

KMPR Master Fabrication Protocol

Updated September 2017

Table of Contents

- 1. Materials
- 2. Equipment
- 3. Protocol

Materials

- KMPR-1050
- SU-8 (KMPR) developer
- 3 inch diameter silicon wafers
- Acetone
- Isopropyl alcohol (IPA)
- PDMS (base + curing agent)

Equipment

- Spin coater
- Hotplate
- ABM mask aligner
- Vacuum chamber
- Anatech barrel asher

Video References

- Spin coating thick resist (http://repository.upenn.edu/scn_video/2)
- ABM mask aligner (http://repository.upenn.edu/scn_video/6)
- Developing with SU8 resist (http://repository.upenn.edu/scn_video/4)
- PDMS degassing (http://repository.upenn.edu/scn_video/5)

Protocol

Resist Spinning

- 1. Bake wafer at 200C for 10 minutes
- 2. Set spin parameters:
 - a. Step 1 of 2: 500 rpm, accel = "100", 30 sec
 - b. Step 2 of 2: Refer to KMPR data sheet to determine the spin speed necessary for desired thickness, 30 sec (Figure 1)
- 3. Position and center wafer on spinner chuck
- 4. Pour KMPR photoresist without air entrapment in the center of the silicon wafer (Image 1)
- 5. Spin the wafer
- 6. If performing multiple spins, wipe spinner hood between wafers to prevent excess KMPR from dripping onto samples

Image 1

Soft Bake

1. Refer below to KMPR data sheet for appropriate soft bake time (Table 2)

THICKNESS	SOFT BAKE TIME		
microns	minutes @ 100ºC		
5 - 11	5		
12 - 20	7		
21 - 30	12		
31 - 55	15		
56 - 80	20		

Table 2. Soft Bake Times

THICKNESS	EXPOSURE			
	ENERGY			
microns	mJ/cm ⁻			
5 - 11	235 - 335			
12 - 20	355 - 485			
21 - 30	500 - 645			
31 - 55	665 - 1055			
56 - 80	1070 - 1465			

Table 3. Exposure Dose

	RELATIVE DOSE
Silicon	1X
Glass	1.5X
Pyrex	1.5X
Indium Tin Oxide	1.5X
Silicon Nitride	1.5 - 2X
Gold	1.5 - 2X
Aluminum	1.5 - 2X
Nickel Iron	1.5 - 2X
Copper	1.5 - 2X
Nickel	1.5 - 2X
Titanium	1.5 - 2X

Table 4. Exposure Doses for Substrates

Image 2

Exposure

- 1. Calculate the necessary exposure time
 - a. Refer to KMPR data sheet for necessary exposure energy (Table 3, 4, 5 and Figure 2)
 - b. The power output of the UV lamp can be found in Table 5 or in the Power Output log in the Data Sheet binder
 - c. Exposure Time = Exposure Energy ÷ Power Output
 - d. Set timer to the above result
- 2. Position wafer and photomask
- Bring wafer into contact with the mask by pressing the WEC button (image 3) and switching the contact switch upward (Image 4)
- 4. Expose wafer by using the Cycle button

Three things to check before exposure:

- 1. Contact mode enabled
- 2. Long pass filter in place (if using)
- 3. Exposure time is set

	365nm						
Date	Nothing	Glass Mask	Glass + Film Mask	Glass Mask + LP Filter	Film Mask + LP Filter	Film Mask + Glass + LP Filter	
Standard	25	22.1	18.4	13.7	12.8	10.4	

Table 5. Lamp Power Output (Units: mW/cm²)

Figure 2

Image 3

Image 4

Post-Exposure Bake

- 1. Place wafer on the hotplate at 100°C for post-exposure bake
 - a. 2 minutes for $< 25 \,\mu m$
 - b. 3 minutes for 25 to 50 μm
 - c. 4 minutes for $> 50 \ \mu m$

Development

- 1. Pour just enough SU-8 developer into glass container such that the wafer will be fully submerged when placed into the bath
- 2. Carefully place the wafer into the bath
- 3. Develop in bath of SU-8 developer with constant agitation (Image 5)
- 4. Development is complete when developer is completely clear and there are no signs of undeveloped resist coming off the surface
- 5. Rinse in acetone and IPA
- 6. Place the wafer flat on a cleanroom wipe
- 7. With the nitrogen gun, blow/push the IPA off the surface of the wafer, starting at the center, until dry (Image 6)
 - Appearance of a white film during IPA rinse indicates the resist is underdeveloped—simply place the wafer back into the developer bath to complete development

PDMS Preparation

- 1. Vigorously mix PDMS *base* and PDMS *curing agent* at a 10:1 ratio by weight (use scale) for about 5 minutes
 - a. For sufficient coverage in a circular aluminum dish, approximately 35g of PDMS is needed
- 2. Pour PDMS over the fabricated master in a circular aluminum dish
- 3. Place the dish into the vacuum chamber and degas the mixture for 30 minutes or until all bubbles have disappeared

Image 5

Image 6

Image 7

KMPR Master Fabrication

- a. Remaining air bubbles in surface can be ruptured by blowing on the surface
- Place the dish into the oven or on a hotplate at 80-100 °C—curing should complete in 20-30 minutes (note: styrene dishes begin to deform at higher than 65C)

Plasma Bonding

- 1. Place slide and PDMS mold on glass slide or dish with features facing up (Image 8)
- 2. Vent Anatech and place samples in chamber
- 3. Select PDMS from recipe list
- 4. Press "Start Vacuum" to start process (the button below must read "Auto" (Image 9)a. Recipe shown in Image 10
- 5. Process will automatically vent
- 6. Remove samples
- 7. Place the PDMS mold on the glass with a very gently press
- 8. Heating for 20 minutes at 60C 100C will improve the bond

Image 8

Image 9

Image 10

KMPR Master Fabrication

Notes: