
SUCROSE THRESHOLDS AND GENETIC POLYMORPHISMS OF SWEET AND 

BITTER TASTE RECEPTOR GENES IN CHILDREN  

Paule Valery Joseph, MSN, CRNP, CTN-B 

A DISSERTATION 

in 

Nursing  

Presented to the Faculties of the University of Pennsylvania 

in 

Partial Fulfillment of the Requirements for the 

Degree of Doctor of Philosophy 

2015 

 

Supervisor of Dissertation     Co-Supervisor of Dissertation  
 
___________________________                    ___________________________ 

Charlene W. Compher, PhD, RD, FADA    Danielle R. Reed, PhD 
Professor of Nutrition Science                 Member, Monell Chemical Senses Center 
Graduate Group Chairperson 
 
_________________________ 
Connie Ulrich, PhD, RN, FAAN 
Associate Professor of Nursing; and Associate Professor of Bioethics, Department of 
Medical Ethics, School of Medicine 
 

Dissertation Committee  
 
Marilyn S. Sommers, PhD, RN, FAAN 
Lillian S. Brunner Professor of Medical-Surgical Nursing 
 
Danielle Reed, PhD 
Member, Monell Chemical Senses Center 
 
Julie Mennella, PhD 
Member, Monell Chemical Senses Center 



 
 

 

SUCROSE THRESHOLDS AND GENETIC POLYMORPHISMS OF SWEET AND 

BITTER TASTE RECEPTOR GENES IN CHILDREN  

COPYRIGHT© 

2015 

Paule Valery Joseph 

 

This work is licensed under the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 License 

To view a copy of this license, visit 

http://creativecommons.org/licenses/by-ny-sa/2.0/



 

 

iii

DEDICATION 

 

 

 

I dedicate my dissertation work to my family and my loving partner. 

 

 

“The best kind of people, are the ones that come into your life, and make you see the sun 

where you once saw clouds. The people that believe in you so much, you start to believe 

in you yourself. The people that love you simply for being you. The once in a lifetime 

kind of people.”-~Unknown 

 

 

 

 

 

 

 



 

 

iv 

ACKNOWLEDGMENTS 

I would like to first thank the members of my interdisciplinary dissertation 

committee—not only for their time and extreme patience, but also for their intellectual 

contributions to my development as a nurse scientist. I would like to acknowledge my 

dissertation chair and academic mentor, Dr. Charlene Compher, who supported my idea 

of choosing a study in genetics for my dissertation, for her unconditional time and 

support. Thank you to Dr. Danielle Reed for taking a chance with me despite my 

unconventional career trajectory, for her time and dedication to mentor me. Thank you 

for the Friday afternoon science discussions, they certainly allowed me to explore things 

through different lenses and more specially thank you for giving me the opportunity to 

develop my science in her laboratory. Thank you to Dr. Julie Mennella for all of her 

advice and the generous use of her dataset for this project. I am grateful she agreed to 

serve as a member of my dissertation committee, for challenging me and pushing my 

thinking. Also my gratitude to Dr. Marilyn Sommers for helping me think about 

methodological and disparity issues and for the many thought-provoking questions and 

ideas. Thank you for being a member of my dissertation committee. Without all of their 

guidance, persistence and constant sharing of their perils of wisdom this dissertation 

would have not been possible. I would like to express my appreciation to a number of 

readers who contributed their time during my studies Drs. Linda Hatfield, Bart de Jonghe, 

Joseph Libonati and Yvonne Paterson.  



 

 

v

My sincere regards to many people at Monell Chemical Senses Center, but a 

special token of gratitude to Anna Lysenko, Michael Marquis, Corrine Mansfield, Lauren 

Shaw, Loma Inamdar, Susana Finkbeiner, Daniel Hwang, Charles Arayata (CJ), Dr. 

Nuala Bobowski, Dr. Valentina Parma, Dr. Casey Trimmer and Dr. Katharine Prigge 

their expert technical assistance and friendship.  My experience in the lab was greatly 

enhanced thanks to the support they provided. Specially thanks to Ms. Patricia J. Watson 

for her valuable editorial assistance.  

My utmost gratitude to people at Penn. Particularly to Jesse Chittams who 

provided insight and statistical expertise that greatly assisted my dissertation.  Thank you 

to Dr. Sherry Morgan from the biomedical library for the innumerable times she provided 

help. I would also like to thank my very amazing PhD cohort and other doctoral students 

at Penn Nursing and other programs at Penn for their friendship, care and moral support. 

The PhD program can be very isolating and lonely. I have been blessed to find a tight-

knit group of friends to commiserate with. I will always appreciate all they have done for 

me and the many prayers. 

Profound thanks to my hard working parents who have sacrificed their lives for 

my sister and I.  My parents unconditionally and good examples have taught me to work 

hard for the things that I aspire to achieve and for instilling in me the importance of 

responsibility, endurance and education. They provided unconditional love and care. I 

certainly would not have made it this far without them. Thank you to my lovely sister, 

who has been my best friend and beacon of support during my PhD program. Also to the 

rest of my family with my warmest regards for believing in me and supporting me when 



 

 

vi 

all I had was a dream to come to America. Finally, to my partner I could have not asked 

for a better companion. Thank you for being my best friend and my rock, your 

unconditional support and encouragement helped me when I needed it the most. Thanks 

for always listening and being my cheerleader. To all, I will always be grateful for your 

constant prayers, source of support and encouragement during the times of success and 

challenges.  I am truly thankful for having each of you in my life. Above all, I owe it all to 

God Almighty for granting me the wisdom, health and strength to undertake this journey and 

enabling me to its completion.  

FUNDING ACKNOWLEDGEMENTS 

I am most grateful to the funding agencies that supported my training:  

1. Training grant for Research on Vulnerable Women, Children, and 

Families (T32NR007100) from the National Institute of Nursing 

Research of the National Institute of Health to the University of 

Pennsylvania, School of Nursing (awarded to M. Sommers). 

2. Johnson and Johnson, American Association of Colleges of Nursing 

3. International Society Of Nurses in Genetics 

4. Fontaine Society at the University of Pennsylvania 

 

This work was supported by the National Institute of Deafness and Other 

Communication Disorders (NIDCD), National Institutes of Health (NIH), grant R01 

DC011287 and an investigator-initiated grant from Ajinomoto, Inc., to Julie Mennella, 

PhD. Research Award received by Ms. Paule Joseph from the International Society of 

Nurses in Genetics helped support the purchase of assays use for genotyping samples.  

Ms. Paule Joseph was supported by training grant T32NR007100 from the National 

Institute of Nursing Research of the National Institutes of Health to the University of 



 

 

vii

Pennsylvania, School of Nursing (awarded to M. Sommers). The content is solely the 

responsibility of the authors and does not necessarily represent the official views of 

NIDCD or NIH.  



 

 

viii

ABSTRACT 

 

SUCROSE THRESHOLDS AND GENETIC POLYMORPHISMS OF SWEET AND 

BITTER TASTE RECEPTOR GENES IN CHILDREN  

Paule Valery Joseph 

Charlene Compher, PhD, RD 

Background: Many illnesses of modern society are due to poor food choices. Excess 

consumption of sugars has been associated with obesity and diabetes. Children, due to 

their basic biology, are more vulnerable than adults to overeat foods rich in sugars. Little 

research has focused on whether there are individual differences among children in their 

sensitivity to sweet taste and if so the biological correlates of such differences.  

Aims: The goal of this study was to determine whether variations in children’s sucrose 

detection thresholds relate to their age and sex, taste genotype, added sugar or caloric 

intake, temperament or food neophobia and adiposity.  

Methods:  Sucrose detection thresholds in children age 7-14 years were tested 

individually using a validated two-alternative, forced-choice, paired-comparison tracking 

method. Genetic variants of taste receptor genes were assayed: TAS1R2, TAS1R3 and 

GNAT3 (sweet taste receptor genes; one variant each) and the bitter receptor gene 

TAS2R38 (three variants). Children (n=216) were measured for body weight and height. 

A subset of 96 children was measured for percent body fat, waist to height ratio and 

added sugar and kcal intake. 
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Results: Mean sucrose threshold was 12.0 (SD 12.9), 0.23 to 153.8 mM. Girls were more 

sensitive than boys [t (214) = 2.0, p=0.047] and older children more sensitive than 

younger children [r (214) = -0.16, p = 0.016]. Variants in the bitter but not the sweet taste 

receptor genes were related to sucrose threshold and sugar intake; children with two 

bitter-sensitive alleles could detect sucrose at lower concentrations [F (2,165) = 4.55, p = 

0.012; rs1726866]. Children with these variants also reported eating more added sugar (% 

kcals; [F (2, 62) = 3.64, p = 0.032]) than did children with less sensitive alleles. Sucrose 

detection thresholds predicted central adiposity [F (2, 59) = 6.1, p = 0.016), but not 

percent body fat [F (2, 58) = 1.4, p = 0.238]) when adjusted for added sugar intake, 

temperament, age, sex and negative reaction to foods.  

Conclusions: Differences in sweet taste sensitivity may affect childhood dietary sugar 

intake with long-term health consequences, including obesity. There may be a more 

complex interplay between the bitter and sweet taste systems during development than 

previously appreciated. Understanding taste related parameters as well as other 

dimensions that may affect food consumption might help in developing weight 

management to minimize childhood obesity risk.  
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CHAPTER 1 

Introduction 

The sense of taste plays a major role in food consumption.  There are biological, 

inter/intra personal, and social-environmental factors that influence food intake, as shown 

in the Contento’s model in Figure 1 (Contento, 2007, 2008). Taste is a biologically 

determined behavioral predisposition that is linked to brain reward and sensory systems. 

The sense of taste is crucial in assessing a food’s nutritional value and is important in the 

development of food preferences and appetite. Taste information is sent to the feeding 

and reward system of the brain (Katz & Sadacca, 2011). The food-reward system plays a 

significant part in regulating eating behavior. Understanding why an individual eats what 

he/she eats and the driving factors behind food choices is important to addressing the 

epidemic of obesity since food consumption has a noteworthy role in the development of 

this condition (Grimm & Steinle, 2011). 
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Figure 1.  Contento's Model of Influences on Food Choices 

 
Copyright © 2007 (Contento, 2007, 2008) 

 

People of all ages eat sugars in excessive amounts, often because these foods have 

a potent hedonic appeal, particularly for children (Mennella, Finkbeiner, Lipchock, 

Hwang, & Reed, 2014).  In the childhood obesity literature, there is evidence that this 

over consumption of added sugars may contribute to obesity (Fiorito, Ventura, Mitchell, 

Smiciklas-Wright, & Birch, 2006; Lim et al., 2009; Linardakis, Sarri, Pateraki, Sbokos, & 

Kafatos, 2008). The increased BMI associated with the consumption of added sugars is 

long lasting, and that, when present in an early childhood, increased BMI will persist into 

adolescence (Fiorito, Marini, Francis, Smiciklas-Wright, & Birch, 2009). A prospective 

study conducted with African American children showed that increased of drinks with 

added sugar at baseline predicted increased weight gain when followed up 2 years later.  

 Through basic psychophysical research, we have learned that children live in 

different sensory worlds than adults when it comes to sweet taste (Mennella, Finkbeiner, 
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& Reed, 2012). Children’s basic biology makes them more vulnerable than adults to 

overeating foods that are rich in sugars (Mennella, 2008, 2014; Mennella et al., 2012). 

Not only are children born into this world being able to detect and prefer sweet tastes, the 

predominant taste quality of mother’s milk (Desor, Maller, & Turner, 1977), but also this 

heightened preference for sweet tastes persists throughout childhood and adolescence 

(Desor, Greene, & Maller, 1975; Mennella, Lukasewycz, Griffith, & Beauchamp, 2011; 

Pepino & Mennella, 2006).  

 
This preference may have evolved to solve a basic nutritional problem of 

attracting children to mothers’ milk and then fruits, sources of high energy and nutrient 

content, during periods of maximal growth (Coldwell, Oswald, & Reed, 2009; 

Drewnowski, 2000; Mennella, Finkbeiner, et al., 2014). However, we now live in an 

environment where sugars are abundant. Despite recommendations from organizations 

worldwide suggesting that we limit the intake of free sugars to less than 10% of total 

energy (U.S. Department of Agriculture, 2010; Welsh, Davis, & Shaw, 1993), recent 

estimates suggest that the levels of consumption far exceed recommended levels: US 

children and adolescents are consuming around 16% of their total caloric intake from 

added sugars (Ervin, Kit, Carroll, & Ogden, 2012). This overconsumption of sugars may 

lead to pediatric obesity.  

Many illnesses of modern society are due in part to poor food choices (Mennella, 

Finkbeiner, et al., 2014). Excess consumption of sugars and simple carbohydrates has 

been implicated in metabolic diseases like obesity and diabetes (Ambrosini et al., 2013; 
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Battelino & Shalitin, 2014; Gross, Li, Ford, & Liu, 2004; Wang, 2014). Metabolic 

syndrome is more prevalent in those with central adiposity, and this fat pattern may be 

exacerbated by a diet high in added sugar (Koh, 2010; Parikh & Mohan, 2012; Wang, 

2014). The obesity epidemic is plaguing the youngest members of our societies, affecting 

more than 42 million children globally (World Health Organization, 2015a). Overweight 

and obesity in children are important public health problems in the United States. One 

third of US children between the ages of 2-19 years are overweight and 16.9% are obese 

(Ogden, Carroll, Kit, & Flegal, 2014). Obese children develop many of the obesity- 

related complications such as diabetes and metabolic syndrome that adults do. Even if 

they don’t develop these complications as children, they are at greater risk as adults 

(Centers for Disease Control and Prevention [CDC], 2014; Ogden et al., 2014).  

As this daunting truth emerges, recognizing that obesity and other weight-related 

conditions are largely preventable is important. The identification of risk factors is one 

key to prevention (Dietz, 2004; Dietz & Gortmaker, 2001).  Eating behavior is among 

those risks. It has been well established in the literature that the amount of calories 

consumed by an individual impacts their weight (Birch & Fisher, 1998; Crowell et al., 

2015; Lee et al., 2011).  Whether food habits of children are determined by genetic or 

environmental factors, there is no doubt that children have a higher affinity for sweet 

foods (Pepino & Mennella, 2006). During the past few decades, age-appropriate 

psychophysical methods have been developed to determine the level of sweet taste most 

preferred by individuals of varying ages (Mennella et al., 2011).  

The sensation of sweet taste starts on the tongue and engages several signaling 



 

 

5

proteins that are coded by specific genes in the human genome.  Sucrose stimulates a 

receptor on taste cells; the resulting signal is conducted via G proteins and eventually 

produces a signal interpreted centrally as sweet taste (i.e., taste transduction).  The sweet 

taste receptor has two parts; the gene TAS1R2 encoding the first part was discovered in 

1999, and the second gene, TAS1R3, was discovered in 2001 (for a review, see Reed & 

McDaniel, 2006). The respective proteins from these genes are T1R2 and T1R3. Among 

the G proteins, the one associated with sweet signaling is gustducin (Gα protein subunit), 

encoded by GNAT3 (McLaughlin, McKinnon, & Margolskee, 1992).  The bitter taste 

receptor has also been linked with sweet taste. Previous work has shown that variation in 

the bitter taste receptor gene has been associated with individual differences in sweet 

taste preference (Mennella et al., 2012; Mennella, Pepino, & Reed, 2005) and children’s 

selection of sweet tasting foods (Keller et al., 2014). 

When compared to adults, children prefer a more concentrated sweet tasting 

solution than adults (Liem & Mennella, 2002; Mennella, Finkbeiner, et al., 2014; 

Mennella et al., 2012; Mennella et al., 2011), with the switch-over to adult like patterns 

of preferences occurring during mid adolescence (Desor & Beauchamp, 1987; Mennella 

et al., 2011). The level of sucrose most preferred was related to measures of growth; 

children who were taller for their age preferred sweeter solutions than did those that were 

shorter (Mennella, Finkbeiner, et al., 2014). Most research has focused on sucrose 

preference, and to date there is a paucity of research on children’s taste sensitivity, which 

is the ability to perceive sweetness at low sugar concentrations.  

 In adult populations, variation in the TAS1R2, TAS1R3 and GNAT3 genes relates 
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to differences in the ability to perceive sweet tasting stimuli. For TAS1R2, adults with one 

or two copies of the V alleles had a lower habitual sugar intake (Eny, Wolever, Corey, & 

El-Sohemy, 2010).  TAS1R2 showed no significant effect with sucrose taste sensitivity 

(Fushan, Simons, Slack, Manichaikul, & Drayna, 2009). 

 For GNAT3, adults with two C alleles (CC) were better able to sort low 

concentrations of sucrose into the correct order of concentrations than those with two T 

alleles (TT; rs7792845) (Fushan, Simons, Slack, & Drayna, 2010).  

For TAS1R3, adults with one or two copies of the T nucleotide (TT) were less 

sensitive to the taste of sucrose than were those with two copies of the alternative C allele 

(CC; rs35744183) (Fushan et al., 2009). The TAS1R3 genotype is also related to with 

differences in sweet preference. Adults with the TT genotype of the TAS1R3 gene also 

preferred higher levels of sweetness than those with the CC genotype (Mennella, 

Finkbeiner, et al., 2014; Mennella et al., 2012; Mennella, Reed, Mathew, Roberts, & 

Mansfield, 2014), possibly because they need more sucrose to obtain the same hedonic 

effect. 

 To our knowledge, whether genotype-related differences in sweet taste sensitivity 

exist among children has not been investigated.  Although some studies have examined 

these genes and their variants in children, these were studies of preference and not 

thresholds (Mennella et al., 2012; Mennella, Reed, Mathew, et al., 2014) and none found 

a relationship between genetic variation and sweet taste preferences among children. We 

do know, however, that variation in the TAS1R3 gene does not relate to differences in 

levels of sucrose preference in children, as it does in adults (Mennella, Finkbeiner, et al., 
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2014; Mennella et al., 2012; Mennella, Reed, Mathew, et al., 2014).  

Variation in the bitter receptor gene TAS2R38 may also explain individual 

differences in sweet preferences among children. TAS2R38 contains three variant 

locations, best known for their association with the bitter perception of thioureas, such as 

propylthiouracil (Bufe et al., 2005; Kim et al., 2003). Children with the bitter-sensitive 

genotypes (AP, PP; rs713598, A49P) prefer significantly higher levels of sucrose than 

those with the bitter-insensitive genotype (AA) both in laboratory-based measures and in 

reported preferences of real-world foods like cereal and beverages (Mennella et al., 2012; 

Mennella et al., 2005). Other investigators also report that children who are bitter 

sensitive consume diets higher in sugar than do bitter-insensitive children (Keller & 

Tepper, 2004).   

Purpose and Significance 

Significant progress has been made in understanding the interactive role of genes 

and environment in the development of obesity across the lifespan. For reviews see the 

following references (Huang & Hu, 2015; Qi & Cho, 2008; Speakman, 2004; Thomas, 

2010).  In behavioral genetics research, taste science has focused on how variation in 

taste receptor genes accounts for individual differences in a variety of psychophysical 

measures in adults, such as taste detection thresholds, taste preference, and diet related 

food behaviors. Most of what is known to date regarding sweet taste in children and 

adolescents relates to preference. Measuring detection thresholds, the lowest 

concentration of a substance (i.e. sugar) that can be reliably detected (Bartoshuk, 1991; 

Bartoshuk, 1978), add a new dimension to our knowledge of children. If an individual’s 



 

 

8

detection threshold is high (a higher concentration is needed to detect a substance), it 

means that they have less sensitivity to the given stimulus. Equally, if the detection 

threshold is low, they are more sensitive; it means that they require a lesser concentration 

to detect the stimulus. With the increased prevalence of childhood obesity, a basic 

understanding of determinants of taste threshold differences could give us insights to 

potential preventative measures. But little is known about the role of genetics and sucrose 

detection thresholds in children. While several investigators have examined taste 

thresholds in children, this study was among the first to examine sucrose detection 

thresholds in the context of the unique approach of assessing genetic variants known to 

show sweet sensitivity in adults (Eny et al., 2010; Fushan et al., 2010; Fushan et al., 

2009).  An understanding of the factors associated with individual variability in sweet 

thresholds may provide insight into why some children over consume sweet foods or are 

overweight/or obese.   

In addition, there are many factors that may contribute to difference in food 

consumption (called diet-related food behaviors in this study). Of these factors, the role 

of temperament has been associated with eating behaviors (Haycraft, Farrow, Meyer, 

Powell, & Blissett, 2011) as well as obesity in infancy (Carey, 1985; Darlington & 

Wright, 2006; Faith & Hittner, 2010), childhood (Agras, Hammer, McNicholas, & 

Kraemer, 2004; Carey, Hegvik, & McDevitt, 1988), and in adulthood (Fassino et al., 

2002; Pulkki-Raback, Elovainio, Kivimaki, Raitakari, & Keltikangas-Jarvinen, 2005). In 

addition, temperament has been associated with sweet taste preference in children (Liem 

& Mennella, 2002) but not sucrose detection thresholds. Some dimensions of child 
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temperament particularly relate to eating behaviors (Forestell & Mennella, 2012; 

Haycraft et al., 2011; Pliner & Loewen, 1997). Furthermore, prior work revealed a 

significant effect of taste genotype and race/ethnicity on mothers’ perceptions of the 

child’s temperament, activity in particular (Mennella et al., 2005).  

With these points in mind, we examined the degree of variation in children’s 

sucrose detection thresholds and whether sweet and bitter taste receptor-related genotypes 

might partially account for variation in taste thresholds. Genotypes that were related to 

sucrose threshold and sweet food consumption were examined for the propensity of 

children to consume part of their calories as added sugars. In addition, estimates of 

dietary intake of added sugars (g) and daily caloric intake (kcal/day) were available for a 

subset of the children. We also hypothesized that if sweet taste sensitivity, diet and 

obesity share a common etiology, then sweet sensitivity could potentially provide insights 

into obesity risk. To that end, we examined how sensitivity to sweet taste varies with 

adiposity measures as assessed by BMIz (a ratio of weight to height compared with 

national norms by age and sex); percent body fat (an index of overall adiposity), and 

central obesity [waist-to-height ratio (WHtR)].  Considering that there are other factors 

that affect both obesity and taste, we considered child’s personal characteristics as 

measured by the temperament and food neophobia scales.  Those dimensions of the scale 

that were associated in the literature with eating behaviors were assessed (negative 

reaction to foods and food neophobia). Then all dimensions of temperament and food 

neophobia were considered when looking at multiple factors that may contribute to 

obesity. This work addressed a gap in the literature of chemosensory science. The study 
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described herein also served as groundwork for future studies that will further elucidate 

these relationships. 

Specific Aims  

The consumption of sweet foods by children likely contributes to obesity, but 

little attention has been paid to how children differ in their sense of sweet taste and how 

these differences might affect their health and behavior. A paired-comparison, forced-

choice psychophysical method described herein was used to phenotype children for sweet 

taste sensitivity (Mennella et al., 2011). Relationships between sucrose detection 

thresholds and the sweet and bitter taste receptor genes have had limited examination in 

children.  

  This study was framed with the following three aims: 

Aim 1a: We determined whether sucrose detection thresholds, personal characteristics 

(temperament, food neophobia), diet-related food behaviors (caloric or added sugar 

intake) or adiposity measures varied among children by demographic variables (age, sex). 

H1a: We hypothesized that sucrose detection thresholds, personal characteristics 

(temperament, food neophobia); diet-related behaviors (caloric or sugar intake) 

and adiposity measures would vary in children by age and sex. 

Aim 1b: We determined whether sucrose detection thresholds in children correlate with 

personal characteristics (negative reaction to foods and food neophobia), diet-related food 

behaviors as measured by intake (caloric or added sugar intake) and adiposity measures.   
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H1b.  We hypothesized that sucrose detection thresholds would be associated 

with personal characteristics (negative reaction to foods and food neophobia), 

diet-related behaviors (caloric or added sugar intake) and adiposity measures.  

Aim 2: We determined whether sweet and /or bitter taste receptor genes (TAS1R2, 

TAS1R3, GNAT3, and TAS2R38) predict differences in sucrose detection thresholds and 

diet-related behaviors (caloric or added sugar intake) in children.  

H2: We hypothesized that allelic variation in TAS1R2, TAS1R3, GNAT3, and 

TAS2R38 genes would partially account for differences in sucrose detection 

thresholds and diet-related food behaviors among children while adjusting for 

covariates of age, sex and adiposity. 

Aim 3: We determined whether sucrose detection thresholds, sweet and bitter taste 

receptor genotype, personal characteristics (temperament, food neophobia) or sweet food 

diet related behaviors (added sugars as g/kg of body weight, % kcal as added sugars) 

were related and predicted measures of adiposity (waist to height ratio and percent body 

fat) in children. 

H3: We hypothesized that adiposity would be predicted by sucrose detection 

thresholds, sweet or bitter taste receptor genotype, personal characteristics 

(temperament and food neophobia) or sweet food diet-related behaviors (added 

sugars g/kg of body weight, % kcal as added sugars).  

Theoretical Framework and Conceptual Model 

Considering the multiple factors that influence taste and health (i.e. adiposity), 

two theoretical frameworks were used to frame this study.  First, Contento’s model of 
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influences on food choices (Figure 1) was used as a lens to examine the intersectionality 

of biology, behavior, and environmental factors, as they play a role in taste and adiposity. 

Although Contento’s model was first designed with a focus in explaining components or 

forces that may impact nutrition education programs, it fits nicely to study individual 

choices and behaviors about food. In Contento’s model “biologically determined 

behavioral predispositions” refers to individuals’ preference for sweet and dislike of 

bitter and sour tasting foods as well as a mechanism for the interplay of the food-reward 

system with sensory specific satiety. The second component “experience with food” 

focuses on the learned experience with food whether it is by physiological or social 

associations. The third part “personal factors” highlights both intra and interpersonal 

factors that influence food choice such as knowledge, attitudes, and beliefs, as well as 

families and social networks. Lastly, “environmental factors” states that food access and 

availability of foods also plays a role in food choices (Contento, 2007). Here the terms 

“food choice” and “diet-related behaviors” are referred to as outcomes. A key 

acknowledgement of this model is that all these influences interact dynamically with each 

other and they are not happening independent of each other.   

Second, the behavioral genetics framework was used to examine genetic 

underpinnings of behavioral phenotypes (i.e. taste thresholds). The gene-environment 

interaction is defined as the diverse influence of a genotype on risk for disease for 

individuals with different environmental experiences (Ottman, 1996). This model served 

as a lens to understand the gene-environment interaction that can affect both taste and 

adiposity, since this framework proposes that the interaction between genes and the 
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environment affects the development of behavior (Fuller & Thompson, 1960; Maxson, 

2002). In this model, the environment is defined as an exposure, which can be physical, 

chemical, biological, a behavioral pattern, or a life event among others. In this model, 

genetics is defined as genes and their genotypes.  Phenotypes are the observable traits of 

an organism (Wojczynski & Tiwari, 2008) resulting from the interactions of genotypes 

and the environment. Phenotypes can be somatophenes or psychophenes, which are 

behavioral phenotypes (Fuller, 1979; Fuller & Willmer, 1973), the latter characterizing 

behavioral genetics. Somatophenes can further be classified as chemophenes (i.e., 

hematocrit, platelets) or morphenes (i.e. body size). However, one of the limitations of 

this model is that it doesn’t take into account an individual’s personal characteristics; in 

addition, the phenotype is limited to behavioral ones only.  

To create a comprehensive model, the underpinnings of the two theories were 

merged (shown in red Figure 2), an additional sphere was added to Contento’s model 

named biological factors highlighting taste related genes that were measured in this 

study, as well as age and sex, since these measures are related to “biologically determined 

behavioral predispositions”. Under the section of biologically determined behavioral 

predispositions, sucrose detection threshold was added, since it might be associated with 

diet related food behaviors. Other behavioral phenotypes measured in this study-

included: temperament, food neophobia, adiposity and dietary related behaviors. In this 

revised model, diet related behaviors were operationalized as dietary intake. To further 

complete the framework, the adiposity was added to the diagram as a body of research 

indicates that diet-related food behaviors are associated with adiposity.  
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Figure 2. Integrated Theoretical Frameworks 

 

 

To further address the aims of this study, a conceptual map was developed with 

the variables used in this study to further hypothesize whether or not children’s genetic 

differences affect sucrose detection thresholds and to assess the effects of age, sex, diet, 

temperament and adiposity (see Figure 3). This was used as lens to understand how 

genes and environments work together to influence behaviors, and what specific genes 

might be responsible for the behavior studied herein.  We understand that genetics alone 

is not the sole contributor to taste perception and adiposity; therefore other important 
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determinants such as age, gender and personality characteristics are included in this 

framework (Eysenck, 1990; Freedman, Khan, Serdula, Ogden, & Dietz, 2006; Freedman 

et al., 2007; Keskitalo, Tuorila, et al., 2007). The new model assumes that adiposity and 

taste thresholds arise from a complex interplay between genetics, temperament, food 

neophobia and diet related food behaviors. The first intention of this conceptual model 

was to develop testable hypotheses that informed this study. Secondly, this conceptual 

model illustrates the hypothesized links (shown in dotted arrows) and guided the analysis 

of the variables chosen for this study (see Specific Aims section). 

Some of the hypothesized links are based on what have been published in the 

literature to date; both in adults and children and some are being tested in this study.  
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Figure 3. Conceptual Model: with Hypothesized Links 

 

Concepts and Definitions 

The purpose of the following section is to briefly define a few concepts that are 

used throughout this document. It is divided between taste related definitions, genetics 

concepts, obesity and diet related terms (Table 1).  
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Table 1. Concepts and Definitions 

Taste-Related Terms 

Basic Tastes  Refers to the five taste dimensions: sweet (i.e. sugars), sour (i.e. acids), salty (i.e. 
sodium chloride), bitter (i.e. alkaloids) and umami (i.e. monosodium 
glutamate)(Guyton, Hall, & Hall, 2006).  

Flavor Refers to the combination of taste and smell or the combination of taste, smell, 
and chemical irritation. Flavor describes the sensation of the food or substance 
being ingested (A. K. Bartoshuk, 1991; L. Bartoshuk, 1991; Dominguez, 2011; 
Weiffenbach & Bartoshuk, 1992). Flavor is a complex phenomenon brought forth 
by a multimodal sensory response that includes taste, olfaction, and perception 
(e.g., the burn of capsaicin or the tickle of carbonation) (Beauchamp & Mennella, 
2011; Small, 2012).  

Hedonic Response 

to Foods 

Refers to the degree of pleasure an individual experience from a food.  Foods or 
substances can be qualified as pleasant, appetizing (e.g., positive hedonic 
qualities: sweeter, creamier) or unpleasant and aversive (Lowe & Butryn, 2007).   

Palatability Refers to how an individual perceives a particular substance to be likeable. 
Palatability takes into account factors such as taste, an individual’s physiological 
state, and learning history (Yeomans, Blundell, & Leshem, 2004). 

Psychophysics It is a quantitative science that studies the associations among physical stimuli and 
perceptions (Anderson, 1990).  

Taste  Defined as the sense that individuals are able to recognize when a substance 
contacts the taste buds and subsequently triggers nerve responses to the taste 
centers in the brain. Taste is essentially the chemical reaction that allows us to 
detect whether the food being consumed contains bitter, salty, umami, sour or 
sweet compounds (Barlow & Klein, 2015; Bartoshuk, 1991).  

Taste Buds They are well-defined structures composed of taste receptor cells and supporting 
cells. It is considered the smallest functional element of the gustatory system 
(Barlow & Klein, 2015; Fabian, Beck, Fejerdy, Hermann, & Fabian, 2015; Jung, 
Akita, & Kim, 2004).  

Taste Intensity Refers to the strength of the perceived taste of a substance. It can be measured as 
no flavor or extremely strong flavor (Stevens, 1969).  

Taste Thresholds Taste thresholds refer to the minimum amount of a stimulant that elicits a 
response to our sense of taste; therefore, concentrations that are below the 
detection thresholds of an individual are not perceived.  It is the lowest 
concentration of a substance (e.g., sugar) that can be reliability detected. People 
differ on how sensitive they are to certain compounds. For example: we can have 
an individual taste two substances (water and sucrose at a certain concentration) 
and determine at what concentration they are able to detect the substance 
(Bartoshuk, 1991; Bartoshuk, 1978).  

Taste Preference A test used to compare two substances and subjectively evaluate if there is a 
difference in the liking of the compound being tested.  For example: we can 
provide two cups of sucrose with different concentrations and ask which one they 
prefer (Drewnowski, 1997).  

Taste Receptor 

Cells  

A sensory receptor cells that transmits information from a substance into a nerve 
signal and carries gustatory information to the brain (Li et al., 2002). 

Genetics-Related Terms 

Alleles  They are polymorphisms of the same gene (Hart & Jones, 2005).    

Diplotype A pair of haplotypes from homologous chromosomes (Zuo, Wang, & Luo, 2014).  

Gene A segment of DNA, known to be the molecular unit of heredity. It controls the 
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production of specific proteins that conduct a function in the body (Pearson, 
2006).   

Haplotype  A combination of alleles at multiple loci occurring on the same chromosome. 
They are inherited together (Malats & Calafell, 2003; Zuo et al., 2014).   

RefSNP (rs) 

Numbers or rs# 

The symbols mean that the SNP has been officially registered and given a 
reference SNP identifier by dbSNP (National Center for Biotechnology 
Information, 2005).  

Genotype Refers to a collection of genes responsible for an individual’s observable traits. It 
is also the two alleles inherited for a specific gene (Malats & Calafell, 2003).  

Phenotype The actual characterization of physical traits observed in an individual’s, such as 
taste (Malats & Calafell, 2003).    

Homozygous An individual that has two identical alleles for the gene in question (i.e.: CC, 
cc)(Strachan & Read, 2010).  

Heterozygous An individual who has two different alleles for a gene (i.e.: Cc, Bb) (Strachan & 
Read, 2010).  

Locus (Loci) 

 

A gene location on a chromosome (Malats & Calafell, 2003).   

G- Protein 

Coupled 

Receptors 

A large family of protein-coupled receptors that sense molecules outside the cell 
and activate inside signal transduction pathways and, ultimately, cellular 
responses (Venkatakrishnan et al., 2013).   

Hardy-Weinberg 

Equilibrium 

(HWE) 

The theory that states that allele and genotype frequencies will continue to be 
constant from generation to generation in a given population (Crow, 1999; Malats 
& Calafell, 2003).   

Single Nucleotide 

Polymorphisms 

(SNPs) 

SNPs are variations of a single base pair in a distinct DNA structure, called a 
nucleotide (i.e.: a SNP replaces the nucleotide thymine (T) with a nucleotide 
cytosine (C) within a DNA segment (Strachan & Read, 2010).  

Obesity and Diet-Related Terms 

Added Sugars Refers to the additional sugars, syrups, and other caloric sweeteners added when 
foods are processed or prepared. Examples of added sugars include brown sugar, 
cane sugar, corn sugar, corn sweetener, corn syrup, dextrose, fructose (when not 
naturally occurring), fruit juice concentrates, glucose, high-fructose corn syrup, 
honey, invert sugar, lactose (when not in milk or dairy products), maltose (U.S. 
Department of Agriculture, 2010).   

Adiposity  In this document, adiposity refers to any body weight-related measure by which 
body fatness is assessed, such as waist-to height ratio; percent body fat, and BMI.  

Body Mass Index 

(BMI) 
BMI is a measure of body weight relative to height.  BMI; calculated as weight in 
kilograms divided by the square of height in meters (Janssen, Katzmarzyk, & 
Ross, 2002).  

BMI z Score Body mass index z-scores, also called BMI standard deviation (SD) scores, are 
measures of relative weight adjusted for child age and sex (Kuczmarski et al., 
2002). 

BMI Percentile  For children, BMI is reported as sex- and age- specific percentiles and as z-scores. 
BMI charts compare their height and weight to other children of their same sex 
and age. For children ages 2 to 19 years, those who are at or above the 85th 
percentile are considered overweight. Those who are at or above the 95th 
percentile are considered obese (Bartok, Marini, & Birch, 2011; Kahn, 
Imperatore, & Cheng, 2005). 

Metabolic 

Syndrome 

A group of risk factors that increases an individual risk for heart disease, diabetes, 
and stroke among others. Metabolic risk factors include a large waist size 
(abdominal obesity), high blood pressure, high blood sugar levels, high levels of 
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triglycerides, and low levels of high-density lipoprotein (HDL) (Despres & 
Lemieux, 2006).  
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CHAPTER 2 

The sense of taste is produced when a chemical stimulus or substance, comes into 

contact with taste cells in the oral cavity and triggers nerve impulses to special taste 

centers in the brain (Purves et al., 1997). Taste is essentially the chemical reaction that 

allows us to detect whether the food being consumed contains salty, sweet, sour, bitter, or 

umami compounds. It is the sense that alerts an individual to recognize and ingest 

nutrients while avoiding toxins (Chaudhari & Roper, 2010).  

Taste plays a role in eating behaviors. Taste detection and differentiation of taste 

stimuli regulate how people distinguish food and develop dietary habits (Cruickshanks et 

al., 2009; De Jong, Mulder, De Graaf, & Van Staveren, 1999).  This is possible by the 

development of taste perception, which allows people to distinguish between different 

flavors and help in determining their taste preferences and dislikes. These factors affect 

not only food selection but also the amount of food a person ingests (El-Sohemy et al., 

2007; Garcia-Bailo, Toguri, Eny, & El-Sohemy, 2009). Individual variations in taste 

perception may therefore affect dietary status and diet- related diseases such as obesity 

(Cicerale, Riddell, & Keast, 2012). However, eating behaviors can also be affected by 

taste preferences; both are influenced by social, physiological, genetic, and psychological 

factors. These can vary among cultures, age groups, and sexes.   

Early studies pinpointed taste as one of the prominent elements in food 

consumption and selection (Drewnowski, Kurth, Holden-Wiltse, & Saari, 1992; Glanz, 

Basil, Maibach, Goldberg, & Snyder, 1998; Nasser, 2001). Although studies of taste have 

been around for hundreds of years, new discoveries in this area of research hold much 
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promise for explaining a person’s food choices and eating behaviors that may lead to the 

development of overweight and obesity.  

In the United States, the prevalence of childhood obesity has tripled in the past 30 

years. Specially, one- third of preschool-aged children are at risk for obesity ((CDC), 

2012; Ogden et al., 2014). The long term and short-term effects of obesity on health and 

well being of children are concerning. Children are at risk of developing conditions such 

as the likelihood to develop diabetes, hypertension, high blood pressure, and the greater 

risk for bone and joint problems and sleep apnea ((CDC), 2014). In addition to the 

physical effects, they are also at high risk of experiencing social stigmatization and 

discrimination (Li, Ford, Zhao, & Mokdad, 2009). Understanding the factors driving their 

food choices is important in this health context. 

American children age 2 and above ingest over 15% of total energy from added 

sugars (Welsh & Cunningham, 2011; Welsh, Sharma, Grellinger, & Vos, 2011).  There is 

a growing concern that this overconsumption of added sugars has contributed to the 

obesity epidemic (Drewnowski & Rehm, 2014; Ervin et al., 2012; Ervin & Ogden, 2013).    

The alarming consumption of added sugars has become an important issue. 

Efforts have been made by several organizations to set recommendations to limit added 

sugars in diet. The Institute of Medicine (2002) recommends that added sugars be less 

than 25% of total calories in the diet. Other organizations such as the American Heart 

Association have recommended that children 2- 8 years should not consume more than 3-

4 teaspoons of added sugars a day (Johnson et al., 2009). The latest report by the World 

Health Organization recommended that added sugars be less than 10% of total energy 
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intake, and suggested that an additional decrease to below 5% or approximately 25 grams 

(6 teaspoons) per day might produce further health benefits (World Health Organization, 

2015).  

Children are born with a liking for sweet tastes. Sweet taste is a sign that a food 

has calories and nutrition. Foods that are sweet tend to be eaten in order to provide 

energy needed to promote growth and development. Preference for sweet tasting foods is 

related to environmental effects, evolutionary needs and genetics (Keskitalo, Knaapila, et 

al., 2007; Liem & Mennella, 2002; Reed & McDaniel, 2006). As much as children are 

drawn to sweet taste, they vary in their sensitivity to sweet taste.  This variation may 

explain individual differences in their consumption of sweet tasting foods.  

Genetic factors that regulate the gustation system and its function may possibly 

account for individual differences in sweet taste perception in children. Genetic diversity 

of sweet taste receptor genes (TAS1R2, TAS1R3, GNAT3) has been shown to play a role 

in sweet taste sensitivity in adults (Eny et al., 2010; Fushan et al., 2010; Fushan et al., 

2009), but no study to date has assessed this influence on sweet taste sensitivity in 

children. However, studies have shown that sweet taste preference in adults is associated 

with TAS1R3 genotype (Mennella, Reed, Mathew, et al., 2014).  In addition, studies have 

found that genetic sensitivity to bitter taste may also influence preferences for sweets. 

Mennella et al. (2005) reported that children with the bitter-sensitive TAS2R38 genotype 

had higher preferences for sweet tasting foods and beverages. Children with one or two 

bitter sensitive alleles (AP or PP) preferred higher concentrations of sucrose solutions 
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than those children who had two copies of the bitter insensitive allele (AA). The 

association between sweet taste sensitivity and food preferences and consumption is not 

clear. However, bitter taste sensitivity may explain the negative reaction of children and 

adults to bitter foods such as vegetables (Garcia-Bailo et al., 2009). In the sweet taste 

literature, some studies hypothesize that sweet taste sensitivity may explain sweet food 

consumption (Eny et al., 2010; Wasalathanthri, Hettiarachchi, & Prathapan, 2014).  

Development of Taste  

The development of the senses of taste happens parallel to the development of the 

nervous system in the embryonic stage (weeks 1-8 of gestation), at the beginning of the 

fetal stage, and matures at variable rates (Lawless, 1985; Northcutt, 2004). By the 

culmination of gestation, the taste system is activated by the compounds carried by the 

amniotic fluid (Nickalaus, Boggio, & Issanchou, 2005).  Studies specifically examining 

the diversity of tastes and scents experienced by individuals have found sweet taste 

compounds to be transmitted through the amniotic fluid to the fetus (Mennella, Jagnow, 

& Beauchamp, 2001). The moment that the fetus starts to swallow, taste receptors are 

activated, around twelfth week of gestation (Mennella & Beauchamp, 1996). Early 

studies conducted in the area of taste development revealed that taste buds are found after 

8 weeks of gestation, and by 13 weeks they are similar to those of adults (Forestell & 

Mennella, 2012; Witt & Reutter, 1996). There is evidence that sweet taste is the first 

sense to develop (Mela, 2001; Mennella & Beauchamp, 1996).  
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Foods that taste sweet are often highly preferred over those that taste bitter by 

children and adults. Human preference for sweetness and how this manifests during 

development has been of interest to many investigators (Berridge & Robinson, 2003; 

Drewnowski, Mennella, Johnson, & Bellisle, 2012; Mennella, Forestell, Morgan, & 

Beauchamp, 2009; Ventura & Mennella, 2011). These studies have reinforced the 

hypothesis that the sense of sweet is present before birth—sweet taste is distinguished by 

unborn infants. Newborns clearly sense and show pleasure in sweet tastes (Mennella et 

al., 2005). Despite these known innate preferences for sweet taste, the degree of 

preference for sweet foods varies across individuals. These differences in sweet 

preferences are influenced by age, gender, previous exposures, and hormonal 

fluctuations, as well as genetics (Faas, Melgert, & De Vos, 2010; Overberg, Hummel, 

Krude, & Wiegand, 2012; Reed & McDaniel, 2006).  

Taste and Age 

Fetus 

A baby’s first experiences with taste occur long before birth. Studies have 

examined taste programming in utero, focusing on maternal diet during pregnancy and 

whether it has an impact on infant food preferences. Foods consumed by the mother 

affect the content of the amniotic fluid—the unborn infant swallows this fluid and is thus 

exposed to different flavors (Mennella, Johnson, & Beauchamp, 1995). In fact, neonates 

may identify and prefer flavors they were exposed to before they were born (Beauchamp 

& Mennella, 2011; Forestell & Mennella, 2012; Mennella, 1995; Schaal, Marlier, & 
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Soussignan, 2000). Mennella (1996) showed that neonates born of mothers who 

consumed carrot juice during pregnancy preferred a carrot-flavored cereal during infancy 

compared to the control group whose mothers had not consumed carrot juice (Mennella 

et al., 2001). 

Newborn  

From the earliest studies on the investigation of taste in humans, researchers have 

observed that newborns can detect and have an affinity towards sweet taste (Beauchamp 

& Moran, 1982; Maller & Desor, 1973; Tatzer, Schubert, Timischl, & Simbruner, 1985).  

Facial gestures showed that the newborn could distinguish several taste qualities (bitter, 

salty, sour, sweet and umami). Responses to sweet and umami by neonates are usually 

thought to express satisfaction (Mennella et al., 2009). Desor, Maller, and (1973) have 

shown that from birth human babies prefer sugar solutions to water, which suggested that 

sweet taste preference might be manifested before any cultural and environmental factors 

are active. Steiner (1979) also showed in earlier studies that newborns preferred sugary 

solutions to water. More recent studies have concluded that newborn infants display 

preferences for high sugar concentrations and select solutions that are sweeter 

(Drewnowski et al., 2012; Pepino & Mennella, 2006). Newborns prefer sweet tastes from 

birth and will choose to drink from bottles of sweetened water but will reject substances 

that taste bitter or sour (Liem & Mennella, 2002).   

Sweet taste has been found to also have analgesic effects in children.  The 

combination of sweet taste and a pacifier has been found to have a calming effect on 
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newborns, and it has been used as an analgesic for infants (Mennella, Pepino, Lehmann-

Castor, & Yourshaw, 2010; Pepino & Mennella, 2005). The calming effect of sweet 

tasting substances has also been observed in both preterm and full term newborns (Smith 

& Blass, 1996). Overall, the desirability for sweet and the aversion towards bitter and 

sour tastes come to be more marked during childhood but tend to decline in adult life. 

The early attraction to sweetness is reinforced by exposure to sweet stimulation (Nicklaus 

et al., 2005). 

Infant  

Age differences in sweet taste preference have been widely studied (Green, 

Jacobson, Haase, & Murphy, 2013; Mojet, Christ-Hazelhof, & Heidema, 2005; Mojet, 

Heidema, & Christ-Hazelhof, 2003; Overberg et al., 2012). Taste preferences continue to 

develop during a child’s first year of life. Early studies indicated that this innate 

receptiveness to sweets has evolutionary origins and is inherent (Berridge & Robinson, 

2003; Drewnowski et al., 2012; Mennella & Beauchamp, 1998). Early exposure to sweets 

leads to an increased preference for these foods and a preference for higher 

concentrations of sugar (Harris, 2008; Pepino & Mennella, 2008).  

Although preference for sweet is present at birth, this preference it is known to 

decrease with age. Schwartz, Issanchou, and Nicklaus (2009) evaluated acceptance of the 

five tastes (salt, sour, sweet, bitter, and umami) in the same infants at 3, 6, and 12 months 

of age, based on facial expressions during consumption, and found that taste preferences 

did indeed change with age. They found that at each age sweet and salty tastes were the 
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most preferred. Beauchamp and Moran (1982) studied taste preferences 

for sucrose solutions and water in human infants at birth and at 6 months of age. They 

found that the dietary exposure of sweetened water maintained their preference for 

sucrose solutions at age 6 months, and the acceptance for sweet taste was slightly 

decreased at 6-12 months of age. Several hypotheses have been proposed to explain this 

developmental change in sweet preference. One explanation is that dietary experiences 

modify the degree of the preference for sweet taste as early as 6 months after birth. The 

introduction of solid foods, which may be less sweet than milk, might be driving the 

noted decrease in preference, which may be a continuous process through adulthood. A 

second explanation is that maternal diet may be a contributory factor, especially for 

babies who are breast-feed. Human breast milk often contains flavors from compounds 

that a breast-feeding woman takes in through her diet. Flavors from foods consumed by 

the mother such as vanilla are detectable in breast milk 1-2 hours after consumption 

(Mennella & Beauchamp, 1996). Therefore, the taste of breast milk may also have an 

effect on the later preferences of newborns (e.g., sweet). Babies whose mother’s breast-

feed may perhaps be more tolerant of a range of flavors once they begin consuming solid 

foods (Beauchamp & Mennella, 2011; Maier, Chabanet, Schaal, Leathwood, & 

Issanchou, 2007). 

 Childhood and Adolescence  

Segovia et al. (2002) compared male children 8-10 years of age to adult males. 

The children had a higher density of anterior papillae than did the adults, a factor that 
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might make them more sensitive to sucrose or sweet flavors. A later study involving 

8,900 Danish school children showed a perceptible change in taste perception as the 

children developed into teenagers. In this study, teenagers showed an increased capacity 

to distinguish flavors, as well as a decreased preference for sweet flavors, compared with 

younger children.  

A study by Mennella et al. (2012) analyzed individual’s differences in sucrose 

and fat preference related to age, genotype, and lifestyle. In this study, children and their 

mothers chose the concentration of sucrose mainly preferred in water using identical, 

two-alternative forced-choice procedures and ranked samples based on intensity of 

sweetness. In general, while children were found to prefer higher concentrations of 

sucrose in water and pudding than did their mothers, children preferred a lesser 

concentration of fat in pudding. Further studies revealed that the perception of sweet taste 

remains finely tuned throughout childhood and adolescence (Desor, Greene, & Maller, 

1975; Mennella & Beauchamp, 2005; Pepino & Mennella, 2006) and declines with age 

(Desor & Beauchamp, 1987). The rationale for the changes in preference with age 

continues to be explored both in human and in animal models (Mennella, 2008).  

Foods that taste sweet are often highly preferred over those that taste bitter. The 

sense of taste is essential to one’s capacity to obtain needed nutrients. Despite this 

established preference for sweet taste (Berridge & Robinson, 2003; Keskitalo, Knaapila, 

et al., 2007; Mennella et al., 2009), the degree of preference for sweet foods varies across 

individuals. These differences in sweet preferences are influenced by age, gender, 
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previous exposures, and hormonal fluctuations, as well as genetics (Faas et al., 2010; 

Overberg et al., 2012; Reed, Tanaka, & McDaniel, 2006).  

When it comes to taste detection thresholds, many investigators have reported a 

decrease in sucrose sensitivity with age (Bartoshuk, Rifkin, Marks, & Bars, 1986; 

Cooper, Bilash, & Zubek, 1959; Fikentscher, Roseburg, Spinar, & Bruchmuller, 1977; 

Hermel, Schonwetter, & Samueloff, 1970; Moore, Nielsen, & Mistretta, 1982; Richter & 

Campbell, 1940) and some included children in their taste sensitivity studies (Cooper et 

al., 1959; Fikentscher et al., 1977; Hermel et al., 1970; Richter & Campbell, 1940). 

Sensitivity for the basic taste qualities decreased more in men than in women with aging 

(Fikentscher et al., 1977). Investigators report that children have higher taste thresholds 

than adults for sweet. A study compared taste thresholds in children (8- to 9-year-olds) 

and adults. They found 8 to 9-year-old boys’ mean threshold for taste detection was 

significantly higher than both adult men and women, suggesting that the detection 

thresholds of boys of this particular age may not be fully developed. But girls of the same 

age had similar thresholds to adults, and there were no gender differences between the 

adult participants (James, Laing, & Oram, 1997).  Other studies have reported that taste 

detection can change not only with age, but also with hormonal status (Alberti-Fidanza, 

Fruttini, & Servili, 1998; Allesen-Holm, Frøst, & Bredie, 2009) and temperature 

(Talavera, Ninomiya, Winkel, Voets, & Nilius, 2007). 
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Taste and Race 

Racial differences in sweet taste preference have also been noted in several 

studies (Beauchamp & Moran, 1984; Pepino & Mennella, 2005; Salbe, Delparigi, Pratley, 

Drewnowski, & Tataranni, 2004; Schiffman, Graham, Sattely-Miller, & Peterson-Dancy, 

2000). African American children (Beauchamp & Moran, 1984) and adolescents (Desor 

et al., 1975) have been reported to have a higher preference for sucrose solutions, as well 

as increased preference for sugary fat solutions (Bacon, Miles, & Schiffman, 1994). 

Studies have suggested that sustained preference for palatable sweet tastes may possibly 

contribute to eating patterns that lead to obesity. In a study of the degree of habituation to 

sweet-tasting foods, African American children had a prominent and constant desire for 

sweet taste, a probable risk factor for the development of obesity (Schiffman et al., 2000). 

African-American children age 9-15 years favored more sweetness in sugar and sucrose 

in water solutions than Caucasian children (Desor et al., 1973). African American 

children preferred higher concentrations of sugar in liquids and solid foods and added 

more sugar to foods and drinks (Mennella, Pepino, and Reed 2005). A different study 

observed that African-American children within the same age group preferred higher 

concentrations of sucrose in liquid dairy products (Bacon et al., 1994). 

Few studies have evaluated the effects of race and cultural on taste sensitivity.  

Salbe et al. (2004) reported that Pima Indians rated sucrose solutions tasting sweeter than 

whites. A study looking at taste perception in Taiwanese and European reported that 

Taiwanese individuals rated sucrose solutions as pleasant but sweetened cookies less 

appealing compared to those of European descent (Bertino, Beauchamp, & Jen, 1983).   
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Taste and Gender 

Investigators have found that there are no major differences in sweet taste 

sensitivity between adult men and women (Dinehart, Hayes, Bartoshuk, Lanier, & Duffy, 

2006). One study showed no significant difference in the ability for men and women to 

detect and differentiate sucrose from other taste qualities and water (Chang, Chung, Kim, 

Chung, & Kho, 2006). Girls were better at perceiving different tastes than boys, and 

better at distinguishing all concentrations of sour and sweet tastes (Allesen-Holm et al., 

2009). Boys needed an approximately 20 percent more sweetness to recognize the taste. 

Changes in sucrose detection thresholds for women may be due to hormonal effects, with 

women having increase sweet taste sensitivity with during pre-ovulation (Than, Delay, & 

Maier, 1994). 

Taste and Disease  

Aging and diseases such as cancer, infections, trauma, medication, malnutrition 

and surgical procedures can influence taste. Chemosensory dysfunctions increase with 

age (Boyce & Shone, 2006; Murphy, 1985). An often-cited etiology for taste disorders is 

primarily a defect of olfaction resulting in alteration of taste quality and intensity. For 

example, upper respiratory infections, idiopathic causes, head injury or other conditions 

can affect the sense of taste (Hummel, Landis, & Hüttenbrink, 2011). Lesions to the taste 

buds or mucosa, demyelination of the nerves, or cranial nerve damage may impair 

gustation. For example, the chorda tympani nerve is known to function in eliciting taste 

response; therefore, damage to this nerve may reduce taste sensitivity, which 
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consequently may affect food choices (Bartoshuk, 1993).  

Taste disorders can lead to altered perceptions and taste threshold.  Taste 

perceptions become somewhat impaired with normal aging, with older individuals having 

higher thresholds than younger ones (Moore et al., 1982). Problems with taste can have a 

big impact not only in an individual’s food selection but also their quality of life. Healthy 

People 2020 Goals have highlighted chemosensory health as an area for attention. A goal 

is to decrease the percentage of adults with chemosensory disorders who experience 

adverse impact on health status, work or quality of life (U.S. Department of Health and 

Human Services, 2013). In addition, the 2012 National Health and Nutrition Examination 

Survey added a chemosensory component to assess normal variation and prevalence of 

dysfunction of taste (CDC, 2012). 

Taste disorders may affect the amount and type of food eaten, leading to under 

and over consumption of foods. This can be a problem for people with illnesses such as 

diabetes, high blood pressure or obesity (Mattes et al., 1990). Taste disorders are 

classified as ageusia which refers to the absence of taste; hypogeusia or decreased 

perception of taste; dysgeusia when the taste capacity is distorted; parageusia, which is 

the incomplete sense of taste in the presence of stimulus; and lastly phantogeusia which is 

the distortion of taste perception, without the manifestation of a stimulus (Schiffman, 

1983a, 1983b). 

 Nutritional deficiencies are also found to affect taste perception. Individuals with 

anorexia, malabsorption disorders and kidney function alterations as well as those with 

low zinc, and copper serum levels have reported decreased taste perception (Lynch, 
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Lynch, Curhan, & Brunelli, 2013; Stewart-Knox et al., 2005). In children, a loss of sense 

of taste might cause a decrease in food intake, possibly resulting in eating disorders, 

which can affect physical growth and overall development (Moura, Cunha, Caldas, & Da 

Silva, 2015). A recent study looking at differences in taste perception in obese and non-

obese children reported that obese had more difficulties identifying taste qualities than 

children and adolescents of normal weight (Overberg et al., 2012).  

Biology of Taste 

Anatomy of the Gustatory System 

 Our sensory system for taste is remarkably sensitive. Not only we can detect 

substances at extremely low concentrations, we are also able to differentiate between 

molecular compounds that are closely related. This amazing sensitivity is made possible 

by the taste buds, which are at the forefront of the taste system (Figure 4). These are 

onion-shaped structures on the tongue, throat, and pharynx as well as different places in 

the mouth. Humans have an average of 5,000-10,000 taste buds (Miller, 1995; Purves et 

al., 1997), which are found in aggregates of 50-100 taste receptor cells, composed of 

epithelial cells with some neuronal properties (Defazio et al., 2006; Finger et al., 2005). 

The taste buds are innervated by the chorda tympani and glossopharyngeal nerves 

carrying the taste messages to the brain, generating the sensation of taste (Bradbury, 

2004; Chaudhari & Roper, 2010; Miller, 1995). Each taste bud has three cell types: type I 

(supportive), type II (receptor), and type III (presynaptic) cells (Herness & Gilbertson, 

1999; Northcutt, 2004).  
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Figure 4. Taste Buds 

 

 

Type I cells have a supportive function and they are the most abundant 

(Chaudhari & Roper, 2010; Finger et al., 2005). Type II cells are needed for transduction, 

they are known for being associated with the receptors for bitter, sweet, and umami taste 

(Adler et al., 2000; Romanov et al., 2007; Zhao et al., 2003). Type III cells are called 

presynaptic or synaptic cells (Huang, Maruyama, Stimac, & Roper, 2008; Roper, 2006, 

2007). In Figure 5, Chaudari and Roper (2010) show a depiction of the cells and some of 

the proteins that are expressed in each cell type. From the activation of these cells, 

humans can distinguish five major tastes groups: salt, sour, sweet, bitter, and umami, 

each activated by specific receptors (Chaudhari & Roper, 2010). 
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Figure 5. Type of Taste Cells 

 

Permission obtained from author and publisher ©2010 Chaudhari and Roper. Journal of 
Cell Biology. 190:285-296. doi:10.1083/jcb.201003144 

 

Genetics of Sweet and Bitter Taste  

Taste receptor cells in the tongue are at the start of the sensory detection pathway 

of the gastrointestinal tract. These receptors provide vital information that affects both 

innate behaviors and aversive behaviors to foods (Kim, Breslin, Reed, & Drayna, 2004). 

Each taste modality is recognized by G-protein-coupled receptor (GPCR) dimers or 

through membrane channels (Figure 6). GPCRs (shown in green) have seven trans-

membranes domains and are known to activate heterotrimeric G proteins, which are 



 

 

36

composed of three subunits σ, β and γ, Figure 6A shows a GPCR not activated. Ligand 

binding (shown in red) activated the receptors and a conformational change occurs that 

facilitates the dissociation of the G proteins that interact downstream the effectors. The 

alpha subunit of the G protein attaches to either to GTP or GDP contingent on whether 

the protein is inactive (GDP) or active (GTP). Beginning with receptor activation by a 

ligand, the receptor exchanges the GDP for GTP bound to the alpha subunit while 

releasing the beta-gamma (βγ) subunit. These two subunits result in activation of 

effectors within the cell (Li et al., 2002)  (Figure 6B), that in turn leads to several kinds 

of cellular and physiological responses.  A detailed explanation of the transduction 

pathway for taste is explained in a later section. 
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Figure 6. G-Protein Coupled Receptors (GPCRs) 

 

For taste, there are two GPCR groups. The first one consists of three members (T1R1, 

T1R2, and T1R3), which facilitate the perception of sweet and umami tastes. The second 

group is the TAS2R, which has around 30 different GPCRs, and the dimers create the 

receptors for different bitter-tasting compounds (Chandrashekar, Hoon, Ryba, & Zuker, 

2006; Zhao et al., 2003).   

 Sweet taste is mediated by two types GPCRs that are part of the taste receptor 

family 1 (T1R2 and T1R3) (Chandrashekar et al., 2006; Zhao et al., 2003). These 

receptors are located within chromosome 1p36 (Liao & Schultz, 2003). The 
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heterodimeric combination of the two proteins (T1R2 and T1R3), are required for the 

sweet taste receptor to be functional, and begin the process to sense sweet taste (Nelson et 

al., 2002; Zhao et al., 2003). This heterodimer receptor helps recognize all types of sweet 

substances, including simple sugars, artificial sweeteners, amino acids and proteins 

(Figure 8) (Yarmolinsky, Zuker, & Ryba, 2009).   

T2Rs are associated with bitter perception (Conneally, Dumont-Driscoll, 

Huntzinger, Nance, & Jackson, 1976; Reed et al., 1999), and are expressed in taste 

receptor cells that have gustducin, a G protein α subunit associated in bitter transduction 

(Ming, Ruiz-Avila, & Margolskee, 1998).  T2Rs recognize a wide variety of compounds; 

some are very specific, while others are tuned to a particular class of compounds or 

respond broadly to many bitter tastants (see Figure 7).
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Figure 7. Mammalian Taste Receptors and Cells 

 

Permission obtained to use image from publisher © 2010 Elsevier (Yarmolinsky et al., 
2009) 

 

Fuller (1974) identified the Sac locus linked with saccharin preference.  The 

murine Sac locus is the main genetic factor that establishes the differences between 

sweet-preferring and sweet-indifferent strains of mice (Fuller, 1974; Lush, Hornigold, 

King, & Stoye, 1995). Several investigators reported that Sac determines both behavioral 

and electrophysiological responsiveness to saccharin, sucrose, and other sweeteners 
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(Bachmanov et al., 1997; Ninomiya, Tanimukai, Yoshida, & Funakoshi, 1991). Later 

studies identified the T1R G-protein-coupled receptor family in rats and humans (Hoon et 

al., 1999; Li et al., 2002). This receptor contains the two proteins responsible for creating 

a sweet taste receptor, T1R2 (taste receptor type 1, member 2) and T1R3 (taste receptor 

type 1, member 3) (Stone, Barrows, Finger, & Kinnamon, 2007; Zhao et al., 2003), which 

together form the T1R2/T1R3 heterodimer necessary in the perception of sweet taste 

(Nelson et al., 2001; Reed & McDaniel, 2006). 

Genetic differences in the sweet receptor proteins partially determine two types of 

taste traits in adults, affecting sweet sensitivity  (Fushan et al., 2010; Fushan et al., 2009) 

and preference (Mennella, Finkbeiner, et al., 2014).  The GNAT3 protein has been 

associated with sweet taste sensitivity in adult humans (Fushan et al., 2010).  The 

TAS1R2 gene, encoding the protein T1R2, is distinguished by high levels of genetic 

diversity, but as yet these variants have not been linked with individual differences in 

taste perception, although they have been linked to the intake of sweet foods (Eny et al., 

2010).  Humans differ in their sensitivity to certain tastes and these thresholds vary in 

humans, though the reason is not fully established. Miller and Reedy (1990) noted that 

some of the differences observed in human taste sensitivity may be affected by the 

numbers of taste buds a subject has, making them more or less sensitive to flavors; 

however, people differ not only in the number of taste receptors but also in the DNA 

sequences of particular receptors or their transduction molecules (described below) (Reed 

et al., 2006). Individuals who have heightened sensitivity to taste are called “supertasters” 

(Hayes, Bartoshuk, Kidd, & Duffy, 2008; Miller & Reedy, 1990), and those who have 
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minimal or complete lack of taste papillae due to a genetic disease or age-related decline 

(Guo & Reed, 2001) are categorized as “nontasters.” Studies have shown that supertasters 

need smaller amounts of fat and sugar in their food to become satiated compared with 

nontasters (Bartoshuk, Duffy, Hayes, Moskowitz, & Snyder, 2006; Hayes et al., 2008). 

However, due to their keen sense of the taste of bitterness, supertasters have an increased 

intake of salt (Hayes et al., 2008), which masks bitterness; this may place them at a 

higher risk for hypertension but potentially a lesser risk for obesity. Though it can be 

hypothesized that this physiological difference may be responsible for some of the food 

choices a person makes and/or correlate with such conditions as obesity, hypertension, 

and diabetes, no study was found that examined this hypothesis. 

The T1R3 protein (coded for by TAS1R3 in humans and Tas1r3 in rodents) is 

responsible for the perception of sucrose (Bachmanov et al., 2001; Max et al., 2001; 

Montmayeur, Liberles, Matsunami, & Buck, 2001; Nelson et al., 2001). Using an in vitro 

approach, T1R2 and T1R3 were found to be co-expressed in cells.  When the receptor 

and sugar interact, it sets off a chain of events that result in action potentials conveyed to 

the brain (Li et al., 2002; Nelson et al., 2001). Later, Liao and Schultz (2003) confirmed 

that T1R1, T1R2, and T1R3 genes are expressed selectively in human taste receptor cells, 

consistent with their role in taste perception that was previously described by other 

investigators. T1R1 (taste receptor type 1 member 1) is a GPCR that in humans is 

encoded by the TAS1R1 gene. T1R1 and T1R3 are found to create a heterodimer that 

detects umami taste (Nelson et al., 2001). 
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To further investigate the sweet taste receptor phenomenon, Bachmanov et al. 

(2001) used the quantitative trait locus technique in animals to generate high-sweetener-

favoring B6 mice and low-sweetener-favoring 129 mice. Using a positional cloning 

approach, a small section of the F2-generation Sac locus was characterized as containing 

the G-protein coupled receptor T1R3 in mice. In order to confirm the function of the 

Tas1r3 gene in sweet taste perception, congenic (differ in only one locus of the 

chromosome) mice were used in these studies. The mice expressing the Tas1r3 gene 

showed saccharin and sucrose preferences similar to those of the control taster mice, 

while the same generation without the transgene showed no response to the sweetener or 

sucrose, thus demonstrating T1R3’s role in sweet perception (Bachmanov et al., 2001). In 

studies of human taste genetics, taste receptor proteins such as T1R1 and T1R3 have been 

linked to individual variations of sweet taste recognition thresholds in humans (Fushan et 

al., 2010; Fushan et al., 2009) but not mice (Lu et al., 2005). 

For bitter taste, single-nucleotide polymorphisms (SNPs) in the genes that code bitter 

receptors (TAS2Rs) result in different chemical responses. For example TAS2R38 gene, 

which codes T2R38, has been associated with individual differences in taste sensitivity 

for compounds containing a thiourea, phenylthiocarbamide (PTC) and 6-n-

propylthiouracil (PROP) (Bufe et al., 2005; Kim et al., 2003; Lipchock, Reed, & 

Mennella, 2011).  The TAS2R38 gene has three SNPs with differences in amino acids. 

The receptor gene, which detects bitter, contains a proline at position 49, alanine at 

position 262, and valine at position 296 (PAV) (Kim et al., 2003). The polymorphisms 
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and respective genotype for the three variants are: rs713598 AA, AP, and PP; rs1726866 

VV, AV, and AA; and rs10246939 II, IV, and VV, respectively. 

Sweet and Bitter Taste Transduction Pathway 

Signal transduction refers to the flow of chemical indicators that occurs 

downstream from chemoreception (e.g., taste receptor cells) that ultimately stimulates the 

nervous system to send a signal to the brain (Margolskee, 2002). The taste transduction 

pathway and gustatory mechanisms play an important role in food intake and metabolic 

regulation.  

When discussing sweet taste, the transduction path is unique (Figure 9). In 

mammals, once a sweet compound or ligand (sugar or sweetener) binds to a sweet taste 

receptor with a G-protein subunit, such as alpha-gustducin, the subunit becomes activated 

and causes a downstream intracellular second-messenger cascade (Kitagawa, Kusakabe, 

Miura, Ninomiya, & Hino, 2001; Margolskee, 2002). Prior to the discovery of the sweet 

taste receptors, investigators focused on cyclic adenosine monophosphate (cAMP) and 

inositol 1,4,5-triphosphate (IP3) in signal transduction pathways of the taste receptor 

cells, suggesting one model of sweet taste transduction. However, with advances in 

technology, investigators further explored the transduction pathway of sweet taste 

(Taruno et al., 2013). The GPCR taste receptors stimulate a transduction pathway that 

involves the activation of phospholipase C β2 (PCLCB2), IP3-mediated Ca2+ release and 

Ca2+ dependent activation of the transient receptor potential cation channel subfamily M 

member 5 (TRPM5) channels that depolarize the plasma membrane and generate action 
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potentials, passing through the calcium homeostasis modulator 1 (CALHM1) and 

subsequent release of Adenosine triphosphate (ATP) (Taruno et al., 2013).  ATP serves 

as a neurotransmitter in taste cells (Finger et al., 2005). The generated signal is sent to the 

brain through one of three cranial nerves: VII (facial), IX (glossopharyngeal), or X 

(vagus). Of these cranial nerves, the facial nerve (VII), more specifically, the chorda 

tympani branch is responsible for the sensory perception of the anterior two-thirds of the 

tongue. The glossopharyngeal nerve (IX) is responsible for the sensory perception of the 

posterior one third of the tongue. These nerves are known to be directly involved with the 

sense of taste. It is also important to highlight that the olfactory nerve (I) is responsible 

for the sense of smell, which indirectly affects the sense of taste. The vagus nerve (X) 

receives a special sense of taste from the epiglottis, specifically conducting the sense of 

taste from the mouth to the larynx. The nerves connect to areas of the brain associated 

with energy homeostasis (Chaudhari & Roper, 2010; Reed et al., 2006) and visceral 

perception and palatability (McCaughey, 2008).  

The same transduction pathway is activated when a bitter compound or ligand 

comes in touch with the bitter taste receptors (Figure 10) (Taruno et al., 2013). TAS2R 

proteins utilize the G-protein gustducin to elicit signal transduction. Both the α- and βγ-

subunits are crucial to the transmission of the taste signal (Margolskee, 2002). 

Alteration to the taste transduction proteins, such as T1R3, α-gustducin, or Trpm5 

(transient receptor potential cation channel, subfamily M, member 5) may affect intake of 

and preference for caloric and noncaloric sweeteners (Sclafani & Ackroff, 2015; 

Zukerman, Glendinning, Margolskee, & Sclafani, 2013). Trpm5 is a protein that in 
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humans is encoded by the TRPM5 gene. This protein is a key component of taste 

transduction, activated in the presence of high levels of calcium. 

The sweet taste receptor is also expressed in other areas of the body, with 

additional biological responses (Egan & Margolskee, 2008; Kojima, Nakagawa, Ohtsu, 

Medina, & Nagasawa, 2014; Margolskee et al., 2007; Nakagawa et al., 2009).  The sweet 

taste receptor cells located in human endocrine tissue contribute to incretin hormone 

secretion and glucose transport (Beauchamp & Mennella, 2011). Expression of these 

taste receptor genes is dysregulated in individuals with type 2 diabetes (for a review, see 

Depoortere, 2014). In the hypothalamus, the sweet taste receptor may provide signals for 

appetite regulation and food intake (Gerspach, Steinert, Schönenberger, Graber-Maier, & 

Beglinger, 2011).  The sweet receptor is also expressed in adipocytes. When stimulated 

with appropriate ligands, such as high-potency sweeteners, this receptor plays an 

essential role in adipocyte proliferation (Laffitte, Neiers, & Briand, 2014).  The pattern of 

sweet taste receptor expression among particular adipose depots in humans is not 

understood but may contribute to adipose tissue distribution (e.g., waist circumference).  

Individual differences in sweet taste thresholds may predict how well the sweet taste 

receptor functions in these other tissues, which may have a role in obesity, diabetes, and 

appetite.  It is possible that sweet taste detection threshold may be proxy a measure for 

sweet receptor function in the brain, adipocytes, and endocrine cells.  
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Figure 8. Sweet and Bitter Transduction Pathway 

 

Sweet Taste Detection in Children and Adults  

A literature review was conducted to elicit what has been published in regards to 

sweet taste detection thresholds in children.  Studies reported were from 1974 to 2015. 

The majority of these studies were conducted in adults (N=27) with some studies focused 

in both children and adults (N=4), while only a few studied children (N=8) (Table 2).  

When available the age range, numbers of subjects, methods used to measure sucrose 

detection thresholds and range of sucrose tested was provided. An attempt was made to 

report all thresholds in mM to ease comparison across the studies. In spite of the vast 

variety of populations studied and varied methodological approaches underpinning these 

studies, important insights and conclusions can be drawn. 
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Based on the studies reported in Table 2, clearly there is a lack of studies in taste 

thresholds in children; none of the ones reported for children take into consideration the 

taste receptors genes associated with sucrose detection thresholds.   Most studies used 

traditional psychophysical methodology to assess taste perception, however, even the 

traditional methods used vary across studies. 

The studies varied between whole mouth and spatial or regional test. A whole-

mouth taste test is used to measure an individual’s ability to detect, evaluate and identify 

the concentration of different sweet, sour, salty, and bitter taste solutions.  With this 

methodology the liquid stimulus is presented in milliliters. The whole mouth procedure 

involves sipping a measured volume of a taste solution, keeping it in the mouth for an 

allotted time, and then spitting it out (Simon & Nicolelis, 2002).  It is the technique most 

widely used in taste testing chemosensory procedures (Fushan et al., 2010; Meilgaard, 

Civille, & Carr, 2000; Simon & Nicolelis, 2002). By contrast, a spatial or regional test is 

used to evaluate diverse areas of the mouth. A cotton swab soaked in a taste solution is 

positioned in different areas of the tongue (Berling, Knutsson, Rosenblad, & Von Unge, 

2011; Hummel, Erras, & Kobal, 1997; Meilgaard, Civille, & Carr, 2000; Snyder, Prescott, 

& Bartoshuk, 2006). 

  Some authors used a two alternative forced choice method (Pepino, Finkbeiner, 

Beauchamp, & Mennella, 2010), others used a three stimulus forced choice method 

(Kamath, Booth, Lad, Kohrs, & McGuire, 1983), a triangle method (Panek-Scarborough, 

Dewey, & Temple, 2012). Only one study used both electrogustometry data and chemical 

liquid stimuli (Park et al., 2015). The electrogustometry data is obtained using a device 
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that provides quantitative gustatory detection thresholds using an electrical current when 

exposed to sweet and bitter taste.  The methods used by Pepino et al. (2010) were the 

only ones similar to the present study, which was validated to be used in children of 

diverse background (e.g., African-American, Caucasians) (Bobowski & Mennella, 2015; 

Mennella et al., 2011).  

In adults sucrose detection thresholds have been studied in a variety of contexts, 

for example, in individuals with depression, smokers vs. nonsmokers, diabetics, obese vs. 

normal weight and in women with hormonal changes. Some studies only tested men, 

which did not allow assessing for differences between genders.  In children, the vast 

majority of studies reported on populations of healthy children, but one study in children 

reported taste thresholds in obese and non-obese children. Many of the earlier studies had 

a focus on dental caries and sucrose detection thresholds, with a focus on dietary 

influences in later publications.  

The sample size used in the studies varied greatly (i.e., 10-180 subjects). In 

addition, the range of sucrose used across studies was not standardized and the reporting 

of the data obtained varied (e.g., mM, M, g/mL, %), making it difficult to compare sweet 

taste thresholds reported among studies. In Table 2 values that were not reported as 

milimolar concentrations in the literature were converted for easier comparison across 

studies.  The range of sucrose detection thresholds reported is very wide; this could be 

because of the inconsistencies in methodologies.  
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Table 2. Summary of Studies Reporting Sucrose Detection Thresholds in Children and Adults 

 

 

Subjects 
(children, adults,  

age range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

 part of the tongue) 

Sucrose detection 
thresholds as  
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adult Subjects 

Adults: 20.7 ± 0.3 years 
(N=70) 
 
 

Whole mouth: Tested 
downward from a higher 
concentration to a lower 
concentration in decrements 
of 0.1%.  
Range of sucrose: not 
specified 

Adults  
Male: 0.98 ± 0.09%  
Female students: 
1.43 ± 0.21% in 
female students in the 
follicular phase 
Female: 
1.27 ± 0.14% in the 
luteal phase.  

Adults Male: 
28.7 mM±26 mM 
Female Students: 
41.8 mM±6.1 mM 
follicular phase 
Female students: 37.1 
mM ± 4.1mM luteal 
phase 

None Sucrose detection was negatively 
correlated with depression 
symptoms and trait anxiety in 
women in the luteal phase. 
However findings were not 
significant for males and women 
in the follicular phase 

Nagai, 
Matsumoto, 
Endo, 
Sakamoto, 
& Wada, 
2015 

Adults: 20-29 years old 
N=41 

Electrogustometer 
Range: 3 uA (–8 dB) to 400 
uA (34 dB) 
Whole mouth: chemical test 
Sucrose Range: 0.05g/ml-
2g/ml 

Obese group 0.70 
g/ml 
Normal weight 
group: 0.33g/ml 
Smoker: 0.71 g/ml 
Nonsmoker: 0.39 
g/ml 
Standard deviation 
not reported 

Obese group: 2040 mM 
Normal weight group: 
960 mM 
Smokers: 2070 mM 
Non-smokers: 1140 mM 
 

None  With the chemical taste test, the 
obese group had higher 
thresholds for sweet.  Smoking 
had an impact on taste threshold, 
with smokers having higher 
thresholds than non-smokers also 
for sweet. 

Park et al., 
2015 

Adults: 20-60 years old 
N=40 prediabetic 
N=40 diabetics 
N=34 normal glycemic 

Whole mouth: forced choice 
method 
Sucrose range:  1.25 × 103 

mol/L to 6.4 × 101 mol/L 
 

Diabetic: 0.025 
mol/L ± 0.01 
Pre-diabetic: 0.018 
mol/L ± 0.01 
Normoglycemic: 
0.015 mol/L ± 0.01  

Diabetic: 25 ± 10 mM 
Pre-diabetic: 18 mM±10 
mM 
Normoglycemic: 15 mM 
± 10 mM 

None The mean (SD) detection 
thresholds of diabetics were 
significant higher when compared 
to normoglycemic group and pre-
diabetics. 

Wasalathan
thri et al., 
2014 
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Subjects 
(children, adults,  

age range ) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

Part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adult Subjects 

       

Adults: 
N=15  

Regional taste recognition 
thresholds  
Sucrose Range: log10 molar 
concentration, from −1 to −3 
(100 mM to 1 mM) 

Adults: 
 Bright light, (before 
= 13.4 mM  (CI 
10.9−16.4), after = 
9.4 mM  (CI 
7.3−12.0)  
Dim light (before = 
13.3 mM  
(11.3−15.7) and after 
= 11.3 mM  
(9.30−13.7)  

Adults: 
 Bright light, (before = 
13.4 mM  (CI 
10.9−16.4), after = 9.4 
mM  (CI 7.3−12.0)  
Dim light (before = 13.3 
mM  (11.3−15.7) and 
after = 11.3 mM  
(9.30−13.7) 

None Sucrose thresholds were 
significantly lower after bright 
but not dim light exposure.  

Srivastava, 
Donaldson, 
Rai, 
Melichar, & 
Potokar, 
2013 

Adults: 18-49 years old 
(Females only) 
N=72 

Whole mouth: ascending 
forced choice trial method  
Sucrose Range:0. 2%, 0.3%, 
0.5%, 0.8%, 1.0%, and 1.2% 
w/v  
 

BMI group 
Normal: 0.32%  
Overweight: 0. 44% 
Body fat 
Normal: 0.41% 
Overweight: 0.44 % 

BMI group 
Normal: 9.4 mM 
Overweight: 12.9 mM 
Body fat group:  
Normal: 12 mM 
Overweight: 12.9 mM 

None Women in both the overweight 
BMI and body fat groups had 
higher sucrose threshold than did 
women in the normal groups.  

Ettinger, 
Duizer, & 
Caldwell, 
2012 

Adults: 18-50 years old 
N=50 

Whole mouth: triangle test 
staircase procedure  
Sucrose Range: 0.065, 0.127, 
0.25, 0.5, 1.0, 2.0, and 5.0 
mg/L  

Swallowed threshold: 
1.04 mg/L  
Expectorated 
threshold: 1.41 mg/L  
 No SD reported 
 

Swallowed threshold: 
3 x 10-3mM 
 
Expectorated threshold: 
41 x10-3mM 

 Sucrose detection thresholds 
predicted the reinforcing value of 
food. Those with poor detection 
thresholds had higher reinforcing 
value of food. 

Panek-
Scarboroug
h et al., 
2012 
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Subjects 
(Children, Adults, 

Age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

Part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adult Subjects 

Adults: no age range 
provided  
N=160 

Whole mouth. Threshold for 
sucrose were estimated using 
a storing test and signal 
detection analysis reported 
as R-index measures. 
Range of sucrose: 0, 0.5%, 
1%, 2%, 2.4%, 2.8%, 3.2%, 
3.6%, and 4% sucrose 
 

R-index obtained for 
each pairwise 
comparison ranged 
from 71% to 94%.  
The lowest average 
R-index (71%) was 
obtained for the 
comparison of 0 and 
0.5% sucrose 
whereas the largest 
R-index was obtained 
when comparing 1% 
and 2% sucrose 
solutions. 
Sucrose reported as 
AUC scores 

CC 5.9 ± 1.4 AUC 
CT 6.8 ± 1.6 AUC 
TT 7.2 ± 1.0 AUC 

GNAT3 GNAT3 polymorphisms explained 
variation in sucrose thresholds. 
Individuals with one or two 
copies of the C allele have lower 
sucrose detection thresholds. 

Fushan et 
al., 2010  

Adults: no age range 
provided  
N=144 

Whole mouth. Threshold for 
sucrose were estimated using 
a storing test and signal 
detection analysis signal 
detection analysis and 
reported as R-index 
measures. 
Range of sucrose: 0, 0.5%, 
1%, 2%, 2.4%, 2.8%, 3.2%, 
3.6%, and 4% sucrose 

R-index obtained for 
each pairwise 
comparison ranged 
from 71% to 94%.  
The lowest average 
R-index (71%) was 
obtained for the 
comparison of 0 and 
0.5% sucrose 
whereas the largest 
R-index was obtained 
when comparing 1% 
and 2% sucrose 
solutions. AUC 
scores 

CC 6.90 ± 1.47 AUC 
CT 6.07 ± 1.08 AUC 
TT 4.36 ± 1.26AUC 

TAS1R3 Individuals with T alleles have 
lower sucrose sensitivity 
thresholds.  

Fushan et 
al., 2009 
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Subjects 
(Children, Adults, 

Age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

Part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adult Subjects 

Adults: 41-75 years old  
N=33 
 

Whole mouth, multiple 
forced-choice presentation 
with an ascending series 
Range:  sucrose 1.25×10-3 to 
6.4 x 10-1 mol/L 

Pre-surgery: 5.1 
mol/L± 1.8 mol/L 
 
Discharge: 1.7 
mol/L± 1.2 mol/L 

Pre-surgery: 5100 ± 1800 
mM 
 
Discharge: 1700 ± 1200 
mM 

None   Sweet taste detection thresholds 
were lower at discharge 
compared to pre-surgery.  
Thresholds remained lower when 
checked 16 weeks post-op. 

Keith, 
Mokbel, 
San 
Emeterio, 
Song, & 
Errett, 2010 

Adults: 21-40 years old 
 
N=57 

Whole mouth, forced choice 
staircase procedure 
Sucrose Range: 0.000056 to 
1.0 M 

Obese: Median 
~0.00065M 
± 0.0103M 
Lean: 0.0100 M 
± 0.0074M 
 
 
 

Obese: 0.65 ± 10.3mM 
Lean: 10mM ± 7.4 mM 
 
 
 

None   Obese women had lower sucrose 
detection thresholds than normal 
weight women.  Both obese and 
normal weight women preferred 
sucrose similarly.  The level of 
sucrose preferred was not related 
to sucrose thresholds for either 
group or both groups combined 

Pepino et 
al., 2010  

Adults: 55-81 years old  
N=120 

Side of the tongue: Forced 
choice, three-stimulus drop 
technique 
Sucrose Range: 34–342 
mmol/L 

Adults: 48mM± 38 
mM  

Adults: 48mM ± 38 mM None After an acute stroke, 
postmenopausal women had 
abnormal sucrose detection 
thresholds  

Kim, Choi-
Kwon, 
Kwon, & 
Kwon, 
2009 

Adults: 18-23 years old 
N=182 

Whole mouth: forced choice 
method  
Sucrose Range: 2.5 × 10−4 to 
0.5 M 

Average: 10.83 mM  
± 0.24 mM, Highest 
detection threshold: 
19.88 mM  ± 1.31 
mM 
Lowest detection 
threshold: 5.85 mM  
± 0.43mM  

Average sucrose 
detection threshold: 
10.83 mM  ± 0.24 mM, 
Highest detection 
threshold: 19.88 mM 
± 1.31 mM 
Lowest detection 
threshold: 5.85 mM 
± 0.43 mM 

None  The density of fungiform 
papillae and sucrose detection 
threshold were inversely 
related.   The higher numbers of 
papillae was associated with 
lower detection thresholds (more 
sensitive). 

Zhang et 
al., 2009 
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Subjects 
(Children, Adults, 

Age Range) 
N=number of subjects 

in study 

Methods 
(Whole mouth; 

Part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adult Subjects 

Adults: 21-30 years old 
N= 91 healthy, non-
obese, non-diabetic  
 

Whole mouth: Standard 
staircase methodology 
(modified from Pasquet et 
al., 2006) for various taste 
stimuli. 
Sucrose Range: 0.001–0.1 
mol/l 

Adults: 23.0 mM 
+2.5 mM in the 
morning 
38.2 mM +4.0mMin 
the evening. 
 

Adults: 23.0 mM +2.5 in 
the morning 
38.2 mM +4.0 in the 
evening 

None Sweet taste detection thresholds 
varied by time of day with lowest 
thresholds in the morning and the 
highest thresholds at night. 

Nakamura 
et al., 2008 

Adults: 21-40 years old  
N=49 

Whole mouth, two 
alternative staircase method 
Sucrose Range: 0.000056 to 
1.0 M  

Smokers Nicotine: 
0.01M±0.006M 
Smokers non-
nicotine: 
0.010M±0.006M 
 
Nonsmokers 
nicotine: 0.008M ± 
0.004M 
Nonsmokers non-
nicotine: 
0.012M±0.006M 
 

Smokers non-nicotine: 
10mM ± 6mM 
 
Smokers non-nicotine: 
1mM ± 6mM 
 
 
Nonsmokers nicotine: 
8mM ± 4mM  
 
Nonsmokers non-
nicotine: 12mM ± 6mM 

None  Smokers had higher sucrose 
thresholds (decreased sensitivity) 
than nonsmokers.  

Pepino & 
Mennella, 
2007 

Adults: mean age 23.9 
± 1.2 
N=69 

Whole mouth: Standard two 
alternative forced choice  
Sucrose range: 
3.2 × 10−4 − 1.0 M 

Men: 0.22 x 10-2 M 
± 0.27x10-2 M 
 
Women: 0.18 x10-2 

± 0.23 x10-2 M 

Men 2.2mM ± 2.7mM 
Women: 1.8mM ± 
2.3mM 

None  Sweet taste sensitive increased 
with the ratio of PROP.  
 

Chang et 
al., 2006 

Adults: 28-78 years old 
N=21 

Whole mouth: Test of limits 
1.5 to 15.5 mM (in 1.0 mM 
increments) for sucrose 
 

Sjögren's syndrome 
patients: Median 
7.5 mM  
Control group: 
5.5 mM 

Sjögren's syndrome 
patients: Median 7.5 mM 
Control group: 5.5 mM 
No SD reported 

None  Sucrose detection thresholds were 
higher in Sjögren’s syndrome 
patients compared to controls. 
Detection thresholds for other 
taste compound were also higher 

Gomez, 
Cassis-
Nosthas, 
Morales-
De-Leon, & 
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No SD reported in Sjögren’s syndrome patients. Bourges, 
2004 

Subjects 
(Children, Adults, 

Age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

Part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adult Subjects 

Adults: 18-24 years old  
N=27 

Whole mouth: constant 
stimuli with the order of 
presentation 
Counterbalanced using a 
Latin square. 
Sucrose range: 0.1, 0.08, 
0.06, 0.04, 0.02, 0.01, and 
0.008 M 

#1Menstruation 
0.025M± 0.002M 
#2Pre-ovulation: 
0.015M ± 0.002M 
#3Post-ovulation: 
0.027M± 0.002M 
Men measured during 
the same time frame 
as women. 
#1Men: 
 0.022M ± 0.004M 
#2 Men: 
0.022M ± 0.003M 
#3 Men: 
0.021M± 0.003 M 

#1Menstruation: 
25mM  ± 2mM 
#2Pre-ovulation: 15mM 
± 2mM 
#3Post-ovulation: 
27mM ± 2mM 
Men measured during the 
same time frame as 
women. 
#1Men: 
22mM ± 4mM 
#2 Men  
22mM ± 3mM 
#3 Men 
21mM ± 3mM 

None  For women, there was an increase 
in sweet sensitivity during pre-
ovulation phase and lower sweet 
sensitivity during post-ovulation. 
There was no variation in sucrose 
detection thresholds in men.  

Than et al., 
1994  

Adults: 20-88 years old  
N=71 

Whole mouth: forced choice 
procedure 
Sucrose range: 0.01-580mM 

X of 6 reversals 
Younger group: 
3.6mM   
Older group: 8.0mM 
1st downward run 
Younger group: 
5.5mM±  
Older group: 11.3 
mM  No SD reported 

X of 6 reversals 
Younger group: 3.6mM   
Older group: 8.0mM  
1st downward run 
Younger group: 5.5mM 
Older group: 11.3 mM   
No SD reported 

None  Sweet taste sensitivity decreased 
with age (higher detection 
thresholds). 

Moore et al., 
1982 

Adults: 23-88 years old  
N=81 

Whole mouth: forced choice  
Sucrose range: 5.6 x 10-1 and 
1.0x 105 

5.92x10-3 mM± 5.92 
mM 

5.92x10-3 mM ± 5.92 
mM 

None  Sucrose thresholds were not 
significantly related to age. 

Weiffenbach
, Baum, & 
Burghauser, 
1982 
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Subjects 
(Children, Adults, 

Age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

Part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adults Subjects 

Adults: 65-87 years old 
Controls: 20-29 years old 
N=101  

Method of Lagan and 
Yearisk (1976) 
Sucrose range: 0.01, 0.02, 
0.05, 0.1, 0.2, 0.5 M 

Mean thresholds not 
reported  

Mean thresholds not 
reported 

None  Elderly had higher sucrose 
thresholds than younger 
participants.  

Lassila, 
Sointu, 
Raiha, & 
Lehtonen, 
1988 

Adults: 40-79 years old  
N=26 

Whole mouth: 3 stimulus 
forced choice method 
Sucrose Range: 0.1, 1.3,6, 
10, 30, 60, 100, 300, 600, 
1000, and 3000 mmol/L 

Unmatched controls: 
22 ± 11.1 mM 
Range: 6-30 mM 
Patients: 58.8 ± 79.4 
mM  
Matched controls: 
54.5 ± 76.4 mM 

Unmatched controls: 22 
± 11.1 mM  
Range: 6-30 mM 
Patients: 58.8 ± 79.4 mM 
Matched controls: 54.5 ± 
76.4 mM 

None  There were no significant 
differences between the groups 
for sucrose detection. 

Kamath et 
al., 1983  

Adults: 18-40 years old  
Females only 
N=22 

Tip of tongue: Forced choice 
drop technique 
Sucrose range: 6, 12, 30, 60, 
90, 150, 300, 500, 800, and 
1000 mM 

 Mean thresholds not 
reported 

Mean thresholds not 
reported 

None  There was no difference among 
compared adult-onset obese, 
juvenile-onset obese, and never-
obese females 

Malcolm, 
O’Neil, 
Hirsch, 
Currey, & 
Moskowitz, 
1980 
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Subjects 
(Children, Adults, 

age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adult Subjects 

Adults: 17-72 years old 
N=69 

Whole mouth: three cup 
presentation 
Sucrose Range: 0.03-1.2 
mg/100ml 
 

Adult onset diabetes 
Diabetics: 
0.5mg/100ml 
Control: 0.3 
mg/100ml 
Non diabetic 
relatives: 0.3 
mg/100ml 
Controls: 0.4 
mg/100ml 
Juvenile onset 
diabetes: 0.45 
mg/100ml 
Controls: 0.5 
mg/100ml 
No SD reported 

Adult onset diabetes 
Diabetics: 0.0146mM 
Control: 0.0087mM 
Non diabetic relatives:  
0.0087mM 
Controls:  
0.0116mM 
Juvenile onset diabetes:  
0.0131mM 
Controls:  
0.0146mM 
No SD reported 

None  The adult onset diabetics 
demonstrated a higher sucrose 
threshold than controls. 

Lawson, 
Zeidler, & 
Rubenstein, 
1979 

Adults: 21 young (19–33 
years) and 21 elderly 
(60–75 years)  
 

Whole mouth: Two-
alternative forced choice, 
with concentrations 
presented in ascending order.  
Sucrose Range: 4.09 × 10–1–
1.63 × 102  

Male elderly: 
8.15709 g/l  
Female elderly: 
4.56599 g/l  
Male young: 5.21838 
g/l  
Female young: 
3.90423 g/l  
No SD reported 

Men elderly: 23.83mM 
Female elderly: 
13.35mM 
Male young: 15.25mM 
Female young: 11.41mM 

No SD reported 
 

None  The older men were less sensitive 
than the young men and women 
for sucrose. No sex differences 
observed. 

Mojet, 
Christ-
Hazelhof, 
& Heidema, 
2001  
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Subjects 
(Children, Adults, 

age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adult Subjects 

Young adults: Mean age 
21 years old  
N=12 

Whole mouth: two 
alternative forced choice 
method 
Range of sucrose: not 
reported 

All Anorexics: 
0.49%± 0.50 
Refeeding anorexics: 
0.14%± 0.29 
Low body weight 
anorexics: 
0.85%± 0.40 

All anorexics: 41.3±14.6 
mM 
Refeeding anorexics: 4.1 
± 8.5 mM 
Low body weight 
anorexics: 
24.9 ± 11.7 mM 

None  Overall, anorexics did not have 
abnormal sucrose detection 
thresholds, but those anorexics in 
high caloric refeeding diets had 
lower sweet sensitivity compared 
to controls and those in low 
caloric diet. 

Lacey, 
Stanley, 
Crutchfield, 
& Crisp, 
1977 

Adults: 17-19 years old 
(Males only) 
N=50 

Tip of tongue: Force choice  
Sucrose range: 5mM-50mM 

Caries free: 8.9 mM 
± 0.5mM 
Control: 12.9 mM 
± 0.9mM 

Caries free: 8.9 mM 
± 0.5 mM 
Control: 12.9 mM ± 0.9 
mM 

None  The caries-free group had a 
significantly lower mean sucrose 
detection threshold compared to 
that of the control group. 

Catalanotto 
& Keene 
1974 

Adults: 17-25 years old 
(Males only) 
N=52 

Tip of tongue: Forced choice 
1-drop water and 1 drop 
tastant. 
Sucrose Range:  5 mM/L to 
70 mM/L 

Caries- free: 
10.71mM ± 1.83 
Caries-active: 
16.79mM± 1.46 
  

Caries- free: 10.71mM 
± 1.83 mM 
Caries-active: 16.79mM 
± 1.46 mM  

None  Sucrose detection threshold for 
the caries-free subjects was 
significantly lower than that of 
the caries-active group. 

Wrobel, 
Catalanotto, 
& Walter, 
1978  

Studies in Adults and Children 

With type I diabetes 
Adult: 16 years and older 
N=22 
Children: 9-15 years old 
N=100 
 
Without diabetes 
N=41-adults 
N=100- children 

Tip of tongue: forced choice 
triangle method 
Sucrose range: 0.20, 0.40, 
0.60, 0.80, 1.00, 1.20, 1.40, 
1.60 % 

Youth diabetic: 
0.65% 
Non-diabetic: 
0.520% 
Adults: 
Diabetic: 0. 860% 
Non-diabetic:0. 
420% 
No SD reported 

Youth  
Diabetic: 19 mM 
Non-diabetic: 15.2 mM 
Adults: 
Diabetic: 25.1 mM 
Non-diabetic: 12.3 mM 
No SD reported 

None  Diabetes and age can decrease an 
individual's sucrose detection 
threshold 

Hardy, 
Brennand, 
& Wyse, 
1981 
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Subjects 
(Children, Adults, 

age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Adults and Children 

Adults: 22.2 years, range 
not known (n=61) 
Children: 8-9 years old 
(N=68) 
 

Whole mouth: A paired-
comparison forced-choice 
procedure 
Range of sucrose: 1.171 × 
10−4 − 7.5 × 10−2 M 
 

Girls: 
 0.0072±0.0026 M  
Boys: 
0.0170±0.0033M 
 
Adult women: 
0.0062±0.0017M 
Adult men: 
0.0068±0.0010M 
 

Girls: 7.2mM +2.6mM  
Boys: 17mM +3.3mM 
Adult women: 6.2mM 
+1.7mM Adult men: 
6.8mM +1mM 

None  Boys had higher detection 
thresholds for sucrose.  While 
female children had similar 
detection thresholds to adults. 

James et al., 
1997  

Adults: 20-30 years N 10 
Children 8 years N: 10 

Different areas in the tongue: 
two forced alternative choice 
method with filter paper  
Sucrose rage: 0.2125 M  

Data reported the 
number of correct 
responses based on 
the number of 
papillae and 
sensitivity to sucrose 

Data reported the number 
of correct responses 
based on the number of 
papillae and sensitivity to 
sucrose 

None  Children were significantly more 
sensitive to sucrose than adults. 
Counts of papillae were similar 
for both children and adults. 

Stein, 
Laing, & 
Hutchinson, 
1994 

Adults: 16-25 years old 
Children: 6-15 years old 
N=103 adults 
N=37 children  

Tip of tongue: three drop test 
Sucrose Range: 10, 15, 20, 
25, 30,40, 50,100, 200 
mmol/l 
 

Children 6-15: 10-40 
mM 
Adults: 10-100mM  
 
No SD reported 
 

Children 6-15: 10-40 
mM 
Adults: 10-100mM  
 
No SD reported 

None  Sucrose thresholds were not 
related to the caries experience. 
Sucrose threshold decreased with 
age. Lower sucrose thresholds for 
sucrose were not related to sugar 
in beverages. 

Adams & 
Butterfield, 
1979 

Studies in Children 

Children: 6-18 years old 
(N= 99 obese N=94 
normal weight) 
 

Whole mouth: Taste strips 
were used and ranked on a 5-
point rating scale, with 1-No 
Taste, and 5 -Very Strong 
Taste. 
Range of sucrose: Four 
different concentrations for 
sweet, (sweet: 0.4, 0.2, 0.1, 
0.05 g/ml sucrose).  

Obese children: 
12.6±3.0  
Total Score 
 
 
Non-obese children: 
14.1±3.0 
Total Score 
 

Not able to be calculated 
since the correct number 
of identified taste strips 
was reported. 
 

None  Obese children had more 
difficulty identifying sweet as 
well as other taste qualities less 
compared to children and 
adolescents of normal weight  
 

Overberg et 
al., 2012  
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Subjects 
(Children, Adults, 

age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Children 

Children: 7-15 years old 
N=92 

Tip of tongue: Up-down 
forced choice design 
Sucrose range: 5 to 70 mM 

Caries susceptible: 
13.7mM 
Caries free: 15.6mM 
No SD reported 

Caries susceptible: 
13.7mM 
Caries free: 15.6mM 
No SD reported 

None  There was no significant 
difference in sucrose thresholds 
between the two caries groups. 
Results were different from the 
adult literature. 

Catalanotto, 
Gaulin-
Kremer, & 
Shaw, 1979  

Children: 15-year-olds  
N=100  
50 with a high and 50 
with a low caries 

Whole mouth  
Sucrose Range: 
3.91mmol/L-88.39mml/L 

Median 15.6 mM/L 
in both groups 
No SD reported 

Median 15.6 mM/L in 
both groups 
No SD reported 

None  There was not a statistically 
significant difference in 
thresholds between the groups. 
There was not an association 
between thresholds and 
preferences for sucrose. 

Nilsson, 
Holm, & 
Sjostrom, 
1982  

Children: 5-12 years 
(N=40 years). 

Whole mouth: the subjects 
tasted solutions at 2 
concentrations and asked to 
identify the lowest 
concentration. 
Sucrose Range: 0.032M and 
0.32 M. 

Mean=1.56 M+ No 
SD reported 
 

Mean=1560mM 
No SD reported 
 

None  The sucrose solution was detected 
with the most diluted 
concentration. There were no 
gender differences for threshold. 

Majorana et 
al., 2012 

Children: 12 years old 
N=181 
 

Whole-mouth technique 
Sucrose Range: 3.91 mmol/l 
to a maximum concentration 
of sucrose 88.39 mmol/l. 

Median: 22.10 mM  
 No SD reported 

Median: 22.10 mM  
 No SD reported 

None  Girls were in the high sucrose 
perception taster group.  There 
was no significant difference in 
sweet perception status between 
low and high caries groups. 

Furquim, 
Poli-
Frederico, 
Maciel, 
Gonini-
Junior, & 
Walter, 
2010 

Children: 11-15 years old 
N=143 

Whole mouth, up-down, two 
cup forced choice  
Range: 0.056M to 1.000M 

Mean:0. 004 M ± No 
SD reported 
4mM 

Mean: 4mM 
No SD reported 
 

None  Children with high and low 
sucrose preference patterns did 
not differ in sucrose perception. 

Coldwell et 
al., 2009 
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Subjects 
(Children, Adults, 

age Range) 
N=number of subjects in 

study 

Methods 
(Whole mouth; 

part of the tongue) 

Sucrose detection 
thresholds as 
reported in 
manuscript 

Sucrose detection 
thresholds reported (mM) 

SNPs Findings of the study Citation 

Studies in Children 

Children: 5-9 years old. 
N=99 

Whole mouth: Forced choice 
triangle test  
Range of sucrose: 0%, 0.2%, 
0.4%, 0.6%, 0.8%, 1.0%, 
1.2%, 1.4% and 1.6%.  

Median: 1.0% +0.37  
Low sucrose 
threshold: (0.4 and 

0.6%; n = 35) 

Moderate sucrose 

threshold:(0.8–1.2%; 
n = 36)  

High sucrose 
threshold: (1.4 and 

1.6%; n = 28). 

No SD reported 

Median: 29.2 mM± 10.8 
mM 
 
Low sucrose threshold: 
11.7 mM and 17.5mM 
Moderate sucrose 
threshold: 23.4 mM and 
35.1 mM  
High sucrose threshold: 
40.9 and 46.8 mM 
No SD reported 

None  Children with moderate 
sucrose detection thresholds 
consumed the most non-
bitter fruits. 
Children with high sucrose 
thresholds consumed more 
green leafy vegetables. 

Fogel 
& 
Blissett, 
2014 

Children: 3-6 years old 
(N=45) 

Whole mouth: Two 
alternative, forced-choice 
staircase  
Range of sucrose: 1.5, 3.0, 6, 
12, 18, 24, 30, 45, 60, 120, 
180, 240 and 300 mmol/l 

Children: 31mM Children: 31 mM None  The goal of this study was 
to develop an instrument to 
measure thresholds in 
children younger than 6 
years old. Found that 
accurate data can be 
obtained in children of this 
age group if method is 
short, easy to understand 
and fun. 

Visser, 
Kroeze, 
Kamps, 
& 
Bijlevel
d, 2000 
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CHAPTER 3 

Research Design and Methods 

Research Design  

This dissertation study was a descriptive, secondary data analysis to which I 

contributed original genotype data analysis and interpretation for the candidate genes 

selected. It was based in part on data collected from two “taste studies” conducted by Dr. 

Julie Mennella and her research staff at the Monell Chemical Senses Center in 

Philadelphia, Pennsylvania, in 2004-2012.  The goal of this study was to understand 

individual differences in taste sensitivity and genetics and their relationship to diet-

related food behaviors and obesity. The  study focused  specifically on a sample of 

racially and ethnically diverse children 7-14 years of age from the Philadelphia area and 

the relationships among (a) psychophysical measures of sucrose detection thresholds (b) 

inherited forms of the sweet taste genes TAS1R2, TAS1R3, and GNAT3 and bitter taste 

gene TAS2R38, (c) adiposity measures, (d) diet related food behaviors reported as dietary 

intake of  total calories and added sugars, and (e) personal charactertistics measured as  

child temperament and food neophobia.  

Recruitment, Setting and Consent 

Recruitment, informed consent, and assent of subjects had already taken place in 

the parent studies. Mothers of children were recruited for a “taste study” from the 

metropolitan Philadelphia area using advertisements in local newspapers and magazines 

and via mass mailings. Screening procedures were implemented based on previous 

research published by the Reed and Mennella labs, all of which have been reviewed and 
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approved by the Office of Regulatory Affairs at the University of Pennsylvania. During 

the weeks prior to the study, a blank copy of the consent form was mailed to the home of 

each participant. Initial screening interviews were conducted with mothers over the 

telephone.  

Before testing, written informed consent was obtained from the child’s mother, 

and assent was obtained from each child. The mother of the child was provided with a 

copy of the consent form to read on the day of testing. During the consenting process 

with the parent, each section of the consent was reviewed. The experimenters explained 

the study goals and then verbally repeated the statement on the written consent form, 

emphasizing that the subject may, at any time and for any reason, withdraw from the 

participant group or experiment without penalty or prejudice. Before signing, each parent 

was encouraged to ask questions she might have regarding the experiment. To help the 

children achieve a developmentally appropriate awareness of the nature of the study, 

children were encouraged to ask questions and assent  was obtained  from each child. 

Questions were asked both in the presence of the mother and again in the private testing 

room a setting away from maternal influence. 

 A detailed description of the purpose of the research study as well as the risks 

and benefits of the study, compensation, and privacy policy were explained to parents. 

After signing the informed consent form, each parent was given a copy of the signed 

form and was invited to contact our laboratory at any time if any questions or concerns 

arose after study completion. Mother of participants were reimbursed for travel expenses 

and given a small incentive for their time and cooperation with study procedures. 
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Inclusion and Exclusion Criteria  

 Key inclusion criteria were age 7-14 years, ability to speak English, and reported 

good health at the time of study participation. Key exclusion criteria were medical 

conditions that interfere with eating or that alter taste perception (Table 3). 

 

Table 3. Inclusion and Exclusion Criteria 

Inclusion criteria Exclusion criteria 

Children age 7-14 years Medical conditions that interfere with taste (i.e. cold or flu) 

English-speaking Taking medications that alter appetite 

Good health Unable to understand and complete psychophysical testing 

 

Methods and Procedures 

 The following section focuses on the methods used to obtain the variables in this 

study. To further illustrate and clarify data obtained in the original “taste” studies and 

what was added in this study, see Table 4. 

 

 

 

 

 

 



 

 

64

 

Table 4. Variables Included in Analyses 

Measures collected in original 
studies 

Demographic characteristicsa.b 

Sucrose detection thresholdsa.b 

Child’s DNAa, b 

Height and weighta, b 

% body fatb 

Waist circumference (WC)b 

Dietary intakeb 

Child’s Temperament and Food Neophobia 
Scaleb 

Added in this study  

SNP selection  

Genotyping of selected SNPs a, b 

Waist–Height Ratio (WHtR)b 

Note: aMeasures were collected in study #1; b Measures were collected in study #2 

 

Demographic Information  

Demographic information was attained on each participant during the initial 

original parent “taste” studies. Age in months was calculated from the difference between 

reported date of birth of the child and the date of psychophysical testing. The child’s 

mother reported the child’s gender, race, and ethnicity. Mothers were also queried about 

their own race/ethnicity. Race ethnicity was assigned using standard US Census 

categories. Household income was also reported by the child’s mother in categories 

(<$50,000, $50,000-$99,000, >$100,000, unknown).  
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Sucrose Detection Thresholds 

Preparation of Sucrose Solutions 

Prior to starting the sucrose detection thresholds testing, the tasting solution were 

prepared and stored in a cold room. The written protocol on how to prepare solutions was 

strictly followed to minimize potential systematic and random errors that can affect the 

results. Solutions were discarded after two weeks from the date prepared and replaced for 

future studies (see Appendix A) 

Children’s Testing and Training for Sucrose Detection Thresholds  

Sucrose detection threshold using a two-alternative forced-choice staircase 

procedure was developed at the Monell Center for adults (Cowart & Beauchamp, 1990; 

Mennella et al., 2011; Pepino & Mennella, 2007; Pribitkin, Rosenthal, & Cowart, 2003) 

and later adapted for use among pediatric populations (Bobowski & Mennella, 2015; 

Mennella et al., 2011). The two-alternative forced choice is a psychophysical method 

developed to elicit responses about an individual’s experience regarding a stimulus. It 

focuses on the evaluation of a single attribute (e.g., sweetness), and the stimulus is 

adjusted based on the individual responses (Bartoshuk, 1978; Jogan & Stocker, 2014). 

For this study, all testing took place in a private, comfortable room specially designed for 

sensory testing that was illuminated with red light to mask any visual differences among 

samples. Subjects consumed no food or drink other than water for at least one hour before 

the task and acclimated to the testing room and to the researcher for approximately 15 

minutes before testing.  
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Prior to testing, all children were trained to become familiar with the method and 

to assess whether they understood the detection threshold task (Appendix B). Children 

were presented with a pair of 30 mL disposable medicine cups (Fisher Scientific, Inc.).  

One cup contained distilled water, and the other contained either a 0.056 mM or 18 mM 

sucrose solution (Bobowski & Mennella, 2015). Children were asked to taste both 

solutions in the order presented and to point to the solution that had a taste. The two pairs 

provided the children with the experience of tasting a pair of solutions for which they 

could not detect a difference (water vs. 0.056 mM sucrose) and for which  the difference 

between solutions was easily discernible (water vs. 18 mM sucrose). This method 

eliminated the need for a verbal response and has been shown to be an effective method 

for assessing both taste and olfaction in children (Bobowski & Mennella, 2015; 

Mennella, Finkbeiner, et al., 2014).  Training was repeated for those children who did not 

understand the task after one training session. If after training children did not comply 

with the procedures, became tired, or refused to continue, the testing was stopped and the 

data were not analyzed.  

The solutions used for testing in the formal threshold detection protocol ranged in 

concentrations of 0.056-1000 mM and were equally diluted from the maximum 

concentration in quarter log steps.  The order of presentation of solutions was randomized 

across subjects. The first pair of samples presented to the child was near the middle of the 

concentration series, starting at 3.2 mM (Pepino et al., 2010). During each trial, subjects 

were presented with pairs of solutions; within each pair, one solution was distilled water 

and the other the taste (sucrose) stimulus. Subjects were instructed to taste the first 
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solution presented within a pair, swish the solution in their mouth for 5 seconds, and 

expectorate. Subjects tasted the second solution within a pair using the same protocol, 

rinsing their mouth with distilled water once between solutions within a pair and twice 

between successive pairs. Time was monitored during interpair (5 s) and interseries (1 

min) intervals using a digital clock, to prevent the introduction of traces of stimuli (i.e., 

sucrose) left from preceding trials (Bartoshuk, 1978).  After tasting both solutions within 

a pair, subjects were asked to point to the solution that had a taste, as in the training task 

(Appendix C). The concentration of the tastant in the solution presented in the 

subsequent pair was increased after a single incorrect response and decreased after two 

consecutive correct responses. A reversal occurred when the concentration sequence 

changed direction (an incorrect response followed by a correct response or vice versa). 

A tracking grid (Figure 9) was used to record subjects’ responses. The testing 

procedure was terminated after four reversals occurred, provided the following criteria 

were met: (a) there were no more than two dilution steps between two consecutive 

reversals, and (b) the reversals did not form a consistent ascending or descending pattern 

such that positive and negative reversals were achieved at successively higher or lower 

concentrations (Pribitkin et al., 2003). For each subject, the calculated detection threshold 

for sucrose was calculated as the mean of the log values of the last four reversals 

(Appendixes D & E).  The log transformation is used to make non-normally distributed 

data less skewed, to make patterns in the data more interpretable and to help meet the 

assumptions of inferential statistics (Bland & Altman, 1996; McDonald, 2014).  Finally, 

the antilog value was determined to represent the mean sucrose detection threshold. 



 

 

68

Although only a narrow section of the testing grid was required to test the subject 

illustrated in Figure 9, some children tasted stimuli over a wider range of concentrations 

before their threshold was determined. 

Methodological sources of errors with this methodology have been 

considered.  Careful attention to sources of both random and non-random error was taken 

into account in the development of this technique to reduce the potential for invalid and 

unreliable data. The two-alternative forced choice staircase approach maximizes 

precision by minimizing the number of trials (Bartoshuk, 1978; Jogan & Stocker, 2014). 

The methodology has been used in other studies as well where investigators obtained 

comparable data (Bobowski & Mennella, 2015; Pepino et al., 2010; Pepino & Mennella, 

2012). The advantage of using this technique is that stimulates a large region of the 

anterior oral cavity, which has been used to make inferences about normal perception 

during eating and drinking.  Steps have been taken to reduce limitations related to 

stimulus control and residual stimuli that may remain in the mouth by asking participants 

to rinse their mouth with water between test doses and measuring time between stimuli. 

During the preparation of the sucrose solution, ensuring adequate calibration of pipettes 

and scales has reduced some systematic errors. 
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Figure 9. Forced Choice Sucrose Detection Threshold Tracking Grids 

 
 

Single Nucleotide Polymorphism (SNP) Selection 

The taste receptor genes hypothesized to be related to sucrose detection thresholds 

were selected through a rigorous literature search limited to articles published in 2001-

2014, written in English, using PubMed and Scopus databases.   
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Genes and their variants chosen for their relation to sweet taste or the 

consumption of sweet foods were TAS1R2 (rs35874116), TAS1R3 (rs35744813), and 

GNAT3 (rs7792845). For TAS1R2 gene I191V, the variants sites change amino acids in 

the proteins from Isoleucine (I) to Valine (V) at position 191.For the three variant sites 

within TAS1R2, genotyping results are shown as II, IV, and VV. For each of the 

regulatory regions of TAS1R3 and GNAT3, genotyping results are shown as nucleotides 

(CC, CT, or TT) (Table 5). Of the three genotypes at this locus, those carrying the V 

allele have been associated with a lower habitual sugar intake (Eny et al., 2010). For the 

TAS1R3 gene, the TT genotype is associated with a poorer ability to distinguish among 

low concentrations of sucrose compared with the CC genotype (Fushan et al., 2009). For 

the GNAT3 gene, the CC genotype is associated with poorer ability to distinguish low 

concentration of sucrose compared with the CT or TT genotype (Fushan et al., 2010).   
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Table 4.  Taste Receptor and Signaling Protein Genes and Related Single Nucleotide Polymorphisms 

Sweet Taste Receptor Gene and Signaling Protein Single Nucleotide Polymorphisms 

Gene Marker Official 

Name 

Type MAF Type of Variant Taste  

Association 

Sample 

previousl

y studied 

Cite 

TAS1R2 rs35874116 Taste receptor, type 1, 
member 2 

G protein-
coupled 
receptor  

C=0.266 Missense Sugar 
consumption 

Adults Eny et 
al., 2010 

TAS1R3 rs35744813 Taste receptor, type 1, 
member 3 

G protein-
coupled 
receptor  

T=0.253 Upstream  Sweet taste 
sensitivity 

Adults Fushan 
et al., 
2009  

GNAT3  rs7792845 Guanine nucleotide 
binding protein, alpha 
transducing 3 

G protein- 
signal 
transduction 

T=0.320 Intron Sweet taste 
sensitivity 

Adults Fushan 
et al., 
2010 

Bitter Taste Receptor Gene Single Nucleotide Polymorphisms 

TAS2R38 rs713598 Taste receptor, type 2, 
member 38 

G protein-
coupled 
receptor  

C=0.495 Missense Bitter taste 
sensitivity  

Adults and 
Children 
 

Mennell
a, 
Pepino, 
Duke, & 
Reed, 
2010 

TAS2R38 rs1726866 Taste receptor, type 2, 
member 38 

G protein-
coupled 
receptor  

A=0.425 Missense  Bitter taste 
sensitivity 

Adults and 
Children 
 

Mennell
a, 
Pepino, 
Duke, et 
al., 2010 

TAS2R38 rs10246939 Taste receptor, type 2, 
member 38 

G protein-
coupled 
receptor  

C=0.479 Missense Bitter taste 
sensitivity 

Adults and 
Children 

Mennell
a, 
Pepino, 
Duke, et 
al., 2010 

Note: MAF = Minor allele frequency. A marker polymorphism is an alternative form of a gene, which is denoted with rs numbers that are unique 
identifiers of each variant. 
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Variations in the bitter taste receptor gene TAS2R38 can explain differences in 

sweet taste preference in children.  For the TAS2R38 gene, the variant sites are expected 

to change amino acids in the proteins as follows: A49P, V262A, and I296V (Timpson et 

al., 2007). For TAS2R38 gene A49P, the variants sites change amino acids in the protein 

from Alanine (A) to Proline (P) at position 49. For V262A, the change of amino acid 

occurs at position 262 with a Valine (V) to Alanine (A). Lastly, for I296V, an Isoleucine 

(I) changes to Valine (V) at position 296.The aforementioned TAS2R38 variants sites 

form two common haplotypes with the amino acid combination of AVI and PAV. The 

diplotypes of these combinations predict bitter taste sensitivity. Commonly, individuals 

with the AVI/AVI diplotype are bitter nontasters; AVI/PAV are medium tasters; and 

PAV/PAV are tasters (Kim et al., 2003; Mennella, Pepino, Duke, et al., 2010). For A49P, 

the P allele is associated with higher sucrose preference in children compared with the 

AA allele (Mennella et al., 2005). Because of the tendency for closely linked alleles to be 

co-inherited, the V allele of rs1726866 and the I allele of rs10246939 would have a 

similar effect as the A allele of A49P (Kim et al., 2003). 

The minor allele frequencies (MAF) for the chosen polymorphisms are also 

shown in Table 5, along with the type of variant. MAF refers to the frequency at which 

the least common allele occurs in a given locus and population. The MAF numbers 

reported here are based on dbSNP database (National Center for Biotechnology Information, 

2005). 
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Genotyping 

As part of the original parent studies, on the day of testing each child provided a 

saliva or buccal cell sample from which genomic DNA was extracted, purified, and 

quantified (BuccalAmp, Epicenter, Madison, WI, or Genotek, Kanata, Canada [see 

appendix I & J) and stored in an -80 °C freezer. Genotyping was conducted in the 

laboratory of Dr. Danielle Reed, director of genomics at the Monell Chemical Senses 

Center. The methods used and the genetic markers selected were validated in Dr. Reed’s 

laboratory (Mennella, Finkbeiner, et al., 2014; Mennella, Pepino, Duke, et al., 2010). 

Genomic DNA samples were used as a template in TaqMan® assays (Applied 

Biosystems, Foster City, CA) in duplicate using previously established methods 

(Mennella et al., 2012).  The extracted genomic DNA samples are diluted to 5 ng/µl, 

assayed for genotype and alleles identified (see appendix K).  

For genotype quality assurance, the concentration of DNA in stored samples was 

checked using a Nanodrop® Spectrophometer ND100 prior to use. Subjects with known 

genotype from previous studies were added as controls. A random regenotyping of at 

least 5% of the sample was used to assess agreement of genotype between duplicate 

samples. A comparison of genotypes for those samples that were regenotyped resulted in 

100% agreement. Samples that failed to amplify or cluster into genotype groups were 

genotyped once more. If no genotype could be obtained with three attempts, the value 

was treated as missing data.  

We assessed the distribution of the expected and observed genotypes using the 

Hardy-Weinberg equilibrium (HWE). HWE, typically used to identify genotyping errors 
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(Teo, Fry, Clark, Tai, & Seielstad, 2007), assumes that the genetic variation in a 

population will remain constant from one generation to the next in the absence of other 

evolutionary factors, such as mutations, natural selection, nonrandom mating, gene flow, 

and genetic drift (Contento, 2008). For example, when there are two alleles for a 

particular gene (A and B) and their frequencies is p and q, then p + q must equal 1. The 

formula for calculating HWE is p2 + 2pq + q2 = 1. Then, we can calculate the expected 

frequencies of the genotypes AA (p2), AB (2pq), and BB (q2) (Hosking et al., 2004; 

Ryckman & Williams, 2008).  

Adiposity Measures  

Height and weight were measured in children in the laboratory. BMI and BMI z-

score measures were available in all children for whom we had height and weight. 

However, the measures of fat mass (percent body fat), waist circumference and waist-to 

height ratio (WHtR) were taken in a subset of 96 children from study 2. Details on 

validity and reliability of the instrumentation used in this study are provided in Table 6 

Height and Weight 

 All but three children (n=232) were weighed (kg) and measured for height (cm) 

wearing light clothing and no shoes using a physician’s scale (model 439, Detecto, Webb 

City, MO).  

Body Mass Index (BMI) Categories and BMI z-Scores  

BMI, the most widely used measure to screen for obesity (CDC, 2013), was 

computed from the measured weight and height as kilograms per meters squared  (Cole, 

2008).  However, BMI is considered an imperfect tool to measure obesity in adults since 
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it does not discriminate between excess fat mass and excess lean mass (Romero-Corral et 

al., 2008). This concern is also true for children and adolescents when using BMI. BMI is 

a moderately sensitive measure of adiposity (Demerath et al., 2006; Freedman & Sherry, 

2009) and thus measurement of adiposity by other means is indicated. 

 Participants were then classified into one of four BMI categories (i.e., 

underweight, healthy, overweight, and obese) following the Centers for Disease Control 

and Prevention charts for pediatric BMI by age and sex for children 2-18 years of age. 

The BMI-for-age reference in the United Stated is based on nationally representative 

sample from boys and girls ages 2–20 years (Kuczmarski et al., 2000).  

 BMI z- scores are the most common method to assess overweight and obesity in 

children and adolescents and are validated for use in this population (Inokuchi, Matsuo, 

Takayama, & Hasegawa, 2011; Kakinami, Henderson, Chiolero, Cole, & Paradis, 2014; 

Kuczmarski et al., 2002; Must & Anderson, 2006). BMI z-scores are measures of relative 

weight adjusted for child age and sex. The Z score characterizes the number of standard 

deviations from the mean and permits comparing the BMI of a given child to the BMI 

distribution for a population of children of the same age and sex (Must & Anderson, 

2006). The BMI z score represents a child’s BMI in a standard normal distribution with a 

mean of zero and a standard deviation of 1.  For this study, BMI z-scores were calculated 

using EpiInfo 3.5 www.cdc.gov/epiinfo)  (Kuczmarski et al., 2002).  
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Body Fat 

Body fat was estimated by bioelectrical impedance analysis (BIA) using the 

Quantum X instrument (RJL Systems, Clinton Township, MI) and Body Composition 2.1 

software using a new pediatric equation, validated for children 3.9 to 19.3 years of age 

(Chumlea et al., 2002; Kriemler et al., 2009; Wu et al., 1993). Body fat was estimated in 

kilograms and as a percentage of measured body weight. BIA is a commonly used 

method, based on the conduction of electrical current in the body and the differences in 

the resistance to conduct electricity between the fat and water components of the body.  

BIA has been validated with dual-energy X-ray absorptiometry (DXA) (Sun et al., 2005; 

Thomson, Brinkworth, Buckley, Noakes, & Clifton, 2007). The BIA method has been 

validated for use in the pediatric population (Houtkooper, Going, Lohman, Roche, & Van 

Loan, 1992; Okasora et al., 1999; Talma et al., 2013).  Measures were obtained by 

following the manufacture’s protocol (http://www.rjlsystems.com/documentation/how-

electrodes-are-placed-on-the-hand-and-foot/). In this study, trained research assistants 

measured BIA in a subset of 96 children. 
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Waist Circumference (WC) 

This measure has been used in previous studies and validated in children 

(Bergmann et al., 2010; McCarthy & Ashwell, 2006; Taylor, Jones, Williams, & 

Goulding, 2000). WC was measured to assess central adiposity measuring their 

abdominal girth recorded to the nearest 0.1 cm by the subject standing with his or her 

weight evenly distributed on both feet and with the feet about 25-30 cm apart.  

In this study, trained research assistants measured waist circumference in the 

subset of 96 children using a plastic tape measure.  The waist was defined as the point 

midway between the iliac crest (superior border of hip bone) and the costal margin (lower 

rib). Two measures were recorded; if the difference between the measures was greater 

than 1 cm, a third measure was performed; the mean of the two closest measures was 

calculated and reported.   

Waist-to-Height Ratio (WHtR)  

WHtR is defined as the ratio obtained from an individual’s waist circumference 

(centimeters) divided by their height (centimeters) and is a measure of a central obesity; a 

high WHtR is commonly associated with poor metabolic health in adults and in children 

(Khoury, Manlhiot, & McCrindle, 2013; Park & Kim, 2012). It is considered by some to 

be a measure of body fat distribution that has greater validity than BMI (Khoury et al., 

2013; Savva, Lamnisos, & Kafatos, 2013). WHtR was computed in the subset of 96 

children who had waist circumference measured in this study. Children with a WHtR 

ratio >0.5 were considered as having central adiposity (Khoury et al., 2013; Mokha et al., 

2010).  
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Diet Related Food Behaviors 

Dietary Intake  

In the subset of 96 children, a recall of the previous day’s food intake was 

obtained using the Automated Self-Administered 24-Hour Recall System (ASA24), a 

web-based, validated, self-administered 24-hour dietary recall instrument developed by 

the National Cancer Institute (Bethesda, MD) (ASA24-Kids-2012; National Cancer 

Institute, n.d.; Kirkpatrick et al., 2014). Mothers and children sat side by side as the 

mother reported to a trained researcher the food intake from the previous day for her 

child. The child was asked about food eaten and to report any snacks or foods eaten 

outside the home (e.g., at school) (Kirkpatrick et al., 2014). After a subject reported a 

specific food or beverage, ASA24 provided a visual depiction of the item, which allowed 

subjects to estimate portion sizes. The ASA24 used a series of questions to establish a 

quick list of foods eaten, a query for long gaps between eating occasions, questions about 

preparation methods and serving sizes of food items, forgotten foods, and a final review. 

The information obtained was analyzed using the U.S. Department of Agriculture’s Food 

and Nutrient Data System software, version 4.1.  

From these data, we focused specifically on daily caloric intake (kcal/day), added 

sugar intake (g added sugar/day), and added sugars as a percentage the total caloric 

intake.  The intake of calories and added sugar was expressed relative to body weight 

(kg) (National Cancer Institute, n.d.). 

 The Goldberg cutoff method was used to evaluate an individual’s bias in 

reporting energy intake, the greatest risk of which is under-reporting energy intake 
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(Livingstone & Black, 2003). The diet information was eliminated for children identified 

as under-reporters prior to further analysis (Champagne, Baker, Delany, Harsha, & Bray, 

1998). The child’s reported energy intake (kcal) was calculated relative to the basal 

metabolic rate (BMR) based on their age and gender to obtain a ratio (Appendix F). 

Physical activity was not measured in this study. Children who reported energy 

intake/BMR <1.0 were considered under-reporters as children would not maintain a state 

of health with energy intake below basal energy needs. For this study, children who 

reported no intake of added sugar were also excluded. 

Personal Characteristics 

Child’s Temperament Questionnaire and Food Neophobia Scale (FNS)  

Temperament is defined as the set of biological characteristics that are present in 

an individual from birth to adulthood. A child’s temperament has been associated with 

eating behavior (Haycraft et al., 2011) and taste preference (Liem & Mennella, 2002).  In 

addition, temperament traits have been associated with overweight and obesity in 

children and adults (Agras et al., 2004; Haycraft et al., 2011).  Children’s temperament 

may explain why some children are at risk for overweight or obesity, and temperament 

may relate to sucrose detection thresholds in children. Therefore, we measured 

dimensions of child temperament particularly as they relate to eating behaviors (Pliner & 

Loewen, 1997).  

A dimension of children’s temperament that may translate into poor dietary 

intakes and unhealthy weight outcomes (underweight and obesity) in children is food 

neophobia. Food neophobia is considered the inborn personality attribute characterized 
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by the rejection of foods that are new or completely unknown to the child (Dovey, 

Staples, Gibson, & Halford, 2008; Pliner & Hobden, 1992). Food neophobia in children 

has been found to be associated with food consumption, particularly fruits and vegetables 

(Cooke, Wardle, & Gibson, 2003; Galloway, Lee, & Birch, 2003). Food neophobia has 

also been associated with bitter taste sensitivity (Carter et al., 2000). 

For this study, mothers filled in their child’s temperament and food neophobia 

questionnaires (Appendix G & H). The survey was comprised of 31 items, each rated on 

a five-point scale, asking parents whether they agreed or disagreed with the statements 

asked about their child. Higher scores indicated more of the characteristic. Twenty-five 

items in the scale measured the child’s temperament, which is made up of five 

dimensions: emotionality, shyness, activity, sociability, and negative reactions to food. 

For example, activity in the temperament scale measures how physically active a child is 

and the level of activity a child engages in during a day, ranging from very low to very 

high. The original Food Neophobia Scale (FNS) has 10-items with good reliability and 

validity (Pliner & Hobden, 1992). In this study, Food Neophobia was measured with six 

items in the survey chosen because they seem to best capture responses to new foods. 

This short scale has been used in prior studies (Cooke, Carnell, & Wardle, 2006; Liem & 

Mennella, 2003).  
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Instrumentation: Validity and Reliability  

Table 5. Validity and Reliability of Instruments 

 Reliability and Validity  

Two alternative forced –choice 
staircase procedure  

The two alternative forced-choice procedures discourage response biases (Linschoten, Harvey, Eller, & Jafek, 2001). This method is brief and has evidence of reliability and external validity 
in children.  When methodology was used for sucrose preference reliability was assessed by comparing the results of the first series (i.e., weaker stimulus presented) with the second series 
(i.e. stronger stimulus) Statistically significant correlations between the concentrations of sucrose chosen in the 2 series were observed for children (ICC = 0.42, n = 338), adolescents (ICC = 
0.46, n = 168) (Mennella et al., 2011).  

Height  Measures obtained in the laboratory by a trained technician were shown to me more reliable. In an adult study of self-reported height participants overestimated their height by 2.2±3.5 cm 
(mean ± standard deviation [SD]) (Griebeler, Levis, Beringer, Chacra, & Gómez-Marín, 2011). Likewise, children tend to overestimate their height (Beck et al., 2012). Systematic measured 
height has been reported to be more valid than self-report as discrepancy estimates between the two methods have been observed, with individuals overestimating their height (Powell-Young, 
2012). 

Weight To ensure accuracy of measurements duplicate assessments are taken. With a third measure needed if the first two are very different. Measures were obtained in the laboratory since measured 
height by a trained technician was shown to me more reliable. In a self-reported study of adults where weight was obtained, weight was underestimated by 3.1±6.5 lb (1.5 ± 2.9 kg) (Griebeler 
et al., 2011). Likewise, children tend to underestimate their weight (Beck et al., 2012). Measured weight has been reported to be more valid than self-report, as underestimation of weight is 
often common (Powell-Young, 2012). 

Body Mass Index (BMI) BMI has been evaluated in the literature against the gold standard measure of adiposity dual x-ray absorptiometry (DXA) in children. The correlation of BMI with DXA total fat mass was 
0.85 in children 3-8 years old (Eisenmann, Heelan, & Welk, 2004). Correlation between BMI and DXA total fat was 0.84 for boys and 0.90 girls. Bland-Altman plots of the methods indicated 
agreement (Boeke et al., 2013). 

BMI z Score. Association of BMI z score with DXA percent body fat has been reported to be having good agreement (r= 0.82) in children 5-18 years old (Freedman & Sherry, 2009). Similar findings have 
been reported in other studies in children age 3-18 years (Mei et al., 2002). BMI z score with DXA trunk, DXA % fat, DXA fat, ranged between r=0.63-0.80. In addition it was reported that 

the Bland-Altman plots of the methods indicated good agreement (Boeke et al., 2013). The validity and reliability of this measure depends on the accuracy of both height and weight.  

Bioelectrical Impedance 
%body fat  

Bioelectrical impedance % body fat was correlated with DXA trunk, DXA % fat, DXA fat 0.82, 0.73 and 0.84 respectively in children (Boeke et al., 2013). 

Waist Circumference Waist circumference (WC) has been found to correlate with DXA trunk fat (r=0.79). The correlation between DXA trunk fat with WC has been found to be good for boys (0.79) and girls 
(r=0.87) (Boeke et al., 2013). Intrarater reliability (degree of agreement among repeated measures by a single rater) of waist circumference across BMI subgroups was reported as ICC>95 

(Wang, Liu, & Chen, 2010). Intrarater technical error of measurement did not exceed 1.14 cm (Moreno et al., 2002).  

Waist-to-height ratio (WHtR) WHtR strongly relates to children's DXA-trunk fat mass index (r = 0.93). Umbilical waist-to-height ratio and trunk fat mass index (DXA) are markers of central adiposity and insulin 
resistance in children (Guntsche et al., 2010). 

Dietary Intake  (ASA 24) The Automated Self-Administered 24-Hour Recall has been validated it against interviewer-administered Automated Multiple-Pass Method (AMPM) recalls and also against weighed actual 

food intake at meals. Data reported in ASA24 and AMPM were highly comparable (Kipnis et al., 2003; Kirkpatrick et al., 2014; Moshfegh et al., 2008).  This validation was done in adults, 
not children. However, the ASA24-Kids method is used with a proxy reporter, such as parent or guardian (National Cancer Instititue, 2012).  

Child Temperament  The child temperament scale was validated against the Reactions to Food Scale of the Colorado Childhood Temperament Inventory as well as EAS Temperament Survey for Adults (Pliner & 
Loewen, 1997). 

Food Neophobia Scale (FNS) The FNS assesses willingness to eat foods. The test-retest correlation in this scale was assessed in two samples r = 0.91 and r = 0.87, p < 0.01, and then tested 15 weeks later for all subjects, 
and the correlation was r=0.82, p<0.01(Pliner & Hobden, 1992). This measure has been validated against behavioral observations of children’s willingness to taste foods (r = 0.38, p <0.001) 
and parent predictions of their child’s willingness to try foods (r = 0.34, p < 0.001) (Pliner, 1994). The internal reliability of the short scale has been reported with a Cronbach’s alpha 

coefficient of 0.92 (Cooke et al., 2006). 
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Study Variables  

Several outcomes were measured in the children recruited for this study. Table 7 

summarizes some of the variables and their methods of measurement. 

 

Table 6. Variables and Methods 

 

Importance of the Knowledge Gained  

Although there is a body of literature describing the variability of taste preference 

and taste thresholds in humans little has been described in regards to sucrose detection in 

Variable  Method of measurement Operational variable  

Demographics 

Gender Reported by mother  Male or female 

Age (at time of testing) Reported date of birth by 
mother 

Age in years on date of testing 

Psychophysics 

Sucrose detection threshold  
Lowest sucrose concentration 
detected 

Measured with forced choice 
paired comparison tracking 
procedure 

mM of sucrose  

Genetics   

TAS1R1, TAS1R2, TAS2R38, 

and GNAT3 polymorphisms  
Genotyping Genotype 

Adiposity measures 

Body mass index  Measured height and weight kg/m2 

BMI percentile and categories 
  

CDC BMI for age and sex 
standards 

Underweight, ≤5% 
Normal weight, 6-84.9%, 
Overweight, 85-94.9% 
Obese, 95-100% 

BMI z-score Calculated with EpiInfo 3.5 z-score  

Waist circumference  Measured  Waist circumference in centimeters 

Body fat  Measured by bioelectrical 
impedance analysis 

Percent (%) 

Waist to height ratio (WHtR) Measured waist circumference 
and height 

 

Diet related food behaviors 

Dietary caloric intake  From ASA24  kcal/day 

Total added sugars per day  From ASA24  g,  g/kg, % of total kcal 

Personal Characteristics  

Child temperament and Food 
Neophobia Scale (FNS). 

Reported by mother Emotionality, shyness, activity, 
sociability, negative reaction to 
foods and food neophobia 
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children and little attention has been paid to how children differ in their sense of taste and 

how these differences might affect their health and behavior.  Our study was able to make 

a contribution to the growing body of knowledge related to obesity in children and 

addresses an important gap in the field of chemosensory testing and obesity.  The 

findings described herein could enhance our ability to identify children at higher risk for 

obesity and enable us to develop individualized interventions and treatment strategies.  In 

addition, these findings can ultimately provide greater insight on how to intervene to 

generate sustainable long-term results for prevention of obesity and its related 

comorbidities, therefore helping to decrease health care costs associated with this 

condition.  

Data Analysis Plan 

Data Management  

Data collection and coding occurred in the original studies; all subsequent 

analyses refer to these coded data in such a manner that individual identities cannot be 

traced. To maintain the safety and confidentiality of the subjects, all records were stored 

in a locked filing cabinet in a room dedicated solely for this purpose. Computer-based 

files were made available only to personnel involved in the study through the use of 

access privileges and passwords. Prior to access to any study-related information, 

personnel were required to sign statements agreeing to protect the security and 

confidentiality of identifiable information.  

Each subject tested received a unique identity number, which was used to label 

cheek cell and saliva samples, questionnaires, and data collection forms. All hard copy 
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documentation obtained during the study was locked in the laboratory of Dr. Julie 

Mennella. All data were maintained in a database (Microsoft Access), and subject ID to 

facilitate data manipulation related the tables. The Mennella lab had a RAID 5 network-

attached storage device that was backed up nightly to ensure database integrity. Several 

hard drives in her laboratory also maintained multiple backup copies of the database 

should any primary drive fail. The coded data were stored and maintained in a secure 

server that only Dr. Mennella and her staff can access. All biological samples were stored 

as coded samples in Dr. Reed’s lab, kept in a -80 °C freezer. Solely Dr. Reed and her 

staff control this laboratory. Genotyping was done with coded samples, and no 

identifying information was available to Dr. Reed or her laboratory members. 

Screening for Missing Data, Normality, Linearity and Multi-collinearity 

Prior to data analysis, the data were screened for missing data. The amount to 

which the missing data were a problem was evaluated by exploring the pattern of the 

missing data within and across variables. Data were also tested for normality using the 

Kolmogorov-Smirnov test for normality. If violations in the normality assumption were 

detected, values were transformed to approximate a normal distribution and non-

parametric data analysis options were considered.   

Assessing for Selection Bias 

We first established that there were no significant differences between the data 

obtained in both original taste studies (studies 1 and 2) for children from whom we had 

valid sucrose thresholds data for variables for which we had data for both groups. Study 2 

refers to those children that were considered a subset in this dissertation.  We determined 
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these differences using Student t-test and Chi square test (χ² test). We did this to ensure 

that findings with the subgroup of children were still representative of the overall group.   

Statistical Analysis for Sample Description 

For demographic characteristics and all summary statistics of primary and 

secondary measures, we computed means and standard deviations (means ± SD) for 

continuous variables and counts and percentages for categorical variables.  The primary 

outcome measures for this study were sucrose detection thresholds, taste receptor 

genotype, adiposity measures, temperament and diet related food behaviors.   

Statistical Analysis of Aim 1 

For aim 1, student’s t-tests were used to examine sex differences for sucrose 

detection thresholds, personal characteristics (temperament, food neophobia), and diet 

related food behaviors (Figure 10).   Pearson’s correlations were used to examine the 

relationship between sucrose detection thresholds, personal characteristics and diet 

related behaviors with age. In addition, Pearson’s correlation was also used to explore the 

relationship of sucrose detection thresholds with personal characteristics (negative 

reactions to foods and food neophobia), diet related behaviors and adiposity. Correlation 

results were reported as follows: correlation (r) (degrees of freedom) = p value. We used 

the Colton’s rule for interpreting the size of the correlations (Colton, 1974). Those 

findings that had a fair [r 0.25 to 0.50 (-0.25 to -0.50)], moderate to good [r 0.50 to 0.75(-

0.50 to -0.75)] or very good [r >0.75  -0.75] relationship with sucrose thresholds were 

included in subsequent analysis for GLM in Aim 2 and Aim 3. 
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Figure 10. Bivariate Data Analysis Plan for Aim 1 

 

Statistical Analysis for Aim 2 

For aim 2, only subjects for whom valid sucrose thresholds were obtained were 

included. Genotype–phenotype association studies require that subjects be genetically 

unrelated (N=175) (Khoury, Beaty, & Cohen, 1993), so in instances where more than one 

child from a family was tested, only one child was selected at random to be included in 

the genetic analysis (Mennella et al., 2012). Departure from the expected genotypic 

frequencies in HWE was tested using the Hardy-Weinberg Calculator by Michael H. 

Court by comparing the observed and expected genotype frequencies for cases and 

controls (Court, 2005). Separate one-way ANOVAs using genotype (TAS1R2, one variant 

site; TAS1R3, one variant site; GNAT3, one variant site; and TAS2R38, three variant sites) 

were conducted (Mennella et al., 2012). Genotypes that were associated with sucrose 

threshold were evaluated for their relationship with measures of diet related food 

behaviors (child’s dietary intake), we did this to explore whether there was a difference in 
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dietary consumption based on child’s genotype. Figure 11 shows a depiction of the 

bivariate analysis plan for aim 2. 

Figure 11. Bivariate Data Analysis for Aim 2 

 

Analysis Plan for Multivariable Model Aim 2 

Next drawing on the conclusions from the separate from the bivariate analyses 

described above, we used general linear models (GLM) with those outcome measures 

significantly related to sucrose detection thresholds (p<0.05). These variables were 

included in a multivariable model to establish the effect size of each and examine 

independent determinants of sucrose detection thresholds. The first model included 

sucrose thresholds, genotype, age and sex. This first model was run in the overall sample 

and then a second model with the same variables was run in the subset of children to 

assess whether the results remained consistent. Lastly, a model included sucrose 

threshold adjusted by age, sex, genotype and one adiposity measure. Only one adiposity 

measure was added to the model to avoid multi-collinearity. The variables chosen met 

significance in the univariate analysis. The analyses followed methods established in 
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earlier studies of genotype in children and taste-related measures and were conducted 

separately for each gene. Variants that were significant with a p<0.05 were included in 

subsequent genetic analysis. 

Multivariable modeling is appropriate as a strategy because many of the measures 

were potentially interrelated (Rosner, 2006).  The criterion for statistical significance for 

the omnibus statistical tests and Fisher's least squares difference tests were conducted on 

significant results to compare specific group means (post hoc tests was alpha=0.05).  The 

parameter of interest for GLM was sucrose detection threshold.  

 

Statistical Analysis for Aim 3 

For aim 3, we further explored the relationship between personal characteristics 

with adiposity measures using Pearson’s correlations. Correlation results were reported as 

follows: correlation (r) (degrees of freedom) = p value. Here, we used the Colton’s rule 

for interpreting the size of the correlations (Colton, 1974) as previously described.  

Separate one-way ANOVAs were used to look at whether gene variants that were 

related to sucrose thresholds from aim 2 were also related to adiposity measures.  

Analysis Plan for Multivariable Model Aim 3 

GLMs were used to construct a multivariable model to examine independent 

predictors of the adiposity measures. This model had the adiposity measures that were 

significantly related with sucrose thresholds as the dependent variables.  Age, sex, 

sucrose thresholds, diet related food behaviors and personal characteristics were 

considered covariates.  
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All analyses for this study were conducted with Statistica, version 12 (StatSoft, 

Tulsa, OK), with the level of significance set at alpha = 0.05. HWE was calculated with 

Court’s Hardy-Weinberg Calculator (Court, 2005). Graphs were generated using 

GraphPad Prism, version 6.01 (GraphPad Software, La Jolla, CA).  
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CHAPTER 4 

Results 

Normality test using Kolmogorov-Smirnov (K-S) test 

The distributions of sucrose detection threshold values were not normally distributed as 

evaluated by the Kolmogorov-Smirnov (K-S) test for normality (Chakravarti, Laha, & 

Roy, 1967) (d = 0.187, p < 0.01). Prior to the main statistical analyses these values were 

square root transformed to approximate a normal distribution K-S d = 0.105, p < 0.05. 

The distribution was normal for age, adiposity measures, temperament scale and food 

behavior measures (Table 8). 

Table 8. Normality Test using Kolmogorov-Smirnov (K-S) Test 

Variable K-S (d) P value (p) 

Demographic 
Age  0.077 <0.15 

Sucrose Threshold  
Sucrose detection 
thresholds  

0.187 <0.01 

Anthropometric/Adiposity Measures 
BMIz  0.055 >0.20 
WHtR 0.106 >0.20 
%Body Fat 0.703 >0.20 

Personal characteristics: 
Temperament Scale and Food Neophobia 

Shyness  0.064 >0.20 
Emotionality  0.073 >0.20 
Sociability  0.096 >0.20 
Negative Reaction to foods  0.108 >0.20 
Activity 0.076 >0.20 
Food Neophobia  0.124 <0.15 

Diet related food behaviors  
Total calories 0.125 <0.10 
kCal/kg 0.129 <0.10 
Added sugars as percent of 
kcal 

0.118 >0.20 

Added sugars g/kg  0.119 >0.20 
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Results from Assessing for Selection Bias 

Prior to analyzing our aims, we established that there was no statistically 

significant difference between the children from whom data were collected in the original 

study #1 and study #2.  There was no significant difference in sucrose thresholds t (df 

214) = -1.28, p = 0.201, age t (df 214) = +0.03, p = 0.971, or sex (χ2 = 0.71, p = 0.399) 

between the two studies (Table 9). We acknowledge that there were significant 

differences between the studies based on race, income and education. Parents in study 2 

had higher income and levels of education compared to study 1. There were also 

significant racial differences between the groups. This could have been because study 1 

had a larger percent of participants who selected other, more than one race or Hispanic. 

Although these findings were significant differences between groups, these variables 

were not part of the aims in this study. In our important predictors and outcome variables, 

there were no significant differences between study 1 and study 2.   Table 9 describes the 

comparison of variables in the two studies.   
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Table 9. T- test or Chi- Square (χ2) Comparison for Sucrose Thresholds, Demographics and Socioeconomic Characteristics 

for the Original Studies 

Characteristic 
T-tests or Chi Square 

Study #1 Study #2 t-value or χ2 df p-value 

Demographics      

Age (years) [mean± SD (n)] 10.3±2.0 (130) 10. 4±1.8 (86) +0.036 214 0.971 

Sex [% (n)] (female) 52.3% (68) 58.1%(50) +0.710 214 0.399 

Race [% (n)]      

Black 60.8% (79) 51.2% (44) 

+9.751 3 0.021 
White 23.1% (30) 16.3% (14) 
Asian 0% (0) 2.3% (2) 
Other/more than one race 16.2% (21) 30.2% (26) 

Sucrose Detection Threshold      

Sucrose Thresholds (mM) [mean± SD (n)] 10.62±15.2 (130) 12.9± 8.5 (86) -1.282 214 0.201 

Anthropometric/Adiposity Measures      

Weight-for-age z scores [mean± SD (n)] 0.78±1.08 (128) 0.93±1.24 (86) +0.959 212 0.339 

Height-for-age z scores [mean± SD (n)] 0.50±1.12 (128) 0.58±1.08 (86) +0.489 212 0.434 

BMI z scores [mean± SD (n)] 0.72±0.98 (128) 0.84±1.21 (86) +0.783 212  

BMI categories [% (n)]      

Underweight: BMI percentile <5% 0.8%(1) 3.5%(3) +6.205 3 0.102 

Healthy weight: BMI percentile 5-85% 58.6%(75) 46.5%(40) 

Overweight: BMI percentile 85-95% 23.4%(30) 22.1%(19) 

Obese: BMI percentile >95% 17.2%(22) 27.9%(24) 

Ethnicity [% (n)]      

Not Hispanic 
 

96.9%(126) 87.2%(75) +7.588 1 0.006 

Hispanic 
 

3.1%(4) 12.8%(11) 
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Socioeconomic Characteristics      

Family income [% (n)]      

<$49,999 56.2%(73) 75.6% (65) +15.251 3 0.002 

$50,000-99,000 23.1%(30) 20.9%(18) 

>$100,000 10.8%(14) 3.5%(3) 

NO DATA  10% (13) 0%(0) 

Highest Level of Education, Mother [% (n)]      

Grade school 0%(0) 5.8%(5) +25.003 4 <0.001 

High School 36%(45) 44.2%(38) 

Trade 0%(0) 9.3%(8) 

College 56.8%(71) 37.2%(32) 

Graduate 7.2%(9) 3.5%(3)    
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Subject Characteristics 

As shown in Table 10, the study population consisted of 235 children whose 

race/ethnicity, family income, and maternal education levels reflected the diversity of the 

city of Philadelphia (Pew Charitable Trust, 2011). More than half (57.8%) of the children 

were Black (n=136), 19.6% were White (n=46), and 21.7% were of more than one race.  

The vast majority (93.2%, n=219) were non-Hispanic (Figure 12). This increased 

representation of under-represented minorities in the subject population is reflective of 

the greater Philadelphia region (Pew Charitable Trust, 2013), and has been achieved, in 

part, through outreach efforts advertising in local newspapers throughout the city.  The 

mean age of the sample was 10.4 ± 1.9 years. Female subjects made up 52.8% (n=124), 

and males accounted for 47.2% (n = 111) of the study population.  Most children were 

unrelated (n = 122), but the sample included 46 two-sibling pairs (n = 92) and 7 families 

of three siblings (n = 21). More than half (66.4%, n = 156) of the participants’ mothers 

reported a family income of less than $49,999, with 47.7% (n = 112) having a college 

degree. 

Regarding adiposity measures, 21.6% of children were obese, 22.4% were 

overweight, 53.4% were normal weight, and 2.2% were underweight. The overweight 

and obese children in the sample were higher than most current statistics for children in 

Philadelphia by the CDC and lower than the reported data from the Pew Report for adults 
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in Philadelphia (Figure 13). We further show the breakdown of the sample in regards to 

the BMI category by sex (Figure 14). 

Demographic Characteristic of the Subset of Children  

 The subset of children in this study for whom we had additional data did not 

differ from the overall sample for sucrose detection thresholds. The demographic 

characteristics for the subset of children (Table 10) reflected the diversity of the city of 

Philadelphia (Pew Charitable Trust, 2011). The mean age of children in the subgroup was 

10.4±1.7 years and the distribution of female subjects made up 55.2% (n=53), and males 

accounted for 44.8% (n=43) of the subset group.  In this group, 28.1% of children were 

obese, 20.9% were overweight, 47.9% were normal weight, and 3.1% were underweight. 

In addition, in the subset of children who had data on percent body fat and WHtR (n=96; 

Table 10), percent body fat averaged 32.9% (range, 9.8-60.8%) and 38.5% were 

classified as having central obesity.  
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Table 10. Child, Maternal and Household Characteristics of Participants  

Characteristic  

All Children 

Study 1+2 

N=235 

Subseta 

Study 2 

n=96 

Demographics   

Age (Years) [mean± SD (n)] 
10.4±1.9 (235) 10.4±1.7 (96) 

Sex [% (n)] (Female) 
52.8% (124) 

55.2% (53) 

Race [% (n)]   
Black 57.8% (136) 51.0% (49) 
White 19.6% (46) 16.7% (16) 
Asian 0.9% (2) 2.1% (2) 
Other/more than one race 21.7% (51) 30.2% (29) 

Ethnicity [% (n)]   

Not Hispanic 
 

93.2% (219) 87.5% (84) 

Hispanic 
 

6.8% (16) 12.5% (12) 

Sucrose Detection Threshold   

Children who completed the task [% (n)] 91.9% (216) 89.6% (86) 

Detection thresholds [mM; mean ± SD (n)]  12.0+12.9 (216) 10.6+8.4 (86) 
Child Adiposity Measures   

Weight-for-age z scores [mean ± SD (n)] 98.7% (232) 100% (96) 

Height-for-age z scores [mean ± SD (n)] 0.84±1.14 (232) 0.94±1.21 (96) 

BMI z-scores [mean ± SD (n)] 0.54±1.09 (232) 0.63±1.07 (96) 

BMI categories [% (n)]   

Underweight: BMI percentile <5% 2.2% (5) 3.1% (3) 

Healthy weight: BMI percentile 5-85% 53.8% (125) 47.9% (46) 

Overweight: BMI percentile 85-95% 22.4% (52) 20.9% (20) 

Obese: BMI percentile >95% 21.6% (50) 28.1% (27) 

Percent body fat [mean ± SD (n)] - 32.9±11.6 (95) 
Waist-to-hip ratio [mean ± SD (n)] - 0.87±0.14 (96) 
Waist-for-height ratio (WHtR) [mean ± SD (n)] - 0.49±0.07 (96) 

Diet-related Food Behaviorsb 
  

Daily calories  - 2,284±794 (73) 
Total (kcal)  - 57±28 (73) 
Relative to body weight (kcal/kg) -  

Daily added sugars [mean ± SD (n)] - 81.43+48.19 (73) 
Total (g) - 14+7 (73) 
Percent total calories - 19.7+1.19 (73) 
Relative to body weight (g/kg)  - 2,284±794 (73) 

Socioeconomic Characteristics   

Family income [% (n)]   
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<$49,999 
66.4% (156) 77.1% (74) 

$50,000-99,000 
20.9% (49) 19.8% (19) 

>$100,000 
7.2% (17) 3.1% (3) 

NO DATA  
5.5% (13) 0.0% (0) 

Highest Level of Education, Mother [% (n)]   

Grade school 2.1% (5) 5.2% (5) 

High School 38.7% (91) 44.8% (43) 

Trade 3.9% (9) 9.4% (9) 

College 
47.7% (112) 36.5% (35) 

Graduate 
5.5% (13) 4.1% (4) 

Not known/not reported 
2.1% (5) 0% (0) 

aIn this subset of children further anthropomorphic and dietary measures were measured. 
bDietary records for 19 of the 96 children were excluded based on the Goldberg cutoff. 4 children did not 
provide data for added sugars 
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Figure 12. Race Demographics: Comparison of Pew Reports for Philadelphia and 

Current Study 
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Figure 13. Overweight and Obese: Comparison of Philadelphia Pew Reports, CDC Data 

for Pennsylvania (CDC, 2015), *Philadelphia Department of Public Health and children 
in current study 
 

 

 

 

 

 

 

 

 



 

 

100

Figure 14. Children's BMI by Sex 
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Results for Aim 1  

Relationship of Sucrose Detection Thresholds with Age and Sex 

Most children (91.9%, n = 216/235) completed the psychophysical task; 19 

children did not comply with the procedures, became tired, or refused to continue to 

participate.  Only data from subjects with valid sucrose detection thresholds were used (n 

= 216). The mean detection threshold was 12.0 mM (±12.9 SD) and range was 0.23-153.8 

mM sucrose (Table 10).  In the whole sample, as age increased children had significantly 

lower sucrose detection thresholds (were more sensitive) [r (214) = -0.16, p = 0.016] 

(Table 11, Figure 15A), and girls had significantly lower thresholds than did boys [10.5 

± 8.6 mM vs. 13.9 ± 16.6 mM; t (214) = 2.0, p = 0.047] (Table 11, Figure 16). We 

confirmed the negative correlation between age and sucrose detection thresholds in the 

subset of children [r (84) = -0.28, p = 0.009] (Table 11).  
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Figure 15. Sucrose Taste Detection Thresholds and Age 

 

A- All Children (N=216) with outlier  

  

B- Subset of children (N=86) 

 

 

 

 

 

 

 

 

 

 



 

 

103

Figure 16. Sucrose Taste Detection Thresholds and Gender 

 

 

Relationship of Diet Related Food Behaviors with Age and Sex  

Diet-related food behaviors were associated with age (Table 11, Figure 17). 

While caloric intake was not related to age [r (71) = +0.22, p = 0.051] (Figure 17), 

caloric intake relative to body weight (kcal/ kg) was associated with age [r (71) = -0.35, p 

= 0.002] (Figure 17B).  In addition, the percent total calories from added sugars [r (71) = 

+0.27, p = 0.020] (Figure 17C) were associated with age, but not added sugars relative to 

their body weight [r (71) = -0.08, p = 0.506] (Figure 17D).   

There were no significant sex differences for any of the measures of diet related 

food behaviors (Table 12). Girls and boys ate the same percentage of their daily calories 

as added sugar [14 ± 7% vs. 14 ± 7%; t (71)=0.17, p = 0.865] and the same amount of 

added sugars relative to body weight [girls: 1.96 ± 1.15 g/ kg; boys: 1.99 ± 1.25 g/kg; t 

(71) = 0.07, p = 0.943] (Table 12). 
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Figure 17. Relationship of Diet Related Food Behaviors with Age 

.

A. Total calories consumed and Age 
 
B. Total calories consumed relative to body 
weight and Age  

C. Percent total calories as added sugars 
consumed and Age 

D. Added sugars as g/Kg of body weight 
and Age 
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Relationships of Personal Characteristics with Age and Sex  

We also looked at whether any dimensions of a child’s personality characteristics 

were related to age. Both activity [r (84) = -0.24, p = 0.026] and sociability [r (84) = -

0.30, p = 0.004] were significantly negatively correlated with age (Table 11, Figure 18A 

& B). This means that older children are less active and less sociable than younger 

children. However, we found no significant relationships between shyness, emotionality, 

negative reaction to foods and food neophobia and age (Table 11). There were also no 

significant sex differences for any of the measures of personal characteristics (Table 12). 

Figure 18. Relationship of Personal Characteristics with Age 

 
A. Activity Score and Age  

 

B. Sociability Score and Age 
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Relationship of Sucrose Detection Thresholds with Adiposity  

We found no significant relationships between sucrose taste detection thresholds 

and z-scores for height-for-age [r (214) = +0.08, p = 0.257], weight-for-age z-score [r 

(214) = -0.03, p = 0.702], or BMI z-score [r (214) = -0.07, p = 0.319].  However, the 

greater the percent body fat (as measured by bioelectrical impedance) or WHtR, the 

lower the sucrose thresholds [r (84) = -0.22, p = 0.047; and r (84) = -0.26, p = 0.015, 

respectively] (Table 13, Figure 19A & B).   This means that children with more central 

adiposity and overall adiposity had lower sucrose detection thresholds, were more 

sensitive. 

 
Figure 19. Relationship of Sucrose Detection Thresholds with Adiposity 

 

A. Sucrose detection thresholds and 
%Body Fat 

 

B. Sucrose detection thresholds and WHtR 
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Relationship of Sucrose Detection Thresholds with Personal Characteristics  

We found a positive correlation between sucrose thresholds and negative reaction 

to foods [r (84) = +0.32, p = 0.003]. This means that those with more negative reactions 

to foods tended to have higher sucrose thresholds levels (less sensitive) (Table 13). There 

was no significant relationship between sucrose taste detection thresholds and food 

neophobia [r (84) = +0.21, p = 0.054]. Although not statistically significant, the positive 

correlation could suggest that children with higher sucrose detection thresholds may be 

less likely to try new foods (Figure 20).  There were no differences between girls and 

boys for negative reaction to foods or food neophobia. We next probed to see whether 

negative food reactions were associated with diet of the child.  Negative food behaviors 

were associated with kcal/kg [F (1,62) = 4.22, p = 0.007] even when sucrose detection 

thresholds were added to the analysis.  This could suggest that sucrose detection 

thresholds is acting as mediator between the negative reactions to food and the calories 

consumed per body weight with picky eaters having altered consumption of calories. The 

findings were specific to the kcal/kg measure and not added sugars as percent kcal [F 

(1,63) = 0.90, p =0.346], or added sugars g/kg [F (1,63) = 0.33, p = 0.567] or total 

calories [F (1,63) = 0.07, p =0.788]. 
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Figure 20. Relationship of sucrose detection thresholds with personal characteristics 

(negative reaction to foods and food neophobia) 

 

A. Sucrose detection thresholds and 
Negative reaction to foods score 

 

B. Sucrose detection thresholds and Food 
neophobia score  

 

 

Relationship of Sucrose Detection Thresholds with Diet Related Food Behaviors 

We next looked at whether sucrose taste detection thresholds were associated with 

diet-related food behaviors. We found that sucrose thresholds were not significantly 

related to total caloric intake [r (63) = -0.14, p =0.268], total calories relative to body 

weight [r (63) = +0.09, p =0.439] or added sugar as percentage of total calories [r (63) =    

-0.05, p = 0.720] or relative to body weight [r (63) = +0.07, p = 0.577] (Table 13).  
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Table 11. Correlations (r) between Sucrose Detection Thresholds, Personality Characteristics and Diet Related Food 

Behaviors Measures and Age 

Trait 

Age of child (years) 

All Children 
(Study 1 & 2) 

Subset 
(Study 2) 

r n p-Value r n p-Value 

Psychophysical test       

Sucrose Thresholds (mM) -0.16 216 0.016* -0.28 86 0.009* 

Personality characteristics: Temperamenta & Food 
Neophobiab 

      

Shyness  NK NK NK -0.06 86 0.557 

Emotionality NK NK NK +0.01 86 0.919 

Sociability NK NK NK -0.30 86   0.004* 

Negative reaction to foods NK NK NK +0.07 86 0.531 

Activity NK NK NK -0.24 86   0.026* 

Food Neophobia NK NK NK -0.14 86 0.201 

Food Neophobia NK NK NK -0.14 86 0.201 

Diet related food behaviors       

Daily calories       

Total calories (kcal) NK NK NK +0.22 73 0.051 

Relative to body weight (kcal/kg) NK NK NK -0.35 73   0.002* 

Added sugar       

Percent total calories NK NK NK +0.27 73   0.020* 

Relative to body weight (g/kg) NK NK NK -0.08 73     0.506 

Note: r=Pearson’s correlation coefficient, n=sample size. NK; not known since these measures were obtained only for the subset of children.   
aTemperament measures from Pliner and Loewen (1997).  
bFood Neophobia measures from Pliner and Hobden (1992). *=p<0.05.  See text for other details.   
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Table 12. T- Test for Sucrose Thresholds, Personality Characteristics and Diet Related Food Behaviors by Sex 

Variable 

T-tests 

Mean 
Boys 

Mean 
Girls 

t-value df p-value 
Valid N 

Boys 
Valid N 

Girls 
SD 

Boys 
SD 

Girls 

All children 

Psychophysical test          

Sucrose detection thresholds 
(mM) 

13.88 10.45 1.951 214 0.047* 98 118 
8.58 16.61 

Subset   

Personality characteristics: 
Temperamenta & Food Neophobiab 

  

Shyness  2.48 2.66 -0.978 84 0.313 36 50 0.93 0.78 

Emotionality 
 

2.68 2.84 -0.748 84 0.456 36 50 0.81 1.10 

Sociability 
 

3.41 3.33 0.539 84 0.591 36 50 0.73 0.60 

Activity 
 

3.49 3.23 1.571 84 0.120 36 50 0.79 0.73 

Negative reaction to foods 
 

2.97 3.02 -0.269 84 0.788 36 50 0.87 0.77 

Food Neophobia 
 

2.94 2.66 1.393 84 0.167 36 50 0.97 0.87 

Diet related food behaviors    

Daily calories 
 

2357.59 2221.02 0.7304 71 0.468 34 39 721.99 829.30 

Relative to body weight (kcal/kg) 55.75 58.81 -0.462 71 0.865 34 39 30.34 1.63 

Added sugar          

Percent total calories 14.44 14.16 0.170 71 0.865 34 39 7.32 1.29 

Relative to body weight (g/kg) 1.98 1.96 0.072 71 0.943 34 39 1.15 0.00 
aTemperament measures from Pliner and Loewen (1997). b Food Neophobia measures from Pliner and Hobden (1992). *=p<0.05. 
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Table 13. Correlations (r) Sucrose Detection Thresholds with Adiposity Measures, Personal Characteristics and Diet Related 

Food Behaviors 

Trait 

Sucrose Threshold (mM) 

All Children 
(Study 1 & 2) 

Subset 
(Study 2) 

r n p-Value r n p-Value 

Heighta  +0.08 214 0.257 +0.00 86 0.991 

Weighta -0.03 214 0.702 -0.15 86 0.181 

BMIa -0.07 214 0.319 -0.15 86 0.165 

Waist-to-height ratio (WHtR) NK NK NK -0.26 86   0.015* 

Percent body fat NK NK NK -0.22 86   0.047* 

Personality characteristics: 
Temperamentb& Food Neophobiac 

Negative reaction to foods NK NK NK +0.32 86   0.003* 

Food Neophobia NK NK NK +0.21 86 0.054 

Diet related food behaviors 

Daily calories       

Total calories (kcal) NK NK NK -0.14 65 0.268 

Relative to body weight (kcal/kg) NK NK NK +0.09 65 0.439 
Added sugar       

Percent total calories NK NK NK -0.05 65 0.720 
Relative to body weight (g/kg) NK NK NK +0.07 65 0.577 

Note: r=Pearson’s correlation coefficient, n=sample size. NK; not known since these measures were obtained only for the subset of children. 
aValues are z-scores adjusted for the child’s age and sex. bTemperament measures from Pliner and Loewen (1997). 
c Food Neophobia measures from Pliner and Hobden (1992) 
*=p<0.05.  See text for other details. 
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Results for Aim 2 

Of the 175 unrelated children, 168 had valid sucrose taste detection thresholds 

and were included in the genotype analyses. Table 14 shows the allele frequencies and 

genotype frequencies of the SNPs used in this study.  A few genomic DNA samples were 

refractory to genotyping:  6 for TAS1R3 and 10 for GNAT3. All alleles were in HWE 

(p>0.05).
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Table 14. Hardy-Weinberg Equilibrium Calculations 

Genotype Observed 

Genotype 
Frequency 
#observed/ 

total observed Expected N alleles 

Allele 
frequency 

p+q=1 

Genotype 
frequency 

p2+2pq+q2=1 
χ2 Square 
(p-value) 

Sweet Receptor Genes 

TAS1R2; rs35874116 

II 16 0.103225806 14 310 0.293548387 0.086170656 0.79 
(0.373) IV 59 0.380645161 64  0.706451613 0.414755463 

VV 80 0.516129032 77   0.499073881 

TAS1R3; rs35744813 

CC 52 0.320987654 47 324 0.537037037 0.288408779 2.49 
(0.114) CT 70 0.432098765 80  0.462962963 0.497256516 

TT 40 0.24691358 35   0.214334705 

GNAT3; rs7792845 

CC 82 0.518987342 82 316 0.721518987 0.520589649 0.00 
(1) CT 64 0.405063291 64  0.278481013 0.401858676 

TT 12 0.075949367 12   0.077551674 

Bitter Taste Receptor Genes 

TAS2R38; rs713598 

AA 52 0.30952381 54 336 0.56547619 0.319763322 0.21 
(0.643) 

AP 86 0.511904762 83  0.43452381 0.491425737 

PP 30 0.178571429 31   0.188810941 

TAS2R38; rs1726866 

VV 34 0.202380952 30 336 0.419642857 0.176100128 1.80 
(0.179) AV 73 0.43452381 82  0.580357143 0.487085459 

AA 61 0.363095238 57   0.336814413 

TAS2R38; rs10246939 

II 49 0.291666667 50 336 0.544642857 0.296635842 0.09 
(0.7557) IV 85 0.505952381 83  0.455357143 0.496014031 

VV 34 0.202380952 35   0.207350128 

Note: If P < 0.05- not consistent with HWE  
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Relationship of Sucrose Detection Thresholds to Genotype  

As shown in Table 15, sucrose detection thresholds were not significantly related 

to genotype of sweet taste receptor genes TAS1R2 [F (2,152) = 0.54, p = 0.581], TAS1R3 

[F (2,159) =1.01, p = 0.364] and GNAT3 [F (2,155) = 1.04, p = 0.357] (Figure 21 A-C) 

or to the bitter receptor gene TAS2R38 variant rs713598 [F (2,165)=2.45, p=0.09] 

(Figure 22 A).  However, TAS2R38 bitter taste receptor gene variants rs1726866 and 

rs10246939 were related to sucrose detection threshold [F (2,165) = 4.55, p = 0.012; F 

(2,165) = 3.14, p = 0.046].  Children with one or two bitter-sensitive alleles (the A allele 

of rs1726866 V262A and/or the V allele of rs10246939 I296V) had lower sucrose 

detection thresholds (i.e., were more sensitive to the taste of sucrose) (Figure 22C&D).  

In addition, after adjustment for age and sex, those children with the TAS2R38 variant 

rs713598 A49P were significantly more sensitive to sucrose [F (2,163) = 3.18, p = 

0.044], with those having a P allele having lower sucrose detection thresholds (Table 15, 

Figure 22B).  
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Figure 21. Sucrose Detection Thresholds and TAS1R2, TAS1R3 and GNAT3 Genotypes 

 

A. A. Sucrose detection thresholds and 
TAS1R2 genotype for rs35874116 

 

B. Sucrose detection thresholds and TAS1R3 

genotype for  

  

 
C.  Sucrose detection thresholds and GNAT3 genotype for rs77992485 
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Figure 22. Sucrose Detection Thresholds and TAS2R38 Genotypes 

 

A. Sucrose detection thresholds and 
TAS2R38 genotype for rs713598 

 

 
B. Sucrose detection thresholds and 
TAS2R38 genotype for rs713598 post 
adjustment by age and sex-post hoc 
analysis 

 
C.  Sucrose detection thresholds and 
TAS2R38 genotype for rs1726866 

 
 
D. Sucrose detection thresholds and 
TAS2R38 genotype for rs10246939 

**Means differ by post-hoc testing  
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Relationship of Diet Related Food Behaviors with Genotype 

We further assessed if there were differences in diet-related food behaviors based on an 

individual’s genotype for the TAS2R38 gene (Figure 23). There was no relationship of 

genotype with total calories [(F (2,65) = 0.80, p = 0.45], but the diet of children with the 

bitter-sensitive genotype (AA, rs1726866, V262A) contained more added sugar as a 

percentage of total kcal (16 ± 6% of kcal as added sugars) than the diet of children with 

the one or two copies of the other alleles (AV, 11±6 and VV, 13 ±8%; [F (2,62)=3.64, p 

= 0.032]). The results were specific to one TAS2R38 variant (rs1726866), and this effect 

was not apparent for the remaining two variants (rs713598 [F (2,62) = 0.40, p = 0.67]; 

rs10246939 [F (2,62) = 0.85, p = 0.43]).  

Figure 23. Diet Related Food Behaviors Measures and TAS2R38 Genotypes 

 

A.  Added sugars (g) and TAS2R38 
genotype for rs1726866 

B. Percent total calories (%) as added 
sugars and TAS2R38 genotype rs1726866 

**Means differ by post-hoc testing  
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Table 15. Sucrose Detection Thresholds in Children grouped by Taste Genotype 

Gene Varianta Genotypeb Nc 
Sucrose Threshold, 
[mM; mean ± SD] F (df) p-Value 

Unadjusted Thresholds 
TAS1R2 rs35874116 II 16 9.6±2.1 F (2,152)=0.54 0.581 
  IV 59 12.1±1.1   
  VV 80 11.2±1.0   
TAS1R3 rs35744183 CC 52 9.6±5.9 F (2,159)=1.01 0.364 
  CT 70 12.4±9.8   
  TT 40 10.9±8.6   
GNAT3 rs7792845 CC 82 10.6±8.4 F (2,155)=1.04 0.357 
  CT 64 12.3±9.1   
  TT 12 11.2±6.8   

TAS2R38 rs713598 AA 52 13.1±9.8 F (2,165)=2.45 0.090 
  AP 86 10.7±8.3   
  PP 30 8.9±6.2   
 rs1726866 VV 34 15.3±10.72 F (2,165)=4.55 0.012* 
  AV 73 10.1±7.71   
  AA 61 10.1±7.61   
 rs10246939 II 49 13.4±9.92 F (2,165)=3.14 0.046* 
  IV 85 10.9±8.31,2   
  VV 34 8.6±6.11   

Thresholds Adjusted for Age and Sex 

TAS1R2 rs35874116 II 16 9.6±1.6 F (2,150)=0.61 0.543 

  IV 59 12.1±1.2   

  VV 80 11.2±1.0   

TAS1R3 rs35744183 CC 52 9.6±5.9 F (2,157)=1.08 0.343 

  CT 70 12.4±9.8   

  TT 40 10.9±8.6   

GNAT3 rs7792845 CC 82 10.6±8.4 F (2,153)=1.29 0.277 

  CT 64 12.3±9.1   
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Gene Varianta Genotypeb Nc 
Sucrose Threshold, 
[mM; mean ± SD] F (df) p-Value 

Thresholds Adjusted for Age and Sex 

TAS2R38 rs713598 AA 52 13.1±9.82 F (2,163)=3.18 0.044* 

  AP 86 10.7±8.31,2   

  PP 30 8.9±6.21   

 rs1726866 VV 34 15.3±10.72 F (2,163)=5.07 0.007** 

  AV 73 10.1±7.71   

  AA 61 10.1±7.61   

 rs10246939 II 49 13.4±9.92 F (2,163)=3.92 0.022* 

  IV 85 10.9±8.31,2   

  VV 34 8.6±6.11   
a rs=reference single nucleotide polymorphism; rs numbers are publicly cataloged in dbSNP (http://www.ncbi.nlm.nih.gov/SNP/).   
bVariants are presented as nucleotides if they reside in regulatory regions (e.g., C or T); those in protein-coding regions are presented as amino acid substitutions (e.g., A 
or P, Alanine to Proline). N=number of children of each genotype.  
cAlleles were tested for Hardy-Weinberg equilibrium; all p-values>0.05.   
1,2Means that do not share a superscript differ by post-hoc testing.  
*=p<0.05; **=p<0.01. 
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Multivariate ANOVA Models for Sucrose Thresholds  

Drawing together the preceding results, we generated multivariate analysis of 

variance models to explore the independent determinants of sucrose detection thresholds 

with the variables age, sex, and TAS2R38 genotype. In this model we used only the 

variant (rs1726866) for TAS2R38. This model explained 7% of the total variance among 

children in their sucrose detection threshold [F (2,163) = 3.9, p = 0.021]. Genotype 

accounted for the majority of the variance, and age and sex made more minor 

contributions (Table 16).  

Table 16. Age, Genotype, and Sex Effects on Sucrose Detection Thresholds for All 

Children 

Variable df F p-Value η2 

Age 1 3.3 0.072 0.02 
Genotype 2 3.9 0.021* 0.05 

Sex 1 2.4 0.122 0.01 
Note: Genotype refers to rs1726866 (TAS2R38, V262A).  η2=effect size. *p<0.05 

 

We confirmed the results in the subset of children who had measures of adiposity 

and food intake. The model in the subset explained 14% of the total variance among 

children in their sucrose detection threshold [F (2,64) = 3.6, p = 0.032]. Overall, the 

modeling results suggest that sucrose threshold is related to TAS2R38 genotype and, to a 

lesser extent, to age (Table 17).    
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Table 17. Age, Genotype, and Sex Effects on Sucrose Detection Thresholds for Subset of 

Children 

Variable df F p-Value η2 

Age 1 2.1 0.148 0.03 
Genotype 2 3.6   0.032* 0.10 

Sex 1 0.4 0.539 0.01 
Note: Genotype refers to rs1726866 (TAS2R38, V262A).  η2=effect size. *p<0.05 

 

In a final model we added a measure of adiposity (WHtR) to the variables age, 

sex and genotype. Although, percent body fat and WHtR were both significantly related 

to sucrose detection thresholds at the univariate level, we only used the strongest 

adiposity measure to avoid multi-collinearity for this model.  Only variables with a 

moderate correlation (r = 0.25 or greater) were included a priori. This model explained 

35% of the total variance in the subsample of children [F (1,62) = 4.8, p = 0.01] (Table 

18), with age and genotype accounting for 29% of the variance. Overall, the modeling 

results suggest that sucrose threshold remains related to TAS2R38 genotype adjusted for 

age and sex, but becomes a stronger predictor with the addition of WHtR. 

Table 18. Age, Sex, Genotype, and Adiposity Effects on Sucrose Detection Thresholds in 

the Subset of Children 

Variable df F p-Value η2 

Age 1 11.3 0.001* 0.15 
Genotype 2 4.8 0.012* 0.13 

Sex 1 1.6      0.211 0.03 
Note: Genotype refers to rs1726866 (TAS2R38, V262A).  η2=effect size. *p<0.05 
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Analysis for Aim 3 

Relationship of Sucrose Detection Thresholds with Adiposity Measures 

The relationship of sucrose detection thresholds with adiposity measures was 

shown and discussed in aim 1, with WHtR and percent body fat being significantly 

associated with sucrose thresholds. Because of these findings, in the following analysis 

we explored these two measures of adiposity with the other variables of interest for aim 

3.  

Relationship of Diet-related Food Behaviors with Adiposity Measures 

From the analysis conducted for aim 3, we observed that there was no significant 

relationship between percent body fat and total daily calories consumed (kcal) [r (70) = 

+0.18, p = 0.136] or percentage of calories from added sugars [r (70) = -0.04, p = 0.767].  

However, percent body fat was significantly related to added sugar relative to body 

weight, with leaner children having higher daily sugar intake by weight (g/kg) [r (70) =    

-0.40, p = 0.001] and higher caloric intake (kcal/kg) [r (74) = -0.47, p<0.001].   

WHtR was significantly related to total daily calories consumed (kcal) [r (71) = 

+0.26, p = 0.022], with children with more central adiposity consuming more calories per 

day. There was no relationship between WHtR and daily sugar consumption [r (71) = 

+0.12, p = 0.332] or between WHtR and percent total calories from added sugars  [r (71) 

= -0.09, p = 0.452] or relative to body weight [g/kg: r (71) = -0.22, p = 0.056; kcal/kg: [r 

(71) = -0.22, p = 0.059]. Correlations among consumption of added sugar and obesity 

measures are shown in Table 19. 
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Table 19. Correlations (r) between Diet -Related Food Behaviors and Adiposity 

Measures 

Caloric Intake and Added 
Sugars 

Percent Body Fat Waist-to-Height Ratio 

r p-value r p-value 

Daily calories (kcal)a +0.17 0.136 +0.26* 0.027 

By calories (kcal/kg) a -0.48* 0.000 -0.22 0.059 

Added sugars     

Percent total caloriesb 
-0.04 0.767 -0.09 0.452 

Relative to body weight  

By amount (g/kg)b 
-0.40* 0.001 -0.22 0.056 

Note: r=Pearson’s correlation coefficient, aN=72; bN=73 children. *p<0.05  

 

Relationship of Personal Characteristics with Adiposity Measures  

Shyness and activity were significantly related with WHtR and percent body fat 

suggesting that children who have both greater central adiposity [r (85) = +0.24, p = 

0.025] and greater percent body fat [r (71) = +0.21, p = 0.049] tend to exhibit more 

shyness. Children who were less active by maternal report have a greater central 

adiposity [r (85) = -0.41, p = 0.000] and percent body fat [r (85) = -0.43, p = 0.000] 

(Table 20).    

Table 20.Correlations (r) between Personality Characteristics and Adiposity Measures 

Trait 
WHtR percent body fat 

r n p-Value r N p-Value 

Personality characteristics: 
Temperamenta & Food Neophobiab 

Shyness  +0.24 86 0.025* +0.21 86 0.049* 
Emotionality -0.10 86 0.355 +0.08 86 0.493 
Sociability -0.16 86 0.146 -0.16 86 0.143 

Negative reaction to foods  +0.12 86 0.275 +0.19 86 0.089 
Activity -0.41 86 0.000* -0.43 86 0.000* 
Food Neophobia +0.05 86 0.616 +0.05 86 0.623 

Note: r=Pearson’s correlation coefficient, n=sample size, Waist-to-height ratio= WHtR. 
aTemperament measures from Pliner and Loewen (1997).  
b Food Neophobia measures from Pliner and Hobden (1992). *p<0.05.  See text for other details.   
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Multivariate ANOVA Models for Adiposity Measures   

 

For aim 3, we generated multivariate analysis of variance models to explore the 

independent determinants of adiposity measures (WHtR) with the variables age, sex, 

sweet food diet related behaviors and personal characteristics. Only the categorical 

variable of sex and continuous variables with a moderate correlation (r=0.25 or greater) 

were included in the models. This model explained 40% of the total variance among 

children in their adiposity for WHtR. Here activity had a big effect on that variance [F 

(1,59) = 13.3, p = 0.000] with sucrose detection thresholds [F (1,59) = 6.1, p =0.016] and 

age [F (1,59) = 5.5, p = 0.022] still being significant predictors (Table 21).  

Table 21. Age, Sex, Activity, Added sugars, and Sucrose Detection Thresholds Effects on 

Adiposity (WHtR) 

Variable df F p-Value η2 

Age 1 2.9 0.093 0.05 
Sucrose detection thresholds 1 6.1   0.016* 0.09 

Sex 1 5.5   0.022* 0.08 

Activity 1 13.3   0.000* 0.18 

Added sugars g/kg of body weight 1 0.44 0.509 0.00 
Note: Genotype refers to rs1726866 (TAS2R38, V262A).  η2=effect size. *p<0.05 

 

The second model explored independent determinants of adiposity measures 

(percent body fat) with the variables age, sex, sweet food diet related behaviors and 

personal characteristics. This model explained 29% of the total variance among children 

in their percent body fat. Activity had a large effect on that variance [F (1,58) = 7.9, p = 

0.006], as did added sugars g/kg body weight [F (1,58) = 6.6, p = 0.013]. Here, sucrose 
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detection threshold was not a significant predictor and had a very small effect on the 

variance [F (1,58) =1.4, p =0.238] (Table 22). 

Table 22. Age, Sex, Activity, Added sugars and Sucrose Detection Thresholds Effects on 

Adiposity (% body fat) 

Variable df F p-Value η2 

Age 1 0.0 0.959 0.00 

Sucrose detection thresholds 1 1.4 0.238 0.02 

Sex 1 2.9 0.093 0.05 

Activity 1 7.9   0.006* 0.12 

Added sugars g/kg of body weight 1 6.6   0.013* 0.10 
Note: Genotype refers to rs1726866 (TAS2R38, V262A).  η2=effect size. *p<0.05 
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CHAPTER 5 

Synthesis and Discussion 

The purpose of this study was to investigate the degree of variation in children’s 

sucrose detection thresholds and whether sweet and bitter taste receptor-related genotypes 

partially accounted for variation in taste thresholds. We also examined the relationship of 

sucrose detection thresholds with adiposity and dietary measures as well as dimensions of 

child’s temperament with both thresholds and adiposity.  

The findings of this study showed that like adults, children 7 to14 years of age 

differed markedly in their ability to detect sucrose at low concentrations. Thresholds for 

sucrose detection ranged from 0.23 mM to 153.8 mM, with an average of 12.0 mM, 

which approximates thresholds previously reported both for adults (Pepino et al., 2010; 

Pepino & Mennella, 2007; Pribitkin et al., 2003) and for children (James et al., 1997; 

Overberg et al., 2012).  

Age and sex were determinants of sucrose detection threshold, on a continuum 

even within this narrow age range, with younger children being less sensitive than older 

children and boys less sensitive than girls; the latter finding is consistent with prior work 

(James et al., 1997). To further establish the dynamics of changes with age, research is 

needed that assesses detection thresholds of children and adults of varying ages within 

the same study, using identical methodologies (Pepino et al., 2010; Pepino & Mennella, 

2007).   

The age- and sex-related effects during childhood and early adolescence may be 

specific to sweet taste, as suggested by a recent study that found no such relationships for 
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detection thresholds for example of two other basic tastes:  NaCl (salty) and monosodium 

glutamate (umami) (Bobowski & Mennella, 2015). That study used the same the 

psychophysical method used here in children of the same age range, so we can conclude 

that the higher detection thresholds for sucrose we found among younger children and 

boys were not likely due to differences in cognition or the ability to complete the task. 

Both age and gender of a child reflect underlying hormonal and developmental processes 

that may shape this sensory system (Posner, Rothbart, Sheese, & Voelker, 2012). Sex-

related differences may be due to girls undergoing puberty at earlier ages than boys. 

Children are born with different taste genotypes, and our results suggest that some 

but not all genetic variants affect the sensory experience of the child. Unlike in adults 

(Fushan et al., 2009), we found no relationship between a variant in the TAS1R3 gene and 

sucrose detection thresholds in these children.  Similarly, a variant in GNAT3 related to 

taste sensitivity in adults (Fushan et al., 2010) had no measurable effect in the children 

studied here. One explanation is that the psychophysical methods used to measure 

sucrose detection thresholds in the Fushan studies of GNAT3 and TAS1R3 (Fushan et al., 

2010; Fushan et al., 2009) were slightly different than those we used here, which may 

account for the different results. Another explanation may be age-related effects: this 

particular genetic variant is in a regulatory region and may regulate gene expression more 

in adults than in children. This lack of genetic association is reminiscent of the gene’s 

effect on sweet preference, detectable in adults but less apparent in children (Mennella et 

al., 2012; Mennella, Reed, Mathew, et al., 2014).  We also found no relationship between 

a variant of TAS1R2 gene and sucrose detection thresholds in this study. There may be a 
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weight effect since genetic variation was observed in the overweight group and not the 

normal weight individuals (Eny et al., 2010), however the investigators did not measure 

sucrose detection thresholds. 

While we found no relationship among children between sucrose detection 

thresholds and sweet-taste genotypes, sucrose detection thresholds were related to 

variation in the bitter taste receptor gene TAS2R38. Children differ in their ability to 

perceive the bitter compound propylthiouracil, due in large part to TAS2R38 alleles 

(Mennella, Pepino, Duke, et al., 2010; Mennella et al., 2005; Mennella, Reed, Roberts, 

Mathew, & Mansfield, 2014). As discussed earlier, TAS2R38 alleles also partially 

explained individual differences in children’s sweet preferences (Mennella et al., 2005). 

Moreover, studies in adults have linked the perception of the bitter ligands of this 

receptor to sweet thresholds (Chang et al., 2006; Hong et al., 2005). Taken together, these 

studies point to a role of this bitter taste receptor gene in sweet perception and suggest 

that the sweet and bitter taste systems are more tightly linked than previously understood 

(Mennella, Reed, Mathew, et al., 2014).   

Four hypotheses, not mutually exclusive, might account for the observed 

relationship between variation in the TAS2R38 gene and heightened sweet preferences 

and reduced sweet sensitivity among children. First, alleles of TAS2R38 could lead to 

proteins with different capacities to bind sucrose directly. Other sweet substances like 

saccharin bind members of the bitter receptor family (Pronin et al., 2007), so this 

hypothesis has some experimental support. The results were most marked for one variant 

within the protein, which might point to the place in the receptor that binds sucrose 
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(V262A). Second, the TAS2R38 gene and its alleles could be in linkage disequilibrium 

with nearby genes that might influence sweet taste perception and sensitivity (“Linkage 

disequilibrium” refers to the tendency for genes physically close on the chromosome to 

be co-inherited during meiosis). Third, TAS2R38 allele frequency may be an especially 

sensitive genetic marker of racial ancestry (Guo & Reed, 2001), a variable with large and 

reliable effect on sweet preference (Mennella et al., 2005) and bitter taste thresholds (Guo 

& Reed, 2001; Mennella, Pepino, Duke, et al., 2010; Mennella, Pepino, Lehmann-Castor, 

et al., 2010). Fourth, differences in diet may affect sucrose threshold via changes in gene 

expression (Lipchock, Mennella, Spielman, & Reed, 2013).    

In this study, children with a bitter-sensitive allele of TAS2R38 also reported 

consuming more added sugars than did those with the less sensitive allele, a finding 

consistent with previous reports that children with a bitter sensitive allele preferred cereal 

and beverages with higher sugar content than those without the sensitive allele (Mennella 

et al., 2005). These results are similar to a recent study that measured added sugar (e.g., 

candy) consumption in children (Hoppu, Laitinen, Jaakkola, & Sandell, 2015). Children 

in the study herein consumed, on average, 14% of total calories as added sugar, almost 

three times the 5% recommendation of international experts in public health (World 

Health Organization, 2015).  In fact, of the 73 children in this study that provided valid 

dietary data, only 4 did not exceed the dietary recommendation. These reports of added 

sugar in the present study, while not in compliance with public health recommendations, 

are typical, and remarkably consistent with intake data obtained from larger-scale 

epidemiological studies (Ervin et al., 2012).   
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This study also examined the relationships between sweet taste threshold and 

body weight, central adiposity, and percent body fat. We found that body mass index was 

not related to sucrose thresholds, but when more direct measures of obesity were 

examined, children who were fatter and those with larger waistlines relative to their 

height had lower thresholds. This result is consistent with results of a study that measured 

sucrose threshold in obese and lean adolescents (Pasquet, Frelut, Simmen, Hladik, & 

Monneuse, 2007) but differs from results of another study that found obese adolescents, 

as measured by body mass index, were less sensitive to low sucrose concentrations than 

were lean adolescents (Overberg et al., 2012). Differences in methods relying on less 

sensitive measures of childhood obesity such as body mass index (Demerath et al., 2006), 

rather than more direct measures like percent body fat or waist- to- height ratio may 

account for the inconsistencies across studies. New knowledge about the age-related and 

molecular bases of individual differences in taste and the use of methodologies that are 

validated and appropriate for children (Mennella, Spector, Reed, & Coldwell, 2013), a 

generation that will struggle with obesity and diabetes, may suggest strategies to 

overcome diet-induced disease. 

In this study, we also examined the relationship between temperament measures 

(negative food behaviors and food neophobia) and sucrose detection thresholds. Our 

findings suggest that children who have more negative reactions to food have a higher 

threshold for sucrose. No previous study has reported an association between these two 

measures of temperament and sucrose thresholds but rather sweet taste preference (Liem 

& Mennella, 2002) and other food preferences (Cooke et al., 2006; Skinner, Carruth, 
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Wendy, & Ziegler, 2002; Wardle, Herrera, Cooke, & Gibson, 2003). Sucrose detection 

thresholds might be a mediator for diet with negative food behaviors. We also examined 

temperament and adiposity; we found that children who were shy and were less active 

had more adiposity. This finding was consistent with the literature since studies have 

reported that obese children may experience stigma and become withdrawn. There is also 

evidence that has associated lower physical activity with increased adiposity in children 

(Caspersen, Pereira, & Curran, 2000; Janssen et al., 2005; Trost, Kerr, Ward, & Pate, 

2001).    

Collectively, the results of our study have expanded our knowledge of the 

association of bitter taste receptor genes with sucrose detection thresholds. To the best of 

our knowledge this study was the first to show that sweet taste receptors genes were not, 

but bitter taste receptor genes were associated with sucrose detection thresholds in 

children. It is also the first study to report a relationship between negative food reactions 

and sweet taste thresholds in children.  

Conceptual Model- Revised  

The conceptual model described earlier is revised here. The initial hypothesized 

linkages were proposed based on the literature on sucrose thresholds, food behaviors, 

personal characteristics and adiposity measures. Based on the results in this study, some 

changes are suggested to adjust that conceptual model (Figure 24). We expect that the 

modifications are not final since changes will be made as new findings emerge. The first 

modification includes TAS2R38 as the gene related to sucrose detection thresholds in 
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children and to show that this gene is related to predicted percent of added sugar 

consumption as kilocalories. The second change is to alter the outcome measure of 

adiposity to reflect that of the direct obesity measures such as WHtR and % body fat were 

related to sucrose detection thresholds, but not BMIz scores. The relationship of sucrose 

detection thresholds with negative food behaviors has been depicted here as well.  

Figure 24. Revise Conceptual Model 

 

 

Limitations of the Study 

  The data used in this study were obtained cross-sectionally and a longitudinal 

approach would be needed to be able to make claims about change overtime.  Although 

we combined data from study 1 and study 2, which was a possible strength to increase the 

number of subjects, there were some differences between the samples in the two studies 

for education, race and income. However, there were no differences for the main 
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variables used in this study (i.e., sucrose thresholds). The study was limited for some 

variables such as dietary reports, and percent body fat and waist- to- height ratio, which 

limits generalization of results to larger populations of children as expected since we had 

data only for a subset of children. Further, while the overall sample of children was 

ethnically diverse (which is useful for generalizing to US populations), most participants 

were African-American. Thus, we did not have enough power to conduct robust subgroup 

analysis based on race (e.g., African American vs. Asian vs. Caucasian).  There was no 

measure of pubertal status in the participants, so consideration of hormonal influences on 

sweet taste threshold was not possible. Our measures of temperament and food intake 

were obtained by self-report, a method that carries the risk of recall bias. Furthermore, 

the temperament survey questions were answered by the mother about her child, an 

indirect approach. Stronger, more direct methods of assessing temperament are needed 

for future research.  The ASA24, with its web-based interface had the added problem of 

no real-time human contact to resolve questions about food choices or portion size, 

variables that would greatly impact the accuracy of the data. While the Goldberg cutoff is 

a validated method to identify under-reporters, the fact that almost 25% of the food 

records were rejected for underreporting resulted in a significant loss of data and raises 

the question of whether the ASA24 method was limited in some way. Typical food intake 

is best represented by three 24-hour dietary recalls, including both weekdays and a 

weekend day. This study was limited to a single day's record.  The BIA method of 

measuring body composition has the advantage of using portable equipment with no 

radiation exposure. However, the method can be less accurate in states of altered 
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hydration, but this would not have been expected in healthy children. The method also 

requires the choice of appropriate equation for the population being measured, since the 

equations used vary based on the population being studied (i.e., obese adults, people with 

HIV or end-stage renal disease, elderly). This study used an equation validated in 

children. Despite these limitations, the findings are promising and suggest that the use of 

a larger sample is warranted. 

Implications  

An important goal of this study was to make a novel contribution to the literature 

regarding sucrose detection thresholds, sweet and bitter taste receptors genotype and 

obesity measures in children.  Children are becoming overweight and obese and 

consuming large amount of calories as added sugars, which place them at higher risk to 

develop obesity related comorbidities. This study has implications for the study of 

gustation and adiposity. The findings of this investigation lay some evidence for future 

clinical studies that will aid in recognizing children at the greatest at risk of obesity and 

over-consumption of calories and added sugars. Ultimately these children can be directed 

to early interventions aimed at decreasing environmental factors that may contribute to 

weight gain. Effective early intervention may have positive health outcomes by 

decreasing the probability of emerging comorbidities such as diabetes, and cardiovascular 

disease and avoid the use of surgical procedures like weight loss surgery when possible.   
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Future Directions 

There are a few suggestions for future research in this area. Replication of this 

study entirely with measurements of body composition, waist circumference and food 

intake collected for all the subjects would be recommended. It would also be preferable 

that the study be designed as a prospective study with repeated measures over time to 

allow for analysis to identify causality. Adding measures of sucrose preference 

concurrently with sucrose thresholds measures may also help to assess relationships 

between sucrose detection thresholds and sweet taste preference and/or confirm whether 

the sweet taste receptor genes are specifically related to preference, but not sensitivity in 

children. Development of a developmentally appropriate short survey to assess the 

reward processes associated with added sugars might enable comparisons with sucrose 

detection thresholds. To obtain a more accurate assessment of typical food intake, 

research dietitians could collect three dietary recalls, one-week day and one weekend day. 

Lastly, gathering measures of puberty and hormonal changes may elucidate differences in 

sucrose detection thresholds by gender.  A future study can also be designed measuring 

other variables from Contento’s model of food choices to see how these variables relate 

to both diet and thresholds and outcomes of obesity.  

Although the ultimate goal is to translate research findings into human 

interventions, based on the findings from this study a proposed study in animal models is 

necessary to further understand the mechanisms that contribute to an association between 

TAS2R38 and sweet taste detection thresholds, to describe variations that may relate to 

susceptibility in gustatory function.   As mentioned in the above discussion the etiology 
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behind this finding is unknown to date.  In addition, an epigenetic study is needed to 

describe how external factors such as oversaturation of taste buds with sugars might 

activate and deactivate genes and how that affects sucrose detection thresholds. 

  Although sweet taste detection thresholds were not related to variation in sweet 

taste receptor genes in this study, it would be helpful to re-assess this relationship in a 

larger sample, to examine in more detail the effects of sweet taste genes variants, to 

determine which of these variants are found in regulatory regions in the DNA, and to 

examine their effects on gene expression and protein abundance in taste cells.    

Results of recent studies have strengthened the body of evidence demonstrating 

that high intake of added sugars are associated with greater risk of obesity in children (Hu 

& Malik, 2010; Linardakis et al., 2008; Malik, Popkin, Bray, Després, & Hu, 2010; 

Malik, Willett, & Hu, 2009).  But to date, nutritional interventions have been moderately 

successful in improving weight and decreasing excess calories and added sugars. 

Findings from this work show promise for developing nursing-driven interventions to 

advance human health and nutrition. The present findings also suggest that children with 

specific genotypes tend to consume a higher percentage of kcal as added sugars. 

Applying the knowledge collected from this research and future work will help us take 

into account the variability of the sensory world of the child. This evidence may help us 

target specific interventions for those children at higher risk for obesity related diseases, 

and provide efforts to minimize children’s consumption of added sugars, which continues 

to exceed recommended limits. For example, to prevent the development of obesity in 
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susceptible children, a trial of substitution of added sugars by non-caloric sweetener 

might be considered.  

Summary 

In summary, this dissertation illustrated that bitter taste receptor genotypes were 

associated with sucrose detection thresholds. Sucrose detection thresholds were also 

associated with age and sex in a diverse sample of healthy children living in an urban US 

city. Children with the highest risk genotype also reported greater intake of added sugars, 

a behavior with potential to lead to obesity. The sweet taste receptor genotype, however, 

was not related to sweet taste thresholds. While these findings may suggest possible 

useful points for future intervention strategies to prevent pediatric obesity, further studies 

in a larger sample are needed to confirm and extend these findings.  
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Appendix A 

Sucrose Dilution Instructions for Threshold 
 

A. General Instructions 

 
1. The instructions make 1 liter of the top 5 concentrations and 500 ml of the 

rest. 
 
2. Maximum possible test= 15 subjects. 
 
3. The solutions take about 2 hours to make (includes cleanup). 
 
4. The following glassware is required: 

a. 2000-, 1000-, 100-, and 50-ml graduated cylinders (one of each) 
b. 4 2000-ml flasks (labeled 1-4) 
c. 10- and 50-ml pipettes 
d. 18 1-liter glass bottles 

 
5. Taste stimuli Info: 
Tastant Taste Concentration #’s Molarities Formula Weight 
Sucrose Sweet  0-17 1 M to 5.6x10-5 M   342.30g 
 
6. All the flasks and solution bottle are numbered with tape, along with the 

date made. 
 

 

****** Solutions need to be remade every two weeks or more often if needed****** 

 
 
 

B. Step 1: Making 0 concentration 

 

Conc. #  Amount Sucrose  Glassware used 
0  684.6 g  2000 ml (2L) graduated cylinder with 
stopper 

 
1. Using the large purple cup, weigh 684.6g of sucrose to the nearest 1/100 using 

the 1500g scale. 
 
2. Use a funnel to pour sucrose into 2 L graduated mixing cylinder. 
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3. Using dH2O, rinse any sucrose remaining in weigh cup/dish and funnel into 

cylinder. 
 
4. Fill the graduated cylinder to the 2000 ml mark with distilled water after the 

sucrose is in (Fill the last ½ inch or so with a pipette so you do not go over the 
mark), make sure the sucrose at the bottom of the cylinder is wet before 
measuring to the 2000ml. 

 
5. Place stopper on flask and shake until the entire sample is dissolved (make 

sure to always hold stopper so it does not fall off or leak). 
 

C. Step 2: Making concentration 1-4 using dilution steps 

 

1. In 2000ml flask labeled 1-4 put the following measured amounts of dH2O: 
Conc. # Amount dH2O in 1000 ml flask (using graduated 
cylinders) 

   1    440ml    
   2    680ml    
   3    820ml    
   4    900ml    

 
2. Fill each 2000 ml flask to mark with 0 concentration of solution. 

Conc. #   Amount of 0 concentration 
1    560ml of 0 concentration 
2    320ml of 0 concentration 
3    180ml of 0 concentration 
4    100ml of 0 concentration 
 

3. Put stoppers in the flask and shake (overturn) 4 times to mix solution. 
 
4. Pour solution into 1-liter bottles using a funnel. 
 
5. To clean glassware soak in soapy water in sink for an hour and rinse out 

with hot water 5 times and 5 times with distilled water. Let dry before 
saving. 

 
D. Step 3: Making concentrations 5-17 using dilution steps (*** NOTE: To make 

1000 ml of each solution, just double the amount of water and sucrose solution, 
ex. 450 ml of dH2O = 900 ml dH2O and 50 ml of sucrose = 100 ml of sucrose) 

 
1. Set up bottles as follows: 

17 
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13 ↑ 14 15 16 
9 ↑ 10 ↑ 11 ↑ 12 ↑ 
5 ↑ 6 ↑ 7 ↑  8 ↑ 
1 ↑ 2 ↑ 3 ↑ 4 ↑ 

 
2. Fill 1L bottles number 5-17 with 450 ml dH2O. 
 
3. The rest of the series is a simple dilution from the four bases (bottles 1-4). 

Starting with concentration #4, pipette 50ml of 4 and put it into #8. Then 
pipette 50ml of #3 into #7, 50ml of #2 into #6 and 50ml of #1 into #5 as 
shown below: 
Conc. # Amount of dH2O in 1L bottle  Amount of conc. 
8   450ml dH2O   50ml Bottle #4 
7   450ml dH2O   50ml Bottle #3 
6    450ml dH2O   50ml Bottle #2 
5   450ml dH2O   50ml Bottle #1 

Note: The pipette does not need to be rinsed out between each set of 

four dilutions as long as you are going from weaker concentration (#8) 

toward the stronger (#5). 
 
4. Shake Bottles #5-8 and throw out pipette. 
 
5. Repeat step #3, pipetting 8 thru 5 into 12 thru 9 as follows: 

Conc. #  Amount of dH2O in 1L bottle  Amount of 
conc. 
 12    450ml dH2O    50ml Bottle #8 
 11    450ml dH2O    50ml Bottle #7 
 10    450ml dH2O    50ml Bottle #6 
   9    450ml dH2O    50 ml Bottle 
#5 
 

6. Shake bottle #9-12 to mix and throw out pipette. 
7. Repeat step #3 pipetting 12 thru 9 into 16 thru 13 as follows: 

Conc. #  Amount of dH2O in 1L bottle  Amount of conc. 
 16   450ml dH2O    50ml Bottle #12 
 15   450ml dH2O    50ml Bottle #11 
 14   450ml dH2O    50ml Bottle #10 
 13   450ml dH2O    50 ml Bottle #9 

 
8. Shake #13-16 to mix and throw out pipette. 
 
9. Repeat step #3, pipetting 13 into 17 as follows: 

Conc. #  Amount of dH2O in 1L bottle  Amount of conc. 
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 17   450ml dH2O    50ml Bottle #13 
 

10. Shake #17 to mix and throw out pipette 
 
11. Pour solutions into small 120ml bottles for testing. 
 
12. Store bottles in cold room on second floor. 
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Appendix B 

Taste Threshold Training Protocol 

 

Training trials or familiarizing trials  

Have child rinse mouth 4 times with water before test 
 

Instructions to child: 

Show the 2 medicine cups to the child and say, “Now we are going to play our 
first game. This is a game with things to taste. We are going to play detective to 
see which cup has a taste in it. I will place two cups on the table. You will taste 
the first cup and swish it around your mouth, (but do not shallow it) and spit it out 
in the sink. You will then rinse once with water and spit it out. You will then tell 
me in which cup you can taste something different than water. Remember, we are 
playing detectives here. Even if you are not sure you can taste something, say 
which cup you think has a taste to it even if you have to guess. You will then rinse 
your mouth 2 times with water. 
 
Trial 1: pair of plastic cups containing water and step 17 will be presented and 
the child will be instructed to proceed with instructions presented above 
For the tester: The first condition is given because it was important to give the 
children experience with a pair of solutions where they could not detect a 
difference because it was likely that most would not detect difference with the 
first 3-4 pairs of taste solutions. 

 

Instructions to child: 

Show the 2 medicine cups to the child and say, “Now we are going to play our 
first game. This is a game with things to taste. We are going to play detective to 
see which cup has a taste in it. I will place two cups on the table. You will taste 
the first cup and swish it around your mouth, (but do not shallow it) and spit it out 
in the sink. You will then rinse once with water and spit it out. You will then tell 
me in which cup you can taste something different than water. Remember, we are 
playing detectives here. Even if you are not sure you can taste something, say 
which cup you think has a taste to it even if you have to guess. You will then rinse 
your mouth 2 times with water. 
 
TRIAL 2: pair of plastic cups containing water and step 7 of sucrose solution. 
Same instructions as above  
For the tester: Equally, it was important to provide them with an example of a 
pair where one solution was easily discernible as the stronger because a number 
of the test pairs would fall into this category. 
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Appendix C 

Protocol for Testing Sweet Sensitivity 

  
1. Start off with 120-ml bottles of the sucrose concentrations 0-17* and four 120-ml 

bottles of dH2O. ** (All bottles labeled accordingly; you will have an extra bottle 
each of concentrations 7, 8, 9, 10, & 11) 
 
  *Bottles of sucrose concentrations must be stored in the COLD ROOM on the 
3rd floor. 
**Distilled water is abbreviated “dH2O” throughout the instructions. 

 
2. Every series is started with 2 medicine cups, 1 containing 10 ml dH2O and the 

other containing 10 ml of 0.0032 M sucrose (bottle 10). 
 

3. With each trial, every subject receives 10 ml of water and 10 ml of corresponding 
sucrose solution (order depends on grid numbers and concentration depends on 
previous correct/incorrect answer). 

 
4. In room 326, set up the 21 bottles. Have a tray of medicine cups ready to use. 

(Each tray will be labeled in the order of the grid. Sucrose cups will be placed in 
the tray cup marked 2, and water cups will be in the tray cups left blank.) 

 
5. Pour 10 ml of water into the cups in the blank cups and pour 10 ml of the sucrose 

according to concentration step (concentration step = bottle #). 
 

6. Present order of cups according to the order of the grid one at a time. 
 

7. Place the 2 cups on respective number on table. The subject will swish each cup 
around in the mouth for at least 5 seconds and then spit it out in the sink, rinsing 
once between each cup and twice after each set. After the second cup, the subject 
will say which cup had a taste to it. Even if the subject did not taste anything, a 
guess must be made. 

 
8. Continue steps 5-7 until the subject has 4 reversals that meet the criteria, or until 

the subject reaches his/her maximum threshold.  
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Appendix D 

Protocol to use Threshold Grids for Taste 

 

1. The order numbers (the 1’s and 2’s running across the top and bottom of the grid) 
determine the order of presentation of solution (1’s= water first, 2’s=sucrose first) 
for each trial. 

 
2. Have a piece of tape labeled 1 or 2 on the table for you to use throughout the 

testing. You will put the first cup on the #1 and the second cup on the #2 on the 
table. After the subject tastes the first cup they will rinse their mouth once with 
water and then taste the second cup. The subject will swish the liquids around in 
their mouth for 5 seconds before spitting them out in the sink. The subject will 
then rinse 2 times between each trial. (The subject cannot go back and re-taste any 
cups.) 

 
3. Testing is a forced choice paradigm. After the subject has tasted both cups (a 

sucrose concentration and water), they must pick the cup they think has a taste to 
it. Even if the subject cannot taste anything, the subject must pick a cup even if a 
guess must be made. 

 
4. The threshold testing starts at Step 10 (0.032M) of the 18 step sucrose 

concentration. (Step 0= 1M solution (most concentrated), Step 17=0.000056M 
solution (least concentrated).) 

 
5. To record on the grid, a plus (+) is put in the square if the subject picks the 

sucrose cup, which is a correct response, and a minus (-) is put in the square if the 
water cup is picked, which is an incorrect response. 

 
6. If the subject is incorrect after the first trial (picks water), you then proceed up the 

chart to the next concentration (Step 9). If the subject is correct after the first trial, 
you then retest Step 10. If the subject is correct on the second trial, you then 
proceed down the grid to the next sucrose concentration (Step 11). Each change in 
direction on the grid is called a reversal. 

 

If you get: 

Minus sign (-): proceed up the grid to the next concentration (ex. Step 
10� Step 9) 

Plus sign (+): retest same concentration 
+, + on same concentration: proceed down the grid to the next 

concentration (ex. Step 10� Step 11) 
+, - on same concentration: proceed up the grid to the next concentration 

(ex. Step 10� Step 9) 
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7. Total score for the threshold is based on the last 4 reversals and when the 

following criteria are met: (The score of the threshold is the average of the last 4 
reversal concentration) 

a. When 4 reversals are grouped in such a way that there are no more than 2 
dilution steps between any two successive reversals (see example 1). If the 
subject skips 3 or more dilution steps between 2 reversals (after having 
obtained a second reversal), the tester must continue until 4 reversals are 
obtained in a group (see example 2). 

b. When at least 4 correct answers (any two sets of 2) have been obtained on 
the same dilution level (see example 1). If the subject never guesses the 
same dilution level correctly 4 times and successive reversals form an 
ascending pattern, the tester must continue until either the reversals 
stabilize or until the subject reaches step 0 (see example 3). 

 
8. If the subject reaches the bottom of the series (step 18) and guesses correctly 

twice at step 17, the threshold score is 17. 
 
9. If the subject reaches the top of the series (Step 0) and guesses incorrectly, the 

score is 0 (see examples 5 and 6). 
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Appendix E 

Threshold Grid Score Sheet 

 
Reversal # Threshold Step 

# 
mM 

Concentration 

1 
 
 

 

2 
 
 

 

3 
 
 

 

4 
 
 

 

 
Average mM Threshold:  __________   

 
Total # of positive (+) reversals:  __________ 

 
Total # of negative (-) reversals:  __________  

 
# of reversals used for threshold: __________   

        
Note: If you need to go for 5 reversals, score the last four reversals 

STEP # Mol Concentration 

5 .056 

6 .032 

7 .018 

8 .010 

9 .0056 

10 .0032 

11 .0018 

12 .0010 

13 .00056 

14 .00032 
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Appendix F 

Approaches to Calculating Goldberg Cutoff  
 

Approach 1: a very conservative approach (will identify least number of under-

reporters) 

1. Calculate the BMR (Basal Metabolic Rate) for each subject.   
Equation for boys 
Ages 3–10 BMR = 22.706 × W + 504.3  
Ages 10–18 BMR = 17.686 × W + 658.2  
 
Equation for girls 
Ages 3 – 10 BMR = 20.315 x W + 485.9 
Ages 10-18 BMR = 13.384 x W + 692.9 
 

2. Compare reported energy intake to BMR for each subject (reported energy 
intake/BMR) 

3. Anyone whose reported energy intake/BMR is < 1.0 is an under-reporter 

 

Approach 2: less conservative, recommended in one article (will identify more 

subjects as under-reporters) 

1. Calculate the BMR (Basal Metabolic Rate) for each subject.   
Equation for boys 
Ages 3–10 BMR = 22.706 × W + 504.3  
Ages 10–18 BMR = 17.686 × W + 658.2  
 
Equation for girls 
Ages 3 – 10 BMR = 20.315 x W + 485.9 
Ages 10-18 BMR = 13.384 x W + 692.9 
 

2. Multiply each child’s BMR by the appropriate age/gender PAL to determine 
estimated energy expenditure 
Girls PAL  Age    Boys PAL 
1.30   6 – 7  yo  1.30 
1.35   7 – 8  yo  1.35 
1.40   8 – 9  yo  1.40 
1.40   9– 10  yo  1.40 
1.45   10–11 yo  1.45 
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1.50   11-12 yo  1.50 
1.55   12-13 yo  1.55 
 

3. Compare reported energy intake to estimated energy expenditure for each subject 
(reported energy intake/estimated energy requirement) 

4. Anyone whose reported energy intake/estimated energy expenditure is < 1.0 is an 
under-reporter. 

 

 



 

 

149

Appendix G 

Child’s Temperament Questionnaire and Food Neophobia Scale (FNS) 
 

Please rate, on a scale of 1-5 whether the following statements are true for your child that 
participates in the study. Circle the appropriate number: 1-Completely disagree, 2-
slightky disagree, 3-neither agree or disagree, 4- slightly agree, 5-completely agree 

1 Once my child decides s/he doesn’t like something, there is 
no way of getting him/her to like it 

1 2 3 4 5 

2 My child makes friends easily 1 2 3 4 5 

3 My child likes to be with people  1 2 3 4 5 

4 My child has strong likes and dislikes in food 1 2 3 4 5 

5 My child tends to be shy 1 2 3 4 5 

6 My child is afraid to try new foods 1 2 3 4 5 

7 My child often fusses and cries 1 2 3 4 5 

8 My child makes faces at new foods 1 2 3 4 5 

9 My child is off and running as soon as s/he wakes up in the 
morning  

1 2 3 4 5 

10 My child rarely takes a new food without fussing 1 2 3 4 5 

11 My child is very friendly with strangers 1 2 3 4 5 

12 My child is always on the go 1 2 3 4 5 

13 My child reacts intensely when upset 1 2 3 4 5 

14 When my child moves about, s/he usually moves slowly 1 2 3 4 5 

15 My child likes foods from different countries 1 2 3 4 5 

16 My child consistently dislikes many kind of foods 1 2 3 4 5 

17 My child will eat almost anything 1 2 3 4 5 

18 My child takes a long time to warm up to strangers 1 2 3 4 5 

19 My child cries easily 1 2 3 4 5 

20 My child tends to be somewhat emotional 1 2 3 4 5 

21 My child constantly wants to try new foods 1 2 3 4 5 

22 My child finds people more stimulating than anything else 1 2 3 4 5 

23 My child gets upset easily 1 2 3 4 5 

24 My child does not trust new foods 1 2 3 4 5 

25 My child prefers quite, inactive games to more active ones 1 2 3 4 5 

26 When alone, my child feels isolated 1 2 3 4 5 

27 My child prefers playing with others rather than alone 1 2 3 4 5 

28 My child is very sociable 1 2 3 4 5 

29 If my child does not know the food, he/she won’t try it 1 2 3 4 5 

30 My child is very energetic 1 2 3 4 5 

31 My child is something of a loner 1 2 3 4 5 
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Appendix H 

Child’s Temperament Questionnaire and Food Neophobia Scale (FNS) Scoring 

Sheet  
 

From Pliner, P., and Loewen. (1997). Temperament and Neophobia in Children (5-
11years) and their mothers. Appetite, 28, 239-254  
 

Reversed Items: 2, 11, 14,15,17,21,25,28,31  

Add score for each item 

Shyness:  Items 2, 5,11,18,28    
Shyness Scores:_____       
 
Emotionality: Items 7, 13,19,20,23 
Emotionality Scores:____ 
 
Sociability: Items 3, 22,26,27,31        
Sociability Scores: _____      
 
(Negative) reactions to food: Items 1,4,8,10,16 
(Negative) reactions to food Scores: _____ 
 
Activity: Items 9, 12,14,25,30      
Activity Scores: ____  
 
From Pliner, P., & Hobden, K. (1992) Development of a scale to measure the trait of food 
neophobia in humans. Appetite, 19, 105-120 
 
Food Neophobia: Items 6, 15, 17,21,24,29 
Food Neophobia Scores: _____  
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Appendix I 

BuccalAmpTM DNA Quick Extract DNA Extraction Protocol for Collection Swabs 

 

 

 

 

buccalamp-dna-extra

ction-kit-quickextract-dna-extraction-solution-1-0-catch-all-sample-collection-swabs.pdf
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Appendix J 

Orangene® DNA Laboratory Protocol for Manual Purification of DNA from 4.0 

mL of Oragene®•DNA/saliva  

 
Note: DNAgenotek changed the name of the product to PrepIT® L2P but protocol 
remained the same.  Protocol was adjusted for 1mL extraction. 

`

Laboratory Protocol 

for Manual Purification of DNA  of Oragene DNA saliva.pdf
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Appendix K 

TaqMan® GTXpress™ Master Mix Protocol 

 

 

TaqMan GTXpress  

Protocol.pdf
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Appendix L 

Copyright Clearance Center's RightsLink® Service with Elsevier 
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