A Parameterized Action Representation for Virtual Human Agents

Norman Badler, Rama Bindiganavale, Juliet Bourne
Martha Palmer, Jianping Shi, William Schuler
Center for Human Modeling and Simulation
Computer and Information Science Department,

University of Pennsylvania
Philadelphia, PA 19104-6389

Abstract

We describe a Parameterized Action Represen-
tation (PAR) designed to bridge the gap be-
tween natural language instructions and the vir-
tual agents who are to carry them out. The PAR
is therefore constructed based jointly on imple-
mented motion capabilities of virtual human fig-
ures and linguistic requirements for instruction in-
terpretation. We will illustrate PAR and a real-
time execution architecture controlling 3D ani-
mated virtual human avatars.

Introduction

Only fifty years ago, computers were barely able to
compute useful mathematical functions. Twenty-five
years ago, enthusiastic computer researchers were pre-
dicting that all sorts of human tasks from game-playing
to automatic robots that travel and communicate with
us would be in our future. Today’s truth lies some-
where in-between. We have balanced our expectations
of complete machine autonomy with a more rational
view that machines should assist people to accomplish
meaningful, difficult, and often enormously complex
tasks. When those tasks involve human interaction
with the physical world, computational representations
of the human body can be used to escape the constraints
of presence, safety, and even physicality.

Virtual humans are computer models of people that
can be used

e as substitutes for “the real thing” in ergonomic eval-
uations of computer-based designs for vehicles, work
areas, machine tools, assembly lines, etc., prior to the
actual construction of those spaces;

e for embedding real-time representations of ourselves
or other live participants into virtual environments.

Recent improvements in computation speed and control
methods have allowed the portrayal of 3D humans suit-
able for interactive and real-time applications (Badler,
Phillips, & Webber 1993). There are many reasons to
design specialized human models that individually op-
timize appearance, character, performance, or intelli-
gence. Here we will focus on the problem of making

virtual humans respond to verbalized commands in a
context-sensitive fashion.

In this discussion we first define the kinds of real-
time virtual human characters we wish to control. This
leads to a focus on language-based control or instruc-
tion interpretation. To support both language under-
standing and animation, we define a Parameterized Ac-
tion Representation (PAR). We then give an outline of
an architecture for interpreting (executing) such repre-
sented actions, and show how they control embodied
agent models. Several examples show how the char-
acters can interact when given context-dependent in-
structions. Finally, we show how a conversation results
in establishing a relation between agents.

Smart Avatars

Animating virtual humans involves controlling their
parts at the graphical level via joint transformations
(e.g., for limbs) or surface deformations (e.g., for face).
Motion capture from live participants or algorithmically
synthesized motions are used to animate the 3D model.
In real-time applications, avatars are human represen-
tations driven directly by a real person. Physically
sensed motions are natural but lock the user into wear-
ing equipment which may be cumbersome and limiting.
Moreover, directly sensed motion is difficult to modify
on-the-fly to achieve subject or environmental sensitiv-
ity (Gleicher 1998; Bindiganavale & Badler 1998), and
the user may be subject to common symptoms such as
“groping” for virtual objects, jerky locomotion, and an-
noying head movements. Control without encumbrance
leads to vision-based sensing (Metaxas & Essa 1997) or,
as we are exploring, language-based instructions.

In general, an embodied (human-like) character that
acts from its own motivations is often called an agent.
In this sense, an avatar is an agent that represents an
actual person. Its actions may be portrayed through
captured or synthesized motions performed in the cur-
rent context. This requires parameterization and, in
turn, proper specification of parameters. We call an
avatar controlled via instructions from a live partici-
pant a smart avatar. Parameters for its actions may
come from the instruction itself, others from the local
object context, and yet others from the avatar’s avail-



able capabilities and resources.

We have explored the contextual control of em-
bodied agents, avatars, and smart avatars (with and
without conversation) in a number of experiments in-
cluding: two person animated conversation (“Gesture
Jack”) (Cassell et al. 1994), medic interventions and
patient physiological interactions in MediSim (Chi et al.
1995), a real-time animated “Jack Presenter” (Noma
& Badler 1997), and multi-user “Jack-MOQO” virtual
worlds (Shi et al. 1999). In this last system we began
to explore an architecture for interacting with virtual
humans that was solely language-based in order to ex-
plicitly approach a level of interaction between virtual
humans comparable to that between real people. We fo-
cused on instructions for physical action to bound the
problem, to enable interesting applications (Firby 1994;
Johnson & Rickel 1997), and to refine a representation
bridging natural language and embodied action.

Language-based Control

In order for smart avatars to respond to instructions
expressed in natural language input we have to be able
to coordinate verbal and physical representations of ac-
tions. The basic linguistic representation of an action
is the predicate argument structure that indicates the
participants and the particular action involved, such
as slide(John, box), but certain kinds of actions can
sometimes integrate additional information and use it
to enrich the action description. Motion verbs often
specify details with respect to the path the object in
motion will take. These can include the medium of
the path (ex. a gravel road, the air, the sea) as well
as specific locations for endpoints such as sources and
goals (to the store, across the room, from the beach,
home). Our common sense tells us that path informa-
tion is relevant to the description of actions involving
motion, but more significantly from a methodological
point of view, linguistic evidence points to the facil-
ity with which path prepositional phrases can modify
descriptions of motion events. It is critical for generic
representations of actions to adequately specify any and
all possible enrichments of the basic predicate-argument
structure so that these types of extended meanings can
be accommodated. The Parameterized Action Repre-
sentation (PAR) (Badler et al. 1997) includes slots for
many types of information that can sometimes occur
linguistically as adjuncts to the main verb phrase rather
than as part of the basic sub-categorization frame, or
even possibly in separate sentences. These slots include
spatio-temporal information such as paths (to the store,
across the room), manner information that is often ex-
pressed as adverbs (quickly, carefully), and applicability
and terminating conditions that can be inherent but can
also be specified (until the door is open).

This rich representational structure also allows our
PARs to capture the physical or performance attributes
of movements and actions. For example, it allows differ-
entiating between a simple change of location descrip-
tion such as go to the door, and a more idiomatic ex-

pression such as go to bed which brings with it a wealth
of cultural habits about preparing for a night’s rest.
With the former action, there is just a single move event
involving a single participant, and the termination is
achieved when that participant arrives at the door. The
latter action involves a series of actions that can be as
diverse as changing clothes and brushing teeth, and ter-
minates when the participant actually lies down on the
bed. This requires the embedding of several simple ac-
tions into a single complex action. In this way, we can
use a PAR as a common representation to capture ver-
bal and physical descriptions of both simple actions, go
to the door, and complex actions, go to bed.

In addition to commands for the immediate perfor-
mance of actions, we would also like to use natural lan-
guage input to convey conditional actions that need to
persist in the avatar’s memory and may be triggered by
future circumstances. For example, “If you agree to go
for a walk with someone then follow them,” is a stand-
ing instruction that would be triggered whenever the
avatar agreed to go for a walk. This requires a sophis-
ticated natural language processing system with broad
syntactic coverage and close integration of syntax and
domain-specific lexical semantics that can interact with
the underlying graphical world model. We are using as
the basis of our parser the XTAG Synchronous Tree Ad-
joining Grammar system in C'++ (Palmer, Rosenzweig,
& Schuler 1998).

Parameterized Action Representation
(PAR)

A PAR (Badler et al. 1997) gives a complete descrip-
tion of an action. We call it “parameterized” because an
action depends on its participants (agents and objects)
for the details of how it is accomplished. A PAR in-
cludes a number of conditions such as applicability and
preparatory that have to be satisfied before the action
is actually executed. The action is terminated when
the terminating conditions are satisfied. A PAR can be
represented syntactically as shown in Fig.1. In this sec-
tion, we first briefly describe some of the terminology
and concepts used to define a PAR and then describe
the architecture that we have designed that interprets
the PAR.

Terminology

To simplify the explanations, we consider an example
of a PAR used to represent the instruction

Walk around the room.

Physical Objects: This is the list of objects referred
to within the PAR. We have prepended the name
physical to distinguish them from the object termi-
nology used in object oriented languages. In our ex-
ample, the room and other objects contained in the
room are the physical objects. Each physical object
has a number of properties associated with it and is
stored hierarchically in a database.



PAR

applicability conditions:  CONDITION boolean-expression

]

start: TIME/STATE

result: TIME/STATE

— agent:  AGENT
participants: objects: OBJECT list

preconditions:

core semantics:
MOTION

FORCE

motion:
force:

direction:

start:

end:
distance:

DIRECTION
LOCATION
LOCATION
LENGTH

path:

achieve:
generate:
enable:

CONDITION boolean-expression
PAR
PAR

purpose:

termination: CONDITION boolean-expression
LENGTH

MANNER

PAR constraint-graph

PAR

PAR

PAR

PAR

duration:
manner:
subactions:
parent action:
previous action:
concurrent action:

next action:

CONDITION boolean-expression
postconditions: CONDITION boolean-expression

|

MOTION
object: OBJECT
caused: BOOLEAN
translational: BOOLEAN
rotational: BOOLEAN
FORCE

object: OBJECT
point of contact: OBJECT LOCATION

LENGTH
UNIT

units:
number: QUANTITY

Figure 1: Syntactic Representation of PAR

Agent: This is the agent who will be executing the ac-
tion. In our example, the avatar of the user is the
implied agent. An agent is a special type of object
and has additional capabilities including a set of ac-
tions that the agent is capable of executing.

Applicability Conditions: These conditions specify
what needs to be true in the world in order to carry
out an action. They may refer to inherent proper-
ties of the agent (e.g., agent capabilities) or physical
objects (e.g. object configurations). Hence, if the ap-
plicability conditions are not satisfied (i.e. evaluate
to FALSE), no sub-actions or subgoals are generated
to make the conditions true. In our example, one
of the applicability conditions may be Is the agent
capable of walking?. If the agent is not capable of
walking, the applicability conditions are not satisfied
and the action of the agent walking around the room
is aborted.

In some instances, the applicability conditions may
also point to other actions. For example, a spe-
cific door may have to be opened by a sliding ac-
tion. That door then associates sliding with opening.
Hence, when the applicability conditions of the door
are checked for opening, the sliding action (“slide”,
agents:(“al”), objects:(“door”))) is returned and the
current action of opening the door will be replaced by
the action of sliding the door. The implementation

details of this are discussed later in the paper.

Preparatory Specifications: This

is a list of <Condition, Action> statements. The
conditions are evaluated first and have to be satis-
fied before the current action can be executed. If
the conditions evaluate to FALSE, then the corre-
sponding action is executed: it may be a single ac-
tion or a very complex combination of actions, but
it has the same format as the execution steps (de-
fined below). In our example, one of the conditions
can be standing?(agent) and the corresponding ac-
tion can be (“stand”, agents:(“Jack”))). If the agent
is not standing, e.g. if he is sitting or prone, then he
changes to the standing posture.

Execution Steps: A PAR can either describe a com-

plex action or a primitive action. The execution steps
contain the details of action executing after all the
conditions have been satisfied. A complex action can
list a number of sub-actions which may need to be
executed in sequence, parallel, or a combination of
both. An example of a complex action specification
is shown in Fig. 2.

Termination Conditions: This is a list of conditions

which when satisfied complete the action. Determin-
ing a terminating condition from the main verb or
attached clauses is discussed in (Bourne 1998).



complex =
(*SEQUENCE’ ,
(‘PARJOIN’,
("par1l",agents: ("al"),objects: ("ol", "02")),
("par2",agents: ("al") ,objects: ("02"))),
("par3",agents: ("al"),objects: ("ol1")),
(‘PARINDY’,

(¢SEQUENCE’ ,
("par4",agents: ("al") ,objects: ("02","03")),
("parb",agents: ("al") ,objects: ("o3"))),

("par6",agents: ("al") ,objects: ("ol","02")))

("par7" agents:("al"),objects:("o1","03"))
)
actions = {‘COMPLEX’: complex}

Figure 2: Specification of a Complex Action

Post Assertions: This is a list of statements or asser-
tions that are executed after the termination condi-
tions of the action have been satisfied. These asser-
tions update the database to record the changes in
the environment. The changes may be due to direct
or side effects of the action.

PAR representations: A PAR appears in two differ-
ent forms:

UPAR (Uninstantiated PAR): We store all in-
stances of the uninitialized PAR in a database
in a hierarchical tree. A UPAR contains default
applicability conditions and preconditions for the
action, and also points to the executable actions
that actually drive the embodied character’s move-
ments. The UPAR does not contain information
about the actual agent or physical objects involved.
In essence, UPARs comprise a dictionary of avail-
able actions.

IPAR (Instantiated PAR): An IPAR is a UPAR
instantiated with information or pointers to a spe-
cific agent, physical object(s), manner, and ter-
mination conditions. Any new information in an
IPAR overrides the corresponding UPAR default.
An IPAR can be created by the parser (one IPAR
for each new instruction) or can be created dynam-
ically during execution.

Architecture

Fig. 3 shows the architecture of the PAR system. We
briefly describe the important modules.

NL2PAR: This module consists of two parts: parser
and translator. The parser takes a NL instruc-
tion/command and outputs a tree identifying the
different components as noun, verb, adverb, prepo-
sition, etc. For each new instruction, the transla-
tor uses the output of the parser and information
stored in the database to first determine the correct
instances of the physical object and agent in the en-

vironment. It then generates the instruction as an
IPAR.

NL (sentence/instruction)

NL2PAR
Databas% PAR (object, action,
agent, manner,

A culminating conditions)

Agent Proc
y Y . 9
ExeCL_mon

Database Managef Engine | Agent Proc 2

r Agent Proc

Jack Toolkit

Figure 3: PAR Architecture

J
i

-

Database: All instances of physical objects, UPARs,

and agents are stored in a persistent database. The
physical objects and UPARs are stored in hierarchies.

Execution Engine: The execution engine is the main

controller of the system. It maintains the global
timer/controller, sends commands to the visualizer
to update the displayed scene, and accepts a PAR
from the NL2PAR module and passes it on to the
correct agent process.

AgentProcess: Each instance of an agent is controlled

by a separate agent process, which maintains a queue
of all IPARs to be executed by the agent. For each
TPAR, the applicability conditions are first checked.
If they are not satisfied, the entire process is aborted
after taking care of failure conditions and proper sys-
tem updates. If the applicability conditions are sat-
isfied, the preparatory conditions are then checked.
If any of the corresponding preparatory actions need
to be executed, an IPAR is created (using the speci-
fied information of the UPAR, agent, and the list of
objects) and added to the agent’s existing queue of
IPARs. It should be noted that the queue of IPARs
is a multi-layered structure. Each new IPAR created
for a preparatory action is added to a layer below the
current one. The current action is continued only
after the successful termination of all the prepara-
tory actions. If the current action is very complex,
more IPARs are generated and the depth of the queue
structure increases.

The queue manager of actions in an agent process
is implemented using a PaT-Net (Parallel Transi-
tion Network) (Badler, Phillips, & Webber 1993).
A PaT-Net is a simultaneously executing finite state
automata in which the nodes are associated with ac-
tions and connections between the nodes are associ-
ated with transition conditions. The PaT-Nets make
it very easy to wait on completion of actions before
moving onto the next action, to execute actions in



parallel or in sequence, and to dynamically extend
the action structure by invoking other PaT-Nets from
nodes of the current one. During the execution phase,
a PaT-Net is dynamically created for each complex
action specified in the execution steps or in prepara-
tory specification. Each sub-action corresponds to a
subnet in the PaT-Net. The PaT-Nets are also used
ultimately to ground the action in parameterized mo-
tor commands to the embodied character.

Toolkit: We use the Transom Jack®toolkit and
OpenGL to maintain and control the actual geom-
etry, scene graphs, and human behaviors and con-
straints.

Implementation

We have implemented PAR using C++ and Python
(Lutz 1996). Python is an interpreted object-oriented
language and is quite compatible with C++. This
makes it easy for both the action and object hierar-
chies to be visible from both Python and C++. It also
provides serialization and persistence which is ideal for
database implementation. UPARs and IPARs may be
dynamically created. As Python can be extended and
embedded in C++, objects of different data types can
be passed between them. The applicability conditions,
preparatory specifications, and executable actions are
all written by end-users on the fly as simple Python
scripts which can be easily tested. The objects passed
from Python to C++ are all perceived by C++ to be of
a single Python object type which could later be type-
cast to different types. This allows conditions to return
the various test results as either a Boolean type or a
Python string. The agent process is capable of expand-
ing this string into a new action and adding it to the
agent’s queue.

The system is built in two layers. The bottom layer
contains the implementation of the core system and is
in C++ and Python. The top layer has a user-friendly
interface. The user needs to interact only with the top
layer. In the future, this system will be extended to
work in a distributed environment with heterogeneous
clients on different platforms.

Example: Jack’s MOOse Lodge

In this section, we will discuss an example called “Jack’s
MOOse Lodge”, which was initially implemented in the
JackMOO environment (Shi et al. 1999). We will de-
scribe the flow of control in the PAR system within the
context of this example.

The scene (Fig. 4) is the inside of a mountain lodge
built from wood. There is a big room with a dining
area containing a table and four chairs. To one side
of the dining area is a loft with a ladder leading to
it. The loft is surrounded by railings and has a bed
on it. Below the loft is an open doorway leading to a
kitchen. The main entrance of the lodge has a door
with a knob. The test scenario includes five virtual hu-
mans: four are user-instructed “smart” avatars and one

Figure 4: Jack’s MOOse Lodge: a scene from the ex-
ample.

is a semi-autonomous waiter “agent.” The four avatars
are named ‘Bob’; ‘Norm’, ‘Sarah’, and ‘David’, respec-
tively. In a distributed environment, each avatar could
be controlled by different users at possibly different ge-
ographical sites. In a non-distributed environment, the
instructions can be specifically directed to an avatar:
e.g., “Sarah, walk to the door”. The parser is capable
of interpreting and generating the correct IPAR for this.
In the following, we will use the quoted name (‘Bob’)
to refer to the avatar and the unquoted name (Bob)
to refer to the live user who is responsible for issuing
commands to his or her avatar.

The actions that a smart avatar can perform in the
lodge include: walking, sitting down (on a chair or on
the bed), standing up, talking to others, climbing (a
ladder), opening a door, shaking hands, bowing, and
drinking. The database stores the definitions (UPARs)
for each action, containing the necessary applicabil-
ity conditions, preparatory specifications, and possibly
PaT-Nets.

The waiter agent is autonomous and is controlled
by its own agent process. The waiter agent carries a
pitcher with some kind of liquid and acts according to
the following rules:

e if an avatar is sitting at the table, and the glass in
front of him/her is empty, the waiter will approach
the glass and pour the liquid into it from the pitcher;
or

e if the pitcher is empty, the waiter will go into the
kitchen through the open doorway, refill the pitcher,
and come back out; or

¢ if nothing needs to be done, the waiter will just stand
by the doorway and stay idle.

The waiter agent obtains all its environment state in-
formation from the working memory. Based on the en-
vironment conditions (state of pitcher or the avatar’s
glass), the agent process for the waiter adds the corre-
sponding actions to its queue.



Conversation

The avatars can appear to hold conversations with
each other. To do this, an instruction is given to the
avatar to say something, e.g., Norm, say Hello to Sarah.
The parser module NL2PAR generates the IPAR where
“Norm” is the agent, “say” is the verb, “Hello” is the
text to be spoken and “Sarah” is the person (object)
to be spoken to. The UPAR for “say” contains the
preparatory specification of turning to the person (or
object). So, if ‘Norm’ is initially turned away from
‘Sarah’, he will first execute the command “turn” to-
wards ‘Sarah’ and then can say “Hello” to “Sarah”. A
text-to-speech converter is used to generate the actual
speech.

Contextual Behavior

The avatars can interpret the same action in different
ways depending on the context and the state of the envi-
ronment. In our example, the scene begins with ‘Bob’
entering the lodge while ‘Norm’, ‘Sarah’, and ‘David’
are seated at the table, drinking and talking to each
other. To be polite, Bob should issue commands such
as greet (the name of an avatar) to greet other people.
Since ‘Bob’ is a smart, avatar, upon receiving the com-
mand, he will take different actions suited to different
situations:

e “greet Norm”. ‘Bob’ approaches ‘Norm’, puts for-
ward his right arm, and waits for the response from
‘Norm’. Assume that Norm sees the initiating ac-
tion of ‘Bob’, and so Norm issues a command “greet
Bob”. Then ‘Norm’ will stand up from the chair,
turn to ‘Bob’, grab his right hand, and shake hands
with him. Both then release the grasp and return
their arms to a neutral pose.

o “greet Sarah”. ‘Bob’ approaches ‘Sarah’, turns to
face her, and bows to her. Upon receiving the com-
mand “greet Bob” from Sarah, ‘Sarah’ will stand up,
face ‘Bob’, and bow back to him.

From these cases we can see that ‘Bob’ shows his con-
textual behavior by executing different actions to differ-
ent targets given the same command “greet somebody” .
‘Norm’ and ‘Sarah’ show their contextual behaviors by
returning the greeting to ‘Bob’ in a corresponding fash-
ion.

Go-to Action The goto (location) is a complex ac-
tion. In our example, we have two instances of goto:
goto bed and goto door. There is a semantic difference
between the goto in goto bed and goto (location). The
goto bed has “lying down on the bed” as the termination
condition. All the other goto actions usually terminate
after reaching the target location. Hence we create a
special UPAR associated with goto-bed. This UPAR
is a child of the goto UPAR in the action hierarchy.
Goto-bed is a complex action containing as sub-actions
goto-location, sit on bed and lie down on bed which are
all to be executed in sequence.

The goto-location is itself a complex action. It in-
volves path planning and invocation of suitable sub-
actions to reach the target along the planned path. For
instance, the bed in our example is in the loft which
can be accessed only by climbing a ladder. One of the
applicability conditions of goto-location is path-exist?.
To test for the condition, a path planning algorithm
is invoked which takes into account the current state
of the environment and returns either TRUE, FALSE
or a Python string describing the action to be taken.
The returned string is similar to the action description
shown in Fig. 2. From this a new complex IPAR is built
and added onto the queue. For the example of reach-
ing the bed, the new action to be executed may be a
sequence of “walk” to the ladder, “climb” the ladder,
“walk” to the bed. After the agent has reached the bed,
the sub-actions of sit on bed and lie down on bed are
executed.

In general, preparatory actions or applicability con-
ditions may involve the full power of motion plan-
ning (Badler et al. 1996). The commands, after all, are
essentially goal requests and the smart avatar must then
figure out how (if at all) it can achieve them. Presently
we use PaT-Nets with hand coded conditionals to test
for likely (but generalized) situations and execute ap-
propriate intermediate actions (Trias et al. 1996).

Leader-Follower Relationship

PAR also supports a leader-follower relationship where
one avatar follows another avatar’s actions. As our ex-
ample proceeds, ‘Norm’ invites ‘Sarah’ to go out for a
walk. This is done by issuing a command, “Norm, say
‘Will you go for a walk with me?’ to Sarah”. When
‘Norm’ is heard saying this , Sarah can be instructed
to accept the invitation: “Sarah, say ‘yes’.”. (Recall
that, were the users on separate clients, identifying the
avatar that is to speak would be unnecessary.) This is
an example of a conversation modifying the state of the
environment, namely, to initiate a leader-follower rela-
tionship. Then as ‘Norm’ starts walking to the door,
‘Sarah’ is instructed to follow ‘Norm’ by issuing the
command, “Sarah, follow Norm”. As ‘Norm’ walks to
the door, opens the door, and exits the room, ‘Sarah’
trails along behind. In this case, ‘Norm’ is the leader
and ‘Sarah’ is the follower. A pursuit locomotion con-
dition is established between the avatars which causes
‘Sarah’ to follow ‘Norm’ temporarily. In the leader-
follower model one temporarily yields some aspects of
the control of one’s avatar to another’s lead. Sarah
could still instruct her avatar to wave good-bye even as
she follows ‘Norm’ out the door. Explicit commands
would have to be issued to break the relationship.

Discussion

The PAR architecture and its implementation is in-
tended to provide a testbed for real-time conversational
agents who work, communicate, and manipulate in a
synthetic 3D world. Our goal is to make interaction



with these embodied characters the same as with live in-
dividuals. We have focused on language as the medium
for communicating instructions, and finite state ma-
chines as the controllers for the output movements.

The structure described here is the basis for a new
kind of dictionary we call an Actionary. A dictionary
uses words to define words. Sometimes it grounds con-
cepts in pictures and (in online sources) maybe even
sounds and video clips. But these are canned and not
parameterized — flexible and adaptable to new situa-
tions the way that words appear in actual usage. In
contrast, the Actionary uses PAR and its consequent
animations to ground action terms. It may be viewed
as a three-dimensional (spatialized) environment for an-
imating and evaluating situated actions expressed in
linguistic terms. The actions are animated to show the
meaning in context, that is, relative to a given 3D en-
vironment and individual agents.

The Actionary will facilitate:

e The translation of human action instructions into
sample action execution for training and education
(e.g., foreign language learning).

e The translation of action descriptions (instructions)
across languages, especially where the motion verbs
types differ significantly (e.g. Chinese to English).

e The study of conceptual aspects of verbs that are
overlooked in standard human dictionaries.

e Low bandwidth communication of multi-person ac-
tivities: by transmitting textual instructions (which
are very compact), smart avatars at the receiving end
can interpret instructions via an Actionary. (This
is sensible because we believe that the power of lo-
cal computation will increase faster than the network
bandwidth into consumer homes, for example). This
can enable remote job training, video/virtual confer-
encing, equipment operation and maintenance, 3D
virtual communities, online playrooms, and so on.

A language-to-action interface interpreted through the
Actionary helps free users from physical sensing devices
and offers the potential for less expensive hardware de-
ployment, realistic computational loads, decreased com-
munication bandwidth requirements, and an undeni-
ably natural user interface.

References

Badler, N.; Webber, B.; Becket, W.; Geib, C.; Moore,
M.; Pelachaud, C.; Reich, B.; and Stone., M. 1996.
Planning for animation. In Interactive Computer An-
imation. PrenticeHall. N. M-Thalmann and D. Thal-
mann (eds.).

Badler, N.; Webber, B.; Palmer, M.; Noma, T.; Stone,
M.; Rosenzweig, J.; Chopra, S.; Stanley, K.; Bourne,
J.; and Di Eugenio, B. 1997. Final report to Air Force
HRGA regarding feasibility of natural language text
generation from task networks for use in automatic

generation of Technical Orders from DEPTH simula-
tions. Technical report, CIS, University of Pennsylva-
nia.

Badler, N.; Phillips, C.; and Webber, B. 1993. Sim-
ulating Humans: Computer Graphics Animation and
Control. New York, NY: Oxford University Press.

Bindiganavale, R., and Badler, N. 1998. Motion ab-
straction and mapping with spatial constraints. In
Workshop on Modelling and Motion Capture Tech-
niques for Virtual Environments. Geneva, Switzer-
land: IFIP. to appear.

Bourne, J. 1998. Generating adequate instruc-
tions: Knowing when to stop. In Proceedings of
the AAAI/IA AT Conference,Doctoral Consortium Sec-
tion. to appear.

Cassell, J.; Pelachaud, C.; Badler, N.; Steedman, M.;
Achorn, B.; Becket, W.; Douville, B.; Prevost, S.; and
Stone, M. 1994. Animated conversation: Rule-based
generation of facial expression, gesture and spoken in-
tonation for multiple conversational agents. In Com-
puter Graphics, Annual Conf. Series, 413-420. ACM.

Chi, D.; Webber, B.; Clarke, J.; and Badler, N.
1995. Casualty modeling for real-time medical train-
ing. Presence 5(4):359-366.

Firby, R. 1994. Task networks for controlling contin-
uous processes. In Proc. of the Second International
Conference on AI Planning Systems, Chicago IL.

Gleicher, M. 1998. Retargetting motion to new charac-
ters. In Computer Graphics Proceedings, 33-42. SIG-
GRAPH.

Johnson, W., and Rickel, J. 1997. Steve: An animated
pedagogical agent for procedural training in virtual
environments. ACM SIGART Bulletin 8(1):18-21.

Lutz, M. 1996. Programming Python. O’Reilly.
Metaxas, D., and Essa, I. E. 1997. Nornrigid and Ar-

ticulated Motion Workshop Proceedings. IEEE Com-
puter Society.

Noma, T., and Badler, N. 1997. A virtual human pre-
senter. In IJCAI ’97 Workshop on Animated Interface
Agents.

Palmer, M.; Rosenzweig, J.; and Schuler, W. 1998.
Predicative Forms in NLP. Kluwer Press. chap-
ter Capturing Motion Verb Generalizations with Syn-
chronous TAG. to appear in.

Shi, J.; Smith, T. J.; Granieri, J. P.; and Badler, N. I.
1999. Smart avatars in jackmoo. In IEFEE Virtual
Reality '99 Conference. Submitted to.

Trias, T.; Chopra, S.; Reich, B.; Moore, M.; Badler,
N.; Webber, B.; and Geib, C. 1996. Decision net-
works for integrating the behaviors of virtual agents
and avatars. In Proceedings of Virtual Reality Inter-
national Symposium.



