
THIRD SKRIEs) VQL. 1) No. 5 1 MARCH 1970

Interactions between Molecules in Solid Hydrogen*
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The interactions between molecules in solid H2 and D2 are discussed with emphasis on those features which
are of importance for the orientational properties. It is shown that pseudo-three-body interactions split by
0.1 cm ' the rotational levels of a pair of J= 1 molecules which are degenerate when only pairwise interactions
are considered. The dielectric screening of quadrupole interactions due to these terms is also estimated. The
static and dynamic renormalizations of the electric quadrupole-quadrupole interaction constant F due to
phonon interactions are studied using the theory of quantum crystals and treating the dynamical interaction
between phonons and rotations perturbatively. For H2 and D2 in the fcc phase, a reduction in I' of about
12/0 is found therefrom, where as in the dilute J=1 solid practically no renormalization is expected. By
comparing the author's calculations with experimental data, it is infered that perhaps the static renormaliza-
tion has been underestimated as a result of the crude description of the phonon modes. However, the di6ering
renormalizations for the dilute and concentrated J= 1 systems are confirmed by experiment. Finally, the
indirect interaction between distant J= 1 molecules analogous to the Suhl-Nakamura interaction is discussed.
It is shown that the NMR T2 data place a bound on this interaction which can only be understood using
rather small values of certain intermolecular interaction coefficients which are renormalized to take account
of short-range correlations. Harmonic renormalization leads to anomalously large indirect interactions in
disagreement with T2 data.

I. INTRODUCTION

HIS paper is the 6rst in a series of papers whose
ultimate objective is a quantitative understand-

ing of the orientational state of solid hydrogen. ' These
systems have been widely studied, both experimentally
and theoretically, in recent years. The importance of
this problem is due to the possibility in the foreseeable
future of a first-principles calculation of the properties of
the solids in which no ad ho@ parameters are introduced.

Within the approximation of considering the system
of nuclei and electrons as forming constituent molecules,
one is naturally led to a discussion of the interaction
between molecules. For our purposes, we need consider
only the orientationally dependent interactions of
which the largest is the electric quadrupole-quadrupole
(EQQ) interaction. ' Thus far this aspect of the problem
has not been treated in a fundamentally satisfying way,
although such calculations can be anticipated in the
near future. Accordingly, in Sec. II a discussion is given
of these orientationally dependent interactions based
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partly on theoretical considerations and partly on ex-
perimental indications with particular emphasis on
eBects which are important in the solid. In Sec. III it is
shown how pseudo-three-body forces remove the de-

generacy associated with the higher symmetry of the
pairwise interactions for the case of an isolated pair of
J=i molecules in an otherwise pure solid of J=0
molecules. These pseudo-three-body interactions pro-
duce energy-level splittings of the order of 0.1 cm '.
The observation of such splittings which are inconsist-
ent with the symmetry of pairwise interactions would
be a dramatic manifestation of pseudo-three body
interactions. Here it is also estimated that the effect of
dielectric screening on EQQ interactions is to reduce
the effective coupling constant F.tt by about 5%.

In Secs. IV and V, the renormalizations, both static
and dynamic, of the EQQ interaction due to the pres-
ence of the large zero-point motion of the phonon system
are studied. Using the quantum crystal wave functions
of Nosanow, ' we find static and dynamic xeductions in
the EQQ coupling constant F,«of respectively 7 and.
6% for fcc ordered Hs and similar results for D, are
found. In order to discuss the case of dilute J= 1 hydro-
gen we also consider the case of isolated pairs of J=1

' L. H. Xosanow (private communication).

Copyright ) 1970 by The American Physical Society.



A. BROOKS HA R R I S

TABLE I. Some constants for free hydrogen molecules. II. INTERACTIONS BETWEEN MOLECULES
IN A RIGID LATTICE

Symbol Equation H2 D2 Reference

BJ (2.1)
Q after (2.5)

(7 1)

59.34 cm 1 29,91 cm 1

0.4883 ap' 0.4783 ap'

57.67 kHz 25.24 kHz

12
13
14

4 H. Suhl, Phys. Rev. 109, 606 (1958).
~ T. Nakamura, Progr. Theoret. Phys. (Kyoto) 20, 542 (1958).

W. Hardy and J, R. Gaines, Bull. Am. Phys. Soc. 12, 1047
(1967); Phys. Rev. Letters ll, 1278 (1968). See also the data
reported in Ref. 7.' C, C. Sung, Phys. Rev. 169', 271 (1968).' W. D. Davison, Disc. Faraday Soc. 33, 71 (1962).

9 L. H. Xosanow, Phys. Rev. 146, 120 (1966).' F. W. de Wette, L. H. Nosanow, and N. R. Werthamer, Phys.
Rev. 162, 824 (1967)."J.Van Kranendonk and V. F. Sears, Can. J. Phys. 44, 313
(1966).

molecules. Here we find the same static renormalization
but in this case the dynamic interaction leads to an in-
crease in F,~q which nearly cancels the static reduction.
We explain our differing conclusions for the concen-
trated and dilute cases as being due to the possibility
of strains in the latter case, whereas in the former case
this possibility is inconsistent with cubic symmetry. In
Sec. VI we show that distant J= 1 molecules interact
with one another via the virtual emission and absorp-
tion of phonons, an effect which is analogous to the Suhl-
Nakamura4 ' indirect interaction in magnetic materials.
Using NMR T~ measurements' ~ we are able to place
a bound on the size of this indirect interaction which is
consistent with the most reliable estimates of the poten-
tial coefficients' describing the interaction between
hydrogen molecules, providing these potentials are re-
normalized according to the theory of quantum crys-
tals. ' ' The harmonically renormalized potentials"
lead to anomalously large interactions. Finally, in Sec.
VII, we compare the results of our calculations of the
phonon renormalizations with experimental data. On
the whole, the experimental data agree reasonably well
with our calculations. In particular, the prediction that
the observed value of F should be about 10% larger in
the dilute J= 1 system than in the concentrated system
seems to be verified. In order to achieve a more precise
agreement with experimental data it would be necessary
to employ a better description of the phonon system.
The method of calculation in which the interactions
between the phonons and the molecular rotations are
treated perturbatively does seem to be reliable consider-
ing the smallness of the e&ects involved.

I.ater papers in this series will discuss the interpreta-
tion of (a) infrared and Raman spectra, of J=0 Hs, (b)
the specific heat of hydrogen at high temperatures or at
extreme dilution of J= 1 rnolecules, and (c) the NMR
properties of solid hydrogen in various regimes. The
objective of this program is to be able to discuss in
more detail the consistency of the values of I" as deter-
mined from various experiments.

The first step in understanding the orientational
effects in solid H2 and D~ is, of course, to calculate from
first principles the interactions between molecules. As
we have mentioned, although it is hoped that such a cal-
culation will be possible in the near future, at present
we are limited to phenomenological treatments. The
purpose of this section is to correlate the available in-
formation about the intermolecular potential, em-
phasizing those features which are most infiuential in
determining the orientational state of solid hydrogen.
For this purpose we will not consider the electronic or
vibrational degrees of freedom explicitly. YVe will
consider the hydrogen molecule to be a rigid rotator
whose dielectric properties can be parametrized in the
usual way. As is well known, the energy levels of a rigid
rotator are

EJ=BgJ(J+1), (2.1)

"3.P. Stoiche8, Can. J. Phys. 35, 730 (1957)."G. Karl and J. D. Poll, J. Chem. Phys. 46, 2944 (1967).
~4N. F. Ramsey, Molecular Beams (Oxford University Press,

Oxford, 1956), pp. 235 and 238."Note that we use the phase convention for spherical harmonics
of Rose; see Ref. 17.

where the values of the rotational constant Bg for H2
and D2 are given in Table I." "The Pauli principle
requires that an odd (even) rotational level be com-
bined with an even (odd) nuclear spin function for Hs
and with an odd (even) nuclear spin function for D2,
since these molecules have nuclei with spin —,

' and 1,
respectively. At low temperatures only the lowest J
manifold of a given symmetry, i.e., either J=0 or J= I,
is occupied. Thus for H2 one has ortho molecules with
J=1, I= 1 or para molecules with I=0, J=0, and for
D2 there exist ortho molecules with J=O, I=0 or I=2
and para molecules with J=1, I= j., where I is the
total nuclear spin of the molecule. The angular-
dependent part of the intermolecular interaction is
much smaller than 8&, so that J is essentially a good
quantum number. Consequently, we need only consider
matrix elements of the intermolecular potential which
are diagonal with respect to J. Matrix elements off-
diagonal in J can be taken into account perturbatively
via a canonical transformation, if need be.

YVe shall primarily be interested in describing the
orientational state of mixtures of J=0 and J= 1 mole-
cules as a function of the concentration x of J= 1 mole-
cules. Accordingly, if the intermolecular potential is
expanded in terms of spherical harmonics, " Fl,~(0, &p),

it is not necessary to include terms with L)2, since their
matrix elements vanish within the J=O and J=1
manif olds. Therefore, we write the intermolecular
potential as

F=~(~)+(16-t~)"'~(~)LF"(-.)+F"(-.)3
+4m Q Csr(R) Fs (a)t) F,— (a)s), (2.2)
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where coz =—0&, q & and ~2=—
0&, p2 specify the orientations

of the molecules relative to R, the vector connecting
their centers of gravity. Note that the last term involves
three independent parameters, since C~(R) = C ~(R).
An alternative formulation due to Van Kranendonk" is
often convenient:

Q C (R)I,~(,)F, ~( )

=Q ~,(R)o.,C(22j;p, —p) F'2&((oi) I'2 &((o~), (2.3)

where C(Li,L2,L3, Mr, M2) is a Clebsch-Gordan coeffi-
cient, "and n4 ——+70, n~ ——+~7, and n, =+5.The physi-
cal interpretation of this formula is that e, (R)n, mea-
sures the strength of the coupling between the two
angular momenta so as to form a resultant angular
momentum j. The coefficients C~(R) and e;(R) are
related by

e, (R)n, =P C~(R)C(22j; 3f, —3II), (2.4)

"J.Van Kranendonk, Physica 25, 1080 (1959).' M. E. Rose, Elementary Theory of Angular Mo7nenturn {John
Wiley R Sons, Inc. , New York, 1957).' W. H. Keesom, J. de Smedt, and H. H. Mooy, Commun.
Kamerlingh Onnes Lab. , Univ. Leiden 19, 209d (1930).' R. L. Mills and A. F. Schuch, Phys. Rev. Letters 15, 722
(1965)."K. F. Mucker, S. Talhouk, P. M. Harris, and D. White,
Phys. Rev. Letters 15, 586 (1965); A. F. Schuch and R. L. Mills,
ibid. 16, 616 (1966); K. F. Mucker, S. Talhouk, P. M. Harris,
D. White, and R. A. Erickson, ibid. 16, 799 (1966);K. F. Mucker,
P. M. Harris, D. White, and R. A. Erickson, J. Chem. Phys. 49,
1922 (1968).

2' J. Van Kranendonk and G. Karl, Rev. Mod. Phys. 40, 531
(1968).

from which it follows that e, (R)n; vanishes for odd j.
Although all these coefFicients are not known accurately,
some idea of their magnitude can be given.

As Nakamura' has discussed, C~(R), and hence
e4(R), is dominated by the EQQ interactions. Neglecting
other interactions one has

Cir(R) =61'0(70)'"C(224; N, —M)(RO/R)"'. (2.5)

As a matter of arbitrary convenience we will define
Rp= 3.755 A for H2 and Rp= 3.59 A for D~, and then
I'o ——6e'Q'/25Ro"" is the EQQ coupling constant, where
eQ is the quadrupole moment of the molecule. This
value of the intermolecular separation Rp for H~ is
quite close to that observed for the solid at essentially
zero temperature and atmospheric pressure for para
H2, "normal H2 in the ordered fcc phase, "or normal
II& in the disordered hcp phase. "Similarly the value of
Rp for D& is essentially that obtained for normal D&, '
or for para enriched D~ in either the ordered fcc or dis-
ordered hcp phase. " Thus we will reduce all experi-
mental determinations of F to these standard nearest-
neighbor separations. The electric-quadrupole moment
of the molecule in the solid will be assumed not to differ
significantly from that of the free molecule. As Van
Kranendonk and Karl" discuss, this assumption is

probably a good one. The quadrupole moment of the
free molecule has been calculated by Karl and Poll"
and also by YVolniewicz. 22 The principal difference be-
tween their results lies in their respective estimates of
nonadiabatic effects. Combining the estimates of Karl
and Poll for these effects with their value of the quad-
rupole moment in the J=1 rotational state, we obtain
Q=0.4883 ao2 for H2, where uo is the Bohr radius, and
Q=0.4783uo' for D~. To obtain this latter value it was
necessary to scale Eqs. (9), (18), and (23) in Ref. 13 to
take account of the larger mass of the D~ molecule.
Using the values of the quadrupole moments we find
Fp=0.698 cm ' for H2 and Fp=. 0.839 cm ' for D~ or
Ip/kii 1.005'K for H2 and Io/kii= 1.206'K for D2. In
later sections we shall discuss several effects which will
effectively change these rigid lattice values.

The coefficients e2(Rp) aild Eo(RO) are smaller, being
in part the result of anisotropic van der Kaals and
valence forces ""The calculations of Margenau" and
de Boer'4 would indicate that these coefficients are, in
Nakamura's notation,

4 R 40
Ep(RO) = — ———X~'Ve "«&= —0.11 cm ', (2.6a)

105 rp' 7

eo(RO) = +4K 'Pe "«&=0.06 crn '
75r 6

(2.6b)

However, due to the crudeness of the calculatrons these
values must be regarded as being quite uncertain. At
present we are reanalyzing the infra red2' and Raman
spectra" in order to give empirical estimates of these
parameters which may be more reliable than the theo-
retical values of Eq. (2.6). Hopefully a satisfactory
first-principles calculation of these terms will be per-
formed in the near future.

There are varying estimates of B(R). Nakamura' and
others" '~ "have used the early theoretical estimates of
Margenau" and de Boer.'4 However, more recently
Davisong has shown from an analysis of ultrasonic dis-
persion data" that these estimates are unreasonably
large. He assumes B(R) to be of the form

g(R) P &
—2a'(8 Ro) P (R /R)6— (2.7)

"L.Wolniewicz, J. Chem. Phys. 45, 515 (1966).
"H. Margenau, Phys. Rev. 64, 131 (1943).
~4 J. de Boer, Physica 9, 363 (1942).
"H. P. Gush and J. Van Kranendonk, Can. J. Phys. 40, 1461

(1962).
"V. Soots, E. J. Allin, and H. L. Welsh, Can. J. Phys. 43,

1985 (1965)."W. H. Orttung, J. Chem. Phys. 36, 652 (1962).
"A. B. Harris, Int. J. Quantum Chem. IIS, 347 (1968).
» J. K. Rhodes, Jr., Phys. Rev. '?0, 932 (1946).' F.R. Britton and D. J.W. Bean, Can. J.Phys. 33, 668 (1955).

Since the theoretical calculations" of the long-range
forces are more reliable than those for the short-range
term Pi, he used the theoretical value of P~ and an esti-
rnated value of n'. He was then able to determine pi
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from a one-parameter fit to the experimental data. His
values, Pi=0.47 cm ' and P2=0.69 cm ', are much
smaller then those used by Nakamura' based on the
work of Margenau" and de Boer'4: pi=1.8 cm ' and
P& ——1.1 cm '. Consequently the estimates of the effects
of the linear phonon coupling due to this term given by
Van Kranendonk and Sears, " and by Harris, " are
grossly in error. Thus it is not surprising, for instance,
that the crystalline field of an isolated J= 1 molecule in
otherwise pure J=0 H2 is much smaller than predicted
in Ref. 11. In Sec. VI we will show that experimental
results for the nuclear spin-spin relaxation time tend to
corroborate Davison's estimates.

Since the details of the mechanism responsible for the
crystalline field are at present uncertain, we will only
assume it to be of the form appropriate to the sym-
metry of the lattice. For hcp H& or D2 this means that
the crystal-field Hamiltonian H, is of the form

JJ.= V.L(J ri) -3], (2.8)

where 8 is a unit vector parallel to the crystal c axis. The
result of Hardy and Gaines" and also of Gaines,
Hartzler, and Kaeck" that

I V, I
&0.006 cm 'may apply

directly only to the case of isolated J= 1 molecules in
otherwise pure J=O H&. The crystalline field for an
isolated pair of J=1 molecules might be somewhat
different due both to local strains and to the different
sizes of J=0 and J= 1 molecules. Although these effects
would not change the form of Eq. (2.2), they would
cause the coefFicient B(R) to depend on the angular
momenta of the interacting molecules. It is known' that
the crystal-field term involving B(R) in Eq. (2.2) van-
ishes when summed over nearest neighbors in a rigid
hcp lattice. Using this fact it is clear that if one allows

B(R) to be slightly dependent on angular momenta of
the interacting molecules, one thereby obtains for iso-
lated pairs of J=1 molecules in otherwise pure J=O
H2 a crystalline field Hamiltonian of the form

H, '=Q V,L(J,"n)' —-']—(6/5)DBL(J,"R)'—-,'], (2.9)

where A is a unit vector along the pair axis and AB is
the diif erence between B(R) for a pair of J= 1 molecules
and B(R) when the interacting molecules have J values
0 and 1. Since this effect depends either on the smaller
explicit dependence of B(R) on the angular momenta, or
on the existence of strains, we may expect II,' to be
quite small in general.

Finally let us note that it is often convenient to use
the operator equivalents as Nakamura has done.
Within the manifold of constant J one has

"W. Hardy and J. R. Gaines, Phys. Rev. Letters 19, 1417
(1967)."J.R. Gaines, E. A. Hartzler, and J. A. Kaeck, in Proceedings
of the Eleventh International Conference on Low Temperature
Physics, Vol. I, p. 615 (unpublished).

where Roy= —
5 alld

g +2(J) (15~)1/2J 2 (2.11a)

III. PSEUDO-THREE-BODY INTERACTIONS

In the previous section we made some general re-
marks about the pairwise interactions between hydrogen
molecules in the solid. In this section we shall consider
possible new effects due to pseudo-three-body forces.
Specifically, we shall first investigate polarizability
eRects such as are responsible for dielectric shielding.
Then, using perturbation theory, we shall examine the
e8ects of pairwise orientational interactions which are
not diagonal in J.

A. Dilute J= 1 Systems: Isolated J= 1 Pairs

In this subsection we shall treat the case of isolated
pairs of J= 1 molecules in otherwise pure J=0 hydro-
gen. The specific mechanism we shall investigate is that
which is responsible for dielectric screening between
widely separated molecules. While it is generally agreed
that dielectric screening is important as far as distant
interactions are concerned, " there is some uncertainty
as to the role of this e6ect for short range interactions.
We shall study this effect in a simple approximation,
although a more rigorous treatment of these three-body
interactions is possible. "The energy term AE we con-
sider is that of a third molecule at position r due to the
electric field created by Inolecules at r& and r&, which are
nearest-neighboring lattice sites:

as= ——,'nLV q, (r) y W q, (r)]'. (3.1)

Here we neglect the small anisotropy of the polariza-
bility, '4 o, , in order to obtain an order-of-magnitude
calculation. The two-body terms contribute to the
crystal-field interaction whose calculation is extremely
delicate and will not be pursued here. Here we consider
only the three-body term:

V, = — P vp, (r) Vp, (r), (3.2)

where we now sum over all positions of a third molecule.
Physically this energy describes the following process:
The quadrupole moment of molecule one causes an elec-
tric field which polarizes the molecular at r. Then Vs

"A. Dalgarno and W. D. Davison, Advances in Atomic and
Molecllar Physics (Academic Press Inc. , New York, 1966), Vol. 2,
p. 1.

'4 D. W. Davies, The Theory of the Electric and Magnetic Prop-
erties of Molecgles (John Wiley 8z Sons, Inc. , New York, 1967),
p. 95 ff.

@2+'(J)= w( —,",~) i/'(JgJ, +J,Jg), (2.11b)

82'(J) = (i'6~) '"(3J*'—2) (2.11c)

Accordingly we shall use the spherical harmonics
F'z~l(e, q) and the tensor operators gr, ~(J) interchange-
ably when J is constant.
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(a) TABLE II. Values of g„, and h„„.

+
+ ~ +

~ +
+ 0 +

~ +
+ ~ +

+

A.

+

+

F&G. 1. Coordinate axes for type (a) pairs (left) and type (b)
pairs (right). The crosses and dots denote sites in adjacent basal
planes of the hcp lattice. For type (a) pairs z and k lie in the basal
plane as shown, and j=k ps. For type (b) pairs j lies in the basal
plane, k lies along r», and i=j&(k.

—2

0
1

2
—1

0
1
0

57
—47 (%3)/3

7/6
115(v3)/9

—245/3
268

—9'
—68/3
—138

g „,(b)

57
0

21+6
0

105
268

0
—68

—138

—1691
—175 (v3) /3
865 (g6)/3

10925(&3)/9
—25235/9

8156
—122542

—380
—1026

h„„,(b)

—1691
0

865+6
0

3605
8156

0
—1140
—1026

is the energy of the induced dipole moment in the
electric field of the quadrupole moment of molecule two.
The splittings caused by V3 may be different for the case
when (a) r~ and r4 lie in the same basal plane, or when

(b) r& and r~ lie in different basal planes.
The potential at s due to the quadrupole moment of

molecule i can be written as

4xe
~'(r) = 2 V2"(~') V~"(~')*Ir—r'I ', (3 3)

v

we have

V+'= W2 "'(Vg&iV„),
V'= V„

(3.4a)

(3 4b)

'&7 V2"(0;) Ir —r, I

—'
= —5(3/7)"'V &'+"(0,) Ir r;I 4C(—123 p,p) (3 5)

where co; and 0, specify, respectively, the orientation of
the molecule at r; and the orientation of the vector
r —r; with respect to the quantization axis, which for
later convenience is taken along the pair axis, r~ —r2

=r~~. Using spherical components for vectors,

coincides with the crystal c axis, as in Fig. 1. For type

(b) pairs we take

s= (—1/g6, —1/v2, 1/K3),

i=(2~~, —
2 o),

k= (6~~ 2w'3).

(3.9a)

(3.9b)

(3.9c)

Note that for both type (a) and type (b) pairs the i,k

plane is a reAection plane. This assures that the coefIi-

cients g,„are real. Using this reality property, one also

deduces that
(3.10a)

Also note that for type (a) pairs the plane r k = ~~, which

is the plane perpendicularly bisecting the bond r», is

a reflection plane. . Use of this symmetry property yields

(3.10b)

where the superscript indicates the type of pair. For
type (b) pairs th& midpoint of the bond r» is a center of

inversion symmetry, from which one deduces

so that g, (b) —- g, (b) (3.10c)

where

vv'

gvv' =
1280m

Z (—1)"
7 &p

Ep 4 Rp 4

V3"+"(Qg)
r —iy i —12

4 = (1,0,0),

q=(0, 0, —1),
k = (0,1,0),

(3.8a)

(3.8b)

(3.8c)

where the coordinates (x,y, s) refer to axes in which s

X V3 "+"(02)C(123;pv)C(123; —p&'). (3.7)

For convenience we choose the coordinate axes as
shown in Fig. 1. That is, for type (a) pairs we take

The independent coeKcients are given in Table II
within the approximation that the summation in Eq.
(3.7) is extended only over the four values of r such that

(r,r~,r~) form an equilateral triangle.
Before discussiing the effect of these terms on the en-

ergy levels of a pair of J= 1 rnolecules, let us examine

those terms which describe the possibility that neigh-

boring J= 0 molecules are slightly oriented in the quad-

rupolar fields of molecules one and two. In contrast to
the preceding ca,lculation where the electronic struc-
ture of the molecule was distorted, here we distort the
J=-0 rotational ground state without disturbing the
electron wave function. %e obtain the corresponding
effective Hamiltonian by considering the effect of two-

body terms which are off diagonal in J in second-order

perturbation theory. The effective Hamiltonian H,«we
consider arises from terms which are diagonal in J~ and

J~ but are off-diagonal in J„ these being the rotational
quantum numbers of the J=1 molecules at r» and r2

and the even J rnolecules, i.e., para H2 or ortho D2, at
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TABLE III.Energy levels of an isolated pair of J= 1 molecules.

State'
EQQ

energy Total energy"

('4&'"[
I
11)+2

I 00)+
I
11)]=4 &

I11) =42
lii) =43

(4)'"L
I
11)—

I
oo)+ I11&j =C4

(2&'"[
I
1o)—I 01))

(2)'"L I1o)—I0I&3 =C 4

(l)'"L I11&-Ii»7
(2&'12LI10)+

I
01)] =Co

(2&'"L
I 1o&+ I

0I H

|r, 6I,+-,'(«+.,)+-,'aB

Fp Fp+-,'(« —~2) —-f~B

26p

(7/10) 62 Cp+ -', AB

0 —(7/5) c2—op
—~5kB

—4r, —4r,+—,', (.,+2«)+,'aB

' Here 1—= —1.
b Here we include the second (but not the first) term in the crystal-field

Hamiltonian of Eq. (2.9).

r, respectively. Thus we obtain

H.«= -2 (Hi. l e)E; (elH"

+H,
l

)E, '( lH, ), (3.11)

where II~, is the quadrupole interaction

20m Fp E.p
g C(224; p))

9 r —r1

X V2"(ooi) 7'2" (oo,) 74"+"(IIi,)*, (3.12)

and similarly for H2, . In Eq. (3.11) the sum is over ex-
cited states le) for which J,=2 and all the other mole-
cules are in their initial rotational multiplet: J1=J2——1,
J, = 0, for r' not equal to r1, r2, or r, and E, is the excita-
tion energy between the excited state and the initial
state li). We set E,= 6B and compute the sum over

l e)
by closure:

(ilV "(.)V "( .)li)=(—I)"(4 ) ' (3 13)

Now we can also replace the spherical harmonics by
their operator equivalents. In this way we obtain

where again the superscripts indicate the type of pair.
We have evaluated these coefhcients within the approxi-
mation that the summation in Eq. (3.15) is extended
only over the four values of r such that (r,ri,r,) form an
equilateral triangle, and the results are given in Table II.

The pseudo-three-body interactions of Eq. (3.6) are
governed by the coupling constant Fpp, where p=eRp '
=0.02, whereas those of Eq. (3.14) are scaled by the
coupling constant ro'/B. Anticipating the results of the
next section we use the renormalized values of Fp. That
is, we replace rop by rpp[ao42(') $2 and ro'/B by
I

roa44(a) j2/B. The values of these coupling constants
are given in Table IV, below. Clearly it does not make
sense to worry about such interactions if larger ones,
such as valence' or anisotropic van der Waals, ' are
neglected. Accordingly, let us discuss the energy-level
scheme of an isolated pair of 1=1 molecules in other-
wise pure J=0 solid hydrogen. The energy levels of this
system assuming only EQQ interactions are well known
and are given in Table III. These energy levels corre-
sPond to taking oo(Ro) =42(Ro)=0 in Eq. (2.3). More
generally, when these constants are nonvanishing we
obtain the results given in column 3 of Table III. Here
we have also included the e6ect of the second term of
Eq. (2.9). The first term in Eq. (2.9) will be treated
perturbatively later on. We conclude that in the
presence of the most general pairwise interactions al-
lowed by symmetry the energy-level scheme consists of
three singlets and three doublets. In the solid these
doublets can be split by the erst term in the crystalline
field potential of Eq. (2.9) and by the pseudo-three-body
interactions.

I.et us now calculate the splittings of the three doub-
lets, which we denote in order of increasing average
energy as 63, 62, 61, respectively, assuming the smaller
interactions scaled by oo(Ro) o2(Ro), and AB have re-
moved the accidental degeneracies. Then we find the
splittings of the three doublets due to the pseudo-three-
body interactions and the crystalline field to be

where

Fp
LIef f 2 h- 8 "(Ji)8 "'(~ ), (3 1 )

1728 8

E+(I',) —E-(I',)—=& i

3
ropg22+

32

5 p 2

h„, (3.17a)
2304 8

1024
h„„.=(70m-) g C(224; )v,p)C(224; p', —p)

9

Ep

Rp
F4"+v(II„)*V4"'—o(II2,)*(—1)o. (3.15)

r —r2

h. ..=(—1)"+"'h „, „,
h, (a) —h, (a)( 1)v+v'

h„,„& )=h„„&),

(3.16a)

(3.16b)

(3.16c)

The symmetry properties of h„„can be discussed in
strict analogy with those of g„„and so we only cite the
results: h„„ is real and

E+(0)—E (0)—=62

3
= —

r op(gii —-'2 +6goo)
64

5 Fp2

+ (hi i—2 +6hoo) —V, sin'f, (3.17b)
4608 8

E+(—4r, ) —E-(—4r,)=—~,
3= —roC (gii+oV'6goo)

64
5 Fp

+ (hii+2+6hoo)+ V, sin2$, (3.17c)
4608 8
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where E+(E) are the energies of the upper (+) and lower

(—) states of the doublet near energy E and P is the
angle between the pair axis and the crystal c axis. We
take V, to be about 0.006 cm ', although we do not
know its sign.""For concreteness we shall assume it to
be positive. Using the renormalized values of the param-
eters from Table IV we find

h~ ——0.17cm '

Ag ——0.12 cm

63=0.02 cm ',

(3.18a)

(3.18b)

(3.18c)

B. Concentrated J=1 Systems: Cubic Phase

We now discuss briefly these effects for concentrated
J= 1 hydrogen in the cubic phase. First let us consider

for type (b) pairs of Hp J=1 molecules. For H& we see
from Eq. (3.17) that the dominant contributions to &r

and 62 are from the static pseudo-three-body terms
scaled by p which describe polarizability effects. In D2,
where Fp'/8 is much larger, these polarizability terms
are only slightly more important than the orientational
terms. If the resonance between the ground state and
the excited states of the pair system could be observed,
these splittings would be a dramatic manifestation of
pseudo-three-body interactions. Also note that any

arguments based on the exact placement of EQQ energy
levels is suspect as these smaller perturbations are not
negligible.

Finally we give the shifts in the center of gravity of
the EQQ pair levels due to the pseudo-three-body inter-
actions. We find

DE(6Fp)

= —(Fpp/128) L2gp, p+ 4gr, i+3gpp j
—(5Fo'/27, 6488) L2h, ,+4h, +3hooj, (3.19a)

AE(F,)= —F,pg, /128 —5F 'h /27, 6488, (3.19b)

aE(0)
= (I'op/512) (2gp p

—2gi, i+goo)

+ (5I'o'/110, 5928) (2h, —2h, +ho,), (3.19c)

AE( —4F p)

= (Fop/128) (3g,—+2goo)

+ (5Fo'/27, 6488)(3hi, —i+2hoo), (3.19d)

where hE(E) is the average shift in the levels with EQQ
energy E. Since the experimental determination of Fo
at low concentration depends mainly on the separation
from the ground doublet to the excited quartet states,
we estimate the correction to this quantity due to the
perturbations considered:

AE(0) —AE( —41 p) = —0.10 cm ' for Hp, (3.20a)

AE(0) —AE( —4Fp) = —0.18 cm ' for D~, (3.20b)

which constitute corrections of 4 and 6%, respectively.

TABLE IV. Potential coefficients.

Equa-
tion Symbol

(2.5) rp
(2.7)
(2.7) p2

(2.7)
(2.8) V,
(3.1) p—=nRp '
(3.6) r.,Lq.,"j
(3.14) [ro&54&'~]'8 '
(4.3)
(4.3) 0.

(4.4a) ARp2

(4.4b) E
(4.19) r/rp
(4.29) r,h//rp

~~~2Rp2

(5 24)
(5.41) r,rr/ro
(5.48) r,rro"«/ro

r, rr (k T&&r,)/r.

H2

0.698 cm '
0.467 cm '
0.694 cm '
1.77 L-'
0.006 cm '
0.02
0.013 cm '
0.007 cm '

25.7 cm '
2.93 x

46.5
0.2406

0.92
0.85

6600 cm '
89cm '
0.84
0.94
0.87

D2

0.839 cm '
0.467 cm '
0.694 cm '
1.77 L-'

0.02
0.015 cm '
0.020 cm '

25.7 crn '
2.93 x

60.5
0.2406

0.92
0.80

8400 cm '
73cm '
0.84
0.92
0.88

Refer-
ences

13
8
8
8

31
34

a
41
41
3
3

a
a

42, 43
42, 43

a

a

& This work.

the screening of nearest-neighbor EQQ interactions.
Again for the geometry of the fcc lattice each nearest-
neighboring pair of molecules has four mutual nearest
neighbors. Hence the term scaled by Fop will be about
the same as for the dilute case. On the other hand, the
term scaled by I'p'/8 will be only about one-half as big
because the J=-1 to J=3 excitation energy is almost
twice as large as the J=0 to J=2 excitation energy. By
this crude argument we estimate a 4% reduction in Fp

due to dielectric screening for concentrated. J=1 H2
and a 5% reduction for concentrated J= 1 D&.

More interesting is the case of next nearest neighbors.
As Berlinsky et a/. 35 point out, these smaller interactions
have a surprisingly large effect on the k=0 libron en-

ergies. We shall investigate the dielectric screening of
next nearest neighbors in concentrated J= 1 hydrogen
in the following simple way. We shall calculate the con-
tribution of these pseudo-three-body terms to the effec-

tive field acting on each molecule.
What we are interested in is to determine the contri-

bution to the effective field from Vp of Eq. (3.6) when

molecules 1 and 2 are next nearest neighbors. To do this
we need to express gp in terms of libron creation and
destruction operators" and then extract the term pro-
portional to nr=ai ai, where ai creates a J,=+1 exci-
tation on molecule 1. For this program we need to
express the rotation operators relative to a quantization
axis appropriate to the particular sublattice involved,
i.e., along one of the (111jdirections. It simplifies the
calculation that next nearest neighbors belong to the

"A. J. Berlinsky, A. B. Harris, and C. F. Coll, III, Solid State
Commun. '7, 1491 (1969)."J. C. Raich and R. D. Etters, Phys. Rev. 168, 425 (1968).
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same one of the four inequivalent sublattices. Taking
the

I 111$ direction as the quantization axis we write

Eq. (3.6) as

1/2

8 "(I )= — (3J *'—2)
16~

(3.22a)

I' = —&I' —& a-D-'"(' )D"""'(r )
4p vv', oo'

Xg~'(A) tg2" (J2)', (3.21)

where D ~"(8) is the rotation matrix. '~ It is readily
seen that terms proportional to n& arise only from the
terms in Eq. (3.21) for which 0=0'=0. We note that

investigate how this zero-point motion, affects the EQQ
or similar orientational interactions. ""

We present here a rudimentary treatment based on

the theory of quantum crystals as developed by
Xosanow and others. ' Their theory is designed to
overcome the fact that the usual harmonic approxima-

tion leads to an unstable lattice. The stability of the

lattice in the theory of quantum crystals comes from

a better treatment of short-range correlations. Whereas

in the harmonic approximation the molecules can move

into the region of the hard core, the improved theory
prevents this by inclusion of terms in the wave function

which depend on the relative coordinates. Thus a start-

ing approximation for the crystal wave function is

( g 1/2

(—2+3~,).
~16m.

(3.22b)
P=~ q(Ir, —R;oI) ~ f(r;„), (4.1)

Thus we obtain the dependence of V3 upon n~ as

3'
I'a=~i—I'op Q g„ I'2"(r»)*&e'(r»)*. (3.23)

8p vv'

To obtain the effective field on molecule 1 we should

sum V& over next nearest neighbors r&. By symmetry
v+v' is required to be even and a multiple of three, so
u+v'=0 and all next nearest neighbors give identical
contributions. Thus we find the eRective-field contribu-
tion A~"' to be

where r; is the position of the ith molecule, r,~=r;—rI„
and R, is the equilibrium position of the ith molecule.

Evaluating the ground-state energy by a cluster ex-

pansion, Xosanow Ands that the molecules behave as

if they interacted via an effective potential e,«(r), rather

than the original hard-core interaction v(r). Explicitly

ff(r) is given by

n, gt(Rg —R2)

dr& dr2 p'(Ir& —R&I) p'(Ir& —R2I) f'(r»)v(r&2)

g eff—
d V3 9m.

= —I' v 2 P, , "I I'2"('»)-I '(—1)" (3 24)
4p v

dr& dr, &c"(Ir~—»I) p'(Ir~ —R~I)f'(r») (4 2)

which gives numerically

6 "'= —(33/2) I'op= ——',I', .
~(r) =4 L( /r)" —( /r)'~ (4.3)

But the eRective field splitting due to next nearest

neighbors is about 2j. o,
'7 so that dielectric screening

reduces next-nearest-neighbor interactions by about

15%.
This result is quite reasonable because next nearest

neighbors are the closest neighbors having intervening

molecules strongly screening the EQQ interactions.
Thus we can understand in a naive way screening factors
0.95, 0.85, and 0.75 for distances, r»/Rp, of 1, v2, and

~, respectively.

and the functions p(r) and f(r) are chosen for conven-

ience to be

(4.4a)

(4.4b)
&p(r) = (A/vr)' ' exp( —~dr'),

f(r) =- exp —(&I (./r)" —(./ )'7)

The parameters 3 and E were determined by Xosanow'

to minimize the ground-state energy. The various

parameters appearing in the potential function are listed

in Table IV." " Using the effective potential v,«(r),
Iv. STATIC PHONON RENORMALIZATION OF

ORIENTATIONAL INTERACTIONS "These calculations have been partially described previously

in Refs. 28 and 39.
' A. B. Harris, in Proceedings of the Eleventh International

Conference on Low Temperature Physics, Vol. I, p. 608 (un-

published).
40 F. W. de Wette and B, R, A. Nijboer, Phys. Letters 18, 19

(1965).
4' J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular

Theory of Gases and Liquids (John Wiley R Sons, Inc., New York,
1954), p. 1083.

4' G. Ahlers, J. Chem. Phys. 41, 86 (1964).
4' R. W. Hill and O. Lounasmaa, Phil. Mag. 4, 786 (1959).

As we have indicated, the dominant interaction
which depends on the orientations of the molecules is

due to the EQQ interaction which can be calculated

quite accurately assuming a rigid lattice. However, H2,

and to a lesser extent D2, are quantum crystals display-

ing large zero-point motion of the molecules. We now

"H. M. James and J. C. Raich, Phys. Rev. 162, 649 (1967').

Here n(r) is taken to be the Leonard-Jones potential,
(3.25)
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one can then determine the phonon frequencies from
the dynamical matrix in which t/(r) is replaced by
0 ff(r) —(/s'/m)f '(r)V'f(r). Having obtained a self-
consistent description of phonons one can then evaluate
averages over the zero-point motion. In particular, one
can evaluate averages of 73(r) and Csr(r) over the zero-
point motion. Since the above-mentioned program has
Dot actually been carried out for H& or D&, we shall
content ourselves with a more primitive calculation,
which, however, should indicate the order of magnitude
of the effect involved. That is, we shall average the
orientational interactions over the wave functions of
Eq. (4.1) using values of the parameters A and E for
H2 as determined variationally by Nosanow and for D2
as obtained by a simple scaling procedure. Thus we as-
sume E to be roughly independent of isotopic mass as
is true44 for He' and He4 whereas 3' is proportional to
the isotopic mass.

In so doing, one should not simply average 1/r', for
instance, to treat the EQQ interaction. To see this con-
sider the probability distribution for one molecule rela-
tive to its neighbor. If this distribution is spherically
symmetric, then by Gauss's law there will be no change
in any multipole moment of the molecule. On the other
hand, use of the wave function of Eq. (4.1) implies a
correlated motion, so that the probability distribution
is asymmetric, the two molecules tending to avoid one
another. Thus we are led to expect that the zero-point
motion will tend to reduce the strength of the EQQ
interaction. To see this quantitatively we rewrite the
EQQ interaction between molecules i and j with the
quantization axis along the equilibrium separation
Rs Rj:Rzj Then

20wI'p
HEQQ — (70s ) / (Rp/R '/)

' p C(224; //sm)

9 tnn

X Y m(~, )Y n(~ ) Y m+n(g )s (4 5)

A. Renormalized Potentials

Let us now consider this question in greater detail.
For any interaction r/(rr, rs) we de6ne (v(R)& as

Xs(r, ,rs) f'(r, s)drrdrs, (4.7)

so that we may write Eq. (4.2) as

Let us consider the case when t/(rr, rs) = t/ (rr, rs)= V(rrs) Y„(Qr,), where Qrs ——(Hrs, mrs) and where mrs

and p» specify the orientation of r» with respect to
I4;,'. Then we have

(t/ (R)) (g/s )3 s—A res &
I r1—r12+a—I U(rrs)

X Y "(Qrs)drrdrs (49a)

=(g/2~)s/s drtse —&&/ ~~'&r a~'U(rrs)

where
X Y„(Qrs), (4.9b)

U(r12) = V(rrs) f'(r12) ~ (4.10)

Y "(Qrs) =Q D '"'(&)*Y "'(Qsr'), (4.11)
m'

We now express Y„(Q») in terms of Qs], =(8sr @sr'),
where 02~' and p2~' are the angles of r» with respect to
R and X= (rr, ,Ps,ys), where o.s,Ps, and y, are the Eulerian
angles" specifying the orientation of the R coordinate
system with respect to the R;,' coordinate system. Thus
we write

In the rigid-lattice approximation we have

(4 6)

where D '"&(X) is the rotation matrix. "Only the term
with m'= 0 survives the p' integration in Eq. (4.9b), so
that

00 1

(snm(R) ) =2s'(A/27r) '/' rrs'dr ts dzP „(z)

To allow for the motion of the molecules it is necessary
to average the function R,, 'Y4 +"(R;,)* over the
ground-state wave function of Eq. (4.1)." '"

X U(rrs) Y (p tr )e
—( /s)&'[ms+8 scrim+] (4 12)

where we have used

4 J. H. Hetherington, W. J. Mullin, and L. H. Nosanow, Phys.
Rev. 154, 175 (1967).

4' Since the phonon energies are much larger than the energy
spread of the J=1 levels, one should tak. e account of the zero-
point motion by averaging the orientational Hamiltonian over the
phonon coordinates as is done here rather than average the
calculated quantities over the phooon motion as was done in
Ref. 46. This argument is familiar from NMR theory, see Ref. 47.

4' R. J.Elliott and W. M. Hartmann, Proc. Phys. Soc. (London)
90, 671 (1967).

4' A. Abragam, Pri nci ples of Nuclear 3Iagnek'c Resonance
(Oxford University Press, Oxford, 1961),p. 425.

&/2

D s&"&(X)*= m(p ~)
2)s+1

Thus (t/„(R)& is of the form

(t/„„(R))= r/„(R) Y„~(p„rrs),

(4.13)

(4.14)

from which result we see that renormalization does not
change the angular dependence of the interaction, but
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0 1

()
2 3

0.97 0.92
1.01 0.95
1.08 1.01
1.18 1.10
1.30 1.21
1.47 1.36

(b)

1 2 3
2.26 2.17 2.00
2.66 2.53 2.34
3.21 3.04 2.81
3.91 3.71 3.42

1.035 1.01
1.09 1.06
1.16 1.14
1.27 1.24
1.40 1.37
1.58 1.54

0
—1 230

0 2.74
1 330
2 4.02

0.82 0.74
0.86 0.77
0.93 0.82
1,00 0.88
1.10 0.98

TABLE V. Renormalization coeKcients for H2. ( 1,1(') = 1.003.

I'= $24"I'o, (4.19)

but otherwise does not change the form of the interac-
tion. As a second example let us consider the renormali-
zation of the dipole-dipole interaction between the
nuclear spins of diff erent molecules. Clearly, only
nearest-neighbor interactions will be significantly re-
normalized. YVe write this interaction as

As a special case consider the EQQ interactions. From
what we have said it is clear that (Rp/R;, )'V4 +"(R;;)"
in Eq. (4.5) should be replaced by $24('(9/4pr)' '() ~,p.
Thus we see that averaging over the zero-point motion
effectively renormalizes the EQQ coupling constant I' to
the new value

2n+1
(2) „(R,,')) =()„, v„(R,/o) .

4x
(4.16)

does replace the radial function U(r12) by Vsff(R):

V.«"(R) =~:(R)/(1)= 4V(r») (4 15)

For the static renormalization of the orientational in-
teractions we evaluate this for R= R;,':

IIdd = —ydd Q C(112s mn) gi"(I;)gp(I;)

X Y ™2+"(R~d) *(R()/R;,) ', (4.20)

where the quantization axis is taken along R;,' and
(6)r/5) ' 'gR'p1v'Rp ' in the usual notation. Here

gi"(I) are the irreducible tensor operators: pi+'(I)
= W(Q'2)I~, gio(I) = Is. According to Eq. (4.16) averag-
ing over the zero-point motion of the nuclei leads to the
renormalized interaction

We have evaluated V,(2"(Rp) for various functions
V(r12) and for several choices of n. In Tables V and VI
we give numerical values of the renormalization coeffi-
cients $1„' and $1~( ' for H2 and D2. These coefficients
are defined by

1/2

+dd, off $22'rdd p C(112; m, —m)
4m

XJi"(I,)gi "(I;). (4.21)

Xe—(1/2)ARP2(1 —s)2G (ARp2$)

$, (» =(1)—'(AR '/22r)'" s' 'dsf'(sRp)

where
Xen(1—s)e—(1/2)ARpp(1 —s) G (AR 2s)

G-(v) =
—2Q

~uPn ( 1+u /q) d~

$1„(')=(1)-'(AR '/2~)"' S' 'dSf'(SRo)

(4.17a)

(4.17b)

(4.18a)

Again the result is that the renormalized interaction has
the same form as the original interaction except that
the coupling constant is now $22ydd instead of ydd. Since
the second moment of the NMR spectrum due to inter-
molecular dipolar interactions is dominated by the
nearest-neighbor interactions, one sees using the values
of Table V that our theory predicts a 6% reduction in
the second moment due to phonon renormalizations.
The experimental results of Amstutz ef aL42 show a 10%
reduction in the second moment at high concentration
of J=1 molecules.

B. Derivatives of Renormalized Potentials
P„(a+ /~)d+ (4.18b)

Here ji„")is the value of p„corresponding to the radial
function V(r12) = (Rp/r12) ' and $(~( ) is the value of $„
corresponding to the radial function V(r») = (Rp/r12)'
)(g '(&o—z2)

Using these tables we can immediately determine the
renormalization of various interactions. According to
Eq. (4.16) the potential r 'V„(8», (/p») should be re-
placed by an eRective potential $&„(')Ro (L(2n+1)/
(4pr)$'/2() o and similarly the potential e '(" R')r 'I „
X (012o, &p»o) should be replaced by the potential

$1„(b)Rp '((2n+1)/(42r) j'/2() p.

Before proceeding with the calculations let us Inake
a few general remarks. If renormalization were a linear
operation, then there would be no distinction between
the derivative of the renormalized potential and the
renormalized potential gradient. However, according
to Eq. (4.2) one sees that these quantities are not iden-
tical because of the appearence in the former of deriva-
tives of the denominator in that equation. To the extent
that this difference is important the renormalization
procedure is suspect. In this connection we note that
the EQQ interaction itself is the second derivative of a

' I.. I. Amstutz, H. Meyer, S. M. Myers, and D. C. Rorer,
Phys. Rev. 181, 589 (1969).
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simple 1/r potential. We have renormalized the EQQ
interaction by renormalizing this second derivative in-
stead of renormalizing a 1/r potential and subsequently
differentiating the result twice. "Thus, our renormaliza-
tions are not really well dined. Fortunately, however,
they are of order 10j(), so that these ambiguities are not
too serious.

We now return to the evaluation of the derivatives of
the renormalized potentials. According to Eqs. (4.8) and
(4.15) we have

RVI'V„((R) =RV' U, (("(R)& (R), (4.22)

using spherical components for vectors. We evaluate the
gradient using the convenient formula of Poll and Uan
Kranendonk'p:

elm

3

5
6
7
8

—1
0
1
2

1.02
1.06
1.11
1.19
1.28
1.40

0
2.08
2.37
2.76
3.25

(a)

1 2

1.00 0.97
1.04 1.00
1.09 1.06
1.16 1.12
1.26 1.21
1.38 1,33

(b)

1 2
2.02 1.95
2.32 2.23
2 ~ 71 2.60
3.19 3.06

0.92 0.86 0.79
0.95 0.89 0.82
1.00 0.93 0.85
1.06 0.99 0.91
1.15 1.07 0.99
1.26

3
1.86
2.11
2.45
2.88

TABLE VI. Renormalization coefficients for D2. & 1,1('& = 1.005.

RpV& V,ii"(Rp) U„(Rp)

n+1
C(1, n, n+1; p, m)F' pi"+'(Ro)

2n+3

&( Rp —e V,ff" Rp
dRp i

( n 1/2

C(1, n —1, n; p, —
)o
—m) F' i +'(Ro)

tables. Thus we And

d V. (,i."'( Rp) n+1
Ro =~Ro' « i,.+i"

dRo 2n+1

'S

+(~i i(~) (&
(8)] i i(~)

2n+1

d U.,i b"'(Rp) n+1
Rp =~Ro' « i,~+i(b)

dRp 2n+1

(4.25a)

X Ro +n+1 V.(i"(Ro). (4 23)
dRp

It only remains to evaluate the radial derivatives,
Rp(d/dR p) V,(i"(Rp), which can be done from Eq. (4.12):

d Veff
Rp (R())

dRp

d
~v-(R.)/«) j

dRp

n+1
=ARo' v~+,+(Ro)

2n+1

+)i i „ i(b) f( (&)( i i( )

2n+1
(4.25b)

RpV&V, H, ,"'(R—o)V "(Ro)

n+ lq '"
C(1, n, n+1; p, m)&, ( )

4m

n (2n —1)- '('
+~&(~)

2n+1 4ir

XC(1, —1, ; p, —
p —m) () (4.26 )

corresponding to the choices V(r») = (Ro/rip) ' and
V(rip) = (Rp/r») ' exp[a'(Ro r»)],—respectively. Using
these evaluations in Eq. (4.23) we find

+v„ i+(Ro) —v„+(R())$ i i(')
2n+1

(1) (4 24)
RVo' .VbH"'(R )U "(R )

where v„(R) is defined in analogy with v„(R) except that
U(r») is replaced by V(r»)(r»/Rp) For the pot.entials
we have considered in Eq. (4.17) all the quantities in-
volved in Eq. (4.24) can be related to the renormaliza-
tion coefficients defined in Eq. (4.17) and given in our

4'The latter method would be much more complicated and
hence we do not consider it further.' J. D. Poll and J. Van Kranendonk, Can. J. Phys. 40, 163
(1962).

n+1q '"
C(1, n, n, +1;p, m)yi( )

4~ i
n 2n —1q '('

(+~,(b)

2n+1 4ir j

XC(1, n —1, n; p, p m) 6—+.—.. (4.26b)
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where

yg& &=n&g, "—A&o' (l—1,~1"
2m+1

For comparison we give the unrenormalized values in
parentheses. A similar comparison can be made for the
valence forces for which /= 0 and n = 2. Van Kranendonk
and Sears obtain

n
+«—x, -—" —6. "5—~. "

2m+1
(4.27a)

yg&"'= (5/3)"'36=46.4,
go& &= (-,')"'19.6= 31.0,

(4.32a)

(4.32b)
g+1

go& &=(m+1)&&,."+A&o' Pl—1, +1 '
2s+ 1

(4.27b)
2s+ 1

A+1
yg&b&=mfa & ' A&—o' )~i, +i' '

2M+1

y(b) —(g (b)$
y

y(~) (427c)
2@+1

m+1
y ' '=(m+1)P~ ' '+A&p' t~i, +~i' '

2m+1

+6 i -i'"' —(i '"'5 »" -(427d)
2m+1

Fph=—yg&'&Fp/9. (4.29)

We can compare our results to those obtained by Van
Kranendonk and Sears" using the harmonic approxima-
tion with the experimental value of the Debye theta.
They found for Ho Ppo'b&=3. 0 and goo'&= 1.25, both of
which are somewhat larger than we found. From their
Eqs. (89) and (90) one can also deduce a value of their
renormalized derivatives from which they generated the
linear phonon coupling with the molecular rotations.
In our notation their results for /= 6 and st= 2 (disper-
sion forces) are

To illustrate these results we consider ffrst EQQ inter-
actions. For this purpose we evaluate Eq. (4.26a) with
l=5 and n=4. We hnd

y~& '= 7.67, go&'&=0.70, for H& (4.28a)

y~&'&=7 17, go& &=1.20, for Do (4.28b)

compared to the unrenormalized values y&(~& = 9,
y2('~=0. Since y2& '((yj. ( ) we shall neglect y2(') so that
in the linear phonon coupling due to EQQ interactions
we should replace I'0 by F» where

whereas our values are

yg& &= 25.9(15.3),
b& —12 2(10 3)

(4.33a)

(4.33b)

and the unrenormalized values are in parentheses. They
do not estimate any corrections for the EQQ interac-
tions because an isotropic wave function such as theirs
will have no effect on these interactions. Since theories
invariably involve the square of the linear phonon
coupling, the differences between Eqs. (4.30) and (4.31)
or between (4.32) and (4.33) are quite significant.

C. Discussion

V. DYNAMICAL PHONON RENORMALIZATIONS
OF EQQ INTERACTION

We should say a word or two about the reliability of
our results. Our calculations are physically more reason-
able than those of Van Kranendonk and Sears, "because
the wave functions we use prevent the molecules from
sampling the anomalously large potential available in
the hard-core region. This effect is naturally the smallest
for potentials which do not increase rapidly as one goes
into the forbidden hard-core region. Note that potentials
which vary as large negative powers of the displacement
or those which vary exponentially must be treated care-
fully. With such potentials it is clearly important to get
the exact shape of the wave function near the hard-core
region correctly. This same problem arises in calculat-
ing the exchange integral" in He'. Thus we would
estimate that our results are least reliable when the re-
normalization factors are large, because then the mole-
cules are beginning to sample the hard-core region which
we are not describing quantitatively correctly by Eq.
(4.1). Similarly, as one goes to higher spherical har-
monics the exact details of the shape of the wave func-
tion become progressively more important and again our
calculations become correspondingly less accurate. Of
particular interest would be an ab initio calculation of
the parameters A and E for D2, to see if they really do
scale as we have assumed them to.

y, &'~= (5/3)'~'8. 5= 11.0,
Vo"=(o)"'31=49

whereas our values are

~, (a) 8 03(8 0)

go&'& =2.13(3.0) .

(4.30a)

(4.30b)

(4.31a)

(4.31b)

In the preceding section we indicated that it was
necessary to average the orientational interactions over
the large zero-point motion of the phonon system. This
effect is a static one, merely leading to a renormaliza-

5IL. H. Nosanow, in Proceedings of the Eleventh Interna-
tional Conference on Low Temperature Physics, Vol. I, p. 329
(unpublished).
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tion of the EQQ coupling constant I's. As we have
pointed out previously, one can also expect dynamical
effects. One can understand these physically as follows.
If we picture the phonons as particles, then the mole-
cules are continually being bombarded by phonon par-
ticles. Thus we expect an increased zero-point motion of
the molecular rotations and also a modification of their
excitation spectrum. Alternatively, we can reason in
analogy with a system of particles whose low energy
excitation mode is characterized by an effective mass.
Due to the interaction via second-order perturbation
theory, these excitations carry with them some admix-
ture of high-energy excitation, so that their effective
mass is increased. Similarly, here the true modes con-
sist of a mixture of rotational motion and phonon exci-
tations, leading to an increased effective mass of the
rotational modes. There is also the possibility of local
distortions because of the additional EQQ interaction
between J=1 molecules. We shall neglect this possi-
bility for the cubic phase, as it is forbidden by sym-
metry for x=1 within the approximations we will use.
For the case of isolated pairs of J=1 molecules this
effect is not negligible and, as we shall show, tends to
offset the reduction in F due to other mechanisms. To
study these effects one must insert a phonon coupling
into second-order perturbation theory. Since the expan-
sion parameter involves the ratio of the orientational
energies to the Debye energy, we need consider only a
linear phonon coupling. In oure previous work, 2' we ob-
tained this coupling term by expanding the term 8(R)
in Eq. (2.2) in terms of displacements. This calculation
is completely misleading, as we have said, because we
grossly over-estimated the value of B(R). However, as
we mentioned, the effect is strongly suggested by
various experimental data. Accordingly, we now turn
our attention towards the modulation of the EQQ inter-
action by phonon emission and absorption.

A. Oxientationally Oxdexed Phase

First we shall calculate the effect of phonon interac-
tions for the orientationally ordered fcc phase. The
quantities we shall calculate are (a) ((3(J;*)'—2);),
which measures the degree to which the system is
ordered, and (b) Z(T), the temperature-dependent ex-
citation energy. Here and below the outermost subscript
i indicates that the quantization axis is taken along the
local symmetry direction of the ith sublattice R; which
lies along the various L111jdirections for the different
sublattices. The values of 8; are'7 "

H; = ——P 6'88+@+8
72 &'&i

(5.3)

where 8;—= L3(J',')' —27;. The first term in Eq. (5.3)
is the diagonal part of the EQQ interaction and 6' is
the energy gap at zero temperature":

6p= 191'p. (5.4)

We introduce the second term in Eq. (5.3) in order to
generate the average (8,) by differentiation with respect
to the parameter y which is set equal to zero thereafter.
The approximation of taking only the diagonal part of
III'@ is a reasonable one because the band width of the
rotational excitations is much less than their average
energy. """Hence this Ising-like model" should have
qualitative validity except perhaps near the phase tran-
sition. This simpli6cation allows us to perform calcula-
tions in terms of single-particle states. It is clear that
a reasonable way to take account of the normal modes is
to assume that the libron energies or~„are renormalized
like our D(T) (see below) independent of k. A more de-
tailed calculation is not worth undertaking at present
considering the uncertainties in the phonon coupling
constants. For the phonon system we take the Hamil-
tonian to be

Hs""=Q &'k,&~„
kr

(5.5)

where E~,=a~,~a~„where a~,~ creates a phonon of
wave vector k in the v.th excitation branch. This ap-
proximation has been shown by de VVette et al. ' to be
a good one for quantum crystals providing the Eq, are
suitably chosen. In this connection we note that the
EQQ interaction and its derivatives should be renor-
malized as described in the preceding section.

The interaction term V will be taken to be the linear
coupling between the phonons and molecular rotations
as obtained by expanding Hzqg to &st order in the dis-
placements. ' For this purpose we write EIEQQ as

16~r,
HE@@= (y0~)»sg C,( 1)m+~i~ ~(J,).

45 fnn

where g; is the position of the ith molecule in the unit
cell. Due to the algebraic complexities we will adopt a
crude model using the Hamiltonian

H=H '«+H»+V (5.2)

For the unperturbed Hamiltonian of the rotational sys-
tem, we take

tent=3 "'(1,1,1),
Rs ——3—'~'( —1, 1, 1),
mls

——3—"'(1, 1, —1),
8,=3—'t'(1 1 1)

st= (0,0,0),
vs = 2"'Ro(-,', ts,o),

vs= 2'~sRs( —'„0,-', ),
r =2'I'R (0 —' —')

"J.Felsteiner, Phys. Rev. Letters 15, 1025 (1965).

(5.1a)

(5.1b)

(5.1c)

(S.ld)

Xgs (J,);V4 "(0,,);(Rs/R;, )', (5.6)

where C~„=C(224; mn). We now express gp(J;); in

"H. Ueyama and T. Matsubara, Progr. Theoret. Phys. (Kyoto)
38, 784 (1967).

~4&. Homma, K. Okada, and H. Matsuda, Progr. Theoret.
Phys. (Kyoto) 38, 767 (1967).

s' A. B.Harris, Solid State Commun. 6, 149 (1968).
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terms of operators relative to a quantization axis along so that

8o"(J )'=Z D .("(tt" )*So'(~), (5 7) ~P') =~'(&)+3I:V~+K V;;(8,)
jwi

V = —16irl",h(14or/11) '" g C„.C'(X, m+e)
i&j, mn pX

&&a.-(J.)'e"(J,) D-, ,("(a.,)*(',")'

X Y —n—m—x(P 0) R —1( 1)n+m+) (5 10)

Before carrying out the detailed calculations let us
'describe the general approach. We will carry the calcu-
lations to lowest order in V, i.e., we will use second-
order perturbation theory. Thus we obtain the free en-

ergy Ii as
F—F(o)+F (o) (5.11)

where F(") is the contribution to the free energy from
the eth order perturbation terms. We shall then And

(8,) as
(5.12)(8,)= 7(7 'BF/By. —

To find the temperature-dependent excitation energy
we use a canonical transformation to eliminate V and
obtain an effective Hamiltonian for the rotational sys-
tem in the form

+0
H'= ——g 8,8,+P V,8~+-,' P V;,8,8,

72 i&j i i+j

+-.' P V,,'-8,8,8„(5.13)

where ijk& indicates that all the indices must be dis-

tinct. Then we find D(T) as

a(T) =3( ), (5.14)

where P,,—= (0(;,,P;, ,y;,) is the triad of Euler angles which
take the coordinate system relative to 8; into that rela-
tive to 8j. The linear phonon coupling is generated by
expanding Y4 "(II;,);(Ro/R;, )' to first order in the
displacements as:

Y4 ~ "(0") (Ro/R")'= Y4 "(0, ');
+u'" &Y4 " "(fI')'(Ro/R')', (5 8)

where Q,j' is the orientation of A;j' and the gradient is
with respect to E;;.We evaluate the gradient as

RoI'oV' "Y4 o(n-,,)(R-o/R;, )'
= —91' ),(5/11)"'C'(—X, —p) Y ~ "(II;,'), (5.9)

where C'(X,p) =—C(1,4,5; X,p). We have used the results
of the last section to replace F by the renormalized
coefficient I'~h. According to Eq. (4.25) we have I'os
=y, ')I',/9=0. 851', and Ho and I',h ——0.801"o for Do.
Thus the linear coupling between the phonons and the
molecular rotations takes the form

+-,' V,,o,;g~;(8,81). $. (5.15)

If Eq. (5.13) were an equation involving occupation
numbers, then Eq. (5.15) would indeed follow. "Thisfor-
mula may not be rigorously true for angular momentum
operators, although at low temperatures when a boson
formalism becomes valid it reduces to the familiar equa-
tion in terms of occupation numbers for many body
systems. In reality one should relate the excitation en-
ergy to the energy shift of a resonance in a response
function. However, such a procedure would be much
more complicated than the one used here and would
probably not change the results qualitatively.

Some further approximations will be introduced to
lighten the calculations. Firstly, we remark that the
temperature is very small compared to the Debye tem-
perature: T/O~D(0. 02. Accordingly, we shall neglect
the presence of thermal phonons. Secondly, the energy
gap for rotational excitations is also much smaller than
NOD '.6'(7)/k OD =0.15. Therefore we shall neglect
LP(T) in comparison to F&, in the energy denominators.
Thirdly, we shall neglect correlations between different
molecules in that we assume

V' ""8o"(~')4o"(~ )~ (5.17)

which should appear in Eq. (5.13). These terms mainly
affect the propagation of excitations but do not appreci-
ably affect the average excitation energy A(T), which we
are calculating. These approximations have been made
in the interest of simplicity. After the phonon spectrum
of solid hydrogen has been determined, it would be
worthwhile to undertake a more elaborate calculation
without these approximations.

It is convenient to rewrite Eq. (5.10) in the form

V=K V;"T."(&,),+Z V, -T,-(~,) T,-(J ) (5 18)

where

To-(~')'=—&"(~;);-(8o"(&;),), (5.19)

and the phonon operators are implicit in Vi™and V;j ".
Note that there are no terms linear in the phonon opera-
tors which are nonvanishing when averaged over the
rotational degrees of freedom. Such a linear term in the
displacements is forbidden by the inversion symmetry of

"T.D. Lee and C. X. Yang, Phys. Rev. 11/, 22 (1960).

(8 '(I')4 "K)')=(5/16 )~.o~ o(8)', &i (5 16)

where (8,)=—(8) independent of i. Finally, since we did
not take account of the bandwidth of rotational excita-
tions in Eq. (5.3), there is no point in retaining terms
like
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the four sublattice structure. ' " By the use of Eq.
(5.18) rather than (5.10) we also eliminate cross terms
and unlinked terms in the free energy in a convenient
way.

Substituting Eq. (5.18) into Eq. (5.12) we find (8,) as

where ~~, is the polarization vector of the vth mode,
~= 1, 2, 3. Thus

Rp' (kpRp)'
G'~; '=(—1) &-+t, o

6 Ma) 'E '

mnp

Here we used

1 cvD)
X (h~po)'-' —P —

I

. (5.24)
N & erg)

mnpX j

X(mI [T,~(J,);,O,jT&"(J,);V,, 'Iu). (5.20)

(v g/(og& ——k/ko,

where cvD is the Debye frequency and

(5.25)

(5.26)

Here the superscript 0 on (8,) and p denotes unper-
turbed values, where p„ is the canonical probability of
the state In). Henceforth we set y= 0. Similarly, use of
Eq. (5.18) permits us to write the effective Hamiltonian
H' for the rotational degrees of freedom as

H' =Ho»' p(((V,~) ~T—,~(J,);~(Hop )
—'V, ~To&(J,);))

'CP

—
o 2 (((V""Tp'(J')'Tp"(J ) )'

X(H»)—'V "»T,~(J;),Tp&(J,)g))

—2 ((((V"T '(J~)'&'(Ho") '

where v is the volume per molecule: v = Ro'2 '".Likewise

R,~o R.„o (koRo)
G;,1... &=(—1) 8.+p, p

6 MQ)D Rp

Crudely, iV ' P& (pon/&u&) =2 and also (kpRp)'=20. "
We must compute V as in Eq. (5.18) and substitute

the appropriate terms into Eqs. (5.20) and (5.21). From
Eq. (5.10) we have

'leap

XV..„T,,(J.).T,o(J.).))+H, ~ (5 21) V,-=—8 1,„—g C„.C'(Z, m+u)(e) V,"(p,;)
jnX

where (( )) indicates an average over the phonon vari-
ables in the zero-phonon state, and H.c. stands for the
Hermitian conjugate of the preceding term. Terms in- and also
volving three different molecules will not contribute to
A(T) by virtue of Eqs. (5.19) and (5.16).

It is apparent that we need averages over the zero-
phonon states of the types

X(u . .X),R —ly —n—m—
X(fl . .) ( 1)n+m+i (5 28)

X(—1)"+&+i(u"").V " & ~(Q") R ' (5 29)
G,;, t'= ((u '(Ho») 'u;, s)) (5.22a)

Substituting these expressions into Eq. (5.20) we find
G" . &= ((u" (H &") 'u it' )) (5.22b)

(5.30)
where i j and ik are nearest-neighboring pairs. To esti-
mate these correlation functions we assume an isotropic
Debye spectrum with identical longitudinal and trans-
verse sound speeds. In so doing we treat the solid as if it
were a Bravais lattice, ignoring the fact that there are
really four molecules per unit cell. Also we use the long-
wavelength approximation which probably compen-
sates somewhat for the incorrectness of the Debye spec-
trum. Thus we set

op= t P ~;~.R;p(lr. R,,o)o~ p

kr

X (ag, t+a R,), (5.23)
23I(uk

"A small uniform strain is quite likely. See Ref. 58.
5 W. X. Hardy, I. F. Silvera, and J. P. McTague, Phys. Rev.

Letters 22, 297 (1969).

where fi and. $p pertain to the second and third terms on
the right-hand side of Eq. (5.20). We find

1
4= [(O')'j'(k&p)'(1'»/&~D) (l'»/~~D'Ro')

216
X(~o/~~)g I G, iI ', (5.31)

where

70 1/2

G»=367r — P V,-(P,,)C„.C'(p, „+u)( 1)-—
11 nj

XYp ' " "(R,,');R;;o"+&, (5.32)

"These approximate evaluations, Eq. (5.24) and (5.27), prob-
ably constitute the most serious shortcoming of our theory. It
would not be dificult to incorporate the results of a quantum
crystal calculation of these correlation functions into the frame-
work of our theory. Judging by our results, we may have under-
estimated the size of these correlation functions by up to 50'P&.
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TABLE VII. Values of G,.'

1 0 —1

1 0 0 120 p —15%3 20(/6) p
0 0 80 (v3)y —45 80 (V3)p* 0

20(/6)& —15&3 120 p* 0 0

a p, = f —5(3)i/24.

are written as in Eq. (5.13). Explicitly we have

b ——4 (0,)'(koRO) '(Fph/M (uD'RP')
1539

&&+ {-,'Q(14)C(222; m0)(8, )'
—5-oL(8')'j'} Z IG -I', (539 )

50where R,;Op is the pth spherical component of Rg'. The
valuesof G» are given in Table VII. Also 19

$2 = 75(&oRo) (Fph/&~a)(Fph/~~D Ro )(~D/~k)

)&Q {1——', 8.0I (8;)')'+—', C(222; 08)(8;)'}Woi, (5.33)

where

)&Q W„,{-',Q(14)C(222; ii0) —8„0(8,)'}

X{1+P)"'C(222)) 0)(8.)'
—l5 oL(8')'l'}, (5.39b)

with

w.,=g Ia,,"I', ~:= —(e,) (F„„/cV 2R,2) g,R,)
3078

XQ {1+(-')'"C(222 iiO)(8,)'
(4

a, &,
p —— P C,.C'(X, p+n)

11

(2)Q, , )4p n+p+x(II, 0) p (5 35)

Q W, p
——42,

which follows from the orthonormality properties of the
rotational matrices, the Clebsch-Gordan coefficients,
and the spherical harmonics. ' At zero temperature,
when (8,)'= —2, we find

(8;)/(e;) =0.98 for H, ,

(8;)/(8;)'= 0.98 for D, .

(5.37a)

(5.37b)

We shall compare these values to experimental data in
a later section.

Let us now turn to the evaluation of $(T). We have
evaluated Eq. (5.21) and write the result for D(T) using
Eq. (5.14) as

~(T)= ~'(T) —~'(0) 2+«+r j, (5.38)

where b, «, and f~ are the respective contributions to
Z(T) when the three perturbative terms in Eq. (5.21)

We have evaluated 8"„and the results are given in
Table VIII. These evaluations were checked via the sum
rule

(5.36)

—l5. I:«~)'7'}2 IG.I' (5.39c)

Each of these terms has a physical significance which is
most easily described in terms of scattering diagrams.
The first term in Eq. (5.21) clearly represents a single
phonon being created or absorbed while a libron is
created or absorbed as shown in Fig. 2(a). This term
then describes linear phonon-libron coupling. The
second term in Eq. (5.21) describes a higher-order
process in which besides phonon absorption or creation
there is libron scattering. Finally, the last term in Eq.
(5.21) describes a higher-order scattering which leads to
a renormalized libron potential quadratic in libron
amplitudes. We have evaluated these expressions nu-
rnerically for T= 0 taking (8;)'= —2 and find

19I"—=D(T= 0)= 19I'0(1—0.06) for H2, (5.40a)

Z(T=O) =19Fo(1—0.05) for D, (5.4()b)

so that due to dynamical phonon renormalization the
energy gap is reduced further by 6% for H& and 5% for
D~. We thus conclude that the orientational properties
of fcc hydrogen should be calculated using a coupling
constant I",«, renormalized both by static and dynami-
cal phonon interactions and by dielectric screening:

F,ii=0.96(54F'=0.84FO for H, , (5.41a)

F if= 0.95)54F = 0.84I'o for D2 (5.41b)

2
1
0—1—2

1.920
3.120
2.256
0.918
0.244

3.120
1.386
1.398
1.344
0.918

2.256
1.398
1.446
1.398
2.256

0.918
1.344
1.398
1.386
3.120

TABLE VIII. Values of 8'„.

0.244
0.918
2.256
3.120
1.920

where the factors 0.96 and 0.95 result from dielectric
screening as is discussed in Sec. III. Note that neither
the static nor the dynamic effect is significantly different
for D~ than for H~. This surprising result occurs because
here the expansion parameter is F,h/Mcon'Ro' which is
roughly the same for both solids. We shall discuss the
experimental verification of these results in a later
section.
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B. Isolated Pairs of J= I Molecules {a)

Taking the quantization axis along R»', the equilibrium
value of R», we write this as

F h5Ho 5I' hV2

IJEQQ = — 4450 I 44iio Q+H. C.]
Fp Rp 4Rp

(5 43)

using spherical components for the vector Iqp and where

Ho is the rigid lattice EQQ Harniltonian. Here the
operator Q is

Q=(Ji Ji'+Ji*Ji )(Jo+)'+(Jo Jo*+Jo'Jo )(Ji+)'
—2(3(Ji')' —2)(Jo+Jo*+Jo'Jo+)

—2(3(Jo')' —2)(Ji+Ji'+ Ji'Ji+). (5.44)

In terms of the pair eigenstates of Table III the only
nonvanishing matrix elements of Q are

&2IQI8)= —4,

&1IQI»= -4~6,
&9IQI»=4,

&8IQI»=«6

(5.45a)

(5.45b)

(5.45c)

(5.45d)

The quartet state of EE@@with zero energy spanned
by I4), I5), I6), and I7) thus suffers no perturbation
from the linear phonon coupling. The ground doublet at
energy —41' spanned by I8) and I9) is depressed to a
new energy Ep' given by

E,'= —4l, —7501'„'G,;.io'R (5.46 )

with

= —4r, (1+~4), (5.46b)

$4=375(koRo)'I'p), '/12Mooz)'Ro'I'o (5.47a)

=0.05 for H2

=0.04 for D2.

(5.47b)

(5.47c)

Thus for isolated J= 1 pairs the dynamical effect tends
to increase Fp. Combining these estimates with those of
Eq. (4.19) for the static effect we find

I',iion'"/I'o ——0.96/54(1+ $4) =- 0.94 for Ho (5.48a)

=0.95&54(1+&o) =0.92 f«Do, (5.48b)

Let us now investigate the effects of phonon coupling
on the energy levels of a nearest-neighboring pair of
J= 1 molecules in otherwise pure J=0 hydrogen. Here
the calculations are much simpler algebraically because
of the symmetry of the interactions with respect to the
intermolecular axis Rio. If the EQQ Hamiltonian is ex-
panded to first order in the displacements, one finds the
linear phonon coupling HER@'"

14m
EXE444i") = —162rro), P C„C'(P, m+)'4)

mnp

y 5l m(J.)yon(J )24
pI2' m+n+p(R. .o)4'(R. .O)

—i (5 42)

FIG. 2. Diagrams describing second-order corrections to libron
energies. Here wiggly lines indicate librons and smooth lines
phonons. Each vertex represents an interaction. Diagram (a)
represents linear phonon-libron mixing. Diagram (b) represents
anharmonicity cubic in phonon-libron amplitudes. Diagram (c)
shows a contribution to the static libron potential due to phonon-
libron interactions.

where again we have included the screening factors of
Sec. III. We can also calculate the quantity &3J,'—2),
which in the ground state has the value ——,'. This com-
putation is performed by including in the unperturbed
Hamiltonian a term Q; pO, and using

2&8;)= BI'o/ap. (5.49)

The calculation follows along similar lines to the above
ones and we quote only the final result:

with
(8;)= --:(1+~), (5.50)

$2 ——150G... oooi'oh'Ro '

=25(544)'~I
~( i(—), (5.51)

&m~D'Rooi Pi~Di

which gives )7=10 ' which is negligible.

C. Summary

The differing conclusions for the case of the isolated
pair and for the ordered system can be partly under-
stood in a simple way. Basically there are two distinct
effects on the orientational interactions due to their
interactions with the phonons. The first of these can be
visualized as follows. Phonon particles continually bom-
bard the molecules thus inevitably creating some dis-
order in the orientation of the molecules. This disorder
can be described by a reduction in the rigid-lattice
orientational interactions. This mechanism is operative
for both the pair system and the ordered phase and has
the effect of reducing the coupling constant and the
order parameter, &3J,'—2). The second mechanism de-

pends on the extra attraction or repulsion which two
J= 1 molecules have for one another depending on their
relative orientations. This effect arises from the term
linear in the displacements which is diagonal in the
rotational operators. This term clearly vanishes for the
ordered fcc phase because of the inversion symmetry of
that structure. For the isolated pair system this term
becomes important. The effect of this term is to increase
the orientational interaction because the J= 1 molecules
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are attracted to one another' and the resulting value of
E tends to increase F. The resulting stronger interaction
also leads to an increase in the order parameter
(3J,' —2). Finally, the fact that for the pairs there is
a much smaller effect on the order parameter and that
the dynamical reduction is less important is readily
traced to the fact that these quantities are second order
in the phonon coupling divided by the Debye energy.
For the ordered state the phonon coupling is larger by
a factor of s than for the case of pairs, where 2'= 12, s
being the number of nearest neighbors. These arguments
also imply that at high temperatures, when the orien-
tational energy is essentially thermally averaged to zero,
the dynamical effects become unimportant. In that case
we estimate I',«, denoted I'.«(kT&)F2), to reflect only
static phonon and dielectric screening effects. The re-
sults of our calculations for I',qf are summarized in
Table IV and are compared with corresponding ex-
perimental values in Table IX, below. A discussion of
this comparison is given in Sec. VII.

We should emphasize that more refined treatments
can be generated using our work. In particular, one can
incorporate a better treatment of the phonon spectrum
when it becomes available by replacing Eq. (5.24) and
(5.17) by the results of detailed calculations. At the
same time one should also take account of the rotational
energies along with the phonon energies in the energy
denominators.

VI. INDIRECT INTERACTION BETWEEN J= I
MOLECULES AT LARGE SEPARATIONS

There is another way in which phonons can affect the
interactions between molecules. They can give rise to
an indirect interaction which is quite analogous to the
Suhl-Nakamura interaction4 ' between widely separated
nuclear spins in an ordered magnetic material. The
mechanism is thus the following: As molecule A rotates,
its interaction with the phonon system produces dis-
turbances in the lattice. These excitations can propagate
and can be absorbed by molecule 8 which may be very
far from molecule A. Absorption of a phonon causes
molecule 8 to rotate thereby interacting indirectly with
molecule A. Clearly, this type of interaction will domi-
nate at sufficiently large separations because it falls off
as a lower power (viz. r ') of separation than do the
EQQ interactions. Hence the calculation we are about
to perform will have some relevance for studies of hy-
drogen at very low J=1 concentrations.

As we shall see, the rotational and phonon degrees of
freedom are coupled together via a term of the form

VINT p 8kj(JR)(Ckj +/2 kj)e . (6.1)
kjR

Here akj~ creates a phonon of wave vector k and polari-
zation along the unit vector ~j, j is summed over the
three polarization indices, R is summed over the posi-

"L.I. Amstutz, J. R. Thompson, and H. Meyer, Phys. Rev.
Letters 21, 1175 (1968).

Here rR is the instantaneous position of the molecule
at R:

r„—=R+u„, (6.4)

and coR~ is the angle between the molecular axis at R and
rR —rR+q. The sum over R is carried over all J=1
molecules and 6 is summed over all nearest-neighbor
vectors. We write

Sx
V2 (~R2) P V2 (~RC) V2 (11R2)

5 m
(6.5)

Here coRg is the angle between the molecular axis at R
and the crystal axis and 0» is the angle between
rR —rR+& and the crystal axis. Thus the linear phonon
coupling is

16m.

8V =Q g2 (JR)(uR+2 uR)
25 Rsm

& I:&(~)V ™(~)7(—1) (6 6)

where the quantization axis is taken to coincide with
the crystal c axis. As we have mentioned in Sec. IV, we
should interpret B(r) as an effective renormalized
potential.

To obtain an approximate calculation of VgN it
suKces to assume an isotropic Debye spectrum. We
shall allow for different transverse and longitudinal
sound speeds, however. Thus we write

a 2j a +—1/2 p eik R(eik 2 1)
kj

X(h/2M~kj)"'(/2kj +ii kj) Ej
&

(6—.7),

where we use spherical components of vectors. Then we
find

VINT (—1)-'""8"(J )
25 2M%

X fiP// Peik R~ .—I/2(/2kj—t+g—k ') g "4

Xv; I ~(~)v;-($)7. (6.8)

tions of all J=1 molecules, and 8k;(JR) is an operator
in the J=1 manifold of the molecule at R and is de-
pendent on k and j. Prom second-order perturbation
theory or better, using a canonical transformation, one
shows that V»T can be replaced by an effective inter-
action VSN between J= 1 molecules:

VsN Q 8kj(JR)8 kj(JR )e'k'&R "'(hcokj) '. (6.2)
k~aRr

Thus, a calculation of 8k, (JR) will enable us to estimate
the indirect interaction between distant J= 1 molecules.

To obtain an interaction between molecules of the
type of Eq. (6.1), we must use the second term of Eq.
(2.2):

V=+ B(IrR —rR+2I)F2'(~R)) . (6.3)
R, 5 5
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According to Eq. (6.2) this potential leads to the follow-

ing effective interaction'.
is the asymptotic expansion for large separation. Also
we define

16m.

VsN (16s/250mJV)
5

a..=E ~-"~- LB(|)Y.™(~)]. (6.12c)

( 1)m+m'+p+p'+p+p'g m(J )
mSRkp p, m'o'R'p'p'j

Xy m'(J', )C~k R—R'/pe p'g —pg —p'~ .—2S.pg.p'

X~ "LB(~)Y ™(~))~"'I:8(~')Y '(~')) (6.9)

To obtain VgN at large separation, i.e., in the wave
zone, we need only treat the summand correctly for
small k. Hence we set cok; ——c,k. Furthermore we shall
assume that there exist only purely transverse and
longitudinal phonons with sound speeds, c& and c&&, re-
spectively. "Then we write

where P(5) —=8(6)5 '. If we make the slight approxima-
tion that

2 Y (~)Y-(~)=(—1) 3/~, (6.14)

Explicitly we find

g p =f'5'C(112; m+ p, p) (8—s/15) '"

XQ Y~ (&) Y2™(6)+$8'C(112;m+p, —p)

X(15/2s.)'"Q 5"+p8 " "( 1)p, —(6.13)

VSN VSN + VSN (6.10) then we obtain
where

16m
VsN'" = — (16m./250M1Vc ')

5

( 1)m+m'+p+p'+pCik R—R'g m(J )
mm'RR', k p p' p

X/2"'(JR)k'k" Q & 'V's PLB(&) Y2 "(8))

Xz ~' "7~ "I 8(~') Y2 '(~')], (61»)

a-p=(4/ )(—1)"( /2~)"'C(; ~+~, —~)
X

I 38(8)+88'(8)) . (6.15)

Carrying out the algebra in a straightforward way we
find the result,

VSN =-', (4~)'i' p p ~JC(22J) mm')g2 (JR)
RR' J'mm'

E.o
X/2 (JR ) Yz + (&RR )* —,(6.16)

R—R' '

16m
VsN&'& = — (16s/250M%)(c, i

' —ci ')
5

where 0» is the angle between R—R' and the crystal
c axis and

mm'RR'k, p p'p p,
' ( 1)m+m'+p+p'+p+p'&ik R R'— —48

L38(~)+»'(~)]'
4375

X/2"(JR) pg2 (JR')k k k k"'

XQ ~- ~~-
I 8(~)Y.™(~)]

V 14 'i'-5 2—
XI, — —+, (6.17a)

(3IIPRO'vr 5 ci' c„'

XQ &' ' V's p
I 8(&')Y2 ™(&')] (6 11b)

Using the symmetry of the hcp lattice one sees that the
sums over 5 and 8' vanish in Eq. (6.11a) unless p+m+p
= p'+nz'+@=0 and in Eq. (6.11b) unless p+m+p
=p'+nz'+p'=0. We have simplified these expressions
using the following relations:

—24
I.38(~)+»'(~)]'

875

CXO=Q] =Q3 =0 ~

6.17b

(6.17c)

k pk p' =-',6~, , 0(—1)p

+(gs/15)"'C(112; pp') Y2p+p'(k), (6.12a)

g—1 Q Y M($)ci7i R

= (3V/4S PRO')yg Yg~(R) (R/Ro) ', (6.12b)

where A, p is a Kronecker 8 and the constants yg are
yo ——0, yi ———1, and y2=5/4. The relation Eq. (6.12b)

"In Ref. 10 this was shown to be an excellent approximation.

The form of the result, Eq. (6.16), is as expected, since
with the approximation of Eq. (6.14) one has the same

g „as for spherical symmetry. Then VsN must be
formed from expressions which are both rotationally
invariant and symmetric with respect to interchange of
R and R' .Consequently, Eqs. (6.16) and (6.17c) follow.
If furthermore cll =c~, then we have

ng=0, J42 (6.1ga)

n2 ———0.56L38(b)+88'(8))'/McoD'Rp' (6.18b)
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I'en/I'0

0.82

0.82

0.79

Method

Dilute J=1 H2

NMR, J=1 pairs
Bp

for x&0.07
8T y

Neutron scattering

References

64

65, 66

63, 46

TABLE IX. Experimental values of F,ff. As we have mentioned, we substitute into this expres-
sion not the potential of Eq. (6.7), but rather the re-
norrnalized potential. Thus, using the results of Sec. IV,
we replace the square bracket in Eq. (6.21) by the factor

pip(02'"'+~R0'('5& 1,6 + st—l, l + t—l, l $02 )]
P2L3$62 ++Rp (5/5, 2 +5)5,1 +$—1, 1 $6, 2 ))

(6.22a)

0.82
0.75
0.69

0.88

0.81

0.79

0.83

Concentrated J=1 H2

EQQ pressure
Neutron scattering
Raman spectrum

Dilute J=i D2
tlap

for x&0.07
APT

Concentrated J= 1 D2
Raman spectrum

leap

for x&0.83
BT y

Specific heat for T &7'K

65, 67
63, 46
58, 35

68, 66

58, 35

68, 69, 36, 53

70, 71

= P,ps'" i —Psys i'i, (6.22b)

where these coefficients are evaluated in Eq. (4.27b)
and (4.27d). In this way we find the renormalized value

38(8)+R08 (Rp) = 12.2pl —2.13p2. (6.23)

From the data of Hardy and Gaines' we see that the
x'~' behavior in T2 persists down to a concentration
x=0.003. The condition that the EQQ energy be larger
than the indirect interaction energy at this concentra-
tion becomes

DEsN/x~ 0.03 cm-', (6.24)

in comparison to which Eq. (6.23) with our values of
Pl and P2 gives

AEsN/x=0. 022 cm '. (6.25)
We shall now consider the importance of our result

with respect to the interpretation of experimental data.
Clearly such interactions can only become important at
very low concentration x of J=1 molecules. In this
regime the NMR relaxation time T. is a sensitive mea-
sure of interactions between distant molecules. As
Sung has shown, one can attribute the x'~' variation
of T2' 1 to the EQQ interactions between distant mole-
cules. This analysis will be valid as long as the root mean
square EQQ energy is larger than other energies. In
particular this behavior implies that in the concentra-
tion range covered the root mean square EQQ energy
(Ezno) is larger than the root mean square energy
(EsN) from the indirect interactions. From Table IIwe
find the former to be

(70 1/2

I'o(Ro/R) 5

E9

=2r~5~3
7

(6.19a)

(6.19b)

where we took account of dielectric screening and also
we assumed the separation between molecules to be of
order R=Eox '~', where x is the concentration of J= 1
molecules. From Eq. (6.16) we find (EsN) as

(RsN)'=g T«sN' (6.20a)

P ng'(2J'+1) (Ro/R) 6. (6.20b)
lg

For an order-of-magnitude estimate of this quantity we
use Eq. (6.18) from which we find

(EsN) =2.4X[M(R0)+R08'(Rp))'/actor)'Ro'. (6.21)

In contrs, st the anomalously large values of Pl and P2,
i.e., Pl=5.0 cm ' and Ps=3.7 cm ', used by Van
Kranendonk and Sears" give"

DEsN/x= 0.09 cm '. (6.26)

Clearly the T2 data rules out such large values of the
potential coefficient B(R). For this reason measurements
at even lower concentration would be of interest.

VII. DISCUSSION

In this section we shall discuss the experimental
values of F,~g in order to see whether our theoretical pre-
dictions are in accord with experiment. The most direct
determinations include these by Raman scattering, "
neutron scattering, ' nuclear magnetic resonance' and
thermodynamic measurements such as the pressure due
to EQQ interactions""" " and the corresponding
specific heat. ' "Several other methods of determining

' Using the values of p1 and p2 from Ref. 11 and also using their
renormalization procedure yields the value 2 ESN/x =0.75 cm '.

63 W. Schott, H. Reitschel, and W. Glaser, Phys. Letters 2/A
566 (1968); and (private communication).

'4A. B. Harris, L. L Amstutz, H. Meyer, and S. M. Myers,
Phys. Rev. 175, 603 (1968)."J.F. Jarvis, H. Meyer, and D. Ramm, Phys. Rev. 178, 1461
(1969).

"A.B. Harris (to be published)."H. Miyagi and T. Nakamura, Progr. Theoret. Phys. {Kyoto)
37, 641 (1967).' D. Ramm, H. Meyer, and R. L. Mills (to be published).

'~ D. Ramm, H. Meyer, J. F. Jarvis, and R. L. Mills, Solid
State Commun. 6, 497 (1968).There the value of F was obtained
using the results of Ref. 54. We cite the value from Ref. 68, which
was obtained using the theories of Refs. 36 and 53.

'o t . Grenier and D. White, J. Chem. Phys. 40, 3015 (1964).
"A. J. Berlinsky and A. B. Harris, Bull. Am. Phys. Soc, 14,

334 (1969);Phys. Rev. (to be published).
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I are possible. However, they seem to be less reliable at
present due to uncertainties in either or both the experi-
ment or the theory. Among these are determinations of
F ff based on the high-temperature specific heat of H„"
the NMR spin-lattice relaxation time at high J=1 con-
centration in the disordered hcp phase, " "the depend-
ence of the saturated vapor pressure on J=1 concentra-
tion, " ' ' the NMR relaxation time at very low J= 1
concentrations, '» ' and the infrared and Raman spectra
of nearly pure J=0H, . ' ' Within the current resolution
of the above techniques and the state of the theoretical
models, these experiments can be understood using
values of I',«comparable to those in Table IX.We shall
discuss here only those determinations cited in Table
IX.

A. Dilute J=l H2

For dilute J=1 systems one can determine F,«by
essentially observing isolated pairs of J=1 molecules.
Corrections for interactions between distant molecules
are negligible for x&0.07, say. For the value obtained
from neutron scattering we modified the analysis of
Elliott and Hartmann ' in that we did not use the aver-
age of R'j ' for reasons explained above. "The value
obtained using the data of Schott et al." corroborates
our renormalization as contrasted to that of Ref. 46
which predicts F «/Fp

theoretical values of F,«which are too large in both
cases suggests that our static renormalizations under-
estiniate thereductionin F,«due to averaging the EQQ
interaction over the phonon ground state.

Note added in proof: Recently C. F. Coll, III, and the
author have studied the effect of anharmonic libron-
libron interactions in a rigid lattice and find surprisingly
large, viz. 15% shifts in the libron energies there-
from. This result will modify the interpretation of data
in the ordered phase.

C. D2

Most of the above comments apply to the D~ data as
well. For D2 one has the more extensive specific-heat
data of Grenier and White, ~' whose data gives quite an
anornalously small value of F,«(F,«=0.50 cm ') when
fit to a 1/T' law. In order to resolve this difficulty"
it is necessary to keep several higher-order terms, even
at temperatures above 10'K. The fit obtained using
Pade approximants is reasonable, but this determination
is only reliable to within 10'%%uo due to the slow conver-
gence of the high-temperature expansion. For D2 we
see that the concentration dependence of I',« is more
obvious than for H:2. For D2 we would claim that the
present data substantiates our phonon renormalization
mechanism, although as for H~, our static renormaliza-
ion is probably not so reliable.

B. Concentrated J= 1 H2

Here it is vital to analyze the Raman spectrum"
taking account of next nearest neighbors. "This effect
leads to a reduction in F,«of between 15 and 20%. We
note that the value obtained from the EQQ pressure"
which is directly related to the EQQ energy" may be
uncertain due to the assumption that the lattice pressure
is independent of J=1 concentration. Accordingly, we
believe the other two values of F,„to be more reliable.
In particlular note that F,« for the concentrated /= 1
system is 5% less than that for the dilute J=1system.
The accuracy of these determinations of I',« is such that
this difference is not conclusive. However, the trend is
certainly in the direction predicted by our calculations
which give I',«10'Po smaller in the concentrated than
in the dilute J=-1 systems. The fact that we obtain

' R. W. Hill and B.W. A. Ricketson, Phil. Mag. 45, 277 (1954).
7' M. Bloom, Physica 23, 767 (1957).
74 W. P. A. Hass, N. J. Poulis, and J. J. W. Borleffs, Physica

2'7, 1037 (1961).
"A.B. Harris and E. Hunt, Phys. Rev. Letters 16, 845 (1966);

16, 1223(E) (1966)."L. I. Amstutz, H. Meyer, S. M. Myers, and R. L. Mills,
J. Phys. Chem. Solids 30, 2693 (1969).

T. Moriya and K. Motizuki, Progr. Theoret. Phys. (Kyoto)
18, 183 (1957).

8 A. B. Harris (to be published).
H. W. Woolley, R. B. Scott, and I. G. Brickwedde, J. Res.

Nat. Bur. Std. 41, 379 (1948)."W. Meckstroth, Thesis, Ohio State University, 1968
(unpublished).

D. Order Parameter

Lastly, we can compare our calculations with the
value of the order parameter (3 cos'8 —1)~ as deduced
from NMR experiments. This determination is based on
observation of the frequency splitting of the Pake dou-
blet in powdered samples of H2 or D2. This splitting is
given by a slight generalization of the formula used by
Reif and Purcell" as

Av=(15/4)d(3 cos'0 —1)r, (7.1)

81 F. Reif and E. M. Purcell, Phys. Rev. 91, 631 (1953).

where()r indicates a thermodynamic average over the
rotational motion, and d is a constant describing the
intramolecular interactions of the nuclear spins. The
values of d have been determined by Ramsey and co-
workers for free molecules" and are given in Table I.
From the analysis of Van Kranendonk and Karl" it
is clear that the internuclear separation of the hydrogen
molecules is very little different for the free molecules as
compared to those in the solid. Hence the value of d in
the solid differs from that in the gas by at most a few
tenths of a percent. Thus a measurement of Av gives
directly a value of the order parameter.

Using the equivalent Ising model we have shown else-
where'" that the order parameter in the ordered state is
slightly affected by perturbations off diagonal in J.Thus
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we found

(3 cos28 —1) = —[1+(171)(1.1)I'/708$ (7.2a)

=—',[1+0.032xj f' or H2 (7.2b)

= 5 [I+0.076x) for Dg. (7.2c)

One can also take account of the zero-point rotational
motion caused by the fact that the ordered state is not
an exact eigenstate of the EQQ Hamiltonian. We use
the calculations of Raich and Etters" for the zero-point
reduction in the order parameter which we scale with

1/x in analogy with the Heisenberg antiferromagnet
where this quantity is known to be inversely propor-
tional to the number of nearest neighbors. "Thus we

obtain

hv = 173.0(1+0.032x—0.02/x) kHz for H~, (7.3a)

Av= '75.72(1+0.076x—0.02/x) kHz for D2. (7.3b)

In normal (x=0.75) H2 after the correction for fre-

quency pulling due to intermolecular dipolar interac-
tions has been made one finds the experimental" "and
theoretical values of hv to be

Av.„v&
——164.1 kHz, Avg, = 172.5 kHz, (7.4a)

whereas for D~ with x= 0.81 the results are8'

Av, vt= 76.8 kHz, 6v,h
——79.0 kHz. (7.4b)

We attribute such a difference to the additional zero-
point motion in the rotational system induced by dy-
namical interactions with the phonon system as calcu-
lated in Eq. (5.37).For the case of isolated pairs of J= 1

molecules all these corrections are negligible and one
should expect to observe a frequency splitting Av= —', d
=43.3 kHz. The actually observed value" is some 5%%uo

less than this for reasons which we do not understand at
present.

E. Summary

We can summarize our work as follows. We have cal-
culated the effects of phonon-libron interactions and

"A. B. Harris, Phys. Rev. Letters 21, 602 (1968)."J.R. Gaines, E. M. deCastro, and D. White, Phys. Rev.
Letters 13, 510 (1964).

dielectric screening on the EQQ interactions. These
effects lead to a renormalization. , so that the EQQ inter-
action constant Fp is replaced by j.',«. Our calculations
show that I',«/I'0=0. 84 for ordered J= 1 systems and
P «/Po 0.93 for dilute J= 1 systems, and F,«/1'o =0.88
when kT))Fp, the results being about the same for both
H2 and D 2. The concentration dependence of I,ff/r,
is due to the concentration dependence of the dynamical
phonon renormalization. At low concentration this re-
Rects the presence of strains around clusters of J=1
molecules which tends to increase I',fg. At high concen-
tration one has a reduction in I.',«because strains are
forbidden by symmetry for x= 1 and then interactions
mixing phonons and librons become important. These
mechanisms seem to be verified by the experimentally
observed concentration dependence of I',gg. From the
concentration-independent discrepancy between theo-
retical and experimental values of I',«/I'o we infer that
a more sophisticated treatment of the static phonon
renormalization is needed, from which presumably
larger reductions in I',fg would be found. This supposi-
tion is supported by the fact that also the observed re-
normalization of the nuclear spin-spin interactions is
more severe than we predict. Further evidence that our
renormalized potentials are qualitatively correct comes
from NMR T2 data. There use of unrenormalized poten-
tials leads to a very much larger interaction between
molecules than is indicated by the rotational correlation
times implied by T2 at very low J= 1 concentration in
H2. As is apparent, we have a reasonable understanding
of the orientational interactions and their interactions
with phonons. It will be interesting to see whether more
sophisticated phonon calculations lead to a better agree-
ment between experimental and theoretical values of
~ «.
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