
Modeling Buffers with Data Refresh Semantics
in Automotive Architectures∗ †

Linh T.X. Phan1 Reinhard Schneider2 Samarjit Chakraborty2 Insup Lee1

1Department of Computer and Information Science, University of Pennsylvania, USA
2Institute for Real-Time Computer Systems, TU Munich, Germany

{linhphan,lee}@cis.upenn.edu reinhard.schneider@rcs.ei.tum.de samarjit@tum.de

ABSTRACT
Automotive architectures consist of multiple electronic control units
(ECUs) which run distributed control applications. Such ECUs are
connected to sensors and actuators and communicate via shared
buses. Resource arbitration at the ECUs and also in the commu-
nication medium, coupled with variabilities in execution require-
ments of tasks results in jitter in the signal/data streams existing in
the system. As a result, buffers are required at the ECUs and bus
controllers. However, these buffers often implement different se-
mantics – FIFO queuing, which is the most straightforward buffer-
ing scheme, and data refreshing, where stale data is overwritten by
freshly sampled data. Traditional timing and schedulability analy-
sis that are used to compute, e.g., end-to-end delays, in such auto-
motive architectures can only model FIFO buffering. As a result,
they return pessimistic delay and resource estimates because in re-
ality overwritten data items do not get processed by the system.
In this paper we propose an analytical framework for accurately
modeling such data refresh semantics. Our model exploits a novel
feedback control mechanism and is purely functional in nature. As
a result, it is scalable and does not involve any explicit state mod-
eling. Using this model we can estimate various timing and perfor-
mance metrics for automotive ECU networks consisting of buffers
implementing different data handling semantics. We illustrate the
utility of this model through three case studies from the automotive
electronics domain.
Categories and Subject Descriptors: C.3 [Special-purpose and
application-based systems]: Real-time and embedded systems
General Terms: Design, verification, performance.
Keywords: Modeling, analysis, buffer management.

1. INTRODUCTION
Automotive architectures typically consist of a collection of elec-

tronic control units (ECUs) that are connected by multiple com-
munication buses implementing various protocols such as CAN
and FlexRay. Such a platform is used to execute multiple dis-
tributed control applications that obtain their input fromvarious
sensors. Hence, there is information processing and propagation
in the form of data/message streams, originating from sensors and
terminating at actuators and passing through various ECUs and
buses. Although the sensors typically sample data at periodic inter-
vals and tasks are also periodically activated, resource arbitration at
the ECUs and buses, coupled with variable processing demands of
∗This research was supported in part by NSF CNS-0931239, NSF
CNS-0834524, NSF CNS-0721541, NSF CNS-0720703 and the
DFG (Germany) through the SFB/TR28 Cognitive Automobiles.
†This is a longer version of the original paper published in the EM-
SOFT 2010 proceedings, where we include all the proofs and a
minor correction to the formula in Lemma 3.6.

data refresh

…

se
n

so
r FIFO FIFO

a
ct

u
a

to
r

finite infinite infinite

Figure 1: Network having buffers with different semantics.

tasks, introduce jitters in the data streams. As a result, buffers need
to be placed at various positions in the architecture, e.g.,at the bus
controllers.

Given such a setup, there are two predominant data handling se-
mantics implemented in the buffers: (i) First In First Out orFIFO,
where data should not be lost and the history of transmissionor
ordering of data is important. Data streams containingincremen-
tal information, e.g., thespeed increaseof a car, are buffered in
this manner. (ii) Data refresh semantics, where buffers areof re-
stricted size and stale data is overwritten by freshly sampled sen-
sor data. Such semantics is used where data with the mostrecent
valuesare of interest, e.g., theactual speedof a car. However,
modeling such buffer overwrites – while doing timing/performance
analysis of the system – turns out to be a challenging problemand
has mostly been ignored in the past. Ignoring such overwrites is ac-
ceptable in streaming multimedia applications, e.g., where encoded
video data is stored in a buffer and existing data isneveroverwrit-
ten (in fact overwriting or data loss is not desirable). However, for
many control applications, stale data is not useful and is replaced
by newly sampled data. Neglecting overwrites in this case leads to
pessimistic estimates on computation and communication resource
requirements (since the overwritten data is also assumed tobe pro-
cessed in the model).

In this paper we develop an analytical model for ECU networks
containing buffers implementing both the above semantics (e.g.,
see Fig. 1). Our model is motivated by previous work on modeling
and analysis of applications processing continuous data streams us-
ing theReal-Time Calculus(RTC) framework [15]. We extend the
RTC framework using a novel feedback control mechanism that
enables the modeling of complex “state information”, whichin this
case is the deletion of existing data in the buffer by fresh data. The
main challenge in modeling such overwrites stems from the rel-
atively complex overwriting process, viz., theoldestdata in the
buffer is overwritten by freshly sampled data. Typically such data
refresh semantics requires explicit state-based modeling, e.g., using
timed automata (see [8]). This leads to the well-known statespace
explosion problem, which has also been reported in the context of
state-based modeling of applications processing data streams [6].
Our main contribution is to suitably modify the RTC framework
with an appropriate abstraction and a feedback control construct,
that avoids any state-based modeling, but nevertheless accurately
captures the complex buffer refresh semantics.



The importance of this problem has recently been pointed outin
a number of studies. In [11] buffering mechanisms with overwrit-
ing have been discussed to bridge the gap between synchronous
semantics at the model level and the asynchronous nature of im-
plementation platforms. The semantics oftag systems[1] has been
used to model systems with buffers implementing the data refresh
semantics as we do in this paper [2]. This has been extended to
model loosely time-triggered architectures in [3]. However, all of
these efforts were directed towards studying thefunctionalcorrect-
ness of the system. In this paper, we model the data refresh seman-
tics toquantitativelycapture the load on system resources and the
volume of actual data that is processed by the system. Our goal
is to factor this into the computation of timing properties of the
system, e.g., delays suffered by messages. The need for quantita-
tively capturing this in performance analysis techniques has also
been pointed out in [7].

Developed on top of the Network Calculus [4] theory from the
communication networks domain, the RTC framework [5] we use
in this paper has been extensively adapted to model and analyze
heterogeneous real-time systems in a compositional manner(e.g.,
see [16]). The central concept in this framework is its use ofarrival
functionsto model the timing properties of data streams andservice
functionsto capture the availability of resources. Specifically, each
data stream is modeled by a pair of arrival functions,αu(∆) and
α l (∆), which denote the upper- and lower-bound on the number of
data items that may arrive in any time interval of length∆. Simi-
larly, a resource is modeled by a pair of service functions,β u(∆)
andβ l (∆), which specify the maximum and minimum number of
items that can be processed by the resource within any time inter-
val of length∆. Given the arrival functions of an input data stream
and the service functions of a resource, one can compute – using
purely algebraic techniques – various bounds on system properties
such as the maximum backlog of data items at a buffer, the maxi-
mum delay suffered by the input stream, the arrival functions of the
output stream, and the service functions of the remaining resource.
The output arrival functions can then be fed as inputs to the next
resource whereas the remaining service functions can be used to
process the next data stream.

The arrival and service functions in the RTC framework admit
a much richer collection of arrival sequences and resource patterns
than the classical event and resource models (e.g., periodic, spo-
radic, bounded delay) do. Its algebraic feature also enables effi-
cient computation of system’s performance in a fully compositional
manner. However, the standard RTC formalism assumes an un-
bounded buffer size and does not model buffering schemes that are
dependent on the state of the buffer. As mentioned earlier, this as-
sumption is not only unrealistic but also prevents RTC from being
applicable to many common practical systems.

When data refresh semantics is implemented in a buffer, the
smaller the buffer size, fewer will be the the number of data items
to be processed downstream (e.g., on the ECU next to the actuator
in Fig. 1). This is because certain data items will be overwritten and
will therefore not have to be processed subsequently (i.e.,beyond
the buffer which implements data refresh in Fig. 1). In such cases,
assuming that no data is lost – as in the standard RTC framework –
results in a higher system load and hence pessimistic timingbounds
and resource estimates.

Our contributions. In this paper, we extend the existing RTC
framework to model and analyze systems with buffers implement-
ing both FIFO as well as the data refresh semantics. The key idea
in our technique is to use in combination the concept of a virtual
processor to encapsulate the data overwriting scheme and a feed-
back control mechanism to capture the overflow constraints.Our

analysis relies solely on algebraic manipulations and thuscan be
computed efficiently. The technique we propose here significantly
enhances the modeling power of the existing RTC framework while
sidestepping the problems associated with other fine-grainstate-
space models [6,8]. At the same time, it is modular and fully com-
positional. Through case studies, we illustrate how our method can
be seamlessly integrated into the current RTC framework, and at
the same time we show the effects of capturing buffer overwrites
on the accuracy of the analysis. We also provide an experimental
validation of our analysis method against simulation. It isworth
noting, however, that our analytical method is not only faster but
also able to provide guaranteed bounds on the system properties,
which cannot be achieved using simulation.

Related work. The first line of work targeted towards state-
dependent systems comes from the formal methods domain. Timed
automata and related automata-theoretic formalisms have been em-
ployed to model task scheduling of hard real-time systems [8] as
well as systems processing data streams [6]. Although automata-
theoretic models are highly expressive, they often suffer from the
state explosion problem when applied to realistic settings.

The effect of finite buffer capacities has been studied in thecon-
text of data flow graphs [10]. For instance, an algorithm for com-
puting the buffer capacities that satisfy throughput constraints was
presented in [17]. Analysis of self-time scheduling for multirate
data flow with finite buffer capacities was studied in [12]. Back-
pressure was used in [14] as a mechanism to allow a semantics pre-
serving implementation of synchronous models on Loosely Time
Triggered Architectures.

Further, as mentioned above, [2,3,11] have proposed techniques
for modeling systems with data refreshing, although from a func-
tional correctness perspective. The main goals of these frameworks
are to investigate communication and clock synchronization proto-
cols that are data semantics preserving in a distributed time trig-
gered platform with asynchronous communication. This is done
by means of tag structures [1], which hold information aboutthe
freshness levels of the data, and an enforcement of constraints on
these tags to ensure correctness of data values. Unlike these tech-
niques, our framework does not deal with the functional aspects of
the system and imposes no constraints on the system. Instead, it
provides methods to compute timing and workload related perfor-
mance properties in presence the of data refresh, which was not
addressed in [2,3,11].

Lastly, various data management mechanisms have also been in-
vestigated to handle overflow conditions in bounded buffers. For
instance, [13] identifies four different overflow policies –namely
Drop Newest, Drop Oldest, Drop RandomandDrop All – and presents
a simulation-based framework for analyzing properties such as the
number of dropped data items and the average delay of the pro-
cessed data. The refresh semantics we consider here is identical to
the Drop Oldestpolicy, which is most relevant in automotive ar-
chitectures that involve transmission of sensor data. We further ex-
tend our analysis to other data management mechanisms proposed
in [13]. It is worth noting that our method is purely analytical and
thus applicable to safety-critical applications (which isnot the case
with simulation-based approaches such as [13] that fail to provide
any guaranteed timing bounds). Our method also works fastercom-
pared to simulation, which is time consuming.
Organization of the paper. In the next section we describe the
basic concepts of the RTC framework. Section 3 focuses on our
analysis technique for the basic data refresh semantics, followed
by an extension to other data refresh semantics in Section 4.We
present our case studies in Section 5 and conclude in Section6 by
outlining some directions for future work.



2. RTC BACKGROUND
The RTC framework was developed based on (min,+) and (max,+)

algebra [4] and models data streams and processing resources us-
ing a count-based abstraction. Specifically, an arrival pattern of
a stream is modeled as a cumulative functionA(t) that gives the
number of items arriving over the time interval(0,t]. The set of all
arrival patterns of a stream is represented by a pair ofarrival func-
tionsα = (αu,α l ), whereαu(∆) andα l (∆) specify the maximum
and minimum number of data items that can arrive from this stream
over any time interval of length∆. In other words, for allA(t),

∀∆ ≥ 0, ∀ t ≥ 0 : α l (∆) ≤ A(∆+ t)−A(t) ≤ αu(∆).

Similarly, a service pattern of a resource is captured by a cumula-
tive functionC(t), with C(t) denoting the number of items that can
be processed by the resource in(0,t]. The set of all service patterns
of a resource is modeled by a pair ofservice functionsβ = (β u,β l ),
whereβ u(∆) andβ l (∆) give the maximum and minimum number
of items that can be processed by the resource over any time inter-
val of length∆ respectively.

Formally, letR = R∪{+∞,−∞} whereR is the set of real num-
bers. LetF be the set of monotonic functions, i.e.,F = { f :
R

+ → R | ∀s < t, 0 ≤ f (s) ≤ f (t)} whereR
+ is the set of non-

negative real numbers. The minimum operator inF , denoted by
⊕, is defined for all f ,g ∈ F as usual: ∀ t ∈ R

+,
`

f ⊕ g
´
(t) =

min
˘

f (t),g(t)
¯

. Similarly, f ∼ g iff f (t) ∼ g(t) for all t ∈ R
+,

where∼∈ {≤,≥,=}. Further, thesupremum(sup), if it exists, of
a setS⊆ F is the smallestU ∈ F such thath ≤ U for all h ∈ S.
Similarly, theinfimum(inf) of S is the largestL∈F such thath≥ L
for all h ∈ S. The definition of sup and inf can also be similarly
defined over the setR.

We can now define the (min,+) convolution⊗ and deconvolution
⊘ operators as follows. For allf ,g∈F and for allt ∈ R

+,
`

f ⊗g
´
(t) = inf

˘
f (s)+g(t −s) | 0≤ s≤ t

¯
,`

f ⊘g
´
(t) = sup

˘
f (t +u)−g(u) | u≥ 0

¯
.

One can verify the following results: (i)f ⊗g = g⊗ f , (ii) f ⊗g≤
f ⊕g, (iii)

`
f ⊗g

´
+c= ( f +c)⊗g= f ⊗(g+c), and (iv) f ⊘g∼ h

iff f ∼ h⊗g where∼∈ {≤,≥}.
Let ε ∈F be such thatε(0) = 0 andε(t) = +∞ for all t > 0. The

sub-additive closure off is given by f ∗ = min
˘

f n | n≥ 0
¯

, where
f 0 = ε and f n+1 = f n ⊗ f for all n∈ N, n≥ 0.

THEOREM 2.1 ([4], THEOREM4.3.1). For any given f,g∈
F , the inequality h≤ g⊕ f (h) has one unique maximal solution,
given by h= f ∗(g).

We denote by◦ the composition of two operators:(O1◦O2)(x) =
O1(O2(x)). The linear idempotent operatorIg for any fixedg∈F

is defined byIg( f )(t) = inf{g(t)−g(s)+ f (s) | 0≤ s≤ t}. Then,
the following holds [4],

( f ⊕Ig)
∗ = (Ig◦ f )∗ ◦Ig. (1)

The (max,+) convolution⊗ and deconvolution⊘ operators are de-
fined as: for allf ,g∈F and for allt ∈ R

+,
`

f⊗g
´
(t) = sup

˘
f (s)+g(t −s) | 0≤ s≤ t

¯
,

`
f⊘g

´
(t) = inf

˘
f (t +u)−g(u) | u≥ 0

¯
.

Next, letε(0) = 0 andε(t) = −∞ for all t > 0. The super-additive
closure off is defined byf ∗ = max

˘
f n | n≥ 0

¯
, wheref 0 = ε and

f n+1 = f n ⊗ f for all n∈ N, whereN is the set of natural numbers.
In the context of RTC, we often assume that upper arrival (ser-

vice) functions are sub-additive and lower arrival (service) func-
tions are super-additive. A functionf ∈F is sub-additive ifff (x+

y) ≤ f (x) + f (y) for all x and y in R
+. Similarly, f is super-

additive iff f (x+ y) ≥ f (x)+ f (y) for all x andy in R
+. A func-

tion can be made sub-additive (super-additive) by taking its sub-
additive (super-additive) closure. In this paper, we assume that all
given upper (lower) functions are refined to satisfy sub-additivity
(super-additivity) before the analysis. Further, we require that each
pair of upper and lower functions satisfies causality, i.e.,it does
not include infeasible bounds. Specifically, for any given pair of
upper and lower functions( f u, f l ), we must have for allt ≥ 0,
f l (t) ≤ f l (x)+ f u(t −x) ≤ f u(t) for all 0≤ x≤ t.

Lastly, the maximum vertical and horizontal deviation (distance)
between two functionsf ,g∈F are given by:

vdist( f ,g)
def
= sup{ f (t)−g(t) | t ≥ 0 } (2)

hdist( f ,g)
def
= sup

˘
inf

˘
τ ≥ 0 | f (t) ≤ g(t + τ)

¯
| t ≥ 0

¯
(3)

Performance bounds with unbounded FIFO buffers. Consider
an input data stream with arrival functionsα = (αu

,α l ) that is pro-
cessed by a resource with service functionsβ = (β u,β l ). Suppose
the buffer that stores the data items from the input stream has infi-
nite capacity. LetA(t) be an input arrival pattern of the stream and
A′(t) be the corresponding output arrival pattern. Then, from [5],

A⊗β l ≤ A′ ≤ A⊗β u (4)

The maximum backlog at the input buffer and the maximum de-
lay experienced by the input stream are given byvdist(αu,β l ) and
hdist(αu,β l ), respectively. Further, the output arrival functions
α ′

inf
and remaining service functionsβ ′

inf
are computed as follows.

αu′
inf

= min
˘`

αu⊗β u´
⊘β l

, β u¯
(5)

α l ′
inf

= min
˘`

α l ⊘β u´
⊗β l

, β l ¯ (6)

β u′
inf

=
`
β u−α l ´ ⊘ 0 (7)

β l ′
inf

=
`
β l −αu´

⊗ 0 (8)

Terminology. We refer to the conventional RTC forunbounded
FIFO buffersdescribed above as RTC-INF and the method pro-
posed in the next section forbounded buffers with data refresh se-
manticsas RTC-DRF. The subscript “inf” (“ drf”) stands for the
results computed by the RTC-INF (RTC-DRF) method. Lastly, an
arrival pattern of an input/output stream is also known as anin-
put/output function, and we use them interchangeably in this paper.

3. MODELING FINITE BUFFERS WITH
DATA REFRESH SEMANTICS

We now extend the RTC-INFresults to capture systems contain-
ing buffers that implement data refresh semantics. In such systems,
buffers have bounded capacities and incoming data items arestored
in the buffer in the order of their arrivals. However, if an incoming
item arrives at a buffer when the buffer is full, the oldest data item
– at the head of the buffer – is discarded/overwritten, and the fresh
data item is written to the end of the buffer.

EXAMPLE 1. Consider a buffer B of size3. Given B= [e1 e2 e3]
when item e4 arrives, where items e1,e2,e3 arrived earlier in that
order. Then, e1 will be overwritten and B will be[e2 e3 e4], which
contains the three most recent data items.

Objectives. Given such a system, our goal is to compute the
standard performance-related metrics mentioned earlier.Since the
RTC-INF assumes infinite FIFO buffers, its analysis resultsbecome
overly pessimistic in presence of data refresh. We present here an
extension of RTC-INF to model and analyze systems with data re-
fresh semantics, including methods for computing:



• The maximum delay experienced by the input stream, con-
sidering only items that are not overwritten1. (Section 3.1.1)

• The arrival functions of the output stream. (Section 3.1.2)

• The remaining service functions of the PE after processing
the stream. (Section 3.1.3)

We further extend our method to analyze systems with a mixture
of FIFO and data refresh semantics (Section 3.2) and other buffer
management schemes (Section 4).

Note that the maximum backlog of the buffer that implements
data refresh semantics is either the buffer capacity or the maximum
backlog computed by RTC-INF, whichever is smaller.

3.1 Systems with a single input stream
Consider a system consisting of a single input stream that ispro-

cessed by a processing element (PE) given in Fig. 2. As shown in
the figure, upon arriving at the system, the stream is writtento a
buffer B before being processed by the PE. We assume that (i) the
input stream is modeled by the arrival functionsα = (αu,α l ), (ii) the
resource availability of the PE is modeled by the service functions
β = (β u,β l ), and (iii) data refresh semantics is implemented at
buffer B, which has a finite capacity ofBmax (items).

Bmax

PE

B

β

…αinput 

stream
α′

data refresh

Figure 2: A system with a buffer having data refresh semantics.

Basic modeling ideas. Let A1 be an arrival pattern of the input
stream,C be a service pattern of the PE, andA3 be the correspond-
ing arrival pattern of the output stream. We denote byA2 theeffec-
tive input functionof A1, i.e., A2(t) specifies the number of items
of A1 that arrive in(0,t] and that will not be overwritten. Since all
and only the items captured byA2 will be processed by the PE,A3
is the actual output function ofA2. Observe thatA2 is dependent

PE
B

A2 A3

C

…A1
Pv

input 

stream
no data refresh

A2′  (discarded)

A3 + Bmax

Pv :  a virtual processor that controls

 the data going through the system.

Figure 3: A virtual system equivalent to the one in Fig. 2.

not only on the original arrival patternA1 but also on the service
patternC and the size ofB. To compute an arrival function that
boundsA2, we employ a feedback control mechanism, where the
arrival patternA3 of the processed stream is used as feedback in-
formation to control the data items going through the system. The
original system in Fig. 2 can be recast as an equivalent system that
has an additional virtual processorPv in front of B (see Fig. 3).Pv
serves as an admission controller, which splits the original input
stream (captured byA1) into two separate streams:

(i) the former, modeled by the effective input functionA2, con-
sists of all items that will be processed by the PE, and

(ii) the latter, modeled by the input functionA′
2, consists of all

items that will be overwritten, which will be discarded byPv.

Pv guarantees thatA2 contains as many items as possible while en-
suring that none of these items will be overwritten (i.e., buffer B

1Overwritten data items are lost and hence have no notion of delay.

never overflows). In essence, the data refresh semantics of the
buffer in the original system is now captured completely by the pro-
cessing semantics of this virtual processor; as a result, the corre-
sponding buffer in the virtual system behaves exactly like an un-
bounded FIFO buffer.Note thatPv does not impose any additional
delay on the input items as it does not perform any real processing.

EXAMPLE 2. Fig. 4 shows the effective input function A2 and
the output function A3 (in solid lines) corresponding to a given in-
put arrival pattern A1 and a service pattern C, where Bmax = 3. In
the figure, the filled black circles represent the items that go through
the system (captured by A2). The unfilled pink circles represent the
items that are discarded by Pv (captured by A′2). Each blue rectan-
gle corresponds to an item that can be processed (captured byC).
The number associated with a blue rectangle denotes the index of
the corresponding item in A1 that is processed by the PE. Note that
the second and third rightmost blue rectangles are wasted because
there is nothing to process.

1

2

3

4

5

6

7

8

9

10

11

1

2

5

7

8

9

10

unused

unused

11

B=[1, 2, 3]

B=[2, 3, 4]

B=[5, 6, 7] B=[7,8,9]

B=[8,9]

B=[9,10]

B=[10]

B=[ ] B=[ ] B=[11]B=[ ]

B=[3,4,5]

B=[4,5,6]

B=[6,7] B=[6,7,8]

B=[ ]

B=[1]

B=[1,2]

B=[9]
B=[ ]

B=[2,3]

B=[3, 4]

#items

time

A2(t)

A3(t)

j
k

item k  is discarded because

buffer B is full when item j arrives

Figure 4: Actual data items that go through the system.

One can verify that, when item 6 arrives, the buffer is full (B=
[3,4,5]). Therefore, item 3 (the oldest) is overwritten and item 6 is
written to the buffer (B= [4,5,6]). Similarly, items 4 and 6 will be
overwritten when items 7 and 9 arrive, respectively. Thus, in the
virtual system, Pv will discard items 3, 4, 6 when they arrive.

The performance-related metrics of the original system cannow
be analyzed based on this virtual system as outlined in the com-
ing subsections. Fundamentally, the maximum delay is computed
based on the conditions for which data refresh occurs. To obtain the
remaining service and output arrival functions, we first compute the
service functionβv for Pv such thatA2 is the largest effective func-
tion possible andB never overflows (cf. Fig. 3). Thisβv is then
used to derive the arrival functionαv of A2. Fromαv andβ , we
can apply the RTC-INF to derive the remaining service function of
the PE (sinceB behaves like an infinite FIFO buffer). Further,βv
can also be combined withβ to form the overall service function
eβ for the entire system. We then derive the arrival functions of the
processed stream based onα and eβ .

3.1.1 Computing maximum delay
Recall the virtual system in Fig. 3. Denoted(t) as the delay

experienced by an input item that arrives at timet. Lemma 3.1
states two basic bounds ond(t) due to data refresh. These bounds
are shown in Fig. 5.



e

t
time

Bmax

A1(t)

C(t)

lastest instant at which 

e is processed/overwritten

b(t)

 instant at which b(t) items 

are fully processed

d1(t)

d2(t)

b(t) items in the buffer 

after item e arrives

#items

Figure 5: Upper bounds on delay of an output data item.

LEMMA 3.1. Let b(t) be the number of items in the buffer B at
time t, i.e., b(t) = A2(t)−A3(t). Then, d(t) ≤ min{d1(t),d2(t)},
where

d1(t) = min
˘

∆ ≥ 0 | A1(t +∆)−A1(t) ≥ Bmax
¯
, (9)

d2(t) = min
˘

∆ ≥ 0 | C(t +∆)−C(t) ≥ b(t)
¯
. (10)

PROOF. Consider an item ofA1, callede, that arrives at time
t. Observe thate is only overwritten when it is the oldest item in
B and B is full. BecauseB contains at mostBmax items, e will
not be overwritten iff it is processed before the nextBmax items of
A1 arrive. (Otherwise, it would be overwritten by the(k+Bmax)

th

item). For example, in Fig. 4, item 5 must be processed beforeitem
8 arrives. Thus, the delayd(t) of esatisfies

d(t) ≤ min
˘

∆ ≥ 0 | A1(t +∆)−A1(t) ≥ Bmax
¯

= d1(t).

Further, at timet, there areb(t) = A2(t)−A3(t) items currently in
the buffer (withe included). Thus,d(t) will be no more than the
amount of time needed to process theseb(t) items, i.e.,

d(t) ≤ min
˘

∆ ≥ 0 | C(t +∆)−C(t) ≥ b(t)
¯

= d2(t).

As a result,d(t) ≤ min{d1(t), d2(t)}.

Further, sinceαu is the upper arrival function ofA1 andβ u is the
upper service function ofC, A1(t) ≤ αu(t) andC(t) ≤ β u(t) for
all t ≥ 0. Observe that (i) the buffer can hold at mostBmax items,
and (ii) at mostβ u(t) items can be processed over any interval of
length t. Hence, the number of items that are not overwritten in
(0,t], given byA2(t), is no more than the minimum ofαu(t) and
β u(t)+Bmax. As a result, the following corollary holds, which in
turn implies Lemma 3.3.

COROLLARY 3.2. Define eαu def
= min{αu,β u + Bmax}. Then,

A2 ≤ eαu.

LEMMA 3.3. Let del( f ,k) = min
˘

t ≥ 0 | f (t)≥ k
¯

for all f ∈
F and for all k≥ 0. For all t ≥ 0,

d1(t) ≤ del(α l
, Bmax), (11)

d2(t) ≤ min
˘
del(β l

,Bmax), hdist(eαu
,β l )

¯
. (12)

PROOF. Recall thatα l is the lower arrival function ofA1. Thus,
A1(t +∆)−A1(t) ≥ α l (∆) for all t ≥ 0 and for all∆ ≥ 0. By defi-
nition of d1(t), we imply for allt ≥ 0,

d1(t) ≤ min
˘

∆ ≥ 0 | α l (∆) ≥ Bmax
¯

= del(α l
,Bmax).

Similarly, sinceβ l is the lower service function ofC, we have
C(t +∆)−C(t) ≥ β l for all t ≥ 0 and for all∆ ≥ 0. Hence,

∀ t ≥ 0 : d2(t) ≤ min
˘

∆ ≥ 0 | β l (∆) ≥ b(t)
¯
.

Further,b(t) ≤ Bmax. Hence, d2(t) ≤ del(β l ,Bmax) for all t ≥ 0.
The above two bounds ond(t) are depicted in Fig. 6(i-ii).

We shall now prove that for allt ≥ 0, d2(t) ≤ hdist(eαu,β l ). In-
tuitively, this means the delay of an input item that goes through
the system is bounded by the maximum horizontal distance be-
tween eαu and β l (see Fig. 6(iii)). From Corollary 3.2, we have
A2(t) ≤ eαu(t). Consider an input iteme arriving at timet. Since
there are at leastβ l (t ′) items that can be processed in(0,t ′] for any
t ′ > 0, itemewill be processed latest at the first instantt ′ = t +∆ at
which eαu(t) ≥ β l (t ′). In other words, the amount of time required
to processe satisfies

d2(t) ≤ inf{∆ ≥ 0 | eαu(t) ≥ β l (t +∆)} ≤ hdist(eαu
,β l ).

Thus, Eq. (12) holds and hence the lemma.

Bmax

2

#items

10 D1

2

2

#items

10

Bmax

BmaxBmax

time time

time

Bmax

βu

hdist(α
u
, β

l 
)

#items

αu∼

βu + Bmax
 

αu

βl

0 t0 t0 + D3

∼
e

(i)   Bmax (ii)   Bmax

(iii)   hdist( αu
, β

l )∼

D2

αu∼
βu + Bmax

 

αu

Figure 6: The maximum delay experienced by the input
stream is the minimum of del(α l ,Bmax), del(β l ,Bmax), and
hdist(eαu,β l ).

From Lemma 3.3, we imply Theorem 3.4, which gives the max-
imum delay experienced by the input stream.

THEOREM 3.4. The maximum delay experienced by the input
stream is given by

deldrf (α ,β ,Bmax) = min
˘
del(α l

,Bmax), del(β l
,Bmax), hdist(eαu

,β l )
¯
.

Fig. 6 illustrates the delay computation given by Theorem 3.4.

THEOREM 3.5. The delay bound given by Theorem 3.4 is tight.

PROOF. DenoteD =deldrf(α,β ,Bmax) andD3 = hdist(eαu,β l ).
Then,D ≤ D3 andD ≤ del(α l ,Bmax). For any givenf ,g∈ F and
t ∈ R

+, we definehdist( f ,g,t) to be the horizontal distance be-
tween f andg at timet, i.e.,

hdist( f ,g,t)
def
= inf{∆ ≥ 0 | f (t) ≤ g(t +∆)}.

We denote byΠh( f ,g,D) the first instantt at whichhdist( f ,g,t) is
at leastD, i.e.,

Πh( f ,g,D)
def
= min{t ≥ 0 | hdist( f ,g,t) ≥ D}.



We will construct an input arrival patterncA1(t) constrained byα
and a service patternbC(t) constrained byβ , such that there is an
item of cA1(t) which will be fully processed afterD time units. In
other words, there existsT ≥ 0 such thathdist(cA1,cA3,T) = D and
cA1(T + D)− cA1(T) ≤ Bmax, wherecA3(t) is the resulting output
function ofcA1(t) when the PE offers the service patternbC(t). The
first condition specifies that the amount of time required to fully
process an item arriving at timeT is D. The second states that there
are no more thanBmax items arriving over the interval(T,T + D]
(which implies that the item arriving at timeT will not be overwrit-
ten over this interval).

Sinceeαu = min{αu
,β u +Bmax} ≤ αu and all the given arrival/

service functions are non-decreasing,

hdist(αu
,β l ) ≥ hdist(eαu

,β l ) = D3 ≥ D.

Hence, there existst ≥ 0 such thathdist(αu,β l ,t) ≥ D. Let t0 be
the smallest of sucht, i.e., t0 = Πh(αu,β l ,D). Define cA1(t) =

αu(t) if t ≤ t0, andcA1(t) = αu(t0)+α l (t −x0) otherwise. Further,
definebC(t) = β l (t) for all t ≥ 0. Sinceα l (t)≤ αu(x)+α l (t−x) ≤
αu(t) for all 0≤ x≤ t, α l (t) ≤ cA1(t) ≤ αu(t) for all t ≥ 0. Hence,
cA1(t) is a valid arrival pattern of the input stream. By construction,
bC(t) is a valid service pattern of the PE.

Sinceαu is sub-additive andβ l is super-additive,αu(t) ≥ β l (t)
for all 0≤ t ≤ t0. Indeed, ifαu(s) < β l (s) for somes< t0, then

αu(t0)−β l (t0 +D) ≤ αu(s)+αu(t0−s)−
`
β l (s)+β l (t0 +D−s)

´

< αu(t0−s)−β l (t0−s+D).

As a result,hdist(αu,β l ,t0) < hdist(αu,β l ,t0−s). Hence,

Πh(αu
,β l

,D) ≤ t0−s< t0 = Πh(αu
,β l

,D),

which is always false.
From the above, we implycA1(t) ≥ bC(t) for all 0≤ t ≤ t0. This

means all resource offered bybC in [0,t0 + D] will be used to pro-
cess the items. Thus, the corresponding output functioncA3 satisfies
cA3(t) = bC(t) for all 0 ≤ t ≤ t0 + D. Hence,hdist(cA1,cA3,t0) = D
(recall thatt0 = Πh(αu,β l ,D). In other words, the delay of an item
e arriving atT = t0 is D. Besides,D ≤ del(α l ,Bmax) implies that
α l (D) ≤ Bmax. Hence, the number of items arriving in(t0,t0 +D]

is cA1(t0+D)−cA1(t0) = α l (D)≤Bmax, which meanse is not over-
written. As a result, the constructed system consisting ofcA1 and bC
achieves the delayD given by Theorem 3.4.

3.1.2 Computing output arrival functions
Recall thatA2(t) is the effective input function ofA1(t), which

captures the items that will indeed be processed by the PE (see
Fig. 3). Lemma 3.6 states the relationship between these twofunc-
tions.

LEMMA 3.6. The effective input function A2 is bounded by:

A1⊗αu⊗ (α l ⊗β l +Bmax)
∗ ≤ A2 ≤ A1⊗αu⊗ (αu⊗β u +Bmax)

∗
.

PROOF SKETCH. Since none of the items inA2 is overwritten,
for all t ≥ 0, b(t) = A2(t)−A3(t)≤Bmax, orA2 ≤A3+Bmax. Let f
be the function that maps the inputA2 to the outputA3, assumingf
is monotonic. ThenA3 +Bmax= f (A2)+Bmax= ( f +Bmax)(A2).

Further, the number of items that pass the admission test atPv
(i.e., not overwritten) over any time interval(s,t] is no more than
the number of original items that enter the system over the same
interval. In other words,

∀ t ≥ 0, ∀0≤ s≤ t : A2(t)−A2(s) ≤ A1(t)−A1(s).

Recall thatIA1(A2)(t) = inf
˘

A2(s)+ A1(t)−A1(s) | 0 ≤ s≤ t
¯

.
Then,A2 ≤ IA1(A2). Hence,

A2 ≤ min
˘

A1, IA1(A2), ( f +Bmax)(A2)
¯

(13)

⇔ A2 ≤ A1 ⊕
`
IA1 ⊕ ( f +Bmax)

´
(A2). (14)

Hence, the input function of the items that actually go through the
system is the maximum solution for Eq. (14). By Theorem 2.1,

A2 =
`
IA1 ⊕ ( f +Bmax)

´∗
(A1).

By applying Eq. (1) (cf. Section 2), the above is equivalent to

A2 =
`
IA1 ◦ ( f +Bmax)

´∗
◦IA1(A1).

DenoteCz(x) = x⊗z. Sincef is the mapping fromA2 to A3, andβ
is the service function of the PE,f (A2) ≤ A2⊗β u, or equivalently,
f ≤ Cβ u. Similarly, α is the arrival function ofA1 implies that
A1(t)−A1(s)≤ αu(t−s). Thus,IA1(A2)≤ αu⊗A2, orIA1 ≤ Cαu.
Hence,

A2 ≤
`
Cαu ◦ (Cβ u +Bmax)

´∗
◦Cαu(A1),

which can be rewritten asA2 ≤ A1 ⊗ (αu⊗β u +Bmax)
∗⊗αu

.

By similar arguments, we can also implyA2 ≥ A1⊗αu⊗ (α l ⊗
β l +Bmax)

∗. This proves the lemma.

Lemma 3.7 is derived directly from the bounds established inthe
above lemma, which holds true due toA1⊗β l

v ≤ A2 ≤ A1⊗β u
v .

LEMMA 3.7. Letβ u
v = αu⊗ (αu⊗β u+Bmax)

∗ andβ l
v = αu⊗

(α l ⊗ β l + Bmax)
∗. Then,β u

v and β l
v are valid upper and lower

service functions for Pv.

By definition,A2⊗β l ≤ A3 ≤ A2⊗β u. Thus,A1⊗β l ⊗β l
v ≤ A3 ≤

A1⊗β u⊗β u
v . Hence,eβ l = β l ⊗β l

v andeβ u = β u⊗β u
v are the over-

all service functions given to the input stream when there isdata
refresh. Based oneβ , we can compute the output arrival functions.

THEOREM 3.8. The arrival functions of the output stream (A3)
when data refresh semantics is implemented at the input buffer is
given byα ′ = (αu′ ,α l ′), where

αu′ = min
˘`

αu⊗ eβ u´
⊘ eβ l

, eβ u¯
, (15)

α l ′ = min
˘`

α l ⊘ eβ u´
⊗ eβ l

, eβ l ¯
. (16)

with eβ l = β l ⊗αu⊗ (α l ⊗β l +Bmax)
∗ and eβ u = β u⊗αu⊗ (αu⊗

β u +Bmax)
∗.

We note that whenBmax is unbounded,eβ = β andα ′ = α ′
inf

.
Lemma 3.9 further refines the effective output arrival functions

to ensure the sub-additivity property ofαu′ , the super-additivity of
α l ′ and their causal relationship. Its proof can easily be established
based on the definition of upper and lower arrival functions.

LEMMA 3.9. Let bαu = (αu′)∗ and bα l = (α l ′)∗. Denote

αu′
drf

(∆) = min
˘bαu(∆+ τ)− bα l (τ) | τ ≥ 0

¯
, (17)

α l ′
drf

(∆) = max
˘bα l (∆+ τ)− bαu(τ) | τ ≥ 0

¯
. (18)

Then,αu′
drf

(α l ′
drf

) is a valid upper (lower) arrival function for the

output stream that is smaller (larger) than theαu′ (α l ′ ).

PROOF. Sinceαu(0) = α l (0) = 0, by definition have

αu′
drf

≤ bαu′ = (αu′)∗ ≤ αu′

α l ′
drf

≥ bα l ′ = (α l ′)∗ ≥ α l ′



Observe that the maximum number of items that are processed in an
interval of length∆ is no more than the maximum number of items
that are processed in an interval of length∆− τ plus the maximum
number of data items that are processed in an interval of length
τ. In other words,A3 is upper bounded by a sub-additive function
that is less than or equal toαu′ . Thus, the min-plus sub-additive
closure ofαu′ , denoted bybαu, is an upper arrival function forA3.
Similarly, the max-plus super-additive closure ofα l ′ , denoted by
bα l , is a lower arrival function ofA3. At the same time, the number
of items that will be processed by the PE in an interval of length ∆ is
no more than the maximum number of items that will be processed
by the PE in an interval of length∆ + τ less the minimum number
of events that will be processed in an interval of lengthτ. Hence,
the lemma holds.

3.1.3 Computing remaining service functions
Sinceβ u

v andβ l
v are the upper and lower service functions of the

virtual processorPv (Lemma 3.7), the effective input functionA2 is
bounded by the output arrival functions ofPv, given by

αu
v = min

˘`
αu⊗β u

v
´
⊘β l

v, β u
v

¯
,

α l
v = min

˘`
α l ⊘β u

v
´
⊗β l

v, β l
v
¯
.

Using αv = (αu
v ,α l

v) as input arrival functions to the PE, we can
derive the remaining service functions of the PE as in the conven-
tional case as below (since there is no buffer overflows).

β u′
drf

=
`
β u−α l

v
´
⊘ 0 (19)

β l ′
drf

=
`
β l −αu

v
´
⊗ 0 (20)

Thus, the remaining service function of the PE when the buffer
implements data refresh semantics is given byβ ′

drf
= (β u′

drf
,β l ′

drf
).

3.2 Heterogeneous systems with a mixture of
buffer semantics

In this section, we show how one can apply the RTC-DRF pre-
sented in the previous section to analyze heterogeneous systems
with different buffer semantics in a compositional manner.Through
this, we demonstrate how RTC-DRF can be integrated directlyinto
the conventional RTC-INF while guaranteeing that the overall anal-
ysis is at least as tight as the RTC-INF alone.

The systems we consider consist of multiple input streams, namely
s1, . . . , sn, that are processed by a sequence of PEs under Fixed Pri-
ority (FP) scheduling policy. Each buffer in a system can be either
an infinite FIFO buffer or a finite buffer with data refresh semantics.
An example of such systems is shown in Fig. 7. In this example,
B1 is a finite buffer of sizeBmax that has data refresh semantics. On
the other hand,B′

1 is an unbounded FIFO buffer. Given such a sys-
tem, we would like to compute the standard performance-related
metrics as discussed in the previous sections.

input 

stream s1

B1

B2

PE1

βα

α2 …

αdrf′

α2′

to subsequent PEto 
PE2

data refresh

…
B1

′
αdrf

″

 Buffer semantics :   infinite FIFO  or finite with data refresh 

β2

input 

stream s2

  FIFO     

Figure 7: Systems with a mixture of buffer semantics.
Consider the first PE in Fig. 7. Supposesi has higher priority

thansj if i < j . Then,PE1’s resource will first be given tos1 and
the remaining will be given tos2, thens3 and so on. Denoteα
andβ as the arrival function ofs1 and the service function ofPE1,
respectively. Applying the RTC-DRF results obtained in thesingle
stream case, we compute the maximum delay using Theorem 3.4

and the output arrival function using Lemma 3.9. The remaining
service functionβ ′

drf
that is used to process the next input stream

s2 can also be computed using Eq. (19) and (20). Based onβ ′
drf

, we
then analyzes2, taking into consideration the semantics ofB2. If
B2 is an infinite FIFO buffer, we apply the RTC-INF. However, if
B2 implements data refresh semantics, we analyze using RTC-DRF
as done fors1. The analysis is repeated until we reachsn.

At the same time, the output arrival functionα ′
drf

of s1 produced
by PE1 is fed as input arrival function toPE2. At this PE, we repeat
the same analysis as above with respect to the semantics of its input
buffer B′

1. The computed output arrival functionα ′′
drf

is then fed as
input to the subsequent PEs2.

Correctness of our compositional analysis. As seen above, the
RTC-DRF combined with the RTC-INF enables complex systems
with a mixture of different buffer types to be analyzed composition-
ally. We claim that RTC-DRF does not introduce any loss in terms
of analysis accuracy for the overall system. Specifically, it provides
a tighter output arrival function than RTC-INF does, and hence
ensures accurate analysis at the subsequent PEs (Theorem 3.11).
Further, by taking into account data refresh, RTC-DRF is able to
capture the service unused by the overwritten items, thereby guar-
antees more service for the lower priority streams (Theorem3.12).

LEMMA 3.10. Letα ′
drf

= (αu′
drf

,α l ′
drf

) andα ′
inf

= (αu′
inf

,α l ′
inf

) be
the output arrival functions of s1 at PE1 (Fig. 7) that are computed
using RTC-DRF and RTC-INF, respectively. Then,αu′

drf
≤ αu′

inf
.

PROOF SKETCH. Sinceαu′
drf

≤αu′ (due to Lemma 3.9), the the-

orem holds ifαu′ ≤αu′
inf

. By Theorem 3.8,αu′ = min
˘`

αu⊗ eβ u
´
⊘

eβ l , eβ u
¯

. Thus,αu′ ≤ eβ u. We will prove thateβ u ≤ αu′
inf

.

By definition, we haveeβ u = β u⊗αu⊗ (αu⊗β u +Bmax)
∗ and

αu′
inf

= min
˘`

αu⊗β u
´
⊘β l , β u

¯
. Sinceβ u⊗g≤ β u for all g∈F ,

eβ u ≤ β u. Thus,eβ u ≤ αu′
inf

iff

β u⊗αu⊗ (αu⊗β u +Bmax)
∗ ≤

`
αu⊗β u´

⊘β l (21)

Let f = αu⊗β u = β u⊗αu. Then,

(21) ⇔ f ⊗ ( f +Bmax)
∗ ≤ f ⊘β l ⇔ f ⊗ ( f +Bmax)

∗⊗β l ≤ f

⇔ f ⊗g≤ f whereg = ( f +Bmax)
∗⊗β l ,

which is always true. Hence,eβ u ≤ αu′
inf

and thus,αu′ ≤ αu′
inf

.

THEOREM 3.11. Let α ′
drf

and α ′
inf

be defined in Lemma 3.10.
Denote bybufdrf , deldrf andα ′′

drf
(resp.buf inf , delinf andα ′′

inf
) the

maximum backlog, maximum delay and output arrival functionat
PE2 whereα ′

drf
(resp.α ′

inf
) is used as the input arrival function to

PE2. Then,bufdrf ≤ buf inf , deldrf ≤ delinf andαu′′
drf

≤ αu′′
inf

.

PROOF. Since the input buffer ofPE2 is a simple infinite FIFO
buffer, we analyze it using RTC-INF. Letβ2 be the service function
of PE2. Following RTC-INF and Lemma 3.10, we have:

bufdrf = vdist(α ′
drf

,β l
2) = sup

˘
αu′

drf
(∆)−β l

2(∆) | ∆ ≥ 0
¯

≤ sup
˘

αu′
inf

(∆)−β l
2(∆) | ∆ ≥ 0

¯
(sinceαu′

drf
≤ αu′

inf
)

= vdist(α ′
inf

,β l
2) = buf inf .

Thus, bufdrf ≤ buf inf . The remaining properties can be proved
similarly.
2A tighter output arrival function forPEj can be obtained by ap-
plying RTC-INF to the overall effective service function for part
of the system comprisingPE1 to PEj (i.e., the convolution of the
individual effective service functions).



THEOREM 3.12. Let β ′
drf

(β ′
inf

) be the remaining service func-
tion of PE1 after processing s1, which is computed using RTC-DRF
(RTC-INF), Then, (i)β l ′

drf
≥ β l ′

inf
and (ii) β u′

drf
≥ β u′

inf
.

PROOF. First, for anyf ,g∈F such thatf ≥ g, we have:

∀∆ ≥ 0 : ( f ⊗0)(∆) = sup
0≤x≤∆

f (x) ≥ sup
0≤x≤∆

g(x) = (g⊗0)(∆).

Thus, f ⊗0≥ g⊗0. Similarly, f ⊘0≥ g⊘0.

(i) Recall thatβ l ′
drf

= (β l −αu
v )⊗0 and β l ′

inf
= (β l −αu)⊘0,

with

αu
v = min

˘`
αu⊗β u

v
´
⊘β l

v, β u
v

¯
≤ β u

v

= αu⊗ (αu⊗β u +Bmax)
∗ ≤ αu

.

Thus,β l −αu
v ≥ β l −αu. Hence, (β l −αu

v )⊗ 0≥ (β l −αu)⊗ 0.
In other words,β l ′

drf
≥ β l ′

inf
.

(ii) By definition,β u′
drf

= (β u−α l
v)⊘0 andβ u′

inf
= (β u−α l )⊘0.

We will first show thatα l
v ≤ α l . Indeed,

α l
v = min

˘`
α l ⊘ β u

v
´
⊗β l

v, β l
v
¯
≤

`
α l ⊘β u

v
´
⊗β l

v,

which implies thatα l
v ≤ α l if

`
α l ⊘β u

v
´
⊗β l

v ≤ α l . This is equiv-
alent toα l ⊘β u

v ≤ α l ⊘β l
v, which always holds due toβ u

v ≥ β l
v.

Fromα l
v ≤ α l , we imply β u−α l

v ≥ β u−α l . As a result,
(β u−α l

v)⊘ 0≥ (β u−α l ) ⊘ 0. In other words,β u′
drf

≥ β u′
inf

.

4. EXTENSIONS TO OTHER BUFFER MAN-
AGEMENT SEMANTICS

In the data refresh semantics considered thus far, if an itemar-
rives when the input buffer is full, theoldest item in the bufferis
discarded (also known asDrop Oldestin [13]). We now extend
our analysis method for other buffer management semantics,such
as those defined in [13]. We first consider theDrop Newest (DN)
policy, where incoming items are discarded if the buffer is full.

Observe that the number of items that are discarded in theDN
and the data refresh semantics are identical. Since only thenumber
of items that are discarded (and not which specific items) affects
the number of items that will be processed by the PE, the num-
ber of items that are processed over any given time interval in both
cases are the same. Hence, the system produces the same number
of output items in both semantics. In other words, the outputar-
rival functions and the remaining service functions in bothrefresh
semantics are the same, which are given by Lemma 3.9 and Eq. (19)
and Eq. (20).

Further, note that in theDN semantics, once an input item is
written to the buffer, it will not be overwritten. Hence, thedelay
experienced by an input item is bounded by the maximum amount
of time required to process the item. Using the same argumentas in
the data refresh semantics case, we imply that the maximum delay
experienced by the input stream is

delDN = min{del(β l
,Bmax), hdist(eαu

,β l )}.

Based on similar arguments, one could also obtain the analysis
results for theDrop All andDrop Randompolicies [13] where all
items or a random item in the buffer will be discarded when the
buffer overflows. Further, systems with multiple PEs and/ormulti-
ple input streams under Fixed Priority scheduling which implement
a mixture of these semantics can also be analyzed in a composi-
tional manner as detailed in Section 3.2.

5. CASE STUDY
We now present three case studies to demonstrate the applicabil-

ity of our analysis methods. The first shows how our techniquecan
be used to compute bounds on the amount of data guaranteed to
go through the system when the buffer implements the data refresh
semantics. The second illustrates the effect of buffer sizeon the
freshness of output data in a traction control application.The last
one presents a sensitivity analysis of the variation in the maximum
delay experienced by the input stream with respect to changes in
the input workload.

5.1 Case study 1: Output guarantees in pres-
ence of data refreshing

In this case study, we analyze the bounds on the output stream
of the system described in Fig. 2 using our technique in Section 3.1
and a SystemC simulation.

Simulation setup. Using our SystemC event simulator, we gen-
erate an arbitrary input event traceRsim(t) that comprises different
event types of varying processing cycle requirements. Events from
Rsim(t) are first kept at a finite buffer that implements data refresh
semantics. Here, we are interested in the freshest event andhence
the size of the buffer is set to 1. The processor processes theevents
from the buffer in a greedy fashion, where it is set to run at fre-
quency f = 5 MHz. We then observe the output arrival pattern
R′

sim(t) of the processed stream.

Obtaining the arrival and service functions. Based on the gener-
ated traceRsim(t), we derive the arrival functionsαu(∆) andα l (∆)
of the input stream by sliding a window of size∆ along the time axis
and determine the maximum and minimum number of events gen-
erated across all the windows. Further, from the execution require-
ments of the generated events, we compute the workload functions
γu(k) andγ l (k), which give the maximum and minimum number
of processor cycles required to process anyk consecutive events.
The service functions of the processor can be then obtained from
the workload functions and the frequencyf using the formulas
β l (∆) = γ−u( f ∆) and β u(∆) = γ−l ( f ∆). We then useα and β
as input arrival and service functions to compute the outputarrival
functions using RTC-DRF and RTC-INF.

Simulation vs. analytical results.3 The upper output arrival func-
tion computed by RTC-DRF correctly upper bounds the output sim-
ulation traceR′

sim(t), and it is closer toR′
sim(t) than the upper output

arrival function given by RTC-INF. Similarly, the lower output ar-
rival function given by RTC-DRF correctly lower boundsR′

sim(t);
the RTC-INF, however, gives a wrong bound as its computed value
is above the output simulation trace. Hence, by taking into account
buffer refresh, our method gives a tighter upper bound than the con-
ventional RTC does, at the same time avoids invalid results faced
by the conventional RTC.
Effect of buffer size on the output stream and throughput. Fig. 8
depicts the lower output arrival functions obtained by our technique
when varying the input buffer size for the same input streamα(∆).
As shown in the figure, the lower arrival function corresponding
to a lower buffer size is located below the one correspondingto a
larger buffer size. This is because, as the buffer size is increased,
fewer items are overwritten and thus, more items are processed. It
can also be observed from the figure that the output arrival func-
tions for buffer sizesB = 10 andB = 15 coincide, which happens
when all input items are processed.

The buffer size also has a large impact on the minimum through-
put of the system. As illustrated in Fig. 9, initially when wedouble

3Due to space constraints, we do not show the detailed resultshere.



0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

20

40

60

80

100

120

∆  ms

L
o

w
e

r 
a

rr
iv

a
l 

fu
n

ct
io

n
 o

f 

th
e

 o
u

tp
u

t 
st

re
a

m
  [

#
e

v
e

n
ts

] 

 

 

B=10

B=15

B=2

B=1

B=5

Figure 8: Guarantees on the output stream for different input
buffer sizes.

B = 1 B = 5 B = 8 B = 10B = 2 B = 15

M
in

im
u

m
 t

h
ro

u
g

h
p

u
t 

   
[#

e
v

e
n

ts
/1

0
s]

40

70

103

115
116 116

Figure 9: Effect of buffer size on the system’s throughput.

the size of the buffer, the throughput increases nearly by a factor
of two. However, the increasing factor is reduced as we further in-
crease the buffer size, and the throughput will finally converge (at
valueB≥ 10) when the buffer is large enough to avoid overflows.

5.2 Case study 2: A traction control system
Strong acceleration can lead to wheel spinning, especiallyon

poorly prepared roads. A traction control system prevents spinning
of the driving wheels and provides an optimal traction. Fig.10
depicts a traction control system application mapped on a CAN ar-
chitecture we would like to analyze.

Residual Bus 

ECU2 ECU1 

A
c
tu
a
to
r 

CAN 

Fixed Priority 

s1 

s2 T2 

T1 

B1 … 

m1 

m2 

m3 

m4 
m5 mn 

B4 

T3 

T4 

Fixed Priority 

!1 

!2 

!1 !2 

T5 Tn 
‚ ‚ 

… 

Figure 10: A traction control system on a CAN architecture.

The system consists of a wheel speed sensor clusters1, two
ECUs for computing the traction control and an actuator perform-
ing the wheel braking. ECU1 receives the wheel-speed valuesfrom
the sensor clusters1, and processes the current slip by executing
taskT1. The processed slip value is sent via messagem1 to ECU2.
Task T4 is computing the brake force according to the input slip
value, especially if a wheel is going to spin. Subsequently,the
brake force value is sent viam4 to the wheel brake actuator which
performs the brake application and therefore prevents wheel spin-
ning. As the delay of such a system has to be very short, it is
important that the most recent slip value is available for comput-
ing the brake forces and that the most recent computed brake force
value is sent to the actuator. To achieve this, the buffersB1 andB4
are configured to non-queued buffers that allow updating their con-
tents with a new processed value in case the previous value could
not be transmitted on the bus according to the CAN schedulingpol-

icy. This may happen if too many messages with a higher priority
thanm1 andm4 are transmitted on the CAN bus for a certain period
of time (e.g., due to some event triggered higher priority messages
which have to be transmitted because of changing system states of
other ECUs). Besides, there is a second application runningon
ECU1 and ECU2. Messages are sent on the CAN bus according to
fixed priority non-preemptive scheduling (FPNS).

Given the above system, we are interested in how fresh the wheel-
speed values are when they arrive at the actuator. To derive this, we
calculate the maximum end-to-end delay of the messages thatare
transmitted from the sensors1 to the actuator through the colored
path (in solid blue line).

0

20

40

60

80

Inf

 

 

delay(T
1
)

delay(m
1
)

delay(T
4
)

delay(m
4
)

B1 
= 1 B1 

= 2 B1 
= 3

conventional RTC
M

a
x

im
u

m
 e

n
d

-t
o

-e
n

d
 d

e
la

y
  [

m
s]

RTC with data refresh semantics

21.25

31.25
36.00

infinite

Figure 11: Maximum delay from s1 to the actuator.

Analysis results. We employ the method in [9] for modeling FPNS
policy used by the CAN bus. The residual bus depicted in Fig. 10
consists ofn strictly periodic messages with priorities higher than
m1 to m4. The message priorityPm is defined byPm1 > Pm2 > Pm4 >

Pm3 and the task priorityPT is given byPT1 > PT2 andPT3 > PT4. For
the analysis, we assume a low speed CAN bus providing a data rate
of 125 kbit/s and a fixed frame length for every CAN frame in the
system. The sensor tasks1 has a period of 10 ms and an additional
jitter of 2 ms. BothB1 andB4 are finite buffers with data refresh
semantics, whereB4 has a fixed size of 1 andB1 has a variable size.

Fig. 11 depicts the corresponding maximum delay experienced
by a message originated from the sensors1 to the actuator when we
vary the size of the bufferB1, computed by RTC-INF (assuming
no data refresh) and by RTC-DRF. Here, the longer the delay, the
less fresh the data. As illustrated in the figure, according to the
RTC-INF, a message may experience unbounded end-to-end delay,
which is overly pessimistic. By taking into consideration the buffer
size and the data refresh semantics, our RTC-DRF method gives
a finite delay. It can also be observed from the figure that, as we
increase the buffer size, the delay increases and the data becomes
more stale. This is expected because when the buffer is small, it
keeps only the most recent data items, which is not the case for a
large buffer.

Based on the above observations, it is often appropriate to keep
the buffer size small in applications where the freshness ofdata is
critical. On the contrary, applications that require high throughput
often need sufficient on-chip memory to maintain the desiredlevel
of quality of service.

5.3 Case study 3: Sensitivity analysis
To evaluate the robustness of our method as well as the rela-

tionship between input parameters and system performance-related
metrics, we study the sensitivity of our analysis with respect to
variations in the input stream. Towards this, we consider a sin-
gle periodic-with-jitter input stream that is processed bya system



which implements data refresh semantics, and examine the impact
of input jitter variation on the delay of the output stream.

jitter window of size J
ideal periodic points

P

arrival input data item
time

Figure 12: Periodic sensor stream with jitter.

As shown in Fig. 12, such an input stream arrives at a constant
periodP in average; however, the arrival times of the items may
deviate within an interval of lengthJ (called the jitter) surrounding
the ideal periodic arrival points. Besides modeling an input source
that is not strictly periodic, this jitter is also often usedas a means
to capture possible errors in the period measurement of an input
stream.

B CAN bus

…input 

stream
data refresh

PE1

b

message delay?

s1 s1′
PE2

Figure 13: Example system for sensitivity analysis.

System description. Fig. 13 shows the architecture of the system.
The periodic sensor streams1, with periodP and jitterJ, upon ar-
riving at the system will be stored in the input bufferb prior to being
processed by the processorPE1. Its output streams′1 is then writ-
ten to a transmit bufferB before being transmitted to the CAN bus
(denoting asPE2). Here,b is an unbounded FIFO buffer; however,
B implements data refresh semantics.

We assume thatB has a fixed depth of 1 and the CAN bus pro-
vides data rate of 125 kbit/s. The input streams1 has a period of
10 ms and a variable jitter ofJ ms. In our experiment, we varyJ
from 0 to 7 ms in steps of 0.5 ms, and compute the corresponding
maximum delay experienced by an input message.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6

8

10

12

14

Jitter of input stream s1 [ms]

M
a

x
im

u
m

 d
e

la
y

 e
x

p
e

ri
e

n
ce

d
 b

y
 s

1
 [

m
s] Constant bound on the message delay

D
a

ta
 r

e
fr

e
sh

Figure 14: Effect of input jitter on the message delay.

Fig. 14 depicts the maximum delay experienced by an input mes-
sage corresponding to different input jitter values. As shown in the
figure, the maximum message delay increases linearly as we in-
crease the jitter of the input stream. This is expected because when
the jitter is increased, more items may arrive in a fixed interval of
time, which increases the worst case resource demand of the in-
put stream. As a result, a more jittery stream experiences a larger
maximum delay.

On the other hand, the maximum delay stabilizes after the in-
put jitter exceeds a certain value (i.e.,J ≥ 3 in the figure). This
convergence of delay is guaranteed due to the enforcement ofdata
refresh semantics. Specifically, since the service functions of the
PEs do not change, the maximum workload that can be processed
by PE2 stays constant regardless of the input demand. Further, in a
high load scenario (e.g., with high input jitter value), themaximum

number of items that wait in the buffer will be limited by the depth
of the buffer (since the excessive input items will all be discarded
due to the data refresh semantics). Hence, when the input jitter goes
beyond a certain threshold, the maximum number of items thatwill
indeed be processed is only limited by the service function and the
buffer size. As a result, the maximum delay remains constantas
the jitter continues to increase.

From the above sensitivity analysis, one can derive the correla-
tion between the input measurements and the system behavior. In
scenarios where jitter is used to accommodate possible input mea-
surement errors, the tightness of the delay results is linearly pro-
portional to the tightness of the input jitter value; however, it is
guaranteed to be bounded by a constant accuracy despite how pes-
simistic the input measurement is.

Lastly, the RTC-DRF results also showcase interesting system
behaviors that are not easily visible otherwise. For instance, when
data refresh is implemented, the maximum message delay is no
longer influenced by the input load once the load is larger than the
maximum service provided added with the buffer size. On the con-
trary, the number of messages that are overwritten is susceptible to
input workload, especially when the input load is high. Based on
these observation, one can also determine the maximum workload
acceptable by the system to guarantee a delay constraint or to min-
imize the amount of data loss. It is worth noting that such insights
into the effects of various design parameters and their trade-offs
would have not been possible by using RTC-INF alone.

6. CONCLUDING REMARKS
We have presented an analytical framework to model and analyze

systems with buffers implementing data refresh semantics.Our
analysis is tight and based solely on algebraic techniques,which
can be computed efficiently and compositionally. Further, it can
be easily integrated into the existing RTC framework and extended
to analyze similar buffer management policies. We have alsoil-
lustrated the utility of our method using three realistic case stud-
ies from the automotive domain. We plan to extend the theoreti-
cal results established in this paper to capture more complex sys-
tem behaviors, such as dynamic scheduling policies, dependen-
cies between input/output streams, and more complex bufferupdate
schemes.

7. REFERENCES
[1] A. Benveniste et al. Heterogeneous reactive systems modeling: capturing

causality and the correctness of loosely time-triggered architectures (LTTA). In
EMSOFT, 2004.

[2] A. Benveniste et al. Communication by sampling in time-sensitive distributed
systems. InEMSOFT, 2006.

[3] A. Benveniste et al. Loosely time-triggered architectures based on
communication-by-sampling. InEMSOFT, 2007.

[4] J.-Y. Le Boudec and P. Thiran.Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet, volume LNCS 2050. Springer, 2001.

[5] S. Chakraborty, S. Künzli, and L. Thiele. A general framework for analysing
system properties in platform-based embedded system designs. InDATE, 2003.

[6] S. Chakraborty, L. T. X. Phan, and P. S. Thiagarajan. Event count automata: A
state-based model for stream processing systems. InRTSS, 2005.

[7] N. Feiertag, K. Richter, J. Nordlander, and J. Jonsson. Acompositional
framework for end-to-end path delay calculation of automotive systems under
different path semantics. InCRTS, 2008.

[8] E. Fersman, P. Krcál, P. Pettersson, and W. Yi. Task automata: Schedulability,
decidability and undecidability.Information and Computation,
205(8):1149–1172, 2007.

[9] W. Haid and L. Thiele. Complex task activation schemes insystem level
performance analysis. InCODES+ISSS, 2007.

[10] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.Proceedings of the
IEEE, 75(9):1235–1245, 1987.

[11] L. Mangeruca, M. Baleani, A. Ferrari, and A. Sangiovanni-Vincentelli.
Semantics-preserving design of embedded control softwarefrom synchronous
models.IEEE Transactions on Software Engineering, 33(8), 2007.



[12] O. Moreira and M. Bekooij. Self-timed scheduling analysis for real-time
applications.EURASIP Journal on Advances in Signal Processing, 2007.

[13] J. Ray and P. Koopman. Data management mechanisms for embedded system
gateways. InDSN, 2009.

[14] S. Tripakis, C. Pinello, A. Benveniste, A. Sangiovanni-Vincentelli, P. Caspi, and
M. Di Natale. Implementing synchronous models on loosely time triggered
architectures.IEEE Transactions on Computers, 57(10), 2008.

[15] E. Wandeler and L. Thiele. Workload correlations in multi-processor hard
real-time systems.Journal of Computer and System Sciences (JCSS),
73(2):207–224, 2007.

[16] W. Wandeler, A. Maxiaguine, and L. Thiele. Quantitative characterization of
event streams in analysis of hard real-time applications.Real-Time Systems,
29(2-3):205–225, 2005.

[17] M. Wiggers, M. Bekooij, P. Jansen, and G. Smit. Efficientcomputation of
buffer capacities for multi-rate real- time systems with back-pressure. In
CODES+ISSS, 2006.


