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1 Introduction

The practice of automatic control has its origins in antiquity [1,2]. It is only recently — within
the middle decades of this century — that a body of scientific theory has been developed to
inform and improve that practice. Control theorists tend to divide their history into two periods.
A “classical” period, prior to the sixties witnessed the systematization of feedback techniques
based upon frequency domain analysis dominated by applications to electronics and telephony.
A “modern” period in the sixties and seventies was characterized by a growing concern with
formal analytical techniques pursued within the time domain motivated by the more stringent
constraints posed by space applications and the enhanced processing capability of digital tech-
nology [3]. The hallmark of control theory has been, by in large, a systematic exploitation of
the properties of linear dynamical systems whether in the frequency or time domain. Its great
success in applications is a remarkable tribute to the diverse range of physical phenomena for
which such models are appropriate.

The field of robotics presents control theorists with a fascinating and novel domain. While
numerically controlled kinematic chains with a few degrees of freedom have been available for
over two decades, it is only within the last five years that mechanical systems with many de-
grees of freedom, each independently actuated, have been wedded to dedicated computational
resources of considerable sophistication. To begin with, the dynamical behavior of such systems
appears to depart dramatically from the familiar linear case. Further, typical robotic tasks in-
volve complex interactions with diverse environments possessing, of themselves, kinematics and
dynamics, which may change abruptly throughout the course of desired operations. Finally, the
complexity of these tasks makes even their specification problematic for purposes of control,
This article is concerned exclusively with control problems arising from the first of these consid-
erations. Specifically, the intent is to show that a systematic application of Lyapunov Theory
affords qualitative understanding of certain aspects of the input/output properties of a broad
class of nonlinear systems {which includes all robots) analogous to that available for linear time
invariant systems, For concreteness, the discussion is limited to robot arms — open kinematic
chains with rigid links,

This first section concludes with a presentation of the central theoretical apparatus to be
used throughout the sequel. The next section provides an elementary account of control in the
context of a single degree of freedom kinematic chain, providing a means of introduction to
the techniques of Lyapunov analysis by comparison to the presumably more familiar frequency
domain methods. Section 3 constitutes a very brief derivation of the equations of motion arising
from the dynamical properties of general kinematic chains. Section 4 presents an account of
a robot planning and control methodology based upon unforced, pure feedback based control.
Finally, Section 5 provides a brief look at several approaches to the general robot tracking
problem.

1.1 Notation and Definitions
If f:IR" — IR™ has continuous first partial derivatives, denote its m X n jacobian matrix as
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4 1 INTRODUCTION

If m = 1then Df is a gradient; if n = I then Df is a tangent vector. It will often be necessary
to obtain the jacobian of a matrix valued map — m = p X ¢ — and the kronecker-stack notation
presented in the Appendix is of great help in this regard. When we require only a subset of

T

derivatives, e.g. when 2 = , and we desire the jacobian of f with respect to the variables

z) € R™, as @y is held fixed, we may write

D..f £Df [I'"(;‘“‘ ]

It will also be important to obtain bounds on the operator norm of matrix valued maps, I
A:J - IR™" is 4 smooth map taking matrix values then let

LA gsup sup |=T Az
q€J ||zfl=1
and A
va = inf inf |z¥Ag],
g€J |lzf|=1
If J is compact, or the entries of A are bounded then both 14, p4 are non-negative real numbers.
For any constant matrix, u4 is the square root of the eigenvalue of greatest magnitude, while
v4 is the square root of the eigenvalue of least magnitude of ATA, from which it follows that

pa = sup ||A(Q)]] 1/va =sup|lA~ (g,
qeJ geJ

where || - || denotes the operator norm induced by the euclidean norm of IR”,

Given a set §, a smooth (possibly time varying) scalar valued map, v : R x § — IR is
said to be positive definite at a point z € § if, for all ¢, v(f,x) = 0, and v > 0 in some open
neighborhood of 2. Given a smooth (possibly time varying) vector field,f, on some state space,
§, we shall say that, v, a positive definite map at x4 € §, constitutes a Lyapunov function for
[ at x4 if the time derivative along any motion of the vector field is non-positive,

U= [Dyvif+ Dw <0,

in some neighborhood of w4, for all {, and that it constitutes a sirict Lyapunov function for f
if the inequality is strict [4,5]. The demain of v with respect to x4 is the largest neighborhood
around p which is free of additional critical points and upon which the derivative is still non-
positive. A strict Lyapunov function will be called a gquadratic Lyapunov function for f on
the domain, P if it is analytic and there exist three positive constants, oy, ag, ag, with the
properties,

all2l? < v(a,8) < cullall? and 9(z,8) < ~asjal? (1)

for all t and x € D.

1.2 Some Results from Lyapunov Theory

The existence of a strict Lyapunov function at a point is a sufficient condition for asymptotic
stability of that equilibrium state. If a strict Lyapunov function has not been found, asymptotic
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stability may, nevertheless, be assured if a further condition on the possible limiting set holds.
This is “LaSalle’s Invariance Principle” [5]. It is possible, as well, to draw conclusions about the
tracking capability of a forced dynamical system in consequence of of the stability properties of
the unforced vector field at a particular equilibrium state. However, this seems to require the
use of a strict Lyapunov function,

The central concern of this paper is with the application of two results from Lyapunov theory
to the vector fields arising from the dynamics of kinematic chains. First, it has been known for
quite some time that the total energy of a mechanical system may be interpreted as a Lyapunov
function [6]), and we will make extensive use of this fact in Sections 2.2 and 4. Unfortunately,
this choice of Lyapunov function is never strict, and an appeal to LaSalle’s invariance principle
is required. Second, we will make use of a strict Lyapunov function in Sections 2.3 and 5 which
turns out to be quadratic (in the sense defined above), The tracking results follow as a standard
consequence,

In order to introduce Lasalle’s Invariance principle, one further definition is required. A
positive invariant set relative to some vector field, f, is a set in state space with the property
that any trajectory originating there stays there for all future time.

Theorem 1 ( LaSalle’s Invariance Principle [5]) If v i a Lyapunov function for the time
invariant vector field f on some pre-compact domain D, then any trajectory originating in that
domain approaches the largest positive invariant set contained within the subset of D with the
property that v =0.

In order to make use of quadratic Lyapunov functions, the following technical result is
required.

Lemma 1 If
b < ¢(v),

and u(t) is a mazimal solution to the differential equation, @ = ¢(u), and v(to) < u{ty), then
v(t) < u(t),

for all t > tg.

Proof: This is a standard application of a differential inequality. For example, see the
refernce [7}{Theorem II1.4.1].

E“J

This useful fact leads to a variety of standard results ( e.g. see [8]) involving transient and steady
state behavior of disturbed dynamical systems. The following will prove particularly useful in
the sequel.

Theorem 2 Consider the disturbed dynamical system
&= A(z)z + d(t)

If v is a quadratic Lyapunov function at the point O for the undisturbed system (i.e. d=0} on
some domain, D, and there may be found a positive constant, oy, such that

|Dzv d] < aal]]
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then the response of the disturbed system from any initial condition, x(to) € D, is bounded by

le()]| < 3% x + 8

where A Q3 A Oy A o
= — = —— = — t 2
p 023 a1a3! x \/(ﬁ”x( 0)“ )
and the a;,i = 1,8, are defined by (1),
Proof: According to the hypothesis we have

U = DyuviAz+d]+ D

IA

—aog||2f]? + aalfall
< —pv+ \;"—ai—}-\/t_)
Since

2
A ~1 Oy
u(t) = { e” 2 u(0) + —=
( ( 0+
is a maximal sohition to the differential equation

. o
= —plt + e/,
241

T

it follows from Lemma 1 that

v(t) < (e—%"’v({)) + \?——3_7)2.

The result follows by noting ay)|z]|? < v, according to (1).

a



2 A Single Degree of Freedom Robot Arm

The “frequency domain” techniques of classical control theory lie at the foundation of the disci-
pline and offer design methods proven over the last sixty years in the context of a great variety
of physical problems, Unfortunately, the class of dynamical systems represented by high per-
formance robots with revolute arms is not amenable to a general rigorous analysis using these
tools: strongly coupled nonlinear dyramics do not admit representation by transfer function. !
For the purposes of tutorial exposition, in this section the central insights of classical control
theory will be (roughly) translated into the language of lyapunov analysis. While frequency
domain analysis appears to be less cumbersome, we will make some effort in this section to show
that the results of the present analysis are quite similar. It will be seen subsequently (Sections
4 and 5) that much of this translation carries over to the more general robotic domain as well,
where the classical analysis is unavailable. .

In this section attention is limited to the case of a single degree of freedom mechanical
control system — the actuated simple pendulum. While this system cannot convey the scope of
sixty years of control research, the insights motivated by such second order linear time invariant
systems pervade the field. At the same time, this system represents the simplest possible revolute
robot arm. Section 2.1 introduces the notion of a dynamical model, and the need for control
theory, hopefully making clear that the fundamental problem of control is not a consequence of
limited power, but of limited information. Section 2.2 presents a sketch of linear feedback theory,
and Section 2.3 provides a quick account of linear servo theory. Constraints of time and space
have unfortunately precluded the addition of sections concerning many “modern” techniques
such as optimal control, stochastic filtering, or learning theory as applied to this system. The
reader may note that each subsection here anticipates a more specialized treatment of analogous
material for the general robot arm in later sections of the article; compare Section 2.1 with
Section 3; Section 2.2 with Section 4; and Section 2.3 with Section 5.

2.1 Dynamics: A Source of Delay and Uncertainty

A simple pendulum consists of a mass, M, attached via a rigid (massless) link to a joint which
permits rotational motion limited to the plane on which the link lies. Perfect angular position and
velocity sensors located at the joint deliver exact measurements, 8, 8, respectively, continuously
and instantaneously. A perfect actuator has been placed at the joint: this idealized device has
no power limitations, hence can deliver arbitrarily large torques, 7, instantaneously, We assume
that the plane of motion is horizontal so that there are no gravitational or other disturbance
torques, 2

The control problem may be rendered roughly as follows: design an algorithm which produces
a time profile of torques, 7(f), so as to elicit some specified behavior of the simple pendulum. In
the context of robotics, the following terminology (which is alien to conventional control theory)
proves quite useful, The precise nature of the desired property determines what might be called
the fask domain, and the particular instance, an encoded task specification.

1t is important to mention that some researchers, e.g. Horowitz [9], have successfully used modified frequency
domain methods for restricted nonlinear control problems.

2Such artificial assumptions will be relaxed very soon, and serve here merely to underscore the insight that
the fundamental problems of contro} arise from uncertain information and intrinsic delay rather than power
constraints, as discussed in the introduction.
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2.1.1 The Newtonian Dynamical Model

In order to think about control algorithms, we first require some understanding of the rela-
tionship between adjustments in 7 and resulting changes in 8. This relationship is completely
specified by Newton’s law relating torque to angular acceleration, given as

Mo =7,

This is a system with memory: changes in € (and, hence, 8, itself) at any time, ¢, depend upon
the past history of 7 rather than simply its value at time ¢{. The fact that physical systems
give rise to dynamical rather than memoryless relationships necessitates the need for a theory
of control as will be shown directly.

For the purposes of this article, it will prove more convenient to express such relationships,
second order differential equations involving n variables, in the equivalent form of first order
differential equations involving 2n variables. Defining

== (]2 5]

to be the state variable expressed in phase space, emphasizes the fact obtaining from elementary
properties of differential equations that the future behavior of the system, z(f),t > to, is entirely

determined by its initial conditions, 10 2 8(to), z20 2 é(to), and future values of the control
input, i.e. the torque, u(t) 2 7(t},t > to. For time invariant systems such as this, the behavior

is independent of initial time, and it will be assumed in the sequel that #o é_ 0. These definitions
are more carefully discussed in standard control texts [10,11,12].
The system may now be specified by phase space dynamics of the form

&= f(:l:, u):
with the vector field [13], given as

f(z,u) = Aoz + bu (2)

01 0
A"g{o ol; b%[z/M]“'

According to the description of the system given above, the entire state variable is measured,
thus the system outpuf, y, takes the form

y(t) = =(%).

A traditional circumstance of linear control theory is that the system output — the set of avail-
able measurements — contains incomplete information from which it is required to reconstruct
the entire state. In the context of robotics, this situation is most typically reversed: the sys-
tem state (joint positions and velocities) are available, while the output (workspace positions,
velocities, and forces) cannot easily be directly measured (¢f. Section 3.1.2).

where




2.1 Dynamics: A Source of Delay and Uncertainty 9

2.1.2 The Need for a Theory of Control

In the task domain of set-point regulation consider the following task specification: bring 6
to some desired position §; and keep it there. Given the ideal context described above, it is
quite easy to come up with ad hoc control algorithms. 3 An obvious procedure which requires
no great body of theory might be the following. Measure the present position and velocity,
2(0) = [mlg,xzo]T, and apply an impulse torque at the same instant,

Uatart(£) £ M(1 = 230)b0(8).

An impulse has the effect of resetting initial conditions, thus equation {2) implies that a new
constant angular velocity results,

z(t) = [ t+15t:10]; >0,

and the desired position , 21(t) = 8, is achieved at time #* = 84 — x10. If, at this instant, a
second impulse,

[
uatop = _Mét‘ (t)-

is applied in the opposite direction of motion, then the new velocity is canceled exactly, the end-
eﬁ'ect;or comes to rest in the desired position, and remains there for all £ > ¢*. The algorithm,

U= “a!art(t) + Uatop(t):

requires & priori knowledge of M; instantaneous measurement of and actuation energy exactly
proportional to z(0); and an exact timer for marking ¢*. Note that despite our best efforts to
idealize the capabilities of sensors and actuator, some finite time must necessarily elapse between
the application of the control torque, and the desired result. 4

Now suppose that the prior estimate of M, M has some error {for instance, suppose the
robot is holding an object whose mass is not known & priori). If the same control is applied,
substituting M for M , the true response of the system will be

_ | [M/M A+ (1~ BE/M)xg0]t* + (1~ M /M)agot || .
x(t)—[ (1 N /M)zso ; t>

Thus, finite and increasing error results from arbitrarily small inaccuracy in M. Ttis easy to
see that the same problems would result given any inaccuracy in the sensors, or magnitude of
energy delivered by the actuator. Certainly, a subsequent check of true response at some future

2A unit impuise is modeled by the “Dirac delta function®, 3i(¢), defined by

f_ " 1)) = 1)

— an infinitesimally rapid amount of infinitely large magnitude possessed of unit area {finite energy) which our
ideal actuator is able to deliver.

*This, too, could be obviated by the further idealization of applying a “unit doublet” — the derivative of the
delta function. We stop short of introducing such a degree of unreality since, unlike the impulse, the doublet
cannot be even approximated by real actuators. '
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time, z(t* + ¢), would reveal whether or not such errors had occurred, and a similar course of
action conld be planned based upon the new observation. But there is no systematic procedure
for performing such checks and re-adjustments: a “higher level” of control authority would be
required to decide when they should be effected. More disturbing, it is not yet clear that any
systematic application and re-application of this procedure exists that can guarantee subsequent
improvement from one response to the next. This sort of error propagation is characteristic of
unstable systems.

The origins of control theory, then, rest in the following observations. Dynamical systems
give rise to delay which must be taken into account by any control strategy regardless of available
actuator power and sensor accuracy. Moreover, information regarding the real world is inevitably
uncertain and may have adverse effect upon performance no matter how small the uncertainty
or powerful and accurate the apparatus.

2.2 Feedback Control: The Behavior of Error-Driven Systems

The difficulties described above suggest the desirability of control strategies which make system-
atic and continual use of actuator information in order to reduce successively the performance
errors caused by initial uncertainty. This study — the discovery and elucidation of feedback
algorithms — is arguably the most profound contribution of control theory to physical science.
Here we present some of the basic results from a purely control theoretic perspective. In Part
4 suitable generalizations begin to suggest a unified approach to dynamically sound robot task
encoding methodologies.

A feedback algorithm is essentially an error-driven control law. Presented with a linear
system, it makes sense to investigate feedback laws which are linear in the errors as well. In
the context of set-point regulation, the errors in question are the distance of the true angular
position from the desired, and the true angular velocity from zero. The most general linear
function of these two errors is

ug w(8g — 71) + 2¢w(0 — 2q). (3)

defining a class of algorithms known as PD ( “proportional and derivative” } control schemes.
According to our model of system dynamics, (2), the resulting closed loop system is a homoge-
neous linear time invariant differential equation

. 0 1
é= oS [ ~w M —2w/M } ¢ @

. . A )
in the translated “error” coordinate system, e = [ =1 %o 4

equilibrium state of this closed loop system - i.e. if the initial position and velocity of the arm
were exactly at (64,0) to begin with, then the resulting future trajectory would remain there
for all time. An equilibirum state of a dynamical system which has the property that solutions
originating sufficiently near remain near, and asymptotically approach it in the future is called
asymptotically stable. All those initial conditions which are near enough to asymptotically
approach an asymptotically stable equilibrium state are said to lie within its demain of attraction
{14].

]. The desired end position is an



2.2 Feedback Control: The Behavior of Error-Driven Systems 11

2.2.1 Stability of the Closed Loop System

We seek to show that this algorithm produces an asymptotically stable closed loop equilibrium
state (the desired end point) whose domain of attraction includes all positions and velocities.
This desirable property may be shown to hold in a number of ways: the following demonstration
is the only means which may be rigorously extended to the general case of revolute arms with
many degrees of freedom as shown in Section 4.2.

It may be observed that the algorithm and consequent closed loop dynamics would be the
intrinsic result of introducing a physical spring, with constant w?, stretched between the desired
and true position, along with a viscous damping mechanism opposing motion with force pro-
portional to velocity, with constant 2¢w. Accordingly, considerable insight into the asymptotic
behavior of the resulting system may be obtained by studying its mechanical energy.

This is defined as the sum, v = k + u of kinetic energy, due to the velocity of the mass,

A 1 2 1 '2
= -Me; = = M8
T T M
and potential energy stored in the spring,
1 1
p -iwze% = -2—w2(3 — 84)%.

The change in energy of the closed loop system is expressed as

v = w2616'1 “+ Meqeo
= wlerey — wlerey — 2wel (5)

= —2¢wes < 0,

hence, if 2¢w > 0, v must decrease whenever the velocity is not zero. If M,w? are positive
as well, then v is positive, except at the desired state, ¢ = 0, where § = Hd,é =0. Itis
intuitively clear (and may be rigorously demonstrated) that these conditions guarantee v will
tend asymptotically toward zero, hence, that e(t) approaches 0 as well.

This argument, employs the total energy as a Lyapunov function [14]. It demonstrates that

the control algorithm succeeds, asymptotically, in accomplishing the desired task: stabilizing the

system with respect to %a | solves the set point regulation problem for that end point. It has
Y 0

been already remarked that this stability property is global in the sense that any initial position
and velocity of the robot arm will “decay” toward the desired equilibrium state. Moreover, no
exact information regarding the particular value of M has been used to achieve the result, other
than the assumption that it is positive. Since the choice of 84 was arbitrary, it is also clear
that the analogous feedback algorithm will stabilize the system around any other desired zero
velocity state, [ 8(;’ ] , as well, with no further re-adjustment of the “feedback gains®, w?, 2¢w.

The PD controller provides a general solution to the set point regulation problem.

2.2.2 Robust Properties of Stable Systems

The model proposed for the single degree of freedom arm (2) cannot be exactly accurate: there
will be inevitable small disturbance forces and torques placed upon the shaft and arm varying
in position and over time. Moreover, real actuators, even those possessed of ample power, are
subject to imprecision in the profile of torques or forces output in response to any command. If
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the cumulative effect of all these uncertainties is small, then equation (4) may be more accurately
written in the form ‘
é= Are+ de,t)

where the scalar “noise” function is bounded, ||d{e,t)|| < &, by some small § > 0. Another
advantage of the feedback control algorithm developed above is that the inevitably resulting
errors in performance remain strictly smaller than &, no matter what the form of the noise
function, d(e,t). This, again, may be demonstrated in a variety of ways: in keeping with the
philosophy of exposition detailed in the beginning of this section, we appeal to a modified
Lyapunov analysis .

Define the symmetric matrix

pa | ww? w
T osw oM

where 7 is some positive constant, and define the modified Lyapunov candidate,

i 1
w2 EeTPe wn §[f}rowze§ + 2¢wereq + 'ng'e%].

This is a positive definite function (i.e. e?Pe > 0 with equality only for e = 0) if and only if

~0,w?, M > 0 and
¢
> —. 6
“o M (6)
which condition clearly obtains for some sufficiently large choice of «p. Taking the derivative,

we have
7 =eTPAe+ ¢"Pd
- -—eTQe% + et Pd

where

,é,l T » w2 W
Q= 3lPAL+ A P] = [wg Mq;,}

and we now write o = (L + 76)/2. Note that @ is positive definite if and only if

> & o
’70 A/I'
Assuming '76 is chosen sufficiently large so that both (6) and (7) hold true, we have satisfied the
conditions of (1) for a quadratic lyapunov function with

a1 = up =g (’YO(M+ w?) - \/qg(M - w?)? + 40;?;2)

ar = up =} (20l +a?) + \ROT— A + as?) ®)

2
ag =48 vy =% ((q{;ﬂi—}- w) ~ \/(fﬁ,ﬁvf — w?)? +w2g2) ,
and the hypothesis of Theorem 2 with

A .
ay=dopp.
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It follows, according to that result, that

le(@)l] < e 57'x + 8

where
_ 5 g éi‘_’f__
Mup’ pvp
This implies that }|e]| decays exponentially toward a bounded magnitude regardless of the nature
of d (as long as it is bounded).

p

2.2.3 Adjustment of Response: High Gain Feedback

It now seems worth comparing the results of the previous analysis with traditional frequency
domain techniques. The transfer function from the disturbance vector to the output error may
be written as

4T T
el(s)m{él [sI—Aﬂ'ld(s):MS”;gsW[MS';‘M] as),

with poles given by
Y Sez _
W (g T\ ¢t - M.
As shown in Section 2.2.1, the system is stable if and only if M, ¢,w are all positive numbers. This
confirms, as well, the analysis of the immediately preceding section — i.e. bounded disturbances
give rise to bounded errors.
Two additional important facts are evident from equation (9). First, the transient response

is improved by increasing the magnitude of the poles, and this is simply achieved by increasing
w, assuming ¢ < /M. Second, assuming that d attains some steady state value,

83—}

lim sd(s) = l g; l

we have )
Jim e1 () = —5 (62 + 2w¢ér).

Thus, the ultimate bound on the steady state error may be decreased, as well, by increasing
the magnitude of w for any fixed value of ¢ and M. Both of these adjustments may be made
with no additional information concerning the nature of the disturbance, or the magnitude of
the system parameter, M. If some further knowledge is available, then a choice of ¢ slightly less
than M will produce “nice” slightly underdamped transient.

The benefits of “high gain” feedback are well understood in the linear systems literature.
There are some well known liabilities as well. The presence of higher order dynamics than
modeled in (2) will virtually guarantee that gain increases past a certain magnitude result in
deleterious performance, and, ultimately, destabilize the closed loop system. Moreover, given the
inevitable power constraints of the real world, there will be some upper limit on the magnitude
of w?, 2¢w which may be implemented, and, hence, on the rate of convergence toward and error
bound around the desired goal which may be attained. Nevertheless, the utility of suitably



14 2 A SINGLE DEGREE OF FREEDOM ROBOT ARM

tuned “PD” controllers is underscored by their ubiquitous presence in world of real actuators
and sensors. It seems well worth the effort to gain similar understanding of the more general
class of mechanical systems.

In order to suggest how these insights might be extended, we examine the bounding ratios,p, /3,
introduced in the previous section. For ease of the present exposition, assume that a lower bound
for M is available and that we have chosen ¢ < M, accordingly (underdamped response), This
guarantees that the choice of o = vy = 1 will still satisfy conditions (6), (7) with the result
P = @. In this case, the results of the previous section indicate that bounds on transient
response rate and steady state error are given by

2

wevp bp
= =6 — .

= ur "’ "(up)

The ratio of minimum to maximum eigenvalues of P may be written

ORISR A
vp 1—V1i—u

where
A My —¢? 4w*

o (M+?)?
is the ratio of the determinant of P to the squared trace of P, It is clear that 5 is monotone
decreasing in u. Since

(4

du  Mro—¢* 2

. . — 2
dw =~ (M + w?)3 (M~ o),

under the assumption that {6} holds, increasing the magnitude of w up until the magnitude vM
results in increasing values of u, and, hence, decreasing values of #. According to our analysis,
the exponential time constant, p, is inversely proportional to 5, while the bound on the steady
state error, 3, is proportional to 52

The foregoing arguments show that a slightly more complicated analysis of the performance
bounds due to lyapunov analysis yields insights analogous to those obtained from frequency
domain techniques, albeit under considerably more constrained assumptions regarding relative
magnitudes. In the sequel we will find that additional information concerning the structure of
d will afford even better correspondence between the two technigues.

Of course, the exact characteristics of a closed loop system resulting from linear state feed-
back, (3), are completely determined by the poles — eigenvalues of the resulting system matrix,
A, in (4) — and, hence, by the roots of a second order polynomial whose coefficients are exactly
specified by the second row of that array [15,3,16]. Thus, performance concerns may be precisely
addressed only if full information regarding the parameters of the system is available. Namely,
if M is known, the feedback strategy

u = M(k10 + kof) (10)

results in a closed loop system with vector field

A 0 1 g
wet] S 5] [6]
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whose eigenvalues,

1
—5 (ks £ /K - aky).

may be exactly assigned.

2.3 The Servo Problem: Tracking

The most general task domain of classical control theoty is the servo problem. Task specification
is by means of a reference trajectory — a time varying signal, 24(t), which it is desired that the
system output, z(t), should repeat, or track as closely as possible. Typically, the control law
takes the form

Ugery = Ugp + Upe

where uyp is some stablizing feedback algorithm, e.g. (3) or (10), and
A

is some appropriately conditioned or pre-compensated form of the reference signal. A thorough
treatment of these ideas can be found in standard classical texts [15,3,16]. This section introduces
the narrower point of view which will predominate throughout the sequel: a tracking problem
is a “disturbed set point problem” — a problem requiring motion toward the “new set point”
at a particular instant, z4(t), in the presence of “disturbances” caused by nonzero derivatives,

zq(t) .

2.3.1 The Forced Response of Linear Systems

Linear time invariant systems constitute an important exception to the general rule that the
ouput of a forced dynamical system has no closed form expression involving elementary functions.
Consider a general example of such a system,

&= Az + bu. (11)

1T
Let the initial position and velocity be specified by 2 = [Bd,Bd] , and define

exp{tA} = i(tA)k/kI.
k=0

Recall that this sum converges for all matrices, A, and real values, ¢, and that its {operator)
norm decays with increasing values of ¢ if and only if the eigenvalues of A have negative real
part. It may be verified by direct computation that

2(t) = exp{tA}{zo + Ll exp{—rA}bu (r)dr], (12)-

satisfies the closed loop dynamical equations, (4). Of course, the availability of this exact
“Input/output description” is the basis for the powerful frequency domain methods of classical
control theory [15,3,16].

To underscore this point, it is worth obtaining an explicit representation of resulting errors,
in effect the time domain version of (9), by recourse to direct integration. Thus, given a specified
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. T
trajectory, z4(t) = {Bd(t), 94(1&)] , it will be possible to provide a complete account of the efficacy

of any particular control input by examining the resulting error, ®

e(t) 2 z(t) — za(t).

Assume a control of the form u 2 78 + Upe, as above. The closed loop plant equations are now
of the form (11},

with 4 = A;, and v’ = up, = [[z4]. Integrating the second term in z(t) of {12) by parts twice
affords the expression

t
e(t) = xa(t) — AT%[exp{tA; }ag — Arbuy,(t) — bip(t) — /0 exp{{t — 7) A1 }biipe(r)dr]  (14)
where we define for convenience the controlled “initial acceleration”,
faX ,
ag = A3x(0) + A1bupe(0) + bipe(0).

2.3.2 Robust Tracking via High Gain Feedback

In Section 2.2.2 it was seen that the effect upon the steady state response of bounded noise
perturbations could be made arbitrarily small through the use of high gain feedback. Subse-
quently, in Section 2.2.3, it was shown that high gain feedback increases the rate at which the
system tends toward its steady state. Here, we will combine these insights, and attempt to track
zq(t) as if it were a moving set point through the continued exploitation of high gain feedback.
Intuitively, we hope that the resulting tendency to steady state will be “faster” than the rate of
change of the set point. As usual, the advantage attending the reliance upon intrinsic stability
properties of the system will be the reduced need for & priori information.

Let the feedback control be chosen using the “high gain” philosophy as in equation (3) I the
pre-compensating function is simply set to be proportional to the desired position,

Tplzd] = w20y,

then, according to equation {14) of Section 2.3.1,

e(t) = [ 28“*3/0) ] — A7 exp{tA; }ao + f; exp{—'rAl}é'd('r)df],

and, not surprisingly, there are terms which contribute error in proportion to the desired velocity
and “time averaged” desired acceleration.

5Note that this reduces to the earlier definition of error,

o[
z2
whenédEO.

8Gince the gains, w?, 2¢w, have been chosen strictly greater than zero to stabilize the desired equilibrium
position, there is no question as to the invertibility of A;
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Let us now attempt the analogous investigation by appeal to a Lyapunov argument after

making the further assumption that there is some (in general unknown) bound on the desired
speed, i
!Bdl < 8.

Defining the modified error coordinates,

~ & 0,:[—'9
€ == ] 5

the closed loop system takes the form

Ag—d

o
Il

where the disturbance, d 2 [ %‘* ] is due to the non-zero reference derivative. The quadratic

lyapunov function,
1p.,.
v(8) & 58P,

may be used just as in Section 2.2.2 to show that the error is bounded, and both the transient
response as well as the steady state bound may be improved by high gain feedback.

2.3.3 Inverse Dynamics

If it is desired that the true response of the closed loop system track the reference signal exactly,
then the most obvious recourse is to “inverse dynamics”. Suppose M is exactly known, and
usp has been chosen in the form (10) to acheive some specified set of poles. Assume that the
output of the stabilized system (4) is exactly the desired signal, 8(t) = 64(2): it follows that all

derivatives are equivalent as well, § = 84,6‘ = Bd, and, hence, solving for u in the second line of
(13), that

wia(t) = M([0q + k" [ 9: ])

In terms of the framework above, this corresponds to a choice for T' of the form

Tiglza) 2 leﬂfd — Aogz4).

bTh

Using frequency domain analysis, it is easy to see that this control input is a copy of the reference
signal fed through dynamics whose transfer function is the reciprocal of the feedback stabilized
plant. From the point of view of time domain analysis, the resulting closed loop system expressed
in error coordinates takes the form

é = a:d - Ag;’f: - ?—bbr[xd - Az:ﬂd]
= Age+ [T - —T—bbT] [#4 — Agzd)
= Aze,

since [I — F};bb"] is a projection onto the subspace of IR? orthogonal to b, while &4 — Ayzg lies

. . s fa
entirely in the image of b. Thus, appealing to a Lypunov analysis once more, if v = %e% + %Le%
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then ¥ = —kqe3, which implies that the error is non-increasing and from which it can be deduced
as well that (see Theorem 3) e tends toward zero asymptotically. For purposes of comparison it
is worth displaying the actual form of the closed loop error, (which may be computed from the
exact input/output map (14))

e(t) = —A7%[exp{tA;}ag — &g+ Jo exp{(t — 7) Ay Ybitig(r)dr]
(since @y = A3zq + Asbuyg + bujy)
= — A7 % exp{tA; }|ao — #4{0) + I & exp{—1A;1}34(r)dr + I exp{—7A; }bit;q{7)d7]
= —A7%exp{tA; }ao — £4(0) + fé exp{wal}gg(Alzrd + bu;q — 24)dr]
= — A7 exp{tA: }Hao — 4(0)).

The only source of error is due to initial conditions, %o, aq, which may be cancelled exactly by
appropriate choice of ug, tto, since b, A b are linearly independent ( the system is controllable). If
not cancelled exactly, the term must decay asymptotically under the assumption that &y, ks are
stabilizing gains. Tracking is perfect or at least asymptotically perfect for any arbitrary input.

This strategy resembles the first open loop control scheme introduced in Section 2.1.2 in
that it assumes perfect information regarding the plant dynamics. Any uncertainty in the
model, its parameters, or the presence of noise, will invalidate the result. Moreover, since it
requires derivatives of the reference trajectory, &4, the scheme would be practicable only in cases
where the entire reference trajectory is known in advance: differentiating unknown signals online
generally results in unacceptably large noise amplitudes.

2.3.4 Adaptive Control

The final approach to the linear time invariant servo problem to be considered in this article
might be said to marshall the power of schemes such as pole placement (Section 2.2.3) or inverse
dynamics (Section 2.3.3), without requiring exact & priori knowledge of the system parameters.
The field of adaptive control is relatively new, since the first convergence results for general
linear time invariant systems were reported only in 1980 [17], The method described here falls
within the class of “model reference” schemes [18,19).

Suppose a desired trajectory, #4, has been specified along with a precompensating feedfor-

ward law, up, 2 I'[a4), which forces a known model
Tm = AmZm + bmtipe
to track x4 acceptably. Suppose, moreover, that the true system to be controlled,
T = Ax + bu,

satisfies the condition 4b = by, for some (unknown) positive scalar, v > 0, and is known to

admit a feedback law, up 2 [or, Bl such that the closed loop system yields the model behavior,

A+ blo, B] = Apm, for some (unknown) set of gains, o, 8 € IR. The adaptive control law takes

the form,
uad@fﬂ‘(c)[ e ]

uPc
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where k(t)T = [4(t), B(2),4(t)] denotes a set, of gain estimates which will be continuously adjusted
on the basis of observed performance. Let kT = [, #,] denote unknown “true” vector of gains.
The closed loop system resulting from 4,4 may be written in the form

~ T
&= A+ bupe + [R(0) — 4] { z ]

Upg

hence, defining the state error coordinates, ¢ £ z, — %, and the “parameter error” coordinates,
= A po
k =k — k, yields the system

é = A’ne - lb’n!‘;T [ * ] 4
i

Upe

Notice, further, that k= —fc, hence, adjustments in k afford exact adjustments of the opposite
sign in the parameter error vector. The question remains, then, concerning the choice of an

“adaptive law”, fo == f (]Ac,e,upc) that will make the complete error system converge.

At the very least, we may assume that A,, defines an asymptotically stable closed loop
system, since the model is capable of tracking z4 in the first place. According to the theory of
Lyapunov [5], it is therefore guaranteed that a positive definite symmetric matrix, Py, exists
such that ' PpAmz < 0 with equality only for # = 0. Find such a P,,, and set the adaptive
law as

IAC:'-' [ * ]eTP’nbm.
upc
To show that the resulting closed loop error equations converge, consider the extended Lyapunov

candidate v(e, k) £ et Pne + %chfc] Since

¥ =eTPmAmem;§»eTPmbm§T[ "” l+},chl v ]eTPmbm
[

= e' P, Ame < 0,

it is guaranteed that v, and therefore, ¢,k remain bounded for all time. A further technical
argument based upon the assumption that « is bounded for all time may be used is to finally
show that e actually converges to zero as well {20].

Now apply this general method to the particular system representing the one degree of
freedom robot, (2), using the model resulting from the pole placement feedback scheme of

Section 2.2.3,
A 0 1 Al 0D
st S o2 (1]

In this particular context the required assumptions outlined above are easily seen to hold, The
“true” gain settings which make the closed loop system behave like the model are given as
@ = —Mky, B =~Mky,v= M, and the assumption that M > 0 is unexceptionable. Note that

A ky kQ/Z
Pm—[km 1 1



20 2 A SINGLE DEGREE OF FREEDOM ROBOT ARM

satisfies the conditions listed above for the Lyapunov matrix — it is positive definite (as long
as 4k > k%); and its product with A,, defines a negative definite symmetric matrix. Thus, the
full adaptive controller takes the form

Yt 2 &0+ B0+ A(E)upe

where
a(t) &(t) o
& pley | = | B |10~ 8m)ka/2+ (0 = Ou)).

4(¢) A(t)
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3 (General Robot Arm Dynamics

This section introduces an important case of a mechanical nonlinear system — multi-jointed
open kinematic chains. In Section 3.1 a brief but fairly general treatment of kinematics affords
quick derivation of the general rigid body model of robot arm dynamics. In reality, this model
is a simplification of empirically observed phenomena. Depending upon what class of robot
manipulator one studies, additional nonlinearities and dynamics cannot be ignored: Section 3.2
will sketch briefly several examples of such phenomena.

3.1 Rigid Body Model: Lagrangian Formulation of Newton’s Laws

Contemporary robots are built to be rigid, and models of their idealized behayvior are based
upon the geometry of rigid transformations. After reviewing some elementary facts leading to
a useful algebraic formalism for manipulating objects which obey this “extrinsic” geometry in
Section 3.1.1, we shall investigate robot kinematics — the “intrinsic” geometry of robots — in
Section 3.1.2, and use both geometric domains to understand the dynamical properties of robot
motion in Section 3.1.3.

3.1.1 Rigid Transformations and Frames of Reference

For purposes of this article, the physical world is an affine space, A%: cach element is a point
described by three real numbers, however there is no pre-defined origin [21]. By taking differences
between elements of the affine space, ¢,b € A3, we obtain elements of Euclidean Vector Space,
ab € E2, with vector addition, scalar multlpllcatmn, inner product and norm {21,22}. Define a
rigid transformatwn to be a continuous transformation of affine 3-space which preserves distance:

T2 {r e C*lA% AY: |[(@)7(0) || = a8 || for all a,b € A?}
Examples of rigid transformations include the vector translations,
y& {T.,GT' : for some v € B2, ry(a) = b=>ab = v, foralla,bEA3},
and rotations around fixed points

= {T(R 0) € T:for some R € SO(83), 0 € A%, 7(5.5)(0) = o,
and or(po){b) = Rab , forallb e A3},

where SO(3) is the set of orthogonal linear operators on E?® with positive determinant. In
fact, it can be shown [22,23] that these examples constitute the entirety of R: that is, for any
arbitrarily chosen “origin®, o € A3, every rigid transformation of A% may be uniquely expressed
as the composition of a translation with a rotation around o1 7 = 7, 0 7 Rp)+ Thus, once a
fixed point or “origin®, o, has been chosen, the set of rigid transformations may be put into

one-to-one correspondence with the set of translations and rotations: T ~ W 2 R2 x SO(3).

Since 7, = 7., and 'rR = Tp-1 = Tpr it follows that rl=r T © T—y is always defined, and

hence T is a group.
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The position and orientation of any rigid body may be precisely described by fixing four
points of A3 called a frame of reference

k2 a {a,b,c,0}

where

B = {z,y,2} = {W,J)}',W\"}

is a “right handed” 7 orthonormal basis of E3. Note that the image of a frame under a rigid trans- h
formation, 7(#) = {r(a1),7(b1),7(c1),7(01)} is also a frame since, e.g. {r(0)7(a) | r(o)7(b) ) =
(o | ob } = 0 in consequence of the parallelogram rule relating norms and inner products.
On the other hand, if F;, %, are two frames then there exists an orthogonal transformation with
positive determinant, R € SO(3) such that 22 = Rzy,y; = Ryy, 2 = Rz since both sets of

. . . A
vectors define a right hand orthonormal basis. Thus, defining n12 = 7553 © 7(R,,), We have
112(01) = T55z (01) = 03, and, for instance,

azriz{a1) = ogria{ar) — o3y
— 7
= nz{o1)nafa1) — 22

—
= 01TR,0, (61} — 72
= 0

b

so that 2 = r12(#). Thus, an exact description of the change in position and orientation of
a given rigid body is provided equivalently by fixing a frame in the body and specifying either
a rigid transformation or a second frame. Alternatively, given any two rigid bodies, an exact
description of their relative position and orientation is provided by fixing a frame in each body.
Assuming the existence of some “base frame”, %, we now have a model of any other rigid

position and orientation in terms of W 2R3 x SO(3) which we will call “workspace”.

It has become a tradition in robotics to use homogeneous coordinates in the representation
of objects in A3. Since rigid transformations {which, of course, are affine rather than linear)
admit a matrix representation in these coordinates, the resulting simplicity in notation seems
worth the slight conceptual complication, ® Thus, the matriz representation of a point, p € A®
with respect to the any frame, #; = {0;,a;,bj,¢;}, is denoted

Bt
T2
T3
T4

ip =

and is understood to represent the geometric relation

mo‘p’,- = myx; + moy; + W3 2;.

Note that two arrays in IR? represent the same point with respect to the same frame if and only
if they are scalar multiples. The attending conceptual complications arise because it is useful,

7That is, the direction of z on the line orthogonal to the zy plane of E? obeys a right hand rule with respect

to rotations on that plane.
8Homogeneous coordinates result in a more complicated representation from the numerical point of view as

well,
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at the same time, to employ matrix representations of vectors in E3. Confusion between the
previous arrays and these may be avoided by treating the latter as constituting “ideal points”
of A® which, together, comprise projective space, P3 [22]. Thus, if v € E3, then

Jv:

represents the geometric relation
v = Vx5 4 vayy + Vazy.

It follows that for any ¢,p € A3, if i¢ = [61,52,53,54] Jp = [n1,me,ma,m4]" then Jpg~ =

? Tg— ”—4 ’p. Finally, define the matriz representation of a frame, 7 with respect to ¥; to be the
4 X 4 array whose columns are

TF = Paid w5 0;:}:]

where wy is the fourth component of Jo;. According to the discussion of the previous para-
graph, this definition is interchangeable with the following: the matriz representation of a rigid
transformation, T € W with respect to frame F; is given by /F; where %; = 7(7;).

3.1.2 Kinematics

Although we are most interested in the actions of a robot in workspace, W, commands are
effected through a set of joints which constrain the relative motion of a sequence of rigid links —
a kinematic chain, Kinematics, the study of spatial relationships between such a configuration
of mechanically interconnected and constrained rigid bodies, is a very old discipline, and it is
not possible to provide more than a superficial account of its role in robot control. A much more
thorough treatment of these considerations is provided in the general robotics literature [24,25].

The position of a kinematic chain possessed of n — k prismatic and k revolute joints may be
described as a point, ¢, in joint space, the cross product of IR® ¥ with a k dimensional torus.
There are two circumstances under which J may be accurately modelled as a subset of R®. If
full revolution is mechanically possible, but joint sensors are available which transduce angular
displacement with respect to some absolute position - e.g., from which a revolution and a half
displacement is read as 540 degrees rather than 180 degrees - then this is clearly the case. If
each revolute joint is mechanically constrained to prevent a full 360 degree revolution, then any
reasonable set of position sensors return a bounded linear measurement of joint displacement.
We will assume that one of these situations prevails, thereby assuring that J ¢ IR",

A joint transformation is a map from IR into W which relates a coordinate system fixed in
link # — I to one fixed in link i through the action of the i*® joint. According to the standard
conventions, the joint transformation depends upon three parameters which describe the link
and one variable — the i** coordinate of J, Since the link is rigid, these frames are related by
a rigid transformation whose matrix representation may be written in the form

cosll; —ecosaisin; ~sinegsing;  azcost;
i-1g sind;  coswgeosl;  sinageosl;  ajsing;
' 0 sina; CO8CY; &

0 0 0 1
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where either §; or &; is the joint variable depending upon whether the joint is revolute or

prismatic, respectively, and the other kinematic parameters are defined in the link body, e.g. as
in [24].
More generally, a kinematic transformation is a map

g:J—=W

which is the group product of n joint transformations, representing the rigid transformation
required to align the “base frame” with the “end effector frame”:

9(q) =° Fi{g1)' Fa(2)..." 1 Fy (an)-

3.1.3 Dynamics

The rigid body model of robot arm dynamics may be most quickly derived by appeal to the
lagrangian formulation of Newton’s Equations. If a scalar function, termed a lagrangian, A =
Kk — v, is defined as the difference between total kinetic energy, &, and total potential energy, v,
in a system, then the equations of motion obtain from

d

5 Did = Dgh =17,
where 7 is a vector of external torques and forces {21,26}.

First consider the kinetic energy contributed by a small volume of mass dm; at position p in
link £;,.
15 .10

6ky = Eoﬁ;‘ropﬁmi
where %p; = °F}"p is the matrix representation of the position p in the base frame of reference,r;
is the matrix represent_ation of the frame of reference of link £; in the base frame, and *p is the
matrix representation of the point in the link frame of reference, and, hence, ®

ﬁfz I;-'l'ip)

since the position in the body is independent of the generalized coordinates. The total kinetic
energy contributed by this link may now be written

ki o= [p. 3 [1;":' "p]T F; pdm;
— fc.— i trace{Fi’p [If"‘,- Iju]'r}dm,-,
= L trace{F; ffﬁ. pptdm; [F‘,-]T}
= 1 trace {FPFT},
(since the frame matrix is constant over the integration), where P; is a symmetric matrix of

dynamical parameters for the link. Explicitly, if the link has mass, Jij, center of gravity {in the
local link coordinate system) 77, and inertia matrix, J;, then

P2 [ i, T } :
Dby B

PWe will omit the prior superseript, 0, when it is clear the the coordinate system of reference is the base
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Passing to the stack representation (refer to Appendix 77)
2K; = trace {F.?._F,T}

= |(P)7] £

F s 1T
= |[EenTF| FS

PR, SOV
e, FS] BF§
= [(DuF# )i Bi(D,FE )4
¢" My,

II

where we have implicitly defined

A 5T

Mi(g) & [DFS] BiD,F§; B ®L

¥

It follows that the total kinetic energy of the entire chain is given as
A n
24 ™™g Mlg) =) Mg
i=1

The potential energy contributed by ém; in L£; is
vy = zoF ingémy;

where g is the acceleration of gravity, hence the potential energy contributed by the entire link
is
;o= ng.-fA ‘pgdm; = 2 Fiprg,

and v = Y1, 28 Fipig. !
'To proceed with the computation, note that DgA = Dgx = ¢TM(q), hence,

d o
= Dih =§ TM(q) + 4" M(q).

Moreover,
Dykc quDq [M(q)d]
707{¢T ® I|DgM® |

hence,if all terms from Lagrange’s equation involving the generalized velocity are collected, we
may express them in the form ¢ BT, where

T A L 1.,
B(a,4)" = M(q) - 514" ® 1| DM® .

Finally, by defining k{q) = [Dqv ]T, Lagrange’s equation may be written in the form,

M(q)§+ Blg,9)q + k(q) = 7. (15)

' Assume that zo “points up” in a direction opposing the gravitational field.
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M, called the “inertia” matrix, may be shown to be positive definite over the entire workspace as
well as bounded from above since it contains only polynomials involving transcendental functions
of ¢. B contains terms arising from “coriolis” and “centripetal” forces, hence is linear in ¢
(these forces are quadratic in the generalized velocities), and bounded in ¢, since it involves
only polynomials of transcendental functions in the generalized position. Finally, & arises from
gravitational forces, is bounded, and may be observed to have much simpler structure (still
polynomial in transcendental terms involving ¢) than the other expressions. An important
study of the form of these terms was conducted by Bejezy [27).

To bring this into the state space form discussed in Section 2, let & 2 (g,9)7, £ T, to get

o= (16)
gy = — M~ (21)[B(z1, w2) 32 + kl21) — 4]
with output map provided by the kinematics,

w = g{x).

3.2 Omissions in the Rigid Body Model

In fact, most commercially available robots deviate from the model derived above quite dramat-
ically. Flexibility in the links, slippage in transmissions, and backlash in gear trains introduce
stiction, hysteresis,and other nonlinear effects. Harmonic drives and compliance at the joints,
introduce extra dynamics [28). De-magnetization and potential damage to the windings place
limits upon the maximum permissible armature current and, therefore, output torque, of a dc
servo. Moreover, while it is traditional in the control community to model electric motors as if
they were first order lags [29], it is not impossible to find commercial robot arms employing dc
servos whose mechanical and electrical time constants of similar magnitude, and which, in con-
sequence, have second order dynamics, not uncommonly oscillatory [30]. Thus, not only may
the model introduced in (24) have missing functional terms in practice, but its dimensionality,
2n, may too low by at least again as much as the number of actuators, n.

Unfortunately, it does not seem likely that a better general model will be available in the near
future. There is no generally accepted understanding of which dynamical effects are significant
and which may be ignored beyond the rigid body model (24) (which, itself, is not universally
acknowledged to be of greatest importance [28]). In part this is due to the great diversity of
kinematic, actuator, and sensory arrangements which may be found on the commercial market.
In part, it is a reflection of the relative novelty of the field. Similarly, there is insufficient
understanding of the disturbances resulting from digital implementation of control algorithms -
quantization and roundoff errors - to admit of any reliable model for these effects. 1

In this section, we will introduce models for some of the important dynamical and nonlinear
disturbances not captured in (24). The relative importance of any of these discrepancies can
only be determined by empirical investigation in the context of a specific mechanical apparatus.
Nevertheless, for purposes of exposition, it is evidently necessary to choose some dynamical
model of the system under examination. If there is any sign of convergence in the design of
commercially available arms it would seem to be toward the class of revolute direct drive arms

Even in the control community itself, researchers are only beginning to come to terms with quantization
problems [31}.
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{32]. Thus, after considering modifications in the model resulting from local nonlinearities at the
joints in Section 3.2.1, we will somewhat artificially arrive at a modified model resulting from
additional local linear dynamics in Section 3.2.2 on the theory that direct drive arms remove
much of the hysteresis and nonlinear damping phenomena characteristic of transmissions, while
flexibility introduced by joint and link compliance will always remain. The modified model for
this class of arms is summarized by equation {18).

It is worth remarking here that the utility of much of the theoretical work to be presented
in subsequent sections will require empirical verification. Clearly, in the absence of trustworthy
models, proofs (and even simulations) alone are not terribly convincing.

3.2.1 Local Nonlinearities

As well as (at least) doubling the dimensionality of the underlying dynamics, the presence
of a mechanical transmission introduces a variety of memoryless nonlinearities -— backlash,
hysteresis, etc. ~~ which depend very much on the nature of the mechanism. Returning to the
direct drive arm, probably the two most significant sources of nonlinearities distinct from those
due the rigid body equations (23) are friction and saturation.

A solid object in contact with any surface is subject to a variety of frictional forces which
may be observed, in general, to vary with its velocity relative to that surface, The simplest of
these is viscous damping a force exerted in the opposite direction of motion in direct proportion,
Py, to the velocity magnitude. Further, it may be observed that at low speeds, the magnitude
of these opposing forces ceases to diminish beyond a certain level, hence, a constant term, 5,
called coulomb friction must be added to the viscous term. Finally, the force, 8,, required to
bring a motionless object to some non-zero velocity typically exceeds that needed overcome the
friction forces forces at non-zero velocity: this is termed stiction. Thus, an appropriate model
for actually observed frictional forces might be given as 12

Tfrl'cl(‘]:(j') = B + Pug + }6350(4.')-

The second source of additional nonlinearities unmodeled in the previous section is a conse-
quence of the fact that all real devices can deliver only finite power. In this light, the admissible
set of controls must be modified to include magnitude constraints, most easily modeled in the
form of a saturation nonlinearity on the command input at the 7% joint,

S5 vy 2 5
A -
si{v;) = v v € (30, F)
sii v < 8.

These forces act on each joint independent of the motion of the others (except, of course,
through dynamical coupling of velocities), and are termed “local disturbances” for that reason.
Let B., By, By, be diagonal matrices containing, respectively, the coulomb, viscous, and stiction
coefficients for each joint, let d(¢) = [60(d1),.-.60(¢n)]" be the vector of delta functions in each

generalized velocity. and let s(v) 2 [s1(v1)y ey S (vn)]T be the vector of saturation nonlinearities.
Combining these within the vector of external disturbances, 7 in equation (17), yields a new

12Recall that § denotes the delta function introduced in Section 2.1.2.
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version of the state space dynamics of the form

x; - _Q[M(:vl) + My (1)) {(B(21, 32) + Bm + By)az + +B,d(§) + k(z1) + Be — Vins(u)].

3.2.2 Additional Dynamics

In the rigid body model developed above,the control input appears as a set of torques, 7, injected
at each joint independently. In reality, all robotic actuators which deliver torque or force to a
joint are themselves commanded by a reference voltage computed by the controller., For a
significant class of acutators, the torque or force output is not a simple function of this reference
voltage, but may itself involve a dynamical relationship. This may be seen most easily through
a specific example.

A typical actuator for a revolute joint is the dc servo. A dc motor converts electrical to
mechanical power through the exchange of energy in two sets of windings via electro magnetic
forces. [29]. For a typical motor, the torque delivered to the output shaft is roughly proportional
to the current in the “armature windings” — 7, = K;I; — and this is exactly balanced by the
d’Alembert torque due the angular acceleration of motor inertia, 7, = J 5, as well as the external
load torque, 7, placed upon the motor [29],

Tm+ 71 = Tq.

On the other hand, the current in the armature winding results from the application of some
command voltage, vs, through the armature resistance and - inductance, Ry, Ly, opposed by the
back generated voltage vy = K38,

dig

L, —
& dt

+ Rt + v = va.
There results the second order linear differential equation [29]

a = ’Cmé + ’}’m'ia + EmTi
ga'“fl = Kela + Vel + EeVa

If the “electric time constant”, k., is a very large negative number in comparison to the
magnitude of the “mechanical time constant”, ky,, then the second equation is really algebraic,

Ratq + vy = vq,

and the relationship between command voltage and generated torque is given by

dé ,
Maﬂﬁa"l‘wcl"ﬂ
A . s KKy a K,
p=J; B = B ¢—Ra.

This is typically the case for common dc servo motors [29}, although important exceptions have
been noted in the literature {30},
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First suppose that we are interested in a direct drive arm, n such actuators are mounted
directly at each joint being controlled. It follows that n = 7 + 7 — the load torque seen by
the 7*% actuator, is exactly the j** component of the rigid body external torque vector, 7 , of
equation (23). Let

1 0 A é1 0 B1 0
) i Vin = ) )

A
0 fin ¢ ®n 0 Bn

M

be the diagonal coefficient matrices corresponding to the n decoupled motors, and let v 2
a1y .oes 'uan]T be the vector of command voltages at each joint. Then according to the reasoning
of Section 3.1.3 we have

[M{q) + Mp)d + (B{g,4) + Bm)i + k(g) = Vinv, (17)

producing a state space system with very similar characteristics to the original (24). It is worth
noting that most of the theoretical results discussed in Sections 4 and 5 are still valid in this
case.

Suppose, on the other hand, that an actuator is mechanically coupled to each joint j via
some mechanical transmission — a chain, a harmonic drive, a gear train — as is the case with
most commercially available robots. In this case, n, the load torque seen by the motor is that
delivered from the joint along the transmission. As a first order approximation, we will model
the transmission as a passive intermediate inertial load, g, lnmped at the joint end of the
transmission, on a shaft with torsional spring constant, x;, and torsional damping constant, /.
Letting p; denote the position of the rotor, and #; the position of the joint this assumption may
be written as

7t £ kiloj - 0;) + Bi(g; - 05),

with 7 2 mé‘:,- comprising the d’Alembert torque due to acceleration of the transmission inertia,
The latter is balanced by the transmitted motor torque,r;, and the nonlinear coupling torques,
7§, thus the complete torque equations are

Tg = Tm + 715 T =T+ 75,

Now define the transmission diagonal arrays, My, By, in terms of the inertial and viscous damping

. . A
coefficients, respectively, as before. Define the motor shaft angle vector r = [py,.. ., pn]T. The
torque balance equations take the vector form

—Bpyi + Vv = Mp# + Bi(7 — §) + Ki(r — q)

By(# — §) + Ki(r — q) = (M(q) + My)§ + Blg, 9)¢ + k(g)

Writing this in state space notation yields & much more complex dynamical system. Letting

211
212
2321
229

e T, D
e
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we have
211 = 291
zi2 = Z99 : (18)
#n = —[M + My|"Y[(B + Bi)za1 + Kyzm1 — Bizgs — Kzia + k(211))
#2=—M_ [(Bm + Bi)zos + Kiz12 — Bizay — Kyz1p + Vo).
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4 Feedback Control of a General Robot Arm

Section 2.2 presented an account of the behavior of classical feedback controllers in the context of
set point regulation. Here, the attempt is made to generalize that account in two rather different
directions. First, in Section 4.1, the breadth of task domain is considerably widened beyond
set point regulation and we explore the possibility of formalizing a task encoding methodology
based upon feedback control structures which generalize the error driven characteristics of the
PD controller. Second, the underlying dynamics of the system to be controlled are specified
by the n degree of freedom rigid body model, (24), of which the simple pendulum, (2), was a
particularly easy example.

Section 4.1 presents three successively more generalized methods of task encoding beyond
the set point error introduced in Section 2.2: specification in terms of the extrema of objective
functions; in terms of the “fall lines” of gradient vector fields arising from objective functions; in
terms of general first order dynamics. By interpreting an objective function as potential energy,
its gradient is shown to determine a stabilizing feedback control structure for a general robot
arm in Section 4.2. The implications of this result for achieving the tasks specified by the various
encoding methods of Section 4.1 are discussed.

4.1 A Generalized Robot Task Encoding Methodology

By a “task encoding methodology” is meant any procedure through which an abstract goal is
translated into robot control strategies resulting in its achievement. Here, we explore techniques
which do not involve task specification via reference trajectory. In part, the exploration is mo-
tivated the difficulties involved in generalizing classical servo theory to the rigid body dynamics
(24), as will be exlored in Part 5. In part, it is motivated by the large set of task domains
within which determination of an appropriate reference trajectory may involve unecessary work,
or even be effectively impossible, Typical tracking algorithms require the availability of velocity
and acceleration reference information: in practice, differentiating noisy signals is impossible;
such schemes are not applicable to tracking unknown time varying signals, Moreover, evidence
mounts that the computational effort required to encode typical static tasks {such as moving in
a cluttered space) in terms of exact reference trajectories may be prohibitive [33], {34]. Finally,
since many tasks involve interacting forces and motions between the robot and its environment
a task encoding methodology limited to the production of reference trajectories may be entirely
inoperable. In summary, encoding a task in dynamical terms unrelated to those characterizing
the robot or its environment may not be viable.

For the purposes of this article, an objective function, ¢ : W — R¥ is a non-negative scalar
valued map on W which has isolated critical points. Its associated gradient vector field is given
by the system

H = — Dye T(w),

and the resulting trajectory through any initial condition will be called a fall line of the system.
It can be shown that fall lines are perpendicular to the level surfaces of € {4]. The equilibrium
states of the gradient system are exactly the critical points — i.e. the extrema — of ¢; and,
since the linearized vector field is symmetric, an equilibrium state of the gradient system is
either a source, a sink, or a saddle depending upon whether it is a local maximum, minimum, or
saddle point of the objective function, €. Thus, gradient systems display very simple dynamical
behavior. In Section 4.2 it will be shown that certain gradient behavior may be duplicated, at
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least asymptotically, by appropriately compensated Hamiltonian systems, and, hence, that such
gradients are a particularly convenient feedback structure for robot control.

4.1.1 Task Encoding Via Objective Functions

Evidently, tasks within the domain of set point regulation — reaching and remaining at some
desired end-point, w¢, — may be encoded as the objective of minimizing

c2 [w — wa)" [w — wq). (19)

The desired end-point is the globally asymptotically stable unique equilibrium state of the
associated gradient system.

Conversely, by designing a cost function with an isolated global maximum at some undesired
cartesian position, a gradient system may be constructed whose fall lines, from any initial
condition different from that point, define motion away from it. This specifies the task of
avoiding the undersired position. In the event that there are several obstacles in the workspace,
each of relatively small physical extent, cost functions attaining an isolated global maximum at
the centroid of each obstacle may be summed and the resulting vector field will specify motions
which avoid all of them. A plausible form for such cost functions is the familiar Newtonian
Potential which varies in the inverse sqaure of the distance from the obstacles. This and related
methodologies have been suggested independently by workers in Japan, [35], the Soviet Union
[36], and the United States [37]. In particular, Khatib has developed a rather general procedure
for defining obstacle avoidance potentials for arbitary rigid bodies [37]. It is not clear, however,
that the computational complexity of this procedure makes it any more attractive than the

algorithms developed for generating reference trajectories which solve piano mover type problems
[34]).

4.1.2 Task Encoding Via Gradient Dynamics

Task domains involving curve tracing may be specified by fall lines of gradient vector fields.
Suppose it is desired to reach wy via some parametrized curve,

¢
e(¢) 2 | eals)
ea(s)

where wy = ¢(0). 12 Then the shaping function

e & wl + aglws — cofw1)]® + alws — cs(wy))?

gives rise to a gradient system for which wy is again the globally asymptotically stable unique
equilibrium state, and whose fall lines “hug” the curve ¢, more or less sharply depending upon
the magnitudes of ay, as.

Fundamental work by Hogan [38] advances persuasive arguments for encoding general manip-
ulation tasks in the form of “impedances”. Impedances and admittances are formal relationships

18 Assume, to avoid technical details, that we are only looking at the cartesisan position components: errors in
orientation may be measured similarly, although the justification requires more discussion.
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between the force exerted on the world at some cartesian position and the motion variables -
displacement, velocity, acceleration, etc. - at that position with respect to some reference point
(or “virtual position” in Hogan’s terminology [38]). He argues that for purposes of modeling
manipulation tasks, the kinematic and dynamical properties of a robots’s contacted environment
must be understood as admittances - systems for which the relationship operates as a function
describing a specified displacement for any input force. Arguing, further, that physical systems
may only be coupled via port relationships which match admittances to impedances, and that
robots can violate physics no more than any other objects with mass, he arrives at the conclusion
that the most general model of manipulation is the specification of an impedance - a system
which returns force as a function of motion. By construing motions relative to a virtual position
as defining tangent vectors at that position, Hogan notes that an impedance may be defined
in terms of a scalar valued function on the cross product of two copies of the tangent space at
each virtual position whose gradient co-vector determines the relationship between motion and
force. Thus, an impedance may be re-interpreted as the gradient co-vector field of an “objective
function”, whose fall lines specify the desired dynamical response of the robot end-effector in
response to infinitesimal motions imposed by the world. In this context, unlike the other gradi-
ent vector field task definitions, it is intended a priori that the dynamics be second order - i.e.
define changes of velocity (force) rather than changes of position.

To conclude this brief discussion of task encoding via objective functions or their gradients
it is worth noting that the gradient is a linear operator, hence combinations of tasks already
encoded by means of objective functions are easily specified by appropriately weighted sums.
For instance, if it is desired to shape an arm motion around a specified curve while simulta-
neously avoiding a set of known obstacles then the shaping function may be summed with the
avoidance cost functions for each particular obstacle, and the gradient of the sum will preserve
the local properties of each. In such cases, however, depending upon nature of the individual
objective functions, their sum may define a gradient with unintended stable or partially stable
critical points. Thus, globally, the fall lines of complex gradients may specify “stall® behavior
at undesired equilibrium states,

4,1.8 More General Feedback Structures

It is certainly possible to imagine the desireability of “first order dynamical behavior” more
complex than can be encoded via the gradient vector field of an objective function. For instance,
it has been proposed within the neurobiology community to model phenomena such as animal
gait in terms of a dynamical system possessed of a stable limit cycle {39]. It would seem equally
attractive to use such models as task encoding feedback structures for robot activities which
require repetitive motion. Unfortunately, while “useful” gradient vector field behavior may be
embedded “asymptotically” in dissipative Hamiltonlan systems, as will be demonstrated in the
next section, it is not clear how to do the same for more general dynamics.

A second failing of the objective function methodology is its intrinsic time invariant character.
Even if e{w,t) defines a good objective for each ¢, it is not clear how to proceced, except in the
quadratic case. For example, let wq(f) describe the trajectory of a fly we’d like the robot to swat
as encoded via the objective

g(w,t) = [w ~ wa)T [w — wq).
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Then the “gradient system”
W= —w+ wq(t)

is a forced, exponentially stable, linear system, and further information concerning the nature
of wq may afford statements concerning the “steady state error”. In the special case that wy is,
itself, the output of some linear system, then according to the internal model principle, a higher
order linear dynamical compensator may be added to the gradient system with the assurance of
asymptotic tracking. The question remains, again, as to how to transplant the internal model
principle to the second order Hamiltonian settting.

4.2 Gradient Vector Fields and Hamiltonian Systems

It is well known that Lagrangian mechanics may be placed within the more general framework of
Hamiltonian dynamics [21}. To form the Hamiltonian we return to the scalar energy functions,
A, k,v of Section 3.1.3, and define the generalized momenta,

pS DT
and the Hamiltonian
A .,
n=pg— A

It is not hard to show that the Hamiltonian dynamical system

{]-[2 ¢

is equivalent to the rigid body model, (24), with all external forces and torques, set to zero,
7 = 0 {21}, Moreover, it is easy to see that any trajectory of this system satisfies n = 7, a
constant since

n= Dy [g]:Dn [? —I]IDQ]TEO.

Finally, note that when the potential energy is free of generalized velocity then D;A = D4k,
and when, additionally, the kinetic energy is quadratic in velocity, then

plg= Dk ¢ =2k
and, hence, the Hamiltonian represents the total energy of the system,
p=2k—-—Kk+v=K+1v
It should be apparent from the derivation of Section 3.1.3 that the robot energy terms satisfy
these conditions.
By taking this slightly more general perspective we are able to again use the total energy

as a Lyapunov function obtaining a rather simple generalization of the stabilizing PD controller
from Section 2.2.
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4.2.1 Stability of Dissipative Hamiltonian Systems

The central result presented in this section has been known for at least a century: Lagrange
demonstrated the stability of motion around the equilibrium state of a conservative system in
1788 [40]; asymptotic stability resulting from the introduction of dissipative forces to a con-
servative system was discussed by Lord Kelvin in 1886 [6]. Over the years, these ideas seem
to have been re-discovered several times by different engineering communities, For instance, a
similar set of observations was made in the context of satellite control in 1966 [41]. Credit for
first introducing these ideas to the general robotics literature would appear to be due Arimoto
and colleagues [42]. Similar independent work has appeared more recently by Van der Schaft
[43] and this author [44].

It has been shown above that for a broad range of mechanical systems, including actuated
kinematic chains, the Hamiltonian is an exact expression for total energy. In a conservative force
field this scalar function is a constant (defines a first integral of the equations of motion) and, in
the presence of the proper dissipative terms, it must decay {45]. By replacing the gravitational
potential term in the energy function with the objective function which defines a task, and
construing the resulting total energy as a Lyapunov Function for the closed loop robot, set
point regulation may be achieved as follows. Let the input be defined as

u 2 k(g) + Kazg + K1(z1 — g4). (20)

Theorem 3 Let J be a simply connected subset of IR". The closed loop system of equation (24),
under the state feedback algorithm (20),

Ty = I
Ty = _M‘I[(B + Ka)zo + Ki(z1 — ga))

1s globally asymptotically stable with respect to the state (g4,0) for any positive definite symmeiric
matrices, K1, I(s.

Proof: The Lyapunov Function
Al
v= Elm'lea:l + a:gM(a:l):cg]
has time derivative

i .
ﬁmﬂmm~£MHﬂﬂm+mmH5£Mm

and since st:g{%M — Blag = 0 as shown in Corollary 3 in Section 5.1, this evaluates to
B = —a3 Koxg < 0.

According to LaSalle’s invariance principle, the attracting set is the largest invariant set
contained in {(zy,ze) € P : ¥ = 0}, which, evidently, is the origin since the vector field is
oriented away from {x = 0} everywhere else on that hyperplane.

0
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Note that this control law requires the exact cancellation of any gravitational disturbance.
While k(g) has a much simpler structure than the moment of inertia matrix, M(q), or the
coriolis matrix, B(g, ¢}, exact knowledge of the plant and load dynamical parameters would still
be required, in general, to permit its computation. Since the dynamical parameters enter linearly
in k, some progress has been made in the design of “adaptive gravity cancellation” algorithms
[46] as will be discussed in Section 5.3.2. A successful adaptive version of this algorithm would
remove the need for any & priori information concerning the dynamical parameters.

Note, as well, that with diagonal feedback gains, K1, K2, and in the absence of gravitational
cancellation, the feedback algorithm (20} is exactly identical to n decoupled PD controllers
operating at each joint independently — the procedure employed by almost all commercially
marketed arms.

4.2.2 Integrating Gradient Systems by Means of Dissipative Hamiltonian Systems

The real utility of dissipative Hamiltonian systems in the present context arises from the possi-
bility of embedding a first order gradient system - the task definition - in the second order robot
arm dynamics with no change in limiting behavior. Let the objective function ¢ : W — IR be
defined according to some description in task space, as described in Section 4.1, and let € & gog
be the composition of this objective with the kinematics map. The encoded description now
takes the form of a gradient system over joint space,

§=-Dé(q) ", (21)

among whose equilibrium states are desired end-points, and whose fall lines define a desireable
spatial curve or mechanical response function. The desired performance might be simulated
on any analog computer with programmable first order integrators. Instead, it is appealing
(and correct) to think of “solving” this gradient system on the “programmable” second order
integrators defined by the intrinsic dynamics of a robot arm.

Among the extrema of ¢,

Eg{wew:Dws=0}

are the desired task space positions - §, the optimal points of the objective function. The task
is accomplished if joint space variables tend toward the inverse image of this set

§2{get:g(g) € 8},

along the trajectories determined by the fall lines of . Now define the feedback control structure
O . ~
u = k(q) — Kaod ~ Dyé (g)7.

To fix the idea, consider the simple example introduced in Section 4.1.1: end-point control
defined in task space. Based upon the error minimizing objective defined in (19), the required
feedback control law is

u = k(q) + Kad + Dg "[o(a) — val, (22)
resulting in convergence from any initial position and velocity toward critical points of €. Ex-
plicitly, the closed loop system of equation (24), under the state feedback algorithm (22),

¥ = T -
dy = ~MV((B + Ka)zs + Dy (21)7),
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has a globally attracting set defined by the critical points
£ = {(q,0) € P : Dgé ()" = 0}

for any positive definite symmetric matrices, Ky, Kq.
This may be seen as follows. The non-negative Lyapunov Function

v 1
v 2 é(x) + Ex%'M(azl):cz
has time derivative
b= (D;,6 )z — 23 [{B+ Ka)ap + D, €T) = —2l Kazy < 0.

as in the proof of Theorem 1. According to LaSalle’s invariance principle, the attracting set
is the largest invariant set contained in {{z1,22) € P : ¥ = 0}, which, evidently, is the set of
equilibria, £, as claimed.

This result shows that local convergence and global boundedness are assured but that a
characterization of the stability properties of individual equilibrium points may be complicated.
Namely, if € has critical points outside of § then it must be shown that these are not locally
attracting equilibriumn states of the closed loop system in order to guarantee global convergence
to the desired optima. Expressing the objective function gradient as D& = Dye D,g affords
the equivalent formulation of the set of equilibria of the closed loop

£={(g,0)€ P :DyeT € kerDyg ™).

This makes clear the two distinct causes of such stall points: local extrema and saddle points
of the task space objective, €; and critical points of the output map, g, i.e., the set of kinematic
singularities.

As discussed in Section 4.1, stall behavior due to excess critical points of ¢ is an artifact
of the task encoding methodology. Sophisticated tasks encoded as summed gradients almost
inevitably give rise stall points in W, While it is possible that a more careful construction of ¢
from constituent objectives might mitigate the problem, this is probably an intrinisic limitation
in the “ global intelligence” of feedback controllers. Research addressing the interplay between
higher planning levels and lower control levels should result in guidelines for the degree of
supervision required to assure global convergence. For all presently available commercial robots,
kinematic singularities may be found in the interior of the workspace, thus the second problem is
more intrinsic to an arm, and, potentially, of considerable practical concern. For a lucky choice
of ¢ it might well turn out that £ consists only of the points in the solution set, however this
would be unlikely. Some aspects of these questions have been addressed in a recent paper by
this author [47].

Of equal pragmatic importance and theoretical interest is a characterization of transient
behavior obtaining from those “useful” feedback structures described above. The tasks encoded
in terms of gradient dynamics in Section 4.1.2 are not achieved merely by asymptotic approach
to an extremum of €. While the theory of linear time invariant controllers includes excellent
analytical and graphical methods for determinig the appropriate magnitude of damping in re-
lation to position gains, as discussed in Section 2.2.3, no such theory is available for nonlinear
Hamiltonian Systems. However effective the methodology is in command of steady state be-
havior, a grippper which oscillates wildly toward the specified end-point is of no practical use.
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Thus one of the most important apects of controls research in this project is the study of Ko
relative to K, and their nonlinear analogues in equation (22). More generally, it would be of
great interest to know how to choose a damping function so that the motion of the second order
system projected down onto the zero velocity plane of P follows the fall lines of the original
gradient system as closely as possible: i.e. what is the analogy to a critically damped linear
time invariant system?
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b Servo Control of a General Robot Arm

We return here to the paradigm of the servomechanism, wherein tasks are encoded by means
of a reference trajectory. As has been remarked above, for linear time invariant dynamics such
tracking problems comprise the central arena for the classical control theory. Here, we show that
the Lyapunov analysis developed in Section 2.3 carries over to the general case where classical
analysis fails,

5.1 Robust Tracking via High Gain Feedback

We return to the rigid body model of robot dynamics,
Mlql§ + Blg,qlg + k(g) =+ (23)

where the generalized positions take values in a configuration space, ¢ € J, which is a simply
connected subset of IR". We have seen in Section 3 that M is a positive definite invertible
symmetric matrix for all ¢ € J, and, along with B, the “coriolis and centrifugal” terms, and k,
the gravitational disturbance vector, varies in ¢ by polynomials of transcendental functions. It
follows that vay > 0 and pps < oo.

This system may be rewritten in the form

q1=qz

. _ 24

ga=M"YBg+k—1] (24)
where the generalized positions and velocities take values p 2 [ Z; ] ePETIin phase space

— the tangent bundle over J,

While M,k are always bounded, the coriolis and centripetal forces are quadratic in the
velocity — i.e. B is linear in § — and, therefore, may become unbounded. It is, however,
bounded with respect to g, as the following technical result shows,

Lemma 2 For any k € R",
kTBqs = g3 M(k)qs

where
. kTDg M Lo
M(k) = ; — 5 2 KiDg, M.
k"Dg M =1

is bounded above.

Proof:

1 T
Be= (00 1) DM* 2~ 3 [(::© )" DM | g
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and, hence,
T
3BTk =gf [DMB] (02 ® D)k — 443 (22 @ I)T Dy M k
T 8
=g [Dqu] (kqg) - 3d (o DT DMSk
kTDQ’llM

T

: — 3 24=1 KiDgy M | 2.
kTDanM

Since M contains transcendental functions in ¢, all of its derivatives in ¢ must be bounded.

O
It follows that for some i < oo, -
M) < Bl (25)
Corollary 3 For alipe P,
% %’M - Blg; =0
Proof:
eX[1M — Bles = eJ[LM — N(e)]es
=30 [Dqu }T (g2 ® I) — (g2 ® I)* D M® ] go
=0
0

5.1.1 A Quadratic Lyapunov Function for Nonlinear Mechanical Systems
The following technical lemma will be of use in the main result, below.

Lemma 4 For M(q) as in (28) and any positive scalars, w,¢, Yo € RT,
W1 (BI
?@[ - @(q) €2 Vp ||e||2

pg['mw wg ]pglfmwz wg ]

g llelf? 2 €

for all g € J, where

Wi Yo Ha we  YoVm
Proof: Since
2 2 2
A Yol  wel Yow“l  w¢l vow“I  w¢l
PRI> > > =PI
® [ Wl yopm ] [ wsl  yoM(q) wel YoM ’

it will suffice to show that

Vpor = Vp and pipe, = vp.
This follows since all eigenvalues of K @ I are eigenvalues of K, according to Lemma 11
in the appendix.
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0

Proposition 5 For all p; € P and w,¢ > 0, given any bounded set, B C P, containing py there
ezists a scalar o > O such that

Al e 1| Wiyl gl
vie) = 5¢ Plg)e = 5¢ [ ol oM(g) e

18 a quadratic Lyapunov Function for the “undisturbed”

. 0 I A
€= [ ~M~Y(g)w? —2M~Y(g)ws ] e =A(t)e
with the bounding constants
441 é v 45)] g 1 o é —w——g—u
P Py 93 Yy Qs

where

on the domain B.

Proof: Letting
A
B = sup ||e]],
e€B

find some g satisfying

¢ ¢ uifﬁ+1}' (26)

VUM VM UM

According to Lemma 4 and the inequality involving the first entry of the inferior set in

Yo > max{

(26), it follows that oy & Vp 0 & 1tp are positive constants with the property

clelf* < v < anfle]]”.
Taking time derivatives along the solutions of system (77), we have
v = LT [PA+ ATP + Ple,
which may be expanded as

2ps-1 -1
O = —weet WM™ weM ]e

weM ! Yol
~w¢ (o — I)egeg ~ wee] M1 Bey

+y0e3[1 M — Bles.
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The term in the last line vanishes according to Corollary 3, Moreover, the block matrix in
the first line is positive definite according to the inequality {26) and the result of Lemma
4 since

WMt oMt [ M3 o Wi oI [ M2 o
weM™ I | 0 MR || wl oM 0 Mi|’
Finally, according to Lemma 2 , the term in the middle may be rewritten as
we[(vo — Letes + es M~ Beg] = ween| (o — 1)I + M{k)]ez > 0,
where k 2 M~1¢;, and the inequality immediately above follows from the inequality
involving the last entry of the set in (26).

We may now write

- 0 M3 wl oM 0 M3
< —w¢ ([sz2®M_%] e) @1 [sz2®M"%] e
2

-1 9 i X
1.}<_w§eT[M2 0 {wI wIHMz 0 ]e

2
<o { 7270l ) vo
W M 2
= 25 vp el

and the result follows.

O

5.1.2 Consequences for Tracking Unknown Reference Signals

Now consider the decoupled “PD” compensated system forced by a continuously differentiable
reference signal, ¢4(t),

7 = k(g) — w?lga(t) — g} — 2x4. (27)
Assume that the reference trajectory is “unpredictable” — i.e. its first and second derivatives
are unknown — but there is available an & priori bound on the maximum rate of change,

ldall < o.

Notice that the forced closed loop system may be written in the same error coordinates as above,
¢ = Alg,qle + d, (28)

where d £ [ d"{g‘) ], is a “disturbance” input due to the unknown but non-zero reference deriva-
tive.

Theorem 4 The closed loop “disturbed” error system has frajectories which are bounded in

magnitude by e
402

28 a9 2
< 2oy
“"3u ~e€ 2 \/071”6(0)" + 0-’3031’

where a;, (1 = 1,3) are defined in Proposition 5 , and

crs 2 Bown/vBw? + 2.
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5.2 Exact Linearization by Coordinate Transformation

In the last decade a significant body of work has developed within the field of nonlinear systems
theory concerning the question of when a specified control system has a dynamical structure
which is intrinsically linear, or at least, “linearizable”. More precisely, presented with a system,

T = f(:r')“):

it would be of considerable interest to know whether there exists an invertible (memoryless)
change of coordinates,
z
[ v l = T(x,u),

under which the resulting dynamics are linear time invariant,
2= Az+ Bo.

For, this being the case, the well understood servo techniques of classical control theory sketched
in Section 2.3 could be applied to the reference input expressed in the new coordinate system,
and the resulting control, vg, translated through the inverse coordinate transformation, 71,
would result in an effective control, ug to be applied to the original system. Early discussion of
this question is provided in [48,49], while more recent results have been presented in [50}. More
general discussion of this literature may be found in the recent monograph of Isidori [51] or the
text by Casti [52].

It will be observed that this policy amounts to exact cancellation of the underlying dynamics
of the original system. Thus, as has been remarked, such schemes represent a generalization
of the method of pole placement presented in Section 2.2.3, and necessitate exact knowledge
of all kinematic and dynamic parameters (including those of the load); & priori knowledge of
the reference trajectory; and the ability to compute exactly and implement through a set of
actuators the entire dynamics in real time. Work by a number of researchers, most notably
Hollerbach [53], has persuasively demonstrated that such computation is possible in real time,
and computational architectures have already been designed to do so [54,55]. Recent empirical
results [56] suggest that this methodology may achieve good results when the requisite & priori
information concerning dynamical parameters and reference trajectory is available.

5.2.1 The Computed Torque Algorithm

In context of the robot equations (24) these ideas lead to the technique of “computed torque”,
which has been proposed independently under a variety of names by several different researchers
over the last five years [57,58,59]. It seems most instructive to present the variations in the
computed torque algorithm as particular examples of the following exact linearization scheme.
Let h : J — R" be a local diffeomorphism, Under the change of coordinates, defined by
T:PxU— R,

31 h(z:)

A
zg | =T (21, 29,u) = ) Dh 2z, (29)
v Dh x93 — Dh M~ [Bxy + k(z1) — 4}
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system (24) has linear time invariant dynamics given by

#1=2g
2"2ﬂv (30)
with output map
w=goh zn).

This may be seen according to the definition of z1, 23 by applying the chain rule,
2"1 = Dh XTg = Z9,

and by noting, )
Zq = Dh 2y — Dh MHI{BSUQ + k- u].

This is not the most general class of transformations that might be used to linearize (24),
according to the nonlinear systems literature cited above, e.g. [50], but it includes methods
commonly encountered in the field of robotics. In particular, for non-redundant kinematics, if
we identify h, the first component of T with the kinematic map,

h(z1) £ g(=1),

then, locally, T not only linearizes (24), but dynamically decouples each input and output pair,
e.g., as reported in [57] or [59}, since w = 2.

As suggested above, the advantage of this approach is that the servo design problem may
now be addressed by the classical methods introduced in Section 2, shifting the problem of
task specification to lie within the domain of some independent “higher level” process. Namely,
suppose such a higher level algorithm produces a desired trajectory in workspace, wg(t), which

it is required that the robot reproduce. Defining z4 2 [hog~Y{wq), Dk Dg ‘ltbd]T , it is quite
straightforward to choose some linear feedback compensator, vy Sy z, and feedforward prec-

A . . . .
ompensator, vpe = I'[24], which determine a “classical * linear control law,

v 2 —Kz+T(2a), (31)

under whose action the output of (30) behaves in a desired fashion with respect to the reference
input, z4. The particular choice of linear control scheme determines the nature of overall per-
formance along the lines explored in Section 2. Since the relationship between (z,u) and (z,v)
has no dynamics (is “memoryless”) the input to the robot (24) defined by the inverse coordinate
transformation for « under T (obtained by solving for u in the last row of (29)),

Uy 2 Bzy + k(21) + MDA _l{vd — Dk za}, (32)

forces the output w(t) = glh™t(z1)].

Perhaps the best known example of this approach in the robotics literature is provided by
the “resolved acceleration” method of [58]. A control law, I'[z], is chosen for the linearized
system using the “inverse filter” method described in Section 2.3,

. hog! d 11 i
r.-d(zd)éffzd+zdl=ff[ Dh Dy f.‘f’;'j.,)d]-c»{aDhDg UYabg + Dh Dg =V
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that is, the inverse of the filter specified by the equivalent closed loop linear time invariant
system (30). The control law, ug4, to be applied to the robot is then given by (32). Note that
this choice, h = g satisfies the conditions for a local diffeomorphism almost everywhere in J:
the condition fails at the “kinematic singularities®,

ct {g€ J:rank(Dg) < dimW},

the critical points of g. Most realistic robots have kinematic singularities whose image under g
is in the interior of W and which may not be easily located, hence such a transformation may
be impracticable.

As an alternative example, if the task is specfied as a trajectory in joint space, 24 2 (g4, da]”
this methodology corresponds to a trivial change of coordinates under the identity map, h = I,
and the control law (32) reduces to

Ug 2 By + k(z1) + Mug.

The experimental results of exact linearization schemes in robotics reported to date [56] have
employed this version of the algorithm.

5.2.2 Other Coordinate Transformation Schemes

Other choices for A might be imagined: if the kinematics and dynamical parameters which give
rise to system (23) define a moment of inertia matrix whose square root is the jacobian of some
map, then a much simpler coordinate transformation, T, results. This has been explored by the
author in [60]. For ease of discussion, define the set of square roots of a smooth positive definite
symmetric matrix valued function, M(q}, as

N(M) & (N € C®[J,R™"] : NNT = M}

Note that since M is assumed to be positive definite, N (M) is not empty, and any h satisfying
the hypothesis is an immersion.

Suppose there exists a smooth map, b : J — IR®, such that DAT = N € ¥(M). Then under
the change of coordinates, defined by 7' : P x U — R3",

z A h(zi)
2| = T(w;,xg,u) = NT$2 s (33)
v N7 u ~ k(z;))

the system has linear time invariant dynamics given by (30). To show this, note that o a

Dh zy = #. Moreover,

#=Dh 2+ Dh &,
=NTgy — NT[NNT|"YBzs + k(z1) — 4] from (24)
=[NT — N™!B]ay + N7 tu,
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and it remains to show that [NT — N7!B) = 0. To see this, recall, from Section 3.1.3,
PR T
B‘.’Cg = M:Eg - -% [qungz]
. . T
= [NNT+ NNy - [Dya | =
. . T
= [NNT+ NNz, — [%qul ] 7

= NA.TTZEQ,

from which the result follows. Note that the exchanged order of differentiation in the third line
is justified since # is continuously differentiable in both ¢ and &.

Some of the advantages of a coordinate transformation based upon the square root of the
moment of inertia matrix are immediately evident, Given the choice of classical controller, vy,
from equation (31), the inverse transformation for % in terms of z,v is considerably simplified,

g é Dh T’Ud + k(m;)

in comparison to (32). Moreover, since h is an immersion, T may be computed everywhere on
J. The conditions for the existence of such a map, h, whose jacobian is in N (M) were given by
Riemann in 1854 [61], and amount to the question of when an apparently non-euclidean metric
is “flat® — i.e. gives rise to a space of zero curvature. * The transformation in question is a
particular instance of a local isometry, and a more general problem of some interest concerns
the existence of other isometries which simplify the dynamics (24). Research exploring whether
any useful class of robot arms gives rise to a flat metric and whether more general isometries
might be helpful for purposes of control continues [60].

5.3 Global Adaptive Controllers

It has been mentioned in Section 2.3.4 that a rigorous theory of adaptive control for linear time
invariant systems is a relatively recent development. Accordingly, the prospects for theoretically
sound adaptation algorithms for general nonlinear systems seems quite remote in the near future.
Fortunately, in contrast, the possibility of developing practicable globally stable adaptive robot
control algorithms within the next few years seems quite bright. This optimism is grounded
upon the following observations.

The rigid body model (23) presented in Section 3.1.3 is highly nonlinear in the state, z,
and kinematic parameters, but linear in the dynamical parameters (as will be verified shortly).
Future robots will probably be built using the direct drive technology [32]. This implies that
the omissions in rigid body model take the form presented in Section 3.2.2 which is still linear
in (an augmented set of) the dynamical parameteres in contrast to the additional nonlinearities
presented in Section 3.2.1. Adaptive problems with linear parameter dependence are much more
tractable than general nonlinear problems, as will be seen below.

To see that system (23) is linear in the dynamical parameters note that

M@ =3 [to)]" BiEidg)

=1

14 he author is indebted to Professors R. Szezarba and G. Zuckermann, Mathematics Department, Yale Uni-
versity, for illuminating discussions concerning Riemannian Curvature.
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where f};(q) & D,F? depends entirely on joint positions and kinematic parameters, and

15‘,2[ Ji W]@I,

P

depends on the dynamical parameters, as shown in Section 3.1.3. Since

([E]" 20 = (@] o [@])E°

(refer to Appendix ?7 for material concerning the “stack representation”), defining

(H@] e [A@]) .. 0 B
H(g) = : . : Pps ),
0 o ([Ea@)] ® [Fa@)]) P}

yields M(q)% = H(g)p. Since M is linear in p, its derivatives must be as well, and, hence,

ng,q'r)tj = H'p. It is clear from the derivation in Section 3.1.3 that & is linear in p, k(g) 2

H '(q)p.

5.3.1 Adaptive Computed Torque

Now consider the general problem of adaptive control for the robot servo problem. Suppose a

desired trajectory, qq, is given, along with a linear precompensating scheme, Upe 2 T'[g4) which
makes 2y, the output of a forced model reference dynamical system,

. [ o r]. . [e],
Tm =1 Ky —Ky | T g | e

track g¢ in an acceptable fashion. Assume, moreover, that the structure of the robot dynamics,
HH H'is entirely known although the dynamical parameters, p, are not.

If p were known then the appropriate control strategy would be a generalization of the pole
placement scheme presented in Section 2.2.3,

Fa¥ "oe .

Ug = k(,q) + B(q,q)q + M[-K1q — Ka + up'l,:.]
= E (Q)p+ H p+ (I"Iflq - If?‘j + 'Urpc] ®I)Hp
= H(Qs‘jaupt:)pa

since this “linearizes” the robot dynamics in the sense of Section 5.2 and places the poles such
that the closed loop system has the dynamics of the reference model. Thus, a generalization of
the reasoning in Section 2.3.4 suggests that the appropriate adaptive control take the form

N =, =FE A
Ugd = Hp = uq+ Hfp — p|

where P, the parameter estimate, will be continuously adjusted over the course of the robot’s
motion. The closed loop error equations, e £ Zm — x, under this control take the form

€= { 3{1 —ffg ] et [ ; } (M~ H{p - 7).
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Again generalizing from the earlier section on adaptive control, the adaptive law should depend
. . . A
upon a Lyapunov function for the reference plant. A convenient choice is v = a} Py, where

p Al K K2
m= Ky

may be shown to be positive definite as long as the reference system is chosen such that 4K, — K2 5
is positive definite. Note that o = —aT (K9 ® I) P2, along the motion of the reference system,
and this is easily seen to be negative definite under the further assumption that Ky, Ky commute.
Given these assumptions, the choice of adaptive law consonant with the reasoning of Section
2.3.4 should be

s =T, 1,1
P == HTM 1(5[(261-*-62).

Unfortunately, this law is entirely impracticable since by involving M explicitly, it presupposes
the availability of the very information which necessitated an adaptive approach in the first
place.

It is quite appealing to consider instead the adaptive law,

s =T .~ 1
ﬁ: HTM"I(-Z-.ngl +€2),

where M i 1s computed according to the recipe for A using the current value of the parameter
estimate, Hp. Unfortunately, while M is known to be positive definite and, therefore, invertible
over all ¢ € J, the estimate at any given instant, M, does not enjoy such a guarantee. Even if
this condition could be assured, it is no longer obvious how to demonstrate convergence of the
overall scheme,

Interesting recent work by Craig, Hsu and Sastry, [62] presents an approach to this problem
based upon the inverse dynamics pre-compensator,

AL .
Upe = §g + Kaga + K1q4.

‘Their analysis examines a “reverse causal” precompensator-robot forward path system — i.e.,
the reference model driven with inverse dynamics involving the true robot position and velocity.
This leads to error equations of the form

: 0 I 0 |, r1mgye
ezl:—Kl __}.(2}8-{-[[}(1\4 IH [P—P])-

and an adaptive law of the form
=T » 1
5= H‘TM“I(EIfgeI + e3),

where M is prevented from becoming singular or unbounded by explicitly arresting the adap-
tation when § leaves a pre-determined compact region in the positive orthant of parameter
space. Convergence obtains after a finite number of “adaptation resets”. Unfortunately, as H
contains reference trajectory acceleration terms, so does H* — a portion of the adaptive law
to be synthesized on-line — contain true response acceleration terms, § which would require
either use of accelerometers or instantaneous differentiation of real-time signals in any physical
implementation,
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5.3.2 Adpative Gravity Cancellation for a PD Controller

Since the complete paradigm of adaptive control does not easily translate into the nonlinear

robotic setting, it is sensible to consider schemes where adaptation plays a reduced role. Assume

that the desired task is achieved by a natural control law of the kind examined in Section 4, and

consider the problem of adaptive cancellation of the gravity term mentioned in Section 4.2.1.
Specifically, it is required to cancel the destabilizing portion of the vector field,

k(g) = Hp.

Following the ideas of Section 2.3.4, the appropriate control input is given as
AL,
tag = HpP — Koxg — Kyxy,

with x4 2 g4 — ¢, and P, the present estimate of the unknown gains which will be adjusted
continuously during the robot’s motion. According to the earlier discussion of adpatation, the
construction of the adaptive law requires use of an extended Lyapunov function. Unfortunately,
the only presently available candidate is the total energy function,

1
] @ é-[ng:Uz + CU,{-Kl:Bl]}

whose time derivative along trajectories of the (perfectly gravitationally canceled) closed loop
system was shown to be negative semi-definite rather than negative definite. Proceeding anyway,
in analogy to that discussion, set the adaptive law to be

1'3 = —HT.'EQ.

Notice that this is a practicable procedure, since all explicit dependence upon p is cancelled.
The closed loop behavior is then governed by the equation

T1=x2
:IZ:QZ—M_I[(B + Ifg)xg -+ Ifl(:l?l) + Hﬁ] (34)
p=HTz,.

It is shown in {46] that this system has a stable origin, and gives rise to bounded solutions whose
limit set is contained in the subspace

17 o

thus, each physical trajectory will converge to some spatial position g € J, and the parameter
estimate, $, will converge to some constant $; € IR?%, Unfortunately, the result says nothing
about the relation of these constants to their desired values. In fact, the most likely result of
this procedure would be entirely unsatisfactory. For all those positions gg € J at which H(gq)
has full rank, the origin of system (34) lies in the interior of a smooth submanifold of £ specified
by

ME{ e H 'Ky(qa— 0)}s

Ty O



50 5 SERVO CONTROL OF A GENERAL ROBOT ARM

which is a set of equilibrium states. Thus, not only is the origin non-attracting, but solutions will
converge to constants in M however distant from the origin that manifold extends, Physically,
this corresponds to a command torque based upon a spatial error whose corruption by the
parameter error exactly balances the gravitational force vector at a particular point in W.
Research attempting to improve this result is currently in progress.
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A The Stack Representation

If A € R™™, the “stack” representation of A € IR™ formed by stacking each column below
the previous will be denoted A% [63).
If B €IRP, and A is as above then the kronecker product of A and B is

011B e alﬂlB

anB .. emB
21 : 2m c RrP¥me

A®BE
amB ... awnB

The kronecker product is not, in general, commutative. Note that while the transpose “dis-
tributes” over kronecker products,

(49 B)T = (4" BT),
the stack operator, in general, does not.

Lemma 6 If A € R"™ ™ then there ezists a nonsingular linear transformation of R™, T, such
that .
(47)" =748

Proof: For p=nm, let B & {b1,...,b,} denote the canonical basis of R? — i.e., b; is a
column of p entries with a single entry, 1, in position i, and the other p— 1 entries set equal
to zero. The transpose operator is a reordering of the canonical basis elements, hence may
be represented by the elementary matrix,

FaX
T= [bla bn-!—l 3b2n+1) '"sb(m-—i}n+1 ’ b?a bn+25b2n+23 -"sb(m-—l)n-i-% ---bn)b2n: b3m very bmn]-

{J

For n = m, if we define Py 2 I+7T, P 2 I — T then both operators are projections onto the
set of “skew-symmetric” , “symmetric” operators of IR, repsectively, since P§ = Pi. Note that
Ker Py = Im Pg.

The kronecker product does “distribute” over ordinary matrix multiplication in the appro-
priate fashion.

Lemma 7 If A € R™™, B € RP*1,C € R™*, D € R™ then
(A® B)(C® D) = (AC ® BD).
Lemma 8 ([63] ) If Be R™*?, A € R™™, gnd C € RP*? then
[ABC)® = (CT @ A) B®,
Noting that for any column, ¢ € IRP*!, we have
® = [(C)T]S =c,

there follows the corollary
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Corollary 9 If B € R"*P, c € R” then
Be =B = ("®I)BS
8 8 8
= (Bd") = (*B7) = (@) (BT) .
Noting, moreover, that
T
tr {A) = (IS) AS,

there follows the additional result

Corollary 10 If A € R B € RP*™ then

tr {ABT} = (AS)TBS.

Proof:
tr {ABT} = (IS)T (ABT)
- (IS)T B® I)A®
= (45) (BTe D)I®
- ()
;]

Lemma 11 For any square array, A € R™", if I,, 1s the identity on R™ then the spectrum of
(A® L) is contained in the spectrum of A.

Proof: Suppose A is an eigenvalue of (A ® Ip,). There must be some non-zero vector,
z € R™" in the kernel of A\(I, ® Ix) — {A® I) Since z = X5 € R™™, it follows that

=\(ln® In) = (4® D]
=[x - XAT]
= [x(AL, — A7) ] .

This implies that Im XT ¢ Ker A, ~ A, and since the former subspace has dimension at
least 1 (according to the assumption that X # 0), the latter must as well. Thus, X is an
eigenvalue of A.

B



A

REFERENCES 53

References

(1] S. Bennett. A History of Conirol Engineering: 1800 -1980. 1EE, Peter Peregrinus Ltd.,
London, 1979,

[2] Otto Mayr. The Origins of Feedback Control, MIT Press, Cambridge, MA, 1970.
[3] Richard C. Dorf. Modern Control Systems. Addison-Wesley, Reading, MA, 1974,

[4] Morris W. Hirsch and Stephen Smale. Differential Equations, Dynamical Systems, and
Linear Algebra. Academic Press, Inc., Orlando, Fla., 1974.

(5] J. P. Lasalle. The Stability of Dynamical Systems. Volume 25 of Regional Conference Series
in Applied Mathematics, SIAM, Philadelphia, PA, 1976.

[6] Sir W. Thompson and P. G. Tait. Treatise on Natural Philosophy. University of Cambridge
Press, 1886, Cambridge.

[7] Phillip Hartman. Ordinary Differential Equations. Birkaauser, Boston, MA.., 1982,
[8] Wolfgang Hahn. Stability of Motion. Springer-Verlag, New York, 1967,

[9] 1. Horowitz. Feedback systems with nonlinear uncertain plants. International Journal of
Control, 36(1):155-171, 1982,

[10] C. T. Chen. Introduction to Linear System Theory. Holt, Rinehart and Winston, Inc., New
York, 1970.

[11] C. A. Desoer. Notes for a Second Course on Linear Systems. Van Nostrand, New York,
1970,

[12] M. A. Arbib R. E. Kalman, P.L. Falb. Topics in Mathematical System Theory. McGraw-
Hill, New York, 1969.

[13] V. L. Arnold. Ordinary Differential Equations. MIT Press, Cambridge, MA, 1978.

[14] J. P. Lasalle and 8. Lefschetz. Stabtlity by Lyapunov’s Direct Method with Applications,
Academic, New York, 1961.

[15] John L. Bower and Peter M. Schultheiss. Introduction to the Design of Servomechanisms.
John Wiley and Sons, Inc, New York, 1958.

[16] John G. Truxal. Automatic Feedback Control System Synthesis. McGraw-Hill Book Com-
paNew York Inc., New York, 1955,

[17) Kumpati S. Narendra, Yuan-Hao Lin, and Lena S. Valavani, Stable adaptive controller
design, part ii: proof of stability. AC, AC-25(3):440-448, Jun 1980.

{18] K.S. Narendra and Y.H. Lin. “Design of stable model reference adaptive controllers”. In
Applications of Adapiive Control, pages 69-130, Academic Press, New York, 1980.

{19] Kumpati S. Narendra, editor. Adaptive and Learning Systems: Theory and Applications.
Plenum, 1986.



54 REFERENCES

[20] K.S. Narendra and L. S. Valavani. A comparison of lyapunov and hyperstability approaches
_to adaptive control of continuous systems. IEEE Transactions on Automatic Control, AC-
25(2):243-247, Apr 1980.

[21] V. 1. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, N.Y., 1978.

[22] Louis Auslander and Robert E. MacKenzie. Introduction te Differentiable Manifolds. Dover
Publications, Inc., New York, 1977,

[23] John A. Thorpe. Elementary Topics in Differential Geometry. Springer-Verlag, New York,
1979.

[24] Richard P. Paul. Robot Manipulators: Mathematics Programming and Control. MIT Press,
Cambdrige, MA, 1981.

[25] C.S.G. Lee, R. C. Gonzalez, and K. S. Fu, Tutorial on Robotcs, IEEE Computer Society
Press, New York, 1983.

[26] H. Goldstein. Classical Mechanics. Addison-Wesley, Reading, MA, 1980.

[27] Antal K. Bejezy. Robot Arm Dynamics and Control. Technical Report 33-699, Jet Propul-
sion Laboratory, Pasadena, CA, 1974,

[28] L. M. Sweet and M. C. Good. Redefinition of the robot motion-control problem. JEEE
Control Systems MAgazine, 5(3):18-25, Aug 1985.

[29] Electro-Craft Corp. DC Motors, Speed Controls, Servo Systems. Electro-Craft, Hopkins,
MINN, 1980.

[30] Robert Goor. A New Approach to Minimum Time Robot Control. Research Publica-
tion GMR-4869, General Motors Research Laboratories, Warren, MI, Nov 1984.

[31) Paul Moroney. Issues in the Implementation of Digital Feedback Compensators. MIT Press,
Cambridge, MA, 1983.

[32] H. Asada, T. Kanade, and I. Takeyama. Control of a direct drive arm. ASME Journal of
Dynamics Systems,Measurement, and Control, 105(3):136-142, 1983.

[33] John Reif. Complexity of the mover’s problem and generalizations. In Proceedings 20th
Symposium of the Foundations of Computer Science, 1979,

{34] Jacob T. Schwartz and Micha Sharir. On the “Piano Movers” Problem I. The Case of
a Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers. Technical
Report 39, N.Y.U. Courant Institute Department of Computer Science, New York, 1981.

[35] Fumio Miyazaki and S. Arimoto. Sensory feedback based on the artificial potential for
robots. In Proceedings 9th IFAC, Budapest, Hungary, 1984,

[36] V. V. Pavlov and A. N. Voronin, The method of potential functions for coding constraints
of the external space in an intelligent mobile robot. Seviet Automatic Control, (8), 1984.



REFERENCES 55

[37] Oussama Khatib. Real time obstacle avoidance for manipulators and mobile robots. The
International Journal of Robotics Research, 5(1):90-99, Spring 1986.

[38] Neville Hogan. Impedance control: an approach to manipulation. ASME Journal of Dy-
namics Systems, Measurement, and Control, 107:1-7, Mar 1985,

[39] E. Saltzman and J. A. Scott Kelso, Skilled Actions: A Task Dynamic Approach. Technical
Report SR-76, Haskins Laboratory, Yale University, New Haven, CT, 1983,

[40] J. L. LaGrange. Méchanique Analytigue. Gauthier-Villars, Paris, 1788.

[41] Ralph Pringle, Jr. Og the stability of a body with connected moving parts., ATAA,
4(8):1395-1404, Aug 19686,

[42] Morikazu Takegaki and Suguru Arimoto. A new feedback method for dynamic control of
manipulators. ASME Journal of Dynamics Systems, Measurement, and Control, 102:119-
125, 1981.

[43] A. J. Van Der Schaft. Stabilization of Hamiltonian Systems. Memo 470, Technische
Hogeschool T'wente, Twente, Netherlands, Jan 1985,

[44) Daniel E. Koditschek. Natural motion for robot arms. In IEEE Proceedings 29rd Conference
on Dectsion and Control, pages 733-735, Las Vegas, Dec 1984,

(45] Daniel E. Koditschek. Natural Control of Robot Arms. Technical Report 8409, Center for
Systems Science, Yale University, 1984 (revised Mar. 1985) .

[46) Daniel E. Koditschek. Adaptive strategies for the control of natural motion. In IEEE
Proceedings 2{th Conference on Decision and Control, pages 1405-1409, Fort Lauderdale,
Dec 1985.

[47) Daniel E. Koditschek. Natural control of robot arms. (under review) Automation, 1986.

[48] Roger Brockett. Feedback invariants for nonlinear systems. In Proceedings, IFAC Congress,
Helsinki, 1978.

[49] Arthur Krener, On the equivalence of control systems and the linearization of nonlinear
systems. SIAM Journal on Control and Optimization, 11:670-676, 1973,

{50} L. R. Hunt, R. Su, and G. Meyer. Design for multi-input nonlinear systems. In R. W.
Brockett, R. 8. Millman, and H. J. Sussman, editors, Differential Geometric Control Theory,
pages 268-297, Birkauser, Boston, MA, 1983,

[51] A. Isidori. Nonlinear Control Systems: An Introduction. Volume 72 of Lecture Notes in
Control and Information Science, Springer-Verlag, New York, 1985,

{52] J. L. Casti. Nonlinear System Theory. Academic Press, New York, 1985,

(53] J. M. Hollerbach. A recursive formulation of manipulator dynamics and a comparative
study of dynamics formulation and complexity. In Brady et al., editor, Robot Motion,
pages T3-87, MIT Press, 1982,



56 REFERENCES

[54] R. H. Lathrop. Parallelism in manipulator dynamics. Int. J. Robetics Res., 4(2):80-102,
Summer 1985.

[65] D. E. Orin and W. W. Schrader. Efficient computation of the jacobian for robot manipu-
lators. The International Journal of Robotics Research, 3(4):66-75, Winter 1984,

[56] C. H. An, C. G. Atkeson, J. D. Griffiths, and J. M, Hollerbach. Experimental evaluation of
feedforward and computed torque control. In Sizth CISM-IFToMM Symposium on Theory
and Practice of Robots and Manipulators, Sep 1986.

[67] E. Freund. Fast nonlinear control with arbitrary pole placement for industrial robots and
manipulators. The International Journal of Robotics Research, 1{1):65-78, 1983.

[58] J. Y. S. Luh, M. W. Walker, and R. P. Paul. Resolved acceleration control of mechanical
manipulators, IEEE Transaction on Automatic Control, AC-25:468-474, 1980.

[59] T.J. Tarn, A. K. Bejcsy, A. Isidori, and Y. Chen. Nonlinear feedback in robot arm control.
In Proc. 28rd IEEE Conference on Decision and Control, pages 736-751, Las Vegas, Nev,,
Dec 1984.

[60] Daniel B, Koditschek, Robot kinematics and coordinate transformations. In IEEE Pro-
ceedings 24th Conference on Decision and Control, pages 1-4, Fort Lauderdale, Dec 1985,

[61) Michael Spivak. 4 Comprehensive Introductic;r{ te Differential Geometry, Publish or Perish
Press, Berkeley, CA, 1979.

[62] Johr J. Craig, Ping Hsu, and S. Sastry. Adaptive Conirol of Mechanical Manipulators.
Memorandum M86/3, Electronics Research Laboratory, University of California, Berkeley,
Berkeley, CA, Jan 1986.

[63] R. Beliman. Introduction to Matriz Analysis. McGraw Hill, New York, 1965.



