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Abstract 
In this paper we characterize equilibrium gaits of a small 
knee monoped in terms of manifest parameters by re- 
course to approximate closed form expressions. We first 
eliminate gravity during stance and choose a very spe- 
cial model of potential energy storage in the knee. Next, 
we introduce simple closed form approximations, moti- 
vated by the Mean Value Theorem, to  the elliptic inte- 
grals arising in the more general case. In so doing, we 
derive a conjectured generalization applicable to small 
knee monopeds with an arbitrary knee potential. Fi- 
nally, we introduce a new closed form perturbation in- 
tended to adjust the approximate coordinate transfor- 
mations to the presence of gravity. Simulation data is 
offered as evidence for the efficacy (to within roughly 
5 - 10% accuracy) of both the proposed generalization 
across knee potentials and the proposed perturbation for 
the presence of gravity during stance. 

1 Introduction 
In this paper we pursue a line of inquiry [12, 171 orig- 
inally stimulated by Raibert’s running machines 1151. 
In our view, the importance of this landmark scientific 
accomplishment has expanded significantly in the last 
decade for at least two different reasons. First, from the 
practical point of view, other robotics researchers, no- 
tably, Buehler [14, 10, 11, have developed working vari- 
ants on these ideas that may be implemented with con- 
ventional actuators and onboard power supplies. Sec- 
ond, a growing biomechanics literature suggests the rel- 
evance of Raibert’s concepts t o  the understanding of an- 
imal gaits [6, 3, 7, 8, 91. 

The scope and contributions of this paper may be 
summarized as follows. Figure 1 (a) depicts the simplest 
of runners - a lossiess two degree of freedom revolute- 
revolute leg with a massless free (unactuated) ankle, qol, 
and a massless springy knee, ije, - that we will call the 
“spring loaded small knee” (SLSK) monoped.’ The be- 
havior of any such mechanism, whether engineered or 
biological, that locomotes in a symmetric equilibrium 
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lThe Oxford English Dictionary lists monopode, a usage 
common in the biomechanics community [7] as a synonym for 
monoped. We employ the latter since its multileg analogues are 
more familiar than, for instance, bipode or quadrapode, etc. 

Figure 1: (a) The spring loaded small knee (SLSK) monoped 
(shown on the left): 1 = m2 >> ml M 0. (b) When ml = 
0 the the SLSK monoped is dynamically equivalent to the 
spring loaded inverted pendulum (SLIP) monoped (shown 
on the right). 

gait, can be characterized by three parameters that ex- 
haust the possible variations in such motion. We provide 
closed form expressions that approximate (to within 
roughly five to ten percent accuracy) the relationship 
between “internal” and “manifest” triples of these gait 
description parameters. For example, in Figure 2 we dis- 
play four different symmetric equilibrium trajectories of 
the SLSK center of mass (the foot is placed at  the ori- 
gin for the stance portion of each trajectory) where we 
have systematically varied the duty factor while keep- 
ing fixed the height and speed at  apex. The “internal” 
gait description parameters that yield trajectories with 
these precise properties are computed by solving numer- 
ically a set of closed form equations involving familiar 
transcendental functions that arise from our approxima- 
tions. Absent our formulae, such an accurately coordi- 
nated path through this runner’s possible gaits would re- 
quire a process of repeated numerical integrations from 
incrementally improved initial conditions. 

1.1 Scope of the Paper: Symmetric 

Here and in the sequel, the term gait refers not to the 
pattern of leg movements of a locomotor, but rather to 
the trajectory of its center of mass (COM).2 The distinc- 
tion is important in general, but for the particular case 
(the SLSK monoped) considered in this paper, the two 
notions coincide: there is a change of coordinates - an 
isometry [18], in fact - between the COM and the leg 
motions. In point of fact, we will find it most convenient 

’While the f ist  notion of gait may be more familiar, both 
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notions appear in the literature [2, 4, 91. 

0-7803-361 2-7-4/97 $5.00 0 1997 IEEE 1986 



0.00 
-0.5 0.0 0.5 1.0 1.5 2.0 

bx 

Figure 2: Trajectory of COM over one cycle (for compressed 
air spring model with no gravity during stance) holding con- 
stant both the horizontal velocity, b, = 2m/s, and height 
at apex, zy = 1.5m, while adjusting duty factor (% time in 
flight) between 5% and 20% in uniform increments. In each 
case the foot is placed at the origin during the stance phase 
and the flight phase begins when by crosses for a second time 
its initial value. 

to work in a different coordinate system altogether. Let- 
ting mI/m2 -+ 0, as the SLSK model assumes, yields an 
isometry to polar coordinates. 

Thus, throughout the remainder of the paper, we will 
express most of our results in these revolute-prismatic 
coordinates. 

is an equilibrium gait if the tra- 
jectory resulting from a set of leg placements is identical 
to the previous trajectory for the same set of leg place- 
ments. In other words, the equilibrium gaits are periodic 
orbits of the locomotor dynamics, and we may identify 
such trajectories with the fixed points of an associated 
“return map” [12, 19, 161. What we have called the in- 
ternal gait description parameters comprise a point on 
a transverse section (the leg compression, rb, and the 
angular velocity of the mass relative to  the fixed ankle 
at  the bottom of the stance phase, wb) together with 
a control parameter (the spring constant, k )  to  form 
the triple that we denote pb = (rb,Wb,k) E pb. Thus, 
our transformations back to  such manifest parameters 
as the apex properties selected in Figure 2 amount to 
computing explicitly a component of the return map of 
the locomotor dynamics. 

Our use of the word symmetry formalizes Raibert’s 
notion of neutral orbits. These are joint space motions 
that are even or odd as time functions considered with 
respect to  an origin defined by the bottom of the stance 
phase. For now, the reader may simply imagine requir- 
ing the second half of the stance phase to  mirror the first 

Say that a motion 

3T0 beexact, theisometrybreaksat thecriticalpoints (straight 
leg and doubled over leg) reflecting the fact that the torus is a 
double cover of the punctured disk [18]. It should be intuitively 
clear, however, that monoped legs will not operate anywhere near 
these critical points. 

*We will adopt the terminology of dynamical systems theory 
and use m o t i o n ,  t r a j e c t o r y ,  orb i t ,  synonymously to denote the 
solution in time of the leg dynamics from a particular initial con- 
dition. 

half. These ideas are briefly explored in Section 2.3.1, 
although a more formal exposition is found in [18]. 

Unfortuna.tely, such a mathematically natural view 
of these gait description parameters is unsatisfactory. 
From the robotics point of view, they do not coincide 
with the available control inputs. The spring constant 
is in plain sight, but the effect of leg angle at touch- 
down is obscured. From a biomechanician’s point of 
view, they do not correspond to  external observables 
that would be straightforward to  measure in an intact 
animal, notwithstanding the experimental ingenuity of 
such researchers as Full, McMahon and colleagues, who 
have reported the ability to extract estimates for the 
SLIP model spring constant for a variety of animals 
[7, $1. In either case, one desires a transparent means 
of relating the mathematically convenient “internal” pa- 
rameters to such “manifest” properties as we display in 
Figure 2. But the mathematics relating these proper- 
ties seems on the face of it intractable. Specifically, the 
dynamics take the general form of the “restricted three 
body problern” from classical mechanics [5]. Thus, this 
simplest of locomotion systems is not merely noninte- 
grable but its motions may be expected t o  exhibit the 
formidably intricate patterns that launched PoincarC on 
his study of what has since come t o  be called “chaos” 
P11. 

1.2 Contribution of the Paper: From In- 
termal to Manifest Gait DescriPtion 
Paralmeters 

Recourse to  numerical integration is of course unimagin- 
ably advanced relative to  PoincarC’s time, and the ques- 
tion naturally arises why any more need be said. In 
answer, for the applications we envision, one seeks a 
functional means of relating manifest effects to  inter- 
nal causes whereby the various physical influences that 
achieve or perturb the desired patterns are subject to  
reasoned deductions rather than trial and error compu- 
tation. The precisely tuned orbits of Figure 2 presents a 
typical example. Thus, our problem in this paper is to  
provide some means of characterizing these equilibrium 
gaits in terms of manifest parameters and to do so by 
recourse to closed form expressions. Our solution to  this 
problem may be summarized as follows. 

We first eliminate gravity during stance and choose 
a very special model of potential energy storage in the 
knee, in Section 3. This particular spring law is not 
a mere mathematical curiosity since it provides a sim- 
plistic but not unreasonable model of the compressed 
air spring that Raibert has used in many of his robots 
[15, 161. Moreover, we have gained significant under- 
standing of Raibert’s control policies in the past by 
removing the effects of gravity during stance as well 
[12, 171. These simplifications afford a carefully struc- 
tured instance of the system that can be integrated in 
terms of elementary functions using techniques dating 
back to  the origins of classical mechanics [20]. We ma- 
nipulate these expressions to obtain functional relation- 
ships between the internal gait description parameters 
and the manifest apex parameters. 

Next, in Section 4, we introduce simple closed form 
approximations, motivated by the Mean Value Theorem, 
to  the elliptic integrals arising in the more general case. 
In so doing, we derive a conjectured generalization ap- 
plicable to small knee monopeds with an arbitrary knee 
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potential, still in the absence of gravity during stance 
(13). We test this spring law generalization by choosing 
a very different knee potential - the linear-in-extension 
(Hook’s law) spring - motivated by the physical mod- 
els that Buehler has used in describing his machines 
[14, lo]. While the equations of motion for this knee 
are still integrable in the formal mathematical sense, 
the elliptic integrals that result are almost as opaque to  
the kind of parametric insight one desires as the original 
Runge-Kutta simulations. We present detailed numeri- 
cal evidence verifying the correspondence of the closed 
form but approximate coordinate transformation to  the 
exact mathematical relationships given by these elliptic 
integrals. In a longer report [18] we present similarly 
detailed numerical evidence establishing the surprising 
accuracy of these approximation formulae for a much 
broader range of physically plausible knee potentials. 

Finally, in Section 5, we introduce a new closed form 
perturbation intended to  adjust the approximate coor- 
dinate transformations to the presence of gravity. Once 
again, we present detailed numerical evidence suggest- 
ing the very good fit between our closed form expression 
(13) and the full, nonintegrable “chaotic” truth. 

A concluding section suggests the immediate applica- 
tions and more distant implications of these three con- 
tributions. 

IC 
(rb,wb) 
( ~ 1 ,  ?er) 
( ~ ~ 1 ,  g e l )  

(b,l,.byl) 

(gY, &) 

P 
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2 Symmetric Equilibrium Gaits 
of the SLIP Monoped 

In this section we re-interpret the questions of interest 
concerning the SLSK monoped in terms of the equiva- 
lent SLIP model, and then go on to  develop Lhe formal 
properties of the latter that will be exploited to  derive 
our results. 

Spring Constant 
Leg Length and Angular Vel. a t  Bottom 
Leg Length and Angle at Lift-off 
Radial and Angular Vel. a t  Lift-off 
Forward and Vertical Vel. a t  Lift-off 
Hopping Height and Forward Vel. a t  Apex 

Duty Factor = 

TimeFl ight  - 2 
T i m e S t a n e e  - t .  

2.1 Potential Energy 
It will be important in the sequel t o  develop our results 
in a form that is valid across a large family of spring 
models for the locomotor’s knee. This degree of gener- 
ality is required because it seems clear that the most ap- 
propriate model of potential energy may well vary over 
the intended application of interest. 

While virtually all successful legged robots to  date 
have adopted the revolute prismatic kinematics of 
the SLIP monoped, biomechanicians have heretofore 
adopted this model [7] only in analogy to  the more bi- 
ologically valid revolute-revolute kinematics. We intro- 
duce the SLSK version of the revolute-revolute design 
with the hope of trimming the gap between physical 
analogy and fact. Thus, we are greatly concerned to  
insure that all insights developed for one model apply 
to both. The models will be dynamically equivalent if 
and only if their spring forces are related through the 
transposed jacobian of the isometry, 9-l o [18]. Thus, 
while it is straightforward to  express a given spring law 
in one or another set of coordinates, it is equally clear 
that simple expressions in one set will yield very com- 
plex expressions in the other, and vice versa. In other 
words, simplistic models of the knee potential will have 
very different properties depending upon whether we are 
using them to  capture “elements” of reality pertaining 
to  the SLSK or the SLIP leg. 

Pb 
Pl 

Fm 

Bottom Gait Parameters (Q,, W b ,  k) 
Polar Lift-off Gait Param. (qer,  i r l ,  G e l )  

Manifest Apex Gait Parameters (by, 6,, a) 
Gait Description Parameter Spaces 

Ph I Bottom Gait Parameter %ace 

b 
b 

I I pm I Manifest Apex Gait Parameter Space 

Cartesian Pos. Coordinates, [ b,, by 1‘’ 
Cartesian Vel. Coordinates, [ b,, 6 ,  I T  

Tb 
9 
9 
T9 

” -  

[ 6 ,  bIT 
Polar Pos. Coordinates, [ qr,  qe 
Polar Vel. Coordinates [ dr ,  qe ] 
[ Q ,  9IX 

9 
Dqg 
Ts 

Table 1: Notation used throughout the paper 

Polar to Cartesian Coordinate Map 
Polar to Cartesian Velocity Map 
Polar to Cartesian Tangent Map 

We have chosen to explore a family of spring poten- 
tials whose appearance is mathematically simple when 
expressed in the SLIP model. In the more detailed 
technical report [18], we have worked in the SLIP co- 
ordinates with various potential functions of the general 
“power law” form 

U(i,j)(qr, Pro, k) = 

e(.) : = d, 1 E LV 
f i P , ( - s g n ( j )  [pj(qr> - ~j(qro)l)  ; 

(1) 

including both the “compressed air spring” 

k 
U A ( q r )  = u(l,-Z)(qr, qrO, k, = ;Z(l/q,” - l/q;o) (2) 

and the “Hook’s law spring” 

k 
2 uH(qr) : = u(2,1l(qr, qro, k) -(qro - QrI2, (3) 

discussed explicitly in the present paper. 5 .  As we 
have remarked above, these latter two are of particu- 
lar interest from the applications perspective in view of 

~ 

5For 1 = 0 we take Po(z) : = ln(z). 
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their “simplistic but not unreasonable” representation of 
Raibert’s and Buehler’s SLIP machines, respectively. 

As will be seen directly below, the first spring, UA 
is a particularly fortuitous choice for mathematical rea- 
sons. In point of fact, the motivation €or the potential 
family, (l) ,  is similar in spirit to that of the classical me- 
chanicians. In fact, our family is essentially captured by 
the ancient catalogue presented by Whittaker [20, Ch.4 
$471, but for the (important!) distinction that the ce- 
lestial central forces are attracting and our locomotor’s 
knee forces are repelling. 

With this understanding in force, we now presume a 
generic spring potential, U ( k ,  q r ) ,  where k is the spring 
constant q,. is the leg length, and we may proceed with 
a presentation of the dynamics. 

2.2 Locomotor Dynamics 

The monoped flies through the air as a two degree of 
freedom point mass subject to gravity, and then touches 
down, maintaining a fixed ankle position relative to the 
ground throughout the stance phase until the rising hip 
pulls the ankle off the ground and flight begins anew. We 
assume that the leg angle at  touchdown can be freely 
selected in flight. Newtonian free flight dynamics are 
readily integrable, so the only point of inquiry concerns 
the stance dynamics that we now present. 

The equations of motion during stance can be de- 
rived in any of the three coordinate systems (COM, 
SLSK, SLIP) discussed above using the traditional 
Euler-Lagrange formulation. The proper choice of co- 
ordinates is, of course, a matter of convenience, since 
the dynamics expressed in any one coordinate system 
are identical in behavior (albeit not in appearance) to  
the others. However, the traditional quadrature formu- 
lae for low degree of freedom central force problems have 
been worked out in the analogues of the SLIP model, and 
we have found it most convenient to  proceed following 
that model. 

More specifically, we have found it easy to formalize 
Raibert’s notion of symmetry in the latter model, and 
less intuitively informative to  do so in the other two 
coordinate systems. The familiar SLIP dynamics can 
be found in [18]. 

2.3 Gait Description Parameters 

We now explore the implications of reverse time sym- 
metry in identifying what we have termed the “internal 
gait description parameters” in the discussions above. 
We list two collections of physically interesting measure- 
ables as examples of “manifest” features that we might 
wish to  relate back to  them. 

‘In the former case, k is the natural “control parameter” since 
Raibert adjusts the air pressure during stance [15]. In the latter 
case, Pro is the more realistic “control parameter,” and properly 
should replace k in the internal gait description space, pb, since 
Buehler drives a small motor that adjusts the spring offset through 
a wormdrive. Since both parameters enter our formulae, there 
would be no difficulty in making this substitution in a particular 
application. However, we choose to stick with k in both models 
throughout the paper for ease of exposition. 

’It is fascinating, philosophically speaking, to note that even 
the simplest of runners must “know” celestial mechanics merely 
to find an equilibrium. 

2.3.1 The Symmetry, S,  and its Neutral Orbits, 
N 

We have introduced the ideas of reverse time symme- 
tries and neutral orbits in a previous paper [17], and 
have related them in a substantially similar form in sev- 
eral recent papers, notably [13]. These ideas are also 
carefully formalized in [IS]. 

The set of fixed points of the SLIP symmetry is given 
by 

FixS = {Tq E TQlqe = 0 & i r  = 0) 

All nontrivial stance motions of a SLIP monoped 
must pass thirough a state of maximal spring compres- 
sion (i.e., where q,. = 0). This is, in fact, the condition 
that Raibert used to  define his notion of the “bottom” 
of the stance phase. Clearly, not all stance motions will 
pass through the bottom condition at the same instant 
that the leg is perfectly vertical. However, FixS is ex- 
actly the union of such bottom states. 

Lemma 2.1, proved in [18], shows that any stance 
motion whose bottom is vertical in this manner must 
have the symmetry property that Raibert has identified 
and exploited to  such advantage in his empirical work. 

Lemma 2.1 I f  the next touchdown angle zs chosen to  be 
the negatzve of the current I@-off angle, 2.e. qet(n+l )  = 
-qel(n), then1 any Tqb E FixS as a fixed p o d  of the 
bottom return1 map. 

The two-dimensional manifold FixS is parameterized 
by it’s values of qr and 4 0 ,  which we henceforth refer to  
as T b  and W b  respectively. Given a spring constant, k, 
any neutral orbit is parameterized by it’s values of rb 
and W b .  Since the neutral orbits are in equilibrium as 
shown in Lemma 2.1, we see that any equilibrium gait 
is completely characterized by its values of rb, W b  and 
k. This observation leads naturally to an internal gait 
parameter space given by pb = (rb, wb, k). w e  have al- 
ready remarked that notwithstanding its mathematical 
convenience, pb,  is deficient from an applications per- 
spective. Consequently, we introduce a number of other 
gait parameter spaces, each with it’s own utility in ap- 
plications. 

In the spirit of Raibert’s work [15], we would like to 
prescribe a gait using easily measurable and understood 
quantities such as hopping height, forward velocity and 
duty factor *, which we will refer to  as the manifest apex 
parameter space, jjm = (Zy,Zz,p). 

Since we are interested in generating specified gaits, 
we would like to  understand how a particular choice of 
P ,  determines pi = (qer,Qri,Qer) and pa = ( n , W b , J c ) .  
Once again, we follow Raibert in using desired hopping 
height to  determine k E b9, and desired forward veloc- 
ity to  determine qer E pr . 

We would like to  understand for a general SLIP 
model the change of coordinates between each parame- 
ter space. In this paper we will concentrate on FH : 

- 

- 

8Raibert’s algorithms don’t explicitly specify duty factor. 
However, that parameter is arguably the quantity that coordi- 
nates the hopping height and forward velocity into a distinct gait 
as we try to portray in Figures 2 

9Raibert’s control strategy implements the inverse: k deter- 
mines hopping height. 

“Because we are assuming equilibrium gaits, determining the 
lift-off leg angle is identical to determining the touchdown leg 
angle. 
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Pa I+ pm. However in future work, we would like to  
focus on the maps 9 and &E?, which are of special 
interest from a control perspective, since they dictate 
how a gait specification in terms of jjm is transformed 
into a gait generation in terms of pl and pb .  

3 Exact Integration of Stance 
Dynamics 

We now introduce simplifications in the SLIP model re- 
sulting in closed-form integrable stance dynamics, and 
by so doing, derive exact closed form expressions for the 
map FH (we will use non-bold H for the change of coor- 
dinates of this special case). The mathematical details 
of these derivations are given in [18] and we focus here 
on the larger view of how this is achieved. 

3.1 Removing Gravity and Choosing a 
Special Spring 

We begin by eliminating gravity from the stance dynam- 
ics. This simplification implies conservation of angular 
momentum during stance, rendering q,g a cyclic variable 
[5] and yielding the relationship, 2 = *. Because 
we are interested in equilibrium gaits, we choose the ini- 
tial condition Tq, E FixS. Solving for 48 we find, 

9. 

(4) 

Substituting (4) into the conserved total energy al- 
lows us to  solve for qr, 

It should be noted that even though we have assumed 
Tq, E FixS, the results of (4) and (5) hold for the more 
generalized notion of bottom condition, where we only 
require that  = 0 [16]. 

Since we have now expressed both qr and q e  as 
functions of qr alone, we can exploit the relationship 2 = 1 to solve for go. Integrating, we obtain 

The analytical tractability of the above integral de- 
pends greatly on the choice of the spring potential U ( q r ) .  
The structure of the integral suggests certain forms for 
the spring law which are physically realistic and also 
admit closed form integration. We have chosen to  work 
with the compressed air spring, UA(qr)  given in (2) (161. 
Using this new spring law, we find 

(7) 

3.2 Exact Poincar6 Map 
Given the exact stance integration (7) we can derive the 
change of coordinate map P H .  The general derivation 
is outlined in Section 4.2, while the particular derivation 
for the special case under consideration is presented ex- 
plicitly in [18]. 

- 

4 General Spring Law Correc- 
t ions 

From a mathematical perspective the introduction in 
(6) of the compressed air spring ( 2 )  is unnecessary. For 
even without the particular spring law the problem was 
formally "solved" - we had closed-form solutions for 4,. 
and 4 0  and we had qe as an elliptic integral. However, 
as engineers, we desire more than just an analytical so- 
lution. We hope to  gain insight into the role each gait 
parameter plays in gait generation. In this section we 
will generalize the results of the previous section to other 
spring laws by introducing simple closed form approx- 
imations, arising from application of the Mean Value 
Theorem (MVT), for the elliptic integrals qel and t,. 
We will offer simulation results as evidence of the valid- 
ity of the general form of the approximations. 

4.1 MVT Approximations 
For the no gravity SLIP dynamics with a general spring 
law, U ,  the lift-off angle, QeI is given by 

(8) 

By the MVT, there exists E ( T b ,  Qrl) and similarly 
<is E ( r b , q r l )  11, such that 

qer = i e (pb ,Se i ,  U ) ( W  - .a) (9) 
t ,  = 2it (Pb,<ts1 U )  (qrl - T b )  (10) 

Although guaranteeing the existence of <el and &,, 
the MVT does not give an explicit formulation for 
their calculation. To actually generate the values of 

and t ,  we need to  explore whether functional re- 
lationships of the form = fc (pa ,  Qrl, U,  qei )  and & = 
f c ( p b ,  qrl ,  U ,  t S )  can be determined. 

Two methods for generating approximate functions 
for €81 and ( t S  will be discussed. The first method con- 
siders the particular case where the elliptic integrals and 

l 1  In general the value of [ t s  will be different from t e l .  However, 
the .$ introducedin Equation (1 1) yields good results in both cases. 
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Table 2: Errors, 1 1  qel - 112, 1 1  t s  - is, 112, with (el and 
(ts given in Equation (11) with Q = 2, for the Hook’s law 
spring, UH(qr) V = [0.45, .95] x [-I, -101 x [lo,  1001 C %. 

I 1.2 x 1 0 - ~  
I 2.12 I 9.3 x lo-” 

J 

0.82 

hence the relationships for [ e l  and Et ,  can be calculated 
in closed form, In the second case we assume a linear 
approximation with slope determined by the asymptotic 
behavior of 5 as r b  + qrl. 

4.1.1 Mean Values for U A ( Q r )  Spring Law 

In Section 3.1, the compressed air spring UA is se- 
lected because it yields closed form solutions for qel  
(7) and t,. Given these closed form solutions, we can 
solve equations (9) and (10) for the exact values of 
[ e l  and [ts. A more detailed report [18] documents the 
results and demonstrates that these exact values for the 
UA spring serve as good approximations for a variety of 
other spring laws including U H .  

4.1.2 

The simplest functional representation for the mean val- 
ues, [e l  and [ts would be a linear approximation of the 
form, 

Linear Approximation of Mean Values 

[ = a r b  + (1 - a)qr l  (11) 
We have shown [18] that independent of the spring 

potential for both [ e l  and &,, 

The analysis suggests setting a = in equation (11). 
In addition to yielding a good approximation for r b  close 
to  qrl ,  we also find it to  quite be effective over a rea- 
sonably large portion of the parameter space. Table 2 
displays simulation data for the UH spring documenting 
the difference between the real values of qe1 and t ,  and 
those generated using equations (9) and (10) with the 
mean value of equation (11). In each case the maxi- 
mum percent error is less than 4.1%, the mean percent 
error is less than 2.6% and the mean squared error is less 
than 1.2 x Similar results are found for a variety 
of spring laws and are documented in [NI. 

4.2 Generalized Poincare Map, Tfi 
Given these approximations for qel and t ,  , we can derive 
a generalized form of FH that can be used for any spring 
law. 

- -  y H  = I I (13) 

% Err I Mean % Err I MSE 
I 0.38 I 3.9 x 10-4 

I b, 1 1.63 1 0.31 I 1.8 x 10-4 I 

Table 3: Errors, 11 ,-W - rfi 112, for the Hook’s law spring, 
UH(qr) D = [.415, .95] X [-I, -101 X [lo,  1001 5 p b  and z 5 
[0.68,9.51] x [0.53,2.52] x [ O . l l ,  0.481 Fm. 

Where bl(p,b, qr l ,  U )  = Dqg g l ;  g l  is obtained by eval- 
uating (5) and (4) a t  qr = qr l ;  and qer and t J  are ob- 
tained by evaluating (9) and (10) a t  < given by (11). 

We now hxve FH in equation 13 in terms of quan- 
tities that we lknow for each spring law. As evidence for 
the validity of yh, we offer simulation data for the UH 
spring law. The data in table 3 compares the results 
of FH and FH for the VH spring law over a given set 
of p b  (the domain of p b  explored in the simulations and 
the resulting bound on the image of p ,  are documented 
in the table captions). It shows the maximum percent 
error, mean percent error and mean squared error for 
the vector pm as a whole and also for each component 
individually. I n  this case all the mean percent errors are 
less than 2.2% and the mean squared errors are all less 
than 4.0 x 

Simulation data for other spring laws are presented 
in [18] and are found to have errors that are very similar 
to those of Table 3. 

5 Gravity Corrections 
All of the formulae derived so far ignore gravity during 
the stance phase. We now reconsider the perturbed sys- 
tem, where gravity is re-introduced to  the stance phase. 

In the “no gravity” case, the only potential energy 
is that stored in the spring. In the perturbed system 
there is both s,pring and gravitational potential energy. 
Consider temporarily that the monoped is restricted to  
purely vertical motion and consider the spring potential 
at bottom. We would want the spring potential of the 
perturbed system at  bottom, Ug(rg) t o  be greater than 
the spring potlential a t  bottom of the unperturbed sys- 
tem, U ( r b )  by the amount of the gravitational potential 
the leg will have to  overcome traveling from bottom to 
lift-off, g(qrl - r b ) .  That is, we want 

l J g ( r b )  - U ( r b )  = g(qr1 - r b )  (14) 
This insight is used to  generate a simple, yet effective 

function, P : P; H Pb, such that 

In particular, we choose P to  introduce a translation 
in the spring constant component via the relationship 
presented in (14). 

For the case of the compressed air spring, U A ( q r ) ,  this 
yields, 

1991 



1 Max ‘%I Err I Mean %Err  I MSE 
P ,  I 25.2 I 6.15 I 0.09 
- 
b, I 27.5 I 6.63 I 0.086 
b,, I 13.7 I 3.47 I 1 . 6 ~  1 0 - ~  

I I a I 37.9 1 13.4 I 2.6 x lo-” I 
Table 4: Errors, I (  rHg - rfig 112, for the Hook’s law 
spring, U H ( ~ ~ )  with gravity compensation D = [0.45, .95] x 
[-1, -101 x [45.6,492] C Pb and Z [0.75,9.56] x 
[0.58,2.53] x [0.10,0.42] C P,,,. 

The data in Table 4 compares the results of FH, and 
?Hg for a given set of pb for the UH(Q,.) spring law. It 
shows the maximum percent error, mean percent error 
and mean squared error for the vector p,,, as a whole 
and also for each component individually. In each case 
the mean percent error is roughly 5 - 10% and the mean 
squared error is less than .09. 

While the errors are much larger than those of Ta- 
ble 3, they are still very reasonable and in any case the 
size of the errors introduced must be weighed against 
the benefit of having the closed form functional approx- 
imation, aHg, for cases which are otherwise not closed 
form integrable. 

6 Conclusion 
We believe that there are three distinct audiences for the 
work presented in this paper. Most obviously, in the en- 
gineering community] we hope that our approximations 
will make it easier for programmers of both animated 
simulations and physical locomotion machines to select 
and achieve more precise legged behavior. Similarly, we 
hope that  biomechanicians may find the general pattern 
of relationships between internal and manifest gait de- 
scription parameters helpful in designing more focussed 
experiments to pin down the validity of detailed math- 
ematical models of biological behavior. Finally, we sus- 
pect that applied mathematicians may be intrigued by 
both the success of our mean value approximations and 
the success of our relatively simple perturbation formu- 
lae in place of the much more complicated expressions 
likely to result from a formal perturbation analysis of 
the integrable system. 
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