 4-7E

~89-

is also given the RECURSIVE attribute. Code to call the
production procedure initialization routine, $MARK (see
éection 5.3.1.D, is also generated.

4.2.3.5 Step 5 (see Figure 4-7b)

This step directs control to steps 6 through 12 upon the
type of the Encoded Table unit currently being scanned, and,
in the case of terminal symbols (type 2), upon the symbol
itself. (This is because metalinguistic symbols are typed as
terminal symbols in the Encoded Table). Following is the

decision table for transfer of control.

Encoded Table Symbol Algorithm Step
"[II 6
Non-metalinguistic terminal symbol 7
Non-terminal symbol 8
Subroutine call 9
"]" 10
ll*ll 11
" " 12

Table 1
Pass 3 Branch Table

4,2.3.6 Step 6 (see Figure 4-7e)

Algorithm control is transferred to this step when the
opening optionality bracket "[" is encountered. If the pre-
vious unit was the closing optionality bracket "]", them control
is transferred to Step 13. Otherwise, items 1, 2, 3, and 5
described in Section 4.2.3.1, along with a system label

variable, ETIQ, are pushed onto stacks. A unique label for the

-90-
optionality group being opened is generated and placed in the
system label variable. The code '"label:" is generated, where
"label" 1s the current value of ETIQ, i.e., the value just
generated. OPTSW and OPTOCC (see Section 4.2.3.1) are
initialized to indicate detection of the opening optionality
bracket, and BLKCNT (see Section 4.2.3.1) is initialized to zero.
The algorithm proceeds with Step 2.

4.2.3.7 Step 7 (see Figure 4-7f)

Algorithm control is transferred to this step when a
terminal symbol is encountered. Since the previous unit may have
been a closing optionality bracket, a check of OPTSW is made to
determine if this is the case. If so, algorithm control is
transferred to Step 13. Otherwise, recognition code of the
following form is generated: 'CALL LEX; IF LEXBUFF = 'terminal'
THEN DO; CALL LEXENAB;", where "terminal" is the character string
to be recognized as was indicated in the EBNF specification.

The switch OPTOCC is checked. If it is set, the opening
optionality bracket immediately precedes this symbol. This means
that this terminal symbol determines whether or not checking

for the rest of the optionality group is to be performed. There
should be no entry on the error stack (see Section 4.2.4.2)

for this terminal symbol and thus no code to call $POPF (see
Section 4.2.4.2) 1s generated. In all other cases this call is
generated in the following form: 'CALL $POPF;". The indicator
for this block (see item (5) in Section 4.2.3.1) is set to

indicate a terminal symbol. OPTOCC is reset, and control returns

-91-

(stEp7)
Y
(15 OPTSW = 27 }—{STEP 13)

GENERATE:

"CALL LEX; IF LEXBUFF
=" TER(K) "THEN DO;"

<fIS OPTOCC

17 Y | GENERATE:
‘ "CALL LEXENAB;"

y

GENERATE: 4
"CALL LEXENAB;"

"CALL $POPF'" OPTOCC <"0
’

r

BLKCNT < BLKCN + 1
y »{ TYPE_END (BLKCNT)

<1

STEP7 OF PASS3
FIGURE 4-7F

(iSTEPlO :)

st OPTSW = 27)—Y—-—(s-rzpn)
N

(1s opTsW = 12 }_.CTOP)

OPTSW <2 __..®

STEP10 OF PASS3
FIGURF 4-7G

LTYPE_ EXD (BLKCNT) <—0—I

|

GENERATE:
"IF" STAB(K) "THEN
D‘\.

"

t

-92-

STEP B

st OFTSW = 27
>

[BLKCNT <« BLKCNT + 1 l

HY STEP 13)

N TS (OL.J(};I; =37 Wr—‘r—l@
- 1

GFUCPATE:
“IF" SUB(TOK_OFFSFT
YTHEN DO ¥;3)

OPTOCC <« O

N

0O

(1s cp1OCC = 17
N

y

IS J+1 < COUNT(I)? Yo
S

1\'

v/ 1S TYPE_EXD (azxch
- 12

N

{ 1s cOINT(X) = 3?

1\'

GENFFATE:

"CALL SPPPF;"

- = N
(1S NEXT TOKEN A TERMINAL?)—Y IS 1T EQUAL TO "1" 2 }—.{ PPINCC <0

l

|

I,

] GCENERATF :

GENEPATE:

Y - N
"IF FINSW THEN poY[* ‘(IS J = COAL ?

“CALL SSUCCES;"
"RETURN('1'B):"
YEND; ELSE;"

OPTOCC < O

)_N;"IF EPPORSY THEN PO;"
"CALL SSVCCFS:"

"PETURN ('1°'B):"
MEND; FLSF:"

STEP 8 OF PASS)
FICURF &-7H

-93-

to Step 2.
4.2.3.8 Step 8 (see Figure 4-7h)

This step is entered when a non-terminal symbol is
encountered. There are two types of non-terminal symbols:
namely, those which reference a recognizer production (i.e.,

a production which involves only a subroutine call) and

those which do not. The former are treated as terminal symbols
(see Section 4.2.3.7), except for the first part of the
recognition code. The code generated is: '"IF recognizer

THEN DO;", where "recognizer'" is the name of the recognizer
routine. (Note that the recognizer routine must return a

bit string value of length 1 for proper execution of the SAP).

In the latter case the code generated is: "IF prod-name
THEN DO;", where 'prod-name'" is the production name which is
being referenced. This name is the name of a procedure which
is internal to the SAP. The code for it already has been or
will be generated by the SAPG. If the current Encoded Table
entry does not immediately precede either the end of the pro-
duction or an entry for the metalinguistic symbol "|" then
the following code is also generated: "IF switch THEN DO; CALL
$SUCCES; RETURN('1'B); END; ELSE;", where 'switch" is the
string "FINSW" if the current production is the goal production
and "ERRORSW" otherwise. The former is to terminate syntactic
analysis when the end-of-program statement is recognized, and
the latter is to terminate further syntactic analysis of the

current statement if an error has been detected in the statement.

-4
The indicator for the block is set to indicate a non-terminal
symbol. In either case, OPTOCC is reset and control is returned
to Step 2.
4.2.3.9 Step 9 (see Figure 4-7b)

Algorithm control is transferred to this step when a
subroutine call is recognized. The switch OPTOCC is reset,
in case the subroutine call immediately follows the opening
optionality bracket. The code to call the subroutine is
generated as follows: '"CALL sub-name;", where "sub-name" is
the name of the subroutine to be called. Note that these
subroutines will, in general, be external subroutines. For a
System/370 implementation the length of this name is restricted
to a maximum of 7 characters. Pass 1, in particular LEXEBNF,
will reject any production which contains a subroutine name of
length greater than 7. Control then returns to Step 2.
4,2.3.10 Step 10 (see Figure 4-7g)

This step is entered whenever a closing optionality bracket
is recognized. A check is first made to see if the preceding
characte; was also a closing optionality bracket. If so, control
is transferred to Step 13 to finish generating the necessary code
for the optionality group. (This is done by checking OPTSW).

If not, a check is then made to see if an opening optionality
bracket was detected previously in this production, again by
checking OPTSW. If so, OPTSW is updated to indicate that a

closing optionality bracket was recognized, and control returns

-95-~

(jSTEP 11 :)
C IS OPTSW = 27)_i,(sn-‘.w)

N
GENERATE:
"Go TO" ETIQ";"

4

4

(' 15 OPTSW STACK EMPTY? ‘:>_Z,<:jsrop t)

N

y

CALL

POP_2

CALL
ELSEEND

GENERATE :
(:;IS BLKCNT > 0 ? A:)_____, "END; ELSE;"

¢

Y

(:ES BLKCNT STACK ENTRY?) Y (STOP j)

N

L 4

CALL
POP_1

STEP11 OF PASS3
FIGURE 4-71

~96-

t; Step 2. Otherwise, an error has occurred due to an unmatched
closing bracket. An error message is printed and SAPG terminates.
4.2.3.11 Step 11 (see Figure 4-71)

Control is transferred to this step when an asterisk is
detected. Since the asterisk could stand for itself (i.e., by
a terminal symbol) or by the Kleene asterisk, OPTSW is checked.
If OPTSW indicates that the preceding symbol was the closing
optionality bracket, then the asterisk is interpreted as the
Kleene asterisk. Otherwise, it is treated as a terminal symbol,
and control is transferred to Step 7. These interpretations
impose the restriction that the asterisk cannot be interpreted
as a terminal symbol immediately following an optionality group.

If the asterisk is the Kleene asterisk, then "GO TO label;"
is generated, where "label is the current value of the system
label variables, ETIQ. When the SAP e#ecutes this instruction
it will cause syntactic scanning to begin again with the first
syntactic unit of the optionality group which immediately precedes
the asterisk. Each opened DO-block within the optionality group,
except the first, is closed as described in Section 4.2.3.3. The
first DO-block is closed with "END; ELSE;". The stacks which
were pushed in Step 6 are popped and control returns to Step 2.
4.2.3.12 Step 12 (see Figure 4-7j)

Step 12 is entered when the code for an altermative of the
production has been generated and there is still at least one

more altermative to be processed, indicated by the metalinguistic

-97-

symbol "|". Code to indicate successful recognition of the
previous alternative is generated in the form: "CALL $SUCCES;
REfURN('l'B);". As in other steps, if the preceding alter-
native ends with an optionality group, this group must be
closed as described in Section 4.2.3.11. Then code to close
the DO-blocks for the required syntactic units, if any, is
generated as described in Section 4.2.3.3. However, the first
block of the alternative is closed with "END; ELSE DO;". This
is because there are still other possibilities to be checked.
Note that this ELSE-clause will be executed only if the first
syntactic unit of each of the preceding alternative fails to

bg recognized. (It will not be executed if recognition fails
internally in a preceding alternative). The arrangement of the
alternatives within a production will affect the execution time
of the SAP, since the analysis takes place sequentially in the
order in which the alternatives are listed. Execution time
may be improved by listing the alternatives of a production in
decreasing order of their frequency of occurrence, i.e., with the
most frequently occurring one listed first.

BLKCNT is reinitialized to zero and ELSECNT is incremeated
by one. (ELSECNT is used to generate the appropriate number
of "END;"'s for the "ELSE DO;'"'s generated by this step).
Control then is transferred to Step 2.
4.2.3.13 Step 13 (see Figure 4-7k)

This step is required to close all optionality groups which

;<:}s OPTSW = 22

-98-

CSTEPIZ

D)

4

GENERATE
"CALL $SVICCES;"
"RETURN('1'B);"

‘:>__li__.<:;TEP13

~

CALL

GENERATE:

"END; ELSEDO;"

y

ELSEEND

y

__..<N IS BLKCNT = 0 ?

)

BLKCNT <« 1
ELSECNT <- ELSECNT + 1

STEP12 OF PASS3
FIGURE 4-7J

‘ STEP13

y

Y

CIS OPTSW STACK

ENTRY?

)

STEP13 OF PASS3
FIGURE 4-7K

N

4

CALL
POP 2
CALL
ELSEEND

A

C[S BLKCNT > 0 ?

D

N le

GENERATE:

"END:ELSE:"

[]

Y
‘ IS BLKCNT STACK EMPTY ? }——(STOP

y N

CALL
POP_1

)

e |

~-99-

(ELSEEND)

y

J <~ BLKCNT

4

Y \d

N (IS TYPE_END(J) = 17 j::)___z____

N
Y

GENERATE:
"END; ELSED

"CALL $SUCCES;"

"PETURN('1’
"END ; ”

0;"

B);

GENERATE:

"END; ELSE DO;"
“CALL $FAIL;"
"RETURN ('1'B);"
J <« J-1 “END;"

(:'PUSR(I)

“j) POP

‘V

CNT1 < CNT1 + 1

CNT1 < CNT1 - 1

ARRAY (CNT1)

<1

‘ RETURN ’

y
< RETURN)

FIGURE 4-7J-1
ELSEEND,PUSH(I), POP

-100-

are not followed by the Kleene asterisk, except one which is
last in a production. That is, there is nothing else following
it in the production. Step 13 is identical to Step 11, except
that the code of the form: "GO TO label;" is not generated,
and control is transferred to Step 5, instead of Step 2, at
the completion of the step.
4.3 SAPG Implementation Restrictions on EBNF

Due to the way in which the SAPG has been implemented,
there are two restrictions on the way in which ENBF may be
used to specify a language when a SAP is desired as output.
The first of these is due to the strictly sequential nature of
the syntactic analysis of the SAP. This means no production in
the EBNF specification can involve left recursion. A production
is left recursive 1f the first symbol of its definition is
a non-terminal symbol and either it or a valid substitution of
any of its possible alternatives produces a result which makes
an immediate recursive reference to it. For example, the
following sets of productions are left recursive.

(1) < productionl > ::=< productionl> < production2>

(2) < production3 > ::=< production4> < production5>

< productiond4 > ::=< production5> < productioné>
< production5 > ::=< production3> < productioné6>

Note that in the second example the recursive call on each
production is made two levels away, but the productions are still

to be considered left recursive. If thé code which would be

-101~

generated for a SAP which included productions such as these,
using the current implementation of SAPG, were executed, the
program would loop until memory for storage areas for the
invocation of procedures were exhausted. A solution to this
problem will not be presented here, but it would involve the
use of a run-time stack. The reader may wish to refer to Carr
and Weiland [CAR 69] for a discussion of a method by which as
much recursion as possible can be eliminated from an EBNF
specification.

A second restriction is that an optionality group must
be distinguishable by its first element. That is, the first
syntactic unit which follows the optionality group, whether
that unit be required or itself be the first element of an
optionality group, must be different from the first element of
the optionality group which it follows. This is the reason

" " as described in

for the special treatment of the character
Chapter 3 . Otherwise, a unique separator would have to be
required as the first character in each optionality group in

a sequence. For example, if "[,KEYWORDl = < name >]
[,KEYWORD2 = < name >]'" appeared in an EBNF production and the
character "," were not part of the keyword but a lexical unit
by itself, it would be impossible to determine by scanning the
comma which optionality group the comma was beginning. This

restriction would not be necessary if the lexical routine were

not strictly sequential but could be made to back up in its scan,

=102~
either in actuality or through a run-time stack. Making the
comma part of the keyword distinguishes the optionality group
by its first element.

These restrictions should not present too great a
hindrance to the SAPG user. The left recursion restriction can
be circumvented when it is used to achieve repetition by using
the repetition feature of EBNF. One way to solve the problem
of distinguisable optionality groups has been described above

and is being used in the current implementation of DDL.

-103-

SAP produced by SAPG for the example given in Section

SAP: PROCEDURE OPTION (MAIN) RECORDER;
DCL SIMPLE ARITH EXP RETURNS (BIT(1)) REDUCIBLE;
DCL TERM RETURNS (BIT(1)) REDUCIBLE;
DCL MULT OP RETURNS (BIT(1)) REDUCIBLE
DCL ADD_OP RETURNS (BIT(1)) REDUCIBLE;
DCL INTREC RETURNS (BIT(1)) REDUCIBLE;
DCL NAMEREC RETURNS (BIT(1)) REDUCIBLE;
DCL LEXBUFF CHAR(31) VARYING EXTERNAL;
DCL ERRORSW BIT(1) EXTERNAL;

FINSW BIT(1) EXTERNAL;

CALL DDLOPT;

IF SIMPLE ARITH EXP THEN RETURN;

SIMPLE ARITH EXP:PROCEDURE RECURSIVE RETURNS (BIT(1));

CALL $MARK;
$SYS_001:
IF ADD_OP THEN DO;

IF FINSW THEN DO; CALL $SUCCES; RETURN('1'B); END; ELSE;

END; ELSE;
IF TERM THEN DO;

IF FINSW THEN DO; CALL $SUCCES; RETURN('1'B); END; ELSE;

$5YS_002;
IF ADD OP THEN DO;

IF FINSW THEN DO; CALL $SUCCES; RETURN('1'B); END; ELSE;

IF TERM THEN DO;

IF FINSW THEN DO; CALL $SUCCES; RETURN('1'B); END; ELSE;

GO TO $SYS_002;

END; ELSE DO; CALL S$SUCCES; RETURN('1'B); END;
END; ELSE;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO; CALL $FAIL; RETURN('O'B); END;
END SIMPLE_ARITH_EXP;

TERM: PROCEDURE RECURSIVE RETURNS(BIT(1));

CALL $MARK;

IF PRIMARY THEN DO;

IF ERRORSW THEN DO; CALL $SUCCES; RETURN('l1'B); END;
$SYS_003:

IF MULT_OP THEN DO;

IF ERRORSW THEN DO; CALL $SUCCES; RETURN('1'B); END;
IF PRIMARY THEN DO;

IF ERRORSW THEN DO; CALL $SUCCES; RETURN('1'B); END;
GO TO $SYS 003;

END; ELSE DO; CALL $SUCCES; RETURN('1'B); END; ELSE;
END; ELSE;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO; CALL S$FAIL; RETURN('O'B); END;

END TERM; '

FIGURE 4-8

ELSE;

ELSE;

ELSE;

B L

-104-

PRIMARY : PROCEDURE RECURSIVE RETURNS (BIT(1));
CALL $MARK;

IF INTREC THEN DO; CALL $POPF;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO;

IF NAMEREC THEN DO; CALL $POPF;

CALL S$SUCCES; RETURN('1'B);

END; ELSE DO;

CALL LEX; IF LEXBUFF = '(' THEN DO;

CALL LEXENAB; CALL $POPF;

IF SIMPLE ARITH EXP THEN DO;

IF ERRORSW THEN DO; CALL $SUCCES; RETURN('1'B); END; ELSE;
CALL LEX; IF LEXBUFF = ')' THEN DO;

CALL LEXENAB; CALL $POPF;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO; CALL S$FAIL; RETURN('1'B); END;
END; ELSE DO; CALL $SUCCES; RETURN('1'B); END;
END; ELSE DO; CALL $FAIL; RETURN('O'B); END;
END;

END

END PRIMARY;

MULT_OP: PROCEDURE RETURNS (BIT(1));
CALL SMARK;

CALL LEX; IF LEXBUFF = '#' THEN DO;
CALL LEXENAB; CALL S$POPF;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO;

CALL LEX; IF LEXBUFF = '/' THEN DO;
CALL LEXENAB; CALL S$POPF;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO; CALL $FAIL; RETURN('O'B); END;
END;

END MULT OP;

ADD_OP:PROCEDURE RETURNS (BIT(1));
CALL $MARK;

CALL LEX; IF LEXBUFF = '+' THEN DO;
CALL LEXENAB; CALL SPOPF;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO;

CALL LEX; IF LEXBUFF = '-' THEN DO;
CALL LEXENAB; CALL $POPF;

CALL $SUCCES; RETURN('1'B);

END; ELSE DO; CALL S$FAIL; RETURN('O'B); END;
END;

END ADD_OP;

END SAP;

FIGURE 4-8
~continued -

-105-

CHAPTER 5

THE DDL COMPILER

5.0 Introduction - An Overview of Compiling

5.1 The Components of a Compiler

The conversion of the source program (e.g. DDL), which
is nothing more than a string of characters, into the object
program can be regarded as a series of simple transformations
rather than as one complex transformation. A compiler
ultimately converts the string of characters into a string of
bits, the object code. The DDL compiler is a "multi-pass"
translator in which a sequence of transformations is applied to
the program as a whole.

The technique of transforming the source program into the
object program by means of a sequence of simple transformations
leads naturally to the idea of "intermediate languages.' For
example, the DDL compiler involves the translation of DDL into
PL/1, and then it uses the PL/l compiler to translate PL/1 to
the machine language of the IBM/370. The DDL compiler takes
advantage of the existence of the PL/1 compiler by including it
as the last stage of the translation process. Thus the DDL
compiler can avoid machine-oriented problems such as storage
allocation, register management, operating system interface, etc.,
by assuming that the object language it generates is to be pro-

cessed by a "PL/1 machine."

-106-

In this compilation process, subprocess with the

following names can often be identified:

(1)
(2)
(3)
4)

(5)
The
DDLCOMP.

when the

Lexical Analysis

Syntax Analysis

Bookkeeping or Symbol and Data Table Creation

Code Generation or Translation to Intermediate Code
(e.g. DDL -+ PL/1)

Object Code Generation (e.g. PL/1 - Machine Code)
monitor of the DDL compiler (see Figure 5.1) is called
DDLCOMP is the first module to be loaded into core

DDL compiler is called by the user. The task of

DDLCOMP is to call on the different phases of the compiler. The

first thing DDLCOMP does is to open the internal working files,

which are:

a)

b)

c)

d)
e)
£)

g)

SAPERR - where the error messages (if any) produced
by the SAP, are to be stored

TABERR ~ where the error messages (if any) found by
the table generating routines, (i.e., global syntax
checking) are kept

CODERR - where the error messages (if any) found at’
code generation time, (i.e., final part of global syntax
checking) are to be stored.

SAPLIST - where the DDL source statements are stored
XREFTAB - where the cross-reference table is kept
OUT7 - where the user written DML routines are stored.

OPTLIST - where the parameters given to the DDL compiler

-107-

< DDL COMP >

OPEN OUTPUT FILES: SAPERR, TABERR, CODEERR

SAPLIST, XREFTAB, OUT?

SET COMPILER PARAMETERS AND MOVE THEM
TO OPTLIST

CALL
SAP

< IS ERRCNT LESS THAN 07? A:)JL"

WRITE TO CODERR FILE
"JOB ABORTED DUVE TO
SERIOUS ERROR NOTED ABOVE"

Y (1S XREF SET ? ‘:>

CALL
XREF

TO OUT7 FILE

CALL
MERGE1

CALL
CODE_GEN_PARSE

4

CALL
CODE_GEN_MOVE

FIGURE S5.1

DDLCOMP

N CALL
MERGF 1
Y
‘<h—~(:*£§ DOLIN OPTION SET? A:)
N .- CALL
COPY USER DML ROUTINES MERCE2

-108-~

are stored.

After the working files are opened DDL COMP sets the
compiler parameters and moves them to the OPTLIST file. The
SAP (see Section 5.3) which is called next, in turn will call
on LEX (see Section 5.2) to perform the lexical analysis. If
there were no errors found during execution of the SAP and
if the XREF option was specified then XREF is called (see
Section 5.4) to produce a cross-reference table. If errors
were detected the following message is written on the CODERR
file:

""JOB ABORTED DUE TO SERIES ERROR NOTED ABOVE". Then
MERGE 1 and MERGE 2 are called and the process terminates.

After the XREF procedure has been called, a test is made
to see whether or not the user has supplied DML routines, in which
case they are written into the OUT7 file. In order to merge
the error and listing files, MERGE 1 is invoked followed by the
code generation procedures of CODE_GEN_PARSE (see Section 5.5)
and CODE_GEN_MOVE (see Section 5.6). Finally, MERGE 2 is called
and the process terminates.

MERGE 1 and MERGE 2 are entry points of the procedure named
MERGE_OUT_FILES, which merge all the output and listing files.
The functions of MERGE 1 and MERGE 2 are given in Section 5.6.14.

We shall describe the first four phases of compilation in

the following sections.

-109-

5.2 Lexical Analysis

The lexical analysis phase comes first. The input to

the compiler and hence to the lexical analyzer is a string of

symbols from an alphabet of characters. In the DDL language

for example, the terminal symbol alphabet contains the following

60 symbols

ABC...Z$¢#a@

012

=+"*/()"

In a

e 9

: ' & | -> <712

DDL program, certain combinations of symbols are

treated as a single entity, called a '"token'", such as the

following:
(a)

(®)

(c)

(d)

(e)

A string of one or more blanks is normally treated

as a separator.

Comments i.e., those strings of characters enclosed
between "/#*" and "*/" are treated as a single blank.
DDL has keywords such as ",PRE criT", ",SIZE=",
",CONV=", " LOCK=" etc. which are treated as single
entities.

Strings representing numerical constanﬁs and strings
of characters enclosed in quotes are treated as single
items.

Identifiers (DDL names) for Groups, Fields, Records,
DML Procedures and the like are also treated as single

lexical units in DDL.

-110-

The Lexical analyzer used in the DDL compiler is called
LEX.

LEX for the current implementation of DDL is written after
the same manner as LEXEBNF. The completely metalinguistic symbols,
e.g., "[", "['", "]", are treated as invalid characters By LEX.
Otherwise, the two routines are the same as far as lexical analysis
is concerned, except in one point. Since a production may have
several alternatives, the SAP may have to check the same value
of LEXBUFF several times before it determines the correct pro-
duction alternative to be analyzed further. Since a call to LEX
is automatically generated for each terminal symbol, the lexical
routine must have the capability, in effect, to back up in order
to use the same lexical unit again. This is accomplished by
having LEX disable itself by setting an internal switch after it
produces a lexical unit. When this switch is set, a call to
LEX will not cause further lexical analysis to take place. LEX
simply returns to the calling routine, and LEXBUFF contains the
same value as it did before LEX was called.

When successful recognition of the contents of LEXBUFF occurs,
LEX must be enabled again to allow further analysis. This is
accomplishéd by a call to another entry point in the lexical
routine, LEXENAB. A call to LEXENAB merely resets the internal
switch which disables LEX. This call, as the call to LEX, is
automatically generated for EBNF terminal symbols but must by

issued specifically by a recognizer routine.

-111-

One restriction to LEX (and LEXEBNF) was made for the DDL
implementation. This is in the area of keywords, which may be
best explained by example. In DDL, the string, ' ,KEYWORD="
will be treated as a single keyword. That is, if the character
"," immediately precedes an alphanumeric character string, it
will be treated as part of that character string. If the
character "=" immediately follows an alphanumeric character string,
it will be treated as part of the character string. The "," will
terminate the character string which immediately precedes it,
and the "=" will terminate the character string which it follows.
If the si#gle characters "," and "=" are desired, they must be
succeeded and preceeded, respectively, by the blank character.

It is important to remember this restriction when commas are

used to separate items in a list. A blank must immediately follow
the separating commas, or the comma will be treated as part of

the next item in the list and a compilation error will result,

There are nine entry points to the lexical routine, including
the main entry point, LEX. The others are LEXENAB, STMT_FL,
CHARSTR, BITSTR, NUMSTR, GETCHAR, GETBIT, and GETNUM. (The 1last
three are the same). LEX, LEXENAB, and STMT_FL are used during
normal lexical analysis. CHARSTR, NUMSTR, and BITSTR are entry
points for obtaining special character strings which cannot be
analyzed properly by invoking the main entry point, LEX. GETCHAR,
GETNUM, and GETBIT are used by the DDL table creation routines

to obtain the character strings for encoding purposes. Each of

these entry points is described in more detail below.

-112-

LrX
Y
<[S LEXSWCR = 1 2 RFTIRN
BEGSTR -~ 1
LEXSUCL & 1
: N ! Y N
(15 s=pLwk? !)—on 1> 87)—*@ REASTP < R1?)—-—
Y Y
S < NULL CURR_STATF. <~ S <« S || CHAR (BEGSTR)
NEXT_STATZ TN CHAR(80)
L < rARD(I)
4
f NEXT STATE <« FFAD
| MAP (L) CEAP (1)
‘ 1=1tof0
? 4
TRANSFEY TN
RNTSW = 1?7
APPROPPIATE FUNC. CIS PRATSV =)
Y
LENGTH < PRINT
ol LEXGTH (LEXRUFF) STMT_NO AND
C, i =1 to RO

< RETURN) BEGSTP <)

4 I «1

(LFXENAB)__. LEXSLCH < 0 _.Cmrm)

LEX FLOW DPTAGRAM
FIGCURE §5-2

-113-

(:STMT_FL :)

Cs LEXBUFF = ';' ?) Y @

J < INDEX (SUBSTR
(DCEAR,I,";")

Y READ:
(15J=0?)‘——'—‘—" CHAR(1)
i=1+to 80
| N
I < I+J ,
STMT_NO <
STMT_NO + 1

le PRNTSW = 17)

NEXT_STATE + 1

Y

y PRINT:
LoXSHOH - O gﬁ:’(?? M;I-I-)l to 80
LEXSWCH < O N o
S + NULL
I <1

(:jRETURN ':)

FIGURE 5-24
STMT FL

-114-

During syntactic analysis the SAP calls upon the routine
LEX to return the next token in the input stream, referred to
by the ddname DDLIN. This unit is returned in the global
variable LEXBUFF as a character string (maximum length of 31
characters); its length is returned in the global variable
LENGTH. LEX inputs source records as necessary to fulfill
these requests and scans all 80 columns of the records. The
contents of LEXBUFF are compared with the character string
specified by the EBNF description (see Section 3.3 and 3.5).
If the string is specified as a terminal symbol, the comparison
is performed by the main SAP procedure, i.e., by the generated
code. If the string is to be recognized by a recognizer routine,
this routine must issue the call to LEX to obtain the lexical
unit for analysis.

There are other entry points to the DDL implementation of
LEX. The first of these is STMT_FL. This entry point is called
when an error occurs. The rest of the current input record is
scanned for the (;) end-of-statement character. If it is found,
LEX is set up to begin further lexical analysis with the char-
acter which immediately follows the end-of-statement character.
If it is not found, another input record is read and scanned in
the same manner. This process continues as long as necessary
unless an end-of-file condition occurs on the input data set.
In this case an end-of-program record is placed in the input

buffer to assure termination of compilation. (Input records are

-115-

placed, along with a statement number, in the data set named
by the ddname LISTING if the global switch PRNTSW is set.
Otherwise, they are not. In the current DDL implementation,
this switch is set by the routine DLLOPT.) LEX is enabled
and put in the state of having just scanned a blank character,
and ERRORSW is reset.

Since DDL permits blank characters to occur in character
string constants, special entry points in LEX are provided to
scan for character (CHARSTR), numeric (NUMSTR), and bit (BITSTR)
strings. (These strings are designated by surrounding
apostrophes). The maximum length allowed for these strings
is 32,767. The entry points NUMSTR and BITSTR also validate
the character string. Since these strings may be longer than
31 characters, the maximum length of LEXBUFF, the entry points
GETCHAR, GETNUM, and GETBIT are provided for the return of the
actual character string. These entry points have a character string
argument in which the character string will be placed. The
required storage for the character string may be obtained from
the global variable LENGTH, since the length of the character string
is placed there before returning from CHARSTR, NUMSTR, or BITSTR.

Source records are input as necessary until the character
string is terminated. If an end-of-file condition occurs, an
end-of-program record is placed in the input buffer and the

routines return a length-1 bit string vaiue of 0.

-116-

The Transition Matrix (STATE-TABLE) for LEX is

1 4 6 8 10
2 4 7 4 4 7
3 s 1 7 1 s 1 7 5 7
2 4 4 4 & 7T 4 1 & 7
7 1 4 6 1 1 1 1 1 7
2 4 4 71 1 1 1 1 1 7
7 7 71 1 1 1 1 1 1 7
2 7 4 4 71 1 1 1 & 7
2 4 4 7 1 1 1 1 71 7
2 7 4 1 71 71 1 1 & 7
2 4 4 & 4 4 & 4 & 4
7 17 1 1 1 1 1 13 7

The character mapping table is as follows:

CLASS CHARACTER
0 ABC...2 01...9_§%
1 b (space)
2 ; «) ¢
3 /
4 *
5 <
6 -
7 >
8 -

-117-

The lexical functions performed are determined by the

entries in the decision table given above. These entries

are

used to index an array of labels. The contents of this

array are as follows:

The

Fl:

F2

o

F3:

LABEL(1) = Fl
LABEL(2) = F2
LABEL(3) = F3
LABEL(4) = F4

LABEL(5) = F5

LABEL(6) = Fé6

LABEL(7) = F7

lexical functions performed are:

I=T+1

F4: LEXBUFF=S Il SUBSTR(DCHAR,BEGSTR, I-BEGSTR) ; I=1+1;

S=L; GO TO RETURN;

DO I=I+1 TO 80;

IF CHAR(I) ~= '' THEN DO; BEGSTR=I; GO TO SCAN; END;
END;

READ FILE (DDLIN) INTO (DCHAR);

I=0; GO TO F3;

LEXBUFF=L; LENGTH,NEXT_STATE=1l; I=I+1; RETURN;

I=1+1;

J=INDEX (SUBSTR(DCHAR,1),'*/");

IF J=0 THEN DO;

READ FILE(DDLIN) INTO (DCHAR);

I=0; GO TO F6; END;

ELSE DO; I=I+J+2; S=''; NEXT_STATE=1; GO TO SCAN; END;

LEXBUFF=S || SUBSTR(DCHAR,BEGSTR,I+1-BEGSTR) ;
NEXT_STATE=1; S=''; GO TO RETURN;

-118-

RETURN is a label which begins the following code:

RETURN: BEGIN;

DCL LENGTH BUILTIN;

- J=LENGTH (LEXBUFF) ; END;

LENGTH=J; RETURN;

(Note: the code which generates the output listing has been
omitted from the above code. SCAN is the label which begins

the loop which performs the scanning of the individual characters
in the input).

5.3 Phase 1 of the DDL compiler

Phase 1 includes the syntax analysis and the symbol and
data table creation.

The syntax analysis of DDL statements is carried out by
the SAP generated by the SAPG (see Chapter 4). The syntax
analysis is performed using the top-down technique. That is,
syntax analysis is achieved by checking the input statemenfs for
satisfaction of the definition of the goal symbol, i.e., a
"program'" written in the DDL language. It can also be considéred
to be checking to see if the input is a 'good word" of the
language.

Therefore, the syntactic analysis phase is responsible for
the detection and flagging of errors on the DDL source input.
Concurrent with the syntactic analysis is table generation. At
this time, the subroutines used in the EBNF specification for DDL

are called. The functions of these routines are table building

-119-

(i.e., encoding the DDL statements) to preserve the necessary
information to be used during code generation, as well as in
the deéection of global syntax errors. Table generation is
presented in Section 5.3.6 and the format of Symbol Table and
Data Table in Sections 5.3.4 and 5.3.5, respectively.

The following Sections describe the syntax analysis phase.
5.3.1 Entry Points To The SAP

‘There are six entry points to this routine. They are $MARK,
$POPF, $SUCCESS, S$FAIL, CLRERRF, and $PUSH_F. Calls to the
first five are generated automatically by SAPG according to the
description of the DDL grammar. $PUSH_F must be called
.explicitly by the compiler writer from an error-stacking routine
(see Section 5.3.2.1).
5.3.1.1 The Entry Point $MARK (see Figure 5-3a)

This entry point is called upon entry to a production
procedure to mark the beginning of errors which may be pushed on-
to the error stack by routines called during the execution of the
procedure. This is done by calling $PUSH_F which pushes value
of -1 onto the error stack.
5.3.1.2 The Entry Point $POPF (see Figure 5-3b)

$POPF is called after successful recognition of a terminal
symbol or upon a successful return from a recognizer routine.

The effect of calling this routine is to pop the error stack,
i.e., to remove the top entry. If the entry at the top of the
error stack is -1, the error stack is not popped. Only a call

to $SUCCES can pop this type of entry.

-120-

< $MARK }
!
CALL :
SPUSH_F (-1) RETURN

FIGURE 5-3A
$MARK

(spoer)
. Y | PRINT
- NT:
}— ERROR MESSAGE STop

Gs STK_LEVEL <0 ?

I < MOD (STK_LEVFL, 20)

N
(IS 1=0?)_._Y_. FREE TOP
STACK

. !

}

STK_LEVEL < STK_LEVEL - 1

y

< RETURN ’

FIGURE 5-3B
$POPF

-121-

5.3.1.3 The Entry Point $SUCCES (see Figure 5-3c)

This entry is called upon termination of a production
procedure, whether successful or not, to restore the error
stack to the way it was in before the procedure was invoked.
This is done by removing all entries from the top of the stack
up to and including the entry -1 which is nearest the top of
the error stack.

In both entries $POP-F and $SUCCES if more than one stack
has been allocated and popping the top stack empties it, the
top stack is freed, bringing the previous error stack to the
top. If the stack underflows the error message "ERROR STACK
UNDERFLOW. COMPILATION DISCONTINUED," is printed and
compiiation immediately terminates.
5.3.1.4 The Entry Point $FAIL (see Figure 5-3d)

$FAIL is called from SAP when a local error occurs during
syntactic analysis in order to print out an error message.

The call to $FAIL is generated by the SAPG as part of SAP
for all terminal symbols and recognizer routine references (see
Section 5.3.2.2)

When $FAIL is called, the following message is printed:

" < ERROR_CODE > ERROR. INVALID TEXT BEGINNING '< BAD TEXT >
IN STATEMEN* NUMBER < STMT_NO >.
Where

< ERROR CODE > is the entry at the top of the error stack,

‘ (IsJ <0 ?

-122-

‘ $SUCCES)

Qs STK_LEVEL <0 ?

D~

PRINT:
ERROR MESSAGE

I < MOD (STK_LEVEL, 20)

'————1

FREE TOP
STACK

) Y (IS STK_LEVEL <0 ?)Y.

STK_LEVEL < STK_LEVEL 1

)Y.(ISJ =07 >_N__.< RETURN)

(IS STACK(I) = -1 ?
N Y
FREE TOP
J«J-1 STACK
FIGURE 5-3C
$SUCCES
{ $FAIL)
Y PRINT

CIS STK_LEVEL < 07

)

ERROR MESSAGE

1 < MOD(STK_LEVEL, 20)

(TS STACK(I) = -17)" J

PRINT: ToP
ERROR ON STACK

!

CALL
$SUCCESS

CALL
STMT_FL

G

ERRORSW < -1

FISUPE 5-3D
SFAIL

-123-

< BAD_TEXT > is the current contents of LEXBUFF, and
< STMT_NO >is the current statement number.

Error codes are character strings of maximum length 6.

Any other value results in no message being printed. In either
case, ERRORSW 1s set, $SUCCES is called to restore the stack

to its contents upon entry to the production procedure, and
STMT_FL is called to prepare for the continuation of syntax
analysis of the next statement. If ERRORSW is set then it
causes all further analysis of the current statement to cease.
5.3.1.5 The Entry Point $PUSH_F (see Figure 5-3e)

This entry point is called by the error-stacking routines
(see Section 5.3.2.1) and by the entry point $MARK.

This entry point has a one-dimensional array whose elements
are characters strings of length six (where the error codes are
to be stored).

The array is pushed onto the error stack in reverse order
with the last element being pushed first. The result is that the
first element of the array will be at the top of the error stack.
This allows the compiler writer to code error messages for a
production in a left-to-right manner.
5.3.1.6 The Entry Point CLRERRF (see Figure 5-3f)

When ERRORSW is set (see Section 5.3.1.4), no further
syntactic analysis will take place until it is reset. The entry
CLRERRF 1is provided for this purpose. 1Its placement in the EBNF

specification is described in Section 5.3.3.

-124-

(svusn_r (ERPORS))

H < HBOUND (ERRORS, 1)

L < LBOUND (ERRORS, 1)

I < MOD (STK_LEVEL, 20)
K < 19-1

<« H-L + 1

TK_LEVEL < STK_LEVEL + J

Y
CEELA P K W CIET
N N
M <K I «I+1
(ISM <H-K+ 127)_2@ STACK(I) < ERRORS (J)
Y 1
CET NEW TOP STACK - J<J-1
I < -1 ISM <L ? Y RETUPN
N
I <1+
STACK(I) < ERRORS ()
M < M-1 -
I <-«1I+1
ETACK(I) < ERRORS(M)
M <« M-1
FIGURE 5-3E

$PUSH_F (ERRORS)

QCLRERRF)

ERRORSW <« 0O

‘_{mum)

FIGURE 5-3F CLRERRF

-125-

5.3.2 Syntactic Supporting Routines
The syntactic supporting routines are routines which are
extemmal to the SAP and hand-written by the compiler writer
but used by the SAP during syntax analysis. They are designated
in EBNF as are all subroutines, i.e., surrounded by "/"'s.
The syntactic supporting routines are of two types: (1) error
stackers, which are treated as subroutines; and (2) recognizers,
which are treated as functions. These routines are described
in the following subsections.
5.3.2.1 Error - Stacking Routines
These routines are indicated by subroutine calls embedded

iq productions. For syntax analysis these routines are called
upon entry to a production procedure or after recognition of
thé first syntactic unit of an optionality group. These
routines call on $PUSH_F to push error codes onto the error
stack for all the required terminal symbols and recognize routine
calls in the production or optionality group. They are usually
very simple and brief. In the DDL implementation they have the
following general form:
< Name >: PROCEDURE;

DCL ERRORS (N) CHAR (6)

STATIC INIT ('cl', 'cz',..., 'cn');

CALL $PUSH_F (ERRORS);

RETURN;

-126-

END < Name > ;
Where < Name > is the EBNF subroutine call reference, ERRORS
is the name of the array containing the error codes to be
stacked, N is the number of error codes to be stacked (in the
form of a constant), and "ci" 1 <i <N, are the actual error
codes enclosed in quotes. '
The use of ERROR-stacking routines 1s best explained by the
following example:
The EBNF description for the CONVERT stmt in DDL is: < CONVERT_
STMT > ::= CONVERT/DCONV/(< FILE_NAME > INTO < FILE NAME >);
Thus DDL convert stmts look like:
a) CONVERT (FILEl INTO FILE2);
b) CONVERT (SOURCE INTO TARGET);
In the EBNF specification of the CONVERT statements, DCONV
is the name of the ERROk—stacking routine, which is surrounded
by "/"'s. The PL/1 code for DCONV is:
DCONV: PROCEDURE;
DCL ERRORS(5), CHAR(6) STATIC INIT
('CNV-01', 'CNV-02', 'CNV-03, 'CNV-04', "CNV-05');
CALL $PUSH_F (ERRORS);
RETURN;
END DCONV;
The meaning of the error codes for the CONVERT statement are:
CNV-01 - Open parenthesis missing after keyword 'CONVERT'.

CNV-02 - Invalid source file name in CONVERT stmt.

-127-

CNV-03 - Keyword 'INTO' missing in CONVERT stmt.

CNV-04 - Invalid target file name in CONVERT stmt.

CNV-05 - Closing parenthesis missing in CONVERT stmt.

The complete list of Error codes for the DDL language is given
in Appendix A Section of the User Guide.

In addition, calls to initialization routines for internal
table creation and maintenance, such as the symbol and data
tables, can be made from these routines, although two
succesive subroutine calls in the EBNF specification will
accomplish the same thing. For example, if DCONVIG (routine
to allocate the entry for a convert stmt) were to be called,
then ;nsert "CALL DCONVTG;" immediately before the RETURN
statement in Procedure DCONV.

However, writing:

< CONVERT_STMT > ::= CONVERT/DCONV//DCONVTG/ (< FILE_NAME >

INTO < FILE_NAME >);

would produce the same results. Note that EBNF subroutine calls
cannot have arguments. If arguments are desired then the first
alternative must be used.
5.3.2.2 Recognizer Routines

These routines are indicated by EBNF productions which involve
a single subroutine call and nothing else, i.e., productions of
the form:

< PRODUCTION >::= /Subcall/,

-128-

where "production'" is the name of the production and "subcall"
is the name of the routine to be called. For example

< NAME >::= /N_REC/.

These routines are treated as functions which return a
bit string value of length 1, representing the logical truth
values. These routines are used very often when it would be
clumsy to have SAPG-generated code to do the required analysis.
For example, analyzing a character string to determine if it
is a valid name might require as many iterations as the
maximum length of a name. A recognizer routine can analyze it
in a single pass and even determine such information as the
length of the name being less than a certain limit. In this
manner, recognizer routines can be used to speed up the
execution of the SAP. The routines are coded by hand and must
perform the necessary lexical functions that the generated code
of the SAP performs. Upon entry to the routine, LEX must be
called to obtain a lexical unit to be analyzed. 'After the
necessary analysis, LEXENAB must be called to enable the lexical
routine and a code of '1'B must be returmed. Otherwise, '0'B
shoﬁld be returned.

It is also possible for these routines to push error numbers
onto the error stack, or even to analyze more than one syntactic

unit if the code to accomplish this is written. However, care

~129-
must be exercised so that all the system conventions are
followed.
5.3.3 Error Recovery
~As has been pointed out, to produce a SAP, the compiler
writer must first express the syntax of the language that the
SAP is to analyze in EBNF. 1In doing this, at appropriate
places, subroutines calls should be inserted for error
diagnostics and for calling the internal table routines.
The Goal production accepted by SAPG should be of the
following form:
GOAL ::= end-of-program /done-call/
| < production-1 >

.

| < production-n >

Where < production~i >, 1< i<n, are productions which define
valid statements in the language. '"end-of-program" may be a
terminal symbol or a production defining the end-of-program
statement, although the former will probably be used more
frequently. 'Done-call" is a subroutine which sets FINSW to
indicate the end of syntactic analysis.

To achieve syntax analysis of the remaining statements, after
an error has occurred in the statement being analyzed a new goal

production should be defined in the following way:

-130-

< NEW_GOAL > ::= [< GOAL >/CLRERRF/]*/STMI_FL/ < NEW_GOAL >
Thus, the SAP generated by SAPG with the above specification
will be able to continue to analyze source statements until
the>end-of~program is detected and to reinitialize appropriately
after detecting an error.
5.3.4 Symbol Table

The:symbol table is created during the syntax analysis
phase. In DDL, as in most programming languages, it is
necessary to connect each occurrence of an< Identifier >
(or < NAME >) with its declaration. The DDL compiler accomplishes
this connection by means of a symbol table and a data table.
The symbol table contains the relevant information about all
active < Identifier>s. This includes the name, the line
(statement number on which the variable was declared) a count
of the references to each < identifier > and a pointer to the
data table where the information required for code generation is
to be stored (see Section 5.3.5 where a full description of the
data table is given).

| While most techniques for Data Table construction are Ad-Hoc,

there exist many formal methods of Symbol Table creation, three
are among the most common ones, they are:

a) Linear Structure

b) Hash Structure and,

c) Tree Structure

The one used by the DDL compiler is the Tree Structure

-131-

5.3.4.1 Tree Structure

An efficient method of searching a structure is by
repeatéd bisection of a list. Unfortunately, when a table
is created entry by entry, the mid-point of the list is un-
known and the bisection method cannot be used. However,
storing of the list as a binary tree achieves the same effect
as structuring it as a "bisectable list." All entries less
than the given symbol table entry are reached by going down
a branch, and all entries greater, by going up. In a
balanced tree, the distance from the root to any node in the
tree is in the average 1ogzn, where n is the number of nodes
in the tree. The nodes contain the information illustrated

in Figure 5-3G.

'DOWN | UP | DATA NO sTMT| L !
PTR !|PTR TABLE ' OF :NO | E
o ’ : PTR REFS OF N KEY
o : i G ' IDENTIFIER
H T
{ \ ' I 'KEY d |

All the < intentifier >'s in the subtree extending from
a given node which are larger - DDL uses lexicographical ordering,
than the key at that node will be in the subtree pointed to :
by the "upward pointer." Similarly, all smaller keys are in
the subtree pointed to by the downward pointer. A subtree
can be empty, i.e., if a subtree contains no items, a pointer

to that subtree is the null pointer. This tree structure is

-132-

illustrated -in Figure 5-3H.

D

@ 9 Keys entered in Order A,J1,J2,F,B,G,F

Aé

&)

Figure 5-3H

5.3.4.2 Growth and Search Tree Algorithms

Such trees are easy to grow. The first key entered is
placed at the root in the tree. Thereafter, each new item is
placed in the tree by comparing it with the root and moving up
or down depending on whether the new key is larger or smaller
than the root. This process 1s repeated at each node being
compared against until such a node has a null pointer. The
key is then placed by allocating a new node at its point of
insertion. The null pointer in the node just compared against
is changed to point to the new node just allocated, while the
newly allocated node has its up and down pointers set to null.

As an example, consider adding the key "H" to the tree in

Figure 5-3I

Keys entered in order
F,B,J1,A,E,G,J2

Figure 5-31 (before addition of Key "H").

-133-

The root in the above tree is "F'".

Step 1: Compare H with F : H>F => move up

Step 2: Compare H with J1 : H<J1 => move down

Step 3: Compare H with G : H>G => move up,
At this point the upward pointer in node "G" is null,
therefore a new node is allocated for H. The upward pointer
of node G is changed to point to the just allocated node,
while the pointers of H are set to null. The new tree
structure 1is given in Figure 5-3J.
Notation

The data items input to the algorithm are stored in
the variable LEXBUFF. ST _PTR is a pointer variable which
points to the node just allocated. IBEG is a pointer
variable which points to the root of the tree. ICUR is a
pointer variable pointing to the current node béing compared
against. DOWN_PTR is the downward pointer and UP_PTR is the
upward pointer. SW is a logical variable set initially to 1.
KEY SIZE is a variable where the length of the data item is
stored.
Box Labels (Step) Explanation

1 Is this the first input?
If yes go to step 2,
otherwise go to step 3.

2 Reset SW and set IBEG to
null.

3 Save in KEY_SIZE the length
of the data item.

®

-134-

GROWTH AND SEARCH ALGORITHM

' START ’
O

®

‘ISSW’I?

Y SV <«)
)—" IBEG < NULL

4

KEY_SIZE <- LENGTH (LEXBUFF)

©®©

(IS IBEG NNT = NULL?

N CALL
)‘——‘“ ALLOCATE

Q) Y

ICUR <- IRFG

IBEG < ST_PTR

N

—-‘Cpsrum)
©

@——(IS ICUR -> XEY > LFXRUFF ?

Y
}—“ ST_PTP. <- ICUP.

N

CIS ICUR -> KEY > KEY > LEXBUFF?

}1{ IS ICUR -> DOWN_PTR) N .

in

@) I

\ NOT = NULL?

st ICLR -> UP_PTR

) N ICUR < ICUR -> DOWN_PTR

|

Y

ICUR < ICUR -> UP_PTR

©

CALL
ALLOCATE

ICUR -> UP_PTR < ST_PTR

CALL
ALLOCATE

®

RETUPN)

ICUR -> D'W_PTR < ST_PTR

FIGURE 5-3JJ
GROWTH AND SEARCH ALGORITHM

~-135-

(ALLOCATE)

Y

ALLOCATE NODE FOR SYMBOL
TABLE ENTRY

A

SET TO NULL
UP_PTR, DOWN_PTR,
DT_PTR

4
SET TO ZERO

NO_REFS AND STMT NO

Y

STORE DDL_NAME
IN SYMBOL TABLE ENTRY
KEY < LEXBUFF

\

< RETURN)

FIGURE 5-3JJ (cont)
GROWTH AND SEARCH ALGORITHM

-136-

Box Labels (Step) Explanation

4 Is IBEG not equal to null? (i.e.,
is this not the first input?) then
go to step 5, otherwise go to step 7.

5 Call routine to allocate new node.

6 Set IBEG (i.e., root of Tree) to
the node allocated in step 5, and
return.

7 Set ICUR to point to root of tree

i.e., to IBEG.

8 Determine if contents of LEXBUFF is
already in tree. If yes go to
step 9, otherwise go to step 10.

9 Contents of LEXBUFF is already in the
tree ICUR 1is pointing to such node,
set ST_PTR to ICUR and return.

10 Determine if contents of LEXBUFF
‘ goes (or is to be found) in lower
subtree. If yes go to step 11,
otherwise go to step 15.

11 Determine if current node has a
lower branch, if so go to step 12,
otherwise go to step 13.

12 Set ICUR to point to lower branch
of current node and go to step 8.

13 Current node does not have a lower
branch, thus call routine to allocate
new node and go to step 1l4.

14 Set down-pointer of current node to
point to the node allocated in step 13,
and return.

15 Determine if content of LEXBUFF goes
(or is to be found) in upper subtree,
if yes go to step 16, otherwise go
to step 17.

Box Labels (Step)

16

17

18

la

2a

3a

4a

-137-

Explanation

Set IWR to point to upper branch
of current node and go to step 8.

Current node does not have a
upper branch, therefore call
routine to allocate new node and
go to step 18.

Set upper-pointer of current node
to point to the node allocated in
step 17, and return.

In subroutine allocate, allocate

space for a new entry in symbol
table.

Set upper-pointer, down-pointer,
pointer to data table to null.

Set NO_REFS to zero.

Set KEY (in symbol table entry) to
contents of LEXBUFF.

Figure 5-3J (after the key "H" has been added).

The Growth and Search algorithm is given in Figure 5-3JJ

Now some mathematical properties of the tree structure

grown by this algorithm will be considered. The shape of a

tree containing a given set of n keys depends on the order in

-138-

which the items are encountered. For example, Figure 5-3K

is formed by inputing the same keys as in Figure 5-3L but in
different order. The algorithm thus generates a tree for each
of the n! possible arrangements of n keys; but not all the

trees are distinct, as can be seen from Figures 5-3K and 5-3L.

O,)
(& &)

® ®

Order BAC Order BCA

Figure 5-3K Figure 5-3L

Here the assumption that each of the n! permutation of n keys

is equi-probable is made. Thus some trees will be generated more
often than others.

By using the growth algorithm presented above, one can pro-
duce trees which are not balanced; i.e., the upper branch may be
heavier than the lower branch or vice-versa. Then if the structure
of the tree is unchanged, it can be stated without any contradiction
that a key can be searched for, following exactly the same step
used to insert that key. An algorithm based on the one designed
by W.A. Martins and D.N. Ness [MAR 72] to convert any tree formed
using the growth algorithm into a balanced tree is presented in
the following subsection.
5.3.4.3 The Tree Restructuring Algorithm

The algorithm which restructures the tree is time consuming.

-139-

A natural question to ask is whether the time saved
in searching a balanced tree is greater than the time required
for the translation from the non-balanced to the balanced
tree. Martins and Ness [MAR 72] have shown that the restructuring
algorithm, as far as, time is concerned is equivalent to an
algorithm in which the tree grows in a balanced manner. Since
the number of accesses from the table is not estimated to be
high in the present application, however, restructuring will
occur only after a certain number of entries have been processed
in order to save restructuring time. This number has been
arbitrarily placed at twenty for the present implementation.

For the DDL Compiler the restructuring algorithm is called
IBEST. This procedure calls on the procedure IGROW which in
turn calls INEXT. 1IBEST returns as its answer, a pointer to the
root of the restructured tree. The procedure IGROW(N) is
responsible for constructing an optimum tree containing n nodes.
IGROW is recursive, as it may call itself. IGROW uses the
procedure INEXT, which returns a pointer to the smallest node
in the old tree the first time it is called, and a pointer to
the smallest node, not previously returned, on each successive
call.

IGROW(n) can take three courses of action:

1) If n=0 return a null pointer

2) If n=1 call INEXT and return its result

3) Ifn>1

-140-

a) call IGROW (L (n-1)/2])

b) Call INEXT

¢) call I1GROW (|(n-1)/2))

Then it replaces the down pointer of the node pointed
by the result of (b), with the result of (a), and its up
pointer with the result of (¢).

The procedure INEXT is given a pointer to the root of
the original tree by IBEST. Each time it is called by IGROW
it moves one step through the tree and returns the next node
in ascending sequence. GCGiven a sub-tree INEXT returns the
nodes in the lower branch by calling itself recursively with
this branch as an argument, then it returns the root of the
sub-tree, and finally the nodes in the upper branch.

As an example consider that the following items are
given to the "Growth and Search Algorithm':

123, 875, 023, 653, 986, 523, 741, 258, 302, 002, 005, 532,
965, 142, 562, 368, 987, 664, 321, 578.

The result is an unbalanced tree where the root is the
node containing the '"123". The tree which result is shown in
Figure 5-3M. Then if we call on the restructuring algorithm,
the resulting tree is a balanced one and it is shown in

Figure 5-3N.

-141-

ROOT

19

11

FIGURE 5-3M
UNBALANCED TREE

-142-

17

986

;]

e
~
ny

; @
s
20
; &
12
s
19
\ (o)
8
9 @
0 s
. o
3
0
FIGURE 5-3N

BALANCED TREE

-143-
5.3.5 Data Table

The data table entries store the information contained
in the DDL statements, such information is to be used for
global syntax ghecking,cross-reference and for code generation.
To this end, each instance of a DDL source statement initiates
procedures which allocate data table entries whose function,
as we already mention, is the preservation of the pertinent
information. The format of the DDL data table entries are
by no means unique and, given different compgler writers,
different designs for these entries most likely would be
conceived. As long as the entries generated by the internal
routines correspond exactly to the tables expected by the code
genération phase, global syntax checking and cross reference,
any apﬁlicable construct may be used.

The format of the data table entries for all the DDL
statements is given in Appendix D . For purposes of a better
communication in the mechanics of table creation we present ’
here a few of them.

Example (a)

Take for example the CONVERT statement, its EBNF description
is;

< CONVERT_STMT > ::= CONVERT (< FILE_NAME > INTO <FILE_NAME>)
the corresponding entry in the data table for this statement

is:

~144-

Stmt Pointer to Pointer to Stmt
Type Target File Source File Number

The PL/1 declaration for this entry is
DCL 1 CONVERT BASED (PTR),
2 TYPE FIXED BIN,
2 TARGET POINTER,
2 SOURCE POINTER,
2 STMT_NO FIXED BIN;
where:
1) TYPE is a fixed binary field (two bytes) where the
corresponding code for CONVERT is to be stored.
2) TARGET is a pointer (1 word) which points to the symbol
table where the name of the Target File is stored.
3) SOURCE is a pointer (1 word), which points to the symbol
table where the name of the Source File is stored.
4) STMT_NO is a fixed binary field (2 bytes) were the state-
ment number of the CONVERT stmt in the DDL program is to
be stored.
Example (b):
The FILE_STMT is described in EBNF as follows:
< FILE_STMT > ::= FILE (< RECORD_NAME > [,CHAR _CODE = < CODE >
,STORAGE = < NAME >);
The format for the data table corresponding to the

FILE stmt is:

-145-

STMT| POINTER TO POINTER TO POINTER TO BUFOFF |CHAR
TYPE| FILE NAME IN | RECORD NAME STORAGE OPTION | CODE
SYMBOL TABLE { IN SYMBOL TABLE| NAME IN
SYMBOL TABLE

The PL/1 declaration for the above entry is:
DCL 1 FILE BASED (P),

2 TYPE FIXED BIN,

2 SYM POINTER,

2 RCD_NAME POINTER,

2 BUFOFF FIXED BIN,

2 CHAR_CODE FIXED BIN;
where;
1) TYPE is a fixed binary field where the corresponding code
for FILE is to be stored.
2) SYM is a pointer, which points to the Symbol Table entry
where the name of the FILE stmt is kept.
3) RCD NAME is a pointer, which points to the Symbol Table
entry where the name of the Record referred in the FILE
stmt is kept.
4) BUFOFF is a fixed binary field used when the character
code is ASCII and the user specified the BUFOFF option.
5) CHAR _CODE is a fixed binary field where the code correspond-
ing to EBCDIC, ASCII or BCD is to be stored.
Example 3.

The RECORD STMT is described in EBNF as:

< RECORD_STMT > ::= RECORD (<NAME_LIST > [, < NAME_LIST >]*

[,LOCK = < PROC_CALL >]

~-146-

[,SIZE = < USER_RECORD FORMAT >]);

< NAME_LIST 1:= < MEMBER NAME > [< OCCURRENCES >]

The format for the Record entry in the Data table is

STMT
TYPE

POINTER TO
RECORD NAME
IN SYMBOL
TABLE

LOCK
INFORMATION

SIZE
INFORMATION

NO. OF | MEMBER 1
MEMBERS | INFORMATION

Y MEMBER n |
% INFORMATION

For the purpose of our present discussion we will

present only a subset of the RECORD stmt in the PL/1

declaration, but the user is referred to Appendix D

where the full description of the RECORD entry is given.

The PL/1 description for a subset of the RECORD stmt is:

2 TYPE

2 SYM

DCL 1 RECORD BASED (PTR)

FIXED BIN,

POINTER

gLock and Size

2Dec1arations

2 NO_MEMS FIXED BIN

2 MEMBERS (NDUMMY REFER (RECORD.NO MEMS),

3 MEM_NAME POINTER,

rest of declaration

for information

about member

-147-
where;
1) TYPE is a fixed binary field where the corresponding code
for RECORD is to be stored.
2) SYM is a pointer, which points to the symbol table entry
where the name of RECORD stmt is kept.
3) NO_MEMS is a fixed binary field where the number of
members described in the RECORD stmt is kept.
4) MEMBERS is a substructure in the RECORD structure where
the information about the members is kept.
5) MEM PTR is a pointer, which points to the symbol table
entry where the name of the corresponding member is kept.
5.3.6 Mechanics of Table Generation

In Section 3.5 we introduced EBNF/WSC (Extended Backus-
Normal-form with subroutine calls), using it the syntactic
structure of the DDL is described as well as the subroutines
that are to be called upon successfull recognition of a
syntactic unit. In Appendix E we present the definition of
DDL in EBNF/WSC.

In describing DDL in EBNF/WSC, at appropriate points,
the names of the PL/1 routines are given. Such routines will
build the Symbol Table and the Data Table entries. Subroutine
calls are made only if everything specified by the EBNF/WSC
production in which the subroutine call appears has been
successfully recognized up to the point of the subroutine call.

In order to fully present the logic and the mechanics

incorporated in the process of table generation, an involved

-148-

example will be given.

Example 1
STMT_NO 1 RC1 IS RECORD (MEM1, MEM2);
2 MEM1 IS GROUP (MEM11, MEM12);
3 MEM11 IS FIELD (CHAR(2));
4 MEM12 IS FIELD (NUM_PICTURE = '99');
5 MEM12 IS FIELD (BIT(8));

Statements in DDL are generally described in EBNF/WSC
in the following form (see Section 3.3, 3.4 and 3.5);
< NAME >IS < DDL_STATEMENT > , therefore to enter the names

RC1l, MEM1, MEM11l, MEM12 and MEM2 (which are the names of the DDL

stmts) into the symbol table, a routine called ENTESYM is
called after recognition of the <name >. Thus the EBNF/WSC
for the DDL statements is:
< NAME >/ENTESYM/ IS < DDL_STATEMENT > ;

The subroutine ENTESYM returns a pointer to the location
(in the symbol table) where the < name > is stored if the
name was already in the symbol table, if not in the symbol table
an entry for that name is made (in the symbol table) and the up-
pointet,.down pointer, DT-pointer are set to null, similarly
the number of references and the statement number are set to
zero. In order to store in the symbol table just allocated the
DDL statement number the subroutine STMTENT is called, to this
end the EBNF/WSC for the bDL statement is coded as:

< NAME >/ENTESYM/IS /STMTENT/ < DDL_STATEMENT >;

RECORD

MRClH

FIELD

"}mm "

FIELD

""MEM11" "MEM12"

TREE STRUCTURE
CORRESPONDING TO DDL

EXAMPLFE. 1 IN SECTION 5.3.6

FIGURE 5-3P

~6%T-

-150-

The foregoing DDL statements in Example 1 denote the
‘tree structure Record RCl shown in Figure 5-3P.

In order to preserve such structure, the DDL compiler
will allocate individual data tables, unique for each source
statement, and the DDL compiler will link them in such a way
that the intended structure is preserved.

Following with our discussion of the mechanics of table
generation, let us now concentrate in the Data table entries.
In general < DDL_STATEMENT > can be described in EBNF/WSC
as follows:
< DDL_STATEMENT > ::= STMT_TYPE (< STMT_INFO >);
where STMT_TYPE can be RECORD, FILE, GROUP etc. And
< STMT_INFO > is the EBNF/WSC description of the syntax of
the statement, along with the names of the subroutine to be
called.

In order to allocate the appropriate entry in the Data
table for the DDL statement being processed in all of the DDL
statements, (with the exception of RECORD, GROUP and SCAN;
later in this Section we will explain how these statements are
treated) after the STMT_TYPE has been successfully recognized'
a subroutine call is made to perform the allocation of the
appropriate entry. In general the EBNF/WSC for the DDL
statements (up to this point in our discussion) will look like
< DDL_STATEMENT > ::= STMI_TYPE/ Name of subroutine to allocate

entry/ (< STMT_INFO>);

-151-

Let us take once more the CONVERT statement, its
EBNF/WSC is:
< CONVERT_STMT > ::= CONVERT/DCONV/ (< STMT_INFO >)3;

The subroutine DCONV will perform the following tasks:

1) Push onto the error stack the error codes for all
the terminal symbols for the convert statement, see Section
5.3.2.1.

2) Call on DCONVTG which is the routine that will
allocate the CONVERT data table entry. After the allocation
has been made the TYPE is set to CONVERT and the STMT_NUMBER
is set to contain the current stmt numbers provided by LEX.

Let us now take the FILE statement, its EBNF/WSC is:
< FILE_STMT > ::= FILE/DFILE/(< STMT_INFO >);

The subroutine DFILE will perform the following tasks:

1) Push onto the error stack the error codes for all
termiﬁal symbols for the FILE statement.

2) Call on DFILETG which is the routine that will
allocate the FILE data table entry.

DFILETG after the allocation for the FILE data table entry
has been made will set TYPE to FILE, and the SYM to point to
the symbol table entry where the < name> of the FILE statement
is kept. Also it will set all the parameters of the FILE state-

ments with the default values. Finally, DT_PTR in the symbol

-152-

table entry is set to point to the data table entry just
allocated.

ﬁp to this point we have explained how < NAMES > are
entered into the symbol table and the appropriate data tables
entries are allocated. In the following paragraphs we will
explain how the < STMI_INFO > is encoded in the data tables
entries.

Consider once more the CONVERT statements, its complete
EBNF/WSC is:
< CONVERT_STMT > ::= CONVERT/DCONV/(< STMT_INFO >);
where:
< STMT_INFO > ::=< FILE_NAME > /CS/ INTO < FILE_NAME > /CT/

CS is the routine which will call on ENTESYM if the
< FILE_NAME> was successfully recognized to enter such name
in the symbol table. And it will call in a routine INCR_REF
to increment the number of times the name is being referred in
a DDL statement. Finally we will set the SOURCE field in the
CONVERT entry to point the symbol table where the < FILE_NAME >
is stored.

CT performs similar tasks as CS, the difference is that
it set the TARGET field in the CONVERT entry to point the
symbol table where the name is stored.

Let us now take the GROUP statement.

< GROUP_STMT > ::= GROUP/DGROUP/(< STMT INFO >);

-153-
<STMT_INFO > ::= (<NAME_LIST> /NL_G/[, <NAME_LIST > /NL_G]*)
/ALL 0_G/

In a previous paragraph we mention that after the
successful recognization of the STMT_TYPE a routine will be
called to allocate the appropriate data table entry. We
mention that the exceptions are the RECORD, GROUP and SCAN
statements. The reason is that these statements can contain
variable information, and the goal is to allocate just the
necessary core to encode the information in that particular
occurrence of the statement. Therefore control storage will
be used to save the information for each member in the GROUP,
RECORD or SCAN statement. A counter of the member of members
found in the statement is kept and after the last member is
processed then the allocation of the appropriate entry is made,
since then we do know how much core to allocate. Then the
information saved in the controlled storage is stored into the
data table entry and the controlled storage is freed.

In the above specification of the GROUP statement the
routine NL_G will store in the controlled storage all the
pertinent information of the member. NL G will call on
ENTESYM to enter the < NAME > of the member into the symbol table
and also will call on INCR_REF to increment the number of times

this < NAME > has been referred in the DDL statements. The

routine ALLO G is called after the last member has been processed

and it allocates the entry for the Group statement, set its TYPE

-154-

to GROUP and moves from the controlled storage into the
entry just allocated the information of all its members,
then ghe controlled storage is freed and the DT_PTR entry
in th; symbol table corresponding to the < name > of the GROUP
statement is set to point to the data table just allocated.
Finally the SYM field is set to point to the symbol table
where the < NAME> of the GROUP statement is stored.

To illustrate how the link between Symbol Table entries
and Data Table entries we refer the reader to Example 1
which wasgj

STMT 1 RC1 IS RECORD (MEM1, MEM2);

STMT 2 MEM1 IS GROUP (MEM11l, MEM12);

STMT 3 MEM11 IS FIELD (CHAR(2));

STMT 4 MEM12 IS FIELD (NUM_PICTURE = '99');
STMT 5 MEM2 IS FIELD (BIT(8));

The corresponding Symbol Table entries an Data Table
entries for Example 1 are given in Figure 5-3Q.
5.4 Cross-reference and Global Syntax Checking

When the XREF option was specified to the DDL compiler,
a cross-reference table that lists all the identifiers (DDL-Names)
and its attributes in the Source program with the numbers of
the source statements in which they appear is generated. The
XREF option also requests the listing of all the calls to DML
procedures made in the DDL source statements. The XREF
procedure, see Section 5.4.1 is called only if no local syntax

errors were detected during the syntax analysis phase.

STMT STMT , , . {ST™T
KEY | DT DowN I\ 0 KEY |DT [UP [DOwN[” keY | pT |UP |DOwm [P o
RC1 / A f 1 MEM2 A S MEM12 A A 4
° i
‘ -7 /;l v A
/ U \ \
' e \ —— - o\
: /, sfsmvr Tvey] ST FTFLD TNRORG, NN STMT TYPF ST FIELD INFORMATION
' .7 P FIELD | o BIT(B) SoMe_ |FIELD | o fuM_PICTUPE ‘99"
\ “s —'7 { > ~ > \\- - =
\ / ~ -
4 STNT " '
\ ! i) S p &
\ ! |xex {or \up DOWN [* KEY |DT L\up - T:g ‘ %
\ \
1 1y
'\ e o | A | 2 v o \, [4| 5 !
N Y~ LN !
“ N P ‘l . Zo{ STMT TYP} ST FIELD INFORMATION
! \ ~ S o - /
s 4 A 2 A e FIELD 0 CHAR(2)
STMT 'rml‘ ST|MEMBER1 ﬁmu}mz . STMT TYPH STA [MFMRERL [MEMBER2 | °¥~< ‘=———=
RECORD | %, % o N GROP | p | S=~o °o”
\\\ 4
SN n = s
FIGURE 5-30Q

SYMBOL AND DATA TARLES

-156-

’

During the syntax analysis phase a linied list (PTR_LIST)
of pointers to the Data Table entries for each DDL statement
is fofm, this is done by galling DT_PTR_LIST_LINK every
time a Data Table has been allocated for a DDL statement.

The linked lisﬁ that DT_PTR_LIST LINK forms have the following
general form:

PTR_LIST

FIRST_LIST_ENTRY | PTR_TO_DT [LINK R

}

Points
to Data TaeL:c

a'first
® DDL STMT (P _ [LINK]

Points to li; ILINK ~1
¥

Data Table
for Second
DDL_STMT “‘.
{ P « JLINK]
‘:JL
Points to
Data Table
for Last
DDL_STMT

When DT_PTR LINK LIST (see Figure 5-4) is called
the External Pointer Variable DIPIR is pointing to the Data
Table entry corresponding to the current DDL statement being
processed. Upon entry to this procedure the item PTR_LIST
which consist of two elements, the first one PTR;TO_DT is a
pointer where the address of the Data Table corresponding to
the current statement is to be stored, the second element in

PTR_LIST is LINK which is also a pointer variable where the

N~

-157-

< DT_PTR_LIST_LINK i:)

ALLOCATE PTR_LIST SET TEMPTR

FIRST TIME THIS PROCEDURE NO
1S CALLED? '

YES

Y

SET LINK OF PREVIOUS
PTR_LIST TO POINT TO
PTR_LIST ITEM JUST
ALLOCATED LINK + TEMPTR

SET FIRST LIST_ENTRY TO
POINT TO FIRST ITEM IN THE LIST
FIRST LIST ENTRY < TEMPTR

1

SET PTR_TO DT (FLEMENT OF PTR_
LIST) TO POINT TO DATA TABLE
CORRESPONDING TO CURRENT DDL STMT
PTR_TO DT < DTPTR

4

SET LINK(ELEMENT OF PTR_LIST)
TO NULL LINK = NULL

(:RETuxé 44:>

FIGURE 5-4
DT_PTR_LIST_ LINK

-158-

address of the next item of the list is to be stored, LINK
is initially set to NULL. After the allocation of PTR_LIST
takes place a test is made to determine if this is the first
time DT_PTR_LINK LIST is being called, if so FIRST LIST_ENTRY
which is declared as a external pointer variable is set to
point to the PTR_LIST just allocated (which happens to be the
first element of the list). Then PTR_TO DT is set to DTRTR
and LINK is set to NULL. If this is so the first time
DT_PTR_LINK_LIST is being called then the Link of the previous
PTR_LIST is set to the item (PTR_LIST) just allocated and
LINK 1s set to NULL.
5.4.1 XREF

' The external variables that the procedure XREF uses are
the following:
- MAX REFS -- where the maximum number of times a DDL_NAME
was referenced 1is kept
- FIRST_LIST_ENTRY -- pointer to the first element of the list
of PTR_LIST
-~ STMT_NO -- variable whose value is the number of DDL state-
ments in the program being compiled.

Since one of the jobs of XREF is to produce a list of

DML routines being called from DDL statements, XREF allocates
three different structures to keep this information, the first
one FLD LENGTHS is where all the names qf DML procedures

specified by the user as the length of some fields are to be

~159-

. ALLOCATE STORAGE FOR INITIALIZE
. FLD_LENGTHS, PRE_CRITS AND XREF'S VARIABLES
CONVS,

(ReTURN)
END?
DOI = 1 TO STMT_NO LIST_PTR < FIRST_LIST_ENTRY

/*LAST LIST ELEMENT FOUND®/

Qs LIST PTR = NULL)l—(rum;ru)

N

DIPTR < PTR_TO DT
LIST_PTR < LINK

/*DECISION msu-:‘ron DDL STMTS */
| i
st STMT. TYPE = FLD?)l{rzm_sm)
. N
Clis STMT.TYPE = GPE?)l—Ccmur_sm)
N
(IS STMT.TYPE = RCD Hacoan_sm)
Y
% C IS STMT.TYPE = FLE?)LGIu_sm)
' N
Y
CIS STMT.TYPE = CRD? Hcaxn_sm)
N
(IS STMT.TYPE = TPE?)l—('mz_sm)
| "
% (15 smr.Tvee - psk? j_{_(msx_sm D)
| N

Q CONVERT_STMT)

FIGURE 5-4A
XREF

-160-

storéd, the second one PRE_CRITS is where all the names of
the DML routines specified in DDL as PRE_CRITS procedures
are stored, and the third one CONVS is where all the names
of DDL routines specified in DDL as conversion routines are
stored.

After the above allocation takes place XREF (see Figure
5-4A) uses the external variable FIRST LIST_ENTRY to get the
first element of the list of pointers to the Data Table where
the information of the DDL statements have been encoded. The
pointer variable LIST PTR is set to FIRST LIST PIR and a
loop is initiated to process all the Data Table entries. When
LIST PTR is NULL indicates that all the Data Tables have been
processed by XREF and the procedure PRINT TAB is called
(see Section 5.4.2).

If LIST_PTR is not NULL then DTPTR (pointer on which the
Data Tables entries are based) is set to PTR_TO_DT and
LIST PTIR is set to LINK i.e., LIST PTIR is now pointing to next
element in the list of pointer to Data Tables.

Next a check is made to determine the TYPE of Data Table
entry, i.e., if Data Table corresponds to a CONVERT, RECORD,
GROUP etc., and an appropriate branch to a label where such
statement is to be processed takes place.
5.4.1.1 CONVERT_STMT Entry (see Figure 5-4B)

Since CONVERT_STMT is a Command statement i.e., there is
no name associated to it, the DDL compiler keeps the statement

number in the Data Table rather than in the Symbol Table

-161-
CURR_STMT, DCL_NO(I)
CONVERT_STMT < CONVERT.STMT NUMBER

STMT_TYPE(I) < 'CONVERT'
KEY SIZE = 1B;

ALLOCATE ST ENTRY

STMT NAME(I) < ST PTP
KEY = ' ' -

ST_PTR < CONVERT,TARGET

CALL
ENTER_TAB

ST_PTR < CONVERT.SOURCE

CALL —=()
ENTER_TAB

ST_PTR, STMT_NAME(I) < FILE.SYM

FILE_STMT DCL_NO(I),CURR_STMT <~ STMT_NUM

STMT_TYPE(I) < 'FILE'
ST_PTR < FILE.RCD_NAME

CALL
ENTER_TAB

ST_PTR < FILE.STORAGE

CALL
ENTER_TAB

FIGURE 5-4B

-162-

where the statement number is kept for the rest of
the DDL statements.

When control is passed to the entry, CURR_STMT (which
is an internal variable where the statement number of the
statement currently being processed is stored) and DCL_NO(I)
are set to the statement number in the CONVERT Data Table entry.
STMT_TYPE (I) is set to the character string 'CONVERT'. And
a Symbol Table entxy for the CONVERT statement is allocated.
Then ST_PTR (which is a pointer variable on which the Symbol
Table entries are based) is set to CONVERT TARGET. And
ENTER_TAB (see Section 5.4.3) 1s called to enter this reference
in the cross-reference table. Next ST_PTR is set to CONVERT_
SOURéE and ENTER_TAB is called. Then control is passed to the
loop where the next Data Table is to be processed.
5.4.1.2 FILE_STMT Entry (see Figure 5-4B)

As we pointed out in the preceeding Section, the statement
numbers for all the DDL Statements but the CONVERT statement
are kept in the corresponding Symbol Table entry where the name
of the DDL Statement is stored. Now when control is passed to
this entry point, ST_PTR and STMT_NAME(I) are set to File
SYM (pointer to Symbol Table where name of File stmt is stored).
And DCL_NO(I) and CURR_STMT are set to STMT_NUM. The variable
STMT_TYPE (I) is set to the character string 'FILE'. The

pointer to the record name is stored in ST PTR and ENTER _TAB is

-163-

called (see Section 5.4.3) to enter reference to Record
statement into cross-reference table. Next the pointer to
storage name is stored in ST_PTR and ENTER _TAB is called

to enter reference to STORAGE stmt (CARD, TAPE or DISK)

into the cross-reference table. Finally control is returned
to the loop were the next Data Table is to be processed.
5.4.1.3 CARD_STMT entry. (See Figure 5-4C)

First ST_PTR and STMT_NAME(I) are set to CARD.SYM (where
the pointer to the Symbol table entry for the name of the
CARD statement is stored). Next DCL_NO(I) is set to STMI'_NUM
and STMT_TYPE (I) is set to the character string 'CARD'. Then
control is passed to the loop were the next Data Table is to
be processed.
5.4.1.4 TAPE STMT Entry. (See Figure 5-4C)

The actions taken by this entry are similar to those of
the CARD STMT entry the difference is that STMT_TYPE (I) is
set to the character string 'TAPE'.
5.4.1.5 DISK STMT Entry (See Figure 5-4C)

In this case STMI_TYPE (I) is set to the character string
'DISK' and the rest of variables are set in a similar manner"
as those in the above two entries.

5.4.1.6 RECORD STMT Entry (See Figure 5-4C)

In this entry ST_PTR and STMI NAME(I) are set to RECORD.SYM

-164-

ST_PTR, STMT NAME(I) <~ STMT.SYM

DCL_NO(I) < STMT_NUM ——~@
STMT_TYPE(I) < 'CARD'

ST_PTR, STMT NAMF(I) < STMT.SYM
DCL_NO(I) < STMT NUM
STMT_TYPE(I) < 'TAPE'

ST_PTR, STMT_NAME(I) < STMT.SYM
DCL_NO(I) < STMT_NUM
STMT_TYPE(I) < 'DISK'

RECORD_STMT

; |
§ }

ST_PTR, STMT_NAME(I) < RECORD.SYM
DCL_NO(I),CURR_STMT < STMT_NUM
STMI_TYPE(I) < 'RECORD'

(IS LOCK_FLAG SET?

© &

Y
}-——' REC_LOCK < "LOCK"

}

DO K=1 TO RECORD.NO_MEMS

!

ST_PTR < PECORD.MEMBERS (K) . MEM_NAME

CALL

mnrg_l’mcs ‘—-——Y——st PRE_CRIT_FLAG(K) SET?)

R
PRE_CRITS

N

FIGURE 5-4C
CARD_STMT, TAPF_STMT,
DISK_STT, PECOPP_ST™T

-165-

(pointer to Symbol Table entry where the name of RECORD stmt
is stored), DCL_NO(I) and CURR_STMT are set to STMT_NUM, and
STMT_TYPE(I) is set to the character string 'RECORD’.

Néxt if the LOCK_FLAG is set the name of the DML routine
is saved in RECrLOCK. Then a loop to process all the members
in the RECORD statement is initiated. ST_PTR is set to point
to Symbol Table entry of current member of RECORD and if the
PRE_CRIT_FLAG for this member is set ENTER PROCS (see Section
5.4.4) for PRE_CRITS is called. Next ENTER_TAB is called to
store reference to GROUP and/or FIELD into cross-reference
table. After all the members of the RECORD statement have been
processed control is returned to loop where the next Data Table
is to be processed.
5.4.1.7 GROUP_STMT Entry (See Figure 5-4D)

In this entry ST_PTR and STMT _NAME(I) are set to
GROUP.SYM (pointer to Symbol Table where the name of GROUP
statement is kept), DCL NO(I) and CURR_STMT are set to STMT NUM
and STMT_TYPE(I) is set to the character string 'GROUP'. Next
a loop to process all the members of current GROUP is initiated.
ST_PTR is set to point to Symbol Table entry of current member
of GROUP, and if the PRE_CRIT_FLAG is set then ENTER_PROCS
for PRE_CRITS is called. To store the reference to GROUP and/or
FIELD, ENTER_TAB is called. Finally after all the members of
GROUP have been processed control is transferred to loop where

next Data Table entry is to be processed.

~166-
5.4.1.8 FIELD STMT Entry (See Figure 5-4D)

When control is passed to the FIELD STMT entry, DTPTR1
is set to a continuation of the FIELD Data Table where
the FIELD description is stored. Next ST _PTR and STMT_NAME(I)
are set to FIELD.SYM (pointer to Symbol Table entry where the
name of the FIELD statement is stored), DCL_NO(I) and CURR_STMT
are set to STMT_NUM, and SIMT_TYPE(I) is set to the character
string 'FIELD'.

If the conversion flag is set then ENTER_PROCS (see
Section 5.4.3) for DML conversion routines is called. Next if
the FIELD statement has been specified with the NUM_PICTURE
attribute and no mapping has been specified controi'is passed
to the loop where the next Data Table is to be processed. If
a mapéing has been specified DTPTR3 is set to point to the
description of such mapping and control is passed to the
TEST_SOURCE_NAME entry (see Figure 5-4D).

If the attribute of the FIELD statement is CHAR_PICTURE,
CHAR or BIT a test is made to determine if the length of the
FIELD is given as an integer, *, parameter statement (DDL_LENGTH
or DDL_COUNT), reference name or a DML procedure. If length
is an integer or * control is passed to the GET_ASSG entry
(see Section 5.4.1.8.1). If length is specified via a DML
procedure ENTER PROCS (see Section 5.4.3) for FLD_LENGTHS is
called and control then passed to the GET_ASSG entry. If the
length is given as a parameter statement DTPTR is set to point

to the argument of the parameter statement i.e. reference Name

. -167-

ST_PTR,STMT_NAME(I) < GROUP.SYM

' DCL_NO(1),CTRP_STMT < STMT NUM
CROUP_STHT STMT TYPE < 'GROUP'

END?
DO K = 1 TC GROUP.NO_MEMS

ST_PTP. < GPQUP.MEMBERS (K) .MEM_NAME

CALL
ENTEP. PROCS || Y
FOR ._@ GROUP.PRE_CRIT_FLAG SET?)
PRE_CRITS
- N
CALL
ENTER_TAB
FIELD_STMT DIPTR1 < FLD_DESC
4
ST_PIR, STVT_NANE(I) < FIELD.SYV
DCL_NC(I),CURP_STMT <« STMT NIM
ST _TYPE(1) < 'FIELD'
caLL r .
A= rees e ¥ (15 conv_FLaG SET?)
R -
convs e

| e)
FLD_TYPE = 1?
\ -
Crs NUM_PICTURE.ASSG < 2?)—Y—-@

DTPTP3 < NUM_PICTURE.PIC_SOURCE_NAME

A
|
(TEST_SCURCF_NAME)

FIGUPE 5-4D
GROUP_STMT, FIELD_STMT

-168-

(' PaRSE_sourCE_NAVE)

< DO L=1 TO SOURCE_NAME

END?
NO_NAMES (o)

ST_PTR <- DDL_NAME(L) ,NAME

|
|
|

CALL
ENTER_TAB

.—Y—Lrs DDL_NAME(L) .LOWER_TYPE = 07)

I

N

C IS DDL_NAME(L).LOVER.TYPE = 17).3..@}:(:1(_smz)

N

TEMPTR < DDL_NAME(L).L"WER_PARAM
DIPTRG < TEMPTP -> STIT.SY¥

CALL
PAPSE_PEF NA'E

CHECK_SUR2)

Y
-—-—Q DDL_NAME(L).UPPER_TYPE <2)

TEMPIR <- DOL_N/NF(L).UPPES_PAPAN
DIPTRé < TEMPTR -> STMT.TYPE

CALL
PARSE_REF_NAME

FIGURE 5-4D (continued)
GROUP_STNT, FIELD_STMT

-169-

C IS DESC.LENGTH_TYPE < 27 }Y_-(ct-:r_.n.ssc)

N Y CALL
(IS DESC.LENGTH_TYPE = 4?)—.-. ENTER_PROCS
- LENGTES
DTPTRG

< N N -
LENGTH PARAN ‘.—@ DESC.LENGTH_TYPE = 27)

ST_PTR < LEGTH_PARAM
DIPTR <« DT_PTR
DTPTR4 <~ STMT.SYM

CALL
PARSE_REF_NAME

C GET_ASSG)

CIS DESC.ASSGN < 2 7 j—l-@

N

C DIPTR3 < DESC.ASS3.PTR)
(TEST_SCURCE_NAVE D
((1s Parm STNT = WULL 7)—Y-Qusz_snmcr:_um)

N

TEMPTR < PARAM.STMT
DTPTR4 < TEMPTR => STMT.SYM

CALL
PARSE_PEF_NAME —*@

FIGUFE S-4D (continued)
GRCUP_ST.‘K'I, FlELD_ST."T

-170-

and PARSE_REF_NAME (see Section 5.4.1.8) is called to get all
statement references in reference Name. Then control is
passed Lo GET_ASSG (see Section 5.4.1.7.1) entry. If the
length is given as a reference name FARSE_REF_NAME is called
and then control is passed to the entry GET_ASSG.
5.4.1.8.1 GET_ASSG entry (See Figure 5-4D)

Here a check is made to see if a mapping of the form
" <= "SOURCE_NAME" has been specified, if not control is
returned to the loop were the next Data Table is to be pro-
cessed. If an assignment has been specified DTPTR3 is set
to point to Data Table where the assignment specification is
stored. Next if the assignment is a parameter statement
DTPTR4 is set to point to where the argument (i.e., reference
name is stored) and PARSE REF NAME (see Section 5.4.1.9)
is called. After returning from PARSE_REF_NAME control is
passed to the loop were the next Data Table is to be processed.
If the Argument is via a Source Name then PARSE_SOURCE_NAME
is called (see Section 5.4.1.9).
5.4.1.9‘ PARSE_REF_NAME (See Figure 5-4E)

Thks routine uses the structure based on DTPTR4 where the
names that form a DDL reference name are stored. A loop is

initiated to get all the names in reference name and for every

name ENTER TAB (see Section 5.4.3) is called.

-171-

5.4.2 PARSE_SOURCE_NAME (see Figure 5-4D)
| This routine uses the structure based on DTPTR3 where

the name and its subscripts that form a Source Name are stored.

‘Then a loop is initiated to get all names in Source Name and

ENTER_TAB (see Section 5.4.3) is called to store references

into the cross-reference table for every name in Source Name.

I1f the first subscript of name (I) is variable i.e., a parameter
statement DTPTR4 is set to point to where the argument is stored
(i.e., a reference name) and PARSE_REF_NAME (see Section 5.4.1.8)
is called. If the first subscript is an integer and the second
subscript do not appear control'is transferred to loop where

the next name in Source Name is to be processed.

If the second subscript in name (I) appears but it is an
integer,control is passeéd to loop where the next name in Source’
Name is to be processed. If second subscript is variable
i.e., a parameter st;tement DTPTR4 is set to point to where the
argument is stored and’PARSE_REF_NAME is called.

After all the names have been processed control is
transferred to loop where next Data Table is to be processed.
5.4.3 ENTER_TAB (see Figure 5-4E) ;

This procedure enters the cross-reference information into
the cross-reference table XREFTAB. This table. is indexed by the
DDL_STMT number. Upon entry to this routine, ST_PTR must point

to the Symbol Table entry for the referenced statement. CURR_STMT

‘ Csunzn_un)

-172-

J < ST.ENTRY.STMT_NUM

C Y PRINT

= ?

Is J OD—. SYNTAX ERROR —{ RETURN)
P

: N XPEF(J, COUNT(J))
CIS COUNT(J) > 0? j._.. S

COUNT(J) < COUNT(J) + 1

CUPR_STMT
N
IS XREFTABLE(J,COUNT(J)) —
.= CURR-ST’* S/
Y
i RETURN

Cr.sn:n_rmcs)

4

< PETURN)

—.Qo J=1 TO NO OF ENTRIES

N (IS NAME(J) = NAMEIN?

Y
>@;_Cs J > STMT_NO ?)
N
) NAME(J) < NAMEIN
HO OF INTPIES < J

C PARSE_REF_NAME

—<x>0 L=1 TC NO OF NAMES

: ST_PTR <« REF_NAME(<).NAME

ENTER_TAB

FIGURE S-4E

ENTER_TAB, ENTER_PRNCS

-173-

must contain the DDL_STMT number for the referencing statement.
ENTER_TAB also checks if the statement number for the referenced
statement is zero, if true, an error message is output.

First ENTER_TAB set J to the DDL_STMT number of the
reference statement, if it is equal to zero the following
error message is output:

"SYNTAX ERROR < STMT_NAME > USED IN STMT_NUM < CURR_STMT >
HAS NOT BEEN DEFINED". and control is transferred to calling
routine.

If J is different of zero a check is made to determine
if the reference has already been made, if so, control is
passed to calling routine. If the references have not been
made COUNT (J) is increased by 1 and XREFTABLE (J, COUNT(J))
is set to CURR_STMI and control is then passed to calling
program.

5.4.4 ENTER_PROCS (see Figure 5-4E)

This procedure is used to store the name of the DML
procedures referenced in the DDL statements. There are three
structures where the DML names are to be'stored; FLD_LENGTHS
based on FLD_LENGTHS_PTR, PRE_CRITS based on PRE_CRITS_PTR
and CONVS based on CONVS_PTR. ENTER_PROGS uses two input
parameters, the first one PTR which is a pointer and is set
by the calling routines to either FLD LENGTHS, PTR, PRE_CRITS_
PTR or CONVS_PTR, the second parameter is DML_NAME and is set

by the calling routines to the name of the DML procedure

=174~

referenced in the DDL statement.

The names are stored by ENTER_PROCS in the appropriate
structure in a sequential form, i.e., every time a DML name
is to be stored a check is made starting with the first DML
name stored to determine if such DML name has not been
already stored, if the DML name is not found the number of
entries in that structure is increased by one and the DML
name is stored. In either of the above two cases control
is transferred to calling routine.

5.4.5 PRINT_TAB (see Figure 5-4F)

This procedure is used to first sort the DDL_NAMES in
alphabetic order and then output the XREFTABLE. Also PRINT_TAB
outpuf the names of the DML procedures referenced in the DDL
statements.

The arrays STMI_NAME and STMT_TYPE are indexed by the
stmt number given by the sequential scan of the Data Table.
The arrays XREFTABLE and COUNT are indexed by the DDL_STMT
numbers. These are contained in the DCL_NO array which is
indexed in the same way as STMI_NAME and STMI_TYPE.

After the XREFTAB and DML names have been output control
returms to the DDL COMP procedure.

5.5 Phase 2A of The DDL Compiler - Code Generation (Data

Parsing)

After the Symbol and Data Tables are created for the DDL

-175-

:

(CerinT_TaB

I

)—-<no.x-1'rox-1

>—‘[—SOPT(J) -J I

l END?

——°<m Je1 10 1-2

: FND @

!

,._ﬂ<m K=1710 1-1-3

>.__.

1

ST_PTP <« STT_NNE(SPI(K))
DIFTT < STMT_EAVE(SORT(K+1))

!

CIS KEY > DTPIP -> KEY?

0%
)‘

!

NDULMMY < SORT(K+1)
SCPT(K+1) < SORT(K)
SOPT(K) < NDUMMY

PRINT: (IF ANY)
CONVFRSION ROUTINES

DM J=1 TO I-1

PRF_CRITS

>.’£’. TIELD_LENGTHS
PECORD LOCK

|

PRINT:

DCL_NN(SORT(J)) .KEY,TYPE

l

END? DO K =1 TO COUNT(PCL_No
(SORT(J)))BY 1B

PRINT:

XREFTAB(DCL KN (SORT(J),L)
i.e., PEFEPENCE NUMRERS

FIGURE S-4F
PRINT_TAB

-176-

statements the next step is the generation of the object
language. The DDL compiler as we already mention generates

PL/1 as the object language; in other words it translates

DDL statements into PL/l1 statements. This phase of DDL compiler
is called phase 2. It is composed of phase 2a - Code Generation
for data parsing and phase 2b - Code Generation for data move-
ment. Phase 2a is presented in the following paragraphs and
Phase 2b is given in Section 5.6.

The main task of Phase 2a is to generate a PL/1 structﬁre
corresponding to the structure for the Source file described in
DDL, this is done via PL/1 declare statements. In order to
achieve a better explanation in this topic let us again give
an example. Assume that the user has not specified the INLEN
and INCNT parameters to the compiler and that the description
of its Source file in DDL is the following:

FL1 IS FILE (RCD1 ,STORAGE = CARDIN);

RCD1 IS RECORD (ELEM1(4), ELEM2(0:20)

,PRE_CRIT = 'FUN1' ,SIZE = VARIABLE
(1680));

ELEM1 IS FIELD (CHAR(20));
ELEM2 IS GROUP (FLD2, FLD2, FLD3(7));
FLD1 IS FIELD (BIT(16));
FLD2 IS FIELD (CHAR(8));
FLD3 IS FIELD (CHAR(10));

CARDIN IS CARD;

-177-

The above example specified that FL1 18 a file which
is stored in CARDS, and the RECORD which forms the file is
vafiable in size, its maximum value is 1680 characters.
RCD1 is composed of two members, the first one, ELEMl is a
repeating field which occurrs 4 times, and its second member,
ELEM2, is a optional group which can occur up to a maximum
of 20 times depending on the criteria given by the user
via a DML routine called "FUN1".

The PL/1 declare statements that the DDL compiler will
generate for this example are: (keep in mind that the INLEN
and INCNT options were not specified).

ADCL 1 FL1,
2 RCD1,
3 ELEM1 (4),
4 PTR POINTER,
4 LEN FIXED BIN INIT ((4)OB),
3 ELEM2 (20),
4 FLD1,
5 PTR POINTER,
5 LEN FIXED BIN INIT ((20)0B),
4 FLD 2,
5 PTR POINTER,
5 LEN FIXED BIN INIT ((20)0B),
4 FLD3 (7),
5 PTR POINTER,

S LEN FIXED BIN INIT ((140)0B);

-178-

From the above example, it is easy to see that for every
member of it§ repeating the DDL compiler generates an array
whose name is the DDL name and its dimensions is the maximum
number of times such member can occur. For the DDL FIELD
two PL/1 statements are generated; the first one is a pointer
(this pointer will be set at run time with the core address
of the Data associated to this field is kept) and the second
is a fixed binary field (this data element in the PL/1 str;cture
will be set at run time with the length of the DDL FIELD).

If the INCNT and INLEN options were specified to the DDL
COMP the PL/1 structure generated by the DDL compiler is the
following:

DCL 1 FL1,

2 RCD1,
3 LEN FIXED BIN,
3 ELEM1,
4 COUNT FIXED BIN,
4 {#ELEM1 (4)
5 PTR POINTER,
5 LEN FIXED BIN INIT ((4)0B),
3 ELEM2,
4 COUNT FIXED BIN,
4 #ELEM2 (20),
5 LEN FIXED BIN INIT (OB),
5 FLD1,

6 PTR POINTER,

-179-

6 LEN FIXED BIN INIT ((20)0B),
5 FLD2,
6 PTR POINTER,
6 LEN FIXED BIN INIT (120)0B),
5 FLD3
6 COUNT FIXED BIN,
6 #FLD 3(7),
7 PTIR POINTER,
7 LEN FIXED BIN INIT ((140)0B);

Thus, only a new data item has been added to the PL/1
structure, i.e., '"COUNT" Data items (which is fixed binary and
at run time this field will contain the number of times a
repeating member actually occurred in the Record being parsed).

Concurrently with the generation of the PL/l declare

statements, is the generation of PL/1 statements which when
executed will perform the parsing of the input record.
5.5.1 CODE_GEN_PARSE

CODE_GEN_PARSE is called from the DDLCOMP, after the
Symbol Table and Data Table have been created and if there were
no errors detected. GEN_CODE_PARSE walks in these tables and

calls on the appropriate routines to achieve the declaration of

the PL/1 structure and the generation of PL/l code to carry on
' the parsing of the input records. CODE_GEN_PARSE is the monitor

for code generation to parse the input record.

-180-

After getting the entry for the CONVERT statement in
the Data Table CODE_GEN PARSE generates the PL/1 procedure
statement. Next it generates the PL/l1 statements for END OF
FILE condition and the initialization of run-time variables
used in data parsing. It then generates code to declare CDP
(i.e., current data pointer) which is a pointer to the Internal
Input buffer where the Input Record is kept, and to declare
#DDL_MAXCDP which is used to hold the maximum value reached by
CDP during the parsing process when the SCAN statement is used.

After getting the entry in the Data Table for the Source
File CODE_GEN_PARSE saves the character code used to record
the input record. Then it gets the entry in the Data Table
corresponding to the Record statement and it saves the infor-
mation concerning the size of the Record. Next it gets the
entry in the Data Table for the Storage statement and sets the
value of TRANS_ FLAG to:

0 if character code is EBCDIC or if BCD or ASCII and

recording is mode ALL BIN

1 if character code is ASCII and recording mode ALL_CHAR

2 if character code is BCD and recording mode ALL_CHAR

3 if character code is ASCII and recording mode MIXED

4 if character code is BCD and recording mode MIXED

Then if Storage Type is TAPE,CODE_GEN_PARSE calls on

GEN_DD_TAPE (see Section 5.5.15), if TYPE is DISK then

}
{, -181-

Ry -
CEN_DD_DISK (see Section 5.5.15) is called, otherwise the
input is via CARDS and the appropriate DD CARD is generated.
Then CODE_GEN PARSE calls on GEN_READ (see Section 5.5.16)
which is a procedure used to generate PL/l1 statements to
declare internal input buffers and to generate PL/1 read
statements to read the Source File. If translation between
|

chéracter codes BCD or ASCII and EBCDIC is required then
CODE_GEN_PARSE generates the appropriate PL/1 translate
statements.

The next step taken by CODE_GEN_PARSE is to generate
thé PL/1 declare statements and the PL/l1 statements that will
achieve the parsing of the input record. This is done by
taﬁing'the members of the RECORD statement. The order in which
the members are processed is given by the SCAN VECTOR, such
vector is set by either the SCAN statement if specified or to
1, 2, to numbers of members if SCAN was not given, such members
can be GROUPS or FIELDS. Then the procedure,to set "CpP" for
current member, SET_POS is called (see Section 5.5.14). 1If a
member is a FIELD then the procedure to generate PL/1 declare
statements for the FIELD is called, this procedure is GEN_FLD_DCﬁ
(see Section 5.5.5). Next the procedure to generate PL/1 code
to parse FIELD is called, the name of this procedure is

|

GE&_PARSE_FLD (see Section 5.5.7). After this CODE_GEN_PARSE

gets next member in RECORD statement and ‘the process repeats. If

member is being declared as a GROUP then the procedure to

@s_cm_mzsz)
|

CET CONVERT ENTRY IN
DATA TABLE

OUTPUT1:

PL/1 CODE FOR PROC.STMT
AND INITIALIZATION OF RUN-
TIME VARIABLES USED IN
PARSING INPUT RECORD, AND
CODE TO DECLARE CDP AND
¥DDLMAXCDP

OUTPUT:
PL/1 CODE FOR END_CF_FILE

CONDITION

GET SOURCE_FILE ENTRY
IN DATA TABLE USING NAME
GIVEN IN CONVERT STMT.

|

[sm CHAR_CODE

!

GET RECORD ENTRY USING
NAME GIVEN IN ABOVE FILE

T

-182~

@ nms_nf\c)

EBCDIC BCD
ﬁmcu ON CHAR_CODF.
l ASCIY
SFT SET SET
VARTABLES VARIABLFS VARIABLES
| FOR F| Lror ﬁegu FOR s;cu
15 STORAGE Y CALL
TYPE = DISK? GEN_DD_DISK
. .
1S STORAGE Y | CALL
TYPE = TAPE? GEN_DD_TAPE

i
OUTPUT2:
DD_CARD FOR FILE
STORFD IN CAPDS

ASCII BRANCH ON CHAR_CODE BCD
1 IF REC_MODE = ALL_CFAR

SAVE POINTER TO RECORD ENTRY
SAVE RCD_SIZE

OUTPUTL:
PL/1 STMTS TO DECLARE
TABLES FOR ASCII &

1

GET STORAGE ENTRY IN DATA
TABLE USING NAME GIVEN IN
FILE STNT

EBCDIC
OUTPUTG:

PL/1 PROCEDURE
TC CARRY ON TRANS-
LATION ASCII “>rBCnIC

|

OUTPUT1:
PL/1 STMIS TO DECLARE
TABLES FOR BCD &

EBCDIC
OUTPUT6:
PL/1 PROCEDURE TO

CARRY (N TRANSLATION
BCD -> EBCDIC

FIGURE S-SA

CODE_GEN_PARSE

-183-

OUTPUT : CALL

LEVEL 1 PL/1 DECLARE SET_DOS

s

LEVEL 2 PL/1 DECLARE 1

ST™T "

Qs MEMBER A GROUP? j--@

1 -

STACK RECORD NAME IN :

MEM_NAME_STACK CALL
l GEN_DCL_GROUP

OUTPUT: I

PL/1 CODE TO INITIALIZE CALL

RUN-TIME SWITCHES TO BE GEN_PARSE_MEM

USED BY DML ROUTINES

AND TO INITIALIZE CDP l

AND OUTCDP

C IS LEN_OPT SET?)__u.

| .
N
2
(IS LEN_OPT SET? }__ cALL
ZERN_LEN
l Y L
r
OUTPUT3:
PL/1 CODE TO SET TO ZERD CALL _@
LENGTR OF INPUT RECPRD VALK
L

3
END? OUTPUT:
DO I=1 TO NUMBER OF MFMBERS IN PL/1 STMT TO SFT CDP
RCD = TO FDDLMAXCDP

RESET DATA TABLE POINTER

TO POINT TO RECORD STMT : (IS LOCK SET?)—!{RETL’PN)

FIND NEXT MEMBER USING
SCAN_VECTOR

OUTPUT:
PL/1 CODE TO CALL
ON LOCK PRNCEDURE

FIGURE 5-SA (CONTINUED)

CODE_GEN_PARSE.

-184-

CALL
GEN_FLD_DCL

CALL
GEN_PARSE_FLD

(::}___<:Is LEN OPT SET?) N o

CALL
GEN_CALC_LEN

CALL
GEN_MATCH_ENDS

DECREASE LEVEL
POPUP SUB_VAL STACK
POPUP MEM_NAME_STACK

OUTPUT:

PL/1 CODE TO SET
#DDLMAXCDP TO MAXIMUM CDP
VALUE REACHED SO FAR.

FIGURE 5-5A (continued)
CODE_GEN_PARSE

-185-

generate PL/1 declare statements for the GROUP is called,

this procedure is GEN_DCL_GROUP (see Section 5.5.4).

Similarly a procedure to generate PL/1 code to parse Group

is called, the name of this procedure is GEN_PARSE_MEM.

Since the GROUP can have members of its own a procedure to
parse such members is called, this procedure is recursive since
some or all the members of a GROUP can themselves Pe GROUPS.
This procedure is WALK (see Section 5.5.2). After all members
of the GROUPs and SUB-GROUPs have been processed WALK returns
to CODE_GEN_PARSE and then the next member in the RECORD is
processed and the process repeats until all members in the
RECORD statement have been processed.

After each member has been processed the procedure
GEN_MATCH_ENDS (see Section 5.5.9) is called, this procedure
generates the PL/1 END statement corresponding to the DO loop
generated by GEN_PARSE MEM, if it was a repeating member.
| When the INLEN option was specified to the DDL compiler
tﬁen after returning from GEN_PARSE_MEM the procedure ZERO_LEN
is called (see Section 5.5.8), this procedure generates PL/1
code to set to zero the length of the current member being
processed after a new input has been read. Also, after returning
from GEN_PARSE_FLD the procedure GEN_CALC_LEN is called (see
Section 5.5.8), this procedure generates PL/l code to accumulate

the length of the current field into the length of its ancestors.

-186-

If the LOCK option was specified in the RECORD statement
the CODE_GEN PARSE generates PL/1 code to call on the procedure
to perfcrm security checking before the translation of the
;input record is attempted.

5.5.2 WALK

WALK is called from CODE_GEN PARSE (see Section 5.5.1),
it is used to process the members of the GROUP statement
specified in the definition of the Source file. WALK is a
recursive procedure since the members of a GROUP can also be
GROUPS, and thus WALK will call on itself.

Upon entry to the procedure, the pointers to the members
of the current GROUP being processed are saved. Then the
first member is processed, if it is a FIELD, GEN_FLD_DCL
(see Section 5.5,5) is call, this procedure generates the
PL/1 statements for the FIELD. Next, the procedure GEN_PARSE_
FLD i1s called (see Section 5.5.7) to generate PL/1 code to
parse the FIELD. If the member is a GROUP then the procedure
GEN_DCL_GROUP is called (see Section 5.5.4) to generate PL/1
declare statements for this GROUP. Next, GEN_PARSE MEM is
called (see Section 5.5.3) to generate PL/1l code to parse Group.
Since current member is a GROUP then call WALK to process its
submembers.

Similarly, to GEN_CODE_PARSE, the procedure WALK after

~-187-

Gz

SAVE POINTERS TO MEMBERS OF
CURRENT GROUP BEING PROCESSED

-

—\DOI-I TO NO OF MEMBERS

st MEMBER(I) A GROUP OR FIELD?

)—“—ﬂ CALL EFROR(4)

Y

____Y_(IS MEMBER(I) A GROUP?

)_A_.

CALL
GEN_DCL_GROUP

GEN_FLD_DCL

CALL

CALL
GEN_PARSE_MEM

9

GEN_PARSE_FLD

CALL

C IS LEN OPT SET ?

Y

CALL
ZERO_LEN

N
CALL
VALE IS LEN_OPT SET? DJH
Y
CALL
GEN_CALC_LEN

DECPEASE LEVEL

NAMES

PCPUP SUB_VAL STACK
POPUP STACK OF ME!MBERS

GEN_MATCH_ENDS

CALL

FIGURE 5-5B
WALK

-188-
processing each member calls on GEN_MATCH END (see Section 5.5.9).
If the INLEN option was specified to the DDL compiler
then after returning from GEN_PARSE MEM, the procedure
ZERO_LEN is called (see Section 5.5.8) and also after returning
from GEN_PARSE_FLD the procedure GEN_CALC_LEN is called
(see Section 5.5.8).
5.5.3 GEN_PARSE_MEM
This procedure when called generates PL/1 code to parse
the member which can be a FIELD or a GROUP. The member can
occur a fixed number of times or can be optional and occur a
variable number of times. For internal purposes it stacks the
iteration variable (if repeating member) in ITER_STACK, the
pointer to the member name in the symbol table in the MEM NAME
STACK, and a unique label number (LABEL #) in LABEL #_ STACK.
ITER;STACK is a stack which contains the iteration variable
in parenthesis (e.g. (I01)), if the member repeats, or the null
string if not. MEM NAME_STACK is a stack where the pointer
to the member name is kept. LABEL # STACK is a stack which
contains an unique label number used to generate the corresponding
PL/1 END statement for the DO loops if the members repeats, or
a null string otherwise.
If the member occurrs a variable number of times then
GEN_PARSE _MEM generates PL/1 code to call the procedure specified

by the ",PRE_CRIT =" given by the user.

'»

~-189-

(cen_parse_wem

)

Y
T.L(mss MEVBER HAVE SUBSCRIPTS? }—01

PUSH NULL STRING IN
ITER_STACK

PUSH MEMBER NAME IN
MEM_NAME_STACK
PUSH ZERO(O) IN LAB
STACK

EL?-

G

OUTPUT:
PO LOOP STMT"

LABEL# = LABEL# + 1

PUSH LABEL# IN LABELA_STA
PUSH MEMBFER NAME IN
MEM_NAME_STACK

o

DOES MEMRER
HAVE 2ND SUBSCRIPT

)n__

Y

PUSH ITERATION VARIABLE
INTO ITER_STACK

" L
CALL N ;lgs:A;l‘-’lE PRE_CRIT" PROC
ERROR(1))

D

l Y
OUTPUT:
PL/1 CODE TO CALL ON
“PRE_CRIT" PROCEDURE

(reuRa 2 15 oxT_opr ser?

CALL

GEN_INCP_COUNT

FIGURE 5-5C
GEN_PARSE_MFM

-190-

Finally, if CNT_OPT was specified then the procedure
GEN_INCR_COUNT (see Section 5.5.13) is called to generate
PL/1 code to accumulate the number of times the member
actually occurred in the current input record.

5.5.4 GEN_DCL_GROUP

This procedure generates the PL/1 declare statements
for the current GROUP being processed. Upon entry to thé
procedure CALL_SUB (see Section 5.5.6) is called. CALL_SUB
is a procedure that returns the value of the subscript if the
GROUP repeats, it returns the maximum value if the GROUP repeats
a variable number of times. Then the PL/1 statement of the
type:

. "LEVEL < GROUP_NAME > [(SUBSCRIPT)] is generated. 1If
the CNT_OPT was specified then a PL/1 declare statement is
generated to declare a field to keep a COUNT of the number of
times the GROUP actually occurred in the current input record.
Also if the LEN OPT was specified then GEN_DCL_GROUP generates
a PL/1 declare statement to declare a field where the length of
this repeating Group is to be stored.

When repeating GROUPS are being declared in PL/1l, in order
to initialize the COUNT field to zero, GEN_DCL_GROUP calls on
INIT_CNT (see Section 5.5.12). In order to initialize the
LEN field to zero. The procedure INIT LEN (see Section 5.5.12)

is called.

\- - ——r

-189-

(cen_parse_prw

)

Y

‘J_(mzs VEVBER HAVE SUBSCRIPTS?)——q

PUSH NULL STRING IN

ITER STACK

PUSH MFMBER NAME IN

MEM NAME STACK

PUSH ZERO(O) IN LABEL?-

STACK

G

OUTPUT:
"M LOOP STMIT"

LABEL# = LABEL# + 1

PUSH LABEL# IN LABELA_STA
PUSH MEMBFR NAME IN

MEM _NAME_STACK

DOES MEMRER
HAVE 2ND SUBSCRIPT

)_g__

Y

4

PUSH ITERATION VARIABLE
INTO ITER_STACK

CALL N

ERROR(1)

(RETURN ’.——{“ IS ONT_OPT SET?

DOES THE "PRE_CRIT" PROC

~

APPEAR?
L Y
OUTPUT:
PL/1 CODE TO CALL ON
"PRE_CRIT" PROCEDURE

1 Y

CALL
GEN_INCP_COUNT

FIGURE 5-5C
GEN_PARSE_MFM

-190-

Finally, if CNT_OPT was specified then the procedure
GEN_INCR_COUNT (see Section 5.5.13) is called to generate
PL/1 code to accumulate the number of times the member
actually occurred in the current input record.

5.5.4 GEN_DCL_GROUP

This procedure generates the PL/1 declare statements
for the current GROUP being processed. Upon entry to thé
procedure CALL SUB (see Section 5.5.6) is called. CALL_SUB
is a procedure that returns the value of the subscript 1f the
GROUP repeats, it returns the maximum value if the GROUP repeats
a variable number of times. Then the PL/1 statement of the
type:

. "LEVEL < GROUP_NAME > [(SUBSCRIPT)] is generated. If
the CNT_OPT was specified then a PL/1 declare statement 1is
generated to declare a field to keep a COUNT of the number of
times the GROUP actually occurred in the current input record.
Also if the LEN OPT was specified then GEN_DCL_GROUP generates
a PL/1 declare statement to declare a field where the length of
this repeating Group is to be stored.

When repeating GROUPS are being declared in PL/1l, in order
to initialize the COUNT field to zero, GEN_DCL_GROUP calls on
INIT_CNT (see Section 5.5.12). In order to initialize the
LEN field to zero. The procedure INIT_LEN (see Section 5.5.12)

is called.

- —

-191-

(:GEN_DCL_GROUP :)

CALL
CALC_SUB

| N OUTPUT1:
) PL/1 DECLARE STMT
?
CIS CNT_OPT SET? FOR THIS GROUP

Y

OUTPUT1:

PL/1 DECLARE STMT
FOR THIS GROUP ALONG
THE COUNT FIELD

pl—

(IS LEN_OPT SET?)—-N——(RETURN)

4

OUTPUT1:
PL/1 DECLARE STMT
FOR LEN FIELD

FIGURE 5-5D

GEN_DCL_GROUP

-192-

5.5.5 GEN_FLD DCL

This procedure forms the PL/1 declare statements for the
FIELD statements. Upon entry to GEN_FLD_DCL)CALC_SUB
(see Section 5.5.6) is called, this procedure gets the value
of the first and second subscripts of the FIELD (if any).
Then the PL/1 declare statements for this FIELD are generated.
Also if the CNT_OPT was specified then the PL/1 declare
statement for the field count is generated. INIT_LEN
(see Section 5.5.12) and INIT CNT are also called from
GEN_FLD_DCL in order to initialize the length and count fields
to zero.
5.5.6 CALL_SUB

CALL_SUB is used to get from the corresponding entry
in the Data Table the value of the subscripts (if any) for the
current member being processed. It stacks the subscript in
numeric form in VAL_SUB and saves the subscripts enclosed in
parentheses in SUB. The stack VAL_SUB is used by INIT_LEN
and INIT CNT (see Section 5.5.12). SUB is used in the
generation of the PL/1 declare statement for the current member.
If the member does not have subscripts then SUB is set to the
Null string and the value 1 (one) is stacked in VAL_SUB.
5.5.7 GEN_PARSE_FLD

This procedure is used to generate PL/1 code, which
when executed will set the field PTR in the PL/1 structure
with the core address in the input buffer corresponding to the

current field being processed. Also it generates PL/1l code to

-193-

(:;GEN_FLD_DCL :)

CALL
CALC_SUB

OUTPUT1:

N | PL/1 DECLARE STMI
? |
(: IS CNT_OPT SET ? 4::y__~ PL/L DECLARE S

i, Y

%
OUTPUT1:
PL/1 DECLARE STMT
FOR THIS FIELD ALONG
WITH THE COUNT FIELD

OUTPUT1:

PL/1 DECLARE STMT
FOR THE PTR FIELD
AND THE LEN FIELD

y

G)

FIGURE 5-5E
GEN_FLD_DCL

=194~

(:7CALC_SUB

D,

(;pOES MEMBER HAVE SUBSCRIPTSE:}SL—

Y

<:IS THERE A SECOND SUBSCRIPT%:)——E—

CALL
ERROR(15)

‘—E(:IS SUBSCRIPT AN INTEGER? j)

SUI=
NULL STRING

EQUAL TO 1?

Y

1
SUBSCRIPT

D

N

SUR = (" INTEGER ")

VAL_STACK

PUSH "INTEGER" IN

(:kETURN j)

FIGURE

5-5F

CALC_SUB

SUB = NULL STRING
PUSH ONE(1) IN
VAL_SUB

(::RETURN :)

-195-

set the field LEN in the PL/l structure to the length of
the current field being processed.

Upon entry to GEN_PARSE_FLD, the procedure GEN_PARSE_ MEM
-is called (see Section 5.5.3). Then the procedure which forms
the fully qualified PL/1 name for the current FIELD is called,
the name of this procedure is GEN_FLD NAME (see Section 5.5.10).
Then GEN_PARSE FLD generates PL/1 code to set the field PTR.
If the CHECK option was specified to the DDL compiler then
GEN_PARSE_FLD generates PL/1 code to initialize to NULL the
field PTR corresponding to current member. Next CALL FLD_LEN
(see Section 5.5.11) is called, this is a procedure which
calculates the length of the current field, the length can be
a constant and if so its value is returned in FLD_LEN, 1if
variable, i.e., length to be given by a reference_name or a
parameter statement or a user procedure written in DML or
when the length of the current FIELD is to be delimited by a
separator then CALC_FLD LEN returns the name of a function to
be called at execution time in FLD PROC. After returning from
CALC_FLD_LEN, GEN_PARSE_FLD generates the PL/1 code to set the
field LEN in the PL/1 structure to the value returned in
FLD_LEN or FLD PROC.

If the TYPE of the current FIELD is CHAR, the CHAR_CODE
is ASCII and the REC_MODE is MIXED then GEN_PARSE_FLD generates
PL/1 code to call on the procedure that will perform the trans-
lations from ASCII to EBCDIC. If the CHAR_CODE is BCD then

the PL/1 generated code will call on the procedure to translate

~-196-

(GEN_PARSE_FLD)

CALL
GEN_PARSE_MEM

TEMP_FLD_NAME = GEN_FLD NAME

OUTPUT:
PL/1 CODE TO SET PTR TO ADDRESS
OF CURRENT FIELD IN INPUT BUFFER

C IS CHECK_OPT SET? }__.

OUTPUTS:
PL/1 CODE TO INITIALIZE TO NULL PTR
AFTER NEW RECORD HAS BEEN READ.

CALL

CALC_FLD_LEN

(IS FIELD LENGTH = CONSTANT?

) N

OUTPUT:
PL/1 CODE TO SET “LEN"

TO FINC_CALL WHICH WILL
RETURN LENGTH OF FIELD.

Y
OUTPUT:
PL/1 CODE TO SET “LEN" TO CONSTAT
LENGTH
FIGURE 5-5G

GEN_PARSE_FLD

-197-

.1_(IS FIELD TYPE = CHAR?

~
J

1S CHAR_CODE = ASCII? N
AND REC_MODE = MIXED

Y

1S CHAR_CODE = BCD
AND REC_MODE = MIXED?

D

OUTPUT:

EBCDIC

PL/1 CALL TO PROC.
TO TRANSLATE ASCII ->

OUTPUT:
PL/1 CALL T0 PPOC. TO
TRANSLATE BCD -> EBCDIC

OUTPUT:

PL/1 CODE TO STEP
“CDP" BY LENGTH
DIVIDED BY 8.

L

,._'C IS FIELD LENGTH = CONSTANT ?

CUTPUT:

PL/1 CODE TO STEP "CDP" BY

A CONSTANT.

— =

OUTPUT:

PL/1 CODE TO STEP “CDP" BY
PPOC. VHICR WILL RETUPN
LENGTH AT RUN-TIME

FIGURE 5-5C (continued)
GEN_PARSE_FLD

-198-

BCD to EBCDIC.

Finally GEN_PARSE_FLD generates PL/1 code to step
CDP which is the pointer to the input record stored in the
input buffer. If the TYPE of the FIELD is CHAR,CDP is
stepped adding the length of the FIELD)if it is BIT the length
is divided by 8.
5.5.8 GEN_CALC_LEN : ZERO_LEN

This procedure forms the PL/l statements to accumulate
the length of the current member into its ancestors.

ZERO_LEN is an entry point in GEN_CAIC LEN, when called
it generates the PL/1 statements to set to zero the length
of the ancestors of current members after a new input record
has been read.
5.5.9 GEN_MATCH_ENDS

This procedure when called from WALK or CODE_GEN_MOVE
generates the PL/1 END statement corresponding to a DO loop
(if any). To perform its task GEN_MATCH_ENDS uses LABEL#_STACK
which is a stack where the unique labels corresponding to the
Do loop are stored and VAL SUB which is a stack where the value
of the subscripts is stored.
5.5.10 GEN_FLD_NAME

GEN_FLD NAME is a procedure used to form the fully qualified
PL/1 name for the name of current FIELD. When one of the ancestors
or the current field itself have subscript the fully qualified

name is form using a subscript the name of the iteration variable

-199-

(:j GEN_MATCH_ENDS

CWAS A DO LOOP GENERATED \ N

Y

)

1

FOR THE CURRENT MEMBER

)

Y

DOES CURRENT MEMBER
HAVE TWO SUBSCRIPTS ?

)“_.

OUTPUT:
"END; LABEL:"

OUTPUT:
“LABEL:"

4

POP LABEL# STACK

G)

FIGURE 5-5I
GEN_MATCH_ENDS

-200-

(GEN_FLD_NAME :)

TEMP_FLD NAME = NULL STRING
ARRAY_FLD_NAME = NULL STRING

NUMBER OF
DOI =1TO ANCESTORS OF
: CURRENT TFIELD

\

CONCATENATE NAME OF ANCESTOR(I)
ALONG WITH ITS SUBSCRIPT(IF ANY)
TO TEMP_FLD NAME

4

CONCATENATE NAME OF ANCESTOR(I)
WITH * AS SUBSCRIPT(IF ANY)
TO ARRAY FLD NAME

FIGURE 5-5J
GEN_FLD_NAME

-201-

(which at execution time will take the appropriate value).
The fully qualified name is stored in TEMP_FLD NAME, (e.g.
A(I01).B.C, B.C(103).D(I04)) .GEN_FLD_NAME also forms
ARRAY_FLD NAME, the difference between ARRAY FLD NAME and
TEMP_FLD_NAME is that the name stored in the former contains
* in place of the iteration variable. (e.g.,A(*).B.C , B.C(4).
D(*))
5.5.11 CALC_FLD_LEN
This procedure returns the length of the current FIELD
being processed in:
1) FLD_LEN if length of FIELD is constant
2) FLD_PROC if length of FIELD is given by
a) Reference Name, or
b) Parameter statement (DDL_COUNT or DDL_LENGTH)
c) DML user supplied procedure, or
d) DELIMETER
5.5.12 INIT_LEN
INIT_CNT
This procedure finds the value of the subscripts of all
the ancestors of the current member and return its product.
To carry on its task INIT_LEN or INIT CNT uses VAL _SUB which
is a stack containing the values of the subscripts of the current
member and its ancestors. SUB_IND is a variable which contains
the number of subscripts, so far stacked into VAL_SUB, up to

the point of the invocation.

-202-

: (GEN_CALC_LEN)

.

FORM RIGHT HAND SIDE OF PL/1
STMT BY CONCATENATING NAMES
OF ANCESTORS OF CURRENT
MEMBER

1

FORM LEFT HAND SIDE OF PL/1
STMT BY CONCATENATING

NAMES OF ANCESTORS-1 OF
CURRENT MEMBER.

OUTPUT:

PL/1 STMT
LEFT_PART = LEFT PART + ‘———(RETURN

RIGHT_PART

CZERO_LEN)

1
LEFT_PART = 0

(:ﬁRETURN :)

FIGURE 5-5H
GEN_CALC_LEN, ZERO_LEN

-203-

: (::iCALC_FLD_LEN ‘#:)

FLD_LEN = 0
FLD_PROC = NULL STRIN(

Y
CIS TYPE = NUM_PICTURE)——"

FLD_LEN =
"LENGTH OF NUM_PICTURE

N

TRANSFEF TO APPROPRIATE
LENGTH TYPE

LENGTH GIVEN AS AN INTEGER
FLD_LEN = "INTEGER"

=

LENGTH GIVEN AS EITHER
DDL_LENGTH OR DDL_COUNT
FLD_PROC = COMP_DDL_PARAM

REF

LENGTH GIVEN AS A REF_NAME
FLD_PROC = COMP_DDL_REF_NAME

LENGTH GIVEN AS A DML POUTINE
FLD_PROC = CALL "DML NAME"

Y

DELIM

LENGTH TO BE DETERMINED BY

A DELIMETER
FLD_PRCC = DDL_DELIM ("DELIMFTER")

FIGURE 5-5K
CALC_FLD_LEN

~204-

INIT LEN
INIT_CNT

TEMP_VAL = 1

y

l__< DO I =1 TO SUB_IND

>..

TEMP_VAL = TEMP_VAL * VAL _SUB(I)

©ON
4——(13 TEMP_VAL = 1?

PR

C

RETURN
('TEMP_VAL')

FIGURE 5-5L
INIT_LEN, INIT CNT

RETURN
(NULL STRING)

-205-

5.5.13 GEN_INCR_COUNT

This procedure is called if the CNT_OPT was specified.
It generates the PL/1 statements to accumulate the number
of times the current repeating member have actually occurred
in the input record. When one of the ancestors or the current
member itself contains subscripts the fully qualified name
is form using as subscript the name of the iteration variable
(which at execution time will take the appropriate value).
The fully qualified name is stored in TEMP_FLD NAME. TEMP_FLD1
is similar to TEMP_FLD NAME, the difference is that subscripts
are formed with *,
5.5.14 SET_POS

This procedure is called if the SCAN statement appears
in the DDL program. Its job is to generate PL/1l code to set
CDP to the value given in the SCAN statement for the current
member being processed. CDP can be set to an integer or to the
value returned at run-time by the DML routine specified by
the user.
5.5.15 GEN_DD

This procedure generates the DD card for tapes or disks
from the information in the DISK or TAPE Data Table entry.
GEN_DD has two entry points GEN_DD TAPE and GEN_DD_DISK. The
DD cards in JCL language are written to the OUT2 file. If

GEN_DD_TAPE was called TAPE_DISK_FLAG is set to one, and if

-206-

(:ﬁGEN_INCR_COUNT :)

y

FORM TEMP_FLD_NAME

FORM TEM_FLD1

OUTPUT:
"TEMP_FLD_NAME"="TEMP_FLD NAME" + 1;

OUTPUT3:
"TEMP_FLD1".COUNT = 0B;

Cemm)

FIGURE 5-5M
GEN_INCR_COUNT

-207-

(:ﬁsET_POS j)

A

IS THE SCAN STMT
IN THE DDL PROGRAM

GET VALUE OF POSITION
FROM DATA TABLE ENTRY

1

IS THE VALUE AN
T INTEGER?

\

OUTPUT: OUTPUT:
CDP = ''INTEGER" CDP = "FUNC. CALL"

(RETURN)

FIGURE 5-5N
SET_POS

-208-

GEN_DD_DISK was called TAPE_DISK_FLAG is set to zero.

Then GEN_DD sets #RECFM according to the following table

DISK OR TAPE RCD_FORHAT ##RECFM

0 F Fixed

1 FB Fixed blocked

2 v Variable

3 VB Variable
blocked

4 U Undefined

5 Vs Variable
spanned

6 VBS Variable
blocked span-
ned

Next, the BLKSIZE and LRECL information is saved in
{#BLKSIZE and #LRECL, deleting leading blanks. Then GEN DD
generates the first portion of the DD_CARD common to both TAPE
and DISK (namely, DSN ,VOL = SER and DISP). CTL_CHAR
information is saved in #CTL_CHAR.

If TAPE_DISK FLAG is equal to one the UNIT and LABEL
DD parameters are generated, and the density is saved in {/DEN.
Otherwise #DEN is set to null and the SPACE parameter along
with its subparameters UNITS, QUANTITY and INCREMENT are generated.

Finally the last portion of the DD_CARD is generated i.e.,
the DCB parameter with subparameters of #RECFM, #LRECL, #BLKSIZE,
#TRTCH and #DEN, and those not used in the current DDL program

are already set to null.

g

(:?EN_DD_TAPE :)

SAVE IN ¢DSN NON~BLANK
CHARACTERS OF TAPE.DSNAME
TAPE_DISK_FLAG = 1

]
1
< GEN_DD_DISK)

4

SAVE IN #DSN NON-BLANK
CHARACTERS OF DISK.DSNAME
TAPE_DISK_FLAG = 0

SET #RECPM

SAVE BLKSIZE AND LRECL INFORMATION
IN #BLKSIZE AND #LRECL.

OUTPUT2:

GENERATE FIRST PORTION OF DD_CARD
(DSN, VOL=SER AND DISP)

#CTL_CHAR

SAVE CTL_CHAR INFORMATION IN

*j>____lL_____..

OUTPUT2:

GENERATE UNIT AND LABEL
DO PARAMETERS AND SAVE
DENSITY IN #DEN

Y
r_—'_—'GS TAPE_DISK_FLAG = 17
TAPE T

DISK

OUTPUT2:

GENEPATE THE SPACE
PARAMETERS IN SET #DEN
TO NULL. :

OUTPUT2:

GENERATE FINAL PORTION OF DD_CARD.
THE DCB PARAMETER ..

FIGURE 5-5P
GEN_DD

RETURN

-210-

5.5.16 GEN_READ
This procedure generates PL/1 code to declare internal
input buffers and to read the Source File. 'User Record"

refers to the logical record from the user's point of view.

"System Record" refers to the record retrieved by the record

statement. The PL/1 code that GEN_READ generates goes to
OUT4 file.

Upon entry to this procedure STORAGE.RCD_SIZE is set
to BLKSIZE if it is zero. If the STORAGE_RECORD FORMAT is
Variable (V or VS) then eight (8) 1is substracted from the
RCD_SIZE to ignore the block count and record count. If the
STORAGE_RECORD_FORMAT is variable blocked (VB or VBS) then
four (4) is substracted from the RCD_SIZE to ignore the record
count.

If USER_RCD_FLAG is zero i.e., length of system record
is equal to length of user record, then the information is
taken from the STORAGE Data Table for the Source File, then the
generation of the PL/l1 statements to declare INBUFS and INBUF
takes place (as a character string and an overlaid array of

characters, respectively, used as an input buffer for the Source

. File), and generates the PL/1 read statement to read a record

from Source File (DDLSRC) into the input buffers.
If USER_RCD_FLAG is equal to one i.e., the user record

is fixed in size but different to the length of the system

record given in the STORAGE statement. Then if the RCD_FORMAT_

A -211-

TYPE is less than two i.e., the system record is also fixed
size, a check is made to test if the user input record size is
a multiple of storage input record size, call ERROR(16) if not.
If the user record size is equal to storage record size
GEN_READ generates PL/1 code to declare INBUFS and INBUF and
generates PL/1 code to read input record into input buffers.
Generate PL/1 code to call on procedure to translate the input
user record (INBUFS) from ASCII or BCD to EBCDIC if TRANS_FLAG
have been set. Next GEN_READ returns control to calling
procedure. If user input record size is different from system
input record size then GEN_READ generates PL/1 code to declare:
SYS_INBUF - input buffer to hold system input record. INBUFS -
input buffer to hold user input record (its size is a multiple
of SYS_INBUF). INBUF an array of character (1) overlaid on
INBUFS. And finally INBUF2 an array of character strings

(each has the length of SYS_INBUF) overlaid on INBUF. Next,
GEN_READ generates PL/1 code to read system records into SYS_INBUF
and to move them to INBUF, If last user input record is not
filled, then pad it with blanks, and generate PL/1 GO TO state-
ment to #DDL_PARSE, before finishing. Generate PL/1 code to cail
on procedure to translate the input user record (INBUFS) from
ASCII or BCD to EBCDIC if TRANS_FLAG have been set. Next

GEN_READ returns control to calling procedure.

If USER_RCD_FLAG is equal to two, i.e., the user input

-212-

GEN_READ

LENGTH OF SYSTFM RECORD EQUAL

}_L.. TO LENGTH OF USER PECORD

N
r——(!s USER_RCD_FLAG = 0?

N
(IS USER_RCD_FLAG = 17)——‘@
I
USER RECORD IS' FIXED IN SIZE
L N
Gs RCD FORMAT TYPE <2?)—@

I
SYSTEM RECORD IS FIXED IN SIZE

|

N
IS USER_RCD_SIZE=STCRAGE_RCD_SIZE?)————»

OUTPUT2:

GENEPATE PL/1 CODE TO
DECLARE INBUFS AND INBUF
AND GFNFRATE PL/1 CODE TO
RFAD INPUT RFCORD INTO
BUFFERS.

USER INPUT SIZE IS DIFFERENT
FROM SYSTEM RECORD SIZE

OUTPUT2:

GENERATE PL/1 CODE TO DECLARE INBUF
AND INBUFS AND GENERATE PL/1

CODE TO READ INPUT RECORD INTO
BUFFERS.

OUTPUT2:

GENEPATE PL/1 CODE TO DECLAFF
SYS_INEUF, INBUFS, INBU'F, INRUF2
AND GENFPATE PL/1 CODE TO READ
INPUT RECPRDP INTO SYS_INBL’F AS
MORE THAN TO INRUF

O

QS TRANS_FLAG SET? N RETURN

OUTPLT2:

GFNEFATE PL/1 OODE TO CALL
ON PROCEDURFE. TO TRANSLATE
ASCILI OR BCD INT® EBCDIC

FICURE 5-5Q
GEN_RFAD

-213-

USER RECORD VARTARLE IN SIZE

|

N
(ls RCD_FORMAT_TYPE « 21)———»

Y
SYSTEM RECORD IS FIXED IN SIZE

|

(1S USER RCD_SIZE=SYSTEM ch_sxza" ‘

OUTPUT2:

TENERATE PL/1 CNDE TO DECLARE
INBUFS AND INBUF AND PL/1 CODE
TO PEAD INPUT RECCRD AS IF
FIXED IN SIZE.

CUTPUT2:

GENEFATE PL/1 CODE TO DFCLARF SYS_I!\'BU!".
TNBUFS, IBUF FNAR VARIABLE LENGTH RECORDS
GENERATE PL/1 COLE TO ADVANCE CPhP

TO NEAREST MULTIPLE OF SYSTEM RECORD
LENGTH

GENERATE PL/1 CODE TC READ AS MANY
SYSTEY INPUT PECOPDS AS NECESSARY T3
STORE THE MAXIMUM SYSTEM RECORD PER USER
RECORD IN INBUF

SYSTEM RECORD IS VARIABIE IN SIZF

OR UNDFEFINED SIZE

CIS USER_RCD_SIZFE = SYSTF™ Pf‘D.S;Z}"—o

Y

OUTPIT2:

GENFFATFE. PI./1 COTE TO DECLARE
INBUF and INBUFS VAPIABIE

IN SIZ2E.

GENERATE PL/1 CODF. TO READ
VARIABLE LENGTR RFCOPRDS,

!

VAPIARLE LENGTH USFR RECORD AND
VAPIARLE LENGTH SYSTFM RECNPD BUT DIFFERENT

1 LENGTHS

CUTPUT2:

CENEPATE PL/1 CODF TO DFCLAPF
VAFIABLE LENGTH INBUFS AND CVEPLAID
INBUF

CENERATE PL/1 CODRE T0 PEAD AS MANY
SYSTITY RFECORDS AS NECESSARY ST AS
IXBUFS ALWAYS CONTAIN THE MAXIMUM
VSEP RF.CORD SIZF.

FIGURE 5-5Q (continued)

GEN_READ

-214~

record is variable in size. Then if STORAGE.RCD_FORMAT TYPE
is less than two (i.e., fixed length system records but a
variable number of them form a user record). Then if user
record size is equal to storage record size GEN_READ generates
PL/1 code to declare INBUF and INBUFS and generates PL/1 code
to read input record as if fixed length. Then 'if TRANS_FLAG
is set GEN_READ generates PL/1 code to call on procedure to
translate input user record (INBUFS) from ASCII or BCD to
EBCDIC, and returns control to calling procedure. If user record
size is different from storage record size GEN_READ generates
PL/1 code to declare: SYS_INBUF - buffer for systém record,
INBUF, INBUFS - buffers for variable length user record. Then
GEN_READ generates fL/l code to advance "CDP" (the current
data pointer in the input buffer) to the nearest multiple of
system record length. Next GEN_READ generates PL/1l code to read
as many system input records as necessary to store the maximum
system records per user record in INBUF. Finally, if TRANS_FLAG
is set GEN_READ generates PL/1 code to call on procedure to
translate input user record (INBUF) from ASCII or BCD to EBCDIC
and then GEN_READ returns control to procedure which call on
GEN_READ.

If the USER_RCD_FLAG is equal to two and STORAGE.RCD_
FORMAT_TYPE is not less than two - i.e., variable or undefined
system record length specified with a variable length user

record length. And if user record size is equal to storage

-215-

record size - i.e., system variable length record size is the

same as the user record. GEN_READ will generate PL/1 to declare
INBUF, INBUFS and generate the appropriate PL/1 read statement.

If user record size is different from storage record size -l

i.e., variable user record and variable system record of different
size each. Then GEN_READ generates. PL/1 code to declare

INBUFS with variable length and INBUF to be overlaid on INBUFS.
Then GEN_READ generates PL/1 code to read as many system records
as necessary so as INBUFS always contain the maximum user

record size.

After either of the two cases above GEN_READ if TRANS_FLAG
is set generates PL/1 code to call on procedure to translate
(INBUFS) from ASCII or BCD to EBCDIC, then returning control
to procedure which call on GEN;READ.

5.6 Phase 2B of the DDL Compiler - Code Generation (Data Movement)

Phase 2B of the DDL compiler is a set of programs which
uses the Data Tables for the Target file and the mappings specified
in the Target Fields to generate PL/1l code for data movement.
After Phase 2B is completed the DML statements are read by the
DDL compiler and they are merged with the code produced during
code generation phase.

5.6.1 CODE_GEN_MOVE

CODE_GEN_MOVE is called from DDLCOMP after the code

generation for parsing the input record has been completed.

CODE_GEN_MOVE uses the Symbol and Data Table for the Target File.

-216-

CODE_GEN_MOVE is the monitor for the generation of PL/l state-
ments to move data from the Source Record into the Target Record
using the information given in the FIELD statement.

Upon entry to CODE_GEN_MOVE the generation of PL/1 declare
statements for the run-time yariables used in Data Movement
takes place.. Next CODE_GEN MOVE generates the PL/1 declare
statements for the DML routines specified in the Target File
as conversion routines. The pointer to the Symbol Table were
the Target File name 1s stored is taken from the Data Table
entry for the CONVERT statement. Then CODE_GEN_MOVE generates
PL/1 code to declare OUTCDP (current data pointer for output
buffer were the output record is being formed). The character
code in which the output file is to be output 1is saved, and the
pointer to the target record in the Symbol Table is taken from
the Data Table entry of the FILE statement, and the pointer to
the Target Data Table entry is saved.

Using the pointer to the target record name in the Symbol
Table, the Data Table entry of the Target RECORD statement is
found. And the Target record size (if specified) is saved, and
the pointer to the Target Record Data Table entry is saved.

Next CODE_GEN MOVE gets the Data Table entry for the
STORAGE statement using the pointer in the File Statement to the
Symbol Table entry where the name of the STORAGE Statement is

kept.

-217-

Ccone_csx_uovz)

GENERATE PL/1 DECLARE STMTS @ Bco
FOR RUN-TIME VARTABLES USED

IN DATA MOVEMENT

SET VARIABLES FOP SET VARIARLES
l EBCDIC FOR BCD
GENERATE PL/1 DECLARE STMTS
FOR ALL THE DML CONVERSION ASCIT
ROUTINES SPECIFIED IN THE

DDL TARGET FILE

SET VARIARLES
l FOR ASCII

GET CONVERT ENTRY IN DATA
TARLE AND THEN DATA TABLE

ENTRY FOR TAPGET FILE N Y
IS STOPAGE_TYPE = DISK?)'—‘

I

SAVE CHARACTER CCDE FOUND CALL CALL
IN TARGFT FILE AND THEN GET GEN_DD_TAPE ICEN_DD_DISK

DATA TABLE ENTRY FIR PECCRD

I 1

SAVE USER_RECORD_SIZE IF CALL
GIVEN IN RECORD ENTRY AND
THEN GET STORAGE ENTRY GEN WPITE
SPECIFIED IN FILE ENTRY -

CUTPUT2 :

N DD_CARD FOR TAPGET FILE
st STORAGE TYPE=DISK OR TAPE?)————- IN"CARDS —
Iy

BRANCH IN CHAR_CODE j—-
& 6 @

FIGURE $-6a
CODE_GEN_MOVE

-218-

!

GENERATE PL/1 CODE TO CALL
PERFORM CHARACTER CODE
CONVERSION EBDIC TO ASCII SET_UP_MOVF_FLP
OR BCD

‘———oC!s LEN_OPT SET?

(xs CNT_OPT OR LEN_OPT SET?)u ‘v

CALL
GFR_CALC_LEN
GENERATE LEVEL 1 DECLARE
STMTS AND LEVEL 2 DECLARE T
SIS +
CALL

GFEN_MATCR_FXND_TAR

STACK RECORD NAME IN
MTh UAME STACK (Oth ENTRY)

AND STACK NULL STRING IN l

ITER_STACK

DECREASF LEVEL
1 PAPUP SUB_VAL_STACK
POPUP MPM_ NAME_STACK

NUMBER OF END
PO I=1 T0 \;uppRS IN RCD
1 D
CALL
RESTCRE DATA TABLE POINTER OFT_VALX
70 POINT TO TARGET RLCORD
(ls MEMBER A GR:UP? N\ N
— IT 1§ A FIFLD
Y
IS THE PL/1 STRUCTURF FCR . CALL CALL
TARGET FILE TO BE “ENERATED?)} CALC_SUB ZFPO_LEN
v |
Y
CALL CALL
GEN_DCL_GROUP GEN_PARSE_MFM —-Qs LFN_OPT SET®

FIGURE $-6A (continued)
CODF_GEN_MOVE

-219-

~
?
<:IS CHK_OPT SET?)

Y

OUTPUT6:

GENERATE PL/1 PROCEDURE

TO GIVE WARNING

IF AN ATTEMPT (AT RUN TIME)
TO MOVE AN EMPTY FIELD.

(:7 RETURN :)

FIGURE 5-6A (continued)
CODE_GEN_MOVE

-220-

Next CODE_GEN MOVE test the TYPE of storage which
can be TAPE, DISK or CARD. If TAPE or DISK it uses the
character code to set appropriate variables for EBCDIC, ASCII
or BCD whichever the case may be. Then if storage TYPE is
TAPE,GEN_DD TAPE is called (see Section 5.5.15) otherwise
GEN_DD DISK is called (see Section 5.5.15). If storage TYPE
is CARD the DD_CARD for the Target file is generated in it
is output to file OUT2.

After the DD_CARDS have been generated CODE_GEN_MOVE calls
on GEN _WRITE, (see Section 5.6.12) which 1s a procedure used
to generaté PL/1 code to declare internal output buffers and
to generate PL/1 code.to WRITE the Target record into the out-
put file. iIf the character code is ASCII or BCD and the
recording;mde is ALL_CHAR then CODE_GEN MOVE generates PL/1

code to form tables to translate EBCDIC into ASCII or BCD.

Next CODE_GEN_MOVE checks if the OUTLEN or OUTCNT were

>

specified,;if they were then the PL/1 structure corresponding
to the Target record is to be generated since information
regarding the LENGTH and/or COUNT of Target fields is to be used
in the DDL specification of the Target record. If OUTLEN nor
OUTCNT weré specified then the PL/1 structure is not to be
generated since there is no need for it.

The main task of CODE_GEN_MOVE is to process the members
(and its submembers) of the Target RECORD statement. To do

this the pointer to the Data Table for the RECORD statement

-221-

is reset and the pointer to the name of the first member
in the Symbol Table is used to get its corresponding Data
Table entry. If the TYPE of member is GROUP then if the
PL/1 structure is to be generated GEN_DCL_GROUP is called
(see Section 5.5.4) otherwise CALL_SUB is called (see
Section 5.5.6). Now, since the current member can be a
repeating member GEN_PARSE MEM (see Section 5.5.3) is called
to generate PL/1 DO_LOOP for this member. If the OUTLEN
option was specified then ZERO_LEN is called (see Section 5.5.8).
Then since member is a GROUP its submembers must be processed,
so OUT_WALK (see Section 5.6.2) is called.

If the member TYPE is FIELD then CODE_GEN_MOVE calls
on SET_UP_MOVE_FLD (see Section 5,6.3) which is a procedure
which will process current field and will call on appropriate
procedures to generate PL/1 code to move the Source Fields
into the current Field being processed. After returning from
SET_UP_MOVE_FLD, CODE_GEN MOVE checks if OUTLEN was specified,
if so GEN_CALC_LEN is called (see Section 5.5.11).

After returning from processing a GROUP or a FIELD
CODE_GEN MOVE calls on GEN_MATCH_END TAR and then returns to
process the next member in the Target Record Statement.

After all the members of the RECORD statement has been
processed GEN_CODE_MOVE ,if the CHECK option was specified

’

generates PL/1 code to form a procedure which will give a

-222-

warning to the DDL user if he attempts to move an empty source
field into the target record.
5.6.2 OUT_WALK

OUT_WALK is called from CODE_GEN_MOVE (see Section 5.6.1),
it is used to process the members of the GROUP statement
specified in the definition of the Target File. OUT_WALK
is a recursive procedure since the members of the current
member can themselves be GROUPS.

Upon entry to the procedure the pointers to members of
current groups being processed are saved, and then the first
member is processed, if it is a FIELD then ¢all SET_UP_MOVE_FLD
(see Section 5.6.3). If the member is a GROUP and 1if the
PL/1 structure is to be generated then OUT_WALK calls on
GEN_DCL_GROUP (see Section 5.5.4), otherwise CALL_SUB (see
Section 5.5.6) is called. Then since the current GROUP can be
repeating the procedure to generate PL/1 DO_LOOPS is called, this
procedure is GEN_PARSE MEM (see Section 5.5.3). If the OUTLEN
option was specified then OUT_WALK calls in ZERO_LEN (see
Section 5.5.8). Finally since current member is a GROUP its
submembers must be processed so OUT_WALK call on itself.

After processing the current member if the OUTLEN option
was specified then GEN_CALL_LEN is called (see Section 5.5.8).
Finally OUT_WALK calls on GEN_MATCH_END_TAR (see Section 5.6.9)

and returns to process next member of current GROUP.

-223-

C OUT_WALK .)

SAVE POINTERS TO MEMBERS OF
CURRENT GROUP BEING PROCESSED

CIS MEMBER(i{) A GROUP OR FIELD?)——!—0' EPROR(4)

Y
: N
C IS MEMBER(1) A GROUP? H MEMBER IS A PIFLD
b Y
N | caLL
(IS LEN OPT OR CNT OPT SET? CALC_SUB

CALL ¥
GEN_DCL_GROUP

CALL
GEN_PARSE MFM

CALL Y
ZERO_LEN —'CIS LEN_OPT SET?)

N

CALL
OUT_WALK

FIGURE S5-6R
OI'T_WALK

-224-

CALL
SET UP MOVE FLD
-y -

(i IS LEN OPT SET? :)fi_,

Y

\2

CALL
GEN_CALC_LEN

<t
<

4

Al

_CALL
GEN_MATCH_END_TAR

\

\J

DECREASE LEVEL
POPUP SUB_VAL_STACK
POPUP MEM_NAME_STACK

F}GURE 5-6B (continued)
OUT_WALK

7

-225-

When all the submembers of the member in the RECORD
statement have been processed OUT_WALK returns control to
CODE_GEN_MOVE.

5.6.3 SET_UP_MOVE_FLD

Upon entry to this procedure a check 1s made to find
out if the PL/1 structure for the Target Record.is to be
generated, if so, GEN_FLD DCL (see Section 5.5.5) is called,
otherwise CALL_SUB (see Section 5.5.6) is called. Next
SET_UP_MOVE_FLD calls on GET_SOURCE_NAME (see Section 5.6.4)
this procedure forms the fully qualified Source Name specified
in the current FIELD statement being processed.. Next, since
the current FIELD can be repeating GEN PARSE MEM (see Section
5.5:3) is called to form the PL/1 DO_loop. If any member in
the Source Name just formed have two subscripts SET_UP_MOVE_FLD
calls on SET MIN MAX (see Section 5.6.5), to generate PL/1
code to set the MINSUB and MAXSUB vectors with the appropriate
values for as many elements as there are names in the Source
Name with two subscripts. Then SET_MIN MAX generates PL/1 code
to call on the procedure SET_SOURCE_SUBS, this procedure when
called at run-time returns the appropriate subscripts values for
the Source Name.

Next SET_UP_MOVE_FLD determines the length of the Target
field. This length may have been specified as *, meaning that
the Target field is to have the same length of the Source field

or if conversion was specified then the length of the Target

-226~-

CALL
CALC_SuB

(SET_UP_MOVE_FLD)
(IS LEN_OPT OR CNT_OPT SPECIFIED? }“_.
cALL
GEN_FLD_DCL

l

CALL
GET_SOURCE_NAME

1

CALL
GEN_PARSE_MEM

|

CAaLL

(;“ES FIELD BAVE TWO SUBSCRIPTS?)—%-—(IS LFNSTH = t?)l

K

CALL
SET_MIN_MAX

:

QUTPUT: (ANLY ONE TINE)

GEXE™ATE PL/1 CODE T CALL

ON SET_SCURCE_SUBS

C

IS NECFRSAY T ~UTPUT PL/1
PYWTIXF SET_SOUT(E_SURS ?

N

CALC_FLD_LEN

Y

!

caLL
CFN MOUF

e

AITUTA
“SET_S UPCF_SUBS”
PROCTIURE

4

(WRTUPX rvL

FIGURE 5-AC
SET_UP_*“WF_FLD

»

=227~

field is to be equal to the length of CONV_FLD_CHAR jf Target
field TYPE is CHAR or equal to the length of CONV_FLD BIN

if the TYPE is BIT. CONV_FLD_CHAR or CONV_FLD BIN are

global run-time variables which are set by the DML routine
specified in the conversion parameter of the Target Field
statement. If the length was not specified by * then
SET_UP_MOVE_FLD calls on CALC_FLD_LEN (see Section 5.5.11)

to determine the length of the Target field.

After the length of the Target field has been determined
GEN_MOVE is called (see Section 5.6.6), this procedure generates
PL/1 code to move the data in the Source field into the Target
field.

Finally if any of the names in a Source Name had two
subscripts and if the run-time procedure SET_SOURCE_SUBS
have not been output into file OUT6, then SET_UP_MOVE_FLD
outputs it into file OUT6 and returns control to calling program.
5.6.4 GET_SOURCE_NAME

This procedure forms the Full Source Name in PL/1 form,
and if any name in Source Name does have two subscripts generates
code to set IFIRST# and LAST# which the parameters of the run-
time procedure SET_SOURCE_SUBS.

Upon entry to this procedure a check is made to find
if a mapping has been specified, if not an error message is
given and the process terminates. If a mapping was specified,

then 1f TYPE of the Target field is NUM_PICTURE and if the

-228-

Q:n_souncz_nmz)

IS A MAPPING SPECIFIED?)—N—-.l ERROR(18) l

lv

Y
(1S FLD_TYPE = "NUM_PICTURE'?)—-CIS A CONSTANT ASSIGNMFNT?

Is E

FIELD TYPE IS BIT ON CHAR

FULL_SOUPCE_NAME = NULL

1

Cls A CONSTANT ASSIGNMENT?) Y PITUPN

N

ASSIGNMENT IS VIA SOURCE NAME

l ¢ | FLp_source navE -
st SOURCE_NAME A PAPAM STMT? }—~ CrMP_DIL_PARAY
N
hi
ERROR(0) H IS A WPLL FORMED SOURCE NAME)

1 v FFTUPN)

FORM FULLY QUALIFIED SOURCE
NAME

POES A NAE IN SOURCE NAVE HAVR b
TWN SUBSCRIPTS?

Y

OUTPCT:
GENEPATE PL/1 CODE T~ SET

VECTOR J AND TO SET IFIRST# . RETURY
AND LAST?

FICUPE S-6D
CET_SOUPCE_NAVF

-229-

mapping of the form " < "striné"" then FULL_SOURCE_NAME
is set to the null string and GET_SOURCE_NAME returns control
to calling program.

If the TYPE of the Target field is CHAR PICTURE, CHAR or
BIT and if the mapping is of the form " < 'string'" then
FULL_SOURCE_NAME is set to the null string and control is
given back to the calling program.

In either of the above two cases, if the mapping is of
the form " <= 'SOURCE_NAME'" then if the Source Name is a
Parameter statement (i.e., DDL_COUNT or DDL_LENGTH) then
FULL_SOURCE_NAME is set to the result returned by COMP_DDL_
PARAM (see Section 5.6.8). Otherwise a check is made to
see 1f the Source Name is a valid one.

If the Source_Name passed the test then the Full
PL/1 source name is formed and FULL_SOURCE_NAME is set to
such name.

Next GET_SOURCE_NAME generates PL/1 to set the array J
to the appropriate values (see Example below). '

Finally, if any of the names in FULL_SOURCE_NAME had
two subscripts GET_SOURCE_NAME generates PL/1 code to initialize
IFIRST# and LAST# to the appropriate values. To better
explain the above paragraph lets assume that the Source Name
given by the DDL user was the following:

A(1:2) .B(2:3).C.D(3:4)

The corresponding FULL_SOURCE_NAME in PL/1l form is

-230-

A(J(1)). B(J(2)). € . D(J(3)) and IFIRST# is set
to 1 and LAST# is set to 3. Then when at run-time
SET_SOURCE_SUBS (IFIRST#, LAST#) is called it returns the

following values

1st call J(@1) =1 ,3(2) =2 ,J(3) = 3
2nd call J(1) =1 ,3J(2) =2 J(3) = 4
3rd call J(1) =1 J22) =3 J@3) =3
4th call J() =1 J(2) =3 J(3) = 4
5th call J(1) =2 J(2) =2 J(3) =3
6th call J(QA) =2 J(2) =2 J(3) =4
Jth call J(1) =2 J(2) =3 J(3) = 3
8th call J(1) =2 J(2) =3 J(3) =4

For the above Example GET_SOURCE_NAME generates the
following PL/1 statements to initialize the array J

J(1) = 0 + value of first subscript of A minus 1

J(2) = 1 -+ value of first subscript of B minus 1

J(3) = 2 » value of first subscript of D minus 1, in
order to understand better why the array J is initialized with
the value of the first subscript minus one see Section 5.6.5
where SET_MIN MAX and the run-time procedure SET_SOURCE_SUBS
are given.

To achieve the generation of the appropriate subscript
for the array J a count is kept (#SAVE CNT), every time a name
does have subscripts this count is increased by 1, and when a

new member is taken from the Target_Record #SAVE CNT is reset

-231-
to zero.
5.6.5 SET_MIN MAX

This procedure is used to generate the PL/1 code to
set MINSUB vectors when at least one name in the Source Name
have two subscripts.

Upon entry to this procedure a check is made in the
names that form Source Name, if a name does have two subscripts
#iSAVE_CNT is increased by 1 and FORM SUB (see Section 5.6.10)
is called, to find value of 1lst subscript. The subscript can
be constant or variable, then the appropriate PL/1 code is
generated to set MINSUB (#SAVE CNT) to the value returned
by FORM SUB. Then FORM SUB is called to find value of second
subscript and MAXSUB (#SAVE_CNT) is set to the value returned
by FORM_SUB.

Take for example the Source Name given in Section 5.6.4

"A(1:2). B(2:3). C . D(3:4)" and if #SAVE_CNT is

equal to zero then SET_MIN MAX will generate the following

PL/1 code
MINSUB(1) = 1
MAXSUB(1) = 2
MINSUB(2) = 2
MAXSUB(2) = 3
MINSUB(3) = 3
MAXSUB(3) = 4, the value assigned to MINSUB is equal

to the value returned by FORM_SUB. Every time SET_SOURCE_SUBS

is called J(i) is increased by 1 if J(i) is less than MAXSUB(i),

-232-

@_HIN_HAX l)

: TO NUMBER OF NAMES
N i B oy

|

X

POES {-th NAME HAVE SUBSCRIPTS?)

Y
[#SAVE_CNT = # SAVE_CNT + 1 I
CALL

PORM_SUB (1ST SUBSCRIPT)

OUTPUT I NMGAY
: MINSUB(#SAVE_CNT) =

MINSUB (#SAVE_CNT) = Y IS THE SU PT CNSTANT? }E_J “VAR SUB®
A e Sups.. .——($ THE SUBSCRIPT CONSTANT? _SUB
CRIPT"

I !

r

N CUTPUT:
CDOES 1-th XAME HAVE a 2nd svssenn}"‘ MAXSCGR(PSAVE_CNT) =
1 MINSUB(#SAVE_CNT)

CALL
FOPM_SUB(2nd SURSCPIPT)

1 -~ ¥
._"_(IS 2ad SUDSCPIFT CONSTANT?)__

CUTPUT: OUTPUT:
MU;SPUBUS»\VE CXT) = MAXSUR (FSAVE_CNT) =
" "y it
“VALUE OF 2KD SURSCPRIPT "IAP_SUB
I () I
FICUPE 5-6E

SET_NIN_MAX

-233-
when it reaches the value of MAXSUB(i) J(i) is reset with
the value of MINSUB(i). Remember that J(i) was initially
set to the value of first subscript minus 1 (see Section 5.6.4).
The PL/1 code for SET_SOURCE_SUBS is the following:
SET;SOURCE_SUBS: PROCEDURE (FIRST,LAST);
DCL (FIRST,LAST) FIXED BIN;
DCL IDDL FIXED BIN STATIC;
DO IDDL = LAST TO FIRST BY -1;
IF J(IDDL) < MAXSUB (IDDL) THEN
DO;
J(IDDL) = J(IDDL) + 1B;
RETURN;
END;
J(IDDL) = MINSUB (IDDL) - 1B;
END;
END SET_SOURCE_SUBS;
5.6.6 GEN_MOVE |

" <« 'string'" or

This procedure processes the mappings
" <= 'SOURCE_NAME'", and generates PL/1 code to move the
source data into the target field, generates PL/1 code to call
on the conversion routine if specified. The Target record is
formed in OUTBUF.

Upon entry to GEN_MOVE a test is made to find out the type

of mapping, if it is of the form "< 'string'". If the target

field TYPE is CHAR_PICTURE, or CHAR then GEN _MOVE generates

-234-

(CEN_MOVE)
l

SAVE LENGTH OF TARGFT PIELD
IN SAVE_TAR_LEN

¥
2 ASSIGNMENT 1S VIA SOUPCE NAME
. OT M a9
Gs A CONSTANT NAPPING ? >_@ OR PAPAMETER STMT.

Y

C IS FIELD TYPE = NUM_PICTURE?)ﬁ{nsw TYPE = "BIT" OR "CPAR" 3
i |

OUTPUT: OUTPUT:

GENERATE PL/} CODE TO MOVE GCFNERATE PL/1 CODE TO MNVF
CONSTANT PICTURE ASSCN TO TO TARGET FIFLD THE BIT
TARGET FIELD (CHAR) CONSTANT ASSICNVENT

L)

OUTPUT:

GENERATE PL/1 CODF - PFTURN
4 TO ADVANCE OUTCDP

s ASSIGXMENT A PARAMETEP STMT? D_"_.Cls CIK_OPT SFT?)
l Y lv ‘

OUTPUT: OUTPLT:
ASSIGN.TO TAPGET FIELD VARIABLE WHERM ~FNERATE PL/1 CODE TO TFST
DDL_LENGTH OR DDL_COUNT IS TO BE (PIN-TI'™) 17 POLITE?
FOUND. - T0 SOAUBCE FIFLD IS uAT

. EMPTY

_Y__(IS CONVERSION SPECIFIED? }_L

aUTPLUT: WIPUT:
GENSPATE PL/1 CODE GENEPATF P1/1 CORE TO
TC C\LL LML CONVERSION MAVE SAU2CE FIFLD TO
RCUTINE AND TY MOVE TARZFT.

RESULT TO TAPGET FIELD

FIGURE. 5-6F
GEN_\WE

-235-
PL/1 code to move constant into Target field. If the
TYPE is BIT then GEN_MOVE generates PL/1 code to move BIT
constant into Target field. Then after any of the above two
GEN_MOVE generates PL/1 code to advance OUTCDP.

If the mapping is of the form " <= 'SOURCE NAME'", then
a test is made to determine if Source Name is a parameter
statement, if so, then GEN_MOVE generates PL/1 code to move
the value returned by DDL_COUNT or DDL_LENGTH (at run-time)
into the Target field. If Source Name is not a parameter
statement then it refers to a Source Fileld, then if the CHECK
option was specified then GEN_MOVE generates PL/1l code to
test if pointer to Source field is not null.

If a conversion was specified, GEN_MOVE generates PL/1
code to call on DML procedure and to move the result into
Target field. Otherwise, GEN MOVE generates PL/1 code to move
the data in the Source field into the Target field.

Finally, GEN_MOVE generates PL/1 code to advance OUTCDP,
and returns control to calling program.

5.6.7 COMP_DDL_REF_NAME

This procedure returns the name of the run~-time variable
which will contain the length of the current field being
processed.

Upon entry to this procedure the péinter to the Data table

entry of current field is saved. Then FORM REF and name (see Sec-

tion 5.6.11) is called, this procedure returns the full reference

-236~

in PL/1 form. Then using the last name of full reference name
its symbol table is found and then its corresponding Data

table entry, if the TYPE is not FIELD an error is given and the
process terminates.

If the last name in full reference name is a FIELD then,
if its TYPE is NUM PICTURE the internal variable LENT is set
to the length of the NUM_PICTURE and the internal variable
ATT is set with the string "CHAR". 1If the FIELD TYPE is CHAR,
ATT 1is set to "CHAR" and if it is BIT, AIT is set to "BIT".

Then a test is made to determine if thg length of the
reference name is constant or variable (i.e., if it is to
be known until execution time). If the length is constant
COMP_DDL_REF_NAME generates PL/1 code to declare a prototype
field whose attribute is ATT whose length is equal to the
length of reference name, then the pointer to the Data Table
entry is reset to point to the Target field before the procedure
was called. Finally the name of the prototype field generated
is passed to calling program.

If the length of the reference Name field is variable, that
is, it is not known at compile time, COMP_DDL_REF NAME generates
PL/1 code to declare a prototype field of length 104 whose
attribute is ATT, and it is to be overlaid on the reference

name. Then the pointer to Data Table entry is reset to the wvalue

-237-

. Ccoxr-nm._ur_n»m) FLD_PROTO# = FLD_PROTOF + 1
SAVE POINTLR TO DATA TABLE OUTPUT:
ENTRY FOR CURRENT FIELD. DCL FLD_PROTO "FLD_PROTO#"
"ATT" (104)
I BASED (“FULL_REF_NAME" PTR):
CALL

FORM_REF_KAME

l l

GET SYMBOL TABLE ENTRY qusrons DATA TABLF. POINTER]
CORRESPONDING TO LAST NAME
IN FULL_REF_NAME

1 RETURN (SUBSTP.(FLD_PROTO
“FLD_PROTO#",1, "FULL_REF_NAME"
i1z
GET ITS CORRESPONDING .LEN/"TEP3))

DATA TABLE

- A *
‘ IS STNT TYPE FIELD'? EPROR(10)

Y

Qs FLD_TYPE = NUM_PICTURE?)_"__Gs FLD_TYPE = "CHAR"?) Y ~
" Ir

T -
e T wrr =

‘ -]] - N\
ATT = "CHAR" TEMP3 = '/1000B TFEMP3 NCLL
FLD_PROTO# = FLD_PROTO# + 1 C . j_v__(-
OUTRUT: 1S LENGTH OF FLD = CONST? VAR_LEN
DCL FLD_PROTO Y 1
“FLD_PROTO#" “ATT("LENT")
BASED(FLD_PROTO "FLD_PEOTO#") JLu»:xr = “INTFCER"]

|

[RESTORE DATA TABLE POINTER I FICURE 5-6C

COMP_DDL_REF_NAMF
‘ RETURN(FLD_PROTO™ FLD_PROTO#"); ’

-238-

(: COMP_DDL_PARAM :)

SAVE POINTER TO STATE TABLE
ENTRY OF CURRENT FIELD

GET DATA TABLE ENTRY FOR
PARAMETER STMT

A

CALL
FORM_REF_NAME

L]

'LEN'? j}.ﬁl(gs STMT TYPE = 'CNT'?:ji.

VY A

C IS STMT TYPE

RESTORE POINTER TO DATA TABLE ERROR(S)

\

C' RETURN ("FULL_REF_NAME" . LEN))

RESTORE POINTER TO DATA TABLE

C RETURN ("FL'LL_REF_NAME" . COUNT))

FIGURE 5-6H
COMP_DDL_PARAM

~239-
it had before this procedure was called. Finally the name
of the prototype field is passed to calling program.
5.6.8 COMP_DDL_PARAM

This procedure generates the PL/1 name of the run-time
variable where the value of DDL_LENGTH or DDL_COUNT is to be
found.

Upon entry to this procedure the pointer to the Data
Table entry for the current field is saved. The argument of
the parameter statement (DDL_COUNT or DDL_LENGTH) is then used
to find the corresponding data table entry for that argument
name, and COMP_DDL_PARAM calls on FORM REF_NAME (see Section
5.6.11) to form the PL/1 reference name corresponding to the
argument of the parameter statement, and stores it in
FULL_REF_NAME.

If the Parameter statement is DDL_LENGTH then the name
that COMP_DDL_PARAM returns is FULL_REF_NAME concatenated with
".LEN." And if the Parameter statement is DDL_COUNT COMP_DDL_
PARAM returns FULL_REF_NAME concatenated with '.COUNT".

Before returning control to calling program COMP_DDL_PARAM
restores the pointer to the Data Table of the Target field it
was pointing to before the call on this procedure was made.
5.6,9 GEN_MATCH_END_TAR

This procedure when called from OUT_WALK or CODE_GEN_MOVE
generates the PL/1 END statement corresponding to repeating

members (if any).

-240-

(:7 GEN_MATCH_END TAR A:)

Y
WAS A DO LOOP GENERATED .
FOR THIS MEMBER?

Y

(:DOES THE MEMBER HAVE SUBSCRIPTS{:)

Y N

OUTPUT: OUTPUT:
LABEL: END; LABEL:

POPUP LABEL# STACK

b
Gamm)

FIGURE 5-61
GEN_MATCH_END_TAR

-241-
5.6.10 FORM_SUB

This procedure determines the value of the first and/or
second subscript for the i-th name in the Source Name being
processed. If the subscript is constant the value is returned
in CONST_SUB. If the value of subscript is variable, i.e.,
if it is to be known until execution time then if subscript is
given by a Parameter statement VAR SUB is set to the name
returned by COMP_DDL_PARAM (see Section 5.6.8). And if the
subscript is given as a reference name then VAR SUB is set
to the name returned by COMP_DDL_REF NAME (see Section 5.6.7).
After this FORM _SUB returns control to the calling program.
5.6.11 FORM REF_NAME

This procedure forms the PL/1 reference name corresponding
to the argument of the DDL Parameter statement. When this
procedure is called it uses as parameter the pointer to a
structure where the names that form the argument of the DDL_
PARAMETER statements are stored.

FULL_REF_NAME is formed by concatenating the name (i)
and its subscript enclosed in parenthesis (if any) with the
previous names already in FULL_REF_NAME which is set to the
null string upon entry to this procedure.

5.6.12 GEN_WRITE

This procedure generates PL/1 code to declare intemral

output buffers and generates PL/1l code to WRITE or LOCATE the

Target file into the output buffer. '"User Record" refers to

~242-

——

(:: FORM_SUB)
.__{:; BRANCH ON TYPE OF SUBSCRIPT 4:)———-

CONSTANT REF_NAME

\

CONST_SUB VAR SUB <
COMP_DDL_REF_NAME

"INTEGER"

PARAMjTER_STM

VAR_SUB <
COMP_DDL_PARAM

C— RETURN)

FIGURE 5-6J
FORM_SUB

~243-

C FORM_REF_NAME)

FULL_REF_NAME < NULL

TO NUMBER OF NAMES IN END
DO I=1 ARGUMENT OF DDL PAPAMETER RETURN

FULL_REF NAME <-
FULL_REF_NAME ||.NAME(I)

I‘(DOES NAME(I) HAVE SUBSCRIPTS?)

FULL_REF_NAME <
FULL_REF_NAME || "(SUBSCRIPT)"

FIGURE 5-6K
FORM_REF_NAME

=244~

the logical target record from the user's point of view.
"System Record" refers to the Target record stored by a
WRITE or LOCATE statement.

Upon entry to this procedure GEN_WRITE sets STORAGE.
RCD_SIZE to BLKSIZE if it is zero. If the STORAGE.RCD_ FORMAT
is variable or variable spanned (v or vs) then eigth is sub-
stracted from the rec&rd size to ignore the block count ;nd
record count. If the STORAGE.RCD_FORMAT is variable blocked
or variable blocked spanned (VB or VBS) when substract four
from the record size to ignore the record count.

If USER_RCD_FLAG is equal to zero i.e., length of system
record is equal to length of user record, then the information
is taken from the STORAGE statement for the Target file, then
the PL/1 statements to declare OUTBUF takes place, (OUTBUF
is declared as a character string whose size is given by the
STORAGE stmt and it is used as an output buffer for DDLTAR file).
Next GEN_WRITE generates PL/1 code to LOCATE the Target record
to the Target file (DDLTAR), also GEN_WRITE generates PL/1
code to pad the last block of a fixed-blocked file if the last
block on the file is not filled and if the user so requested
via the PAD keyword.

If USER_RCD_FLAG is equal to one i.e., fixed number of
bytes per user output record. Then if the RCD_FORMAT TYPE
is less than two i.e., the system record is also fixed size,

a check is made to see if user output record size is a multiple
of storage output record size, call ERROR(16) if not. If the

user record size is equal to storage record size GEN_WRITE

-245-

(ceN_write

l

N

IS USER_RCD_FLAG = 0?

RECORD

N
(1S USER_RCD_FLAGC = 1? }—‘@

Fy

OUTPUT USER RECORD IS
FIXED IN SIZE

1 :
(1S RCD_FORMAT TYPE <2 ?)—’®

Y
OUTPUT SYSTEM RECORD IS ALSO
FIXED IN SIZE

C 1S USER_RCD_SIZE = STORAGE_RCD_SIZE?

Y

OUTPUT2 :

GENERATE PL/1 CODE TO DFECLARE
OUTBUF AND TO LOCATE THE RECORD TO
THE TARCET FILE ALSC, GENERATE CNODE
TO PAD THE LAST BLOCK IF PAD OPTION
WAS GIVEN,

USER_OUTPUT RECORD SIZE IS DIFFERENT

N
)——' FROM SYSTEM RECOPD

OUTPUT2:
GENERATE PL/1 CODE TO DECLARE OUTBUF
AND TO LOCATE OUTPUT RECORD (AS ABOVE)

OUTPUT2 :

GFNERATE CNDE T DECLAPRF:

SYS OUTBUF, OUTBUF, AND OUTRU'F2 AND
GEXERATE PL/1 CODE TO LOCATE SYSTEM
RECORDS MIWED FROM SYS_CUTBUF

(e

(zs TRANS_FLAT SET?

:

OUTPUT2:

CENERATE PL/1 CODE TV CALL ON
PROCEDURE TV TPANSLATE FERCDIC
INTO ASCIT PR BCD

(PFTURY)

FIGURE 5-6L

GEN WRITE

Y LENGTH OF SYSTFM RECORD
EQUAL TO LENCTH OF USER

-246-

USER RECORD S1ZE
VARIABLE SIZE

|

~\ N
C IS RCD_FORMAT_TYPE <2 ? J

©)

SYSTEM RFECORD 1S VARIABLE
IN SIZE OR UNDEFINFD SIZE

|

SYSTEM RECORD FIXED SIZE (

IS USER_PCD_SIZE = SYS_RCD_SIZE

|

C 1S USER_RCD_SIZE = SYS_RCD_SIZE)_.'f.

OUTPUT2:

GENERATE CODE TO DECLARE OUTBUF
AND TO LOCATE OUTPUT RECORD

AS IF FIXED IN LENGTH,

OUTPUT2:

GENERATE PL/1 CODE TO DECLARE

OUTBUF AND T WRITE THE VAPIABLE LENGTH
SYSTEM (USER) OUTPUT RFCOPD .

OUTPUT2:

VARIABLE LENGTH USER RECORD AND VARIABLE LENTTH
SYSTEM RECORD BUT DIFFERENT LENGTHS

SENERATE PL/1 CODE TO DECLARE

SYS CUTBUF AND OUTRUF FCR VARIAELE
LENTTH AND TO LOCATE AS MANY
SYS_RCDS AS NECESSARY TO WRITE THE
USER OUTPUT RECORD

OUTPUT2:

GFXFRATE PL/1 CCF TO DECLARE A VARIABLE
LFNATH YWTBUF AND T)Y WRITE AS MANY SYSTEM
RECCRDS AS NECFSSARY SO A5 TO COMPLETELY WRITE
TRE USFP CUTPLT FF{ORD

FIGUPE. 5-6L (continued)

GEN_WRITE

=247~
generates PL/1 code to declare OUTBUF and to LOCATE the
Ta;get record into the output buffer. Finally GEN_WRITE
returns control to the calling program.

If user output record size is different from system
output record then GEN WRITE generates PL/1l code to declare:
SYS_OUTBUF - output buffer to hold system output record,
OUTBUF - output buffer to hold user output buffer, and
OUTBUF2 - an array of character strings (each has the length
of SYS_OUTBUF and they are overlaid on QUTBUF). Next,
GEN_WRITE generates PL/1. code to LOCATE system records moved
from SYS_OUTBUF. Then GEN_WRITE returns control to calling
program.

" If USER_RCD FLAG 1is equal to two, i.e., there are a
variable number of bytes per user output record. Then if
STORAGE.RCD_FORMAT TYPE is less than two (i.e., fixed length
output system records but a variable number of them form a
user output record. Next a check is made to determine if the
user output record size is equal to the storage output record
size, if so, then GEN_WRITE generates PL/1 code to declare
OUTBUF and generates PL/1 code to LOCATE output records as if
fixed length. Finally GEN_WRITE returns control to calling
program, If user output record size is different from system
output record size GEN_WRITE generates PL/1 code to declare

SYS_OUTBUF - buffer for system record, OUTBUF - buffer for

-248-

variable-length user record, and also generates PL/1 code

to LOCATE as many system output records as necessary to write
the user output record. Finally GEN_WRITE returns control

to calliag program.

If the USER_RCD_FLAG is equal to two and STORAGE.RCD_
FORMAT TYPE is not less than two i.e., variable or undefined
systems output records and variable length user output records.
And if user output record size is equal to storage output
record size i.e., system variable length record size is
same as length user output record, then GEN_WRITE will generate
PL/1 code to declare OUTBUF and appropriate PL/1 code to
WRITE the variable-length system (and user) output record.
Finally GEN_WRITE returns control to calling program. If user
outp t record is different in length from storage output record
i.e., variable user output record and variable output system
record of aifferent size each. Then GEN_WRITE generates PL/1
code to declare a variable length OUTBUF (buffer for user output
record) and also generates PL/1 code to WRITE as many systems
output records as necessary so as to completely WRITE the user
output record. Finally GEN WRITE returns control to calling
program.

5.6.13 OUT_PROC
This procedure when called output to the corresponding

OUT file (OUT - OUT7) the record given as the argument in the

-249-

(:j MEPGE_OUT_FILES

CLOSE FILFS:
SAPLIST, “PTLIST, XREFTAB
cuT?

WRITE TO LISTING FILE
1) TITLE PAGE
2) OPTLIST

WRITE TN LISTING FILE
1) our?
2) XREFTAB

MERGE 2

CLOSE FILES:

0BT, COUT1, OUT2, OUT3, OUT4,
OUTS, OUT6 - (OBJECT PROGR2M)

AND
SAPERR, TABERR, CODEERR
(ERROR MESSAGES)

GENERATE PL/1
CCDE TO CALL
WRAPUP

ON CBJPROG
FILE

‘ RETUTXN

0?

< IS ERRCNT

VRITE TO OBJPROG FILF
OUT FILFS

\/

F__Z___<:¥Is WRAPUP FLAG SET?
N

| MR

GENERATE END STMT
ON ORJPROG FILE

WRITE TO LISTING FILE
OUT2 (DD CARDS)
AND OBJPPOG (PL/1 PROGRAM)

FIZUPE S-6M
MERGE_OUT_FILES

UPITE T LISTING FILE
SAPEPPR, TARERR AND)
CODEERR (ERROR MFSSACGES)

Y
-——————(:jls ERRCNT

= 0?

)

N

‘ RETURN ’

=250~
call.

If the input parameter record is larger than 80 characters
OUT_PROC breaks the record in appropriate places in such a way
that the record output is never larger than 72 characters,
and it outputs as many records of such length as necessary.
5.6.14 MERGE_OUT_FILES

This procedure has 2 entry points; MERGEl, and MERGE2.

Upon entry to MERGE4 the output files SAPLIST, OPTLIST,
XREFTAB and OUT7 are closed. Then the title page and the
OPTLIST file are written into the LISTING file. Next OUT7 and
XREFTAB are also written into the LISTING file.

When MERGE2 is called it closes all the output files. Then
if the ERRCNT is equal to zero the OUT files are written into
the OBJPROG file. If the WRAPUP option was specified to the DDL
compiler then a call to the WRAPUP routine is generated and
written into the OBJPROG file.

Next the END statement is generated and also written into
the OBJPROG file. Then SAPERR, TABERR and CODEERR (error
message files) are written into the LISTING file.

If the ERRCNT is equal to zero then the OUT2 (DD_CARDS)
and OBJPROG files are written into the LISTING file.

When the compilation process terminates the LISTING file

is printed.

*

-251-
CHAPTER 6

CONCLUSIONS & RECOMMENDATIONS

.

6.1 Background and Need For The DDL/DML Language and
' Processor

The need for an efficient method of converting data
organization in view of new user needs or for use with different
programs or different computers has long been recognized by
the community of EDP users. Presently, a user can re-organize
data by either writing his own special software or by using
the data description facilities contained in the programming
languages, operating systems and data management systems available
for a particular computer. Converting file structures, however,
can prove to be a very tedious task for programmers even for
small organizational or format changes to the file. Furtheémore,
data organized on one computer system often cannot be directly
used on a different computer installation due to incompatibilities
of software and hardware. In many cases, the organization of this
data cannot be communicated effectively to another user because
the data organizations are implicit in the programs or software
used. In all these cases, the only way to re-organize data has
been to write a special conversion program, which can require
considerable effort.

The DDL/DML processor described in this dissertation is a first
step towards the solution of the general data conversion problem.
While much work has been done towards the development of Data

Description languages by such groups as the Codasyl Date Base Task

-252-

Group. Their basic approach was to enhance existing programming
languages such as COBOL, FORTRAN, PL/1, etc. with "DDL/DML"
statements and to modify the existing compilers to accept their
DDL/DML descriptions. Our aims, on the other hand, has been to
design and implement an utility capable of creating an ad-hoc
program to perform a specific conversion based on a user-
written DDL/DML language independent of existing compilers.

In order to develop this general-purpose conversion utility,
our primary emphasis has furthermore been to use as far advanced
state-of-the art techniques as possible in the compiler building
process.

As Prywes/Smith have said [PRE 72].

"Simply speaking, a DDL is a language which enables a

person to describe every aspect of a data organization,

from the interrelation among elements of the organization

to its representation as a linear string and its positioning

on a specific storage medium. Such descriptions can serve
as a basis for organizing or converting the respective

data bases automatically."”

Such a DDL has been designed by Diane P. Smith [SM 71] but
its primary deficiency was its difficulty of use and implementation.
We later modified it and simplified it for ease of use and ease
of implementation. The importance of developing such a DDL/DML
independent of any Data Management System is easily seen in
terms of its applications:

1) to communicate data organizations between humans,

2) to communicate the organization of data to computers

to permit processing, and

-253-

3) to convert data from one organization to another.

The DDL processor described in this dissertation is a
practical approach for using DDL/DML for data conversion. The
DDL processor is actually three processors. The first is the
Syntactic Analysis Program Generator (SAPG), the second is the
DDL Compiler, and the third is the Data Conversion Processor.

6.2 Techniques Used To Design and Implement The DDL Processor
6.2.1 Syntax Specification and Analysis

Even though Backus-Naur Form (BNF) was introduced as a
mechanism to generate the sets of strings occuring in natural
and programming languages, we envision it as a tool for the
following tasks: (a) as an aid in specifying the language, i.e.,
a tool for compiler writers; (b) as an aid to implement syntactic
analysis program generators; i.e., for the purpose of recognizing
whether or not a given string belongs to the language; (c) as an
aid to the user in learning how to use the language correctly.

Extended Backus-Naur Form (EBNF) enhances BNF in a way which
makes communication of syntax descriptions easier by providing a
simple way to describe optionality and repetition. It also
simplifies syntax checking, since the scan can be accomplished
in a strictly left-to-right manner.

The Syntactic Analysis Program Generator, along with EBNF,
is a useful tool for writing compilers and language study. Further-
more, it would be a valuable '"stand alone" tool in writing any
syntax analysis program. The SAPG produces a syntax analysis

program which performs syntax checking. (The syntax is checked

=254~

only locally and not globally; i.e., the syntax for each
source statement is checked by automatically generated code,
but relationships between statements in the program - must
be checked by the compiler writer). The EBNF with subroutine
calls (EBNF/WSC) enhances EBNF such a way to facilitate encoding
of the source statements in internal tables. SAPG provides
an overriding advantage over hand-coded SAP's in that it easily
allows changes to the syntax of a language. In the case of DDL,
a completely successful change from the DDL designed by
D. Smith [SMI 71] to the DDL/DML version 1.0 presented in this
dissertation - was accomplished in less than a week. Since the
compiler writer needed only to describe the structure of the
new language in EBNF/WSC and have the details of syntax analyses
to the SAPG.

Local syntax checking is done in a single pass, this gives
a "compilation advantage'" to syntactically error-free programs,
since internal table creation for a statement is performed until
an error is detected. However, compilation of programs which con-
tain errors will still invalue table creation overhead for all
but unrecognizable statements.

Even though SAPG does not handle left recursion and multiple
token look-ahead, these restrictions could be circumvented. Of
course, this would probably necessitate changes in the code that

SAPG generates and most likely the logic of SAPG.

~255-

The ideas of Floyd (FLO 69], Presser [PRE 69] and
Conway [CON 63] (see Chapter 4) in regard to lexical analysis
proved to be of great help in the design and implementation
of the lexical analyzer for EBNF/WSC and for the lexical analyzer
for DDL. The design of both lexical analyzers, however, could
be improved in such a way as to allow the compiler writer to
simply input the character-mapping and state-transition tables
without rewriting the whole lexical routine. A general set of
functions should be provided from which the compiler writer may
chose those which he needs. The character-mapping and state-
transition tables could be input at the start of compilation. 1In
this way changes could very easily be made by simply inputing
a new set of tables.

With the help of EBNF/WSC the encoding of the source statements
is made possible. In our experience it proved to be beneficial
in several areas. Encoding the input reduces the amount of work
performed by code generation, permits the use of global syntax
checking routines, and makes the building of the cross-reference
table much easier. The separation of local and global syntax
checking separate from code generation permits modifications to the
compiler to be performed modularly, simplifying matters considerably.
The intermal tables have been designed to facilitate global syntax
checking, and data preservation for code generation. To this end
PL/1 structures are created to contain the encoded statements. Thus
syntax checking routines, cross-reference routine and code generation

routines refer to the data contained in these tables by NAME. As

~-256-

an example, the entry for the record name in the FILE data
table structure is referenced by FILE.RECORD NAME, therefore,
seeing this qualified name in the code is enough of a clue to
identify which structure is currently being dealt with.

Storage optimization in the encoding of the input state-
ments was also considered. For this reason in the Data table
formats (see Appendix D) a pointer to the DDL name rather than
the name itself is kept, in this way only one word is used
rather than 32 characters. Thus a substantial saving of space
may be realized if DDL names are frequently referenced.

In many instances, Data table entries do not have a fixed
structu;e. This means that they are allocated only after it has
been determined just how much information is to be stored in them
(this is done to achieve storage optimization). It is apparent
that collection of this data must occur by way of temporary storage,
these temporaries were chosen to be PL/1 controlled structures so
that, after all information has been amassed, their storage
allocation would be freed.

By designing the Symbol Table and Data Tables as doubly
chained lists, the code necessary for walking through the structures
was immensely simplified.

6.2.2 The Use of PL/I As A System Programming Language
For the selection of a language to implement the SAPG, the

syntactic supporting routines, the cross reference routines and

-257-

the code generation routines our views were almost identical
to those of Charles A. Lang [LAN 70] and F.J. Corbato [COR 69]
in regard to the selection of a Programming language to write
systems programs.

The two main categories of programming language candidates
were assembly language and higher level programming languages.
The following criteria were taken into account when the decision
was made to write the system in a higher level language:

1) Ease of Programming

The language should enable the programmer to state clearly
what he wants rather than how he wants to do it; further, the
program must be clear when read by himself and others. A high
level language such as FORTRAN, ALGOL PL/1 meets these require-
mentg better than Assembly Language.

2) Maintainability

Secondly there is the problem of technical management of
programming projects: the problem of trying to maintain a system
in the face of personnel turmover and in the face of varying
standards of documentation. Personnel turnover is to be expected
in the University environment. Students get their degrees and
leave, carrying with them key know-how. Training of new personnel
includes both learning a new programming language and learning about
the system. It is well known that, it takes at least twice as long
to learn assembly language, and to become famil;ar witﬁ system
routines written in assembly language, as it takes to learn a high

level language.

-258-

3) Efficiency of Execution

Finally, while code written in assembly language tends
to be slightly more efficient than compiler-generated code, we
felt that this was a small price to pay for the other two
factors. Furthermore, there is more and more a trend toward
good optimization of compiler-generated code.

The essential question was then, what high level language
to use. We chose PL/1 for the following reasons:
1) Modularity

One can write a system in PL/1 modularly; one can compile
each subsystem of the final processor separately, clean up the
syntax, debug it and test it on an individual basis. (This
also is true in Fortran, Algol and Assembly language).

2) Special Features

PL/1 is very good in providing data structures and data types
which we considered to be very important features for writing the
DDL compiler. These include controlled storage, based storage
and pointer variables, dynamic storage allocation, string
manipulation and capabilities; powerful built-in functions, block
structures, recursive procedures, variable-length hierarchical
structures, and varying strings. In other words, PL/1 is very
powerful in the special language facilities which we needed.

3) Ease of Programming

Being a university research group we obviously could not

compete with a software house in developing the most efficiently

-259~
running system.

PL/1 allowed us to concentrate on the development of the
system itself rather than worrying about a specific machine
configuration and hardware. Thus, by viewing our machine as a
"PL/1 machine," we were able to focus our attention on developing
a reasonably efficient system with little manpower and time.

Two computer systems available at the University of Pennsylvania
that could satisfy requirements were evaluated, the RCA Spectra
70/46 Time Sharing System, and the IBM 370/165 operating under
0S/360. The RCA system includes support for ALGOL, COBOL, FORTRAN,
SNOBOL, and Assembler languages. The IBM system supports these
and also PL/1, APL and LISP. Since both systems meet the hardware
and operating system requirements, the programming language was the
determinant. The IBM/370 computer system was selected because of
PL/1 availability.

Overall, the general result that we got from using PL/1 was
a relatively small number of programming errors and rapid debugging
and checkout. One of our very few major sources of residual trouble
is of bugs caused by mismatched declaration in the structures. In
fact, it is to be expected, since it is a defect in the PL/1
language in the sense that the independence of the separate
compilation has left a gap in the checking of the structures and
types.

A major positive effect of the use of PL/1 has been that we
have been able to make major strategic changes without too much

reprogramming.

-260~

6.2.3 PL/1 As An Intermediate Object Language

The technique of transforming DDL into the object program,
IBM/370 machine code, by means of a sequence of simple trans-
formations leads naturally to the idea of an "intermediate
language.'" The need for an intermediate language which céuld
act as a Universal Computer Oriented Language (UNCOL) has been
proposed (Strong et.al. [STO 58], Steel [STE 61]) but the design
of such a UNCOL has not been done. We decided to use PL/1 as
an intermediate language in the translation of DDL to IBM/370
machine code, since we could more easily generate PL/1 code than
machine code and thus take advantage of the existence of the
PL/1 compiler. While one might argue that compilation time is
greatly increased, we claim that we were able to achieve our goal
of implementing a prototype DDL compiler much more quickly and
producing a much more maintainable and expandable system than one
which generated machine code directly. Another consideration and
further benefit in deciding to use PL/1 as the object language was
that the DML language being a subset of PL/1 allowed us to merge
the PL/1 output of the DDL compiler with the DML routines supplied
by the user and then to feed the result into the PL/1 compiler
to obtain IBM/370 machine code. ‘PL/1 as an intermediate language
was also used by SAPG in producing the SAP for the DDL compiler for
analogous reasons.

The code generation routines and the routine to build the

cross-reference table were written using Ad-Hoc techniques due to

~261-
the fact that there is no methodology available at this time

to describe the semantics of a language in a Meta language
as was possible to do with the syntax.
6.3 Experience With DDL/DML

The present version 1.0 of the DDL/DML compiler have been
in operation at the University of Pennsylvania since September
of 1972. The computer system in which we run the DDL/DML compiler
is the IBM/370 model 165.

A User Guide for DDL/DML (see Appendix A) has been produced,
in it we present how to use DDL and DML, and how to call the
DDL/DML compiler under the 0S of the IBM/370 model 165.

Three real life examples have been successfully run for the
Naval Research Laboratory.

Example 1: We were given a source file, known as the internal
data base (internal DB), stored in a Magnetic tape (7 trk), and
coded in upper/lower case ASCII (8 bit code, where the highest
order bit is always zero), odd parity. The output will be a file
known as DSAM stored on magnetic tape (7 trk), and coded in BCD,
even parity with block size of 720 characters except for header and
trailer lables of 80 characters with end of file as specified in
DSAM manual # 4185.5. The conversion process involves tests in
security fields and validation of fields with the corresponding
error messages when some security or validation was violated. The
security and validation criteria are stated in a booklet produced

by the Defense Supply Agency (December 1968).

~262-

To compile the DDL/DML program for Example 1 into PL/1
took 29 seconds, and from PL/1 into machine code (IBM/370
model 165) the compilation time was 32 seconds. The Conversion
Program produced by the DDL compiler was tested with two different
input tapes one with 10 records and the other with 11 records.

The conversion process took in both cases 14 seconds.

Example 2: With the same input as in Example 1, the output
is to be stored in a magnetic tape (7 trk) coded in "reverse"
ASCITI , odd parity, with variable record size, such tape will be
used as input to one of the Navy computers to produce a "hard
copy."

To compile the DDL/DML program for Example 2 into PL/1 took
15 seconds, and from PL/1 into machine code the compilation time
was 20 seconds. The conversion program was tested with the same
two tapes used in Example 1 in both tapes the conversion process
took 2 seconds.

Example 3: In this case the input tape was already validated.
The output was the same as in Example 1. The difference is that
the conversion process is carried out without validation. The
compilation times from DDL into PL/1 and from PL/1 to machine code
were 20 and 22 seconds respectivély. The conversion process took
2 seconds.

6.4 Future Trends and Developments
The present version of the DDL compiler allows the user to

handle any type of sequential file to perform conversions, report

-263-
generation, and if he provides DML routines any kind of

validation.

It would be desirable for the DDL language and processor
to be extended in such a way so that it processes more than one
input file. Furthermore, other kinds of file organizations need
to be permitted, i.e., random, index-sequential, etc.. More-
over, the validation of input data could be greatly improved by
adding new statements to DDL where the validation criteria could
be described, thus replacing the need for DML in validation.

It would also be desirable to extend DDL to encompass up-
dating of existing Data bases. Thus, we envision that the DDL
language could be a base for a versatile Data Base Management
System.

In the area of report generation the present version 1.0
of the DDL/DML language does a good job, but it is the user who
needs to worry about formats, headings, etc. Therefore, some
work must be done to extend the DDL compiler to provide the user
a better way to produce reports.

In order to achieve the above improvements it is necessary to
change both the syntax and the semantics of DDL/DML. To change the
syntax we have proved that it can be easily and more automatically
done by using the SAPG, but it is in the area of semantics
-Code Generation- where the problem can be more difficult. In order
to facilitate the expansion of such a system, a more automated

mechanism to implement code generation is needed, and we would

-264-

therefore like to propose that the following research be done

on the area of compiler generators.

In a paper presented at a Working Conference on Mechanical

Language Structures, "On Context and Ambiguity' in Parsing [ROS 64]

a very interesting general discussion in the area of semantics

is reported, and it is highly important to our discussion on

semantics here and I would like to quote some of the remarks

reported in that discussion.

Iroms:

Gdrn:

Bauer:

Perlis:

Brooker:

"In order to describe a language - any language -
you have to have another language to use as some
instrument by means of which to convey information.
The only thing is, that you must have a language

to use to describe the other language -~ the one
you are trying to describe, and it should be simply
enough so that it is easily understood by people
who look at it."

"However, I think that if you want a language to
define the meaning of something it has to define
it in terms of something else which already has
meaning. So you have to have semantics to get
semantics. In every case this means some machine
in the background because that is where something
happens which means something."

"We never can get rid of this, and it means that we
must really come to some level that we can easily
agree upon."

"We are interested in semantics so that we can
mechanize the process of translation on computers.'

"In the case of ALGOL, the most useful concepts are
scope of an identifier, block structure, substitution
of expressions for names in the body of the text,

and all the usual arithmetical concepts. The
arithmetical parts are fairly easily understood by
most people; it is the other concepts that the

-265~-
non-programmer is unfamiliar with. I personally
cannot see how else these can be explained except
by high quality English prose."
Backus: "I think one purpose that one could have in
describing meaningful mechanisms, for describing
the meaning of programs in arbitrary new languages,
is so that people can publish a description of a
newly proposed language and have it made clear
to the readers in a fairly transparent way what
interpretation he wishes to place on the statements
of this language.”
The above remarks apply to someone who wants to design a
Meta language to describe the semantics of languages existing
or new languages. I think that because of all the difficulties
in this respect no one has been able to produce such a language.
To the best of our knowledge the only Meta language to describe
semantics available today is the Vienna Definition Language [WEG 72]
and this language is a Meta language for defining interpreters
rather than compilers.
The approach that we propose is one based in the remarks
given above but specifically for the DDL compiler. That is, DDL
statements are to be translated into an intermediate language
(PL/1) and the Meta language will be based on a set of MACROS ad-hoc
to DDL to produce code in PL/1l. In this way we will use English
prose to describe the semantics of the MACROS and then the compiler
writer can call on them from the Meta language for describing DDL
to generate the desired PL/1 code.
With this approach it is much easier to extend the DDL compiler

in the areas we have mentioned since the compiler writer will use

EBNF/WSC to describe the syntax of the new DDL and the proposed

-266~

Meta language for DDL to describe (by calling in the MACROS)
the semantics of the new DDL.

In effect, we are proposing then, a compiler generator
for DDL - type languages. As we see in Figure 6.1, such a
compiler generator would consist of the SAPG which will produce
the syntax analysis program and a Code Generation Program
Generator (CGPG) which would assemble code generation routines.
Such a system would greatly provide a useful vehicle for extending

the current system.

[
K v
p
SNATACTI C
SVtPoRTIMG
Qoutiues DL Sovece
TMTS .
|
J
SAPa | SAPLex
INT, TAOL:S
SenmantICS r:_r:
DOL | DML ceoPa Nl L a
MeTh LAnGLacE .
Foo “:,,‘) [~]» Covﬂm:J;ewuhn | ’ 0L ompILeR|
' S R
o
INPUT OATHR o
Code L T‘
EENEMTAN
LouTives OOu
USERL - PROGRAM

Freuee 6-4

OuUT UT
LesolT S

DL Gmertew — Gewe famsie

s v

e WP LTI

