
Automatic Verification of Linear Controller Software

Miroslav Pajic
Department of Electrical and

Computer Engineering
Duke University

miroslav.pajic@duke.edu

Junkil Park
Department of Computer and

Information Science
University of Pennsylvania

junkil.park@cis.upenn.edu

Insup Lee
Department of Computer and

Information Science
University of Pennsylvania

lee@cis.upenn.edu
George J. Pappas

Department of Electrical and
Systems Engineering

University of Pennsylvania
pappasg@seas.upenn.edu

Oleg Sokolsky
Department of Computer and

Information Science
University of Pennsylvania

sokolsky@cis.upenn.edu

ABSTRACT
We consider the problem of verification of software implemen-
tations of linear time-invariant controllers. Commonly, different
implementations use different representations of the controller’s
state, for example due to optimizations in a third-party code gen-
erator. To accommodate this variation, we exploit input-output
controller specification captured by the controller’s transfer func-
tion and show how to automatically verify correctness of C code
controller implementations using a Frama-C/Why3/Z3 toolchain.
Scalability of the approach is evaluated using randomly generated
controller specifications of realistic size.

1. INTRODUCTION
Many safety- and life-critical embedded and cyber-physical sys-

tems have a software-based controller at their core. Correct opera-
tion of the controller is necessary to ensure that the system success-
fully achieves its mission. High degree of assurance is therefore
needed in the development process of control software.

Modern controllers are designed in a model-based fashion using
industry-standard tools such as Simulink. Once control design is
complete, software is automatically generated from the mathemat-
ical model of the controller. The goal of our work is to develop
techniques for proving that the generated code is correct with re-
spect to the mathematical model. These techniques will allow us
to avoid the need to trust the code generator, which is typically a
complicated software tool that has to be revised every time a new
version of the modeling environment is released.

Controllers are generally specified as a function that, given the
current state of the controller and a set of input sensor values, com-
putes control output that is sent to the system actuators and the
new state of the controller. We refer to this function as the state-
space representation of the controller. Implemented in software,
this function is known as the step function. The step function is
called by the control system periodically, or upon arrival of new

sensor data (i.e., measurements).
In this work, we consider linear time-invariant controllers, where

the relationships between the controller input and current state val-
ues, and the computed control output and updated state values are
both linear. Approached naively, this linear state-space representa-
tion can be directly used as the invariant of the step function. How-
ever, code generators often optimize the control state, and these
optimizations are not under the developer’s control. Thus, a cor-
rectly implemented control software may not satisfy the invariant
derived directly from the state-space representation.

Instead, we rely on a different specification of the controller that
is insensitive to the representation of control state. This represen-
tation, based on the transfer function of the controller, relates the
current control output to the series of past control inputs. The num-
ber of past inputs needed to capture the transfer function is known
as the degree of the controller. It is well known that every state-
space representation of a controller can be transformed into a trans-
fer function, and that equivalent (i.e., similar) state-space represen-
tations will have the same transfer function [26]. In this paper, we
demonstrate how the generated control code can be automatically
verified with respect to a given transfer function using the popular
software verification framework Frama-C [9], Why3 platform [7],
and the SMT solver Z3 [11].

Verification is currently performed in the domain of real num-
bers, disregarding numerical errors due to floating point calcula-
tions in the software. We are planning to address the floating point
domain in our future work. As the first step towards the full treat-
ment of the problem, we consider imprecise implementations of the
controller and allow coefficients of its transfer function to deviate
from the specification, up to a fixed bound. We show that, while
these bounded-error specifications can be handled using the same
tool chain as exact specifications, they yield SMT problems with
a different structure, which adversely affect scalability of the solu-
tion. We then propose an alternative, equivalent specification for
the controller, which we call an instantiation-based specification.
We show that by slightly increasing the size of the specification,
we can dramatically improve the scalability of verification.

The contributions of this paper can be summarized as follows.
We present an approach to verify software implementations of lin-
ear time-invariant controllers with respect to their mathematical
specification by transfer functions. We describe a tool to perform
such verification in the domain of real numbers by using an SMT
solver. Finally, we explore the scalability of the approach using a
set of randomly generated controllers of varying sizes.

The paper is organized as follows. Sec. 2 presents preliminar-

ies on linear controllers and a couple of motivational examples for
the problem considered in the paper. Sec. 3 introduces invariants
for linear controllers and methods for code annotation, for both
exact and inexact controller implementations. In Sec. 4, we de-
fine instantiation-based invariants for linear controllers. Finally, in
Sec. 5, we present the developed framework for automatic control
code verification and evaluation results, before discussing related
work (Sec. 6) and providing some concluding remarks (Sec. 7).

1.1 Notation and Definitions
We use R to denote the set of reals, while matrix In denotes the

n × n identity matrix. The ith element of vector xk is denoted
by xk,i.1 For vector x, we use to denote by |x| the vector whose
elements are absolute values of the initial vector. Also, a square
matrix A is called nonsingular if its determinant is not equal to
zero. Finally, for discrete-time signal xk, k ≥ 0, the z-transform is
a function of a complex variable defined as X(z) =

∑∞
k=0 xkz

−k.
Rational functions are functions that can be represented by an al-
gebraic fraction where both the numerator and the denominator are
polynomial functions.

2. PRELIMINARIES
ON LINEAR CONTROLLERS

The role of feedback control is to apply inputs to the plant, based
on measured plant outputs, to ensure the desired behavior of the
closed-loop system. We consider the general type of dynamical
linear time-invariant (LTI) controllers where inputs to the controller
uk ∈ Rp at each time-step k are used to compute controller outputs
yk ∈ Rm, which provide control inputs to the plant. We assume
that controller specifications (i.e., the model) are expressed using
the standard controller representation in the state-space form:2

zk+1 = Azk + Buk

yk = Czk + Duk.
(1)

Here, with k = 0 we denote the first execution of the controller
code (i.e., the step function); the vector zk ∈ Rn denotes the state
of the controller, while n, the size of the maintained controller
state, is commonly referred to as the size of the controller. Fur-
thermore, we assume that the specified controller has minimal re-
alization [26], which is a common assumption, and thus n is also
the degree of the controller (i.e., the degree of the denominator of
its characteristic polynomial).

From (1), it follows that the matrices A ∈ Rn×n, B ∈ Rn×p,
C ∈ Rm×n and D ∈ Rm×m and the initial controller state z0,
which is commonly assigned to zero, can be used to fully spec-
ify the desired controller behavior. Therefore, we will denote the
controller as Σ(A,B,C,D, z0), or just Σ(A,B,C,D) when the
initial state is zero.

To ensure the desired closed-loop system performance, matri-
ces A,B,C, and D are obtained using standard control theory de-
sign methods. The above LTI controller form is very general and
1Note that we use bold letters to denote matrices and vectors
(i.e., non-scalars).
2Matrices A,B,C, and D are commonly used to represent dy-
namics of the controlled physical process, while, for instance,
Ac,Bc,Cc, and Dc specify the desired controller’s behavior. Sim-
ilarly, usually u and y denote the plant’s input and output vec-
tors while uc and yc denote the controller’s input and output (with
uc = y and u = yc). However, since in this work we do not
consider dynamics of the plant but rather provide methods for au-
tomatic verification of controllers’ implementations, we simplify
the notation and use matrices A,B,C, and D to specify the con-
troller, and vectors u and y to denote its input and output.

can be used to specify, for example, standard state-feedback con-
trollers when the state is being directly measured by the sensors,
observer-based feedback controllers (when direct state measure-
ments are not available), and feedback controllers based on steady
state Kalman filters (i.e., when covariance/gain matrices are not be-
ing updated). It is worth noting that, depending on the used control
design method, the state of the controller can often be as large as
the state of the controlled system itself.

2.1 Motivating Examples
In this work, we focus on verification of controller code gener-

ated from the mathematical model in (1). However, the controller
code at hand might be obtained from a code generator that performs
certain optimizations that potentially violate the model (i.e., speci-
fications), while still guaranteeing the desired control functionality
and the required closed-loop performance. Here, we present two
examples that illustrate such scenarios.

2.1.1 A Simple Linear Integrator
Suppose that we need to design a controller whose output yk

is a scaled sum of all previous inputs to the controller (i.e., plant
measurements) ui ∈ R, i = 0, ..., k − 1. This can be specified as

yk =

k−1∑
i=0

αui, k ≥ 1, and, y0 = 0.

This represents the standard integrator controller and if the Simulink
Integrator block with Forward Euler integration is utilized, the con-
troller will be represented in the form of (1) as Σ(1, α, 1, 0), – i.e.,
zk+1 = zk + αuk, yk = zk. On the other hand, another re-
alization of this controller could be Σ̂(1, 1, α, 0) – i.e., zk+1 =
zk + uk, yk = αzk, which could introduce a lower computa-
tional error when finite precision computations are taken into ac-
count [10].

Consequently, for the above controller specification, two differ-
ent controllers (i.e., controller code) will be produced by different
code generation tools. Still, these two controllers Σ and Σ̂ will
have the same input-output behavior, while maintaining scaled and
unscaled sums, respectively, of the previous values for uk.

2.1.2 Multiple-Input-Multiple-Output Control of
a Batch Reactor

In a more complex example, we consider periodic control (exe-
cuted every 20 ms) of an unstable batch reactor process [17], and
a stabilizing fourth order discrete-time controller Σ(A,B,C,0)
specified as

zk+1 =


0.942 0.006888 0.04187 −0.02319
−0.01543 0.7965 −0.03386 0.001563
−0.1537 0.0137 0.7417 0.2006
−0.03841 0.05637 −0.02116 0.9949


︸ ︷︷ ︸

A

zk+

+


0.0774 −0.0103
−0.0022 0.0227
0.0267 0.0398
0.0356 0.0001


︸ ︷︷ ︸

B

uk (2)

yk =

[
0.0583 0.9093 0.3258 0.08721
−2.464 −0.0504 −1.71 1.165

]
︸ ︷︷ ︸

C

zk (3)

The above controller was derived directly as an observer-based
state feedback controller for the feedback and observability gain

matrices presented in [24]. Note that in order to compute updates
for the state z as specified in (2), 16+8 = 24 multiplications need to
be performed in each step function. In the general case, for any
controller with the model as in (1), n2 + np = n(n+ p) multipli-
cations are needed to update the controller’s state.

On the other hand, consider the following controller Σ̂(Â, B̂, Ĉ,0)

ẑk+1 =


0.7636 0 0 0

0 0.8393 0 0
0 0 0.9595 0
0 0 0 0.9127


︸ ︷︷ ︸

Â

ẑk+

+


−0.2867 −0.2581
−0.3964 −0.04506
−0.07256 0.03278

0.5478 −0.003331


︸ ︷︷ ︸

B̂

uk, (4)

yk =

[
−0.1318 0.03834 0.02127 −0.01226

0.147 0.08209 −0.08674 −0.2307

]
︸ ︷︷ ︸

Ĉ

ẑk (5)

Here, only 4+8 = 12 multiplications are needed to compute an
update for the state ẑ as in (4), because the matrix Â is diago-
nal. Note that in the case when matrix A in (1) is diagonal, only
n+np = n(p+1) multiplications are needed to update zk in each
step function.

In this example, the controllers Σ and Σ̂ are similar, meaning
that there exists a non-singular matrix T such that: Â = T−1AT,
B̂ = T−1B and Ĉ = CT. This effectively implies that if the
same inputs uk are delivered to both controllers, the evolutions of
the states xk and x̂k would satisfy that

x̂k = T−1xk, k ≥ 0,

if and only if x̂0 = T−1x0 [26], which is satisfied for these con-
trollers as they are initialized to zero. However, what is more im-
portant, the outputs of both controllers (i.e., the input signals deliv-
ered to the controlled processes) will be identical for all k. There-
fore, although it does not obey the state evolution of the initial
controller Σ, and thus the controller model from (2) and (3), the
controller Σ̂ provides the same control functionality as Σ at a sig-
nificantly reduced computational cost – making it more suitable for
embedded applications.

The above two examples illustrate commonly occurring situa-
tions that code generation software for embedded applications could
produce more suitable (e.g., efficient) code that might deviate from
the initial controller model with the form as in (1). Even if con-
troller code violates control specifications captured by the model
Σ(A,B,C,D), it may still be functionally correct from the input-
output perspective. Consequently, there is a need to provide veri-
fication methods based on invariants that support reasoning about
correctness of linear controllers without relying only on the state-
space representation of the controller. That is the focus of this work.

3. DEFINING INVARIANTS
FOR LINEAR CONTROLLERS

In this section, we introduce invariants for linear controllers that
can be used to verify both state and input-output conformance of
the obtained code or only input-output conformance of the code.
By the input-output conformance we refer to the requirement that
in response to provided inputs the code provides outputs equal to
the outputs provided by the model in (1) for the same input signals.

Additionally, by state and input-output conformance we refer to
the requirement that in response to provided inputs the code fully
conforms to the initial model in (1) – i.e., not only in output but
also in the internal state of the controller.

Accordingly, for verification of state and input-output (IO) con-
formance, invariants can be directly obtained from the model in (1).
On the other hand, as illustrated in the previous section, there is
a need to provide a method to capture input-output (IO) only in-
variants for linear controllers. These invariants cannot utilize any
assertions on the controller’s state, because controller implementa-
tions may be equivalent from the input-output perspective and yet
rely on different state representations.

3.1 Input-Output Invariants
We consider a controller defined as Σ = (A,B,C,D). The

controller’s transfer function G(z), defined as G(z) = Y(z)
U(z)

where
U(z) and Y(z) denote the z-transforms of the signals uk and yk
respectively, is a convenient way to capture the dependency be-
tween the controller’s input and output signals. For the controller
Σ we have that

G(z) = C(zIn −A)−1B + D. (6)

In general, G(z) is a m× p matrix with each element Gi,j(z) be-
ing a rational function of the complex variable z. To simplify the
notation, unless otherwise noted, we will assume that the consid-
ered controller is a Single-Input-Single-Output (SISO) controller,
meaning that the transfer function G(z) is a (single, not a matrix)
rational function of z. The introduced invariants can be easily ex-
tended to Multiple-Input-Multiple-Output (MIMO) controllers.

From (6), in the general case G(z) takes the form

G(z) =
β0 + β1z

−1 + · · ·+ βnz
−n

1 + α1z−1 + · · ·+ αnz−n
, (7)

where n is the size of the initial controller model, and we will
also refer to n as the degree of the transfer function. In addition,
β0, ..., βn, α1, ..., αn ∈ R and can be obtained as in (6), from the
parameters of the initial controller specification (1). Therefore, the
transfer function is fully described by the vectors α, β ∈ Rn+1 that
are defined as α = [1, α1, ..., αn] and β = [β0, β1, ..., βn].

From properties of the z-transforms, the above equation implies
that the controller’s input and output signals satisfy the following
difference equation [26]

yk =

n∑
i=0

βiuk−i −
n∑
i=1

αiyk−i, (8)

with yk = 0, k < 0, because z0 = 0 and uk = 0, for k < 0. Thus,
for any controller Σ it is possible to obtain a linear invariant of the
form in (8) that specifies the relationship between controller inputs
and outputs. In addition, since transfer functions are invariant to
similarity transformations [26], besides the controller Σ, the linear
invariant in (8) is also satisfied by any controller Σ̂ obtained from
the initial controller model Σ using a similarity transform with a
nonsingular matrix T.

3.2 Annotating Controller Invariants in C Code
The linear conditions in (1) and (8) respectively capture the ex-

pected state and input-output, and input-output only invariants for
LTI controllers. The next challenge is to find a suitable method to
express them as C code annotations, compatible with existing veri-
fication tools. To achieve this goal, we exploit ANSI/ISO C Speci-
fication Language (ACSL) [6] that enables users to specify desired

properties of C code within the program’s comments. ACSL is inte-
grated in the Frama-C platform [9] that supports tools for reasoning
about correctness of C code and incorporated ACSL annotations.

To illustrate the use of ACSL to capture C code invariants, as a
running example we use the following Σ(A,B,C,0) controller

A =

[
0.8147 1.1534
2.6413 3.6411

]
,B =

[
3.1019
2.1432

]
,C =

[
1.7121 0.1351

]
(9)

G(z) =
5.60030931z−1 − 14.233777166248z−2

1− 4.4558z−1 − 0.08007125z−2
(10)

For completeness, we first introduce annotations that capture both
IO and state conformance, before introducing IO only annotations.

3.2.1 Annotating Input-Output and State Invariants
To capture the input-output and state requirements for a C func-

tion, we exploit the ACSL’s notion of the function contract, which
is effectively a Hoare triple [20, 13] for the entire function. ACSL
utilizes the keywords requires and ensures to specify the pre-
conditions and postconditions; the verification goal is to prove that
postconditions are satisfied upon return if preconditions were satis-
fied when the function call occurred. The precondition for the con-
troller’s step function is that all pointers to memory locations are
valid – for example, valid pointers to state vectors and matrix coef-
ficients if the coefficients are not directly instantiated. This require-
ment is supported by the predicate valid that is part of ACSL.

On the other hand, the specified postconditions follow directly
from the linear invariants (i.e., the model) of the controller step
function in (1). To capture them and properly annotate the code,
we exploit the built-in ACSL predicate old that denotes the values
of a variable before the code is executed. For instance, for the
considered controller defined in (9), the controller code with the
annotations is presented in Listing 1.

Listing 1: Verified code for the Σ controller from (9) annotated
by the state and input-output invariant
double x [2] , u , y ;
/∗@ r e q u i r e s \ v a l i d (x + (0 . . 1)) ;

@ e n s u r e s x [0] == 0 . 8 1 4 7∗ \ o l d (x [0]) +
@ 1 . 1 5 3 4∗ \ o l d (x [1]) + 3 . 1 0 1 9 1∗ \ o l d (u) ;
@ e n s u r e s x [1] == 2 . 6 4 1 3∗ \ o l d (x [0]) +
@ 3 . 6 4 1 1∗ \ o l d (x [1]) + 2 . 1 4 3 2∗ \ o l d (u) ;
@ e n s u r e s y == 1 . 7 1 2 1∗ \ o l d (x [0]) +
@ 0 . 1 3 5 1∗ \ o l d (x [1]) + 0∗ \ o l d (u) ;
∗ /
void s t e p () {

double t1 , t 2 ;
y = 1 .7121∗ x [0] + 0 .1351∗ x [1] ;
t 1 = 0 .8147∗ x [0] + 1 .1534∗ x [1] + 3 .1019∗ u ;
t 2 = 2 .6413∗ x [0] + 3 .6411∗ x [1] + 2 .1432∗ u ;
x [0] = t 1 ;
x [1] = t 2 ;

}

3.2.2 Annotating Input-Output Only Invariants
Unlike the state and IO invariants, the IO only controller invari-

ants from (8) cannot be specified using pre- and post-conditions for
every execution of the step function. This is caused by the fact that
constraint (8) effectively relates the last n + 1 executions of the
step function. Therefore, to verify IO conformance of the con-
troller code we have to perform execution unrolling of the step

function a certain number of times. To achieve this, we construct
the function verif_driver that invokes the step function ex-
actly n + 1 times. It is important to note here that the number of
times the code needs to be unrolled is equal to the size of the initial
controller model (i.e., the degree of transfer function) increased by
1. Finally, by using a separate label for every step function execu-
tion, we can then exploit the built-in ACSL keyword at to capture
the values of input and output variables at each point of time (i.e.,
execution of the ‘unrolled’ function).

ACSL supports assertions at the end of any C code block using
the assert keyword, where assert p specifies that p has to
hold in the current state (i.e., at the place where the assertion oc-
curs) [6]. Thus, the invariant (8) can be specified as3

@ assert \at(y,kn) + α1\at(y,kn−1)+...

@ αn*\at(y,k0) == β0*\at(u,kn) +...

@ βn*\at(u,k0)

(11)

For instance, for controller Σ specified as in (9), Listing 2 presents
the verif_driver function with the corresponding annotations.

Listing 2: Annotated code for verification of the IO only con-
formance of the Σ controller from (9)
e x t er n double i n p u t () ;

void v e r i f _ d r i v e r () {
u = i n p u t () ; s t e p () ;
k0 : ;

u = i n p u t () ; s t e p () ;
k1 : ;

u = i n p u t () ; s t e p () ;
k2 : ;

/∗@as se r t \ a t (y , k2) − 4 . 4 5 5 8∗ \ a t (y , k1)
@ − 0 . 0 8 0 0 7 1 2 5∗ \ a t (y , k0)
@ == 5 . 6 0 0 3 0 9 3 1∗ \ a t (u , k1)
@ − 14 .233777166248∗ \ a t (u , k0) ;
@ ∗ /

}

3.3 Inexact Controller Implementations
Let us revisit the example controller with the initial model de-

fined in (9). We obtained a computationally more efficient con-
troller Σ̂(Â, B̂, Ĉ,0) via a similarity transformation from the ini-
tial controller Σ; this was done in Matlab using the function canon
for the modal type of decomposition, resulting in controller Σ̂

Â =

[
−0.0179 0

0 4.474

]
, B̂ =

[
−1.051
−1.055

]
, Ĉ =

[
−3.037 −2.283

]
(12)

ˆG(z) =
5.600452z−1 − 14.2373891245z−2

1− 4.4561z−1 − 0.0800846z−2
(13)

There exists a discrepancy between transfer functionsG(z) in (10)
and Ĝ(z) in (13), which implies that that the previously introduced
3If the step function could change the input variables, we would
have to introduce separate labels for inputs and outputs (instead of
a single set of k0 to kn points). However, to simplify the notation
(and since we verify that the step function does not modify input
variables) we use a single set of labels.

input-output invariant from (8) will not be satisfied by the control
code implementing controller Σ̂. Although a similarity transform
results in a new controller with the same transfer function, due to
finite-precision computation of the code generator performing con-
troller optimization (in this case Matlab), it is possible (and ex-
pected) that the transfer function of the produced controller slightly
differs from the transfer function of the initial controller.

Consequently, there is a need to extend our input-output invari-
ants for the case with imprecise specification of the transfer func-
tions. Specifically, we extend (7) by assuming that the transfer
function could take the form as

G(z) =
β̂0 + β̂1z

−1 + · · ·+ β̂nz
−n

1 + α̂1z−1 + · · ·+ α̂nz−n
, (14)

such that for i = 0, 1, ..., n

βi − εβ ≤ β̂i ≤ βi + εβ , αi − εα ≤ α̂i ≤ αi + εα. (15)

Here, εβ and εα denote the bounds on the errors of the transfer
function coefficients. We assume that these are inputs to our veri-
fication procedure; suitable error bounds that guarantee the desired
control performance can be extracted using methods from robust
control theory [14], which are outside of the scope of this paper.

Yet, these inaccuracies also affect the input-output controller in-
variants that now need to be (re)stated. We start by noting that
from (14) it holds that

∃∆βi,∆αi ∈ R, i = 0, ..., n, |∆βi| ≤ εβ ∧ |∆αi| ≤ εα∧

yk =

n∑
i=0

(βi + ∆βi)uk−i −
n∑
i=1

(αi + ∆αi)yk−i.
(16)

However, the above condition is not linear, but rather bilinear, as
it contains products ∆βiuk−i and ∆αiyk−i. Hence, we introduce
additional variables ũk−i = ∆βiuk−i and ỹk−i = ∆αiyk−i and
restate (16) as follows

∃ũk−i, ỹk−i ∈ R, i = 0, 1, ..., n,

|ũk−i| ≤ εβ |uk−i| ∧ |ỹk−i| ≤ εα|yk−i| ∧

yk =

n∑
i=0

(βiuk−i + ũk−i)−
n∑
i=1

(αiyk−i + ỹk−i)

(17)

Since εα ≥ 0, the condition |ỹi| ≤ εα|ui| is equivalent to

((−εαyi ≤ ỹi ≤ εαyi)∧(yi ≥ 0))∨((εαyi ≤ ỹi ≤ −εαyi)∧(yi ≤ 0)).

A similar term can be obtained for |ũi| ≤ εβ |ui|. Thus, we intro-
duce a predicate error_bound(a,b,c) as

#define error_bound(a,b,c) (((b)>=0 && -(b)*(c)
<= (a) <= (b)*(c)) || ((b)<0 && (b)*(c) <= (a)
<= -(b)*(c)))

With the above notation, and using the ACSL keyword exists
for the existential quantifier, the input-output invariant (17) can be
annotated in code as shown in (18). For example, for the controller
Σ specified (9), Listing 3 illustrates the verif_driver function
with the input-output invariant annotations that allow for transfer
function inaccuracies.

It is important to highlight that the IO invariant in (17) and the
corresponding code annotation in (18) exploit a mixture of both
universal and existential quantifiers. Existential quantifiers are used
to specify tolerance variables ỹ and ũ, while universal quantifiers
are employed since (17) has to hold for all values of uk at points k0,
... kn and yk at k0, ... kn−1 (where label k0 does not have to corre-
spond to any time-step k). Note that the use of formulas with both
universal and existential quantifiers usually presents a challenge for

SMT solvers (e.g., Z3), which, as we will illustrate in the evaluation
section (Section 5.1), significantly limits scalability of the approach
and degrees of controllers that can be verified using the invariant.
We address this problem in the next section as we provide another
approach to derive input-output invariants for LTI controllers.

Listing 3: Annotated code for verification of the IO confor-
mance within the tolerance limit for the example controller
from (9); Note that ỹ and ũ from (18) are denoted by yt and ut
e x t er n double i n p u t () ;

void v e r i f _ d r i v e r () {
u = i n p u t () ; s t e p () ;
k0 : ;

u = i n p u t () ; s t e p () ;
k1 : ;

u = i n p u t () ; s t e p () ;
k2 : ;

/∗@as se r t \ e x i s t s r e a l yt0 , y t1 , u t0 , u t 1 ;
@ e r r o r _ b o u n d (yt0 , \ a t (y , k0) , 0 . 0 1) &&
@ e r r o r _ b o u n d (yt1 , \ a t (y , k1) , 0 . 0 1) &&
@ e r r o r _ b o u n d (ut0 , \ a t (u , k0) , 0 . 0 1) &&
@ e r r o r _ b o u n d (ut1 , \ a t (u , k1) , 0 . 0 1) &&
@ \ a t (y , k2)
@ − 4 . 4 5 5 8∗ \ a t (y , k1) + y t 1
@ − 0 . 0 8 0 0 7 1 2 5∗ \ a t (y , k0) + y t 0
@ == 5 . 6 0 0 3 0 9 3 1∗ \ a t (u , k1) + u t 1
@ − 14 .233777166248∗ \ a t (u , k0) + u t 0 ;
@ ∗ /

}

4. INSTANTIATION-BASED INPUT-OUTPUT
INVARIANTS FOR LTI CONTROLLERS

In this section, we present an alternative method to specify linear
invariants that are equivalent to the IO invariant introduced in (8)
(and (17), (18)). As we will show, the method is better suited to
capture robust invariants that allow for slightly inexact controller
implementations, as in cases when there exists a small discrepancy
between the transfer function of the initial controller and the one
implemented by the provided code.

Initially, we consider the exact input-output invariants from (8),
and we start by logically ‘unrolling’ the condition (8) N times –
by summarizing N executions of the controller from (8) using the
matrices introduced below.

DEFINITION 1. Consider controller Σ. For the controller’s in-
puts and outputs uk and yk at time steps k = 0, 1, ..., n+N − 1,
we define the matrix DN =

[
Dy
N Du

N

]
where

Dy
N =


yn yn−1 ... y1 y0
yn+1 yn ... y2 y1

...
...

. . .
...

...
yn+N−1 yn+N−1 ... yN yN−1

 (19)

Du
N =


un un−1 ... u1 u0

un+1 un ... u2 u1

...
...

. . .
...

...
un+N−1 un+N−2 ... uN uN−1

 (20)

*@ assert \exists real ỹ0, ..., ỹn−1, ũ0, ..., ũn

@ error_bound(ỹ0,\at(y,k0),εα) && ... && error_bound(ỹn−1,\at(y,kn−1),εα) &&

@ error_bound(ũ0,\at(u,k0),εβ) && ... && error_bound(ũn,\at(u,kn),εβ) &&

@ (\at(y,kn)+α1*\at(y,kn−1)+ỹn−1+...+αn*\at(y,k0)+ỹ0 == β0*\at(u,kn)+ũn+...+βn*\at(u,k0)+ũ0)
(18)

Consequently, from (8) and the above definition it follows that

DN · θ = 0, (21)

where θ =
[
1 α1 ... αn β0 β1 ... βn

]T
=
[
αT βT

]T
captures all of the parameters of the controller’s transfer function.

The following proposition shows that under certain conditions,
linear equalities from (21) are equivalent to the invariant in (8) ob-
tained from the controller’s transfer function.

PROPOSITION 1. Consider LTI controller Σ of size n. Then the
rank of any matrix DN cannot be larger than 2n+1. Furthermore,
when the rank of DN is 2n + 1, then linear conditions from (21)
are satisfied if and only if the condition (8) is satisfied for all k.

PROOF. From Definition 1, rank(DN) ≤ 2n+ 2, for any N ≥
1, because the matrix has 2n + 2 columns. Note that the matrix
cannot have rank 2n + 2 as that would imply that the columns
of DN are linearly independent and thus their linear combination
Dy
N · θ could be equal to the zero vector only if all elements of θ

are zero (i.e., θ = 0). This is clearly not possible since 1 is the first
element of θ.

Now suppose that rank(DN) = 2n + 1. As we argued before,
from (8) and Definition 1 we have that (21) is satisfied. Thus, let’s
consider the other direction.

We start by assuming that (21) holds for a vector θ obtained
from some vectors α and β. Since Σ is an LTI controller of size
n then, as presented in Section 3, there exist vectors α̂, β̂, and
θ̂ =

[
α̂T β̂T

]T
for which (8) is satisfied for each k. There-

fore, since DN captures inputs and outputs of the system (from its
definition), we have that

DN · θ̂ = 0 = DN · θ ⇒ DN · (θ − θ̂) = 0. (22)

Note that since the first element of θ − θ̂ is zero, DN · (θ −
θ̂) presents linear combination of all columns of DN except the
first one. Thus, from (22), if θ 6= θ̂ it follows that the remaining
2n+ 1 columns of DN (i.e., without the first column) are linearly
dependent. On the other hand, the first column of DN presents
a linear combination of other columns with coefficients from θ̂.
Thus, since the rank of DN is 2n + 1, we have that the remaining
2n + 1 columns are linearly independent, which contradicts are
previous conclusion. Thus, we have that θ = θ̂, meaning that if (21)
holds so does (8), which concludes the proof.

The specific structure of matrix DN (the matrices with structure
such as Dy

N and Du
N are called Toeplitz matrices) makes it suitable

to obtain the rank of DN equal to 2n+ 1 with exactlyN = 2n+ 1
rows. To generate matrix D2n+1 with rank 2n + 1, we start by
assigning yk = 0 and uk = 0 for all k = 0, ..., n − 1, and then
un = 1. After this, the only assignments are done on uk, k > n,
as the values for yk, k > n are derived from the initial controller
model (i.e., specification). Specifically, after assigning un = 1, we
set the next n − 1 inputs to zero. Since n is the size of the initial
controller (which is minimal by our assumption), the correspond-
ing first n rows of both Dy and Du will be linearly independent.
Finally, the last n + 1 inputs uk, k = 2n, ..., 3n, are assigned in a

way that ensures that each newly introduced row is linearly inde-
pendent of the previous ones – this is easy to achieve due to the fact
that inputs uk, k = n+ 1, ..., 2n− 1 were all zero.

The above proposition allows us to specify a set of 2n + 1 lin-
ear invariants, which if satisfied would verify input-output confor-
mance of the considered controller code – i.e., the invariant in (8).
At first glance, the benefits of using the invariant with 2n+1 linear
conditions might be unclear, when an invariant with a single linear
condition can be used. However, as we discussed at the end of the
previous section, the invariant in (8) and its corresponding ACSL
annotation (11) require that for all values of u at points k0 ... kn
and y at k0 ... kn−1, the value of y at kn is equal to the specified
linear combination of uk’s and yk’s. On the other hand, the in-
variant (21) does not use the universal quantifier; rather, it specifies
that if values of uk at 3n+ 1 points are equal to the corresponding
values from Du

2n+1 and the values of yk at the first n points are
equal to the corresponding values from Dy

2n+1, then the values of
yk at the remaining 2n+1 points have to be equal to the remaining
values from the matrix Dy

2n+1.
Finally, the above method for deriving a set of linear invariants

exploits a similar approach as the ones used in testing for system
identification. By creating a suitable matrix D2n+1 we effectively
provide a set of controller inputs at consecutive executions of the
step function and verify whether the controller outputs conform
to the prespecified input-output behavior of the controller. Hence,
we refer to the linear invariants specified in (21) as instantiation-
based invariants.

4.1 Defining Instantiation-Based Invariants as
Code Annotation

Similarly to the IO controller invariants from (8), to introduce
instantiation-based invariants as code annotations we have to per-
form execution unrolling of the step function within a newly de-
fined verif_driver function. Due to the fact that the matrix
D2n+1 contains controller inputs and outputs for steps 0 to 3n, we
need to unroll the function exactly 3n+1 times and introduce a sep-
arate label ki, i = 0, ..., 3n for each step function execution, as
previously presented in Listing 3. With this notation, the invariant
from (21) can be captured as the code annotation from (23), where
ui and yi, i = 0, 1, ..., 3n, specify the corresponding elements of
the matrix D2n+1 as stated in Definition 1.

Another approach to define instantiation-based invariants is to
directly perform input variables assignments in verif_driver
code, as presented in Listing 4. This effectively reduces the com-
plexity of the assert statement, whose form is shown in (24). In
Section 5.1, we will compare efficiency of these approaches.

REMARK 1. The above annotations can be significantly sim-
plified if we know the variables in the code used to maintain the
controller’s state (for example, this can be determined with the use
of static analysis tools). As previously described, the matrix D2n+1

is designed in a way that uk = 0 and yk = 0 for k = 0, ..., n− 1.
For linear systems with minimal realizations (which means that
they are controllable and observable [26]) this would also imply
that the state of the controller at time n− 1 would have to be zero
(i.e., zn−1 = 0). Thus, in this case, we would need to unroll code

*@ assert ((\at(y,k0)==y0)&&...&&(\at(y,kn−1)==yn−1) && (\at(u,k0)==u0)&&...&&(\at(u,k3n)==u3n))

@⇒ ((\at(y,kn) == yn) && ... && (\at(y,k3n)==y3n))
(23)

*@ assert ((\at(y,k0)==y0)&&...&&(\at(y,kn−1)==yn−1)) ⇒ ((\at(y,kn)==yn)&&...&&(\at(y,k3n)==y3n))
(24)

execution only 2n+1 times (and introduce only 2n+1 points/labels)
by either specifying zn−1 == 0 as part of the assert state-
ment similar to what is done in (23), or introduce an additional
assignment zn−1 = 0 in the verify_driver function with an
assert statement similar to the one in (24).

Listing 4: One structure of the code annotations for verifica-
tion of the IO only conformance using the Instantiation-based
Invariants from (21); Note that u_t denotes ut from the matrix
D2n+1

e x t er n double i n p u t () ;

void v e r i f _ d r i v e r () {
u = u_0 ; s t e p () ;
k0 : ;

u = u_1 ; s t e p () ;
k1 : ;
.
.
u = u_3n ; s t e p () ;
k3n : ;

/∗@a sse r t . . . (from (2 4)) @ ∗ /
}

4.2 Instantiation-Based Invariants for Inexact
Controller Implementations

The invariant introduced in (21) can be especially important for
verification of inexact controller implementations that allow for
small errors in the coefficients of the implemented controllers’ trans-
fer functions. To elaborate on this, let’s use the same notation as in
Section 3.3 and let’s assume that transfer function can be specified
using the vector θ̂ =

[
α̂T β̂T

]T
, where α̂, β̂ satisfy (15). Thus,

from (21) we have that D2n+1 ·θ̂ = 0 which is (as in Proposition 1)
equivalent to the invariant in (16).

Now, by introducing ∆θ = θ̂ − θ, we have that

D2n+1 · θ + D2n+1 ·∆θ = 0. (25)

Since the matrix D2n+1 and the initial transfer function vectors α
and β are known, from the initial controller model, we can compute

v = −Dy
2n+1α−Du

2n+1β.

Using the vector v, we can state the following invariant

∃∆βi,∆αi ∈ R, i = 0, ..., n, |∆βi| ≤ εβ ∧ |∆αi| ≤ εα ∧
Dy

2n+1∆α+ Du
2n+1∆β = v ∧

yn+i =Dy
2n+1(n+ i), i = 0, ..., 2n,

(26)

where Dy
2n+1(k) denotes the entry in the matrix Dy

2n+1 on the
position corresponding to yk as defined in (19) (for the exact con-
troller specification). The above invariant is linear and utilizes only
the existential quantifier. Again, as in the case for the exact IO

invariant, we can define two types of instantiation-based invari-
ants for inexact controller implementations. For instance, the assert
statement similar to the one in (23), for exact controller implemen-
tations, is introduced in (27). Here, a and b are used to represent
∆αi and ∆βi, and we introduced a predicate vector_equal(x,y)
that compares vectors x,y and operator lin_comb(D,a1,...,an)
that presents the linear combination of n columns of Dwith weights
a1,...,an.

5. FRAMEWORK FOR AUTOMATIC
VERIFICATION

In this section, we present the developed automatic verification
framework based on the previously described invariants for LTI
controllers (see Fig. 1). To automatically verify C code annotated
with ACSL specification [6], we employ the popular software veri-
fication platform Frama-C [9]. We also exploit WP [5], a plugin of
Frama-C that enables deductive verification of C code with ACSL
annotations. Given annotated C code, Frama-C/WP parses the code
and performs the weakest precondition calculations to analyze the
validity of the annotations in the code. For each annotation, Frama-
C/WP generate a set of proof obligations to establish that the C code
satisfies the annotated specification.

Frama-C/WP supports generation of proof obligations in the in-
termediate specification language WhyML [1]. The generated proof
obligations in WhyML can be submitted to various theorem provers
via the Why3 platform [7], both automatic theorem provers (e.g.,
Z3 [11]) or interactive theorem provers (e.g., Coq [4]). To automate
the verification process, we employ the automatic theorem prover
Z3 to discharge the proof obligations. Z3 is an SMT solver that
checks satisfiability of a given formula modulo a certain theory,
and to check the validity of the proof goal of a proof obligation, we
used Why3 to generate an SMT instance for Z3.

While transforming annotated C code to an SMT instance along
the toolchain in Fig. 1, we observed that WP and Why3 tend to gen-
erate the declarations for some extra theories in their outputs; these
are not necessary to prove the proof goal, but could adversely affect
the performance of the SMT solving with Z3. In addition, some of
the generated declarations in the intermediate specifications are not
directly relevant to the proof goal, while others are redundant since
they have been already incorporated in Z3. Therefore, to improve
the performance at the SMT solving stage, we created an automated
Python script to intervene in the transformation and remove unnec-
essary theory declarations from the intermediate specifications such
as the proof obligations in WhyML and SMT instances.

In the deductive verification of the verif_driver function,
which as described in Sections 3 and 4 by construction invokes
the step function a certain number of times, the function contract
(i.e., pre- and post-condition) of the step function would be re-
quired for the deduction rule for the function calls. However, it is
very difficult to specify the function contract of the step function
without knowing its input-output and state invariant (and which we
in the general case do not know). Thus, to avoid writing the step
function specification, we preprocess the code performing the func-
tion inlining for the step function (i.e., inserting the body of the
step function wherever the function is called in the code). More-

*@ assert \exists real a0, ..., an−1, b0, ..., bn

@ (a0 ≤ εα)&&(a0 ≥ −εα)&&...&&(an−1 ≤ εα)&&(an−1 ≥ −εα)&&(b0 ≤ εβ)&&(b0 ≥ −εβ)&&...&&(bn ≤ εβ)&&(bn ≥ −εβ)
*@ ((\at(y,k0)==y0) &&...&& (\at(y,kn−1)==yn−1) && (\at(u,k0) ==u0) &&...&& (\at(u,k3n)==u3n))

@⇒ ((\at(y,kn) == yn) && ... && (\at(y,k3n)==y3n) &&

*@ vector_equal((lin_comb(Dy, 1, a0, ..., an−1) + lin_comb(Du, b0, ..., bn)),v))
(27)

Figure 1: The verification toolchain.

over, the step function may contain loops. Note that it is chal-
lenging to automate the deductive verification of C code with loops
when no loop invariants are provided. To avoid synthesizing the in-
variants of the loops in the step function, we transform the code
by unrolling the loops in it. This is possible when the loops have
some constant upper bounds. We note that the size of the controller
for embedded system is statically fixed in many cases, and the up-
per bound of the loops are normally bounded in terms of the size of
the controller.

Finally, Frama-C/WP supports two different models for floating-
point arithmetic operations of C code: float model and real model.
In the float model, when deriving the weakest precondition WP per-
forms floating-point operations as defined in the IEEE 754 floating-
point standard. This results in generated proof obligations that are
too complex to be handled by existing automatic theorem provers.
On the other hand, the real model transforms floating-point oper-
ations to operations on reals, thus enabling the SMT solvers that
support arithmetic theory of reals to discharge the generated proof
obligations. As previously stated, in this work we employ the real
model, considering the problem of the bounded error specifications
as the first step toward the full treatment of the problem. Address-
ing floating-point computations is an avenue for future work.

5.1 Evaluation
To evaluate the developed verification framework, we first con-

sidered the controller specification (i.e., model) from (9). We first
verified that the step function from Listing 1 satisfies the state
and IO invariants for the Σ(A,B,C,0) model (9). In addition, we
verified that the controller Σ satisfies the IO only invariants anno-
tated in the verif_driver function from Listing 2. Using the
IO invariants that allow for inexact controller implementations, as
specified in the verif_driver function from Listing 3, we ver-
ified the correctness of the step function implementing computa-
tionally more efficient controller Σ̃ from (12), with transfer func-
tion (13). Finally, we exploited both types of assert statements
from (23) and (24) to specify instantiation based invariants; we ver-
ified IO conformance of the example controller Σ from (9) and the
inexact controller Σ̃ from (12) using the invariant (27).

Furthermore, we verified randomly generated controllers of vary-
ing size and analyzed how different types of the introduced invari-
ants affect scalability of the verification approach. We also illus-
trated the use of the developed framework on verification of LTI
controllers automatically generated by Simulink Coder from both
discrete-time State-Space and LTI System library blocks. Note that,
although these blocks can be used to specify the same mathemat-
ical model, the structures of the actual code generated from these
blocks are significantly different.

We evaluated verification performance for both ‘exact’ and ‘in-
exact’ input-output invariants. We considered five different types of
invariants: (a) IO and state invariants (denoted by SS invariants) in-
troduced in (1); (b) IO only invariants based on the transfer function
(denoted by TF), defined in (8) and (11), (c) Instantiation-based
IO invariants defined in (21) and (23) (referred to as IB′3n+1), (d)
Instantiation-based IO invariants defined in (21) and (24) (referred
to as IB′′3n+1), (e) Instantiation based IO invariants for only 2n+1
points when the state variable is known, as described in Remark 1
on (23) – referred to as IB′2n+1, (f) Instantiation-based IO invari-
ants for only 2n + 1 points when the state variable is known and
based, as described in Remark 1, on (24) – referred to as IB′2n+1.
Except the SS invariants, all other types of invariants were evalu-
ated for both exact and inexact controller implementations.

Fig. 2 presents measured Z3 running times for verification of
random controller implementations that exactly implement spec-
ified transfer functions. Note that for each considered controller
size n, we randomly generated 50 controllers. Fig. 2 presents the
average running times (along with the ranges of running times) for
different controller size n and different type of invariants. As ex-
pected, the use of SS invariants scales best. However, note that SS
invariants can be used only when we know the implemented state-
space model of the controller. On the other hand, the use of TF
invariants also scales well when the exact transfer function of the
implemented controller is known. Finally, due to the size of the
generated proof obligations for both IB′3n+1 and IB′′3n+1 invari-
ants, verification using these invariants takes the most time.

To evaluate verification performance with inexact controller im-
plementations, for each of the different controller sizes n we gener-
ated 50 random controller models. Then, for each model we would
try to verify an implementation of a controller similar to the initial
controller (i.e., with the same transfer function), in order to obtain
controllers with inexact implementations. Since we could not know
the state invariants for these controllers, we were not able to test the
use of SS invariants. The results of our experiments are presented
in Fig. 3. Our first observation is that with inexact implementa-
tions, the TF-invariants based verification scales very poorly; we
were not able to verify the TF invariants for controllers with more
than two states. The reason for this is that TF invariants employ
both universal and existential quantifiers, as we have discussed in
Section 3. On the other hand, as expected (due to the use of only
existential quantifiers) verification of instantiation-based invariants
scales reasonably well (both IB′3n+1 and IB′′3n+1).

6. RELATED WORK
The problem of providing high-assurance software for embedded

control systems and cyber-physical systems has recently attracted

Figure 2: Z3 running times for LTI controller verification using five different types of controller invariants.

Figure 3: Z3 running times for verification of LTI controllers using ‘inexact’ invariants for all five different types of controller
invariants. Note that in this case, verification of TF invariants does not scale well because controllers with the size greater than two
can not be verified.

significant attention (e.g., [27, 2, 24, 23, 22, 10, 15]). One line
of work has focused on robust implementations of embedded con-
trollers. For instance, in [27] the authors present a model-based
simulation platform that can be used to analyze controller robust-
ness against different implementation issues, including sampling,
quantization, and fixed-point arithmetic. [2, 24] present methods
for design of robust fixed-point controllers that guarantee stabil-
ity and minimize implementation errors, respectively. In [22], the
authors introduce a robustness analysis tool that computes the max-
imum deviation of the plant states due to measurement uncertain-
ties. The use of SMT solvers for synthesis of fixed-point embedded
software has been addressed in [10, 15].

On the other hand, the problem of verification of control code
has received less attention. The work in [23] introduces equiva-
lence checking between hierarchical Simulink models and gener-
ated controller code. However, only the structure of generated code
is considered, and its compliance with the structure of the initial
Simulink model is checked – without taking into account imple-
mentation of the code blocks/functions. The authors in [3] present
a method for verification of Simulink models by translating them
to Why3 [7] models. Yet, the verification is again performed only
on the model level and not on the code level.

A closely related work was on the concept of proof-carrying

code for control software [16, 19, 29, 28]. Still, the authors in-
troduce code annotations, based on Lyapunov functions, that cap-
ture control-related properties of the controller that guarantee only
closed-loop system stability [16], and that cannot as in our work
be used to check for correctness of the controller implementation.
In [29, 28], autocoding that annotates code with these stability in-
variants is presented. Also, in [19], the authors introduce PVS lin-
ear algebra libraries that can be used for verification of stability of a
closed-loop system controlled by a software implementation in C.

Finally, Frama-C [9] and ACSL [6] have been widely used for
software verification. For example, for verification of a subset of
the standard C library [8], safety-critical software in the railway
domain [18], and the Xen kernel [25]). In addition, [12, 21] present
methods for dynamic analysis in Frama-C, and in [19] the authors
present the use of Frama-C for verification of control software.

7. DISCUSSION AND CONCLUSION
We have presented an approach to verify the generated controller

code against the mathematical model used for controller design.
This allows us to obtain a higher degree of assurance for the control
code by removing the need to trust a code generator. We have pro-
posed to use invariants based on transfer functions, a well-known
concept in the linear systems theory, since it allows us to accom-

modate optimizations in the state representation that could be ap-
plied by the code generator. We have demonstrated the feasibil-
ity of performing automatic verification of such invariants on con-
trollers with realistic number of states. We have studied both exact
and inexact controller implementations; the latter may result from
numerical manipulations within the code generator. For inexact im-
plementations, the invariant incorporates error bounds on the level
of deviation from the transfer function. We evaluated our approach
on controller implementations, generated by Matlab for randomly
generated transfer functions. The evaluation also showed that scal-
ability of verification can be improved by using an alternative rep-
resentation of the transfer function.

An important avenue of future work is to incorporate into the
analysis the effects of numerical errors resulting from floating point
calculations in the control code. We believe that our work on inex-
act controller implementations can be extended to cover numerical
errors as well.

Acknowledgments
This material is based on research sponsored by DARPA under
agreement number FA8750-12-2-0247. The U.S. Government is au-
thorized to reproduce and distribute reprints for Governmental pur-
poses notwithstanding any copyright notation thereon. The views
and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of DARPA or the U.S.
Government. This research was also supported in part by Global
Research Laboratory Program (2013K1A1A2A02078326) through
NRF, and the DGIST Research and Development Program (CPS Global
Center) funded by the Ministry of Science, ICT & Future Planning.

8. REFERENCES
[1] The WhyML Programming Language,

http://why3.lri.fr/doc-0.80/manual004.html.
[2] A. Anta, R. Majumdar, I. Saha, and P. Tabuada. Automatic

verification of control system implementations. In Proc. 10th
ACM International Conference on Embedded Software,
EMSOFT’10, pages 9–18, 2010.

[3] D. Araiza-Illan, K. Eder, and A. Richards. Formal
verification of control systems’ properties with theorem
proving. In UKACC International Conference on Control
(CONTROL), pages 244–249, 2014.

[4] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre,
E. Gimenez, H. Herbelin, G. Huet, et al. The Coq proof
assistant reference manual: Version 6.1. 1997.

[5] P. Baudin, F. Bobot, L. Correnson, and Z. Dargaye. WP 0.8
manual - Frama-C. Technical report, CEA LIST, 2014.

[6] P. Baudin, P. Cuoq, J.-C. Filliatre, C. Marche, B. Monate,
Y. Moy, and V. Prevosto. ACSL: ANSI/ISO C Specification
Language, Version 1.4. Technical report, CEA LIST and
INRIA, 2010.

[7] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. Why3:
Shepherd your herd of provers. In Boogie 2011: First
International Workshop on Intermediate Verification
Languages, pages 53–64, 2011.

[8] N. Carvalho, C. da Silva Sousa, J. S. Pinto, and A. Tomb.
Formal Verification of kLIBC with the WP Frama-C Plug-in.
In NASA Formal Methods, pages 343–358. Springer, 2014.

[9] P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles,
and B. Yakobowski. Frama-c. In Software Engineering and
Formal Methods, pages 233–247. 2012.

[10] E. Darulova, V. Kuncak, R. Majumdar, and I. Saha. Synthesis
of fixed-point programs. In Proc. 11th ACM International
Conference on Embedded Software, EMSOFT’13, pages
22:1–22:10, 2013.

[11] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In
Tools and Algorithms for the Construction and Analysis of
Systems, pages 337–340. 2008.

[12] M. Delahaye, N. Kosmatov, and J. Signoles. Common
specification language for static and dynamic analysis of C
programs. In Proc. 28th Annual ACM Symposium on Applied
Computing, pages 1230–1235, 2013.

[13] E. W. Dijkstra. A discipline of programming. Prentice-Hall
Englewood Cliffs, 1976.

[14] G. Dullerud and F. Paganini. Course in Robust Control
Theory. Springer-Verlag New York, 2000.

[15] H. Eldib and C. Wang. An SMT based method for
optimizing arithmetic computations in embedded software
code. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 33(11):1611–1622, 2014.

[16] E. Feron. From control systems to control software. Control
Systems, IEEE, 30(6):50–71, 2010.

[17] M. Green and D. J. Limebeer. Linear robust control. Courier
Corporation, 2012.

[18] K. Hartig, J. Gerlach, J. Soto, and J. Busse. Formal
Specification and Automated Verification of Safety-Critical
Requirements of a Railway Vehicle with Frama-C/Jessie. In
FORMS/FORMAT 2010, pages 145–153. 2011.

[19] H. Herencia-Zapana, R. Jobredeaux, S. Owre, P.-L. Garoche,
E. Feron, G. Perez, and P. Ascariz. PVS linear algebra
libraries for verification of control software algorithms in
C/ACSL. In NASA Formal Methods, pages 147–161. 2012.

[20] C. A. R. Hoare. An axiomatic basis for computer
programming. Comm. of the ACM, 12(10):576–580, 1969.

[21] N. Kosmatov and J. Signoles. A lesson on runtime assertion
checking with Frama-C. In Runtime Verification, pages
386–399, 2013.

[22] R. Majumdar, I. Saha, K. Shashidhar, and Z. Wang. CLSE:
Closed-loop symbolic execution. In NASA Formal Methods,
pages 356–370. 2012.

[23] R. Majumdar, I. Saha, K. Ueda, and H. Yazarel.
Compositional equivalence checking for models and code of
control systems. In 52nd Annual IEEE Conference on
Decision and Control (CDC), pages 1564–1571, 2013.

[24] R. Majumdar, I. Saha, and M. Zamani. Synthesis of
minimal-error control software. In Proc. 10th ACM
International Conference on Embedded Software,
EMSOFT’12, pages 123–132, 2012.

[25] A. Puccetti. Static Analysis of the XEN Kernel using
Frama-C. Journal of Universal Computer Science,
16(4):543–553, 2010.

[26] W. J. Rugh. Linear system theory. Prentice Hall, 1996.
[27] A. Sangiovanni-Vincentelli and M. Di Natale. Embedded

system design for automotive applications. IEEE Computer,
(10):42–51, 2007.

[28] T. Wang, R. Jobredeaux, H. Herencia, P.-L. Garoche,
A. Dieumegard, E. Feron, and M. Pantel. From design to
implementation: an automated, credible autocoding chain for
control systems. arXiv preprint arXiv:1307.2641, 2013.

[29] T. E. Wang, A. E. Ashari, R. J. Jobredeaux, and E. M. Feron.
Credible autocoding of fault detection observers. In
American Control Conference (ACC), pages 672–677, 2014.

