
Validating Constraints in XML

Yi Chen, Susan B. Davidson and Yifeng Zheng���������
	����	�������������������������	�� �!�"� #$	%��&�'�#$����'(�
)*��#$+%���-,.#$�0/!	��
12������,./435+"����#6�

yicn@saul.cis.upenn.edu 7 susan@cis.upenn.edu 7 yifeng@saul.cis.upenn.edu

Abstract

The role of XML in data exchange is evolving
from one of merely conveying the structure of
data to one that also conveys its semantics. In
particular, several proposals for key and foreign
key constraints have recently appeared, and as-
pects of these proposals have been adopted within
XMLSchema. Although several validators for
XMLSchema appear to check for keys, relatively
little attention has been paid to the general prob-
lem of how to check constraints in XML.

In this paper, we examine the problem of check-
ing keys in XML documents and describe a native
validator based on SAX. The algorithm relies on
an indexing technique based on the paths found
in key definitions, and can be used for check-
ing the correctness of an entire document (bulk
checking) as well as for checking updates as they
are made to the document (incremental check-
ing). The asymptotic performance of the algo-
rithm is linear in the size of the document or up-
date. We also discuss how XML keys can be
checked in relational representations of XML doc-
uments, and compare the performance of our na-
tive validator against hand-coded relational con-
straints. Extrapolating from this experience, we
propose how a relational schema can be designed
to check XMLSchema key constraints using effi-
cient relational PRIMARY KEY or UNIQUE con-
straints.

1 Introduction

Keys are an essential aspect of database design, and give
the ability to identify a piece of data in an unambiguous
way. They can be used to describe the correctness of data
(constraints), to reference data (foreign keys), and to update
data unambiguously.

The importance of keys for XML has recently been
recognized, and several definitions have been introduced

@employeeID=
120-44-7651

department

employee

"Mary Smith" "215-89
 8-2661"

"CIS"

name

"215-57
 3-9129"

"215-89
 8-5042"

employee

teltel@employeeID=
123-00-6789

name

 0

 1

 2  4

 5  6

 7

 8

 9

10

11

12

13

14

15

16 17

18

19

20

root

university

name

tel

name

"Mary Smith"

"UPENN"

 3

Figure 1: Tree representation of universities.xml

[1]. Aspects of these proposals have found their way into
XMLSchema by the addition of UNIQUE and KEY con-
straints [2]. These proposals overcome a number of prob-
lems with the older notion of “ID” (and “IDREFS”): First,
IDs are like oids and carry no real meaning in their value.
In comparison, a key in the relational database sense is a set
of attributes, and is value-based. Second, IDs must be glob-
ally unique. Third, they do not carry a notion of hierarchy,
which is a distinguishing feature of XML.

As an example of the type of keys we might wish to
define for an XML document, consider the sample doc-
ument “universities.xml” represented in tree form in Fig-
ure 1. The document describes a set of universities, each
of which has a set of departments. Employees can either
work directly for the university or within a department. We
might wish to state that the key of a university is its name.
We might also wish to state that within a university an em-
ployee can be uniquely identified by her/his employeeID
attribute (The symbol in Figure 1 denotes that employ-
eeID is an attribute). Another key for an employee might
be her/his telephone number (which can be a set of num-
bers) together with name, within the context of the whole
repository.

Although definitions of keys for XML have been given,
the question of how to best validate these constraints has
not been solved. Building an efficient validator for key



constraints entails a number of challenges: First, unlike
relational databases, keys are not localized but may be
spread over a large part of the document. In our example,
since university elements occur at a top level of nesting,
the names of universities will be widely separated in the
document. Second, keys can be defined within a particular
context. In our example, employees are identified by their
employeeID within the scope of a university. Third, an ele-
ment may be keyed by more than one key constraint or may
appear at different levels in the document (as with employ-
ees). Fourth, the validator should be incremental. That is,
if an XML document has already been validated and an up-
date occurs, it should be possible to validate just the update
rather than the entire updated document, assuming that key
information about the XML document is maintained.

The most straightforward strategy for building a valida-
tor is to develop a native XML key checker using SAX
or DOM. Several XMLSchema validators have recently
appeared which claim to support XMLSchema KEY and
UNIQUE constraints [3, 4]. A native validator is also
presented in this paper which differs from these valida-
tors by supporting a broader definition of XML keys than
that given in [2] and by being incremental. The validator
is based on a persistent key index and techniques to ef-
ficiently recognize the paths present in XML keys. An-
other approach for building a validator recognizes that the
XML data may be stored in a relational database, and
leverages relational technology of triggers and PRIMARY
KEY/UNIQUE constraints to perform the checking.

To motivate the importance of the second strategy, con-
sider a community of biomedial researchers who are per-
forming gene expression experiments and, upon the recom-
mendation of their bioinformatic experts, store their data
directly in a relational database (see e.g. the Stanford Mi-
croarray Database [5], which uses Oracle). To exchange
data, researchers convert their data into an agreed upon
XML standard, MAGE-ML [6]. This standard includes a
specification of keys, which are localized to each group
(e.g. the context of keys for the standard is within a group
which is identified by a given id). Each group is there-
fore expected to produce data that is correct with respect
to the keys. Since the data is already stored in a relational
database, it would be much more efficient to ensure that the
data in relational form is correct with respect to the XML
keys using relational technology than to produce the XML
version of this data and then validate it before exporting.
Or, if a group did not trust others to produce correct data,
it would be more efficient to check the keys while inserting
the imported XML data into their relational implementa-
tion.

How well the relational approach works depends
strongly on how the data is stored. For example, suppose
our sample data is stored using hybrid inlining [7]. As-
suming the obvious DTD, this creates the following rela-
tional schema: University(UID, Name), Department(DID,
parentID, Name), Employee(EID, parentID, parentCODE,
EmployeeID, Name), TelNumber(TID, tel, parentID).

To enforce the first key (the name of a university is
its key), we can specify Name to be PRIMARY KEY or
UNIQUE for the University relation using SQL DDL. To
enforce the second XML key (within a university, an em-
ployee can be uniquely identified by her/his employeeID),
we must create a stored procedure which triggers upon up-
date to join Employee with University, Employee with De-
partment and University, and take the union of results. The
checking procedure for the third key is even more compli-
cated.

Moreover, suppose we have an XML file whose struc-
ture is extremely irregular, and therefore adopt an edge ap-
proach [7] for storage. In this case, checking even the sim-
plest key constraint entails multiple joins and unions and
will be very expensive.

The choice between a native strategy and a relational
strategy is also influenced by the structure of the XML
keys. In [1], the keys may be set-valued (weak keys) and
may have a complex structure (i.e. the value of a key can be
an XML sub-tree). In this case, validating key constraints
using a relational database is extremely hard if not impos-
sible. However, XMLSchema assumes that key values are
either attributes or text and that they must occur exactly
once (corresponding to a restriction of strong keys in [1]).
In this case, we will show that it is possible to use relational
technology, and advisable to do so if relational storage is
already being used for storing the document.

The relational strategy also has several limitations: First,
if the document is to be validated, the transformation to the
relational schema must be information capacity preserving
[8], at least with respect to the key information. This is not
true for arbitrary transformations expressed, for example,
in STORED [9]. Second, mapping XML key constraints to
a fixed relational schema is an (as yet) unsolved problem
(see [10] for preliminary results). However, if the schema
can be modified then, for the restricted case of keys used
in XMLSchema, this problem is solvable. Third, storing
XML into an RDBMS involves a lot of overhead, and is
not worth the cost unless the document will be used in that
form (e.g. for efficient querying).

In this paper, we make the following contributions:

1. A native XML constraint validator, which can be used
for XMLSchema KEY and UNIQUE constraints as
well as for those in [1].

2. Bulk loading and incremental checking algorithms
with complexity that is proportional to the size of the
affected context (assuming a fixed number of keys are
currently activate), hence is near optimal.

3. Experimental results showing the trade-off between
our native approach and one based on relational tech-
nology.

4. Schema design techniques for vali-
dating XMLSchema keys using relational PRIMARY
KEY/UNIQUE technology.



The rest of the paper is organized as follows: Section
2 introduces a definition of keys and presents our native
XML constraint validator. Section 3 presents experimental
results showing the trade-off between our native approach
and one based on relational technology. Section 4 discusses
schema design techniques for validating XMLSchema keys
using relational PRIMARY KEY/UNIQUE technology,
and discusses related work. We conclude with a summary
and discussion of future work in Section 5.

2 XML Keys and the Native Validator
In defining a key for XML we specify three things: the
context in which the key must hold, a set on which we are
defining a key and the values which distinguish each ele-
ment of the set. Since we are working with hierarchical
data, specifying the context, set, and values involve path
expressions.

Using the syntax of [1] � a key can be written as

���������	�
����
�
�������������������

where
�

,
� �

, and
�
�
����������� �

are path expressions.
�

is
called the context path,

� �
the target path, and

�
�
����������� �

the key paths. The idea is that the context path
�

identifies
a set of context nodes; for each context node � , the key
constraint must hold on the set of target nodes reachable
from � via

� �
.

For example, using XPath notation for paths, the keys of
Section 1 can be written as:
���

�! 
�#"$��%�&"(' �*)�+$,-/.�)#021 �����3" ��4�56, �(��� : Within the con-

text of the whole document (“
"
” denotes the empty

path from the root), a university is identified by its
name.

���*7
 �#"(' �*)�+$,-/.�)#021 �����3"8" ,5:9<;
=(1>,(, �����3"8? ,�5:9<;
=(1$,(,@8A �(��� :

Within a university an employee can be uniquely iden-
tified by his/her employeeID (“.//” refers to any se-
quence of labels).

���*B
 
��"$��%�&"C" ,�5:9<;�=(1>,, ���8�&" ��4�56, ���3" 0%,; ���� : Within the

context of the whole document, an employee can be
identified by their name and set of telephone numbers.

Definition 2.1: An XML tree D is said to satisfy a key iff
for each context node � and for any target nodes 5 �

� 5 7
reachable from � via

� �
, whenever there is a non-empty

intersection of values for each key path
�
�
�������������

from
5 �

� 5 7 , then 5 � and 5 7 must be the same node.

For example,
�E��B

is satisfied in the XML tree of Figure
1 since employee 123-00-6789 and 120-44-7651 are both
within the context of the same university (PENN), and al-
though they share the same name (Mary Smith) they do not
share any telephone number. The key would also hold if we
eliminated the telephone number for the first Mary SmithF

We adopt this because it is more concise than that of XMLSchema.

(123-00-6789) since GIH ��J>KLNMEO8PCOQM�LCR/S�JT��JTKLIMEL�U�VQMPTK(J/PT�
 G . Although in these examples the key values are

all sets of element of type string (text), in general the key
values may be sets of XML trees. In this case, the notion of
equality used to compute set intersection must be extended
to one of tree equality.

While this definition of keys for XML is quite general,
the one given in XMLSchema has the following restric-
tion: Keys paths must be attributes or elements which oc-
cur exactly once and are text. This is a strong key de-
fined in [1]. For example,

�E�
� is only expressible if the

name of a university is mandatory (and unique). Since our
sample XML tree has multiple occurrences of tel within
employees,

�E��B
is not expressible. Furthermore, if the

name of an employee had subelements firstname and last-
name,

�E� 7
would not be expressible since the key values

are XML trees rather than text. Note that this definition
of keys is tied to the schema while the definition of [1]
does not require a schema. Also note that under the re-
strictions of XMLSchema, the key constraint states that tar-
get nodes must differ on some key value (analogous to the
key constraint of relational databases). The XMLSchema
UNIQUE constraint can also be captured by a key of form���W����� � ���C�(���

defined in [1] which state that, under a con-
text node defined by

�
, the target node defined by

� �
is

unique.
The path expression language used to define keys in

XMLSchema is a restriction of XPath, and includes navi-
gation along the child axis, disjunction at the top level, and
wildcards in paths. This path language can be expressed as
follows:

XZY�Y  
�\[]"^[_� `^[]"�`a[b�3"8"�`a[ X [ X
` Y�Y  ; [c`C"/`d[

Here “/” denotes the root or is used to concatenate two path
expressions, “.” denotes the current context, ; is an element
tag or attribute name, “ ” matches a single label, and “.//”
matches zero or more labels out of the root.

Note that just using key
����7

, we are not able to
uniquely identify an employee node by its employeeID.
That is,

�E� 7
is scoped within the context of a university

node rather than within the scope of the root of the XML
tree. However, given a key for the context node of

��� 7
,

i.e. the name of a university (
���

� ), we can then identify
an employee node by its employeeID. The ability to re-
cursively define context nodes up to the root of the tree is
called a transitive set of keys [1]:

� �E�
�
� ��� 7 �

is a transi-
tive set of keys, as is

� ����B �
since its context is already the

root of the tree. That is,
����7

is scoped within the context
of a university rather than within the scope of the root.

2.1 The XML Key Index

The XML constraint validator is based on a key index,
which can be thought of in levels. The top level is the key
specification level, which partitions the nodes in the XML
tree according to their key specifications. Since a node may



���
� 0 name UPENN

�
1
�

���*7
1 employee 123-00-6789

�
4
�

id 120-44-7651
�
15
�

name Mary Smith
�
4,15

�
���*B

0 215-898-5042
�
4
�

tel 215-573-9129
�
4
�

215-898-2661
�
15
�

Figure 2: Key index for universities.xml
match more than one key specification, it may appear in
more than one partition. The second level is the context
level, which groups target nodes by their context. The third
level is the key path level, which groups nodes based on
key paths. The fourth level is the key value level, which
groups target nodes by equivalence classes called key value
sharing classes (KVSC). The KVSCs are defined such that
the nodes in a class have some key nodes which are value-
equivalent, following the same key path under the same
context in a particular key. Since key values may be ar-
bitrary XML trees, we store their serialized value (see [11]
for details).

For example, the index structure for
���

� ,
�E� 7

and�E��B
on the XML data in Figure 1 is shown in Figure 2.

Note that nodes 4 and 15 are each keyed by
��� 7

and
�E��B

,
and that they share the same name value.

Given a new target node 0 within a context node X of
an XML key

�
, the validator checks if 0 shares some key

value with another target node under X for every key path.
That is, for each key path

���
(
K�� ) � 9 ) of

�
, it unions

all the KVSCs that 0 belongs to and produces the set of
nodes

� �
that share some key value with 0 . It then computes�

 
�
� H

����� H � � , which is the set of nodes that share some
key value for all the key paths. If

�
contains more than one

node ( 0 ), then
�

is violated.
For example, suppose we were validating the XML doc-

ument of Figure 1 with respect to
���

� ,
�E� 7

and
�E�*B

. To
check

���*B
, as we parse through node 18 we find that the

KVSC for Mary Smith is
�
4, 15

�
. As we continue the parse

through node 19 we find that the KVSC for 215-898-2661
is
�
15
�
. Finishing the parse of the substructures of node 15,

we check that
�S ��KL$� H ��KL>�  

�8K(L$�
, and so the constraint

is valid.
Although the primary purpose of the index is to effi-

ciently check keys, it can also be used to find a node using a
transitive set of keys. This property will be used later when
we talk about updating XML trees by specifying an update
node.
Example 2.1: For example, suppose we want to find the

employee whose employeeID is 120-44-7651 at UPENN.
Since

� �E�
�
� ���*7 �

is a transitive set of keys, the query to
locate the employee must specify a key for each context
node. Here we use XQuery [12] for syntax.

<result>�
for �/4 in document(“universities.xml”)/university

��� in �/4 //employee
where boolean-and( ��4 /name = “UPENN” ,

��� /@employeeID = ”120-44-7651” )
return ����
</result>

From the index of
���

� in Figure 2, we know that name
is a key of university and that the context is the root (nodeR

). The KVSC of university nodes with the key value
“UPENN” following key path name is

�8K/�
. Since @em-

ployeeID is the key path of an employee node under the
context of a university (

�E� 7
), we can get the KVSC of

employee nodes with the key value “120-44-7651” follow-
ing the key path @employeeID under the context node

K
.

This class contains node
KL

.

2.2 Architecture for XML Constraint Validator

The architecture of our XML constraint validator is shown
in Figure 3. The validator takes an XML key specification
and document as input. Initially, the start module of the Key
manager takes the key specification and sends the context
path expression for each key to DFA manager. As the XML
data streams into the SAX parser, events are generated and
sent to DFAs in an active DFA pool; state transitions occur
in response to these events. For each incoming path expres-
sion

�
, the DFA manager determines which DFA parses the

path expression
�

, A��
	 ��� � . If A��
	 ��� � is in the active
DFA pool, the DFA manager modifies the current state set
of A��
	 �
� � (to be described later); if A��
	 �
� � is in the
inactive DFA pool, it will be activated and sent to the acti-
vate DFA pool; otherwise, if A��
	 �
� � is not in either pool,
the DFA manager sends

�
to a DFA constructor which con-

structs A��
	 ��� � to parse
�

and put it into the active DFA
pool. All DFAs in the active DFA pool make state tran-
sitions according to the event sent by the SAX parser. If
any of them reaches its accepting state, it will signal the
PE(path expression) engine of the Key Manager, which in
turn decides the next path expression need to be parsed ac-
cording to key specification. Any DFA that is not needed
(to be described later) is deactivated and put in the inactive
DFA pool.

2.3 Index Construction

As hinted at in the previous subsection, the index can be
constructed in one pass over the XML file using a SAX
parser and a set of DFAs which represent the context (

�
),

target (
� �

) and key paths (
�
�
����������� �

) for each XML key�
. As the document streams in, each node is assigned a

unique internal id. The internal id and tag of each node (the
node info) is then communicated to the DFAs, which may
trigger a state change.

Since a target node can only appear after its con-
text node, A��
	 ��� � � is only activated when the ac-
cept state of A��
	 ��� � has been reached. Similarly,
A��
	 �
������� )  

K ����� 9 are only activated when the accept



StartPE

Key Manager

DFA Manager

SAX

XML
Key

XML
file

DFA
Constructor

Active DFA Pool Inactive DFA Pool

Event

Path expression
p

p

DFA(p)

Add
new

 state
to

 DFA(p)

Activate
DFA(p)

Figure 3: XML constraint validator architecture

state of A��
	 ��� � � has been reached. To keep track of
which node infos are still current (i.e. tags whose corre-
sponding closing tag has not yet been encountered), a stack
is used.

When the accepting state for a context path is reached,
the context node information is added to the index. Simi-
larly, when the DFA for a key path reaches its final state, the
id of the target node which activated the key path DFA and
the key value recognized are added to the index. When the
DFA for a target node reaches its final state, the process to
check satisfaction of the key specification is invoked (dis-
cussed in Section 2.1).

Note that since the context and target path expressions
may contain .//, several context nodes for one key and sev-
eral target nodes for one context node can be activated at
the same time. Our DFAs must therefore continue to seek
the next match after reaching an accept state.

We optimize the algorithm in the following ways: First,
the DFA manager constructs DFAs only when we try to
match their path expression for the first time. Second, only
one DFA is maintained per path expression, hence there is
a set of current states representing all the activating nodes
info. Each new tag that is encountered triggers the state
transition for all current states, for each DFA in the active
DFA pool. Third, we only activate a DFA when neces-
sary. When a DFA is not being used, we deactivate it rather
than destroy it. These optimizations allow us to construct
at most once a single DFA for each path expression, and
maintain it only for as long as necessary.

Path

n

rr
r

Path

IT1 To-be-inserted

u

δ
tree T

uT

n

Figure 4: Delta XML tree for insertion
2.4 Incremental Maintenance

To describe how the native checker handles updates, we fo-
cus our attention on two basic (unordered) tree operations:
insertion of a new tree below an update node, and deletion
of the tree below an update node. These updates are spec-
ified as insert( � � D�� ) and delete( � ), where � is the internal
id of the node to be updated, and D�� is a tree to be inserted.

For example, an update to universities.xml which gives
the employee node 15 another telephone number “215-898-
5042” could be written as )#� .,-(0 �%KLT� D�� � , where the con-
tent of D�� is <tel> 215-898-5042 </tel>. Node
15 could also be identified by a transitive set of key values
as shown in Example 2.1.

Note that the XML standard for updates, XMLUpdate,
has not yet been finalized, but currently includes many
other operations, including specifying order in insertion,
append, update and rename [13]. These operations could
be handled within our framework, however limiting the up-
dates considered simplifies the discussion. We can use any
XML update language with (transitive) key values as pred-
icates to locate the update node.

The incremental maintenance algorithm takes as input
a delta XML tree, which reflects the changes to the initial
XML document, and modifies the initial index so that is
correct with respect to the updated XML tree.

A delta XML tree can be understood as follows: Given
an update )#� .,-(0 � � � D � � , we create a tree D�� which is the
path in the original document from the root to � . The delta
XML tree

���
is then generated by grafting D � as a child

of � in D�� (see Figure 4). Given an update ��,;�,0%, � � � , the
delta XML tree

�	�
is formed by grafting the subtree rooted

at � onto D � .
Since our index is hierarchical, updates may affect the

index at different levels. We can divide them into four cases
by the effect of this update:

1. Entries at the context level are inserted or deleted.
Note that bulk loading is a special case in which the
delta XML tree is the entire tree.

2. One or more target nodes along with their key values
are inserted or deleted.
As an example, the insertion of an employee node as
a child for the university node 1, that is, )#� .�,-(0 �%K8� D � �
where the content of D � is



<employee><name>Judith Rodin</name>
</employee>
would be of this case for

�E� 7
.

3. One or more key value(s) of an existing target node
under some context are inserted or deleted.
The effect on

��� B
for the update )�� .,-(0 �%K(L>� D � � ,

where the content of D � is
<tel> 215-898-5042 </tel>,
is an example of this case.

4. The key value is changed.
This case can only happen when the key value is a tree
instead of a text node and we are inserting or deleting
a subtree of a key node under an existing target node.
For example, consider a modified version of the tree in
Figure 1 in which the name of employee node has two
children: firstname and lastname (e.g. node 6 with
label name has a firstname node with value Mary and
a lastname node with value Smith). If we delete the
firstname, then the key value of the employee node 4
in
�E� B

will be changed and key constraints need to
checked.

It is clear that since insertions introduce new values, the
index must be maintained whenever the insertion interacts
with the context, target or key path of some key. Deletion is
more surprising: Although deletions in relational databases
can never violate a key constraint, in the context of XML
they may change some key value. Therefore the index must
be maintained whenever a deletion interacts with some key
path (case 4 above). The next question will be how to de-
termine when an update “interacts” with a context, target or
key path expression. This can be done by reasoning about
the concatenation of labels from the root to the update node
in D � , and the paths

�
,
�W� � �

and
���3� � � ���

. Details can be
found in the technical report [11].

In the last two cases, a new key value for a node is in-
serted into the index. It turns out that it is quite inefficient
to check if this causes a key constraint violation using only
the key index presented so far since it entails retrieving all
the key values of the updated node. We therefore build an
auxiliary index on the key index to retrieve these key val-
ues efficiently, which indexes each target nodes under their
context node. For each key path

���
, it keeps a pointer to

the key values for the target node.

Example 2.2: Consider the insertion of a telephone num-
ber
<tel> 215-898-5042 </tel>
to the employee with employeeID =120-44-7651 within the
university whose name= UPENN.
From Example 2.1, we can find the id of the update node
(15) and construct the delta XML tree. It is easy to see
that this update does not affect key specifications

�E�
� and�E��7

. It does, however, affect
�E� B

by inserting a new key
value (case 3). Processing the delta XML tree will result
in the updated index structure of Figure 5. Following the
pointers for node 15 in the auxiliary index structure, we

120-44-7651

123-00-6789 employeeid

employeeid

2

4{4}

{15}

employee
id 15

KS  ,1 

KS  , 01

name {1}UPENN name 1

KS  , 03

{4,    }15

123-00-6789

215-898-5042

215-573-9129

215-898-2661
tel

tel

name

name

name

tel {4}

{15}

{4,15} 4

15

Figure 5: updated key index example

can find all the KVSCs it belongs to: the KVSC for Mary
Smith (

�
4, 15

�
), the KVSC for 215-898-2661 (

�
15
�
), and

the KVSC for 215-898-5042 (
�
4, 15

�
). To check

�E� B
, we

union the two KVSCs for key path tel and get a set
�
4, 15

�
.

When we intersect this with the KVSC for key path name
we get a conflicting node set,

�
4, 15

�
. Since a violation is

discovered, the update is rolled back.

Theorem 2.3: The asymptotic performance of the bulk
loading and incremental algorithms is linear in the size of
the affected context of the document, assuming that there
are only a constant number of active states in each key at
any give time.
Proof: According to the assumption, the number of DFAs
and the number of DFA active states are constant. There-
fore, when the SAX parser sends an event to the active
DFAs the total number of state changes is constant. On
the other hand, the number of events is proportional to the
size of the affected context of the document. So we can say
that the asymptotic performance of the algorithms is linear
in the size of the affected context of the document.

This assumption appears to hold true in practice, as will
be seen in the experimental results in Section 3. We have
studied several real data sets and found that the distribution
of the data is quite uniform. This means that at any given
time, in practice the number of active DFAs and the number
of active states of each DFA is bounded by a constant.

The details and analysis of these algorithms can be
found in [11].

3 Experimental Results

To compare the performance of our native key validator
versus using a relational approach, we store an XML docu-
ment in a commercial relational database system using hy-
brid inlining and handcode the key constraints.

7
All ex-

periments run on the same 1.5GHz Pentium 4 machine with
�
We omit experiments using shared inlining because hybrid inlining

offers better performance.



<!ELEMENT db(university*)>
<!ELEMENT university(name,school*,department*,

employee*)>
<!ELEMENT school(name, department*,employee*)>
<!ELEMENT department(name, researchgroup*,

employee*)>
<!ELEMENT researchgroup(name, employee*)>
<!ELEMENT employee(name, employeeID)>
<!ELEMENT name(#PCDATA)>

Figure 6: DTD of universities.xml

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40

fi le size(MB)

ti
m

e(
m

s)

Hybrid�Inlining Native�Validator

Figure 7: Time to incrementally check
�E���

512MB memory and one hard disk with 7200rpm. The op-
erating system is Windows 2000, and the DBMS is DB2
universal version 7.2 using the high-performance storage
option. We use Java 2 to code the program and JDBC to
connect to the database.

We do not report results for the edge mapping approach.
Since it is based on the structure of XML rather than the
semantics of the document, checking even the simplest of
keys (e.g. the first key below) is several order of magnitude
slower than the native validator.

3.1 Data set and keys

We use a synthetic data set generated by an XML Gener-
ator from the XML Benchmark project [14]. (We also ran
experiments on real data sets, EMBL [15]. Since the results
were similar, we omit them.) XML Generator was modified
to generate a series of XML files of different sizes, accord-
ing to DTD shown in Figure 6. Using hybrid-inlining [7],
we create the following relational tables:
University(uID, name),
School(sID, name, parentID),
Department(dID, name, parentID, parentCode),
ResearchGroup(rID, name, parentID), and
Employee(eID, name, employeeID, parentID, parent-
Code).

The keys to be validated are similar to those used earlier:��� �
:  

�#"$�����3"�' �*)#+$,-�.�)#021 �����3" ��485 , �(��� : Each university
is identified by its name.

�����
:  

�#"(' �*)�+$,-/.�)#021 �����3"8" ��,�9<4�-(0256,�*0 �����3" ��4�56, �(��� :
Within a university, each department is identified by
its name.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30 35 40

fi le size(MB)

ti
m

e(
lo

g
(m

s)
)

Hybrid�Inlining Native�Validator

Figure 8: Time to incrementally check
�E� �

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35 40
fi le size(MB)

ti
m

e(
lo

g
(m

s)
)

Hybrid�Inlining Native�Validator

Figure 9: Time to incrementally check
�E���

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35 40
fi le size(MB)

sp
ac

e(
M

B
)

Native�Validator Hybrid�Inlining

Figure 10: Index size for
�E���

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30 35

fi le size(MB)

ti
m

e(
se

co
n

d
)

Time�to�store�xml�into�DB

Parser�and�Check�time�for�native��validator

Figure 11: Time to store XML document in RDBMS vs.
native validator



��� �
:  �#"(' �*)�+$,-/.�)#021 �����3"8" ,5:9<;
=(1>,(, �����3" ,�5:9<;�=(1�,(,(@�A ������ :

Within a university, at whatever level they occur, each
employee is uniquely identified by his/her employ-
eeID.

To check
�E���

, we specify attribute name to be the key
for the university table. To check

�����
, we need to join

school with department whose parent is school and union
it with the department whose parent is university to get all
possible (university.uid, department.name) pairs, and then
check if there are any duplicates. Checking

�E� �
is sim-

ilar to
�E� �

except more joins and unions are needed to
get (university.uid, employeeID) pairs. Indices on (par-
entCode, parentID) or (parentID) are built on every table
where applicable. To speed up key checking, we also build
index (name, parentCode, parentID) on Department, and
(employeeID, parentCode, parentID) on Employee.

3.2 Experiments

We model incremental updates by inserting a delta XML
document of size 100KB into XML documents of different
sizes. We plot the time needed for the relational approach
versus the native validator time over a series of files of in-
creasing sizes in Figure 7, 8, 9. Checks of

�E� �
,
��� �

, and�E� �
are performed independently. Since the native valida-

tor is much faster than relational checking for
��� �

, and�E� �
, we use log scale for the Y axis. Note that the na-

tive validator is only slightly slower than using PRIMARY
KEY (

�E� �
), and that its time is roughly constant since the

update size is constant.
A comparison of the native validator key index size

versus that of relational indices specifically designed for
checking

�����
is shown in Figure 10; results for

�����
are

similar. Our index is somewhat larger than the relational
indices, however, the native validator is not currently opti-
mized for space.

Figure 11 illustrates that unless an RDBMS is already
being used as the storage strategy for the XML document,
it should not be used just to check keys: the time needed to
store the XML document is much larger than just using the
native validator.

4 Discussion and Related Work
We now restrict our attention to keys as defined as in
XMLSchema: the key value for each key path must exist
and be unique, and each key path is a text or attribute node.
It turns out that for this form of keys, it is possible to design
relational schemas to perform efficient key checks.

The results of the previous section show that if the XML
document is stored using relational technology then the
fastest way to check an XML key is to use PRIMARY KEY
or UNIQUE constraints. Therefore, it is important to de-
sign the relational schema with the keys in mind.

Example 4.1: Suppose we generate the relational instance
shown in Figure 12 using hybrid inlining for the data of
Figure 1 in which all telephone numbers are eliminated.

University
uid Name
200 UPENN

Department
did parID Name
300 200 CIS

Employee
eid parID CODE EmpID Name
100 200 univ ...6789 Mary Smith
101 300 dept ...7651 Mary Smith

Figure 12: Relational instance using inlining�E� 7
can only be checked by a query involving joins and

unions over this relational design. However, if we add the
following relation:

KS2
uid eid EmpID
200 100 ...6789
200 101 ...7651

then
�E��7

can be checked by stating that (uid, EmpID)
is PRIMARY KEY. To eliminate redundancy, we could
have merged this table with Employee to create Em-
ployee(eid, parID, parCODE, uID, EmpID, Name),
where (eid) is PRIMARY KEY, and (uid, EmpID) (for�E� 7

) is UNIQUE.

Generalizing from this example, what we need is a rela-
tional structure which mirrors the key structure. That is, for
each XML key

� � ��� D ��� � �
��������� � �/���

, it is sufficient to en-
sure that a table D containing an attribute X representing the
id of the context node, an attribute 0 representing the id of
a target node, and attributes �

��� )  
K8��� 9 � for each key path

is present in the relational schema. Note that X and 0 repre-
sent the relational database’s internal id for the context and
target elements. We can then define a PRIMARY KEY or
UNIQUE constraint on

� � � �
�
��������� � � �

for D . Note that no
matter what XML to relational mapping strategy is used –
even the edge approach, which does not require a DTD –
this redundant table can always be built.

We must also ensure that the mapping from the XML
instance to these key checking tables is complete. That is,
the populated table must contain every match for

�
, D and�

� , ...,
� �

in the document to ensure that whenever there is
an XML key violation in the XML document it is caught by
the relational key constraint check. Updates to the database
must be made exclusively through the XML interface, and
each one must be handled as a transaction.

The correctness of this approach follows from the cor-
rectness of the algorithm in Section 2 [11].

In some ways, this is analogous to designing relational
schemas in 3NF, where a minimal basis is computed for a
given set of functional dependencies and a schema is output
corresponding to this basis [16]. Computing the minimal
basis relies on a sound and complete set of inference rules
for functional dependencies (Armstrong’s Axioms).

Unfortunately, little is known about computing a min-
imal basis of XMLSchema keys. Using a restricted path
language, in [17] we have given a sound and complete set
of inference rules for keys as defined in Section 2. The
inference problem for XML keys is complicated by the
fact that it involves reasoning about inclusion of path ex-



pressions. Since the restricted version of XPath used in
XMLSchema is not comparable to that of [17], these rules
must be rethought before they can be used to compute a
minimal basis for XMLSchema keys.

Fortunately, the question of minimality of the XML keys
is orthogonal to the question of ensuring that whenever
there is an XML key violation in the XML document it is
caught by the relational key constraint check.

Related Work. There are several native XMLSchema
checkers and validators: XML-Schema-Quality-Checker
of IBM [18] takes as input an XMLSchema and diagnoses
improper uses of the schema language. However, it is not
a validating parser, that is, it does not take as input an in-
stance document and validate it against the schema. Mi-
crosoft XML Parser 4.0(MSXML)[3] is a validating parser,
but does not currently support regular expressions and ap-
pears to have some bugs with respect to keys. The
University of Edinburgh has an on-going schema valida-
tor project called XSV, but does not appear to have imple-
mented XMLSchema keys [4].

The salient differences between the approach taken in
these XMLSchema key validators and the one suggested in
this paper are as follows. First, our definition of XML keys
follows that of [1] which is more general than that given
in XMLSchema. However, our key checker can easily be
used to validate XMLSchema keys. Second, we have de-
signed an incremental validation algorithm which verifies
updates to an XML document. Other approaches are de-
signed to parse the entire updated XML file to check the
key constraints.

[19] proposed a lazy DFA where a DFA processing a set
of path expressions is constructed from the NFA at runtime.
This technique can also be used for DFA optimization in
our native validator.

There are many proposals for mapping XML into rela-
tional databases. The edge approach described in [20] maps
each edge in the XML tree to a tuple in a relation, thus cap-
turing the structure rather than the semantics of XML data.
The inlining techniques of [7] store XML into a relational
database based on a DTD. They do not consider keys in this
mapping, and in fact there may be conflicts between con-
straints expressed in a DTD and those expressed as keys.
For example, the DTD <ELEMENT foo (X,X)> and
the key

� G ����� ���8�(���
contradict each other [1]. LegoDB [21]

is a cost-based XML to relational mapping, and explores
alternatives based inlining/outlining and union factoriza-
tion/distribution to favor a given query workload. However,
this approach does not consider keys and may not guar-
antee the completeness of the transformation with respect
to the keys. The Clio system [22] preserves certain con-
straints when performing the schema mapping, but loses
keys. The XML-relational constraint mapping scheme
mentioned at the beginning of this section is therefore (to
our knowledge) the first XML storage mapping technique
that preserves XML keys.

Note that another approach for mapping keys is to ex-
press them as XQuery queries and automatically translate

them into SQL. For example, the key
�E� �

can be expressed
as the following XQuery:

for $c in Document(”universities.xml”)/university,
$t1 in $c//department,
$t2 in $c//department

where boolean-and(not(node-equal($t1,$t2)),
$t1/name$t2/name)

return $t1, $t2

If the result is the empty set, then the constraint is valid
with respect to the data. Given the relational schema using
hybrid inlining in the experiment and using the automatic
mapping suggested in the XPERANTO project [23, 24], the
corresponding SQL would be:

select did
from (select uid,dn, did, count(*) as c

from (select department.name dn, did, uid
from department, university
where ParentCode = ”university”

and ParentID = uid
union
select department.name dn,did,uid
from school, department, university
where department.Pcode = ”school”

and department.ParentID = sid
and school.ParentID = uid

) as tmp
group by uid, dn) as tmp2

where c � 1;

Such SQL queries are inefficient compared to using PRI-
MARY KEY/UNIQUE constraints. Using a constraint pre-
serving mapping with key tables is therefore a much better
approach.

5 Conclusions

In this paper, we focused on the problem of validating key
constraints over XML documents. We discussed two al-
ternative approaches: One approach is to validate XML
key constraints using a native key checker. Although na-
tive validators for XMLSchema have been proposed, few
have considered KEY and UNIQUE constraints. Our native
XML constraint validator differs from these approaches in
that it considers a broader class of keys than defined in
XMLSchema, in which the value of keys may be XML
trees rather than simple text and key paths can be set val-
ued. The validator can be used for both bulk-loading (i.e.
one pass over the entire document) and incremental check-
ing (i.e. XML updates to the document can be processed
and checked against a persistent key index for the file). Our
validator can also be used with a little modification to check
referential integrity in XMLSchema (KEYREF), since it al-
ready provides the ability to find a node according to its key
value.



The other approach is to leverage relational technol-
ogy. Observing that stored procedures involving joins
are much more expensive to evaluate than PRIMARY
KEY/UNIQUE constraints, we proposed designing the re-
lational schema to include relations which mirror the XML
keys. When these key relations are populated in a way that
preserves all key information in the original XML docu-
ment, XML keys can be efficiently checked using PRI-
MARY KEY/UNIQUE constraints. This approach will
work for KEY and UNIQUE constraints as defined in
XMLSchema, or more generally, for strong XML keys as
defined in [1]. It does not work for weak XML keys [1]. To
our knowledge, this is the first XML-to-relational schema
mapping that considers key constraints.

Experiments showing the trade-off between our XML
key validator and relational techniques were also per-
formed. The experiments show that the performance of
our native validator for XML keys is roughly the same as
PRIMARY KEY/UNIQUE checks in a relational database.
However, our native validator performs better by several
orders of magnitude than when the key checks are per-
formed using complex stored procedures. It is therefore
important to carefully design the relational schema if fre-
quent updates are expected to take advantage of PRIMARY
KEY/UNIQUE checks. Since the cost (time and space) to
store an XML document in a relational database is high
compared to the time and space of a native validator, how-
ever, the relational approach should only be used if the doc-
ument is being stored relationally for other reasons (such as
optimizing queries).

At the heart of both our native and relational approaches
is the data structure introduced in Section 2 called the
key index. Compared with other XML index structures
[25, 26, 27, 28], the index captures both the structure and
the content information of the data. A query evaluator can
therefore use this index together with information about
path restriction and value conditions to optimize queries on
keys. The preliminary results shows that our index gives
better performance than that of [28] for key look-ups in
XML. Similar as the approach of key look-ups, our val-
idator can efficiently enforce the foreign-key constraint(the
XMLSchema countpart is keyref) in bulk loading as well
as incremental maintenance.

In future work we plan to explore its use for more gen-
eral queries. For example, for high frequency queries we
could build a set of indexes which match the queries and
can be used to efficiently retrieve the query result. For
lower frequency queries, we can see if the key and high
frequency query indexes match a portion of the query.

References

[1] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Keys for XML. In WWW10, 2001.

[2] H. Thompson, D. Beech, M. Maloney, and
N. Mendelsohn. XML Schema Part 0: Primer , May

2001. http://www.w3.org/TR/xmlschema-0/.

[3] Microsoft XML Parser 4.0(MSXML). Available at:
http://msdn.microsoft.com.

[4] XML Schema Validator. Available at:
http://www.ltg.ed.ac.uk/ ht/xsv-status.html.

[5] G. Sherlock and et al. T. Hernandez-Boussard. The
stanford microarray database. In
Nucleic Acids Research, 29(1):152–155, 2001., 2001.
http://daisy.stanford.edu/MicroArray/SMD.

[6] MAGE-ML.
http://www.mged.org/Workgroups/MAGE/mage-
ml.html.

[7] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D. J. DeWitt, and J. F. Naughton. Relational databases
for querying XML documents: Limitations and op-
portunities. In The VLDB Journal, pages 302–314,
1999.

[8] R. J. Miller, Y. E. Ioannidis, and R Ramakrishnan.
The use of information capacity in schema integration
and translation. In Proc. 19th International VLDB
Conference, pages 120–133, August 1993.

[9] Alin Deutsch, Mary Fernandez, and Dan Suciu. Stor-
ing semistructured data with STORED. In In Pro-
ceedings of the Workshop on Query Processing for
Semistructured Data and Non-Standard Data For-
mats, pages 431–442, 1999.

[10] Susan Davidson Carmem Hara Wenfei Fan. Propagat-
ing xml keys to relations. Technical Report MS-CIS-
01-31, University of Pennsylvania, Computer and In-
formation Science Department, 2001.

[11] Y.Chen, S. Davidson, and Y. Zheng. Indexing keys in
hierarchical data. Technical Report MS-CIS-01-30,
University of Pennsylvania, Computer and Informa-
tion Science Department, 2001.

[12] XQuery 1.0: An XML query language, June 2001.
http://www.w3.org/XML/Query.

[13] XUpdate. http://www.xmldb.org/xupdate/xupdate-
wd.html.

[14] XMARK the XML-benchmark project, April 2001.
http://monetdb.cwi.nl/xml/index.html.

[15] D. G. Higgins, R. Fuchs, P. J. Stoehr, and G. N.
Cameron. The EMBL data library. Nucleic Acids
Research, 20:2071–2074, 1992.

[16] Jeffrey D. Ullman. Principles of Database and
Knowledgebase Systems I. Computer Science Press,
Rockville, MD 20850, 1989.



[17] P. Buneman, S. Davidson, W. Fan, C. Hara, and
W. Tan. Reasoning about keys for XML. In Inter-
national Workshop on Database Programming Lan-
guages (DBPL), 2001.

[18] XML
Schema Quality Checker, February 2002. Available
at: http://www.alphaworks.ibm.com/tech/xmlsqc.

[19] T.J.Green, M. Onizuka, and D. Suciu. Processing xml
streams with deterministic automata and stream in-
dexes, 2001. unpublished.

[20] D. Florescu and D. Kossmann. Storing and querying
XML data using an RDBMS. In Bulletin of the Tech-
nical Committee on Data Engineering, pages 27–34,
September 1999.

[21] Phil Bohannon, Juliana Freire, Prasan Roy, and
Jerome Simeon. From XML-Schema to Relations:
A Cost-Based Approach to XML Storage. In ICDE,
2002.

[22] Ling-Ling Yan, Renee J. Miller, Laura M. Haas, and
Ronald Fagin. Data-driven understanding and refine-
ment of schema mappings. In SIGMOD Conference,
2001.

[23] Michael J. Carey, Daniela Florescu, Zachary G. Ives,
Ying Lu, Jayavel Shanmugasundaram, Eugene J.
Shekita, and Subbu N. Subramanian. XPERANTO:
Publishing Object-Relational Data as XML. In
WebDB (Informal Proceedings), pages 105–110,
2000.

[24] J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan,
and J. Funderburk. Querying XML Views of Rela-
tional Data. In Proceedings of the 21th International
Conference on VLDB, 2001.

[25] J. McHugh, J. Widom, S. Abiteboul, Q. Luo, and
A. Rajaraman. Indexing semistructured data. Tech-
nical report, Stanford University, Computer Science
Department, 1998.

[26] T. Milo and D. Suciu. Index structures for path ex-
pressions. In ICDT, 1999.

[27] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes.
Exploiting local similarity for efficient indexing of
paths in graph structured data. In ICDE, 2002.

[28] Quanzhong Li and Bongki Moon. Indexing and
querying XML data for regular path expressions. In
The VLDB Journal, pages 361–370, 2001.


