
A Data Transformat ion System for Biological Data 
Sources 

P. Buneman 
S.B. Davidson 

K .  Hart 
C. Overton 

University of Pennsylvania 
School of Engineering and Applied Science 

Computer and Information Science Department 

Philadelphia, PA 19104-6389 

February 1995 



A Data Transformation System for Biological Data Sources * 

P. Buneman, S.B. Davidson, K. Hart, C. Overton 
Dept. of Computer and Information Science & Dept. of Genetics 

University of Pennsylvania 

Philadelphia, PA 19104 

Email: {peter,susan,khart,coverton)@cis.upenn.edu 

L. Wong 
Real-World Computing Partnership 

Institute of Systems Science 

Novel Function Laboratory 

Heng Mui Keng Terrace 

Singapore 0511 

Email: limsoon@iss.nus.sg 

Contact author: Susan B. Davidson, Phone (215) 898-3490, Fax (215) 898-0587 

February 24, 1995 

Abs t r ac t  

Scientific data of importance to biologists in the Human Genome Project resides not only in conventional 
databases, but in structured files maintained in a number of different formats (e.g. ASN.l and ACE) as well 
as sequence analysis packages (e.g. BLAST and FASTA). These formats and packages contain a number 
of data types not found in conventional databases, such as lists and variants, and may be deeply nested. 
We present in this paper techniques for querying and transforming such data, and illustrate their use in a 
prototype system developed in conjunction with the Human Genome Center for Chromosome 22. We also 
describe optimizations performed by the system, a crucial issue for bulk data. 

1 Introduction 

T h e  goal of t he  Human Genome Project (HGP) is t o  sequence the  24 distinct chromosomes comprising the  
human  genome. Much of the  information associated with the  HGP resides not  in conventional databases, but  
i n  files t h a t  have been formatted according t o  a variety of conventions. These formats have been adopted in 
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DAAH04-93-G0129, and ARPA N00014-94-1-1086. 



preference to database management systems for several reasons. First, the data is complex and not easy to 
represent in a relational DBMS. Typical structures include sequential data (lists) and deeply nested record 
structures. This complexity would argue for the use of object-oriented database systems, but these have not 
met with success because of the constant need for database restructuring 1181. For example, each time a 
new experimental technique is discovered, new data structures are needed to record details peculiar to  that 
technique. Second, formatted files are easily accessed from languages such as Fortran and C ,  and a number of 
useful software programs exist that work with these files. Third, the files and associated retrieval packages are 
available a variety of platforms. 

For example, ACE is an extremely popular data format within the HGP, and has been designed to interact easily 
with C. Its data model is tree-structure, and allows complex nested types. Many of the schemas that have been 
developed around it  are very intuitive, and easy to understand. A number of sophisticated display and analysis 
packages have also been developed for ACE, and are available on machines ranging from Sun workstations to  
Macintosh laptops. 

Another popular data format within the HGP is ASN.l 1191. ASN.l (Abstract Syntax Notation) which consists 
of a syntax for types and a prescription of how data conforming to an ASN.l type is to  be physically represented 
in a sequential file or data stream. I t  was originally intended as the format for data transport between the top 
layers of the OSI architecture, but is now being used by the National Center for Biotechnology Information 
(NCBI) for storing one of the most comprehensive repositories of biological sequence information. 

Below we show the specification of an ASN.l type for the Publication entity in GenBank, one of the databases 
maintained by NCBI: 

Publications = {[title: string, 
authors: {I1 [name: string,ir~itial: string] ID, 
journal: <uncontrolled: string, 

controlled: <medline-jta: string, % Medline journal title abbreviation 
iso-jta: string, % IS0  journal title abbreviation 
journal-title: string, % Full journal title 
issn: string>> % ISSN number 

volume: string, 
issue: string, 
year: int, 
pages: string, 
abstract: string, 
keywd: {string)l} 

Rather than use ASN.l syntax for specifying this type, we have used notation that is close to that of high-level 
programming languages. 

Description 

list 
set 

record (labeled fields) 
variant (tagged union) 

Notation 

{IIr ID 
(71 

1 : T ,  . . . 1 : I 
: TI, . . . , ln : Tn> 

ASN.l 
terminology 

sequence of 
set of 

sequence 
choice 



It should be noted that these types can be arbitrarily nested. The variant or "tagged union" is frequently used 
in this and other formats. Its use can be seen in the example above where journal is either an abbreviated 
journal name (also a variant type), or the name of the person who performed the data entry (an informal review 
process). 

Query languages associated with data formats are typically very limited. For example, GenBank is accessed 
through an information retrieval package called Entrez, which simply selects ASN.l values through pre-computed 
indexes; no pruning or field selection from values can be performed. Effective query mechanisms for such data, 
however, must not only be able to  extract data, but transform data from one format to  another. The ability to  
transform data  is not only necessary for manipulating data for storage in archival databases, but for structuring 
data so that it can be used by other software such as graphical user interfaces and sequence homology packages. 
Data transformation is also necessary for data integration, in which data  from several different sources is 
integrated into a common format. This is a crucial problem within the HGP since as data  sources proliferate, 
data  of interest to  scientists is no longer isolated in one or two central data repositories but may be spread 
across several sources. 

We therefore describe in this paper techniques for querying and transforming data that is maintained in these 
formats as well as data maintained in conventional databases, and illustrate their use on problems arising within 
the HGP. It should be noted that while our examples deal mainly with ASN.l, the techniques work equally 
well with a large number of data formats we have studied, including ACE, FASTA, GCG and EMBL as well as 
object-oriented databases. 

The rest of this paper is organized as follows. In Section 2, we describe our model and query language CPL. In 
Section 3, we give the architecture of a prototype system for querying data formats and databases, and describe 
how it  is currently being used in the Informatics Group of the Center for Chromosome 22 at the University of 
Pennsylvania. Query optimization is then discussed in Section 4. A brief comparison with other approaches 
can be found in Section 5. 

2 CPL: A Query Language for Collection types 

The language CPL (Collection Programming Language) is based on a type system that allows arbitrary nesting 
of the collection types - set, bag and list - together with record and variant types. The types are given by the 
syntax 

r := boo1 I int 1 string I . . . I {r) I (IrD 1 (11710 1 <I1 : TI,. . .,In : rn> I [I1 : TI , .  . . ,In : rn] 

Here, boo1 I int I string I . . . are the (built-in) base types. The other types are all constructors and build new types 
from existing types. [I1 : TI , .  . . ,In : rnl constructs record types from the types TI,. . . ,T,. <I1 : rl, . . . ,In : rn>  
constructs variant types from the types 71,. . . , rn. {T), ( 1 ~ 5 ,  and 41~0 respectively construct set, bag, and list 
types from the type r. An example of this type system, Publication, was given in the introduction. 

Data formats also have a syntax for values. Such a syntax is available in CPL as the subset of the language 
that explicitly constructs values: [I1 = e l , .  . . , In = en] for records; <I = e> for variants, {el . . . en)  for sets; 
and similarly for multisets and lists. For example, a fragment of data conforming to the Publication type is 



{[tit le="Structure o f  the human perforin gene", 
authors={\l [name= "Lichtenheld" ,initial= "MG"1, 

[name= "Podack" ,initial= " E R  I ID, 
journal=<controlled=<medline-jta= "J Immunol" >>, 
volume= "143", 
issue= "12", 
year=1989, 
pages= "4267-4274", 
abstract="We have cloned the human perforin ( P I )  gene....", 
keywd= {"Amino Acid Sequence", "Base Sequence", "Exons", "Genes, Structural" )I.. . ) 

This example shows just the first publication record in a set of such records. It is an easy matter to translate 
from ASN.l syntax into this format as it is for a variety of other data models. By treating a relation as a set of 
records, it is also straightforward to represent a relational database in this format. In fact, the type system of 
CPL (which is slightly larger than the description given here) allows us to express most common data formats 
including those that contain object identity, which is briefly discussed later. Arrays are also common in data 
formats, and while they can be expressed as lists, the task of finding the right primitives for array manipulation 
is an area of current research [16, 241. We should also remark here that we do not, in general, represent whole 
databases in this format; it is used for data exchange between the query language of a DBMS or the application 
programming interface of a data  format. 

The language CPL. The syntax of CPL resembles, very roughly, that of relational calculus. However there 
are important differences that make it possible to deal with the richer variety of types we have mentioned and 
to allow function definition within the language. The important syntactic unit of CPL is the comprehension, 
which can be used with a variety of collection types. 

As an example of a comprehension, this is a simple CPL query that extracts the title and authors from a 
database D B  of the type Publication 

{Ctitle = p.title, authors = p.authorsl1 \p <- DB) 

Note the use of \ p  to introduce the variable p. The effect of \p <- D B  is to  bind p to each element of the set 
DB.  The use of explicit variable binding is needed if we are to use database queries in conjunction with function 
definition or pattern matching as in this example, which is equivalent to the one above. 

{Ctitle = t ,  authors = a] 1 Ctitle = \ t ,  authors = \a, . . .I <- DB]  

Also, the following queries are equivalent: 

{[ t i t le = t, authors = a] 1 [t it le = \t, authors = \a, year = \Y.. .I <- DB, y = 1988) 

{[t i t le = t, authors = a] 1 [t it le = \ t ,  authors = \a, year = 1988, . . .I <- DB) 

Apart from the fact that the queries above return a nested structure, they can be readily expressed in relational 
calculus. The following queries perform simple restructuring: 

{Ctitle = t ,  keyword = k] 1 [t it le = \t, keywd = \kk, . . .I <- DB, \k <- kk) 

{[keyword = k,  titles = {x.titlel \x  <- DB, k <- x.keywd)l l  \y <- DB, \k <- y.keyword) 



The first query "flattens" the nested relation; the second restructures it so that the database becomes a database 
of keywords with associated titles. Operations such as these can be expressed in nested relational algebra and 
in certain object-oriented query languages. The strength of CPL is that it has more general collection types, 
allows function definition and can also exploit variants, which may be used in pattern matching: 

{ [name = n, t i t l e  = t 11 [t i t le = \ t ,  journal = <uncontrolled = \n> . . . ]  <- DB} 

This gives us the names of "uncontrolled" journals together with their titles. The pattern <uncontrolled = \n> 
matches only uncontrolled journals and, when it  does, binds the variable n to  the name. 

The syntax of functions is given by \x+e, where e is an expression that may contain the variable x. We can 
give this function (or any other CPL expression) a name with the syntax define f == e which causes f to act 
as synonym for the expression e. Thus, the titles of papers of a given author can be expressed as the function 

define papers-of == \x +{p l  \p <- D B ,  x <- p.authors) 

Note that x <- p.authors matches elements of a list rather than elements of a set. 

Pattern matching may also be used in function definition, using a vertical bar I to  separate patterns: 

define jname == <uncontrolled = \s> +s 

I <controlled = <rnedline-jta = \s>> ~s 

I <controlled = <iso-jta = \s>> +s 

I <controlled = <journal-tit le = \s>> Js 

I <controlled = <issn = \s>> +s 

At the risk of some confusion and loss of information, this function finds the identifier or title of a journal. We 
may use this function in an expression such as 

{ [ t i t l e z t ,  name =jname(v)] 1 [ t i t le=\t, journal = \v . . .I <- DB) 

which gives us another example of transforming into a relational database format. A more sophisticated trans- 
formation could preserve the tag information from the variant structure in an additional attribute of the relation. 

These examples illustrate part of the expressive power of CPL. A more detailed description of the language 
is given in [8]. An important property of comprehension syntax is that it is derived from a more powerful 
programming paradigm on collection types, that of structural recursion [7, 61. This more general form of 
computation on collections allows the expression of aggregate functions such as summation, as well as functions 
such as transitive closure, that cannot be expressed through comprehensions alone. The advantage of using 
comprehensions is that they have a well-understood set of transformation rules [51, 45, 441 that generalize many 
of the known optimizations of relational query languages to work for this richer type system. 

Object Identity. While ASN.l illustrates the complex types typically found in HGP databases, other databases 
and data formats such as ACE also make explicit use of object identity. For querying databases with object 
identity the type system of CPL is extended with a reference type and the language extended t o  include a deref- 
erencing operation and a reference pattern. Note that this does not give the language the power to  create or 
update references. For creating object-oriented databases, some systems such as ACEDB have a text format for 
describing a whole database in which the object identifiers are explicit values. We can generate such files with 
the existing machinery of CPL by applying the appropriate output reformatting routines. For object-oriented 



databases that do not have this "bulk load" ability, it is usually an easy matter to  make CPL generate the text 
of a program in native OODB code that calls the appropriate constructors to  populate the database. 

3 Prototype System and Application in the HGP 

Recently, an interesting list of queries thought to be "impossible" in the HGP, primarily due to the lack of 
tools for querying, integrating and transforming data sources, was published in [13]. An example of one of these 
queries follows: 

Find information on the known DNA sequences on human chromosome 22, as well as information on homologous 
sequences. 

Answering this query requires access to two distinct data sources GDB and GenBank; furthermore, to produce 
the correct groupings for this query the answer has to be printed as a nested relation. GDB [33, 34]is a Sybase 
relational database located at The Johns Hopkins University, and is a central repository of map information on 
physical and genetic maps of all human chromosomes. GenBank [27] is an ASN.l data  source maintained by 
NCBI, and is accessed through the information retrieval system Entrez. I t  is located a t  the National Library 
of Medicine in Bethesda, MD, and is one the four international repositories for nucleic acid sequence data. To 
answer this query, GDB is used for obtaining marker information about specified regions (in this case, the whole 
of chromosome 22), and GenBank is used for accessing precomputed links to  retrieve hon~ologous sequences. 
Other queries in the report also required access to these and other data sources, as well as software systems 
such as those for sequence analysis (e.g. BLAST and FASTA). 

Using CPL, we have developed a prototype system for querying, integrating and transforming data sources 
within the HGP. Since our intended users are not database experts, we have paid careful attention to  developing 
"multidatabase user-views" of the available biological data sources. Multidatabase user-views are not simple 
integrations of underlying databases (as discussed, for example, in [40, 29, 4,  39]), but represent generalized 
intended uses of the collection of underlying data sources and frequently involve restructuring data from several 
sources to  some desired format. These user-views are frequently parameterized and programmed with special 
purpose GUIs such as the one shown in Figure 1, an interface which generalizes the sample DOE query given 
earlier by allowing users to specify a chromosome and band region of interest.' Underlying this simple interface 
is a CPL function which is executed using the specified parameters. 

The overall architecture of the system is shown in Figure 2. CPL is implemented on top of an extensible query 
system called Kleisli2, which is written entirely in ML [25]. Routines within Kleisli manage optimization, query 
evaluation, and I/O from remote and local data sources. Once registered in Kleisli, the data drivers perform 
the task of logging into a specific data  source (Open), sending queries in the native form for that source (Query), 
returning results to  Kleisli in internal Kleisli value syntax, and logging out from a specific data  source (Close).. 
For example, a query against the form in Figure 1 would generate a query request to  the Sybase driver, which 
would then access GDB and transform the resulting relation into an internal Kleisli data  value; the result of 
this would then generate input requests to the ASN.l driver, which would then access GenBank and transform 
the resulting ASN.l data value into an internal Kleisli data value. Because communication with the drivers 
is facilitated through UNIX pipes, drivers can be written in any language; we have used C, perl, and prolog. 
In addition, a flexible printing routine in CPL allows data to be converted to  a variety of formats for use in 

'This executable screen is available via Mosaic using http: //was. c i s  .npenn. edu/-khart/f o m 1  . html. 
'The system is named after the mathematician H. Kleisli, who discovered a natural transformation between monads. This 

transformation plays a central role in the manipulation of sets, multisets and lists in our system. 



Figure 1: Sample View Interface 

displaying (e.g. HTML) or reading into another programming language (e.g. perl). 

Kleisli has two interfaces: the application programming interface and the compiler interface. The application 
programming interface consists of ML modules implementing the data types supported in the model described 
in the previous section, as well as for token streams and functions. Token streams are important for passing 
data between CPL and the underlying data sources, and provide Kleisli the mechanisms for laziness, pipelining 
and fast response. The compiler interface supports the rapid construction of query languages, as we have 
done for CPL in the present prototype, and contains modules which provide support for compiler/interpreter 
construction activities. This includes: (1) A general polymorphic type system which supports type unification 
and type inferencing. (2) An abstract syntax structure for expressing Kleisli programs. (3) A rule-based 
optimizer and rewrite rule management. (4) A facility for registering external functions. (5) A facility for 
registering data drivers. 

To give an idea of how drivers are used from within CPL, we show two queries accessing GDB (Sybase) and 
GenBank (ASN.l). These will then be used to implement the sample DOE query. 

Query ing  a Sybase  Database.  Once a Sybase driver has been registered, driver functions can be used as 
primitives in CPL to access any relational Sybase database. For example, the following CPL code opens a 
session with GDB, and defines a function Loci22 which ships an SQL query to GDB. We shall shortly see how 
the rather complex SQL query is actually generated from CPL by the optimizer in Kleisli. 



Figure 2: Accessing Biomedical Databases 

define G D B  == Open-Sybase([server= "GDB" ,user= "cbil" ,password= "bogus"] ); 
define Loci22 == Query-Sybase([session=GDB, query="select locussymbol, genbank-ref 

from locus, object-genbank-ref, locus-cyto-location 
where locus.locus-id = locus-cyto-location-id 
and locus.locus-id = object-genbank-eref.object-id 
and object-class-key = 1 and loc-cyto-chrom-num = '22 '  "1); 

In this example, the user has completely specified the query in SQL. However, Kleisli understands how to move 
selections, projections as well as joins from CPL into Sybase queries. Using an SQLtemplate function GDB-Tab 
as follows 

define GDB-Tab == \Table +Query-Sybase([session=GDB, query="select * from " ^ Table]); 

( -  denotes string concatenation) the previous query could have been written entirely within CPL: 

define Loci22 == {[locus-symbol= x, genbank-ref= y l  I 
[locus-symbol=\x,locus-id=\a, . . . I  <- GDB-Tab( "locus" ), 
Cgenbank-ref=\y,object-id=a,object-class-key=l, . . . I  <- GDB-Tab("object-genbank-eref"), 
[loc-cyto-chrorn-num= "22" ,locus-cyto-location-id=a, . . .I <- GDB-Tab("locus-cyto-location")); 

The optimizer migrates not only all selections and projections to the Sybase server, but also moves the local 
joins to joins on the server where pre-computed indexes and table statistics may be exploited. Thus, although 
the second version of Loci22 appears to send three queries to the Sybase server and perform the join within 
CPL, the optimizer would reconstruct it as in the first version, resulting in a single SQL being shipped. 



Querying  an ASN.l  Database .  The ASN.l driver for Entrez [27, 281 is significantly more complicated 
than the Sybase server because there is no real query language interface for ASN.l. While Entrez queries allow 
the selection of a complex value from an ASN.l source, they do not allow any pruning or field selection from 
that value. For example, if the value were set of tuples (a relation), there would be no way to project over 
certain fields. Although such pruning could be done to an ASN.l value after it has been retrieved into the 
CPL environment, we are able to minimize the cost of parsing and copying ASN.l values by pruning at the 
level of the ASN.1 driver. For this purpose, we have developed a path extraction syntax that allows for a terse 
description of successive record projections, variant selections, and extractions of elements from collection. 

The selection of ASN.l values from Entrez is accomplished through pre-computed indexes in the style of infor- 
mation retrieval systems. For the ASN.l driver, a simple syntax that uses boolean combinations of index-value 
pairs is used. 

To illustrate use of the ASN.l driver functions, suppose we want the following information: 

Retrieve equivalent identifiers corresponding to the accession number M81409. 

define GenBank == Open-ASN([server="NCBI" ,user= "cbil" ,password= "bogus"]); 
define ASN-IDS == \accession 

Query-ASN([session=GenBank, db= "na", select= "accession " accession, ~ a t h =  "Seq-entry.seq.id..giim", args=[]); 
ASN-IDS( "M81409" ); 

The driver responds to the ASN-IDs("M81409) query by sending the index lookup select= "accession M81409" 
to  the nucleic acid division in Entrez (db= "na" - this division contains GenBank), which returns the entries with 
accession number M81409. The path expression is applied during the parse so that only the ASN.l sequence ids 
are returned. In this query, the path expression specifies two projections (.seq.id) on the root type Seq-entry, 
followed by a variant extraction for each element in the resulting set (..giim). The CPL type specification 

Seq-entry: Cseq: [id:{<giim: int, . . .>), . . .I, . . .I 

shows the nested types that are encountered by this traversal. 

As with the Sybase driver, optimization rules to push projections on ASN.l data from CPL to Entrez have been 
written. Although general rewrite rules for the translation of CPL queries to  path expressions are not available, 
we are currently investigating type inferencing for path expressions in order to  provide such a translation. 

Revis i t ing  the LLImpossible" D O E  Query. We are now in a position to  put the pieces together and answer 
the DOE query given in the introduction to  this section. But first we need to address the issue of homology 
search. 

Loci22 returns information about markers on chromosome 22. To find homologous sequences for these entries 
we have two choices. We can either extract the nucleic acid sequence from each entry and use it to  query a 
homology search application program (e.g. BLAST or FASTA), or we can use pre-computed similarity links 
available in Entrez. The homology programs take a query sequence and parameters for the search algorithm, 
perform the search over a specified database, and return sequence identifiers and match characteristics for each 
match in that database. The pre-computed links for each entry in Entrez is a list of other entries in the database 
that were found to have high homology (using BLAST). Since we are only considering nucleic acids in GenBank 
for this query, use of these links is appropriate and much faster than querying an application program. The 



ability to  retrieve these links is built into the ASN.l driver and made available in CPL with the function NA- 
Links. NA-Links takes a genbank-ref identifier and returns a set of records containing an identifier and a short 
description of every linked entry. 

The final solution t o  our query can now be expressed using our functions for retrieving markers from GDB 
(Loci22), translating sequence identifiers (ASN-IDS), and retrieving homologous sequence information (NA-Lin ks). 
This query is written as 

Note that the query itself is quite simple, and that most of the effort was spent figuring out where the relevant 
data was stored. 

4 Query Optimization 

Optimization of queries is done entirely at compile time using rewrite rules. Rewrite rules are expressed by 
pattern matching on Kleisli's abstract syntax objects., Thus a rewrite rule R is a function which maps an abstract 
syntax object to a list of equivalent objects. If R(E) produces {El,. . .En), then each of El , .  . . , En is a legal 
substitute for E. Once such a rule is registered with the rule manager, the optimizer will take it into account 
when optimizing subsequent queries. In the previous section, we mentioned two families of such optimizations: 
Pushing projections, selections and joins from the CPL query to  the Sybase query, and pushing projections and 
variant analysis from CPL to the ASN driver. In fact, if any relational subquery in CPL only uses relations 
from the same database and does not use powerful operators, our optimizer is able to  push the entire subquery 
to the server 1491. 

Opt imiz ing  J o i n s  in CPL.  We have also optimized joins performed within CPL by introducing two join 
operators as additional primitives to  the basic Kleisli system. One of them is the blocked nested-loop join [21]. 
The other is the indexed blocked-nested-loop join where indices are built on-the-fly; this is a variation of the 
hashed-loop join of [26]. Both operators have a good balance of memory consumption, response time, and total 
time behaviors. We use the former for general joins and the latter when equality tests in join conditions can be 
turned into index keys. These two operators are accompanied by 23 optimization rules t o  help the optimizer 
decides when to use them. As our system is fully compositional, the inner relations for these joins can sometimes 
be subqueries. To avoid recomputation, we have also introduced an operator to  cache the result of selected 
subqueries on disk. This operator is accompanied by 3 optimization rules to  help the optimizer to  decide what 
to cache. 

Lazy Query Evaluat ion.  The evaluation mechanism of Kleisli is basically eager, with rules used to introduce 
a limited amouiit of laziness in strategic places to minimize memory consumption and reduce response time. This 
strategy is the opposite of fully lazy systems which execute lazily by default and rely on sophisticated strictness 
analysis to bring in eagerness to  improve performance [2, 51. As an example of how lazy evaluation[l7, 461 is 
introduced into our system, consider the nested-loop query 

Note that y is instantiated to  members of the set obtained by applying S to  x and is thus dependent on x. 



Although full evaluation of the query will require instantiating all x and y, each (x, y) pair in the result can be 
assembled by retrieving a single element x from DB and single element from the set S(x). Where possible, the 
Kleisli optimizer will lazily retrieve elements from DB and lazily evaluate the function S in order to generate 
initial output quickly, and minimize storage of intermediate results such as the instantiations of x and y. This 
mechanism is primarily used when DB and S(x) are derived from external data sources. 

Opt imiz ing  Pro jec t ions .  We also improve the speed of record projection by exploiting homogeneity. Con- 
sider the innocent-looking query below: 

This query essentially joins DB1 and DB2. However, we have to compile it with only the knowledge that DB1 
has a name field and an age field, and that DB2 has a name field and a sex field. We do not know what are in 
these fields and we do not know what other fields are present. 

Since we cannot compile queries using traditional techniques, which require precise knowledge of types to 
calculate field offsets a t  compile time, we have adopted a technique due to  Remy[37] (which is related to the 
extendible technique of Fagin[l5]). His technique is to represent a record as a pair consisting of a pointer to  a 
directory and an array. The array keeps the values of the fields of the record. The directory is used to generate 
the right index into the array given a field name. All records having the same fields share the same directory. 

The technique works across systems based on parametric polymorphism [31, 47, 7, 36, 37, etc.] and systems 
based on subtype polymorphism [9, 10, 11, etc.]. However, not every system needs this kind of generality in 
record projection. In particular, relational databases have homogeneous sets. In this case, it is possible to  
take advantage of homogeneity to speed up record projection. To do so, we note that Remy record projection 
consists of two steps. The first step is the computation of an offset based on field name and the magic number 
associated with a Remy directory. The second step uses the offset to  index into a Remy record to  retrieve the 
value of the required field. If the set we are mapping over is homogeneous, then all its records share the same 
Remy directory. Therefore, we can apply the idea of code motion [3] and compute the offset only for the first 
record. This offset can be reused for the remaining records. Our system is able to perform this code motion 
automatically. A greater than twefold improvement has been obtained over the plain Remy projection; a full 
description of the Remy technique and our improvement can be found in [50]. 

We are also exploiting parallelism both at the data servers and within CPL; for details see [52]. 

5 Conclusions 

In this paper, we have described techniques for querying and transforming complex data types. The language 
on which it  is based, CPL, has been implemented on top of an extensible query system called Kleisli, and 
is currently being used in the Center for Chromosome 22 at the University of Pennsylvania. Its strengths 
lie in its ability to represent and manipulate complex data types, and its ability to  exploit a "lowest common 
denominator" of data formats for communication with other data sources. In addition, it is capable of exploiting 
additional access paths or query languages when these exist, and allows optimizations t o  "migrate" to these 
external systems. 

The examples we used in this paper showed the system's ability to integrate ASN.l and relational formats, and 



to  perform optimizations for these data sources. The techniques work equally well with other data formats, 
including ACE and a number of interfaces for applications programs. ACE contains certain object-oriented 
features, specifically classes and object identities. Only minor extensions t o  the language are needed to query 
and transform such structures. 

Related Work. Issues of integrating databases are not new, and have been dealt with extensively in the 
computer science literature (see, for example, [43, 42, 23, 30, 481). The chief distinction between our approach 
and these is the complexity of data types that we model and query, and the ability to  transform between complex 
types. Although the model in [I] encompasses many of the types we consider (sets, records and variants), the 
transformations considered are limited and queries are not supported. Our approach also contrasts with that 
taken by [32] which has a very simple data model and expresses types dynamically. When dealing with biological 
data  sources, static type information is both available and useful in specifying and optimizing transformations. 

In the biological domain, the main integration efforts have been either to  produce centralized repositories [38], 
provide indexed or hypertext links between data sources [14, 201, or GUIs to provide fixed integrated access 
[35, 411. However, none of these are supported by a query language which allows data to  be combined from 
multiple, heterogeneous sources. 

To simplify the specification of complex transformations between databases, we have also developed a declarative 
language called TSL (Transformation Specification Language), which is based on Horn clause logic (see [12, 221 
for details). While it is not as computationally expressive as CPL, TSL naturally captures the structural 
manipulation of complex data types found in transformations as well as constraints. Having a unified formalism 
for transformations and constraints is important since there is a significant level of interaction between the two. 
Once a transformation is specified in TSL, it can be translated into CPL for implementation. However, we 
have found that using TSL rather than CPL as the specification language considerably simplifies the problem 
of modifying transformations as schemas evolve. Schema evolution may occur as frequently as every 6 months 
with biological data sources, and is therefore a significant problem within the HGP. This rapid evolution occurs 
because as new experimental techniques are discovered, new data structures may be needed to record the details 
peculiar to  that technique. 
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