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ABSTRACT  

SEX DIFFERENCES IN µ-OPIOID REGULATION OF THE RAT LOCUS 

COERULEUS  

Herminio Manuel Guajardo  

Rita J. Valentino  

There are sex differences in disease susceptibility, time of onset of symptoms, and 

drug responses. Notably, sex differences are particularly prominent in pain and opioid 

analgesic responses, with females being less sensitive to opioid analgesia. A major site of 

action of opioids in the brain is the locus coeruleus (LC)-norepinephrine (NE) system. LC 

neurons express mu-opiate receptors (MOR), and MOR-agonists potently inhibit LC 

neuronal activity. Evidence suggests that endogenous opioids are released during stress, 

to restrain LC activation and to facilitate LC recovery when the stressor ends. On the 

basis of these observations, this dissertation tested the hypothesis that the opioid 

regulation of the LC is decreased in females relative to males. By implementing 

electrophysiological, biochemical, and behavioral approaches, sex differences in MOR 

regulation of the LC-NE system were examined. MOR mRNA was greater in male 

compared to female LC as indicated by quantitative PCR. This translated to an increased 

level of MOR protein in male compared to female LC tissue as detected by Western blot 

analysis. Consistent with sex differences in MOR expression in the LC, recordings of 

single unit LC activity in anesthetized rats demonstrated that the maximal magnitude of 

inhibition produced by intracoerulear injection of a MOR agonist, DAMGO, was greater 

in males. The decreased response of female LC neurons to MOR activation was 

expressed as a diminished response in upstream targets. Thus, intra-LC DAMGO 
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increased synchronization of local field potential activity in male but not female medial 

prefrontal cortex (mPFC). Notably, the LC-NE system affects cognitive function through 

its projections to the mPFC. The molecular and cellular sex differences in MOR 

regulation of the LC were associated with sexually distinct effects on cognitive 

processing in an operant strategy-shifting task. Intra-LC DAMGO increased the duration 

to complete the task and the total number of errors, selectively in males. DAMGO 

increased premature responses, regressive and random errors in males, and perseverative 

errors in females. The sex-specific effects of LC-MOR activation on cognitive processing 

may contribute to an early onset of opioid abuse in males, and susceptibility to opioid 

relapse in females. Ultimately, given the role of endogenous opioids in restraining the 

stress response of the LC system, decreased opioid sensitivity in females could enhance 

female vulnerability to stress.  



 
	
  

vii	
  

 

TABLE OF CONTENTS  

DEDICATION ................................................................................................................. iii	
  

ACKNOWLEDGEMENTS ............................................................................................ iv	
  

ABSTRACT....................................................................................................................... v	
  

LIST OF TABLES ........................................................................................................... ix	
  

LIST OF FIGURES .......................................................................................................... x	
  

CHAPTER 1: INTRODUCTION.................................................................................... 1	
  

References .................................................................................................................... 19	
  

CHAPTER 2: SEX DIFFERENCES IN µ-OPIOID RECEPTOR OF THE RAT 
LOCUS COERULEUS AND THEIR COGNITIVE CONSEQUENCES................. 29	
  

Abstract ........................................................................................................................ 29	
  

Introduction ................................................................................................................. 30	
  

Materials and Methods ............................................................................................... 31	
  

Results .......................................................................................................................... 36	
  

Discussion..................................................................................................................... 40	
  

Implications ................................................................................................................. 44	
  

Supplemental Information ......................................................................................... 56	
  

Supplemental Figures and Legends........................................................................... 60	
  

References .................................................................................................................... 65	
  



 
	
  

viii	
  

CHAPTER 3: µ-OPIOID RECEPTOR ACTIVATION IN THE LOCUS 
COERULEUS INCREASES SYNCHRONIZATION OF THE MALE, BUT NOT 
FEMALE MEDIAL PREFRONTAL CORTEX ......................................................... 75	
  

Abstract ........................................................................................................................ 75	
  

Introduction ................................................................................................................. 76	
  

Materials and Methods ............................................................................................... 78	
  

Results .......................................................................................................................... 81	
  

Discussion..................................................................................................................... 83	
  

Conclusion.................................................................................................................... 87	
  

References .................................................................................................................... 94	
  

CHAPTER 4: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS ........ 104	
  

References .................................................................................................................. 125	
  



 
	
  

ix	
  

 

LIST OF TABLES  

Table 1. Effects of DAMGO on the Duration to Complete the SHIFT Stage of the Task 
and Response Latencies............................................................................................. 55	
  

	
  



 
	
  

x	
  

 
LIST OF FIGURES  

	
  

Figure 1. Afferent projections to the LC-NE system........................................................ 17	
  

Figure 2. The opposing regulation model of LC activity during acute stress................... 18	
  

Figure 3. Dose-related inhibition of locus coeruleus (LC) neuronal discharge rate by 
DAMGO (D-Ala2, N-MePhe4, Gly-ol]-enkephalin) in male and female rats. ......... 47	
  

Figure 4. Sex differences in locus coeruleus-µ-opioid receptor (LC-MOR) protein and 
mRNA........................................................................................................................ 49	
  

Figure 5. Sex differences in behavioral consequences of activating µ-opioid receptor 
(MOR) in the locus coeruleus (LC)........................................................................... 51	
  

Figure 6. Regional specificity of DAMGO (D-Ala2, N-MePhe4, Gly-ol]-enkephalin) 
effects on strategy shifting......................................................................................... 53	
  

Figure 7. MOR antibody specificity control. .................................................................... 60	
  

Figure 8. Effect of intra-LC DAMGO on LC firing rate in male rats and female rats at 
different estrogen statuses. ........................................................................................ 61	
  

Figure 9. LC-MOR mRNA levels in males and females at relatively different estrogen 
levels.......................................................................................................................... 62	
  

Figure 10. Effects of DAMGO on performance in the operant strategy set-shifting task 
(OSST) in females at different estrogen levels.......................................................... 63	
  

Figure 11. Location of 10 pg DAMGO infusions in and outside the LC. ........................ 64	
  

Figure 12. Histological verification of intra-LC injection and mPFC electrode placement.
................................................................................................................................... 89	
  

Figure 13. Intra-LC DAMGO resulted in a time-dependent synchronization of mPFC 
activity in male but not female rats. .......................................................................... 90	
  

Figure 14. Lack of effect of intra-LC ACSF on mPFC network activity. ........................ 92	
  

Figure 15. Similar effects of intra-LC clonidine on mPFC network activity. .................. 93	
  

Figure 16. Sex differences in MOR regulation of the LC-NE system and its pathological 
consequences. .......................................................................................................... 123	
  

 



 
	
  

1	
  

CHAPTER 1: INTRODUCTION 

The goal of this dissertation is to determine the neural basis for sex bias in stress-

related neuropsychiatric diseases by studying sex differences in the regulation of a major 

brain stress response system by endogenous opioids.  

Sex Differences in Disease  

Sex differences in brain function can arise from an assortment of genetic and 

hormonal events that occur at early stages of development. These changes continue 

throughout the lifespan of the organism and dictate the many physiological differences in 

disease susceptibility, manifestation, and treatment between the sexes. In fact, it is well 

known that there are differences between the sexes in disease susceptibility, time of onset 

of symptoms, and drug response in conditions such as coronary heart disease, cancer, 

obesity, autoimmune diseases, and mental health conditions, among others (Becker et al, 

2005). Therefore, there is a general calling within the basic and clinical scientific 

community to identify the biological bases for differences between males and females in 

the development of disease, signs and symptoms of pathophysiology, and response to 

therapy. Notably, the FDA has implemented regulations and guidance to ensure that both 

sexes are represented in all phases of clinical trials, and medical products are labeled to 

alert physicians and patients regarding sex-differences in drug responses (Soldin et al, 

2011). This knowledge will advance our ability to target treatments for specific 

individuals. Moreover, on a basic science level, this knowledge will help elucidate the 

pathophysiology of diseases that exhibit sex differences.  

 

 



 
	
  

2	
  

Sex Differences in Stress-related Psychiatric Disorders  

Sex differences are particularly prominent in psychiatric diseases. For example, 

women are diagnosed with anxiety and mood-related pathology at higher rates than men, 

with many epidemiological studies indicating that the female-to-male ratio for these 

disorders is approximately 2:1 (Gater et al, 1998; Weissman and Klerman, 1977). Many 

psychiatric diseases that are more prevalent in females are associated with stress. For 

example, stress may exacerbate or precipitate symptoms and the disorders are often 

associated with dysfunctional stress responses (Gold and Chrousos, 2002; Heim and 

Nemeroff, 2001; Wong et al, 2000). This has led to the hypothesis that higher rates of 

certain psychiatric diseases in women are due to sex differences in stress response 

systems. The primary mediators of stress response are corticotropin-releasing factor 

(CRF) and glucocorticoids. In response to stress, CRF initiates the endocrine cascade that 

culminates in glucocorticoid release (Vale et al, 1981). CRF also acts as a brain 

neurotransmitter to elicit behavioral and autonomic responses to stress (Li et al, 1996). 

Sex differences in CRF receptors have been identified. For example, CRF binding is 

significantly greater in the basolateral and posteroventral nuclei of the amygdala of 

female rats compared to male rats (Weathington and Cooke, 2012). This sex difference 

could translate into increased anxiety following stressful events in females, which if true 

in humans, would increase the predisposition of women to anxiety disorders such as 

PTSD. In addition, our laboratory has identified sex differences in CRF1 receptor (CRF1) 

signaling and trafficking in rat cortex and Locus Coeruleus (LC) neurons. For example, 

CRF1-Gs association is greater in female cortex compared to males, and stress-induced 

CRF1 association with β-arrestin 2, a step that is critical for CRF1 internalization is 
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decreased in female compared to male rats. Consistent with this, stress induces CRF1 

internalization in locus coeruleus (LC) neurons of male rats, but not female rats. This 

makes CRF-receptive neurons of females more sensitive to low levels of CRF, and less 

adaptable to high levels of CRF (Bangasser et al, 2010). Taken together, these 

experimental data suggest that sex differences in CRF receptors render females into a 

dysregulated state of stress reactivity that could be linked to the development of mood 

and anxiety disorders.  

The Locus Coeruleus –Norepinephrine System  

The LC-norepinephrine (NE) system is a major stress response system in the brain 

that is important for arousal and cognitive aspects of stress response. The LC is a small 

nucleus of neurons located in the pons just lateral to the wall of the fourth ventricle 

(Foote et al, 1983). The LC is one of seven noradrenergic subgroups (the A1-A7 groups) 

in the rat brainstem (A6, in the nomenclature of Dahlstroem and Fuxe, 1964). All LC 

neurons synthesize norepinephrine (NE) (Dahlstroem et al, 1964), and it is the primary 

source of NE in the brain (Swanson, 1976; Swanson and Hartman, 1975). There are two 

types of neurons observed within the LC; large multipolar cells (~35 mm) located in the 

dorsal part of the LC and smaller fusiform cells (~20mm) located mainly in the ventral 

LC (Grzanna and Molliver, 1980; Swanson, 1976). The LC projects to the spinal cord, 

brainstem, cerebellum, hypothalamus, thalamus, basal telencephalon, and the entire 

isocortex via highly collateralized projections (Dahlstroem et al, 1964; Moore and 

Bloom, 1979). Notably, LC is the sole source of NE in many forebrain regions that have 

been implicated in cognition such as cortex and hippocampus (Waterhouse et al, 1983).  
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In addition to NE, experimental evidence suggests that several neuropeptides are 

expressed within subsets of LC neurons. For example, galanin (Gal) is expressed in up to 

80% of LC neurons (Holets et al, 1988). Gal modulates many behaviors in the brain such 

as wake/sleep states, nociception, feeding, and parental behavior (Lang et al, 2015). LC 

neurons co-expressing NE and Gal are found throughout the LC, but are most densely 

localized to the dorsal and central LC (Holets et al, 1988). Another neuropeptide co-

expressed in LC neurons is Neuropeptide Y (NPY), which is present in a smaller 

population of LC neurons (~20 %) in the dorsal portion of the LC (Holets et al, 1988). 

Many other neuropeptides such as acetylcholinesterase, neurotensin, and vasoactive 

intestinal protein have been detected in small subsets of neurons in the LC (Sutin and 

Jacobowitz, 1991).  

The LC receives inputs from several brain regions that promote diversity of LC 

function during different behaviors. Specifically, the LC receives multiple varied inputs, 

which all influence LC firing to different extents. In the majority of instances, the 

neurotransmitter involved in these inputs to the LC is known; however, some 

neurotransmitters in these synaptic inputs remain unidentified. Major brain structures, for 

example, areas of the neocortex, amygdala, hypothalamus, brainstem, and spinal cord 

project to the LC (Figure 1 adapted from Schwarz and Luo (2015)).  

Neocortex. The parietal, temporal, infralimbic, insular, and frontal cortices 

project and provide limited input to the LC (Arnsten and Goldman-Rakic, 1984; 

Cedarbaum and Aghajanian, 1978; Luppi et al, 1995). Moreover, there is a strong 

reciprocal connection between the LC and the prefrontal cortex (PFC) (Jodo and Aston-

Jones, 1997; Jodo et al, 1998; Singewald and Philippu, 1998). The projection from PFC 
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to the LC is suggested to provide tonic activation of the LC (Jodo et al, 1998). Although 

the neurotransmitter responsible for this activation is unclear, glutamate maybe involved 

given that NMDA receptors are expressed in LC neurons (Samuels and Szabadi, 2008).  

Amygdala. The LC receives an input from the central nucleus of the amygdala 

(CNA) (Cedarbaum et al, 1978; Singewald et al, 1998; Wallace et al, 1989). The 

projection from CNA to the LC is suggested to be involved in the observed increase in 

LC activity in response to stressful stimuli (Berridge and Waterhouse, 2003). For 

example, neurons containing CRF in the CNA, project to the LC and activate these cells 

in response to stress (Van Bockstaele et al, 1998).  

Hypothalamus. The ventrolateral preoptic area of the hypothalamus sends an 

inhibitory projection to the LC via its GABAergic neurons (Cedarbaum et al, 1978; Lee 

et al, 2005; Simson, 2001; Steininger et al, 2001). Furthermore, the paraventricular 

nucleus (PVN) of the hypothalamus, projects to the LC (Aston-Jones et al, 1986; 

Cedarbaum et al, 1978; Luiten et al, 1985; Luppi et al, 1995; Reyes et al, 2005; Simson, 

2001; Swanson and Sawchenko, 1980). CRF has been suggested as the primary 

neurotransmitter in the projection to the LC, since excitatory CRF immunoreactive fibers 

in the PVN have been found to project to, and increase the activity of the LC (Reyes et al, 

2005). The lateral hypothalamic/perifornical area projects to the LC (Cedarbaum et al, 

1978; Lee et al, 2005) with fibers that contain orexin peptides (Date et al, 1999; Espana 

et al, 2005; Horvath et al, 1999; Peyron et al, 1998). Administration of orexin into the LC 

has been found to increase cell firing (Date et al, 1999; Hagan et al, 1999), suppress 

REM sleep, and increase wakefulness (Bourgin et al, 2000). The tuberomamillary 

nucleus (TMN), which is mainly composed of histaminergic neurons, has been found to 
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project to the LC (Iwase et al, 1993; Lee et al, 2005). TMN neurons are known to 

promote wakefulness, and histamine H3 receptors have been identified on the cell bodies 

of LC neurons, where they inhibit NE release (Haas and Panula, 2003; Pieribone et al, 

1994).  

Brainstem. The ventral tegmental area (VTA) neurons project to the LC 

(Beckstead et al, 1979; Deutch et al, 1986; Oades and Halliday, 1987; Ornstein et al, 

1987; Simon et al, 1979; Swanson, 1982). These VTA neurons are dopaminergic and 

may contribute to the maintenance of arousal (Samuels et al, 2006, 2007). Different areas 

of the raphe nuclei project to the LC. Strong evidence suggests that the serotonergic 

neurons of the dorsal raphe project to the LC (Cedarbaum et al, 1978; Kim et al, 2004; 

Luppi et al, 1995; Pasquier et al, 1977; Sim and Joseph, 1993; Simson, 2001; Vertes and 

Kocsis, 1994), and this input is likely related to the wakefulness-promoting roles of the 

dorsal raphe. The raphe magnus neurons have been reported to project to the LC (Sim 

and Joseph, 1992), and this connection is thought to be related to the modulation of 

nociception (Sim et al, 1992). Cholinergic neurons from pedunculopontine (PPT) and 

laterodorsal tegmental nuclei (LDT) have been found to project to the LC (Jones and 

Yang, 1985). PPT and LDT neurons are known to be active during wakefulness or REM 

sleep (el Mansari et al, 1989; Jones, 2005; Kayama et al, 1992). Local microinfusion of 

acetylcholine or acetylcholine receptor agonists into the LC increase the firing of LC 

neurons (Egan and North, 1985; Engberg and Svensson, 1980), suggesting an excitatory 

role for the PPT and LDT projection to the LC. LC receives an input from neurons of the 

periaqueductal grey matter (PAG) in the midbrain (Cedarbaum et al, 1978; Lee et al, 

2005; Luppi et al, 1995; Simson, 2001), particularly from the dorsolateral cell column of 



 
	
  

7	
  

the PAG (Cameron et al, 1995). PAG neurons that project to the LC are diverse in 

neurotransmitter content; ventral PAG neurons are dopaminergic (Lu et al, 2006), and are 

suggested to be involved in the activation of LC neurons during wakefulness. In addition, 

the ventral and ventrolateral PAG are suggested to be involved in the regulation of sleep-

wakefulness state via inhibitory glycinergic projections to the LC (Rampon et al, 1999). 

Tract-tracing and electrophysiology studies have revealed that major inputs to the LC are 

found in two structures, the nucleus paragigantocellularis (PGi) and the perifascicular 

area of the nucleus prepositus hypoglossi (PrH), both located in the rostral medulla 

(Aston-Jones et al, 1991; Luppi et al, 1995). The projection from the PrH to the LC 

contains GABAergic neurons, and is thus inhibitory to LC neuronal activity (Ennis and 

Aston-Jones, 1989a, b). This GABAergic projection is likely to be involved in the 

inhibition of LC activity during REM sleep (Verret et al, 2006). On the other hand, PGi 

projections to the LC are excitatory via the release of glutamate (Simson, 2001). In 

addition to the GABAergic and glutamatergic projections to the LC from the rostral 

medulla, both the PrH and the PGi innervate the LC with fibers containing the 

endogenous opiate enkephalin (Drolet et al, 1992; Johnson et al, 2002; Van Bockstaele, 

1998). These projections activate opiate receptors found in high concentrations in the LC 

to inhibit cell firing (Toyama et al, 1974; Van Bockstaele, 1998), and the administration 

of endogenous opioids or opiate agonists inhibits spontaneous firing of the LC (Illes and 

Norenberg, 1990; Korf et al, 1974; Mansour et al, 1994; Pepper and Henderson, 1980; 

Pert and Snyder, 1976b; Valentino and Wehby, 1988c; Williams and North, 1984).  

Spinal cord. The LC receives projections from the dorsal horn of the spinal cord 

(Cedarbaum et al, 1978; Craig, 1992). It has been suggested that this pathway may 
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communicate information relating to the detection of nociceptive and/or thermal stimuli 

from sensory spinal nuclei (Craig, 1992). However, it is unclear the neurotransmitter 

responsible for this communication (Samuels et al, 2008).  

Electrophysiological studies on LC neuronal activity have determined that LC 

neurons exhibit two distinct modes of activity: tonic and phasic (Aston-Jones and Cohen, 

2005). The tonic rate of LC neuronal discharge has been correlated with behavioral 

arousal (Aston-Jones and Bloom, 1981a; Foote et al, 1980). Additionally, 

pharmacological manipulation of tonic LC neuronal activity has been shown to impact 

electroencephalographic indices of arousal (Berridge and Foote, 1991; Berridge et al, 

1993). LC neurons respond phasically to a broad range of sensory stimuli (Aston-Jones 

and Bloom, 1981b; Foote et al, 1980). The phasic response precedes the orientation 

towards the stimulus, and may be a signal to redirect behavior towards salient stimuli. 

The phasic pattern of discharge is characterized by a brief excitatory component followed 

by a longer duration of inhibition. This is consistent with evidence for a role of excitatory 

amino acid (i.e., glutamate) neurotransmission in LC sensory responses (Ennis et al, 

1992), as these agents produce a robust, albeit brief, activation of LC neurons. The 

extensive distribution of the axonal network of the LC provides tonic and phasic arousal-

related signals to the forebrain. These signals have been suggested to direct attention 

toward behaviorally relevant sensory information (Aston-Jones et al, 2005). It was 

originally hypothesized that the primary role of the LC-NE system was to regulate 

arousal and sleep-wake cycles (Berridge et al, 2012); however, the two distinct modes of 

LC activity (i.e. tonic and phasic) indicate a more specific role in the cognitive processing 

of relevant sensory information (Aston-Jones et al, 2005). For example, phasic firing of 
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LC neurons, specifically in response to behavioral tasks that are relevant for sensory 

stimuli, mediates focused attention and optimal task performance; yet, when rewards 

associated with task performance based on the current attentional strategy cease, LC 

activity switches to a high tonic mode until a more favorable strategy can be determined. 

The shift from phasic to high tonic LC discharge has been suggested to promote 

behavioral flexibility, disengaging animals from attention to specific stimuli and ongoing 

behaviors and favoring scanning the environment for stimuli that promote alternate, more 

rewarding behaviors (Aston-Jones et al, 2005). Notably, the prefrontal cortex (PFC) 

mediates executive functions such as cognitive flexibility, a function thought to be 

influenced by the LC-NE projections that target PFC neurons (Arnsten, 2011). 

Pharmacological studies suggest a relationship between LC and PFC activity which 

resembles an inverted U-shaped function, such that the PFC function requires an optimal 

level of LC input, beyond which increases in LC drive negatively impact PFC function as 

a result of the interaction of higher levels of NE with lower-affinity adrenergic receptors 

(Arnsten, 2011).  

The Locus Coeruleus –Norepinephrine System, Stress, and CRF  

 Several studies suggest that stressors that trigger the initiation of the 

hypothalamic-pituitary-adrenal (HPA) response to stress, activate in parallel the LC-NE 

system. The parallel engagement of these two systems helps to coordinate the endocrine 

and cognitive limbs of the stress response (Valentino and Van Bockstaele, 2008). LC-NE 

activation by stressors is mediated by CRF release in the LC because LC-NE activation is 

blocked by administration of CRF antagonists into the LC (Valentino and Wehby, 

1988b). CRF was initially characterized as the paraventricular hypothalamic 
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neurohormone that initiates anterior pituitary adrenocorticotropin secretion in response to 

stressors (Vale et al, 1981). The neuromodulatory actions of CRF are mediated through 

two distinct receptors, CRF1 and CRF2, differentially distributed throughout the brain 

(Primus et al, 1997; Van Pett et al, 2000). CRF1 activation, which has been clearly 

associated with promotion of stress-response behaviors and activation of CRF2, originally 

thought to dampen stress sensitivity, may actually function in other stress-related 

responses, including stress-associated learning (Bale and Vale, 2004; Hauger et al, 2009). 

Electron microscopic studies have shown that CRF-immunoreactive axon terminals form 

synaptic specializations with LC dendrites in the core and peri-LC, with a majority of 

these synapses being asymmetric, and thus excitatory in function (Van Bockstaele et al, 

1996c). Many CRF axon terminals in the LC co-localize glutamate, while fewer co-

localize enkephalin and GABA (Tjoumakaris et al, 2003; Valentino et al, 2001). CRF 

axon terminals are also found next to unlabeled terminals that form synaptic 

specializations with LC dendrites, providing a mechanism for indirect presynaptic 

modulation of LC activity (Van Bockstaele et al, 1996c). During periods of stress, CRF is 

released from a number of brain regions. Notably, CRF afferent to LC dendrites in the 

peri-LC derive from the CNA and the PVN of the hypothalamus (Reyes et al, 2005; 

Valentino et al, 1992; Van Bockstaele et al, 1998; Van Bockstaele et al, 1999), whereas 

those afferent to the nuclear LC include the nucleus paragigantocellularis, Barrington's 

nucleus and the paraventricular hypothalamic nucleus (Reyes et al, 2005; Valentino et al, 

1996; Valentino et al, 1992). Hypothalamic CRF neurons that project to the LC are a 

distinct population from those that project to the median eminence to regulate 

adrenocorticotropin release (Reyes et al, 2005).  
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 CRF increases spontaneous LC discharge rates when locally administered into the 

LC, either in vivo or in vitro (Curtis et al, 1997; Jedema and Grace, 2004). CRF in the LC 

interacts with Gs-protein coupled CRF receptor 1 (Reyes et al, 2007). This stimulates 

adenylate cyclase (Bale et al, 2004), ultimately leading to depolarization of LC neurons 

through a cyclic AMP-dependent reduction in potassium conductance (Jedema et al, 

2004; Schulz et al, 1996). LC activation by CRF is associated with c-fos expression by 

LC neurons and norepinephrine release in terminal fields (Page and Abercrombie, 1999; 

Rassnick et al, 1998). Notably, in vivo studies have shown that intracerebroventricular or 

direct CRF administration into the LC can mimic the effects of stressors on LC neuronal 

activity (Valentino et al, 1988b). LC activation by CRF is translated to activation of 

cortical electroencephalographic (EEG) activity, indicative of increased arousal (Curtis et 

al, 1997) and enhanced behavioral flexibility in a rat attentional set-shifting task (Snyder 

et al, 2012). In addition to increasing spontaneous or tonic LC discharge rates, CRF 

attenuates phasic sensory-evoked LC activity (Valentino and Foote, 1987, 1988a). This 

may occur through presynaptic inhibition as suggested by electron microscopic studies 

that show that CRF axon terminals also synapse with synaptic specializations in LC 

dendrites, possibly providing a mechanism for the indirect presynaptic modulation of LC 

activity (Van Bockstaele et al, 1996c). Given the evidence for co-localization of CRF and 

glutamate in axon terminals in the LC, and convergence onto common LC dendrites, 

there are multiple potential mechanisms for this interaction. The net effect of CRF on LC 

neurons is to shift the mode of LC discharge to a high tonic-low phasic state (Valentino et 

al, 1987, 1988a; Valentino et al, 2008). This mode of firing has been associated with high 
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arousal (Butler et al, 1990), decreased focused attention, and increased behavioral 

flexibility or going off-task in a search for optimal outcomes (Aston-Jones et al, 2005).  

 Under normal physiological conditions, the LC-NE system is not under tonic 

regulation by endogenous CRF because CRF antagonists have no effect on either LC 

discharge rates or norepinephrine release in LC upstream targets (Curtis et al, 1994; Page 

et al, 1999). However, there is important evidence suggesting that acute stressors elicit 

the release of endogenous CRF within the LC to activate LC neurons during acute stress. 

For example, hypotensive challenge, which activates the HPA axis, mimics the effects of 

CRF on tonic and phasic LC discharge (Valentino et al, 1988b). In addition, stressors 

such as non-noxious visceral stimuli (colon distention) increase LC discharge rates, and 

cortical EEG activity by a CRF-dependent mechanism (Lechner et al, 1997). Taken 

together, the anatomical and electrophysiological evidence supports a model whereby 

acute stress engages CRF inputs to the LC to bias activity towards a high tonic state that 

would favor increased arousal and behavioral flexibility.  

Locus Coeruleus Co-regulation during Acute Stress: CRF and Endogenous Opioids  

Anatomical and electrophysiological evidence suggests that LC neurons are co-

regulated by CRF and the endogenous opioid, enkephalin during acute stress. The LC 

expresses µ, δ and κ-opioid receptors. Notably, µ-opioid receptors (MOR) are 

localized post-synaptically, while δ and κ are mainly expressed pre-synaptically in the 

LC (Kreibich et al, 2008; Reyes et al, 2009; Van Bockstaele et al, 1995; Van Bockstaele 

and Chan, 1997; Van Bockstaele et al, 1996a). MORs are highly expressed by LC 

neurons to potently inhibit activity (Mansour et al, 1994; Pert et al, 1976b; Williams et 

al, 1984). The LC receives projections from the endogenous opioid ENK system that 
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innervates both the LC core and pericoeruleular region (Van Bockstaele et al, 1995; Van 

Bockstaele et al, 1997). ENK projections arise from the rostral medullary nuclei 

including the PGi and PrH (Aston-Jones et al, 1986; Drolet et al, 1992). ENK axon 

terminals co-localizes with GABA (Van Bockstaele, 1998; Van Bockstaele et al, 1997) 

and glutamate axon terminals (Barr and Van Bockstaele, 2005; Van Bockstaele et al, 

2000) on LC dendrites. The endogenous opioid dynorphin (DYN) has afferents to the LC 

that arise from the CNA (Reyes et al, 2008), which project onto κ-opioid receptors 

(KORs) that are located pre-synaptically in axon terminals of the LC containing 

glutamate transporter or CRF (Kreibich et al, 2008). Electrophysiological evidence 

suggests that endogenous opioids are not tonically released onto LC under normal 

physiologic conditions, because opioid antagonist administration has no effect on LC 

baseline activity (Valentino and Wehby, 1989). In general, opioid receptor agonists 

decrease LC firing rates. However, receptor specificity exists in how these responses are 

changed. MOR-agonists are inhibitory on tonic LC neuronal discharge in vitro, as well as 

in vivo (Aghajanian and Wang, 1987; Valentino et al, 1988c; Williams et al, 1984). For 

example, the local application of morphine or enkephalin (ENK) inhibits the spontaneous 

activity of LC neurons through activation of MORs and hyperpolarization with increased 

potassium conductance (Aghajanian et al, 1987; Bird and Kuhar, 1977; North and 

Williams, 1985). Moreover, phasic responses are facilitated, increasing the signal to noise 

ratio of LC evoked activity (Valentino et al, 1989). In contrast, KOR agonist 

administration diminishes phasic LC activity, as well as stress-mediated CRF activation 

of the LC (Kreibich et al, 2008).  
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LC dendrites receive convergent input from CRF and enkephalin-containing axon 

terminals and co-localize MOR and CRF1 (Reyes et al, 2007; Tjoumakaris et al, 2003; 

Xu et al, 2004). Recordings of LC neuronal activity during acute stress indicate that 

stressors release both CRF and enkephalin to co-regulate LC activity in opposing 

manners. The net overall effect is a CRF-mediated excitation. However, removal of this 

influence using a CRF antagonist reveals a naloxone-mediated inhibition. This inhibition 

restrains the CRF activation and also facilitates a return towards baseline activity when 

the stressor is terminated (Curtis et al, 2001; Curtis et al, 2012). These CRF-opioid 

interactions adjust the activity and reactivity of LC neurons so that the level of arousal 

and processing of sensory stimuli are optimized to facilitate adaptive behavioral 

responses to stressors (Figure 2 adapted from (Valentino and Van Bockstaele, 2015)).  

Sex Differences in Response to Opioids  

Sex differences in opioid sensitivity have been reported in laboratory animals and 

humans, with females being less sensitive to morphine-induced analgesia and more 

sensitive to experimentally-induced pain compared to males (Kest et al, 2000a). For 

example, of 50 analgesic assay comparisons, male rodents exhibited more robust 

analgesia than females in 28 (56%) assays, females showed greater analgesia in 2 (4%) 

assays, and there were no sex differences in 20 (40%) assays (Kest et al, 2000b). In 

addition, male animals typically have a greater analgesic response to opioids compared to 

females (Craft, 2003). Consistent with data from studies in rodents, studies in humans 

determined that women exhibit higher pain intensity after surgery and have larger 

weight–adjusted morphine requirements than men, to achieve a similar degree of 

analgesia(Cepeda and Carr, 2003). The higher requirement of morphine for females to 



 
	
  

15	
  

improve pain suggests less sensitivity to the drug. Taken as a whole, these findings 

suggest a decreased sensitivity of females to the analgesic effects of opiates.  

Sex Differences in Opioid Regulation of the LC: a Potential Determinant of Stress 

Vulnerability 

Given the role of endogenous opioids in restraining the stress response of the LC 

system, excessive or insufficient opioid influence in the LC may have pathological 

implications. Individual differences in either enkephalin expression or MOR sensitivity 

are potential determinants of stress vulnerability or vulnerability to pathology. For 

example, decreased MOR function may predispose to hyperarousal symptoms of stress 

related neuropsychiatric disorders because of a decreased ability to temper CRF effects in 

the LC. On the other hand, greater MOR sensitivity could be predicted to protect from 

hyperarousal symptoms in stress-related pathologies. Importantly, sex and hormonal 

status can affect expression, sensitivity, and trafficking of MORs, as well as enkephalin 

expression (Craft, 2008; Gonzales et al, 2011; Milner et al, 2013). However, these 

relationships are not well understood and may be dependent on the species, brain region, 

or endpoint. Notably, it is well documented that females are less responsive to opiates (Ji 

et al, 2006; Kepler et al, 1991; Wang et al, 2006) and this would be consistent with 

reports that stress-related diseases characterized by hyperarousal are more prevalent in 

females (Breslau, 2002; Kessler et al, 1994; Kessler et al, 1995). Given the role of 

endogenous opioids in restraining the stress response of the LC system, decreased opioid 

sensitivity in females could increase the stress-sensitivity of this system, and enhance 

female vulnerability to stress.  
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Conclusion 

Given that there are sex differences in stress-related diseases characterized by 

hyperarousal symptoms that are more prevalent in females compared with males 

(Breslau, 2002; Kessler et al, 1994; Kessler et al, 1995), observations indicating that 

females are less responsive to opiates (Ji et al, 2006; Kepler et al, 1991; Wang et al, 

2006), and the important role of endogenous opioids in restraining stress-related 

activation of LC neurons, Chapter 2 investigates sex differences in MOR expression in 

the LC, and the neuronal and behavioral consequences of MOR activation in the LC of 

male and female rats. Chapter 3 further explores how molecular and cellular sex 

differences of the LC-MOR system translates to changes in neuronal activity in PFC 

regions that guide cognitive strategies. Ultimately, the studies in Chapters 2 and 3, which 

examine sex differences in opioid regulation of the LC may have a significant impact on 

the field by helping to elucidate a molecular mechanism that explains why there are 

higher rates of females being diagnosed with stress-related psychiatric disorders.  
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Figures and Legends 

	
  

Figure 1. Afferent projections to the LC-NE system. 

A saggital schematic illustrating the LC in the brainstem (red), and brain regions that 

provide the largest fraction of direct input to the LC-NE neurons (dark gray arrows) and 

their respective neurotransmitters. Abbreviations: PAG, periaqueductal gray; VTA, 

ventral tegmental area; RN, raphe nucleus; POA, preoptic area; PPT, pedunculopontine 

tegmental nuclei; LDT, laterodorsal tegmental nuclei; PGi, nucleus paragigantocellularis; 

PrH, nucleus prepositus hypoglossi; SC, spinal cord; ORX, orexin; HIS, histamine; ENK, 

enkephalin; GLUT, glutamate; CRF, corticotropin releasing factor; Ach, acetylcholine; 

GABA, gamma-Aminobutyric acid; SER, serotonin. Figure adapted from Schwarz et al 

(2015).  
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Figure 2. The opposing regulation model of LC activity during acute stress. 

During acute stress, both CRF (red) and endogenous opioids (yellow) afferents to the LC 

are engaged. The net effect is a shift of LC activity towards high tonic activity that is 

associated with increased arousal, scanning attention, and behavioral flexibility. 

Endogenous opioids act as a restraint and facilitate recovery of neuronal activity to pre-

stress levels after the stress is terminated. Figure adapted from Valentino et al (2015).  
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CHAPTER 2: SEX DIFFERENCES IN µ-OPIOID RECEPTOR OF THE RAT 

LOCUS COERULEUS AND THEIR COGNITIVE CONSEQUENCES 

Abstract 

Stress-related neuropsychiatric pathologies are more prevalent in females compared with 

males. An important component of the stress response is activation of the locus coeruleus 

(LC)–norepinephrine system. Because LC activation is tempered by endogenous opioid 

release during stress, the magnitude of opioid regulation of the LC could determine stress 

vulnerability. Here we report convergent evidence for decreased µ-opioid receptor 

(MOR) function in the female rat LC. The selective MOR agonist, DAMGO (10 pg), 

completely inhibited LC discharge of male but not female rats and DAMGO (30 pg) 

produced no further inhibition of female LC neurons. Consistent with a decreased 

maximum DAMGO response, MOR protein, and mRNA expression were decreased in 

female compared with male LC. These molecular and cellular sex differences were 

associated with sexually distinct effects of LC-MOR activation on cognitive processing 

in an operant strategy-shifting task. Although DAMGO (10 pg intra-LC) increased the 

number of trials to reach criterion for both sexes, it increased the duration to complete the 

task and the total number of errors selectively in males. Specifically, DAMGO increased 

premature responses, regressive errors, and random errors in males and perseverative 

errors in females. The sexually distinct cognitive consequences of activating LC-MOR 

may contribute to sex differences in opioid abuse patterns and may guide sex-specific 

therapies. Finally, given evidence that endogenous opioids restrain stress-induced LC 

activation and promote recovery of activity to pre-stress levels, decreased MOR function 
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in the female LC could contribute to LC-NE over activity that underlies the hyperarousal 

symptoms of stress-related psychiatric diseases. 

Introduction 

Many neuropsychiatric diseases such as post-traumatic stress disorder (PTSD), 

and depression are nearly twice as prevalent in females compared to males (Kessler et al, 

1994; Kessler et al, 1995). These diseases have been associated with stress, suggesting 

that sex differences in prevalence arise from sex differences in stress response systems. In 

addition to sharing an association with stress, these disorders share symptoms of 

hyperarousal, implicating a common defect in arousal systems. The locus coeruleus-

norepinephrine (LC-NE) system is a major brain arousal system that is activated by 

stressors, and LC hyperactivity has been implicated in the altered arousal that 

characterizes stress-related psychiatric disorders (Wong et al, 2000). Therefore, the LC-

NE system is a site at which sex differences could be translated to differential 

vulnerability to stress-related psychiatric disorders.  

The LC is the principal source of norepinephrine in many forebrain regions that 

underlie cognition such as the cortex and the hippocampus (Swanson, 1976). During 

acute stress, LC neurons are activated by the stress-related neuropeptide, corticotropin-

releasing factor (CRF), and this is associated with enhanced arousal and cognitive 

flexibility (Snyder et al, 2012; Valentino et al, 2008). Interestingly, CRF antagonist 

administration prior to acute stress not only prevents LC activation but also reveals an 

underlying inhibition of LC neurons that is opioid-mediated (Curtis et al, 2001; Curtis et 

al, 2012). Axon terminals containing the endogenous opioid, enkephalin, densely 

innervate the LC, and LC neurons express µ-opioid receptors (MOR; (Drolet et al, 1992; 
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Pert et al, 1976a). MOR activation robustly inhibits LC discharge (Williams et al, 1984). 

Under basal conditions, opioid antagonists do not alter LC discharge, indicating that 

endogenous opioids are not tonically released into the LC. However, when administered 

prior to acute stress, opioid antagonists increase LC activation and prolong recovery time 

after stressor termination, suggesting that endogenous opioids in the LC function to 

restrain stress-induced activation, and to promote recovery of neuronal firing to baseline 

levels when the stressor is terminated (Abercrombie and Jacobs, 1988a; Curtis et al, 

2001; Curtis et al, 2012). Given the role of CRF in mediating stress-induced LC 

activation, sex differences in CRF signaling and trafficking in LC neurons (Bangasser et 

al, 2010) has been proposed as one mechanism underlying LC-NE dysregulation, and 

contributes to female vulnerability to stress-related psychiatric disorders. An additional 

mechanism by which the LC-NE system could become dysregulated is through decreased 

opioid inhibition. Consistent with this, analgesic studies in both humans and rodents 

provide evidence for decreased opioid sensitivity of females (Craft, 2003; Kest et al, 

2000b). On the basis of these observations, this study was designed to compare the 

neuronal and behavioral consequences of MOR activation in the LC of male and female 

rats. In addition, MOR protein and mRNA expression in the LC were compared.  

Materials and Methods  

 Subjects. Age-matched adult male and female Sprague Dawley rats (Charles 

River, Wilmington, MA) were shipped from the vendor at ~70 days of age. Experiments 

were conducted 1 week after arrival. Rats were singly housed in a climate controlled 

room with a 12-h light–dark cycle (lights on at 0700 hours). Food and water were freely 

available except as noted for behavioral experiments. Female rats were intact. Animal use 
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and care was approved by the institutional animal care and use committee of the 

Children’s Hospital of Philadelphia.  

 Electrophysiological Studies. Surgical and electrophysiological recording 

protocols were similar to those described previously (Curtis et al, 1997), (Supplementary 

Information). Rats were anesthetized with isofluorane and surgically prepared for 

recording LC single unit discharge. Double-barrel glass micropipettes were used for 

simultaneous recording and microinfusion of DAMGO ([D-Ala2, N-MePhe4, Gly-ol]-

enkephalin; Abcam, Cambridge, MA), a synthetic opioid peptide with high MOR 

specificity. LC activity was recorded before and after DAMGO administration 

(Supplementary Information). The effects of different DAMGO doses were compared 

between sexes using a two-way repeated measure ANOVA with time as the repeated 

measure. In addition, the area under the time-effect curve (0–300s after injection) for the 

10 pg dose was calculated and compared between sexes using a Student’s t-test (two 

tailed).  

 Western Blotting. Male and female rats were decapitated and brains quickly 

removed and frozen. Thick (1000µm) coronal sections containing the LC were cut on a 

cryostat and LC tissue punches were taken from these sections using a trephine. The 

tissue was processed for protein analysis by western blot as described (Curtis et al, 2006) 

(Supplementary Information). Membranes were probed for MOR and β-actin (1:1000 

rabbit anti-MOR, Invitrogen and 1:5000 mouse anti-β-actin, Sigma) as previously 

described (Bangasser et al (2010); Supplementary Information). The ratio of target 

protein (MOR) to loading control (β-actin) was calculated, and the mean ratios were 

statistically compared using an ANOVA. Characterization and specificity of the rabbit 
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MOR antiserum have been described (Cheng et al, 1996; Surratt et al, 1994; Van 

Bockstaele et al, 1996a). In addition, MOR antibody specificity was tested by probing rat 

heart lysates, which do not express MOR (Peng et al, 2012; Ventura et al, 1989) 

(Supplementary Figure 7).  

 Quantitative PCR Analysis of MOR mRNA. LC punches were collected as 

described above. LC tissue was lysed and homogenized according to manufacturer’s 

instructions in the PureLink RNA mini kit (AMBION, Life Technologies; Supplementary 

Information). Real-time PCR was performed using TaqMan gene expression assays with 

TaqMan universal PCR master mix (Applied Biosystems, Foster City, CA). Assays 

utilized were MOR (Oprm1, Rn01430371_m1) and GAPDH (Gapdh, Rn01775763_g1). 

Gene expression analysis was performed using the comparative CT (cycle threshold) 

method as described (Schmittgen and Livak, 2008). An ANOVA was used for sex 

comparisons.  

 Operant Strategy Shifting Assay. Male and female rats were implanted with a 

dual cannula guide (Plastic One Inc, Roanoke VA) for bilateral LC injections as 

previously described (Snyder et al, 2012). At least 4 days after surgery and 3 days prior 

to the start of training, rats were food restricted to 85% of their weight. Rats were trained 

and tested in an Operant Strategy Set Shifting Task (OSST) that was a modification of 

Floresco et al (2008) as previously described (Snyder et al, 2015); Supplementary 

Information). Rats were first trained to press one of two levers for food reinforcement on 

the first training day, and the opposite lever on the following day. On the third training 

day, stimulus lights that were located above both levers were illuminated for 15 seconds 

during which levers were randomly selected to deliver reward, and over many trials both 
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levers were equally likely to deliver a reward. Tests were conducted the following day 

during which rats received bilateral intra-LC microinfusions of either ACSF or DAMGO 

(3, 10 pg in 200 nl) delivered by a syringe pump 10 minutes prior to behavioral testing. 

The OSST has three stages that involve different forms of learning, a simple 

discrimination (SD), reversal learning (REV), and strategy shifting (SHIFT). Animals 

proceeded from one stage of the task to the next stage after achieving a criterion of eight 

consecutive correct presses, provided that at least 30 trials had been attempted. The 

minimum of 30 trials requirement ensured that each animal experienced sufficient trials 

for the transition from one type of discrimination to the next, and to ensure it was 

cognitively meaningful. During testing for all stages, only one of the stimulus lights 

above the levers was randomly illuminated. During the SD stage, reward was contingent 

on lever presses on the side opposite of the animal’s side bias (determined during 

training), and the location of the stimulus light was unrelated to the contingency. During 

the REV stage, reward was contingent on lever presses on the opposite lever. During the 

SHIFT stage, the correct lever was designated as the lever underneath the illuminated 

stimulus light. Upon reaching the criterion of eight consecutive correct presses in the 

SHIFT stage, the test ended and the animal was removed from the testing chamber. Dye 

was infused through the cannulae for histological identification of injection sites. Trials 

to criterion were recorded during each stage of the OSST. Error types within the shift to 

light stage of the OSST were characterized using logistic regression in order to determine 

whether treatments had an effect on the perseveration of the previous rule or the 

acquisition and maintenance of the new rule (Snyder et al (2015); Supplementary 

Information). Errors of omission and premature responses that occurred during the inter-
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trial interval were also calculated and the numbers of all total errors (perseverative, 

regressive, random, omission, and premature responses) were compared between groups. 

In addition, the duration to complete the strategy shifting stage and mean correct and 

incorrect response latencies for rats administered ACSF or DAMGO (10pg) were 

compared.  

 OSST Statistical Analysis. OSST data (trials to reach criterion) were first 

analyzed using a three-factor repeated measures ANOVA with dose and sex as between 

factors, and stage as the repeated measure. Each stage was then analyzed separately by a 

two-factor ANOVA to determine effects of dose, sex, and dose X sex interactions for 

each individual stage (SD, REV, and SHIFT). The Tukey’s HSD test was used post hoc 

to determine statistically significant differences between individual sex/dose groups. 

Total errors, error type, duration to complete the strategy shifting stage, and correct and 

incorrect response latencies were analyzed by a two-factor ANOVA with dose and sex as 

factors. To analyze regional specificity, the effect of accurate vs inaccurate DAMGO (3 

pg) injections and injections of ACSF on each stage of the set shifting task were analyzed 

for each sex individually using one way ANOVAs with Tukey’s HSD post hoc for 

individual comparisons. An alpha level of po0.05 was the maximum threshold for 

statistical significance. The 3 pg dose was chosen for this analysis rather than the 10 pg 

dose because there were an insufficient number of inaccurate injections in the 10pg group 

to provide sufficient power for the statistical comparison of that dose group.  

Estrous Cycle Monitoring. It was not the goal of this study to determine the role 

of gonadal hormones in MOR regulation of the LC; however, for electrophysiological 

studies, qPCR, and behavioral studies estrous cycle status was monitored by vaginal 
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cytology as previously described (Bangasser and Shors, 2008). For these studies, females 

were subdivided into those in relatively high (proestrus) or relatively low (estrus and 

diestrus pooled) estrus states, and the DAMGO effect determined in these specific 

groups.  

Results  

Decreased Sensitivity of Female LC Neurons to MOR–mediated Inhibition  

LC spontaneous discharge rates were comparable between males (2.10±0.2Hz, 

n=20cells/14 rats) and females (1.74±0.22Hz, n=26 cells/18 rats; F (1, 44) =1.4, p>0.05). 

Figures 3a and 3b show the time-course of the mean LC activity (expressed as a 

percentage of the baseline rate) before, during, and after DAMGO (0.1, 1, and 10 pg) 

microinfusion. No sex differences were found in the response to DAMGO (0.1 pg; F (1, 

68) =0.27, p=0.60) or DAMGO (1 pg; F (1, 99) =0.49, p=0.49). Notably, the 10 pg 

DAMGO dose completely suppressed LC firing in male but not female rats (Figures 3c 

and 3d). The mean inhibition of LC discharge rate produced by this DAMGO dose was 

different in males and females (F (1, 12) =15.281, p<0.002). To determine whether a 

higher dose of DAMGO could completely inhibit LC neurons of female rats, (30 pg, 10 

cells/ 6 rats) DAMGO was tested. The magnitude of inhibition produced by this dose in 

females was similar to that produced by the 10 pg DAMGO dose in females (F (1, 15) 

=0.088, p=0.77) and less than that produced by the 10 pg DAMGO dose in males (F (1, 

15) =4.30, p<0.047; Figure 3b). The sex difference was also apparent as a decreased area 

under the curve describing the effect over time (males: 23017±1105 vs females: 

15837±1541; p=0.005, Student’s t-test two tailed). The decreased effect of high doses of 

DAMGO on LC neuronal activity was true for both female rats in diestrus/estrus and 
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those in proestrus (Supplementary Figure 8). For this comparison, because most cells 

tested with DAMGO (10 pg) came from female rats in proestrus, data from these were 

pooled with cells from female rats tested with 30 pg DAMGO, which had a similar effect 

as 10 pg DAMGO in females and remained less than that produced by 10 pg in males 

(Supplementary Figure 8).  

Decreased MOR Expression in Female LC  

 The decreased maximum inhibition of LC activity produced by DAMGO in 

females suggested differences in MOR expression. Consistent with this, quantification of 

MOR protein in the LC using Western blot indicated lower levels in females (Figure 4). 

Figure 4a shows a representative western blot of MOR (green) and β-actin (red). The 

mean MOR: β-actin ratio was greater in male rats when compared to female rats (F (1, 

20) =4.5, p=0.045; each group n=11; Figure 4b). To determine whether sex differences in 

LC-MOR levels were related to differences in LC-MOR transcription, qPCR was used to 

quantify and compare MOR mRNA in the LC. Consistent with the Western blot analysis, 

the qPCR analysis revealed decreased levels of LC-MOR transcripts in females when 

compared with males (F (1, 26) =4.87, p=0.036; n=14 both groups; Figure 4c). Levels of 

transcripts were comparable in females that were in an estrus cycle stage of high estrogen 

(proestrus, 0.62 ± 0.17), or relatively low estrogen (diestrus or estrus pooled, 0.72 ± 0.17, 

p=0.71; Supplementary Figure 9).  

Sex Differences in the Behavioral Consequences of MOR Activation in the LC  

A total of 52 rats were implanted with dual intra-LC cannula and completed all 

stages of the OSST. Figure 5 shows the mean number of trials to reach the criterion for 

each stage of the task for males (Figure 5a) and females (Figure 5b) administered 
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DAMGO or vehicle. A three-factor ANOVA to test for main effects of dose and sex with 

stage as the within-subject factor revealed a main effect of the whole model (F (5, 

46)=5.3, p<0.0006), an effect of dose (F (2, 46)=11.4, p<0.001), an effect of stage (F (2, 

45)=46.5, p<0.0001), dose X stage interaction (F (4, 90)=6.9, p<0.001), and a trend for 

stage X sex X dose interaction (F (4, 90)=2.4, p<0.055) for trials to reach criterion 

(Figures 5a and 5b). Further analysis of individual stages revealed a trend for a main 

effect in SD (F (5, 51) =2.03, p=0.09), and a trend for a sex X dose interaction (F=3.2, 

p=0.051) such that DAMGO tended to facilitate SD performance in male rats. However, 

Tukey’s HSD post-hoc test did not indicate group differences. There was no main effect 

on REV (F (5, 51) =1.18, p=0.33). Analysis of behavior during the SHIFT stage revealed 

a main effect of the whole model (F (5, 51) =6.03, p<0.0002), and an effect of dose 

(F=13.5, p<0.0001) such that 3 pg and 10 pg DAMGO increased the number of trials to 

reach criterion. There was no significant sex X dose interaction (F=2.1, p=0.14). An 

examination of behavioral results broken down into proestrus and estrus/diestrus groups 

suggested that results were comparable regardless of estrus status (Supplementary Figure 

10).  

Although there was no sex difference in the number of trials to reach criterion for 

the strategy-shifting task, male rats took significantly longer to complete this stage after 

DAMGO (10 pg) (Table 1). Specifically, there was a significant main effect (F (3, 33) 

=3.97, p=0.017), an effect of dose (F=8.4, p<0.006), and sex X dose interaction (F=4.8, 

p<0.03; p<0.05, Tukey’s HSD). This was not likely the result of decreased motivation 

because there was no sex difference in the duration to complete the reversal stage. 

Females administered ACSF or DAMGO (10 pg) took 1135 ± 162 sec and 1334 ± 247 
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sec, respectively to complete the REV stage and males took 1050 ± 202 sec and 1202 ± 

271 sec after ACSF and DAMGO (10 pg), respectively (F (3, 33) =0.28, p=0.8). The 

increased duration for males to complete the task was also not due to increased response 

latency as this was unaffected by dose and was comparable between sexes (Table 1). 

Rather, males made more total errors (F (3, 33) =6.7, p<0.005; Figures 5c and 5d). There 

was an effect of dose on total errors (F (1, 33) =15.8, p<0.0005), and a sex X dose 

interaction (F (1, 33) =5.5, p<0.02) indicating that DAMGO (10 pg) increased total errors 

selectively for males. A detailed analysis of error type indicated that the number of 

omitted trials was comparable between males and females (F (3, 33) =1.3, p=0.29; 

Figures 5e and 5f). DAMGO (10 pg) increased premature responding (Main effect: F (3, 

33) =5.9, p<0.005, dose effect: F (1, 33) =13.5, p<0.001) and there was a trend for a sex 

X dose interaction: F (1, 33) =3.3, p=0.07). A Tukey’s HSD post-hoc test indicated that 

compared with vehicle, DAMGO (10 pg) increased premature responses in males and not 

females (p<0.05 Tukey’s HSD; Figures 5c and 5d). DAMGO (10 pg) also promoted 

different error types during the SHIFT trials depending on sex. For males, DAMGO (10 

pg) increased regressive and random errors (Figure 5e). There was a main effect of 

treatment for regressive errors (F (3, 33) =4.7 p<0.01), and a sex X dose interaction (F (1, 

33) =11.4, p<0.005). Likewise, for random errors, there was a main effect of treatment (F 

(3, 33) =3.3 p<0.05) and a sex X dose interaction (F=6.7, p<0.05) such that DAMGO 

increased regressive and random errors selectively in male rats when compared with 

vehicle control (p<0.05, Tukey’s HSD, both error types). In contrast, DAMGO (10 pg) 

increased perseverative errors in females (Figure 5f). There was a significant main effect 

of treatment (F (3, 33) =8.7 p=0.0003) and a sex X dose interaction (F=6.8, p<0.05) such 
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that 10 pg DAMGO increased perseverative errors selectively in female rats when 

compared with vehicle control (p<0.05, Tukey’s HSD).  

Regional Specificity  

The behavioral effects of DAMGO were regionally localized to the LC. Figure 6a 

shows representative histology of an accurate bilateral injection into the LC in a rat that 

was administered 3 pg DAMGO. Because most of the 10 pg DAMGO injections were 

accurate (Supplementary Figure 11), only the effects of accurate vs inaccurate injections 

of the 3 pg dose were statistically compared (Figures 6b–6d). DAMGO injections outside 

of the LC had no effect on performance in any task stage for either males or females 

(Figures 6c and 6d). For males there was an effect of placement on SD performance (F 

(2, 21)=6.9, p<0.01) and SHIFT performance (F (2, 21)=8.5, p<0.005). Post hoc 

comparisons revealed that only rats that received accurate injections were impaired 

compared with the ACSF group (p<0.05, Tukey’s HSD; Figure 6c). Likewise, only 

female rats administered DAMGO (3 pg) into the LC required a greater number of trials 

to reach criterion during the SHIFT stage compared with females administered ACSF (F 

(2, 28) =4.2, p<0.05, p<0.05 Tukey’s HSD test; Figure 6d).  

Discussion  

The present study provided convergent cellular, molecular, and behavioral 

evidence for decreased MOR function in the LC of female compared with male rats. At a 

cellular level, postsynaptic responses of LC neurons to relatively high DAMGO doses 

were attenuated in female compared with male rats. Consistent with a decreased 

maximum response to a MOR agonist, quantification of MOR protein and mRNA in LC 

tissue indicated decreased MOR expression in female compared with male LC tissue. 
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Notably, these molecular and cellular sex differences were associated with sexually 

distinct behavioral consequences of LC-MOR activation. Thus, a DAMGO dose that 

completely inhibited LC neuronal activity of male but not female rats significantly 

increased the time to complete the strategy shifting stage selectively in males as a result 

of increasing the total number of errors. DAMGO produced sexually distinct cognitive 

effects that were expressed as differences in error types during strategy shifting 

performance. Sex differences in the effects of LC-MOR activation on cognitive 

processing may be relevant for sex differences in opioid abuse. The findings agree with 

evidence for decreased MOR function in females from analgesia and receptor signaling 

studies (Craft, 2003; Kest et al, 2000b; Wang et al, 2014). Given the evidence for an 

inhibitory influence of endogenous opioids in the LC that restrains stress-induced LC 

activation and promotes recovery of LC activity to pre-stress levels, the decreased MOR 

function in the female LC could contribute to LC-NE over activity that underlies 

hyperarousal symptoms of stress related psychiatric diseases (Gold et al, 2002; Wong et 

al, 2000). This may have a role in the greater prevalence of stress-related psychiatric 

disorders in females.  

Sex Differences in LC Neuronal Responses to MOR Activation  

Anatomical and physiological evidence implicate the enkephalin-MOR system as 

an important inhibitory regulator of LC activity (Drolet et al, 1992; Pert et al, 1976a; 

Williams et al, 1984). This regulation is not tonically active because opioid antagonists 

do not alter LC spontaneous discharge rates (Abercrombie et al, 1988a; Valentino et al, 

1989). Rather, it becomes engaged during acute stress where it functions to counter LC 

activation and promote recovery with stressor termination (Curtis et al, 2001; Curtis et al, 
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2012). Identification of individual differences in MOR regulation of the LC is therefore 

important as this can determine the magnitude and duration of the LC-NE response to 

stress. Human and rodent studies report a decreased sensitivity of females to opioid-

induced analgesia, behavioral suppression, tolerance, and dependence (Craft, 2003; Kest 

et al, 2000b). This has been attributed in part to decreased MOR expression and MOR-G-

protein coupling (Loyd et al, 2008; Murphy et al, 2009; Wang et al, 2014). However, 

these sex differences are regionally specific and there have been no studies of sex 

differences in MOR in the LC. As previously reported, there were no sex differences in 

baseline LC spontaneous discharge rate (Curtis et al, 2006). Although DAMGO produced 

the characteristic LC inhibition in both sexes, the maximum magnitude of inhibition was 

significantly less in females, even when the dose was increased beyond that which 

completely inhibited male LC neurons. The decreased maximal effect suggests decreased 

LC-MOR levels in the female rather than a decrease in agonist affinity.  

Molecular Basis for Sex Differences in LC Post-synaptic Responses to a MOR 

Agonist  

Protein quantification by western blot confirmed decreased MOR protein in the 

LC of female compared with male rats. The interpretation of this finding relies on the 

specificity of the MOR antibody. Characterization and specificity of the rabbit antiserum 

against the MOR protein have been described previously (Cheng et al, 1996; Surratt et al, 

1994; Van Bockstaele et al, 1996b). In addition, antibody specificity was tested using 

heart tissue, which does not express MOR protein (Peng et al, 2012; Ventura et al, 1989) 

(Supplementary Figure 7). Decreased MOR expression in female compared with male 

rats has been documented in other brain regions including the periaqueductal gray (Loyd 
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et al, 2008), and the rat anterior pituitary gland (Carretero et al, 2004). Quantitative PCR 

corroborated the interpretations of the western blot studies and suggested that decreased 

MOR transcription underlies decreased MOR protein.  

Sex Differences in Behavioral/Cognitive Endpoints of MOR Activation in the LC  

Importantly, sex differences in MOR expression and cellular function in the LC 

were reflected as differences in the behavioral consequences of LC-MOR activation. The 

LC regulates cognitive flexibility through its projections to the prefrontal cortex (PFC). 

The relationship between LC activity and PFC function is hypothesized to resemble an 

inverted U-shaped curve whereby PFC function is optimal at moderate levels of LC 

activity. However, excessive LC drive impairs cognitive flexibility as a result of the 

interaction of higher levels of norepinephrine with lower-affinity adrenergic receptors 

(Arnsten, 2011). CRF, at doses that produce a moderate activation of LC neurons, 

facilitates cognitive flexibility in an attentional set-shifting task. However, this effect 

reverses as the CRF dose is increased (Snyder et al, 2012). Because stress also engages 

enkephalin release in the LC, which could counter the effects of CRF, it is important to 

understand how this could impact cognitive flexibility. Our electrophysiological and 

molecular findings predicted an enhanced behavioral response to relatively high doses of 

DAMGO in the LC in males compared with females, particularly in the strategy shifting 

stage. Although the highest DAMGO dose had similar effects on the number of trials to 

reach criterion in this stage, males took significantly more time to complete this stage. 

The increased duration could not be attributed to an increase in response latency once a 

trial started or solely to trial omissions. Rather, this was due to an increase in total errors 

made by males and particularly premature responses, which are indicative of impulsive 
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behavior. This is consistent with reports of opioid elicited impulsive behavior in rodents 

in behavioral tasks such as the 5-choice serial response time task (5-CSRTT), the 

response inhibition task, and the decrease in motor impulsivity in MOR-knockout mice 

(Mahoney et al, 2013; Olmstead et al, 2009; Pattij et al, 2009). As these previous studies 

examined only males, the present findings suggest that this may be a male-biased effect 

that involves the LC norepinephrine system.  

In addition to increases in premature responding, DAMGO (10 pg) also increased 

regressive and random errors selectively in males, indicative of an inability to acquire and 

maintain the new strategy (Floresco et al, 2008). In contrast, females administered 

DAMGO made more perseverative errors, which are indicative of an impaired ability to 

shift from a previously learned rule. Taken together with evidence for decreased LC-

MOR receptor expression and physiological function, the data suggests that the ability to 

shift from a previously learned rule may be more sensitive to disruption by LC-MOR 

activation than facilitation of impulsive behavior, or impairment in the ability to learn a 

new strategy, which may require greater LC-MOR occupancy and LC inhibition.  

Implications  

The present findings suggest that the ability of endogenous opioids to buffer LC 

activation during stress, and to promote recovery would be less effective in females. A 

decreased opioid influence in the LC in females would converge with increased CRF 

receptor signaling to produce an enhanced arousal response to stressors that could 

contribute to a greater prevalence of stress-related psychiatric disorders in females. 

Several studies provide evidence that the effects of endogenous opioids released during 

stress are attenuated in females compared with males. For example, stress-induced 
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opioid-mediated analgesia (Kavaliers and Innes, 1987; Mogil et al, 1993; Romero and 

Bodnar, 1986), naloxone-induced freezing after stress (Klein et al, 1998) and naloxone-

precipitated withdrawal in rats with a history of stress (Klein et al, 1997) are all greater in 

males compared with females. The results also have implications for the treatment of 

post-traumatic stress disorder (PTSD). Morphine administration during trauma care is 

associated with a decreased incidence of PTSD, particularly the arousal symptom cluster 

(Bryant et al, 2009; Holbrook et al, 2010; Stoddard et al, 2009). The present findings 

predict that this course of treatment would be less effective in females. Finally, sex-

specific effects of LC-MOR activation on cognitive processing are relevant for 

understanding sex differences in opioid abuse, and for designing sex-specific treatments. 

The greater promotion of impulsive behavior in males may facilitate an earlier onset of 

abuse. The high rate of perseverative responding in females suggests that once the cycle 

of opioids abuse begins, it may be more difficult to reverse in females. This is consistent 

with the findings that once initiated, substance abuse accelerates at a faster pace in 

females compared with males, craving is more severe, and it is more difficult to quit 

(Back et al, 2011; Becker and Hu, 2008). The present findings underscore the potential 

for sex specific treatment of opioid abuse based on pharmacological and/or cognitive 

therapies that target different cognitive dimensions.  
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Figures and Legends 

	
  

Figure 3. Dose-related inhibition of locus coeruleus (LC) neuronal discharge rate by 

DAMGO (D-Ala2, N-MePhe4, Gly-ol]-enkephalin) in male and female rats.  

(A and B) Line graphs show the time course of DAMGO effects on LC discharge rate. 

The abscissae indicate time (s) before and after DAMGO, which was administered at 

time=0. The ordinates indicate LC discharge rate expressed as a percentage of the 

baseline rate before DAMGO. For 0.1 pg: males (n=6 cells/3 rats), females (n=3 cells/3 

rats); for 1 pg: males (n=7 cells/6 rats), females (n=6 cells/4 rats); for 10 pg: males (n=7 

cells/5 rats), females (n=7 cells/5 rats); for 30 pg females (n=10 cells/6 rats). (C and D) 
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Representative ratemeter records from a single locus coeruleus neuron of a (C) male and 

(D) female rat before and after DAMGO 10 pg microinfusion into the LC (indicated by 

the bars above the traces). 
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Figure 4. Sex differences in locus coeruleus-µ-opioid receptor (LC-MOR) protein 
and mRNA.  

(A) Blots represent the MOR protein band (green) and β-actin band (red) as a loading 

control of LC-tissue punches from male (M) and female (F) rats. Note that the contrast 

was increased selectively around the molecular weight ladder to be able to visualize it. 

(B) Bars indicate the mean ratio of the integrated intensity of each band of MOR protein 
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to the corresponding band of β-Actin as loading control from the same samples (n=11, 

each group). (C) Bars indicate relative quantification (RQ) of the MOR gene in the LC. 

Data are represented as the mean ± SEM ;( n=14, each group). GAPDH was used as an 

endogenous control. *p<0.05.  
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Figure 5. Sex differences in behavioral consequences of activating µ-opioid receptor 
(MOR) in the locus coeruleus (LC).  

(A and B) Effects of ACSF and DAMGO (D-Ala2, N-MePhe4, Gly-ol]-enkephalin; 3 pg 

and 10 pg) bilaterally infused into the LC of male (A) and female (B) rats on performance 
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in the operant strategy set-shifting task. The bars represent the mean number of trials 

necessary to reach the criterion for side discrimination, side reversal, and shift to light 

stages of the task. Vertical lines represent SEM. The number of subjects is indicated in 

the graph legend. Asterisks above the bars indicate that both DAMGO doses were 

associated with increased trials to reach criterion compared to ACSF (p<0.05). (C and D) 

The bars represent the mean number of total errors and mean number of premature 

responses in male (C) and female (D) rats administered ACSF or DAMGO (10 pg). 

Asterisks indicate an effect of DAMGO over ACSF for the same sex (p<0.05, Tukey’s 

HSD). (E and F) Analysis of error types in the shift stage in male (E) and female (F) rats. 

The bars indicate the mean number of each error type. Vertical lines represent SEM. 

Asterisks indicate a significant effect of DAMGO compared with ACSF for the same sex 

group (p<0.05, Tukey’s HSD). #p=0.05 (Tukey’s HSD) compared with effect of 

DAMGO in females.  
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Figure 6. Regional specificity of DAMGO (D-Ala2, N-MePhe4, Gly-ol]-enkephalin) 

effects on strategy shifting.  

(A) Photomicrograph of a Neutral Red counterstained section through the LC showing 

histological verification of the injection site from a representative animal that was 

injected with DAMGO. The arrowhead points to the LC and the arrow points to the dye, 

which is localized to the LC (Cb, cerebellum; V, ventricle). (B) Plots of accurate (circles) 

and missed (squares) injection sites for DAMGO (3 pg) for males (black) and females 

(red). DAMGO effects from these cases were used for the graphs in C and D. (C) 

Comparison of the effects of DAMGO (3 pg) microinfused into the LC of male rats (in, 

n=8), outside of the LC (out, n=5), and ACSF (n=9) on performance in different 

components of the OSST. The bars indicate the number of trials necessary to reach the 

criterion for each stage. Vertical lines represent SEM. Asterisks indicate a significant 
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difference compared with both the ACSF and DAMGO out groups (p<0.05). (D) 

Comparison of the effects of DAMGO (3 pg) microinfused into the LC of female rats (in, 

n=10), outside of the locus coeruleus (LC; out, n=5) and ACSF (n=14) on performance in 

different components of the OSST. The bars indicate the number of trials necessary to 

reach the criterion for each stage. Vertical lines represent SEM. #p<0.05 compared with 

ACSF.  
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Table 1. Effects of DAMGO on the Duration to Complete the SHIFT Stage of the Task 

and Response Latencies 

Sex Treatment Duration (s) Correct 
Response 
Latency (s) 

Incorrect 
Response Latency 
(s) 

Male (9) ACSF 1358+206 4.5+0.5 3.7+0.36 

Male (5) DAMGO 4112+859* 4.3+0.3 3.1+0.2 

Female (14) ACSF 2444+468 4.7+0.3 3.9+0.3 

Female (6) DAMGO 2834+458 4.4+0.3 3.4+0.2 

 
For stage duration: main effect: F (3, 33) =4.0, p<0.02, Treatment effect: F (1, 33) =8.4, 

p<0.01, sex X treatment interaction: F (1, 33) =4.8, *p<0.05; p<0.05 Tukey’s HSD Male 

DAMGO>Male ACSF.  

For correct response latency: main effect: F (3, 33) =0.15, p=0.93.  

For incorrect response latency: main effect: F (3, 33) =0.68, p=0.57.  

The bold value highlights that this is significantly different from the ACSF control. 



 
	
  

56	
  

Supplemental Information  

Supplemental Methods  

 Electrophysiological Studies. Rats were anesthetized with a 2% isoflurane-in-air 

mixture administered through a nose cone and positioned in a stereotaxic instrument. 

Anesthesia was maintained at 1.0-1.5% throughout the experiment and body temperature 

was maintained at 37.5 C by a feedback controlled heating pad. Animals were positioned 

in a sterotaxic instrument and a craniotomy was performed 1.2 mm lateral to the midline 

and 3.6 mm caudal to lambda. The recording glass micropipette (2-4 um diameter tip, 4-7 

Ohm) was filled with 0.5 M sodium acetate buffer saturated with 2% pontamine sky blue 

dye (PSB). The microinfusion pipette (60-90 um diameter tip) was angled at 30-45 

degrees with the tip of the pipette 130-150 um dorsal to the tip of the recording pipette. 

Both pipettes were glued using a photo-polymerizing resin (Silux, 3M Dental Products, 

St. Paul, MN). DAMGO intra-LC infusions were made by applying pulses of pressure to 

the microinfusion pipette (15-25 psi, duration 10-30 ms) at a frequency of 0.2-1.0 Hz to 

deliver a total microinfusion volume of 30 nl. Neuronal signals were amplified, filtered, 

and monitored with an oscilloscope and a loudspeaker for localization of the LC. LC 

neurons were tentatively identified by their spontaneous discharge rates (0.5-5.0 Hz). LC 

single unit activity was recorded before, during, and after DAMGO microinfusion [0.1, 

1.0, or 10.0 pg]. Only female rats were tested at [30.0 pg]. Only one dose of DAMGO 

was tested on a single cell in an individual rat. The recording site was marked by 

iontophoresis of PBS (-15 µA, 15 min) at the end of the experiment. Brains were 

removed, and frozen 30 µm-thick coronal sections were cut on a cryostat before being 
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mounted on gelatinized glass slides. The sections were stained with neutral red dye for 

localization of the PSB spot.  

 Western Blotting. LC tissue punches were homogenized and centrifuged. Protein 

content was determined using the BCA method. Protein extracts (10 µg) were subjected 

to SDS-PAGE gel electrophoresis and then transferred to polyvinylidene fluoride 

membranes (Immobilon-FL) as described (Curtis et al, 2006). Membranes were blocked 

with Odyssey buffer (diluted in PBS 1:1) and incubated with specific primary antibody 

overnight at 4o C to detect MOR (1:1000, rabbit anti-MOR, Invitrogen). Following 

rinsing, membranes were incubated with infrared fluorescent secondary antibodies for 

one hour (1:5000, donkey anti rabbit IRDye 800CW, LiCor, Lincoln, NE). Membranes 

were scanned, and proteins were detected using the Odyssey Infrared Imaging System 

(LiCor). Following quantification of the target protein (MOR), membranes were 

incubated with the β-actin antibody (1:5000, mouse anti-β-actin, Sigma) for 90 minutes at 

room temperature and a fluorescent secondary antibody with a different infrared 

wavelength for one hour (1:5000 donkey anti-mouse IRDye 680CW, LiCor). Molecular 

weights were determined using the Biorad Precision Plus Protein Standards.  

 Quantitative Polymerase Chain Reaction (PCR) Analysis of MOR mRNA. 

LC tissue punches lyses and homogenizations. Samples were homogenized with mortar 

and pestle in a Lysis buffer and a series of washing buffers (AMBION, Life 

Technologies). DNA treatment was performed using the final RNA product plus DNAse 

1 buffer and DNAse1 (AMBION, Life Technologies). Following RNA purification, 

integrity of the samples was measured by spectrometry. All samples had A260/280 ratios 

between 1.8-2.0. cDNA synthesis was performed using a High capacity cDNA reverse 
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transcription kit (Applied Biosystems, Foster City, CA). The cDNA samples were then 

diluted to a concentration of 20 ng/µl and stored for real-time PCR.  

Real Time PCR. Each well consisted of a total volume of 20 µl reaction mixture 

containing 10 µl of universal master mix, one µl of gene expression assay, 2 µl of cDNA 

and 7 µl of RNAse-free H2O (QIAGEN, Germany). Each sample was loaded onto 96-

well plates and run in triplicates. Reactions were performed using an AB1 7500 Real-

time PCR System (Applied Biosystems, Foster city CA) under the manufacturer’s 

recommended settings.  

 Operant Chamber. Each box was equipped with a fan to provide air ventilation 

and block out potentially distracting outside noises. Each chamber contained two levers 

on either side of a food receptacle where grain-based food pellet rewards (45 mg; 

BioServ, Frenchtown, NJ, USA) could be delivered. A stimulus light was positioned 

above each lever, and a house light was positioned top-center on the wall opposite the 

levers. Data was recorded and stored onto a PC computer via an interface module. 

 OSST Training. Rats were first trained to press one of two levers for food 

reinforcement with one press resulting in food presentation. On the following day, rats 

were trained to press the lever opposite to the one from the first day for food 

reinforcement. On the third training day, rats were introduced to the trial structure of the 

task, under conditions with no discernable rule. On each trial, the house light and both 

stimulus lights were illuminated for 15 seconds during which rats could press one of the 

two levers for food reward. One of the two levers was randomly selected to deliver 

reward one, three, or five trials in a row, such that over many trials both levers were 

equally likely to deliver a reward. This was done to encourage animals to press both 
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levers during training while not allowing them to use spatial or light cues to reliably 

predict which lever would deliver a reward. If the correct lever was pressed within 15 

seconds of trial initiation, a single reward pellet was delivered and all lights remained 

illuminated for 3 seconds followed by darkness for a 5-seconds timeout before initiation 

of the next trial. If the incorrect lever was pressed within 15 seconds of trial initiation, no 

reward was delivered and all lights were immediately shut off for a 10 second timeout 

before initiation of the next trial. If neither lever was pressed within 15 seconds of trial 

initiation, all lights were shut off for a 5-seconds timeout before initiation of the next 

trial. Additionally, if either lever was pressed during a dark timeout period, the initiation 

of the following trial would be reset to occur 5 seconds after the time of this lever press. 

Trials continued until an animal achieved 50 correct trials. Each animal’s side bias was 

determined to be toward the lever on the side that the animal pressed on the majority of 

trials. The following day was the testing day.  

 MOR antibody specificity controls. The MOR antibody (1:1000, rabbit anti-

MOR, Invitrogen) used for protein quantification was tested for specificity using cortical 

and heart tissue. The MOR protein is not expressed in the rat heart (Wittert et al, 1996) 

whereas, it is abundantly expressed in cortex. 
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Supplemental Figures and Legends 

 

	
  

Figure 7. MOR antibody specificity control.  

A Representative blot, A) Black and white, and B) Odyssey Infrared Imaging System 

(LiCor) showing MOR protein (green) and GAPDH (red) immunoreactive bands (52 and 

37 KDa, respectively) from cortical and heart tissue. The antibody against MOR detected 

the protein in cortex but not in heart lysates. The same blots were probed to detect 

GAPDH to confirm that the protein was loaded in the cortical and heart lanes. GAPDH 

was detected in cortical and heart lysates of the same blot.  
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Figure 8. Effect of intra-LC DAMGO on LC firing rate in male rats and female rats 
at different estrogen statuses.  

Bar graphs show the magnitude of the effect of DAMGO on LC discharge rate 

represented as the area under the curve of the percent change from baseline after 

DAMGO microinfusion into the LC. Males were administered 10 pg DAMGO (7 cells/5 

rats). Because all but 2 female rats that were administered 10 pg DAMGO were 

proestrus, the effects of the 10 pg and 30 pg doses were pooled. Red bars are the mean of 

11 cells/6 rats in proestrus. Five of the cells were exposed to 10 pg and 6 were exposed to 

30 pg. Blue bars are the mean of 6 cells/5 rats in diestrus/estrus. Two of these cells were 

exposed to 10 pg and 4 were exposed to 30 pg. The mean AUC was greater in males 

when compared to female groups at either high or low estrogen (One Way ANOVA: F (2, 

23) =3.88 p=0.036, *p<0.05 compared to both female groups, Student’s t-test two tailed). 

The inhibition produced by DAMGO in males was greater than that produced in females 
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regardless of estrogen status and even though many of the female neurons were exposed 

to a higher concentration of DAMGO.  

 

	
  

Figure 9. LC-MOR mRNA levels in males and females at relatively different 
estrogen levels.  

Bars indicate relative quantification (RQ) of the MOR gene in the LC. Data are 

represented as the mean (SEM). GAPDH was used as a loading control. Levels of 

transcripts were comparable in females in an estrus cycle stage of high estrogen 

(proestrus, 0.62+0.17, n=6), or relatively low estrogen (diestrus or estrus pooled, 

0.72+0.17, p=0.71, n=8). For males, n=14.  



 
	
  

63	
  

 

	
  

Figure 10. Effects of DAMGO on performance in the operant strategy set-shifting 
task (OSST) in females at different estrogen levels.  

Effects of ACSF and DAMGO (3 pg and 10 pg) bilaterally infused into the LC on 

performance in the OSST in females. Female groups were broken down into relative 

HIGH (proestrus) and LOW (diestrus/estrus pooled) estrogen levels. The bars indicate the 

mean number of trials necessary to reach the criterion for side discrimination (SD), side 

reversal (REV), and shift to light (SHIFT) stages of the task. Vertical lines represent 

SEM. The number of rats for each group is shown in the graph legend.  
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Figure 11. Location of 10 pg DAMGO infusions in and outside the LC.  

The location of infusions was reconstructed onto figure 60 from Paxinos (1986). Black 

filled circles represent infusions within the LC in males. Black filled squares represent 

infusions outside of the LC in males. Red filled circles represent infusions within the LC 

of females. Red filled squares represent infusions outside of the LC in females (Cb, 

cerebellum; V, ventricle).  
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CHAPTER 3: µ-OPIOID RECEPTOR ACTIVATION IN THE LOCUS 

COERULEUS INCREASES SYNCHRONIZATION OF THE MALE, BUT NOT 

FEMALE MEDIAL PREFRONTAL CORTEX  

Abstract  

Stress-related neuropsychiatric pathologies are more prevalent in females compared with 

males. Activation of the locus coeruleus (LC)-norepinephrine (NE) system is a 

component of the stress response that is thought to affect cognition. Evidence suggests 

that endogenous opioid neuropeptides are released during stress to restrain LC activation, 

and to facilitate a return to baseline activity when the stressor ends. Sex differences in 

this opioid influence could be a basis for sex differences in stress vulnerability. We 

previously demonstrated a decrease in µ-opioid receptor (MOR) mRNA and protein in 

the LC of female compared to male rats. As a result, LC neurons of female rats were less 

sensitive to inhibition by the µ-opioid receptor (MOR) agonist, DAMGO. Given that the 

LC-NE system affects cognitive function through its projections to the medial prefrontal 

cortex (mPFC), the present study determined whether LC-MOR activation translates to 

changes in mPFC neural activity, and whether there are sex differences in this effect. 

Local field potential (LFPs) were recorded from the mPFC of freely behaving male (n=4) 

and female (n=4) rats before and following local LC microinjection of DAMGO (10 pg). 

LFPs were analyzed as power spectral density plots and the power at different frequency 

bands (delta 2-4 Hz, theta 4-8 Hz, alpha 8-12 Hz, and beta 12-20 Hz) was analyzed and 

compared between sexes. Intra-LC DAMGO resulted in a time-dependent 

synchronization of mPFC activity in male but not female rats. Specifically, DAMGO 

increased synchronization in delta and alpha frequency bands. LC microinfusion of 



 
	
  

76	
  

ACSF had no effect on mPFC activity in either male or female rats. Together, the results 

are consistent with previous evidence for decreased MOR function in the LC of female 

rats and demonstrate that this translated to a diminished effect on cortical activity. 

Decreased LC-MOR function in females could contribute to greater stress-induced 

activation of the LC, and increased vulnerability of females to hyperarousal symptoms of 

stress-related neuropsychiatric pathologies.  

Introduction  

Stress-related neuropsychiatric pathologies are more prevalent in females relative 

to males. For example, post-traumatic stress disorder (PTSD), and depression are nearly 

two times more prevalent in females when compared with males (Kessler et al, 1994; 

Kessler et al, 1995). These neuropsychiatric diseases are strongly associated with stress 

and symptoms of hyperarousal (Wong et al, 2000). It is hypothesized that sex differences 

in the prevalence of these stress-related neuropsychiatric diseases may be related to 

differences in brain arousal systems and their regulation by stress. The major brain 

norepinephrine (NE) nucleus, locus coeruleus (LC), is involved with arousal and 

cognitive responses to stress and it is thought that the LC-NE system is dysregulated in 

these stress-related psychiatric diseases. The LC is the principal site for NE synthesis in 

the brain, and is the only source of NE in regions that are important in cognition such as 

the cortex and hippocampus (Abercrombie et al, 1988b; Morrison et al, 1978; 

Waterhouse et al, 1983). The LC neuronal discharge rate is positively correlated with 

arousal state (Aston-Jones et al, 1981a; Berridge et al, 1991; Berridge et al, 1993) and 

LC hyperactivity is thought to underlie the core feature of hyperarousal that characterizes 
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stress-related neuropsychiatric diseases (Gold and Chrousos, 1999; Gold et al, 1996; 

Koob, 1999; O'Donnell et al, 2004).  

Electrophysiological studies have demonstrated that during acute stress, LC 

neurons are co-regulated in an opposing manner by the stress-related neuropeptide 

corticotropin releasing factor (CRF), which mediates excitation of LC neurons, and 

endogenous opioids, which inhibit LC neurons, with CRF excitation predominating 

(Curtis et al, 2001; Curtis et al, 2012). LC activation produced by CRF during stress has 

been associated with increased arousal and cognitive flexibility (Snyder et al, 2012; 

Valentino et al, 2008). On the other hand, endogenous opioids during stress, temper 

CRF-mediated activation of the LC via the µ-opioid receptors (MOR) that are expressed 

in LC neurons (Pert et al, 1976a), and promotes LC recovery when the stressor ends. Sex 

differences could be expressed through differences in sensitivity to either CRF or to 

endogenous opioids. Any sex differences in the opposing regulation of the LC-NE system 

could be translated to differences in stress-sensitivity, and vulnerability to stress-related 

psychiatric disorders. In a prior study, it was established that sex differences in CRF 

signaling and trafficking in LC neurons of females (Bangasser et al, 2010) render females 

into a dysregulated state of stress reactivity and could be linked to the development of 

stress-related psychiatric disorders. In addition to this mechanism, decreased opioid 

inhibition in the LC-NE system can contribute to vulnerability to stress-related illnesses.  

We previously demonstrated that female rat LC neurons express less µ-opioid 

receptor (MOR) mRNA and protein compared to males. Because of these molecular 

changes in the LC, female rats are less sensitive to inhibition by the µ-opioid receptor 

(MOR) agonist, DAMGO(Guajardo et al, 2017). Notably, the LC-NE system affects 
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cognitive function through its projections to the medial prefrontal cortex (mPFC) 

(Loughlin et al, 1986; Swanson et al, 1975), and stress-related dysfunctions in this 

pathway are hypothesized to impair cognitive flexibility(Arnsten, 2009; Birnbaum et al, 

1999). The molecular and cellular sex differences found in the LC were associated with 

sexually distinct effects of LC-MOR activation on performance and cognitive processing 

in an operant strategy-shifting task. On the basis of these observations, this study was 

designed to determine how these molecular and cellular sex differences of the LC-MOR 

system translates to changes in neural activity in PFC regions that guide cognitive 

strategies.  

Materials and Methods  

Animals 

Adult male (n=4) and female (n=4) Sprague Dawley rats (Charles River, 

Wilmington, MA) were shipped from the vendor at ~70 days of age. Experiments were 

conducted 1 week after arrival. Rats were singly housed in a climate controlled room 

with a 12-h light–dark cycle (lights on at 0700 hours). Food and water were freely 

available. Female rats were intact. Animal use and care was approved by the institutional 

animal care and use committee of the Children’s Hospital of Philadelphia.  

Surgery  

Male and female rats were implanted with a single cannula guide into the LC (26 

gauge, Plastics One, Roanoke, VA). Rats were anesthetized with isofluorane (2%) and 

positioned in a stereotaxic instrument with the head tilted at a 15º angle to the horizontal 

plane (nose down). A hole was drilled centered at LC coordinates relative to lambda: AP 

-3.6 mm, ML ±1.1 mm, and the guide cannula was lowered to 5.0 mm below brain 
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surface. The guide cannula was affixed to skull and skull screws with cranioplastic 

cement. An obdurator was inserted into the guide cannula to prevent occlusion. During 

the same surgery, a depth electrode (100 µm) (Microprobes for life science, Gaithersburg, 

MD) was implanted in the mPFC (+3.2 AP, -0.6 ML, 3.0 DV) ipsilateral to the LC-

cannula guide for recording local field potentials (LFP). A ground wire was attached to 

the skull and skull screws. Animals were allowed 5 days to recover before experimental 

manipulations.  

Drugs for intra-LC microinjections  

Drugs used for intra-LC microinfusion were DAMGO ([D-Ala2, N-MePhe4, Gly-

ol]-enkephalin; Abcam, Cambridge, MA), a synthetic opioid peptide with high MOR 

specificity and clonidine HCl (Sigma, St Louis, MO). These compounds were aliquoted 

and concentrated using a Speed Vac and stored at -20oC before experimental procedures. 

On the day of the experiments, drugs were dissolved in artificial cerebrospinal fluid 

(ACSF). The doses that were microinfused into the LC were DAMGO (10 pg in 200 nl) 

and clonidine (50 ng in 200 nl). The dose of DAMGO is one that has been demonstrated 

to produce sexually distinct effects on LC activity and on cognitive endpoints when 

microinfused into the LC (Guajardo et al, 2017).  The dose of clonidine has been 

demonstrated to produce a long lasting cessation of LC spontaneous discharge without 

altering baseline electroencephalograph (EEG) activity (Page et al, 1993).  

Electrophysiological recordings  

Experiments began at least 5 days after surgery. All mPFC recordings were 

performed in the unanesthetized state. For each rat in the study, cables connected the 

head-stage to a data acquisition system (AlphaLab; Alpha Omega; Nazareth Israel). 
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Cannula (26 gauge, Plastics One, Roanoke, VA) were inserted into the guides and 

secured using a connector that screws around the cannula guide when inserted. Tubing 

connecting the cannula to the syringe pump was threaded through a flexible coil that 

allowed free movement of the rat, yet maintained stability of the cannula in the guide. For 

all animals in the study, pre-injection LFP recordings were taken for 60 minutes. This 

allowed the rat to undergo multiple sleep/wake cycles that could be used to validate the 

mPFC LFP recording. LFP activity was recorded and amplified at a gain of 5000 Hz, 

bandwidth of 1-350 Hz. Following the pre-injection recording period, ACSF (200 nl), 

DAMGO (10 pg in 200 nl), or clonidine (50 ng in 200 nl) was microinfused into the LC. 

Recordings continued for 60 minutes after drug administration. ACSF and DAMGO were 

administered to the same subjects on different days with treatments being 7 days apart.  

Histology  

After the experiment rats were anesthetized with isofluorane, pontamine sky blue 

dye (PSB, 200 nl) was injected through the LC cannula to verify placement. Brains were 

removed, and frozen 30 µm-thick coronal sections were cut on a cryostat and mounted on 

pre-cleaned plus slides. The sections were stained with neutral red dye for localization of 

the PSB spot (Figure 12A).  

Data Analysis 

LFP raw traces were time stamped in Spike2 to remove noise and converted to 

Power Spectra Density (PSD) raw plots indicating the power in 128 bins from 0 to 20 Hz 

using Neuroexplorer (Nex Technologies, Madison, AL). The power in different 

frequency bands (delta, 2-4 Hz; theta, 4-8 Hz; alpha, 8-12 Hz; and beta, 12-20 Hz) was 

calculated for each rat. A two-way repeated measures analysis of variance (rmANOVA) 
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with sex as the between factor and time with respect to injection as the repeated measure 

for each individual frequency band. The Tukey’s HSD was used for post hoc 

comparisons between means. An alpha level of p<0.05 was the maximum threshold for 

statistical significance. Post hoc tests were only performed if an interaction is indicated. 

Results	
   

Effects of intra-LC DAMGO on cortical activity  

DAMGO was microinfused into the LC of 4 male and 4 female rats. Figure 12 

shows an example of histological verification of the injection site into the LC and the 

location of injections in all rats. The local LC injection of DAMGO increased mPFC 

synchronization in male rats. Representative raw LFP traces and their corresponding 

spectrograms displaying power in different frequencies over time show an increase in 

amplitude within 100 s after the injection that is consistently long lasting in the male rat. 

In contrast, the LFP trace and spectrogram of the female rat suggests a less consistent and 

shorter acting effect (Figure 13A and 13B). LFPs were analyzed as PSD plots and the 

power in different frequency bands at different time blocks were analyzed and compared 

between sexes (Figure 13C-13F). A two way repeated measures (rm) ANOVA indicated 

an effect of Time (F (3, 4) =21.50, p<0.006), and a Sex X Time interaction for power in 

the delta frequency band (F (3, 6) =28.4, p<0.003). There was a trend for effect of Sex (F 

(1, 6) =5.34, p=0.06) and a trend for a Sex X Time interaction for power in the theta 

frequency band (F (3, 4) =6.2, p=0.05). Analysis of power in the alpha frequency band 

indicated an effect of Sex (F (1, 6) =11.20, p<0.01), and a Sex X Time interaction (F (3, 

4) =6.93, p<0.04). There was no Sex X Time interaction for power in the beta frequency 

band (F (3, 4) =4.75, p<0.08).  
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Further analysis within specific frequency bands at different time blocks after 

DAMGO administration (0 to 10 minutes, 10 to 15 minutes and 45 to 60 minutes) 

revealed a time-dependent synchronization of mPFC activity such that there was no 

significant effect of DAMGO in any frequency band at 0-10 minutes after injection 

(Figure 13C and 1D). Notably, DAMGO significantly increased power in the delta and 

alpha frequency bands at 10-15 minutes after administration in males only (delta, p<0.05; 

alpha, p<0.05, Tukey’s HSD) (Figure 13C and 13D). At this time period, there was also a 

trend for DAMGO to increase power in the theta frequency band selectively in male rats 

(p=0.05). DAMGO effects recovered by 45-60 min post-injection (Figure 13E and 13F).  

Lack of effect of intra-LC ACSF on mPFC network activity  

In contrast to DAMGO, local ACSF injection into the LC did not affect mPFC 

activity of the same rats (Figure 14). A two way ANOVA comparing power in different 

frequency bands at different post-injection times revealed an effect of Sex (F (1, 6) = 7.5, 

p=0.03), and no Sex X Time interaction for power in the delta (F (3, 4) =5.21, p=0.07). 

No Sex X Time interaction for theta (F (3, 4) = 1.39, p=0.4), alpha (F (3, 4) = 2.61, 

p=0.2) or beta (F (3, 4) = 3.30, p=0.14) frequency bands (Figure 14).  

Comparable effects of intra-LC clonidine on cortical activity of male and female 

rats  

Like DAMGO, clonidine inhibits LC discharge rate, and intra-LC injection 

increases cortical electroencephalographic synchrony of anesthetized rats (Berridge et al, 

1993). Consistent with this, intra-LC microinfusion of clonidine (50 ng) increased the 

LFP amplitude in rats not anesthetized. Notably, this effect appeared comparable in a 

male and female rat (Figure 15A-15D).  
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Discussion  

The present results are consistent with previous findings of decreased MOR 

function in the LC of female compared to male rats(Guajardo et al, 2017). Decreased 

MOR mRNA expression and protein levels in the LC of female rats result in a decreased 

efficacy of DAMGO to inhibit LC neuronal activity. This sex difference was particularly 

apparent at doses (10 pg and 30 pg) that maximally inhibited male LC neurons. Notably, 

these sex differences in LC-MOR function translated to a sexually distinct impairment of 

performance of a prefrontal cortex-mediated cognitive task (Guajardo et al, 2017). The 

current demonstration that LC-MOR activation by a similar DAMGO dose selectively 

affects prefrontal cortical network activity of male rats links the previous molecular and 

behavioral findings. Taken together, the results suggest that decreased MOR expression 

in the LC of females relative to males, translates to an attenuation of the cortical response 

to LC-MOR activation, and this can account for sexually distinct cognitive consequences 

of LC-MOR activation. These sex-specific cognitive consequences are relevant for 

understanding sex differences in opioid abuse. Additionally, given the evidence that 

MOR activation in LC neurons may counteract stress effects on this system (Valentino et 

al, 2008), the present findings suggest that sex differences in MOR expression contribute 

to the increased vulnerability of females to the hyperarousal components of stress-related 

disorders (Gold et al, 2002; Koob, 1999; Wong et al, 2000).  

Relationship to previous studies  

The LC regulates executive function and cognitive flexibility through its 

widespread projections to the prefrontal cortex (Loughlin et al, 1986; Swanson et al, 

1975). Previous studies demonstrated that selective pharmacological manipulations of LC 
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neuronal activity are sufficient to affect cortical activity. For example, in anesthetized 

rats, compounds that inhibited LC discharge rate such as the α2-agonist, clonidine, shifted 

the power spectrum of cortical EEG towards a high-amplitude, low frequency state that 

was similar to that seen during slow wave sleep (Aston-Jones et al, 1981a; Berridge et al, 

1993). The effects of intra-LC DAMGO on cortical EEG activity recorded from screws 

inserted into the frontoparietal and fronto occipital regions showed a similar effect 

(Bagetta et al, 1990). Conversely, compounds that increased LC discharge rate such as 

the cholinergic agonist bethanechol, induced cortical EEG desynchronization 

characterized by low amplitude, high frequency activity (Berridge et al, 1991). Likewise, 

intra-LC microinfusion of CRF increases LC discharge rate, and produces cortical EEG 

desynchronization (Curtis et al, 1997). Notably, LC activation produced by CRF shifts 

the mode of LC discharge towards a high tonic state that is thought to facilitate 

behavioral flexibility (Curtis et al, 1997; Valentino et al, 1987, 1988a). Consistent with 

this, relatively low doses of CRF injected into the LC improve cognitive flexibility in an 

attentional set-shifting task mediated by the mPFC, and increase c-fos (an indicator of 

neuronal activation) in mPFC neurons (Snyder et al, 2012). Taken together, these results 

suggest that alterations in LC neuronal activity are sufficient to alter mPFC activity and 

impact mPFC-mediated cognitive functions. Although MORs are highly expressed in LC 

neurons, and engaging MOR in the LC impairs a mPFC-mediated cognitive task, its 

effects on mPFC activity have not been documented previously. Importantly, decreased 

MOR function in the LC of females relative to males resulted in sexually distinct 

consequences in mPFC-mediated cognitive tasks, implying sex differences in the impact 

of activating LC-MOR on mPFC neuronal activity. Therefore, in this study we quantified 
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and compared the effects of activating LC-MOR on mPFC neuronal activity between 

male and female rats.  

Effects of LC-MOR activation on prefrontal cortex activity  

Field potential measurements provide an excellent tool for the exploration of 

network activity in mPFC. Previous studies of cortical network activity demonstrated that 

inhibition of LC discharge by clonidine induced high-amplitude, low frequency cortical 

oscillations (Berridge et al, 1993; de Sarro et al, 1988). Like clonidine, a DAMGO dose 

that completely inhibited LC activity, increased high-amplitude, low frequency 

oscillations in the mPFC. However, this effect was selective to male rats. The effects on 

the mPFC network activity were not artifacts of injection, as these effects were not 

reproduced with intra-LC infusion of ACSF. The effects of DAMGO on mPFC network 

activity were also time-dependent in that they peaked at 10-15 min, and recovered by 45-

60 min. Although for females there was a trend for an immediate effect of DAMGO on 

mPFC activity, this did not achieve statistical significance and was not apparent at later 

times after the injection. The lack of effect of intra-LC DAMGO (10 pg) in females is 

consistent with the reduced effect of the same dose on LC activity previously described, 

and attributed to decreased MOR expression in the LC (Guajardo et al, 2017). Finally, 

the observation that intra-LC clonidine produces comparable effects on mPFC activity in 

males and females supports the notion that the sex differences in the DAMGO response 

are due to differences at the level of MOR expression in the LC.  

Sex Differences in Behavioral/Cognitive Endpoints of MOR Activation in the LC  

Microinfusion of DAMGO into the LC produced sex-specific effects on a 

strategy-shifting task thought to be mediated by the mPFC (Guajardo et al., 2017). For 
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males, DAMGO significantly increased the time to complete the task, in part because it 

increased premature responding. Overall, male rats administered DAMGO made more 

errors during the task than females, particularly the number of regressive errors, which is 

indicative of an inability to acquire and maintain the new strategy. Consequently, sex-

differences in LC-MOR expression that result in an enhanced ability of DAMGO to 

regulate mPFC activity, translated to impairments in learning to shift strategies 

selectively in males. Interestingly, female rats administered DAMGO into the LC 

committed more perseverative errors than male rats, which is indicative of an impaired 

ability to shift from a previously learned rule. Perseverative responding has been 

attributed to brain regions other than the prelimbic region, which was the site of 

recordings in the present study, including the infralimbic mPFC (Baran et al, 2010). This 

may explain why DAMGO in the female LC can have behavioral effects in the absence 

of electrophysiological effects in the prelimbic mPFC. A prior study using a place 

recognition task demonstrated that female rats were more sensitive to disruption of the 

infralimbic cortex as indicated by increased perseverative responding (Baran et al, 2010). 

Taken with the present results, this suggests that DAMGO in the LC of females may 

sufficiently affect activity in cortical regions, other than the prelimbic mPFC, that 

regulate other cognitive processes. In this way engaging MOR receptors in the LC can 

have sexually distinct effects on cognitive processing.  

mPFC activity and strategy-shifting are physiological and behavioral endpoints of 

LC-MOR activation, respectively. Because for both endpoints, the same intra-LC dose of 

DAMGO was tested and the experimental time-courses were comparable, the temporal 

relationship between cortical activity and behavior can be assessed. The time during 
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which DAMGO had a maximal effect on cortical activity in male rats (10-15 min post 

injection) corresponded to performance of the simple discrimination stage of the task. 

DAMGO (10 pg) tended to enhance side discrimination performance when compared to 

vehicle control in males only, suggesting that mPFC synchronization may protect against 

distraction and is optimal for learning simple tasks.  

At the time point corresponding to strategy-shifting stage of the task (45 min), 

mPFC network activity in males partially recovered while effects on behavioral 

performance were apparent. This suggests an enduring effect on mPFC neuronal function 

that may not be expressed as changes in network activity. Alternatively, the discrepancy 

in the temporal correlation between physiological and behavioral endpoints may be a 

function of not recording both simultaneously in the same subject.  

Conclusion  

Taken with our previous findings, the current findings demonstrate that the 

consequences of activating LC-MOR on mPFC activity and function are greatly 

diminished in females as a result of decreased MOR expression. MOR in the LC serves to 

counter stress-elicited excitation that is mediated by CRF and promotes recovery. The 

impact of reduced LC-MOR influence during stress coupled with increased CRF receptor 

signaling in females (Bangasser et al, 2010) would be predicted to result in a prolonged 

hyperactivity of the LC-NE system in response to stress and hyperarousal symptoms that 

characterize stress-related disorders in females(Gold et al, 2002; Koob, 1999; Wong et al, 

2000).  

Sex differences in LC-MOR function also have implications for sex differences in 

opioid abuse. In male rats, repeated social stress causes an imbalance between 
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endogenous opioids, and CRF which favors opioid regulation (Chaijale et al, 2013). The 

increased opioid influence in the LC would be predicted to promote premature 

responding, which is indicative of impulsive behavior (Pattij et al, 2009) in males only 

(Guajardo et al, 2017). Impulsivity is a key feature associated with opioid abuse 

(Baldacchino et al, 2015).These cellular alterations in LC after chronic stressors, coupled 

with the cognitive consequences of LC-MOR activation may predispose males to opiate 

abuse.The present study underscores how sex differences at the molecular level can 

translate to sex differences in network activities that govern behavior and cognition.  
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Figures and Legends  
 

	
  
Figure 12. Histological verification of intra-LC injection and mPFC electrode 
placement.  

Brightfield photomicrograph of a neutral red counterstained section through the LC 

showing histological verification of the single injection site. (A) Arrow points to the LC 

and the arrowhead points to the dye, which is localized to the LC (Cb, cerebellum; V 

ventricle). (B) Neutral red counterstained section through the prelimbic mPFC (PrL) 

showing histological verification of the recording electrode placement. Arrow points to 

the electrode track (IL, infralimbic mPFC).  
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Figure 13. Intra-LC DAMGO resulted in a time-dependent synchronization of 
mPFC activity in male but not female rats.  

Representative time-frequency spectrograms of mPFC LFP activity generated from a 

male and female rat. (A and B) Power in different frequencies (ordinate) is indicated as 

color (hotter colors being greater). DAMGO (10 pg in 200 nl) was microinfused into the 
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LC at white vertical line. (C and D) The bar graphs represent the mean raw power 

spectral density values at different frequency bands (delta 2-4 Hz, theta 4-8 Hz, alpha 8-

12 Hz and beta 12-20 Hz) in male (n=4) and female (n=4) rats, respectively, determined 

10 min before (pre-injection), 0-10 min, 10-15 min, and 45-60 min after intra-LC 

DAMGO on mPFC network activity. Error bars represent ± SEM. *p<0.05. (E and F) 

The line graphs are power spectral density (PSD) plots indicating the raw power of the 

mPFC LFP at different frequencies. These line graphs were generated from the same 

subjects as shown in A and B, 10 min before (pre-injection), 0-10 min, 10-15 min, and 

45-60 min after intra-LC DAMGO on mPFC network activity in males and females.  
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Figure 14. Lack of effect of intra-LC ACSF on mPFC network activity. 

Bar graphs represent the mean raw power in different frequency bands at different times 

before and after intra-LC ACSF (200 nl) in the same male and female rats indicated in 

Figure 13 above. A) Males and B) Females at different time blocks (0-10, 10-15, 45-60 

minutes after Intra-LC DAMGO injection). Error bars represent ± SEM.  
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Figure 15. Similar effects of intra-LC clonidine on mPFC network activity.  

Time-frequency spectrograms of mPFC LFP activity from a male and female rat before 

and after (A and B) clonidine (50 ng in 200 nl). Power in different frequencies (ordinate) 

is indicated as color. The vertical white line indicates the time of microinfusion. (C and 

D) Power spectral density plots corresponding to their respective time-frequency 

spectrograms shown above.  
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CHAPTER 4: GENERAL CONCLUSIONS AND FUTURE DIRECTIONS  

Sex differences are increasingly recognized as important in the prevalence and 

severity of neurological and psychiatric diseases. This dissertation explored the role of 

sex in a major stress response system in the brain, the Locus Coeruleus (LC)-

Norepinephrine (NE) system, as a factor of stress vulnerability. By implementing 

electrophysiological, biochemical, and behavioral approaches, sex differences in µ-opiate 

receptor (MOR) function in the LC that could underlie stress vulnerability were 

examined. In the first set of experiments in Chapter 2, it was determined that female rat 

LC neurons express less MOR mRNA and protein compared to males. Because of these 

molecular differences, female rat LC neurons are less sensitive to inhibition by the 

selective MOR agonist, DAMGO. Notably, the LC-NE system affects cognitive function 

through its projections to the medial prefrontal cortex (mPFC) (Loughlin et al, 1986; 

Swanson et al, 1975), and stress-related dysfunctions in this pathway are hypothesized to 

impair cognitive flexibility (Arnsten, 2009; Birnbaum et al, 1999). The molecular and 

cellular sex differences found in the LC were associated with sexually distinct effects of 

LC-MOR activation on performance and cognitive processing in an operant strategy-

shifting task. In Chapter 3, the molecular and cellular sex differences in LC-MOR were 

further investigated through the activation of LC-MOR on PFC network activity that 

guides cognitive strategies. The decreased efficacy of DAMGO on LC activity translated 

to a diminished effect on mPFC network activity in females, and was consistent with less 

disruption of an mPFC-mediated operant task in females. Taken together, the results 

suggest that decreased MOR expression in the female rat LC is sufficient to result in a 

decreased ability to inhibit LC neurons and to affect PFC network activity, and this 
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translates to sexually distinct cognitive effects. Sexually distinct cognitive effects of 

MOR activation in the LC may play a role in sex differences in vulnerability to aspects of 

opioid abuse. Additionally, given the role of opioids in tempering LC activation during 

stress, sex differences in opioid inhibition of LC neurons could contribute to female 

vulnerability to stress-related psychiatric disorders.  

Sex Differences in MOR Expression  

The MOR is highly expressed in the brain, and has been demonstrated in studies 

showing high correspondence between the MOR mRNA and receptor binding 

distributions in many brain regions including the LC (Mansour et al, 1994; Mansour et al, 

1987). MORs are highly expressed by LC neurons, and MOR agonists potently inhibit 

LC neuronal activity (Mansour et al, 1994; Williams et al, 1984). Notably, sex 

differences in MOR expression have been documented in the brain. For example, in the 

anterior pituitary gland, MOR expression in female rats is decreased relative to males 

(Carretero et al, 2004). In addition, female rats express significantly less MOR in the 

periaqueductal gray relative to males (Loyd et al, 2008). Notably, Estrogen status in 

females appears to play a role in the modulation of MOR expression in the periaqueductal 

gray. Consistent with these findings, in Chapter 2 it was determined that females 

expressed less MOR in the LC compared with males. Western blot analysis revealed 

decreased MOR protein in female LC relative to male LC. This result was corroborated 

with mRNA studies indicating decreased MOR mRNA transcripts in female LC when 

compared with male LC. Importantly, sex differences in MOR expression in the LC were 

independent of female estrogen status as determined by measuring mRNA transcript 

levels in the LC of females at different stages of the estrous cycle. This suggests that sex 
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differences arise from the organizational effects of female hormones early in 

development.  

Sex Differences in MOR Activation on Neuronal Activity  

MORs are highly distributed within the LC (Mansour et al, 1994; Williams et al, 

1984). The MOR is prominently localized postsynaptically within noradrenergic somato 

dendritic processes (Van Bockstaele et al, 1996a; Van Bockstaele et al, 1996b). Potent 

inhibitory effects of MOR activation on LC neurons have been well documented. MOR 

activation inhibits the formation of cyclic AMP and hyperpolarizes LC neurons through 

an increase in potassium conductance (Aghajanian et al, 1987; Williams et al, 1984).  

The electrophysiological studies conducted in Chapter 2 were the first to examine 

and compare sex differences in LC postsynaptic responses to MOR agonists. Although 

there are reports of sex differences in opioid-induced analgesia and behavioral 

suppression elicited by opioids (Craft, 2003; Kest et al, 2000a), there are no reports on 

sex differences characterizing the electrophysiological effects of activation of MOR in 

the brain. Few studies have investigated functional sex differences in other receptors in 

the LC. One study found that female LC neurons are more sensitive to exogenous CRF 

relative to males, and this was attributed to differences in CRF receptor coupling to the 

GTP-binding protein, Gs (Bangasser et al, 2010; Curtis et al, 2006).  

In contrast to the aforementioned sex difference in CRF receptor sensitivity, the 

present study identified sex differences in the maximal effect of MOR activation. Based 

on the electrophysiological assessment of MORs in the LC indicated in Chapter 2, the 

maximum magnitude of inhibition produced by the MOR agonist was significantly less in 

females, even when the dose was increased beyond that which completely inhibited male 



 
	
  

107	
  

LC (10 pg). Thus, sex differences in LC MOR expression are sufficient to result in a 

decreased efficacy of MOR agonists in inhibiting LC neuronal activity.  

LC Regulation of Cortical Activity  

If the sex differences in MOR expression in the LC that were observed in Chapter 

2 are relevant, they should be reflected as sex differences in LC modulation of its 

postsynaptic neuronal targets. The LC has widespread projections to the prefrontal 

cortex, and through its modulation of cortical neuronal activity it can regulate executive 

function and cognitive flexibility (Loughlin et al, 1986; Robbins and Arnsten, 2009; 

Swanson et al, 1975). Therefore, sex differences in LC-MOR expression and in the 

ability of intra-LC DAMGO to inhibit LC neurons should be expressed as differences in 

LC modulation of cortical activity and its behavioral consequences.  

Previous studies have demonstrated that selective pharmacological manipulations 

of LC neuronal activity are sufficient to affect cortical activity. For example, in 

anesthetized rats, compounds that inhibited LC discharge rate such as the α2-agonist, 

clonidine, shifted the power spectrum of cortical EEG towards a high-amplitude, low 

frequency state that was similar to that seen during slow wave sleep (Aston-Jones et al, 

1981a; Berridge et al, 1993). The effects of intra-LC DAMGO on cortical EEG activity 

recorded from screws inserted into the frontoparietal and fronto occipital regions showed 

a similar effect (Bagetta et al, 1990). Conversely, compounds that increased LC 

discharge rate such as the cholinergic agonist bethanechol, induced cortical EEG 

desynchronization even in anesthetized rats (Berridge et al, 1991). Likewise, intra-LC 

microinfusion of CRF increases LC discharge rate and produces cortical EEG 

desynchronization (Curtis et al, 1997). Together, these studies provided strong evidence 
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that regionally selective manipulation of LC discharge is sufficient to alter cortical 

activity. LC activity is also necessary for cortical activation by stressors. For example, 

cortical activation by hypotensive stress is prevented by selectively silencing the LC with 

the α2-agonist, clonidine (Page et al, 1993).  

The experiments conducted in Chapter 3 examined how molecular and cellular 

sex differences of the LC-MOR system found in Chapter 2, affected LC modulation of 

mPFC network activity that guides cognitive strategies. To our knowledge, these studies 

were the first to systematically quantify the impact of the effects of MOR activation in 

the LC on mPFC activity in both male and female rodents. A novel sex difference was 

found in the effects of the MOR agonist, DAMGO, in the LC on cortical network 

activity. Notably, administration of DAMGO at a dose that completely inhibits LC 

activity increased cortical synchronization of in males only. The effects of intra-LC 

DAMGO on mPFC network in males were time-dependent. Although there was a trend 

for an immediate effect of DAMGO on mPFC activity in females, this did not achieve 

statistical significance, and was not apparent at later times after treatment. These results 

are consistent with a previous study demonstrating that intra-LC DAMGO increases 

cortical synchrony of male unanesthetized rats (Bagetta et al, 1990). However, the 

present studies were a refinement in demonstrating that much lower doses (10 pg in the 

current study vs. 15 ng in the previous study) increase the LFP amplitude, specifically in 

the mPFC. Most importantly, it was demonstrated that this effect is sex specific. As the 

LFP recorded in the mPFC is modulated by LC-MOR activation, the results confirmed 

the sex difference in LC-MOR expression, and the functional activity revealed in Chapter 

2.  
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LC Regulation of Cognitive Function  

A quantifiable endpoint of mPFC function is cognitive flexibility. The LC 

regulates cognitive flexibility through its projections to the mPFC (Loughlin et al, 1986; 

Swanson et al, 1975). Lesions of LC-cortical projections impair cognitive flexibility (Tait 

et al, 2007). The relationship between LC activity and PFC function is hypothesized to 

resemble an inverted U-shaped curve, whereby PFC function is optimal at moderate 

levels of LC activity. However, just as removal of LC-NE drive impairs cognitive 

flexibility, so can excessive LC drive as a result of the interaction of higher levels of 

norepinephrine with lower-affinity adrenergic receptors, including α1- and β-adrenergic 

receptors (Arnsten, 2011). CRF, microinfused into the LC at doses that produce a 

moderate activation of LC neurons, facilitates cognitive flexibility in an attentional set-

shifting task. However, this effect reverses as the CRF dose is increased (Snyder et al, 

2012).  

Sex differences in the effects of LC-MOR activation on mPFC network activity 

should translate to sex differences in endpoints of cognitive flexibility. The behavioral 

studies in Chapter 2 were unique in testing the impact of intra-LC administration of a 

MOR agonist on the performance of mPFC-mediated cognitive tasks in both male and 

female rats. Two important discoveries arose from this experiment. First, males were 

more impaired in strategy shifting after activation of LC-MOR, as indicated by an 

increased number of errors. This is in line with the enhanced effect of intra-LC DAMGO 

on mPFC network activity in males. An unexpected finding was that there were sex 

differences in the error type. Although females made fewer errors than males when LC-

MORs were engaged, the types of error were different. One explanation for this is that 
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activating MOR in the LC affects different targets in male and female rats, with a bias 

towards impairment in the prelimbic mPFC in males, and perhaps the infralimbic PFC or 

orbitofrontal cortex in the female. LFP recordings in these latter LC targets during intra-

LC DAMGO infusion could test this hypothesis.  

Sex Differences in Opioid Regulation of the LC-NE System and its Implications for 

Vulnerability to Stress-Related Psychiatric Disorders  

Stress-related neuropsychiatric pathologies are more prevalent in females relative 

to males. For example, post-traumatic stress disorder (PTSD) and depression are nearly 

two times more prevalent in females compared with males (Kessler et al, 1994; Kessler et 

al, 1995). Given that PTSD and depression are strongly associated with stress, and stress 

is thought to exacerbate neurological and psychiatric diseases, it has been hypothesized 

that higher rates of psychiatric diseases in females are due to sex differences in stress 

reactivity. Notably, a vast number of neuropsychiatric conditions such as depression and 

post-traumatic stress disorder (PTSD) are strongly associated with dysfunctional stress 

responses and symptoms of hyperarousal (Gold et al, 2002; Heim et al, 2001; Wong et al, 

2000). Given its role in arousal, sex differences in the LC-NE system could underlie 

female vulnerability to neuropsychiatric disorders that are characterized by hyperarousal 

(Aston-Jones et al, 2005; Berridge et al, 2003). During acute stress, LC neurons are 

activated by CRF, and this is associated with enhanced arousal and cognitive flexibility 

(Snyder et al, 2012; Valentino et al, 2008). CRF mediates stress-induced LC activation, 

and sex differences in CRF signaling and trafficking in LC neurons have been reported. 

For example, CRF1-Gs association is greater in females compared to males, and stress-

induced CRF1 association with β-arrestin 2, a step that is critical for CRF1 internalization 
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is decreased in female relative to male rats. Consistent with this, stress induces CRF1 

internalization in LC neurons of male rats, but not female rats (Bangasser et al, 2010). 

Sex differences in CRF signaling have been proposed as one mechanism underlying LC-

NE dysregulation that contributes to female vulnerability to stress-related psychiatric 

disorders.  

In addition to CRF release in the LC, endogenous opioids are released, and these 

serve to temper stress-elicited excitation that is mediated by CRF and promote recovery 

of LC neurons (Curtis et al, 2012). The findings in this dissertation suggest that the 

ability of endogenous opioids to temper LC activation during stress, and to promote LC 

neuron recovery would be less effective in females. The impact of reduced LC-MOR 

influence during stress coupled with increased CRF receptor signaling in females 

(Bangasser et al, 2010) would be predicted to result in a prolonged hyperactivity of the 

LC-NE system in response to stress and hyperarousal symptoms that characterize stress-

related disorders in females (Gold et al, 2002; Koob, 1999; Wong et al, 2000).  

Sex Differences in Opioid Regulation, Cognitive Processing and Vulnerability to 

Opiate Abuse  

 In drug abuse, opioids produce their reinforcing effects by increasing the activity 

of the mesolimbic dopaminergic (DA) system (Di Chiara and Imperato, 1988; Koob and 

Bloom, 1988; Wise and Rompre, 1989), which projects to extensive areas of the PFC 

(Thierry et al, 1973). Chronic abuse of opioids alters opioid receptor functions in the PFC 

(Mansour et al, 1988) and produces adaptive alterations in the cellular and synaptic 

function of DA system (Nestler, 2001). Sex differences are present in all of the phases of 

drug abuse, for example in the initiation, escalation of use, addiction, and relapse. In 
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general, males have higher rates of use or dependence relative to females (Brady and 

Randall, 1999). However, females may be more susceptible to craving (Fox et al, 2014; 

Hitschfeld et al, 2015; Kennedy et al, 2013; Robbins et al, 1999) and relapse (Kippin et 

al, 2005; Rubonis et al, 1994). Sex differences in LC-MOR function may have 

implications for sex differences in opioid abuse. The sex-specific effects of LC-MOR 

activation on cognitive processing may be relevant for understanding sex differences in 

opioid abuse and for sex-specific design of treatment for opioid addiction.  

 The activation of the LC-MOR promoted premature responding in males only, a 

response that is indicative of impulsive behavior (Dalley et al, 2011; Pattij et al, 2009). 

Impulsive behavior, for which a simple definition is the tendency to act prematurely 

without foresight, is associated with most forms of drug taking. It is often considered to 

be a product of impaired cognitive control, and could potentially affect several aspects of 

the addictive process. Notably, impulsivity is a key feature associated with opioid abuse 

(Baldacchino et al, 2015). Previous studies have shown that opioids elicit impulsive 

behavior in rodents in behavioral tasks such as the 5-choice serial response time task (5-

CSRTT) and the response inhibition task, and a decrease in motor impulsivity in MOR-

knockout mice (Mahoney et al, 2013; Olmstead et al, 2009; Pattij et al, 2009).  

 Evidence in the literature suggests that PFC hypoactivity results in deficit of 

functions such as inhibitory control, attention, planning, and risk-taking (Aron et al, 

2004; Gazzaley and Nobre, 2012; Nee and Jonides, 2008), and lead to greater cognitive 

and motor impulsivity (Dalley et al, 2011). Notably, lesions to the PFC produce profiles 

of impulsivity (Brennan and Arnsten, 2008). Our electrophysiological studies revealed 

that when MORs in the LC are engaged after agonist treatment, upstream targets such as 
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PFC activity is disrupted. Decreased PFC function produced by the engagement of MOR 

in the LC of males may account for the greater promotion of impulsive behavior during 

the cognitive task. This sex specific-cognitive consequence produced by the LC-MOR, 

when activated, may facilitate opioid taking and perhaps contribute to the higher rates of 

opiate abuse in males.  

Interestingly, in male rats, repeated social stress causes an imbalance between 

endogenous opioids, and CRF that favors opioid regulation (Chaijale et al, 2013). After a 

single social stress exposure, CRF and enkephalin afferents to the LC are engaged; 

however, LC activation is predominant (Reyes et al, 2015). After repeated social stress, 

CRF receptors become downregulated and MOR becomes upregulated, particularly in 

rats with an active coping strategy. The increased opioid influence in the LC would be 

predicted to promote impulsive behavior. These cellular alterations in LC after chronic 

stressors, coupled with the cognitive consequences of LC-MOR activation, may 

predispose males to opiate abuse. Our recent studies in females indicate that acute social 

stress has similar effects as in males. However, with repeated social stress, MOR 

becomes downregulated in the female LC, thus this compensatory mechanism may be 

impaired. This would make females more vulnerable to hyperarousal symptoms of stress.  

Studies show that females are more vulnerable to some phases of drug abuse such 

as drug craving and relapse (Fox et al, 2014; Hitschfeld et al, 2015; Kennedy et al, 2013; 

Kippin et al, 2005; Robbins et al, 1999; Rubonis et al, 1994) relative to males. Previous 

studies suggest that once initiated, substance abuse accelerates at a faster pace in females 

compared with males, craving is more severe, and it is more difficult to quit (Back et al, 

2011; Becker et al, 2008). Notably, the engagement of LC-MOR selectively produced 
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perseverative behavior in females in the cognitive task. Studies in rats have shown that 

inhibition of the thalamo-cortical circuitry selectively increases perseverative behaviors 

(Block et al, 2007). Additionally, disruption of the orbitofrontal cortex produces 

perseveration and resistance to extinction of reward-associated behaviors in laboratory 

animals (Butter et al, 1963; Johnson and Rosvold, 1971).  

Consistent with animal studies, human studies suggest that disruption of the 

thalamo-orbitofrontal circuit results in the perseverative behavior in addicted subjects, 

and the exaggerated motivation to procure and administer the drug regardless of its 

adverse consequences. This idea is supported by imaging studies showing disruption of 

the thalamic and orbitofrontal brain regions in drug abusers (Volkow et al, 1996). The 

thalamic and orbitofrontal regions are direct upstream targets of the LC-NE system 

(Chandler et al, 2014; Samuels et al, 2008). The sex specific-consequence of LC-MOR 

activation may lead to dysfunction of the thalamic-orbitofrontal circuit, resulting in 

perseverative behavior that may predispose females to opioid craving and relapse. These 

findings underscore the potential for sex-specific treatments of opioid abuse based on 

pharmacological and/or cognitive therapies that target different cognitive dimensions.  

Future Directions  

The results described in this dissertation were interpreted on the basis of 

reasonable assumptions and some of these results could be validated by further 

experimentation. Several follow-up experiments could be performed to further support or 

extend the conclusions drawn from this dissertation. For example, sex differences in the 

response to DAMGO in the LC could result in part from MOR signaling. Examining and 

comparing MOR coupling to its GTP-binding protein, Gi, using the GTPγS method in 
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both sexes, could test this. This technique measures the level of G protein activation 

following DAMGO occupation of MOR in the LC. The [35S] GTPγS binding assay 

replaces endogenous GTP, and binds to the G-α subunit following activation of the 

receptor to form a Gα-[35S] GTPγS species. Since the γ-thiophosphate bond is resistant to 

hydrolysis by the GTPase of Gα, G-protein is prevented from reforming as a heterotrimer 

and thus [35S] GTPγS labeled Gα-subunits accumulate, and can be measured by counting 

the amount of [35S]-label incorporated (Harrison and Traynor, 2003).  

To determine whether there are sex differences in intracellular signaling pathways 

initiated by MOR, Designer receptors exclusively activated by designer drugs 

(DREADD) technology could be used. The MOR is linked to Gi and selective 

engagement of Gi-signaling in the LC can be accomplished using DREADDs. LC 

neurons can be transduced to express DREADDs coupled to Gi. Administration of the 

DREADD ligand, clozapine-N-oxide (CNO), would bypass MOR to then engage Gi 

signaling. A follow-up study would be to record local field potentials in mPFC in animals 

expressing the inhibitory Gi-coupled DREADDs in the LC while CNO is administered. 

This follow-up experiment would provide a direct comparison of the mPFC network 

activity while LC-NE neurons are inhibited via Gi-coupled DREADDs, with the mPFC 

network activity results obtained in Chapter 3, when LC neurons were inhibited with 

DAMGO in both sexes. Sex differences in the DREADD response to CNO would suggest 

that there is a general sex difference in the Gi-intracellular signaling pathway, on the 

other hand, no differences between the sexes in the DREADD response to CNO would 

suggest that the difference is at the level of the MOR exclusively.  
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 Other experiments could be performed to answer questions that arose from the 

results of this dissertation. For example, in Chapter 3, the discrepancy in the temporal 

correlation between physiological and behavioral endpoints of LC-MOR activation arise 

from not recording mPFC network activity during the performance of the mPFC-

mediated cognitive task simultaneously in the same subject. Recording mPFC network 

activity during the performance of the mPFC-mediated cognitive task could assess this 

correlation. This study would provide a real-time picture of circuit dynamics of the mPFC 

network activity during task performance between the sexes.  

 Additionally, further experiments can be conducted in order to characterize the 

effects of intra-LC DAMGO on LC neuronal activity and mPFC network activity during 

the OSST performance. Recording LC unit activity and LC-LFPs after intra-LC DAMGO 

administration while the animals are performing the cognitive task, and at the same time 

recording mPFC-LFPs, would dissect the specific role of the LC-NE system on the sex-

specific cognitive consequences produced in the cognitive task. Previous 

electrophysiological studies suggest that application of opiates in the LC inhibits tonic 

LC-neuronal discharge (Valentino et al, 1988c). Based on this observation coupled with 

the results in the anesthetized LC-single unit study, we predict that intra-LC DAMGO at 

relative high doses would produce an enhanced inhibitory effect in males relative to 

females on tonic LC-neuronal discharge rate. This study would provide a characterization 

of LC unit activity under the influence of DAMGO that underlies correct trials, premature 

responses, and different error types.  

 Furthermore, by recording mPFC network activity in the same animal, coherence 

analysis between the LC and mPFC can be achieved. Coherence analysis would reveal 
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the strength of communication between these two brain regions during task performance. 

We predict that LC-mPFC network communication will be decreased in male and female 

animals treated with DAMGO during the strategy-shifting (SHIFT) component. 

However, we expect that male coherence would be greatly disrupted, relative to females, 

during the SHIFT component of the task, and that coherence will be increased in males 

during the simple discrimination task. Our predictions on coherence are based on the 

behavioral results during the performance of males at the simple discrimination stage, in 

which DAMGO, at a high dose, improves performance relative to control and greatly 

impaired performance during the SHIFT component of the OSST.  

 Moreover, this study would reveal the strength in LC-mPFC communication 

during correct trials, premature responses, and different error types. Although, this 

experimental procedure appears technically challenging, considering the size of the LC, it 

would require a microwire bundle and a cannula being implanted chronically in the LC 

and an electrode in mPFC. The best way to achieve this experimental procedure would be 

using inhibitory Gi-coupled DREADDs to selectively manipulate LC neuronal activity; 

however, as discussed earlier in this section, it must first be determined whether the Gi-

coupled DREADDs in the LC turns on the same intracellular pathways activated by 

MOR in the LC.  

 A set of experiments can be conducted in order to assess the impact of sex 

differences in cognitive processing in opioid taking and relapse. The premature 

responding produced by the engagement of the LC-MOR in males indicates impulsive 

behavior. Impulsivity is a key feature associated with opioid abuse (Baldacchino et al, 

2015). Previous studies suggest that PFC disruption elicits impulsive behaviors (Brennan 
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et al, 2008; Dalley et al, 2011). Consistent with this, the highest dose of intra-LC 

DAMGO in our studies produced PFC network activity disruption and impulsivity in the 

cognitive task. Based on these results, we hypothesize that impulsivity elicited by the 

engagement of LC-MOR in males would facilitate opioid taking. Administering intra-LC 

DAMGO or vehicle control in both sexes, and implementing an operant conditioning 

paradigm underlying acquisition/initiation of opiate drugs could test this hypothesis. We 

expect that males, after DAMGO treatment, will be more vulnerable than females to 

acquisition/initiation of opioids under the conditions of this experimental procedure. On 

the other hand, intra-LC DAMGO produced perseveration in females.  

 It is hypothesized that disruption of the thalamo-orbitofrontal cortex (OFC) circuit 

underlies perseverative behavior in drug abusers (Volkow et al, 1996). Although, none of 

our studies tested the effects of intra-LC DAMGO in thalamus and OFC, both brain areas 

are upstream targets of LC (Chandler et al, 2014; Samuels et al, 2008). A set of 

experiments can be performed in order to test the effects of the engagement of MOR in 

the LC on these areas that govern perseveration and on relapse. A first set of experiments 

would be testing the effects of intra-LC DAMGO on thalamic and OFC neuronal activity. 

Based on the results of the cognitive task in which intra-LC DAMGO produced 

perseverative behavior, we hypothesize that the engagement of LC-MOR disrupts 

neuronal activity in thalamus and OFC in females only. To test this idea, thalamic and 

OFC network activity can be recorded while DAMGO is microinfused into the LC. 

Moreover, recording thalamic and OFC network activity during OSST task engagement 

in animals treated with DAMGO in the LC would provide a real-time picture of circuit 

dynamics in these brain regions underlying perseverative behavior.  
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 Second would be assessing how sex differences in perseveration produced by the 

engagement of LC-MOR impacts relapse in opiate addiction. We hypothesize that the 

sex-specific effects of intra-LC DAMGO on cognitive processing in females that 

produced perseveration will render females more vulnerable to relapse. In order to test 

this hypothesis, reinstatement procedures used to model relapse following a period of 

abstinence can be implemented. Reinstatement procedures require previous exposure to 

opioids that may alter LC-MOR function; therefore, blocking LC-MOR antagonists 

would be appropriate to test this question. After a period of abstinence, application of the 

selective MOR antagonist CTAP can be microinfused into the LC in both sexes, and 

reinstatement can be tested. CTAP is a potent MOR antagonist (Chieng et al 1996). We 

hypothesize that blockage of LC-MOR by CTAP will prevent reinstatement in females.  

 Our studies focused on the effects of the local activation of MOR in the LC and 

its consequences on electrophysiological and cognitive endpoints. In general, the main 

route of administration of drugs of abuse is systemically. Conducting experiments 

evaluating sex differences in response to systemically delivered opioids on cortical 

activity and behavior relevant to opioid abuse would expand the findings presented in this 

dissertation. Notably, systemic administration of opioid agonists produces mPFC 

hypofunction.  

 Previous studies in rats suggest that systemic and local administration of opioid 

agonists decrease excitatory neurotransmission in mPFC. Specifically, systemic 

administration of opioid agonists diminishes cellular response to excitatory activation of 

three major mPFC afferents such as thalamus, basolateral amygdala, and hippocampus 

(Giacchino and Henriksen, 1998). Consistent with these findings, our studies suggest that 
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in males, local administration of opioid agonists in the LC decreases mPFC function. 

Further experiments can be conducted in order to dissect the specific role of the LC-MOR 

system in the modulation of PFC function when opioid drugs are systemically delivered 

to the brain, and whether sex differences in cognitive processing produced by a local 

administration of opioid agonists in the LC are produced by systemic administration of 

opioids.  

 To examine the specific role of the LC-MOR system on PFC modulation during 

systemic administration of opioids, mPFC network activity can be recorded while the 

animals receive a dose of systemic opioids at the same time as application of the selective 

MOR antagonist CTAP intra-LC. CTAP is a potent MOR antagonist (Chieng et al, 1996). 

Blockage of MORs in the LC will remove the LC-MOR influence to mPFC when opioid 

agonists are delivered systemically and take effect on the brain. Previous studies in male 

rodents show that systemic morphine administration induced cortical EEG slow wave 

synchronization in naive animals (Lukas et al, 1982).  

 Our electrophysiological studies showed a similar effect when DAMGO was 

microinfused intra-LC in males only. Based on this observations, we hypothesize that 

blockage of LC-MOR will translate to decreased cortical network activity 

synchronization at lower frequency bands, when systemically delivered opioid agonists 

take effect on mPFC network activity of males. We also hypothesize that cortical network 

activity in females will be unaffected by systemic delivered opioid agonists, a similar 

effect produced by intra-LC DAMGO.  

 A major finding in this dissertation is that intra-LC DAMGO at a high dose 

produced sex differences in cognitive procession during the SHIFT stage of the cognitive 
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task. It would be pertinent to further investigate the cognitive processing produced by the 

engagement of LC-MOR through the local administration of DAMGO in the LC, and 

evaluate if systemic administration of opioid agonists produce sex differences in 

cognitive processing during performance of the OSST. To answer this question, animals 

would be tested on the different components of the OSST under the effects of 

systemically delivered opioid agonists. One possible outcome is that the systemic 

injection of opioid agonists may produce the same sex-specific cognitive consequences 

produced by intra-LC DAMGO. In that case, it would be important to corroborate if these 

sex-specific behaviors are produced by the MORs engagement in LC projections to PFC 

or other brain structures. One way to achieve this is by antagonizing MORs in LC while 

the animals are performing the different stages of the OSST under the influence of 

systemic delivered opioid agonists.  

 Finally, it is well documented that chronic opioid administration (i.e. morphine) 

leads to a wide range of neuroadaptations at different levels, including receptors, 

intracellular signaling pathways, and synaptic morphology and plasticity (Christie, 2008). 

Previous studies revealed that chronic morphine shifts PFC network activity state 

progressively to an apparent normal functional state, despite the continuous presence of 

morphine. Specifically, the acute systemic administration of morphine produces 

increased PFC synchronization; however, repeated administration of morphine by day 3 

leads to a complete reversal of these “abnormal” oscillatory network activities and 

produces an apparent normalization of the activity in PFC (Dejean et al, 2013). 

Moreover, treatment with the opioid antagonist naloxone promotes PFC synchronization 

and withdrawal signs in morphine dependent rats (Dejean et al, 2013). These data 
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suggests that chronic exposure to opioids promotes a new equilibrium in PFC that 

requires the presence of morphine to endure, and to perform normal cognitive processing. 

 All the studies in this dissertation show results from an acute exposure to intra-LC 

DAMGO. Given the different experimental conditions, it would be important to test how 

these opioid-induced neuroadaptations after chronic exposure impact cognitive function 

in both sexes. Furthermore, how changes in MOR expression levels, MOR receptor 

density, and intracellular pathways activated by MOR promoted by chronic exposure to 

opioids affects the LC-NE system, and whether there are sex differences at any of these 

levels should be determined. Many of these questions lie beyond the scope of this 

dissertation but inspire much future research.  

Conclusion  
These studies have provided concrete evidence for sex differences in opioid 

regulation of the LC-NE system, revealed that female LC neurons are less sensitive to 

opioid inhibition relative to male LC neurons, and evaluated sex differences in 

physiological and behavioral correlates of LC-MOR activation. The findings from this 

investigation have advanced our understanding of stress-related psychiatric disorders, and 

may lead to improved treatment of patients suffering from stress-related psychiatric 

disorders.  
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Figures and Legends 

	
  

Figure 16. Sex differences in MOR regulation of the LC-NE system and its 
pathological consequences.  

A) The opposing regulation model of LC activity during acute stress. Stress engages both 

CRF and enkephalin (ENK) inputs that converge on LC neurons. CRF increases tonic 
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activity, and this is associated with increased arousal. Activation of MORs on LC 

neurons inhibits LC tonic discharge, and facilitates recovery of LC neurons after the 

stressor is terminated. An imbalance in this opposing regulation model favoring CRF 

may increase vulnerability to stress-related disorders characterized by hyperarousal. 

Figure adapted from Valentino et al (2015). B) Schematic diagram showing the potential 

physiological and cognitive consequences of sex differences in LC-MOR regulation in 

the LC and the pathological implications. Abbreviations: PTSD, post-traumatic stress 

disorder.  
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