
A Framework and Architecture for Multirobot
Coordination1

R. Alur, A. Das, J. Esposito, R. Fierro, G. Grudic, Y. Hur, V. Kumar, I. Lee,
J. Ostrowski, G. Pappas, B. Southall, J. Spletzer, and C. J. Taylor

GRASP Laboratory and SDRL Laboratory. University of Pennsylvania
Philadelphia, USA

{ mars, hybrid} @grasp.cis.upenn.edu

Abstract: In this paper, we present a framework and the software architecture for
the deployment of multiple autonomous robots in an unstructured and unknown
environment with applications ranging from scouting and reconnaissance, to
search and rescue and manipulation tasks. Our software framework provides the
methodology and the tools that enable robots to exhibit deliberative and reactive
behaviors in autonomous operation, to be reprogrammed by a human operator at
run-time, and to learn and adapt to unstructured, dynamic environments and new
tasks, while providing performance guarantees. We demonstrate the algorithms
and software on an experimental testbed that involves a team of car-like robots
using a single omnidirectional camera as a sensor without explicit use of
odometry.

1. Introduction

It has long been recognized that there are several tasks that can be performed more
efficiently and robustly using multiple robots [1]-[4]. In fact, there is extensive
literature on robot control and the coordination of multiple robots. Our goal, in this
paper, is to describe a set of software tools that allows the development of
controllers and estimators for multirobot coordination. The tools consist of a
framework for developing software components, architecture for control and
estimation modules, and a set of decentralized control, planning and sensing
algorithms.
Our software framework divides the overall multi-robot control task into a set of
modes or behaviors, which may be executed either sequentially or in parallel. Modes
can consist of high-level behaviors such as planning a path to a goal position, as well
as low-level tasks such as obstacle avoidance. We use a high-level language to
formally describe how and when transitions between these modes are to take place
in order to achieve a set of global objectives. Finally, because it is difficult to predict
exactly under what conditions switching between modes should occur, we
parameterize mode boundary transitions within each robot’s information space and
use reinforcement reward to obtain locally optimal mode boundary locations. Thus
the multirobot system can learn to continually improve overall performance through
interaction with the environment, without human intervention.

 1 This research was supported in part by DARPA ITO MARS 130-1303-4-534328-xxxx-2000-0000.

2. Motivation

There is extensive literature on the control of robot manipulators or mobile robots in
structured environments, and robot control is a well understood problem area.
However, traditional control theory mostly enables the design of controllers in a
single mode of operation, in which the task and the model of the system are fixed.
When operating in unstructured or dynamic environments with many different
sources of uncertainty, it is very difficult if not impossible to design controllers that
will guarantee performance even in a local sense. A similar problem exists in
developing estimators in the context of sensing. If one views planning as an
extension of control, and mapping as an extension of estimation, similar problems
exist at higher levels of control and coordination. In contrast, we also know that it is
relatively easy to design reactive controllers or behaviors that react to simple stimuli
or commands from the environment. This is the basis for the subsumption
architecture [5] and the paradigm for behavior-based robotics [6]. While control and
estimation theory allows us to model each behavior as a dynamical system, it does
not give us the tools to model switches in behavior or the hierarchy that might be
inherent in the switching behavior, or to predict the global performance of the
system.
Our goal in this paper is to present the software tools that are at the core of the
development of intelligent robotic systems. Specifically, we describe an architecture
and a high-level language, CHARON, with formal semantics, that can be used to
describe multiagent, networked robotic systems with multiple control and estimation
modes, and discrete communication protocols in a principled way. The architecture
allows the development of complex multirobot behavior via hierarchical and
sequential composition of control and estimation modes, and parallel composition of
agents. We present our ongoing work to automatically generate control and
simulation code from the high-level language description. We also illustrate the
application of these ideas to the development of an experimental platform of
multiple mobile robots that cooperate in tasks that require sensing, mapping,
navigation and manipulation using vision as a sensing modality. Experimental
results illustrate the benefits and the limitations of mode switching and the
methodology underlying the implementation of robot formation control.

3. Software Architecture

We have developed CHARON, an acronym for Coordinated Control, Hierarchical
Design, Analysis, and Run-Time Monitoring of Hybrid Systems, a high-level
language to facilitate the programming of multiple, interacting hybrid systems [7].
The language is designed with the goal of being able to control multiple mobile,
autonomous robots for mission-critical applications and stringent requirements on
safety.
A hybrid system here refers to a collection of digital programs that interact with
each other in a physical world that is analog in nature. A hybrid system has multiple
modes or behaviors of operation. Each mode is a reactive, sensor-based, control law
that generates a behavior in a robot, and indirectly in a group of robots. More details
about the language, the semantics and the formal description are presented in [8].

The architecture proposed here allows the development of complex multirobot
behavior via hierarchical and sequential composition of control and estimation
modes, and parallel composition of agents. This is schematically illustrated in Figure
1.
All software components are called agents. For example, all robots are modeled as
agents. Agents can communicate with each other and the human operator can
interact with the agents. Agent definitions can have parameters that can be used to
create different agents of the same type.

Variables, in addition to being typed, can be discrete or analog. Analog variables are
updated continuously, while discrete variables are updated only upon initialization
and mode switches. The variables of an agent are partitioned into input, output, and
private to allow modular specifications. For example, the robot can receive estimates
of the obstacles from other robots, and commands and specifications from the
human operator on input channels, and it can send its own information to other
robots or to the human operator on the output channels. While physical variables

(a) Hierarchy in CHARON

(b) Robot software: Sensing and control

Fig. 1 Architecture for multirobot coordination

such as the position and velocity of the robot are public, the sensory or control
information that is internal to a robot is designated as private.
The agent definition contains modes or behaviors that are available to the robot.
Modes specify evolution of control. If the state of an agent is given by x ∈ ℜn, its
evolution is determined by a set of differential equations:

() ()zxuuxx , ,, qq kf ==
�

(1)

where u ∈ ℜm is the control vector, q ∈ Q ⊂ Z is the control mode for the agent,
and z ∈ ℜp is the information about the external world available either through
sensors or through communication channels.
A mode definition includes transitions among its submodes. A transition specifies
source and destination modes, the enabling condition, and the associated discrete
update of variables. Each mode can have submodes, and there is a hierarchy of
modes that is typical in most robot software.
Our low-level implementation in C++ uses Live Objects. Live Objects have been
developed as part of the software architecture for implementation on the hardware
platforms. A live object encapsulates algorithms and data in the usual object-
oriented manner together with control of a thread within which the algorithms will
execute, and a number of events that allow communication with other live objects.
At the top of the hierarchy, the algorithms associated with the objects are likely to be
planners, whilst at bottom they will be interfaces to control and sensing hardware.
The planner objects are able to control the execution of the lower level objects to
service high-level goals. To offer platform independence, only the lowest level
objects should be specific to any hardware, and these should have a consistent
interface for communication with the more planning objects that control their
execution. Visual servo control algorithms have been incorporated into the live
object framework for such basic functionality as obstacle avoidance, wall-following,
formation keeping, mapping and localization.
Learning is also relevant to our work. Since this is not the main focus of this paper,
we point the reader to a description of the Boundary Localized Reinforcement
Learning (BLRL) to obtain locally optimal mode transition boundary locations [9].

4. Multirobot Coordination

4.1 Experimental platform

The mobile robot we use for our experiments is shown in Figure 2. It has been
constructed from a commercial radio-control truck kit. Some modifications have
been made to improve shock absorption and to house an omnidirectional vision
system, a 2.4 GHz wireless video transmitter, and a battery pack.

The robot has a servo controller on board for steering and a digital proportional
speed controller for forward/backward motion. A parallel port interface, also
designed in our lab, allows driving up to 8 mobile robot platforms from a single
Windows NT workstation. The receiver, located at the host computer, feeds the
signal to a frame grabber that is able to capture video at full frame rate (30 Hz.) for

image processing. This yields a video signal in a format for viewing and recording,
as well as image processing.

4.2 Sensors

4.2.1 Color feature extraction and target tracking

Pixels corresponding to a target can be identified in the image using a YUV based
color extractor which provides robustness to variations in illumination. Three-
dimensional color models are generated a priori from images of the target at
numerous distances, orientations, and illumination levels. These data are stored in a
pair of look-up-tables (LUTs) to speed image processing. During operation, the
target detection algorithm – the blobExtractor sensor, is initially applied to the entire
image and can run at frame rate (30 Hz). Once the target is acquired, the sensor
switches to target tracking mode.

The target tracking scheme is simple yet robust. To increase the speed of color
feature extraction, a region of interest is dynamically constructed surrounding the
target in the current image based on its location in the previous image. By
constraining image processing operations to this region of interest, we are able to
run multiple target trackers at frame rate. This allows us to assume little motion of
the targets between consecutive image captures. Such small inter-frame movement
thus permits the straightforward tracking process whereby the position of the region
of interest (which is centered upon the target) is moved to coincide with the centroid
of the target extracted from each frame.

4.2.2 Range mapping

A Sobel gradient was applied to the original omnidirectional image. The resulting
edges in the image were assumed to be features of interest, see Figure 2. By
assuming a ground plane constraint, the distance to the nearest feature in the sector
of interest was determined from the its relative elevation angle to the mirror. This
provides a range map to all obstacles at frame rate.

4.2.3 Localizer

We have implemented a localization algorithm for our mobile robots. The algorithm
employs an extended Kalman filter (EKF) to match landmark observations to an a

Fig. 2 The mobile robot platform with Omnicam(left), range mapping (right)

priori map of landmark locations. The Localizer object uses the blobExtractor
sensor to determine the range and the bearing of an observed landmark. If the
observed landmark is successfully matched, it will be used to update the vehicle
position and orientation. Figure 3 depicts a typical image used for localization.

The kinematic model of the mobile robot is given by

)(

tan

sin

cos

2

1

1

1

φ−λ=φ

φ=θ

θ=
θ=

u

l

u

uy

ux

�

�

�

�

(2)

where l is the body length, u2 is the steering command, |φ| < 70° is the steering
angle, and λ ≈ 4 s−1 is a parameter that depends on the steering servo time constant
and wheel-ground friction. The control vector is given by u = [u1 u2]

T .

4.2.4 Velocity estimator

The leader-following control object described in the next section, requires reliable
estimation of the linear velocity and angular velocity of a leader mobile robot. The
velocity estimator algorithm is also based on an extended Kalman filter. It uses the
blobExtractor sensor to determine the range ρ and the bearing β of the observed
leader. In addition, the filter requires a sensor model, and the relative kinematic
equations of the leader and follower robots.

4.2.5 Mapper

We have implemented a cooperative mapping using three nonholonomic platforms.
A simulated room 4m×4m was constructed. The positions of two robots are held
fixed, while the third robot, called mapper, is driven around the test area. A global
map updates is accomplished at 3-5 Hz. The experimental setup and results are
displayed in Figure 4.

Fig. 3 Image used for localization (left), experimental results (right)

4.3 Controllers

4.3.1 Obstacle avoidance and wall following

The wall follower works by using inputs from two live object sensors – a wall
detector and an obstacle detector. Both take as input the image from an edge
detector, and use range map data to find the relative position of the wall/obstacle.
The wall detector has a 40° field-of-view from 160 to 200 degrees. A line is fit to
these points using RANSAC (random sampled consensus), which gives us a line fit
robust to outliers. From this we are able to extract the relative position and
orientation of the robot to the wall. We use I/O feedback linearization techniques to
design a PD controller to regulate the distance of the vehicle to the wall, Figure 5.
Wall following can be considered as a particular case of path following. Thus, the
kinematics in terms of the path variables become

Fig. 5 The wall-follower 21

11

 ,
tan

sin ,cos

2

2

v
l

v

vdvs

p

pp

p

tp

t

=φφ=θ

θ=θ=

π−θ=θ

θ−θ=θ

π=θ

��

�

�

(3)

Assuming the robot is to follow the wall with a piecewise constant velocity v1(t), the
controller is given by












θ−−

θ
= −)sin)((

cos
tan 102

1

1
pvp

p

vkddk
v

l
u (4)

where u(t) is the steering command, v1(t) is the linear velocity, and kp, kv are positive
design controller gains. Usually, we may want a critically damping behavior i.e.,

pv kk 2= .

Fig. 4 Cooperative mapping

The obstacle detector picks up objects in its 80° forward-staring field-of-view. Since
the position and orientation relative to the wall are known, the detector is able to
discriminate which “obstacles” are actually the wall, and which are truly obstacles
that must be avoided. Mode switching between wall following and obstacle
avoidance is accomplished by giving priority to the latter. Experimental results are
depicted in Figure 6 shows experimental results (axes units are inches).

4.3.2 Leader-Following Control

We consider a team of n nonholonomic mobile robots that are required to follow a
prescribed trajectory while maintaining a desired formation. The desired formation
may change based on environmental conditions or higher-level commands. A robot
designated as the lead robot follows a trajectory generated by a high-level planner
g(t) ∈SE(2). The follower robots should maintain a prescribed separation and
bearing from its adjacent neighbors. This controller (denoted Sepatation Bearing
Controller SBC here) is implemented on each robot in the team. The desired

separations d
ijl and bearings d

ijψ will define the shape of the formation, see Figure 7.

The kinematics of the nonholonomic i-robot are given by

ii

iii

iii

vy

vx

ω=θ

θ=
θ=

�

�

�

sin

cos

(5)

where xi ≡ (xi, yi, θi)∈SE(2).

Fig. 6 Sample wall-following configuration (left) and corresponding
mode vs. position results (right)

Fig. 7 The Separation Bearing Control SBC

The control velocities for the follower are given by [10]

)]sin()(cossin[
1

)cos()(sincos

jiiiijijijijij
j

j

jiiiijijijijijj

vbls
d

vblsv

θ−θ+ω+γ+γ=ω

θ−θ+ω+γ−γ=
(6)

where

0,)(

)(

212

1

>ψ−ψ=

−=

θ−ψ+θ=γ

kkkb

llks

ij
d
ijij

ij
d
ijij

jijiij

(7)

The closed-loop linearized system becomes

jj

ij
d
ijij

ij
d
ijij

k

llkl

ω=θ

ψ−ψ=ψ

−=

�

�

�

)(

)(

2

1

(8)

In the following theorem, we provide a stability result for the SBC [11].
Theorem 1. Assume that the reference trajectory g(t) is smooth enough, the reference
linear velocity is large enough and bounded i.e., 0minmax >β>>β iv , the reference

angular velocity is small enough i.e., maxWi <ω , and the initial relative orientation

is bounded i.e., π<ε<θ−θ θji . If the control velocities (6) are applied to Rj, then

system (8) is stable and the output system error of the linearized system converges to
zero exponentially.

Remark. While the two output variables in (8) converge to the desired values
arbitrarily fast (depending on k1 and k2), the behavior of the follower’s internal
dynamics, θj , depends on the controlled angular velocity ωj. In our analysis we have
considered the internal dynamics which is required for a complete study of the
stability of the system. Let the orientation error be expressed as

jie ω−ω=θ
�

(9)

After some work, we have

),(sin θθθθ +−= efe
d

v
e

j

i u
�

 (10)

where u is a vector that depends on the output system error and reference angular
velocity ωi.)(⋅θf is a nonvanishing perturbation for the nominal system (10) which

is (locally) exponentially stable. By using stability of perturbed systems [12], it can
be shown that system (10) is stable, thus the stability result in Theorems 1 follows.

Figure 8 (right) shows a view of leader-following experiment. These are actual data
points collected from an overhead camera installed in our lab for ground truth
purposes.

Figure 9 depicts the estimated linear and angular velocity of the leader robot, and the
measured separation and bearing. We choose ld = 0.6 m and ψd = 180°. The
robustness of the system is verified when we manually hold the follower for a few
seconds at t ≈ 65 s.

Fig. 9 Leader following experimental results

Fig. 8 Formation control experimental setup

0 20 40 60 80 100 120 140
150

155

160

165

170

175

180

185

190

195

200
Bearing

ψ

 (
de

g)

Time (s)
0 20 40 60 80 100 120 140

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Separation l

A
m

pl
itu

de

(m

)

Time (s)

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6
Estimated linear velocity (leader)

v 1
 (

m
/s

)

Time (s)

0 20 40 60 80 100 120 140
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6
Estimated angular velocity (leader)

ω
1

 (
ra

d/
s)

Time (s)

5. Concluding Remarks

We describe a formal architecture and high-level language for programming
multiple cooperative robots. Our approach assumes that each robot has a finite set of
behaviors or modes that it can execute, and the programming language is used to
formally specify a set of conditions under which mode transitions take place. Thus
the tasks performed by the multirobot system are uniquely specified as mode
transition boundaries that are defined in the robots information space. Experiments
have been carried out in complex scenarios where robots need to exhibit a variety of
behaviors such as localization, target acquisition, collaborative mapping and
formation keeping.

References
[1] Donald B, Gariepy L, Rus D (2000) Distributed manipulation of multiple objects using

ropes, Proc. IEEE Int. Conf. on Robotics and Automation, 450-457.
[2] Khatib O, Yokoi K, Chang K, et al. (1996) Vehicle/arm coordination and mobile

manipulator decentralized cooperation, IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, 546-553.

[3] Parker L (2000) Current state of the art in distributed robot systems, Distributed
Autonomous Robotic Systems 4, Parker L, Bekey G, Barhen J (eds.), Springer, 3-12.

[4] Rus D, Donald B, Jennings J, (1995) Moving furniture with teams of autonomous
robots, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 235-242.

[5] Brooks R (1986) A robust layered control system for a mobile robot, IEEE J. Robotics
and Automation, 2(1):14-23.

[6] Balch T, Arkin R (1998) Behavior-based formation control for multi-robotic teams,
IEEE Transactions on Robotics and Automation, 14(6):926-934.

[7] Alur R, Henzinger T, Lafferriere G, Pappas G (2000) Discrete abstractions of hybrid
systems, Proceedings IEEE, 88(2):971-984.

[8] Alur R, Grosu R, Hur Y, Kumar V, Lee I (2000) Modular specification of hybrid
systems in CHARON, Proc. Int. Workshop on Hybrid Systems: Computation and
Control.

[9] Grudic G, Ungar L (2000) Localizing search in reinforcement learning, National
Conference on Artificial Intelligence (AAAI 2000), 590-595.

[10] Desai J, Ostrowski J, Kumar V (1998) Controlling formations of multiple mobile
robots, Proc. IEEE Int. Conf. on Robotics and Automation, 2864-2869.

[11] Fierro R, Das A, Kumar V (2000) Hybrid control of formation of robots, Submitted to
IEEE Int. Conf. on Robotics and Automation, ICRA01.

[12] Khalil H (1996) Nonlinear Systems, Prentice Hall.

