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yol, bu dünyanın dört bir köşesini bana yuva kıldı. Thank you for all of it.

v



ABSTRACT

BAYESIAN NETWORK GAMES

Ceyhun Eksin

Alejandro Ribeiro

This thesis builds from the realization that Bayesian Nash equilibria are the nat-

ural definition of optimal behavior in a network of distributed autonomous agents.

Game equilibria are often behavior models of competing rational agents that take

actions that are strategic reactions to the predicted actions of other players. In au-

tonomous systems however, equilibria are used as models of optimal behavior for a

different reason: Agents are forced to play strategically against inherent uncertainty.

While it may be that agents have conflicting intentions, more often than not, their

goals are aligned. However, barring unreasonable accuracy of environmental infor-

mation and unjustifiable levels of coordination, they still can’t be sure of what the

actions of other agents will be. Agents have to focus their strategic reasoning on

what they believe the information available to other agents is, how they think other

agents will respond to this hypothetical information, and choose what they deem to

be their best response to these uncertain estimates. If agents model the behavior of

each other as equally strategic, the optimal response of the network as a whole is a

Bayesian Nash equilibrium. We say that the agents are playing a Bayesian network

game when they repeatedly act according to a stage Bayesian Nash equilibrium and

receive information from their neighbors in the network.

The first part of the thesis is concerned with the development and analysis of

algorithms that agents can use to compute their equilibrium actions in a game of in-

complete information with repeated interactions over a network. In this regard, the

burden of computing a Bayesian Nash equilibrium in repeated games is, in general,

overwhelming. This thesis shows that actions are computable in the particular case
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when the local information that agents receive follows a Gaussian distribution and

the game’s payoff is represented by a utility function that is quadratic in the actions

of all agents and an unknown parameter. This solution comes in the form of the

Quadratic Network Game filter that agents can run locally, i.e., without access to

all private signals, to compute their equilibrium actions. For the more generic payoff

case of Bayesian potential games, i.e., payoffs represented by a potential function

that depends on population actions and an unknown state of the world, distributed

versions of fictitious play that converge to Nash equilibrium with identical beliefs on

the state are derived. This algorithm highlights the fact that in order to determine

optimal actions there are two problems that have to be solved: (i) Construction of a

belief on the state of the world and the actions of other agents. (ii) Determination

of optimal responses to the acquired beliefs. In the case of symmetric and strictly

supermodular games, i.e., games with coordination incentives, the thesis also derives

qualitative properties of Bayesian network games played in the time limit. In par-

ticular, we ask whether agents that play and observe equilibrium actions are able to

coordinate on an action and learn about others’ behavior from only observing peers’

actions. The analysis described here shows that agents eventually coordinate on a

consensus action.

The second part of this thesis considers the application of the algorithms devel-

oped in the first part to the analysis of energy markets. Consumer demand profiles

and fluctuating renewable power generation are two main sources of uncertainty in

matching demand and supply in an energy market. We propose a model of the elec-

tricity market that captures the uncertainties on both, the operator and the user

side. The system operator (SO) implements a temporal linear pricing strategy that

depends on real-time demand and renewable generation in the considered period com-

bining Real-Time Pricing with Time-of-Use Pricing. The announced pricing strategy
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sets up a noncooperative game of incomplete information among the users with het-

erogeneous but correlated consumption preferences. An explicit characterization of

the optimal user behavior using the Bayesian Nash equilibrium solution concept is

derived. This explicit characterization allows the SO to derive pricing policies that

influence demand to serve practical objectives such as minimizing peak-to-average

ratio or attaining a desired rate of return. Numerical experiments show that the

pricing policies yield close to optimal welfare values while improving these practical

objectives. We then analyze the sensitivity of the proposed pricing schemes to user

behavior and information exchange models. Selfish, altruistic and welfare maximiz-

ing user behavior models are considered. Furthermore, information exchange models

in which users only have private information, communicate or receive broadcasted

information are considered. For each pair of behavior and information exchange

models, rational price anticipating consumption strategy is characterized. In all of

the information exchange models, equilibrium actions can be computed using the

Quadratic Network Game filter. Further experiments reveal that communication

model is beneficial for the expected aggregate payoff while it does not affect the ex-

pected net revenue of the system operator. Moreover, additional information to the

users reduces the variance of total consumption among runs, increasing the accuracy

of demand predictions.
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Chapter 1

The Interactive Decision-Making

Problem

In a social system, actions of individuals create cascading effects on the entire society

as each action not only affect the fundamentals that it is acting upon but also change

the perceptions of the members of the society. For instance, in the stock market,

agents with uncertainty on the true value of the share take actions that affect the

profits of all the agents while, at the same time, these actions carry information

about actors’ beliefs on the true value of the share affecting observers’ beliefs on the

value of the share. The change in the belief of the observers ends the first cycle of

the cascading effect and possibly causes the observers to act differently in the future

starting the second cycle of the cascading effect. When we consider social systems,

our goal is descriptive, that is, we model to understand, whereas, in technological

settings, we build models to design. Regardless of the goal, in a technological so-

ciety, e.g., a distributed autonomous system where a team of robots want to act in

coordination, our modeling should incorporate the cascading effect as information

from others might carry information about the unseen members of the society and
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the unknown state of the world. Common to both social and technological societies

is that both information and decision-making is decentralized. The sequential in-

dividual decision-making modeling problem that we encounter in these settings we

dub the interactive decision-making problem.

This dissertation’s focus is the interactive decision-decision making problem in

which agents with identical or differing payoffs that depend on the actions of others

and an uncertain state of the world sequentially make decisions. While we do not

enforce that agents have identical payoffs in the setup, in many technological set-

tings, there exists a global objective that all agents would like to jointly maximize.

For instance, in a wireless communication network, agents would like to maximize

throughput or allocate resources efficiently, or in a distributed autonomous system a

team of robots may want to move in alignment with each other. The maximization

of the payoffs could be relatively easy if agents had common information or there ex-

isted a centralized decision maker that dictates the behavior of each agent. However,

neither the common information nor the centralized decision-making is a reasonable

model of the environment in large scale systems with many agents. A reasonable

model of information acquisition is that agents possibly receive private information

about the state, and exchange messages with their neighbors over a network. What

information should be exchanged with the messages and how agents process their

information are the modeling problems we address in this dissertation.

Given the decentralized information, Bayesian Nash equilibrium (BNE) is the

rational behavior model that maximizes expected current individual payoff. In

BNE behavior, individuals have the correct understanding of the environment, are

Bayesian in processing information, and play optimally with respect to their Bayesian

beliefs. Game equilibria are behavioral models of competing agents that take actions

that are strategic reactions to the predicted actions of other players. In autonomous
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systems however, BNE is a model of optimal behavior for a different reason: Agents

are forced to play strategically against inherent uncertainty. While it may be that

agents have conflicting intentions, more often than not, their goals are aligned. How-

ever, barring unreasonable accuracy of environmental information and unjustifiable

levels of coordination, they still can’t be sure of what the actions of other agents

will be. Agents have to focus their strategic reasoning on what they believe the

information available to other agents is, how they think other agents will respond to

this hypothetical information, and choose what they deem to be their best response

to these uncertain estimates. If an agent models the behavior of other agents as

equally strategic, the optimal response of the network as a whole is a BNE. When

agents play according to a stage BNE strategy profile at each decision-making time,

we say that the agents are playing a Bayesian network game (BNG).

The research in this thesis contributes to the interactive decision-making prob-

lem in Bayesian network games in two theoretical thrusts: 1) rational behavior and

2) bounded rational behavior. In the rational behavior thrust our goal is to design

tractable local algorithms for computation of stage BNE behavior in BNG and to

analyze asymptotic outcomes of BNG. In the bounded rational behavior model our

goal is to overcome the computational demand of BNE by proposing simple algo-

rithms that approximates BNE behavior and becomes asymptotically rational. Our

application domain in these two theoretical thrusts is distributed autonomous sys-

tems. In the second part of the thesis, we focus on applying the rational behavior

model to smart grid power systems.

In the rest of this chapter, we first describe the interactive decision-making envi-

ronment and formalize the BNG, and then provide an overview of each thrust and

highlight its contributions to the existing literature.
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1.1 Decision-Making Environment

The interactive-decision making environment considered in this dissertation, de-

picted in Figure 1.1, comprises an unknown state of the world θ ∈ Θ and a group

of agents N = {1, . . . , N} whose interactions are characterized by a network G with

node set N and edge set E , G = (N , E). At subsequent points in time t = 0, 1, 2, . . .,

agents in the network observe private signals si,t that possibly carry information

about the state of the world θ and decide on an action ai,t belonging to some com-

mon compact metric action space A that they deem optimal with respect to a utility

function of the form

ui
(
ai,t, a−i,t, θ

)
. (1.1)

Besides his action ai,t, the utility of agent i depends on the state of the world θ and

the actions a−i,t := {aj,t}j∈N\i of all other agents in the network. For example, in

a social setting where customers decide how much to use a service, the state of the

world θ may represent the inherent value of a service, the private signals si,t may

represent quality perceptions after use, and the action ai,t may represent decisions

on how much to use the service. The utility of a person derives from the use of the

service depending not only on the inherent quality θ but also on how much others

use the service. In a technological setting where a team of robots wants to align

its movement direction, the state of the world θ may represent the unknown target

direction of movement, the private signals si,t may represent the noisy measurement

of the target direction, and the action ai,t may represent its choice of movement

direction.

Deciding optimal actions ai,t would be easy if all agents were able to coordinate

their information and their actions. All private signals si,t could be combined to form

a single probability distribution on the state of the world θ and that common belief
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Figure 1.1: Bayesian network games. Agents want to select actions that are optimal
with respect to an unknown state of the world and the actions taken by other agents.
Although willing to cooperate, nodes are forced to play strategically because they
are uncertain about what the actions of other nodes are.

used to select ai,t. Whether there is payoff dependence on others’ actions or not,

global coordination is an implausible model of behavior in social and technological

societies for two main reasons. The first reason is that the information is inherently

decentralized and combining the global information at all nodes of the network costs

time and energy. The second reason is that even if the information can be aggregated

at a central location, the solution can be computationally demanding to obtain

by the central processor. We, therefore, consider agents that act independently of

each other and couple their behavior through observations of past information from

agents in their network neighborhood Ni := {j : (j, i) ∈ E}. The network indicates

that agents are local information sources, that is, agents observe other information

shared by neighboring agents at a given time. In observing neighboring information

agents have the opportunity to learn about the private information that neighbors

are revealing. Acquiring this information alters agents’ beliefs leading to the selection

of new actions which become known at the next play prompting further reevaluation

of beliefs and corresponding actions.
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Figure 1.2: Target covering problem. 4 robots partake in covering 4 entrances of a
building. Each robot makes noisy private measurements si,t about the locations of
the entrances θ.

The diagram in Figure 1.1 is a generic representation of a distributed autonomous

system. The team is assigned a certain goal that depends on an unknown environ-

mental state θ. Consider agent 1 that communicates directly with agents 2-5 but

not with agents 6-8. The optimal action a1,t depends on the state of the world θ

and the actions of neighboring agents 2-5 as well as nonadjacent agents 6-8 as per

(1.1). Observe that given the lack of certainty on the underlying state of the world

there is also some associated uncertainty on the utility yields of different actions.

A reasonable response to this lack of certainty is the maximization of a expected

payoff. This is not a challenge per se, but it becomes complicated when agents have

access to information that is not only partial but different for different agents.

To further our intuition, we present an example of the target covering problem

where a team of robots wants to cover the entrances to an office floor. Figure 1.2 is

a symbolic illustration of this problem.

Target covering problem

The target covering problem is an aligned coordination concern among a group of

autonomous robots N = {1, . . . , N} where the members partake in covering the
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entrances of an office floor A = 1, . . . , N while minimizing the individual distance

traversed. The action space of each robot is the set of entrances, that is, ai,t ∈ A.

Each robot i ∈ N wants to pick the entrance k ∈ A at location θk that is closest

to its initial position xi,0 and not covered by any other robot. The environmental

information θ gives the position of the doors as well as the positions of the robots.

For a given action profile of the group at time t at, the number of robots targeting

to cover the entrance k ∈ A is captured by #(at, k) :=
∑

i∈N 1(ai,t = k) where

1(·) is the indicator function. Denoting the distance between any two points x, y in

the topology by d(x, y), one payoff function suitable for representing the coverage

problem is the following

ui(ai,t, a−i,t, θ) =
∑
k∈A

1(ai,t = k)1(#(at, k) = 1)

d(xi,0, θk)
. (1.2)

The numerator of the fraction inside the sum implies that robot i gets a positive

utility from the entrance k if it is the only robot covering k. Otherwise, its utility

from entrance k is zero. The denominator weights the payoff from entrance k by the

total distance that needs to be traversed to reach the chosen entrance from robot

i’s initial position xi,0. The summation over the set of entrances makes sure that

payoffs from all possible entrances are accounted for. Note that at most one of the

terms inside the summation can be positive, i.e., agent i can only get a payoff from

the entrance it chooses.

If there is perfect environmental information available, the robots can solve the

global work minimization problem locally. Since there is nothing random on this

problem formulation this is a straightforward assignment and path planning prob-

lem. If the robots have sufficient time to coordinate, they can share all of their

environmental observations. Once this is done all agents have access to the same
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information and can proceed to minimize the expected work. Since all base their

solutions in the same information, their trajectories are compatible and the robots

just proceed to move according to the computed plans. The game arises when the

environment’s information is not perfect and the coordination delay is undesirable.

In particular, each robot starts with a noisy information si,0 about the target lo-

cations θ := {{θk}k=1,...,N} and possibly makes noisy measurements si,t about their

locations while moving. In this scenario of incomplete information, the streaming

of signals at each time step makes messaging all the information and coordinating

actions impractical. Hence, robots need to consider motives of other robots while

having uncertainty about their beliefs. This the group can optimally do by individu-

ally processing its new information in a Bayesian way and employing BNE strategies

as we explain next. Through BNE, members of the group can autonomously act in

a unified manner to cover all the entrances.

1.2 Bayesian Network Game

Say that at time t = 0, there is a common initial belief among agents about the un-

known parameter θ. This common belief is represented by a probability distribution

P . At time t = 0, each agent observes his own private signal si,0 which he uses in

conjunction with the prior belief P to choose and execute action ai,1. Upon execution

of ai,1 node i makes information mi,1 available to neighboring nodes and observes

the information mNi,1 := {mj,1}j∈Ni
made available by agents in his neighborhood.

Acquiring this information from neighbors provides agent i with information about

the neighboring private signals {sj,0}j∈Ni
, which in turn refines his belief about the

state of the world θ. This new knowledge prompts a re-evaluation of the optimal

action ai,1 in the subsequent time slot. In general, at stage t, agent i has acquired
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knowledge in the form of the history hi,t of past and present private signals si,τ for

τ = 0, . . . , t and past messages from neighboring agents mNi,t := {mj,t}j∈Ni
for times

τ = 1, . . . , t−1. This history is used to determine the action ai,t for the current slot.

In going from stage t to stage t + 1, neighboring actions {aj,t}j∈Ni
become known

and incorporated into the history of past observations. We can thus formally define

the history hi,t by the recursion

hi,t+1 =
(
hi,t,mNi,t, si,t+1

)
. (1.3)

Observe that we allow the information mi,t to be exchanged between neighbors but

do not require that to be the case. E.g., it is possible that neighboring agents do

not communicate with each other but observe each others’ actions. To model that

scenario we make mi,t = ai,t.

The component of the game that determines action of agent i from observed

history hi,t is his strategy σi,t for t = 1, 2, . . . . A pure strategy is a function that

maps any possible history to an action,

σi,t : hi,t 7→ ai,t. (1.4)

The value of a strategy function σi,t associated with the given observed history

hi,t is the action of agent i, ai,t. Given his strategy σi := {σi,u}u=1,...,∞, agent i

knows exactly what action to take at any stage upon observing the history at that

stage. We use σt := {σi,t}i∈N to refer to the strategies of all players at time t,

σ1:t := {σu}u=1,...t to represent the strategies played by all players between times

0 and t, and σ := {σu}u=0,...,∞ = {σi}i∈N to denote the strategy profile for all

agents i ∈ N and times t. The strategy profile determines the path of play, that
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is, the sequence of histories each agent will observe. As a result, if agent i at time

t knows the information set at time t, i.e., ht = {h1,t, . . . , hN,t}, then he knows the

continuation of the game from time t onwards given knowledge of the strategy profile

σ.

When agents have (common) prior P on the state of the world at time t = 0,

the strategy profile σ induces a belief Pσ(·) on the path of play. That is, Pσ(h) is

the probability associated with reaching an information set h when agents follow the

actions prescribed by σ. Therefore, at time t, the strategy profile determines the

prior belief Pi,t of agent i given hi,t, that is,

Pi,t(·) = Pσ(·|hi,t). (1.5)

The prior belief Pi,t puts a distribution on the set of possible information sets ht

at time t given that agents played according to σ1,...,t−1 and i observed hi,t. Fur-

thermore, the strategies from time t onwards σt,...,∞ permit the transformation of

beliefs on the information set into a distribution over respective upcoming actions

{aj,u}j∈N ,u=t,...,∞. As a result, upon observing mNi,t and si,t, agent i updates his

belief using Bayes’ rule,

Pi,t+1(·) = Pσ(·
∣∣hi,t+1) = Pσ(·

∣∣hi,t, si,t+1,mNi,t) = Pi,t(·
∣∣ si,t+1,mNi,t). (1.6)

Since the belief is a probability distribution over the set of possible actions in the

future, agent i can calculate expected payoffs from choosing an action. A myopic

rational behavior for agent i is to select the action ai,t that maximizes the expected
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utility given his belief Pi,t,

ai,t ∈ argmax
αi∈A

Eσ
[
ui
(
αi, {σj,t(hj,t)}j∈N\i, θ

) ∣∣hi,t] :=

argmax
αi∈A

∫
ht

ui
(
αi, {σj,t(hj,t)}j∈N\i, θ

)
dPi,t(ht) (1.7)

where we have defined conditional expectation operator Eσ[·
∣∣hi,t] with respect to

the conditional distribution Pσ(·
∣∣hi,t).

According to the definition of myopic rational behavior, all agents should max-

imize the expected value of self utility function. With this in mind we define the

stage BNE to be the strategy profile of a rational agent. A BNE strategy profile

at time t, σ∗t := {σ∗1,t, . . . , σ∗N,t} is a best response strategy such that no agent can

expect to increase his utility by unilaterally deviating from its strategy σ∗i,t given

that the rest of the agents play equilibrium strategies σ∗−i,t := {σ∗j,t}j∈N\i. Then a

sequence of stage BNE is the model of behavior in BNG as we define next.

Definition 1.1. σ∗ is a Markov Perfect Bayesian equilibrium (MPBE) if for each

i ∈ N and t = 1, 2, . . ., the strategy σ∗i,t satisfies the following inequality

Eσ∗
[
ui(σ

∗
i,t(hi,t), {σ∗j,t(hj,t)}j∈N\i, θ)

∣∣hi,t] ≥
Eσ∗

[
ui(σi,t(hi,t), {σ∗j,t(hj,t)}j∈N\i, θ)

∣∣hi,t] (1.8)

for any other strategy σi,t : hi,t 7→ ai,t.

We emphasize that (1.8) needs to be satisfied for all possible histories hi,t, except

for a set of measure zero histories, not just for the history realized in a particular game

realization. This is necessary because agent i does not know the history observed by

agent j but rather has a probability distribution on histories, Pi,t. Thus, to evaluate
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the expectation in (1.7) agent i needs a representation of the equilibrium strategy

for all possible histories hj,t. Also notice that this equilibrium notion couples beliefs

and strategies in a consistent way in the sense that strategies up to time t−1 induce

beliefs at time t and the beliefs at time t determine rational strategy at time t.

Alternatively, from the perspective of agent i the strategies of others σ−i,t in

(1.7) is the model that agent i makes of the behavior of others. When this model is

correct, that is, when agent i correctly thinks that other agents are also maximizing

their payoffs given their model of other agents, the optimal behavior of agent i in

(1.7) leads to the equivalent fixed point definition of the stage BNE. In the fixed

point definition of the MPBE, agents play according to the best response strategy

given their individual beliefs as per (1.7) to best response strategies of other agents,

σ∗i,t(hi,t) ∈ argmax
αi∈A

Ei,t
[
ui(αi, {σ∗j,t(hj,t)}j∈N\i, θ)

]
for all hi,t, i ∈ N , (1.9)

and for all t = 1, 2, . . . where we define the expectation operator Ei,t
[
·
]

:=

Eσ∗
[
· | hi,t

]
that represents expectation with respect to the local history hi,t when

agents play according to the equilibrium strategy profile σ∗. We emphasize that the

equilibrium behavior is optimal from the perspective of agent i given its payoff and

perception of the world hit at time t. That is, there is no strategy that agent i could

unilaterally deviate to that provides a higher expected stage payoff than σ∗i,t given

other agents’ strategies and his locally available information hi,t.

In rational models, individuals understand the environment they operate in and

all the other individuals around them. In particular, rational behavior implies that

individuals perfectly guess the behavior of others if they had the same information

as others because other individuals are also rational. However, individuals have

different information due to private signals and localized message exchanges. In this

12



case, when the payoffs of individuals are aligned around a global objective, it is

uncertainty that individuals are playing against. The optimal way to play against

uncertainty is to assess alternatives in a Bayesian way. When the individuals are

Bayesian in processing information, e.g., signals and messages from neighbors, each

individual in the society is able to correctly calculate the possible effects of its actions

and others’ actions on the society, acts optimally with respect to these calculations,

keeps track of the effects of these actions, and tests its hypotheses regarding the

society with respect to the observed local information. Notice that the equilibrium

notion couples beliefs and strategies in a consistent way in the sense that strategies

induce beliefs, that is, expectation is computed with respect to equilibrium strategy

and the beliefs determine optimal strategy from the expectation maximization in

(1.9).

We remark that the solution concept defined here is due to [1]. In the rest of this

section, we present a toy example of a BNG and provide a discussion of the behavior

model in BNG next.

1.2.1 A BNG example

The example illustrates how agents playing a BNG are able to rule out possible

states of the world upon observing actions of their neighbors.

There are three agents in a line network; that is, N = {1, 2, 3}, N1 = {2},

N2 = {1, 3}, and N3 = {2}. The possible states of the world belong to the set,

Θ = {θ1, θ2, θ3}. Agents have a common uniform prior over the possible states. At

the beginning, agents receive private signals s1, s2, and s3. Based on s1, agent 1 can

distinguish whether the true state is θ3 or belongs to the set {θ1, θ2}. The private

signal of s2 does not carry any information. s3 reveals whether the true state is θ1

13



or belongs to the set {θ2, θ3}. We assume that agents know the informativeness of

the private signals of all agents; i.e., the partition of the private signals is known by

all agents. Agents observe the actions taken by their neighbors, that is, mi,t = ai,t.

There are two possible actions, A = {l, r}.

Agent i’s payoff depends on its own action ai := ai,t and the actions of the other

two agents aN\i,t := {aj,t}j∈N\i in the following way:

ui(ai, aN\i, θ) =


1 if θ = θ1, ai = l, aN\i = {l, l},

4 if θ = θ3, ai = r, aN\i = {r, r},

0 otherwise.

(1.10)

According to (1.10), agent i earns a payoff only when all the agents choose l and the

state is θ1 or when all the agents choose r and the state is θ3.

Initial strategies of agents consist of functions that map their observed histories

at t = 0 (which only consist of their signals) to actions. Let (σ∗1,0, σ
∗
2,0, σ

∗
3,0) be a

strategy profile at t = 0 defined as

σ∗1,0(s1) =


l if s1 = {θ1, θ2},

r if s1 = {θ3},
(1.11)

σ∗2,0(s2) = r, (1.12)

σ∗3,0(s3) =


l if s3 = {θ1},

r if s3 = {θ2, θ3}.
(1.13)

Note that since agent 2’s signal is uninformative, he takes the same action regardless

of his signal.

Agents’ strategies at a time t ≥ 1 map their observed histories to actions. For
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t ≥ 1 let the (σ∗1,t, σ
∗
2,t, σ

∗
3,t) be a strategy profile defined as

σ∗1,t(h1,t) =


l if s1 = {θ1, θ2},

r if s1 = {θ3},
(1.14)

σ∗2,t(h2,t) =


r if a1,t−1 = a3,t−1 = r,

l otherwise,

(1.15)

σ∗3,t(h3,t) =


l if s3 = {θ1},

r if s3 = {θ2, θ3}.
(1.16)

Note that even though agents’ strategies could depend on their entire histories, in

the above specification agent 1 and 3’s actions only depend on their private signals,

whereas, agent 2’s actions only depend on the last actions taken by his neighbors.

We argue that σ∗ = (σ∗i,t)i∈N ,t=0,1,... as defined above is an Bayesian Nash equi-

librium strategy. We assume that the strategy profile σ∗ is common knowledge and

verify that agents’ actions given any history maximizes their expected utilities given

the beliefs induced by the Bayes’ rule.

First, consider the time period t = 0. Suppose that agent 1 observes s1 = {θ1, θ2}.

He assigns one half probability to the event θ = θ1 in which case—according to σ∗—

agent 2 plays r and agent 3 plays l, and he assigns one half probability to state

θ = θ2 in which case agent 2 plays r and agent 3 plays r. Therefore, his expected

payoff is zero regardless of the action he takes; that is, he does not have a profitable

unilateral deviation from the strategy profile σ∗. Next suppose that agent 1 observes

s1 = {θ3}. In this case he knows for sure that θ = θ3 and that agents 2 and 3

both play r. Therefore, the best he can do is also to play r—which is the action

specified by σ∗. This argument shows that agent 1 has no profitable deviation from σ∗

regardless of the realization of s1. Next, we focus on agent 2. He has no information
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at t = 0. Therefore, he assigns one third probability to the event θ = θ1 in which case

a1,0 = a3,0 = l, one third probability to the event θ = θ3 in which case a1,0 = l and

a3,0 = r, and one third probability to the event θ = θ2 in which case a1,0 = a3,0 = r.

Therefore, his expected payoff of taking action r is 4/3, whereas his expected payoff

of taking action l is 1/3. Finally, considering agent 3, if he observes s3 = {θ1}, he

knows that agents 1 and 2 play l and r respectively, in which case he is indifferent

between l and r. If he observes s3 = {θ2, θ3}, on the other hand, he assigns one half

probability to θ = θ2 in which case a1,0 = l and a2,0 = r, and one half probability to

θ = θ3 in which case a1,0 = a2,0 = r. Therefore, he strictly prefers playing r in this

case. We have shown that at t = 0, no agent has an incentive to deviate from the

actions prescribed by σ∗. We have indeed shown something stronger. Strategies σ∗1,0

and σ∗2,0 are dominant strategies for agents 1 and 3, respectively; that is, regardless

of what other agents do, agents 1 and 3 have no incentive to deviate from playing

these strategies.

Next, consider the time period t = 1. In this time period, agent 2 knowing the

strategies that agents 1 and 3 used in the previous time period learns the true state;

namely, if they played {l, l}, the state is θ1, if they played {r, r}, the state is θ3, and

otherwise the state is θ2. Also, by the above argument agents 1 and 3 will never have

an incentive to change their strategies from what is prescribed by σ∗. Therefore, σ∗

is consistent with equilibrium at t = 1 as well. The exact same argument can be

repeated for t > 1.

Now that we have shown that σ∗ is an equilibrium strategy, we can focus on

the evolution of agents’ expected payoffs. For the rest of the example, assume that

θ = θ1. At t = 0, agent 3 learns the true state. Agents 1, 2, and 3 play l, r, and

l, respectively. Since agents 1 and 2 know that agent 2 will play a2,0 = r, their

conditional expected payoffs at t = 0 are zero. Agent 2 on the other hand, assigns
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one third probability to the state θ3 and action profile (r, r, r); therefore, his expected

payoff is given by 4/3. At t = 1, all agents play l. Agent 2 learns the true state.

Since agents 2 and 3 know the true state and know that the action profile that is

chosen is (l, l, l), their expected payoffs are equal to one. On the other hand, agent

1 does not know whether the state is θ1 or θ2 but he knows that the action profile

taken is (l, l, l); therefore, his conditional expected payoff is equal to 1/2. In later

stages, agents changes neither their beliefs nor their actions.

The example illustrates an important aspect of a BNG. Agents need to infer about

the actions of other agents in the next stage based on the information available to

them and use the knowledge of equilibrium strategy in order to make prediction

about how others would play in the following stage. This inference process includes

reasoning about others’ reasoning about actions of self and other agents which in

turn leads to the notion of equilibrium strategy that we defined above.

1.2.2 Discussions on the BNG

The BNG is an interactive decision-making behavior model of a network of agents

in an uncertain environment with repeated local interactions. At each stage agents

receive messages from their neighbors and act according to a Markovian equilibrium

strategy considering their current stage game payoffs. Markovian strategies imply

that the agents’ actions are not functions of the history of the game but only of the

information. That is, a Markovian strategy at time t is a function of the state θ

and the private signals up to time t. Hence, the inference of an agent about others’

actions reduces to inference about the information on these exogenous variables. A

Markovian agent that is myopic, i.e., a Markovian agent that only seeks to maximize

its immediate return on their activities, uses the knowledge of strategies used in the
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past σ∗1:t−1, and its past observations hi,t only to infer about the current actions of

others a−i,t and the state θ given his knowledge of their current strategies σ∗−i,t. In

contrast, a Markovian agent that considers its long-run payoff will build an estimate

of the behavior of others in the future, and as a result, it may experiment in the

current stage for a higher payoff in the future.

The BNG is a reasonable model of individual behavior in social settings where

there exists a large number of agents each of whom have a negligible impact on

the entire social network. In particular, the agent may represent a citizen deciding

to follow a norm, a small customer deciding whether to purchase a product, or a

citizen deciding whether to join a protest. In these settings agents can ignore the

effect of their current actions on the actions of the society members in the future

and act myopic. Alternatively, in a BNG, an agent may represent a role filled by

a sequence of short-run players that inherit the information from their predecessors

and make one time decision. Thus, at a particular agent the information is not lost

but the decision-maker changes at each stage. Moreover, each short-run player holds

additional information when compared to its predecessors due to the observation

of recent events in its social neighborhood. The locality of information creates a

persisting asymmetry in the information accumulated at each role. We present this

interpretation of the BNG in more detail in Chapter 4.

BNG is a model of rational agent behavior in technological settings, e.g., rout-

ing [2], power control or channel allocation in communication systems [3, 4, 5], and

decentralized energy management systems [6]. In the generic routing problem, N

users sharing a fixed number of parallel communication links pick links that max-

imize their individual instantaneous flow. Each link has flow properties that are

unknown and decrease with the number of users selecting to use the link. Since

users are maximizing their instantaneous flows they are myopic. Furthermore, they
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often have differing perceptions on the quality of the links leading to the difference in

information. Networked interaction may arise as users may only sense the previous

decisions of a subset of the users. In the power control in communication system, N

transmitters sharing a communication channel decide their power of transmission to

maximize their signal-to-interference ratio in the existence of interference. The trans-

mitters have noisy information on the channel gain and repeatedly make decisions.

In a decentralized energy system, each agent represents an independent generator

that decides on how much energy to dispatch based on its expected price and its

cost of generation. The price is determined by the expected demand and energy

made available by the generators in the system. Since each generator is operated

separately, each generator has its own estimate of its generation cost and demand

creating a game of incomplete information among the generators. Moreover, these

decisions are concerned with instantaneous rewards. In all of the examples above

agents are non-cooperative and they are not willing to share information but are

revealing information to observers of their actions.

When interests are aligned, the BNG can be a model of optimal behavior where

agents play against uncertainty. For instance, in stochastic decentralized optimiza-

tion problems, agents with different information on the state would like to coop-

eratively maximize a global objective u(a, θ) that depends on decision variables of

all a := {a1, . . . , aN} and the state where each variable is associated with an agent

in the network [7, 8]. Decentralized optimization algorithms are of essence when

either it is computationally or time wise costly to aggregate information or it is

preferable to keep information decentralized for, e.g., security reasons. The state of

the art algorithms in stochastic decentralized optimization are descent algorithms

where each agent takes an action that is optimal assuming its information is the

commonly agreed upon information. Similar to BNG, the goal of these algorithms
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is to maximize the expected current global objective with the reasoning that long

term performance of the system has the utmost importance. The agent behavior in

these algorithm is naive when compared to the agents playing a BNG in which they

reason strategically about the information of others.

Next, we outline the contributions of this dissertation.

1.3 Roadmap and Contributions

We presented BNG as the model of rational behavior in networked interactions

among distributed autonomous agents with uncertainty on the state of the world.

As a result, we consider a BNG as the normative model, that is, the outcomes of this

behavior set the benchmark for other behavioral models. In Part I, we design local

algorithms to compute stage BNE for a class of payoff and information structure,

analyze the outcome of a BNG for coordination games, and propose local algorithms

to approximate stage BNE behavior. In Part II, we apply the BNG framework to

smart grids. Below we overview each thrust.

1.3.1 Rational behavior models

Rational algorithms

The main goal of the rational algorithms thrust is to develop algorithms where

agents compute stage BNE strategies and propagate beliefs in BNG. In this thrust,

we look at a specific class of Bayesian network games which are called Gaussian

quadratic network games. In this class, at the start of the game each agent makes a

private observation of the unknown parameter corrupted by additive Gaussian noise.

In addition, the payoffs of individuals are represented by a utility function that is
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Figure 1.3: Quadratic Network Game (QNG) filter. Agents run the QNG filter to
compute BNE actions in games with quadrate payoffs and Gaussian private signals.

quadratic in the actions of all agents and an unknown state of the world. That is,

at any time t, selection of actions {ai := ai,t ∈ R}i∈N when the state of the world is

θ ∈ R results in agent i receiving a payoff,

ui(ai, a−i, θ) = −1

2

∑
j∈N

a2
j +

∑
j∈N\i

βijaiaj + δaiθ (1.17)

where βij and δ are real valued constants. The constant βij measures the effect of

j’s action on i’s utility. For convenience we let βii = 0 for all i ∈ N . Other terms

that depend on aj for j ∈ N \ i or θ can be added.

The rational behavior requires a delicate consistency of rationality among the

individuals, that is, the model that an individual has on the society is correct, and

moreover the model that the society has on the individual itself is correct. That is,

the concern is whether the decision-makers have the required profound level of un-

derstanding to optimize their behavior with respect to their anticipation of behavior

of others or not. This constitutes an evaluation of expectation of behavior of all

the other individuals of the society with respect to all possible societies given local

information as per (1.8) or (1.9). The evaluation of expectation requires a high level
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of astuteness as one has to consider the society not only from its viewpoint but also

from the viewpoint of all the other individuals. In particular, given the uncertainty

that one has over the information of others, it needs to think what are the possible

societies that the other individual is considering as demonstrated in the example

in Section 1.2.1. Our goal in the specification to the Gaussian quadratic network

games is to use the linearity enabled by Gaussian expectations and quadratic payoffs

to overcome the burden of computing equilibrium behavior. We detail the derivation

and specifics of the algorithm in Chapter 2. Below we provide an intuition.

To determine a mechanism to calculate equilibrium actions we introduce an out-

side clairvoyant observer that knows all private observations. For this clairvoyant

observer the trajectory of the game is completely determined but individual agents

operate by forming a belief on the private signals of other agents. We start from the

assumption that this probability distribution is normal with an expectation that,

from the perspective of the outside observer, can be written as a linear combination

of the actual private signals. If such is the case we can prove that there exists a set

of linear equations that can be solved to obtain actions that are linear combinations

of estimates of private signals. This result is then used to show that after observ-

ing the actions of their respective adjacent peers the beliefs on private signals of all

agents remain Gaussian with expectations that are still linear combinations of the

actual private signals. We can then proceed to close a complete induction loop to de-

rive a recursive expression that the outside clairvoyant observer can use to compute

BNE actions for all game stages. We leverage this recursion to derive the Quadratic

Network Game (QNG) filter that agents can run locally, i.e., without access to all

private signals, to compute their equilibrium actions. A schematic representation of

the QNG filter is shown in Fig. 1.3 to emphasize the parallelism with the Kalman

filter. The difference is in the computation of the filter coefficients which require
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solving a system of linear equations that incorporates the belief on the actions of

others.

Asymptotic analysis

In this thrust, our goal is to answer the question ‘what is the eventual outcome

of MPBE behavior in networked interactions?’. As per the interactive decision-

making environment model presented above, individuals receive private signals si,t

and exchange messages mi,t. In addition, they use this information to better infer

about the actions of others and the unknown state parameters. Since individuals

are all rational, how others process information is known. We can then interpret

an individual’s goal as the eventual learning of peers’ information, that is, agents

play against uncertainty. Then one important question that pertains to the eventual

outcome of the game, that is, we ask whether this information is learned or not. The

answer to this question depends on what messages are exchanged among individuals

and the type of the game, i.e., the payoffs. For instance, in the simple example

considered in Section 1.2.1, where agents only observe the actions of their neighbors,

i.e., mi,t = ai,t, and the payoff is given by (1.10), agents eventually correctly learn

each other’s action and play a consensus action while they do not necessarily have

the same estimate of the state θ.

Our focus in this thrust is on the class of games that are symmetric and strictly

supermodular games. In supermodular games, agents’ actions are strategically com-

plementary, that is, they have the incentive to increase their actions upon observing

increase in others’ actions. For a twice differentiable utility function ui(ai, a−i, θ),

this is equivalent to requiring that ∂2ui/∂ai∂aj > 0 for i, j. Supermodular games

are suitable models for modeling coordinated movement toward a target among a

team of autonomous robots or power control in wireless networks – see Chapter 4
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for more examples. We remark that the target coverage example in Section 1.1 is

not a supermodular game. As a matter of fact, agents’ actions are strategic sub-

stitutable, that is, a choice of one target by an agent decreases another’s chance to

pick the same target. We assume agents only observe actions of their neighbors,

mi,t = ai,t. Our analysis shows that rational behavior yields asymptotic convergence

in actions for all agents to the same value given connected network. This consen-

sus implies that agents’ eventual payoffs are identical. Our analysis leverages the

rational behavior definition (Definition 1.1) to first prove that each agent’s action

asymptotically converges to an action and then argue that this action cannot be dif-

ferent than others using the definition of supermodularity. This result suggests that

in a coordination game – where agents interests are aligned – repeated interactions

between autonomous agents who are selfish and myopic could eventually lead them

to coordinate on the same action. We provide the details in Chapter 4 and discuss

further implications of these results.

1.3.2 Bounded rational behavior models

Agents might not possess the capabilities of computing rational behavior in general.

In addition, BNE are computationally intractable for generic signals. The goal of this

thrust is to develop algorithms that are tractable for generic signals and networks,

and that reach equilibrium behavior asymptotically. Here, we focus on one such

family of algorithms, the fictitious play algorithm, and propose a generalization of it

to networked interactive decision-making environments with uncertainty.

In fictitious play, instead of computing behavior of others according to BNE,

agents keep an empirical distribution of the past actions observed and best respond

to this distribution. Restricting the actions to a finite space, that is, ai,t ∈ A :=
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{1, . . . ,m}, we define the indicator function for actions, Ψ(ai,t) = ek if ai,t = k

where ek ∈ Rm×1 vector of all zeros and one in the kth element, to be used for

building action histogram. Then the histogram of i’s action history at time t is

fi,t :=
∑t

s=1 Ψ(ai,s)/t. If agents act based on their empirical distribution at time

t, ft := [f1,t, . . . , fN,t] and has common prior P on θ, each agent would expect to

receive the payoff

E[u(ft, P )] =
∑

θ∈Θ,a∈AN

u(ai, a−i, θ)f1,t(a1) · · · fN,t(aN)P (θ). (1.18)

Since agent i’s utility depends on everyone else, agent i needs to keep a model of

behavior of each agent. In fictitious play, this corresponds to each agent keeping an

empirical distribution of everyone and best responding to their joint distribution,

that is, agent i’s strategy at time t is determined by the distribution of others

f−i,t := [f1,t, . . . , fi−1,t, fi+1,t, . . . , fN,t] and his estimate of the state qi,t(θ),

ai,t = argmax
α∈A

E[u(α, f−i,t, qi,t)] (1.19)

In a networked setting, agent i can only keep an empirical distribution based on his

neighbors’ messages. Hence, he cannot compute f−i,t.

As a natural alternative, in Chapter 3, we propose the distributed fictitious

play algorithm where agent i considers the mean population behavior. The aver-

age play of the population at time t is denoted by f̄t and can be defined as f̄t :=

N−1
∑N

i=1

∑t
s=1 Ψ(ai,s)/t. Based on observing neighboring actions, agent i keeps an

estimate of the average empirical distribution f̂ it . He computes f̂ it by averaging local

action observations f̂ it := |Ni|−1∑
j∈Ni

∑t
s=1 Ψ(aj,s)/t. Then agent i assumes that
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each agent is behaving independently with respect to the mean population distribu-

tion and best responds as in (1.19) to the distribution f̂ i−it := [f̂ it , . . . , f̂
i
t ] ∈ Rm×N−1.

In BNG, agents also need to infer about the state of the world based on their ob-

servations. In the distributed fictitious play algorithm, we consider learning the state

as a separate parallel process. Hence, agents use a distributed learning algorithm to

form their beliefs qi,t on the state.

Our analysis focuses on potential games where the utility of agent i can equiv-

alently be represented by a potential function u(ai, a−i, θ), that is, ui(ai, a−i, θ) =

u(ai, a−i, θ) for all i. Furthermore when the game is symmetric and the learning pro-

cess yields eventually identical beliefs on the state θ, we show that the distributed

fictitious play converges to a symmetric equilibrium with identical beliefs on the

state. One caveat of the distributed fictitious play algorithm is that agents keep

a single empirical distribution representative of the behavior of every agent. As a

result, the process can only converge to a consensus BNE strategy. This limits the

applicability of the proposed algorithm to the types of games that contain a consen-

sus BNE strategy. Given this observation, we propose an information sharing scheme

where agents share their empirical distribution of others’ actions with their neigh-

bors. This makes sure that agents receive information about non-neighbors from

their neighbors. For the histogram sharing scheme we show the convergence of the

distributed fictitious play to an equilibrium strategy of any incomplete information

potential game.

The distributed fictitious play algorithm represents a computationally feasible

approximation of MPBE strategy which is a model of optimal behavior when inter-

ests are aligned. Based on this interpretation, we consider the distributed fictitious

play algorithm as a decentralized stochastic optimization algorithm and present a

comparison with the centralized solution.
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1.3.3 Demand response in smart grids

Matching power production to power consumption is a complex problem in conven-

tional energy grids, exacerbated by the introduction of renewable sources, which, by

their very nature, exhibit significant output fluctuations. The smart meters install

communication layer on top of the energy distribution system creating what is called

the smart grid by allowing information exchange between the system operator and

the consumers. Demand response refers to the system operator’s effort to mitigate

the power balancing problem by regulating consumption behavior through various

pricing schemes enabled by the smart grid’s communication layer. One such pricing

method is real-time pricing where the price at the end of each period is determined

based on total load demanded in that period. The real-time price sets up a game

of incomplete information among consumers with heterogenous consumption pref-

erences which are unknown by others. In Part II, we comparatively analyze the

effects of real-time based pricing on price, welfare and demand given that agents act

rationally according to BNE with no information exchange mi,t = ∅ – see Chapter

5. In particular, we propose a real-time pricing scheme that minimizes the expected

peak-to-average ratio of demand over the operating horizon while incurring marginal

losses from welfare when compared to other benchmark pricing schemes.

We then seek to characterize how behavior evolves when price anticipating het-

erogeneous users communicate with each other in Chapter 6. In particular, we com-

paratively explore the effects of communicating actions when neighbors share actions

mi,t = ai,t and when the SO sends the information of past realized demand to in-

dividuals. Our findings can be summarized as follows. Providing more information

to the consumers do not hurt the expected net revenue of the SO and increases the

expected aggregate consumption utility. In addition, additional information to the
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users reduce the uncertainty in total demand. Furthermore, action sharing informa-

tion exchange model eventually achieves the expected utility under full information

when the communication network is connected. The positive effects of additional

information are reduced with growing correlation among consumption preferences.

Finally, the inefficiency due to selfish behavior diminishes with the growing number

of customers.

1.4 Interactive decision-making models in the lit-

erature

Learning, an individual gaining the knowledge to anticipate its environment by pro-

cessing information, is at the core of interactive decision-making models considered in

this dissertation where agents play against uncertainty. With varying labels, learning

problem is of interest across various fields, e.g., team theory [9], distributed cooper-

ative control [10, 11, 12], distributed estimation [13, 14, 15, 16, 17, 18], stochastic

distributed optimization [7, 8], learning in networks [19, 20], learning in games [21]

etc. The types of problems considered in learning literatures differ based on the in-

formation processing, the environment and the goal. The models presented in Part

I relate most to learning in networks and to learning in games literatures due to the

existence of the rational behavior notion within these fields while our application

domain relates to distributed autonomous systems [8, 10, 11, 22].

The focus of the learning in networks literature is on modeling the way agents

use their neighborhood observations to update their beliefs about an underlying

parameter and characterizing the outcomes of the learning process in the absence of

payoff dependencies on actions of others. Learning in games considers environments
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with payoff dependencies on actions of others where the goal is to anticipate behavior

of other agents and show convergence to an equilibrium. The rigid dichotomy of

rational or bounded rational interactive decision-making models is present in both

of these literatures.

The rational approach in learning in networks considers agents computing their

beliefs with respect to the Bayesian rule, and thus is referred to as Bayesian learning

in networks. Examples include [23, 24, 25, 26, 27] that study sequential decision

problems; and [19, 28, 29, 30] that study repeated and simultaneous interactions.

Due to the complexity of Bayesian learning, the focus in the latter family of models

is on asymptotic outcomes. Bayesian learning in networks is tractable only under

some structural assumptions on distribution of information [20, 31] or the network

structure [32]. The asymptotic rational behavior thrust contributes to the Bayesian

learning in networks literature by extending some of the consensus results to an

environment with strategic complementarity among agents’ actions. In addition, the

rational algorithm thrust, QNG filter, provides a tractable rational algorithm for the

Gaussian signals and quadratic payoffs case. Presence of payoff externalities adds

another layer of complexity to the learning process compared to models with purely

informational externalities, since it prohibits agents from interpreting the actions of

their neighbors as solely revealing information about the true state of the world.

Instead, when payoffs depend on actions of others, agents have to keep track of

motives of other agents and at the same time incorporate the new information on

state of the world effectively as we have illustrated with a toy example in Section

1.2.1.

The central question in the rational approach to learning in games is whether

agents learn to play an equilibrium of a game with payoff externalities while agents

are Bayesian or are on the path of equilibrium [21, 33]. The studies in this literature
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differ based on whether agents are myopic [34, 35] or far-sighted [36, 37, 38] and

based on the assumptions on payoff and belief structure. Communication in these

works is all to all. Consequently, the asymptotic analysis on BNG differs in the sense

that agents are restricted to information from their neighbors.

The rational behavior models presented in this dissertation or the rational models

in the learning in networks and learning in games literatures require a delicate con-

sistency of rationality among the individuals. That is, the model that an individual

has on the society is correct, and moreover the model that the society has on the

individual itself is correct. The repetition of being sure of each others’ rationality is

known as the common knowledge of rationality. The rational behavior of the society

itself is suitably named as the equilibrium behavior, as the society is at a fixed point

from which no single individual wants to deviate. While the common knowledge of

rationality, and the equilibrium behavior models are accepted by the majority of the

economic theory, the notions are not free of concern.

In a social setting where humans are involved, the concern is whether the decision-

makers have the required profound level of understanding to optimize their behavior

with respect to their anticipation of behavior of others or not. This constitutes an

evaluation of expectation of behavior of all the other individuals of the society with

respect to all possible societies given local information. The evaluation of expecta-

tion requires a high level of astuteness as one has to consider the society not only

from its viewpoint but also from the viewpoint of all the other individuals. In par-

ticular, given the uncertainty that one has over the information of others, it needs

to think what are the possible societies that the other individual is considering. In a

technological society where we would like to design and compute individual behavior

that is rational, the same aforementioned concern leads to the question: is the re-

quired level of understanding by the equilibrium behavior computationally feasible?

30



The answer to the computational feasibility question is negative even for societies

with small number of individuals which leads to bounded rational behavior models

thrust in this dissertation. We remark that the QNG filter for Gaussian quadratic

network games proposed in Chapter 2 is computationally demanding requiring each

agent to do a full network simulation and solve a N2 by N2 set of linear equation.

The intractability of Bayesian learning in networks has led to the study of simpli-

fied models in which agents are non-Bayesian and update their beliefs according to

some heuristic rule [39, 40, 41, 42, 43]. One may think of this problem as a variant of

distributed estimation since agents intend to compute an estimate based on global in-

formation by aggregating local information and successively refining their estimates

using those of their neighbors. Linear and nonlinear estimation problems are well-

studied in the signal processing and control literatures; see e.g., [12, 17, 44, 45, 46].

The main difference between distributed estimation and the one considered here is

that agents have objectives that depend on others’ actions.We make use of some of

the existing distributed estimation algorithms in the bounded rational algorithms

thrust in Chapter 3, where learning the underlying parameter is a parallel process

in the distributed fictitious play algorithm that is disentangled from learning the

strategies of other agents.

The interest in the bounded rational algorithms in the learning in games lit-

erature stems from the motivation to find simple local update mechanisms that

reach equilibrium behavior which otherwise requires a high level of sophistication

as per the discussion above. In other words, the existence of simple mechanisms

that eventually lead to equilibrium behavior justifies studying equilibrium behavior

[33, 47]. Some of the popular heuristics are fictitious play [22, 48, 49, 50], stochas-

tic fictitious play [51, 52], gradient algorithms [50], and no-regret based algorithms

[53, 54, 55, 56, 57, 58]. The work on these algorithms tries to generalize the type of
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games on which proposed algorithms achieve convergence locally. There are only few

studies that generalize these algorithms to settings with local interactions [51, 59] or

with incomplete information [60]. The chapter on distributed fictitious play is moti-

vated to generalize the fictitious play algorithm to the potential games of incomplete

information with networked interactions.

The overarching goal of Part I of this thesis is to develop the theory and algo-

rithms for rational behavior in distributed autonomous systems where interactions

are over a network and the environment is uncertain. Because of the design aspect in

technological settings, e.g., coordinated movement of robot teams [10], power control

in wireless networks [3, 4], there often exists a criterion of global optimality u(a, θ)

that depends on actions of the whole a := {a1, . . . , aN} and the state θ. This global

objective u(a, θ) corresponds to the payoff of each agent in the BNG. According to

team theory [9, 61, 62, 63], stage BNE is person-by-person maximal which is also the

globally optimal behavior given different information assuming the objective function

is convex and other technical constraints on the prior and the objective function. In

particular, for the payoffs in Gaussian quadratic games (1.17), the stage BNE behav-

ior is the globally optimal behavior. That is, at each step in the Gaussian quadratic

network game agents are taking the globally optimal action given their local infor-

mation. The distributed fictitious play algorithm proposed in Chapter 3 represents

a computationally feasible approximation of the globally optimal behavior.
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Part I

Interactive Decision-Making

Models in Bayesian Network

Games
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Chapter 2

Bayesian Quadratic Network

Games

2.1 Introduction

A BNG where agents have quadratic utilities that depend on information externali-

ties – an unknown underlying state – as well as payoff externalities – the actions of all

other agents in the network – is considered 1. Agents play Bayesian Nash Equilibrium

strategies with respect to their beliefs on the state of the world and the actions of all

other nodes in the network. These beliefs are refined over subsequent stages based

on the observed actions of neighboring peers. This chapter introduces the Quadratic

Network Game (QNG) filter that agents can run locally to update their beliefs, se-

lect corresponding optimal actions, and eventually learn a sufficient statistic of the

network’s state. The QNG filter is demonstrated on a Cournot market competition

game and a coordination game to implement navigation of an autonomous team.

1The results in this chapter are based on the journal publication [64] parts of which has also
been published in conferences [65, 66]. Some of the results here are also overviewed in a tutorial
paper [67].
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The specific setting considered in this chapter is introduced in Section 2.2. Agents

repeatedly play a game whose payoffs are represented by a utility function that is

quadratic in the actions of all agents and an unknown real-valued parameter. At the

start of the game each agent makes a private observation of the unknown parameter

corrupted by additive Gaussian noise. At each stage agents observe actions of ad-

jacent peers from the previous stage that they incorporate into a local observation

history which they use to update their inference of the unknown parameter, and

synchronously take actions that maximize their expected payoffs. Actions that max-

imize expected payoffs with respect to local observations histories are defined as best

responses to the expected actions taken by other agents. When the expected actions

of other agents are also modeled as best responses with respect to their respective

observation histories, we say that the network settles into a BNE (Section 2.2.1).

This model with Gaussian signals and quadratic payoffs is a special case of the BNG

model and rational behavior presented in Section 1.2.

In Section 2.3 we determine a mechanism to calculate BNE actions from the

perspective of an outside clairvoyant observer that knows all private observations.

For this clairvoyant observer the trajectory of the game is completely determined but

individual agents operate by forming a belief on the private signals of other agents.

We start from the assumption that this probability distribution is normal with an

expectation that, from the perspective of the outside observer, can be written as

a linear combination of the actual private signals. If such is the case, we prove

that there exists a set of linear equations that can be solved to obtain actions that

are linear combinations of estimates of private signals (Lemma 2.3). This is then

used to show that after observing the actions of their respective adjacent peers

the probability distributions on private signals of all agents remain Gaussian with

expectations that are still linear combinations of the actual private signals (Lemma

35



2.4). We proceed to close a complete induction loop to derive a recursive expression

that the outside clairvoyant observer can use to compute BNE actions for all game

stages (Theorem 2.5).

In Section 2.4 we leverage the recursion derived in Section 2.3 to derive the

QNG filter that agents can run locally, i.e., without access to all private signals, to

compute their BNE action. Results in sections 2.3 and 2.4 are generalized to the

case of vector states and observations (Section 2.5). We apply the QNG filter to

a Cournot competition model (Section 2.6) and to the coordinated movement of a

team of mobile agents (Section 2.7).

Notation. Vectors v ∈ Rn are written in boldface and matrices A ∈ Rn×m in

uppercase. We use 0 to denote all-zero matrices or vectors of proper dimension. If

the dimension is not clear from context, we specify 0n×m. We use 1 to denote all-one

matrices or vectors of proper dimension and 1n×m to clarify dimensions. We use ei

to denote the ith element of the standard orthonormal basis of Rn and ēi := 1− ei

to write an all-one vector with the ith component nulled.

2.2 Gaussian Quadratic Games

We consider games with incomplete information in which N identical agents in a

network repeatedly choose actions and receive payoffs that depend on their own

actions, an unknown scalar parameter θ ∈ R, and actions of all other agents. The

network is represented by an undirected connected graph G = (N , E) with node

set N = 1, . . . , N and edge set E. The network structure restricts the information

available to agent i who is assumed to observe actions of agents j in his neighborhood

Ni := {j : {j, i} ∈ E} composed of agents that share an edge with him. The degree

of node i is given by the cardinality of the set Ni and denoted as d(i) := #Ni. The
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neighbors of i are denoted ji,1 <, . . . , < ji,d(i). We assume the network graph G is

known to all agents.

At time t = 0 agent i observes a one time only private signal si ∈ R which we

model as being given by the unknown parameter θ contaminated with zero mean

additive Gaussian noise εi,

si = θ + εi. (2.1)

The noise variances are denoted as ci := E [ε2i ] and grouped in the vector c :=

[c1, . . . , cN ]T which is assumed known to all agents. The noise terms εi are further

assumed independent across agents. For future reference define the vector of private

signals s := [s1, . . . , sN ]T ∈ RN×1 grouping all local observations.

In this chapter we restrict attention to quadratic payoffs of the form given by

(1.17) in Section 1.3.1 with ai,t ∈ R. Notice that since ∂2ui/∂a
2
i = −1 < 0, the

payoff function in (1.17) is strictly concave with respect to the self action ai of

agent i. Quadratic utility functions are ubiquitous in stochastic optimal control

[68, 69, 70, 71] and distributed estimation [46, 72]. Furthermore, the problem setup

in this paper is closely related to the literature on team theory [9, 61, 63, 73] and

potential games [11, 59, 74].

As we have discussed in Section 1.2, although the goal of agent i is to select the

action ai,t that maximizes the payoff in (1.17), this is not possible because neither the

state θ nor the actions of others a−i,t are known to him. Rather, agent i needs to rea-

son about state θ and actions a−i,t based on its available information. At time t = 0

only the private signal si is known. Define then the initial information as hi,1 = {si}.

The information hi,1 is used to reason about θ and the initial actions a−i,1 that other

agents are to take in the initial stage of the game. At the playing of this stage,

agent i observes the actions aNi,1 := [aji,1,1, . . . , aji,d(i),1]T ∈ Rd(i)×1 of all agents in his
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neighborhood, that is, agents observe actions, mi,t = ai,t. These observed neighbor-

ing actions become part of the observation history hi,2 =
{
si, aNi,1} =

{
hi,1, aNi,1

}
which allows agent i to improve on his estimate of θ and the actions a−i,2 that other

agents will play on the second stage of the game, thereby also affecting the selection

of its own action ai,2. In general, at any point in time t the history of observations

hi,t−1 is augmented to incorporate the actions of neighbors in the previous stage as

per (1.3) The observed action history hi,t is then used to update the estimates of

the world state θ and the upcoming actions of all other agents a−i,t leading to the

selection of the action ai,t in the current stage of the game. Based on the definition

of strategy σi,t : hi,t 7→ ai,t in Section 1.2, we reemphasize the difference between

strategy and action. An action ai,t is the play of agent i at time t, whereas strategies

σi,t refer to the map of histories to actions. We can think of the action ai,t = σi,t(hi,t)

as the value of the strategy function σi,t associated with the given observed history

hi,t. As in the case of the network topology, the strategy σ is also assumed to be

known to all agents. This is not a strong assumption. In sections 2.3 and 2.4, we

show that agents can locally compute the strategy profile given that they know the

network topology and that everybody is rational in the sense that we make precise

in the following section.

2.2.1 Bayesian Nash equilibria

Given that agent i wants to maximize the utility in (1.17) but has access to the partial

information available in the observed history hi,t in (1.3), the rational behavior is

the BNE strategy as defined in Definition 1.1. In this chapter we will use the fixed

point definition of BNE given by (1.9). In particular we define the best response
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strategy of agent i formally as follows,

BRi,t

(
σ1:t−1, {σj,t}j∈N\i

)
:= argmax

αi∈R
Ei,t

[
ui(αi, {σj,t(hj,t)}j∈N\i, θ)

∣∣hi,t]. (2.2)

We note that the expected utility above depends on the strategies σ1:t−1 played in the

past by all agents, Ei,t
[
·
]

:= Eσ1:t−1

[
· | hi,t

]
, and on strategies {σj,t}j∈N\i that all

other agents are to play in the upcoming turn. The strategies σ1:t−1 in (2.2) played

at previous times mapped respective histories {hj,u}j∈N to actions a−i,u for u < t.

Therefore, the past strategies σ1:t−1 determine the manner in which agent i updates

his beliefs on the state of the world θ and on the histories {hj,t}j∈N\i observed by

other agents. As per (1.4), the strategy profiles {σj(t)}j∈N\i of other players in the

current stage permit transformation of history beliefs {hj,t}j∈N\i into a probability

distribution Pi,t over respective upcoming actions a−i,t. The resulting joint distri-

bution on a−i,t and θ permits evaluation and maximization of the expectation in

(2.2).

We can rewrite the BNE definition using the fixed point definition of the BNE

in (1.8) and the best response definition in (2.2) as for all hi,t, and t = 1, 2, . . .

σ∗i,t(hi,t) = BRi,t(σ
∗
1:t−1, {σ∗j,t}j∈N\i), (2.3)

where we have also added the restriction that an equilibrium strategy σ∗u has been

played for all times u < t. We emphasize that (2.3) needs to be satisfied for all possi-

ble histories hi,t and not just for the history realized in a particular game realization.

This is necessary because agent i does not know the history observed by agent j

but rather a probability distribution on histories. Thus, to evaluate the expectation

in (2.2) agent i needs a representation of the equilibrium strategy for all possible
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histories hj,t. In this chapter we consider agents playing with respect to the BNE

strategy σ∗i,t at all times.

Since ui(ai, a−i, θ) is a strictly concave quadratic function of ai as per (1.17), the

same is true of the expected utility Ei,t
[
ui(ai, {σj,t}j∈N\i, θ)

]
that we maximize to

obtain the best response in (2.2). We can then rewrite (2.2) by nulling the derivative

of the expected utility with respect to ai. It follows that the fixed point equation in

(1.8) can be rewritten as the set of equations

σ∗i,t(hi,t) =
∑
j∈N\i

βijEi,t[σ
∗
j,t(hj,t)] + δ Ei,t[θ], (2.4)

that need to be satisfied for all possible histories hi,t and agents i.

Our goal is to develop a filter that agents can use to compute their equilibrium

actions a∗i,t := σ∗i,t(hi,t) given their observed history hi,t. We pursue this in the

following section after some remarks.

Remark 2.1. It may be of interest to modify the utility in (1.17) to include more

additive terms that are functions of other actions a−i and the state of the world θ

but not of the self actions ai. This may change the utility and the expected utility

in (2.2) but does not change the equilibrium strategy in (1.8). Since these terms do

not contain the self action ai, their derivatives are null and do not alter the fixed

point equation in (2.4).

Remark 2.2. The equilibrium notion in (1.8) is based on the premise of myopic

agents that choose actions that optimize payoffs at the present game stage. A more

general model is to consider non-myopic agents that consider discounted payoffs of

future stages. Non-myopic behavior introduces another layer of strategic reasoning.

Forward looking agents would need to take into account the effect of their decisions

at each stage of the game on the future path of play knowing that other agents
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base their future decisions on what they have previously observed. E.g., non-myopic

agents might reduce their immediate payoff to harvest information that may result

in future gains. Extensions to games with non-myopic agents is beyond the scope of

this chapter.

2.3 Propagation of probability distributions

According to the model in (2.4), at each stage of the game agents use the ob-

served history hi,t to estimate the unknown parameter θ as well as the histories

{hj,t}j∈N\i observed by other agents. They use the latter and the known BNE strat-

egy {σ∗j,t(hj,t)}j∈N\i to form a belief Pi,t({a∗j,t}j∈N\i) on the actions {a∗j,t}j∈N\i of

other agents which they use to compute their equilibrium action a∗j,t at time t. Ob-

serve that if the vector of private signals s is given – not to the agents but to an

outside observer – the trajectory of the game is completely determined as there are

no random decisions. Thus, agent i can form beliefs on the histories {hj,t}j∈N\i and

actions {a∗j,t}j∈N\i of other agents if it keeps a local belief Pi,t(s) on the vector of

private signals s. A method to track this probability distribution is derived in this

section using a complete induction argument.

Start by assuming that at given time t, the posterior distribution Pi,t(s) is normal.

Recalling the definition of the expectation operator Ei,t
[
·
]

= Eσ∗
[
· | hi,t

]
, the

mean of this normal distribution is Ei,t [s]. Define the corresponding error covariance

matrix M i
ss(t) ∈ RN×N as

M i
ss(t) := Ei,t

[(
s− Ei,t [s]

)(
s− Ei,t [s]

)T]
. (2.5)

Although agent i’s probability distribution for s is sufficient to describe its belief on
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the state of the system, subsequent derivations are simpler if we keep an explicit

belief on the state of the world θ. Therefore, we also assume that agent i’s beliefs

on θ and s are jointly Gaussian given history hi,t. The mean of θ is Ei,t [θ] and the

corresponding variance is

M i
θθ(t) := Ei,t

[(
θ − Ei,t [θ]

)(
θ − Ei,t [θ]

)T]
. (2.6)

The cross covariance M i
θs(t) ∈ R1×N between the world state θ and the private signals

s is

M i
θs(t) := Ei,t

[(
θ − Ei,t [θ]

)(
s− Ei,t [s]

)T]
. (2.7)

We further make the stronger assumption that the means of this joint Gaussian

distribution can be written as linear combinations of the private signals. In particu-

lar, we assume that for some known matrix Li,t ∈ RN×N and vector ki,t ∈ RN×1 we

can write

Ei,t [s] = Li,ts, Ei,t [θ] = kTi,ts. (2.8)

Observe that the assumption in (2.8) is not that the estimates Ei,t [s] and Ei,t [θ] are

computed as linear combinations of the private signals s – indeed, s is not known

by agent i in general. The assumption is that from the perspective of an external

observer the actual computations that agents do are equivalent to the linear trans-

formations in (2.8). We note that the Gaussian beliefs and linear mean estimates

as in (2.8) are only used as assumptions to prove the intermediate results, that is,

Lemmas 2.3 and 2.4. They will be true by induction in the main result, Theorem

2.5.

Under the complete induction hypothesis of Gaussian posterior beliefs at time t
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with expectations as in (2.8), we show that agents play according to linear equilib-

rium strategies of the form

σ∗i,t(hi,t) = vTi,tEi,t[s], (2.9)

for some action coefficients vi,t ∈ RN×1 that vary across agents but are independent of

the observed history hi,t. These can be found by solving a system of linear equations.

We do this in the following lemma.

Lemma 2.3. Consider a Bayesian network game with quadratic utility as in (1.17).

Suppose that for all agents i, the joint posterior beliefs Pi,t([θ, s
T ]) on the state of the

world θ and the private signals s given the local history hi,t at time t are Gaussian with

means expressed as the linear combinations of private signals in (2.8) for some known

vectors ki,t and matrices Li,t. Define the aggregate vector kt := [kT1,t, . . . ,k
T
N,t]

T ∈

RN2×1 stacking the state estimation weights of all agents and the block matrix Lt ∈

RN2×N2
with N ×N diagonal blocks ((Lt))ii = LTi,t and off diagonal blocks ((Lt))ij =

−βijLTi,tLTj,t,

Lt :=
LT
1,t −β12LT

1,tL
T
2,t ... −β1NLT

1,tL
T
N,t

−β21LT
2,tL

T
1,t LT

2,t ... −β2NLT
2,tL

T
N,t

... ···
...

...
. ··· LT

N−1,t .

−βN1L
T
N,tL

T
1,t ··· −βNN−1L

T
N,tL

T
N−1,t LT

N,t

. (2.10)

If there exists a linear equilibrium strategy as in (2.9), the action coefficients vt :=

[vT1,t, . . . ,v
T
N,t]

T ∈ RN2
can be obtained by solving the system of linear equations

Ltvt = δkt. (2.11)

Proof. We hypothesize that agents play according to a linear equilibrium strategy as
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in (2.9). Substituting this candidate strategy into the equilibrium equations in (2.4)

yields

vTi,tEi,t[s] =
∑

j∈N\{i}

βijEi,t

[
vTj,tEj,t[s]

]
+ δ Ei,t[θ]. (2.12)

The summation in (2.12) includes the expectations Ei,t
[
Ej,t[s]

]
of agent i on the

private signals’ estimate of agent j. As per the induction hypothesis in (2.8), we

have that the inner expectations can be written as Ej,t[s] = Lj,ts. Using this fact,

agent i’s expectation of agent j’s estimate of private signals becomes

Ei,t

[
Ej,t[s]

]
= Lj,tEi,t[s]. (2.13)

Substituting (2.13) and the estimate induction hypotheses in (2.8) for the corre-

sponding terms in (2.12) and (2.13), and reordering terms yield the set of equations

vTi,tLi,ts =
∑

j∈N\{i}

βijv
T
j,tLj,tLi,ts + δ kTi,ts, (2.14)

At this point we recall that the equilibrium equations in (2.4) are true for all possible

histories hi,t. Therefore, the equilibrium equations in (2.14), which are derived from

(2.4), have to hold irrespectively of the history’s realization. This in turn means

that they will be true for all possible values of s. This can be ensured by equating

the coefficients that multiply each component of s in (2.14) thereby yielding the

relationships

LTi,tvi,t =
∑

j∈N\{i}

βijL
T
i,tL

T
j,tvj,t + δ ki,t, (2.15)

that need to hold true for all agents i. The result in (2.11) is just a restatement of

(2.15) with the latter corresponding to the i-th block of the relationship in (2.11).

Lemma 2.3 provides a mechanism to determine the strategy profiles σ∗i,t(·) of all
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agents through the computation of the action vectors vi,t as a block of the vector vt

that solves (2.11). We emphasize that the value of the weight vector vt in (2.11) does

not depend on the realization of private signals s. This is as it should because the

postulated equilibrium strategy in (2.9) assumes the action weights vi,t are indepen-

dent of the observed history. A consequence of this fact is that the action coefficients

{vi,t}i∈N of all agents can be determined locally by all agents as long as the matri-

ces {Li,t}i∈N and vector {ki,t}i∈N are common knowledge. The equilibrium actions

a∗i,t, however, do depend on the observed history because to determine the action

a∗i,t = σ∗i,t(hi,t) = vTi,tEi,t[s] we multiply vTi,t by the expectation Ei,t[s] associated with

the actual observed history hi,t. See Section 2.4 for details.

At time t agent i computes its action vector vi,t which it uses to select the

equilibrium action a∗i,t = vTi,tEi,t[s] as per (2.9). Since we have also hypothesized that

Ei,t [s] = Li,ts, as per (2.8) the action of agent i at time t is given by

ai,t = vTi,tLi,ts. (2.16)

We emphasize that as in (2.8) the expression in (2.16) is not the computation made by

agent i but an equivalent computation from the perspective of an external omniscient

observer.

The actions aNi,t := [aji,1,t, . . . , aji,d(i),t]
T ∈ Rd(i)×1 of neighboring agents j ∈ Ni

become part of the observed history hi,t+1 of agent i at time t + 1 [cf. (1.3)]. The

important consequence of (2.16) is that these observations are a linear combination

of private signals s. In particular, by defining the matrix

HT
i,t := [vTji,1,tLji,1,t; . . . ; v

T
ji,d(i),t

Lji,d(i),t] ∈ Rd(i)×N (2.17)
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we can write

aNi,t = HT
i,ts :=


vTji,1,tLji,1,t

...

vTji,d(i),tLji,d(i),t

 s. (2.18)

Agent i’s belief of s at time t is normally distributed; moreover, when we go from

time t to time t + 1, agent i observes a linear combination, aNi,t = HT
i,ts, of private

signals. Thus, the propagation of the probability distribution when the history hi,t+1

incorporates the actions aNi,t is a simple sequential LMMSE estimation problem [75,

Ch. 12]. In particular, the joint posterior distribution of s and θ given hi,t+1 remains

Gaussian and the expectations Ei,t+1 [s] and Ei,t+1 [θ] remain linear combinations of

private signals s as in (2.8) for some matrix Li,t+1 and vector ki,t+1 which we compute

explicitly in the following lemma.

Lemma 2.4. Consider a Bayesian network game with quadratic utility as in (1.17)

and the same assumptions and definitions of Lemma 2.3. Further define the obser-

vation matrix HT
i,t := [vTji,1,tLji,1,t; . . . ; v

T
ji,d(i),t

Lji,d(i),t] ∈ Rd(i)×N as in (2.18) and the

LMMSE gains

Ki
s(t) := M i

ss(t)Hi,t

(
HT
i,tM

i
ss(t)Hi,t

)−1
, (2.19)

Ki
θ(t) := M i

θs(t)Hi,t

(
HT
i,tM

i
ss(t)Hi,t

)−1
, (2.20)

and assume that agents play the linear equilibrium strategy in (2.9). Then, the beliefs

Pi,t+1([θ, sT ]) after observing neighboring actions at time t are Gaussian with means
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that can be expressed as the linear combination of private signals

Ei,t+1 [s] = Li,t+1s, Ei,t+1 [θ] = kTi,t+1s, (2.21)

where the matrix Li,t+1 and vector ki,t+1 are given by

Li,t+1 = Li,t +Ki
s(t)
(
HT
i,t −HT

i,tLi,t

)
, (2.22)

kTi,t+1 = kTi,t +Ki
θ(t)
(
HT
i,t −HT

i,tLi,t

)
. (2.23)

The posterior covariance matrix M i
ss(t + 1) for the private signals s the variance

M i
θθ(t+ 1) of the state θ and the cross covariance M i

θs(t+ 1) are further given by

M i
ss(t+ 1) =M i

ss(t)−Ki
s(t)H

T
i,tM

i
ss(t), (2.24)

M i
θθ(t+ 1) =M i

θθ(t)−Ki
θ(t)

THT
i,tM

i
sθ(t), (2.25)

M i
θs(t+ 1) =M i

θs(t)−Ki
θ(t)H

T
i,tM

i
ss(t). (2.26)

Proof. Since observations of i, aNi,t, are linear combinations of private signals s which

are normally distributed, observations of i are also normally distributed from the

perspective of i. Furthermore, by assumption (2.8), the prior distribution Pi,t(s) is

Gaussian. Hence, the posterior distribution, Pi,t+1(s), is also Gaussian. Specifically,

the mean of the posterior distribution corresponds to the LMMSE estimator with

gain matrix Ki
s(t) = M i

ss(t)Hi,t

(
HT
i,tM

i
ss(t)Hi,t

)−1
; that is,

Ei,t+1[s] =Ei,t [s] +Ki
s(t)
(
aNi,t − Ei,t[aNi,t]

)
. (2.27)

Because θ and s are jointly Gaussian at time t, θ and aNi,t are also jointly Gaus-

sian. Therefore, the posterior distribution Pi,t+1(θ) is also Gaussian. Consequently,
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the Bayesian estimate of θ is given by a sequential LMMSE estimator with gain

matrix Ki
θ(t) = M i

θs(t)Hi,t

(
HT
i,tM

i
ss(t)Hi,t

)−1
,

Ei,t+1 [θ] =Ei,t [θ] +Ki
θ(t) (aNi,t − Ei,t [aNi,t]) . (2.28)

Given the linear observation model in (2.18), agent i’s estimate of his observations at

time t is given by Ei,t(aNi,t) = HT
i,tEi,t[s]. Substituting (2.8) for the mean estimates

at time t in (2.27) and (2.28), we obtain

Ei,t+1 [s] = Li,ts +Ki
s(t)

(
HT
i,ts−HT

i,tLi,ts
)
, (2.29)

Ei,t+1 [θ] = kTi,ts +Ki
θ(t)

(
HT
i,ts−HT

i,tLi,ts
)
. (2.30)

Grouping the terms that multiply s on the right hand side of the two equations, we

observe that Ei,t+1 [s] = Li,t+1s and Ei,t+1 [θ] = kTi,t+1s where Li,t+1 and ki,t+1 are as

defined in (2.22) and (2.23). Similarly, the updates for error covariance matrices are

as given in (6.23)–(2.26) following standard LMMSE updates [75, Ch. 12].

In the repeated game we are considering, agents determine optimal actions given

available information and determine the information that is revealed by neighboring

actions. These questions are respectively answered by Lemmas 2.3 and 2.4 under

the inductive hypotheses of Gaussian beliefs and linear estimates as per (2.8). The

answer provided by Lemma 2.4 also shows that the inductive hypotheses hold true at

time t+ 1 and provides an explicit recursion to propagate the mean and variance of

the beliefs posterior to the observation of neighboring actions. This permits closing

the inductive loop to establish the following theorem for recursive computation of

BNE of repeated games with quadratic payoffs.

Theorem 2.5. Consider a repeated Bayesian game with the quadratic utility function
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in (1.17) and assume that linear strategies σ∗i,t(hi,t) = vTi,tEi,t[s] as in (2.9) exist for

all times t. Then, the action coefficients vi,t can be computed by solving the system

of linear equations in (2.11) with vt := [vT1,t, . . . ,v
T
N,t]

T , kt := [kT1,t, . . . ,k
T
N,t]

T and

Lt as in (2.10). The matrices Li,t and the vectors ki,t are computed by recursive

application of (2.19)-(2.20) and (2.22)-(2.26) with initial values

Li,1 = 1eTi , ki,1 = ei. (2.31)

The initial covariance matrix M i
ss(1), initial variance M i

θθ(1), and initial cross co-

variance M i
θs(1) are given by

M i
ss(1) = diag(ēi)diag(c) + ēiē

T
i ci,

M i
θθ(1) = ci,

M i
θs(1) = ciē

T
i . (2.32)

Proof. At time t = 1 beliefs are normal and have the form in (2.8). Indeed, since

the only information available to agent i at time t = 1 is the private signal si it

follows from the linear observation model in (2.1) that this is the value assigned to

the estimate of all private signals as well as to the estimate of the state θ,

Ei,1 [sj] = si for all j, Ei,1 [θ] = si. (2.33)

The elements of the matrix Li,1 = 1eTi are 1 in the ith column and 0 otherwise.

Therefore, the first expression in (2.33) is equivalent to the first expression in (2.31).

Likewise, since the ith element of ei is one with remaining elements zero, the second

expression in (2.33) is equivalent to the second expression in (2.31). As for the
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variances in (2.32), note that the initial estimate of s has error covariance matrix

defined as in (2.5) for t = 1. By substituting initial mean estimates inside (2.5) and

then using the fact that eTi s = si, the error covariance matrix can be rewritten as

M i
ss(1) =Ei,1

[(
s− 1si

)(
s− 1si

)T]
(2.34)

From (2.34), we get the following by using the fact that sj − si = εj − εi by (2.1),

M i
ss(1) =Ei,1

[(
ε− 1εi

)(
ε− 1εi

)T]
. (2.35)

When we expand the terms in (2.35), we obtain the following

M i
ss(1) =Ei,1

[
εεT
]
− Ei,1

[
ε1T εi

]
− Ei,1

[
1εiε

T
]

+ 11TEi,1
[
ε2i
]

(2.36)

=diag(c)− ei1
T ci − 1eTi ci + 11T ci (2.37)

=diag(c) + ēiē
T
i ci − eie

T
i ci (2.38)

Since private signals are independent among agents, that is Ei,1[εkεj] = 0 for all j ∈

N \ k and k ∈ N , we have Ei,1[εεT ] = diag(c), Ei,1[εεi] = eici. Using these relations

and the definition of noise variance ci = E[ε2i ], (2.37) follows from (2.36). When

second and third terms are subtracted from the fourth term in (2.37), we obtain the

last two terms in (2.38). Now, observe that diag(c)−eie
T
i ci = diag(ēi)diag(c), hence

(2.38) can be rewritten as in (2.32).

Consider the variance of θ defined in (2.6) at time t = 1. Substituting Ei,1[θ] = si
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inside (2.6), we have

M i
θθ(1) = Ei,1

[
(θ − si)2

]
(2.39)

By the signal structure (2.1) with additive zero mean Gaussian term εi, we have

θ − si = −εi. As a result, M i
θθ(1) = Ei,1[ε2i ] which is in return equal to ci. Next

consider the cross-covariance between θ and s defined in (2.7) at time t = 1,

M i
θs(1) =Ei,1

[(
θ − Ei,1 [θ]

)(
s− Ei,1 [s]

)T]
(2.40)

=Ei,1

[
(−εi)(ε− 1εi)

T
]

(2.41)

The second equality follows by substitution of initial mean estimates and then using

the definition of private signals (2.1). Next, we multiply out the terms in (2.41) and

use independence of private signals between agents to get (2.32).

The inductive hypotheses is then true at time t = 1 with the explicit initializations

in (2.31) and (2.32). Lemma 2.4 has already shown that if the inductive hypothesis

is true at time t, it is also true at time t+1. It also provided the explicit recursions in

(2.19)-(2.20) and (2.22)-(2.26). Lemma 2.3 further shows that the action coefficients

vi,t can be computed by solving the system of linear equations in (2.11).

According to Theorem 2.5, the beliefs on θ and s remain Gaussian for all agents

and all times when agents play according to a linear equilibrium strategy as in (2.9)

at each stage. Theorem 2.5 also provides a recursive mechanism to compute the

coefficients vi,t of the linear BNE strategies σ∗i,t(hi,t) = vTi,tEi,t[s] and the coefficients

Li,t and ki,t that determine the LMMSE estimates as per (2.8). However, these latter

expressions cannot be used by agent i to calculate estimates Ei,t [s] and Ei,t [θ] unless

the private signals s are exactly known, which will absolve agent i from responsibility
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of the estimation process entirely. Since the BNE action a∗i,t = σ∗i,t(hi,t) = vTi,tEi,t[s]

depends on having the observed private signal estimate Ei,t[s] available, Theorem

2.5 does not provide a way of computing the optimal action either. This mismatch

can be solved by writing the LMMSE updates in a different form as we show in the

next section after the following remark.

Remark 2.6. Results in this paper assume the system of linear equations in (2.11)

has a unique solution. If the solution is not unique, a prior agreement is necessary

for agents to play consistent strategies. E.g., agents could agree beforehand to select

the vector vt with minimum Euclidean norm. If (2.11) does not have a solution, it

means that the equilibrium strategies of the form in (2.16) do not exist. A sufficient

condition for this not to happen is to have a strictly diagonally dominant utility

function which in explicit terms we write
∑

j∈N\{i} |βij| < 1. In this case Gershgorin’s

Theorem implies that Lt is full rank because it has no null eigenvalues. Laxer

conditions to guarantee existence of linear equilibria as in (2.16) can be found in,

e.g., [9, 74]. In all of our numerical experiments, solutions to (2.11) exist and are

unique.

2.4 Quadratic Network Game Filter

To compute and play BNE strategies each node runs the quadratic network game

(QNG) filter that we derive in this section and summarize by figs. 2.1 and 2.2.

Fig. 2.1 provides a diagram outline of the QNG filter whereas Fig. 2.2 details game

solution and coefficient updates given in Lemmas 2.3 and 2.4.

Since agent i cannot use (2.8), we need an alternative means of computing es-

timates Ei,t [s] and Ei,t [θ]. To do this refer to the equations (2.27) and (2.28) in

the proof of Lemma 2.4. In these equations we substitute the expectation of the
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aNi,t
∑

Ki
s(t)

∑ Ei,t+1[s]
vTi,t+1 ai,t+1

z−1

Ei,t[s]−HT
i,t−Ei,t[aNi,t]

M i
ss(t) {kj,t+1}j∈V

{Lj,t+1}j∈V

HT
i,t

s

{vj,t}j∈n(i)

{Lj,t}j∈n(i)

Ki
θ(t)

∑ Ei,t+1[θ]

z−1

Ei,t[θ]

Figure 2.1: Quadratic Network Game (QNG) filter at agent i. There are two types
of blocks, circle and rectangle. Arrows coming into the circle block are summed.
The arrow that goes into a rectangle block is multiplied by the coefficient written
inside the block. Inside the dashed box agent i’s mean estimate updates on s and θ
are illustrated (cf. (2.42) and (2.43)). The gain coefficients for the mean updates are
fed from LMMSE block in Fig. 2. The observation matrix Hi,t is fed from the game
block in Fig. 2. Agent i multiplies his mean estimate on s at time t with action
coefficient vi,t, which is fed from game block in Fig. 2, to obtain ai,t. The mean
estimates Ei,t[s] and ai,t can only be calculated by agent i.
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Variable

Lj,t

kj,t

vj,t

Hj,t

Game coefficients

Update

Lj,t+1 = Lj,t +Kj
s (t)

(
HTj,t −H

T
j,tLj,t

)
(2.22)

kTj,t+1 = kTj,t +Kj
θ(t)

(
HTj,t −H

T
j,tLj,t

)
(2.23)

Ltvt = δkt (2.11)

Hj,t :=
[
vTkj,1,t

Lkj,1,t; . . . ;v
T
kj,d(j),t

Lkj,d(j),t]
T

(2.18)

Variable

Kj
s (t)

Kj
θ(t)

Mj
ss(t)

Mj
θs(t)

LMMSE coefficients

Update

Kj
s (t) = Mj

ss(t)Hj,t
(
HTj,tM

j
ss(t)Hj,t

)−1

(2.19)

Kj
θ(t) = Mj

θs(t)Hj,t
(
HTj,tM

j
ss(t)Hj,t

)−1

(2.20)

Mj
ss(t+ 1) = Mj

ss(t)−Kj
s (t)HTj,tM

j
ss(t)(6.23)

Mj
θs(t + 1) = Mj

θs(t) − Kj
θ(t)HTj,tM

j
ss(t)

(2.26)

Hj,t

Kj
s (t)

Kj
θ(t)

vi,t Hi,t

to QNG filterto QNG filter

Ki
s(t) Ki

θ(t)

to QNG filterto QNG filter

Figure 2.2: Propagation of gains required to implement the Quadratic Network Game
(QNG) filter of Fig. 2.1. Gains are separated into interacting LMMSE and game
blocks. All agents perform a full network simulation in which they compute the gains
of all other agents. This is necessary because when we compute the play coefficients
vj,t in the game block, agent i builds the matrix Lt that is formed by the blocks
Lj,t of all agents [cf. (2.10)]. This full network simulation is possible because the
network topology and private signal models are common knowledge.
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observed neighboring actions Ei,t[aNi,t] with HT
i,tEi,t[s] using their model in (2.18).

As a result we can rewrite (2.27) and (2.28) as

Ei,t+1[s] = Ei,t [s] +Ki
s(t)
(
aNi,t −HT

i,tEi,t[s]
)
, (2.42)

Ei,t+1[θ] = Ei,t [θ] +Ki
θ(t)
(
aNi,t −HT

i,tEi,t[s]
)
. (2.43)

The updates in (2.42) and (2.43) can be implemented locally by agent i since they

depend on the previous values Ei,t[s] and Ei,t[θ] of the LMMSE estimates, and the

observed neighboring actions aNi,t. The signal updates in (2.42)-(2.43) are illustrated

inside the dashed box in Fig. 2.1. At time t, the inputs to the filter are the observed

actions aNi,t of agent i’s neighbors. The prediction Ei,t[aNi,t] = Hi,tEi,t[s] of this

vector is subtracted from the observed value and the resultant error is fed into two

parallel blocks respectively tasked with updating the belief Ei,t[θ] on the state of

the world θ, and the belief Ei,t[s] on the private signals s of other agents. The error

aNi,t−Ei,t[aNi,t] is multiplied by the gain Ki
s(t) and the resultant innovation is added

to the previous mean estimate to correct the estimate of s [cf. (2.42)]. Similarly,

the error is multiplied by the gain Ki
θ(t) and the resultant innovation is added to

the previous mean estimate to correct the estimate of θ at i [cf. (2.43)]. The output

of the dashed box in Fig. 2.1, agent i’s mean estimate of private signals Ei,t+1[s] is

multiplied by the vector vi,t+1 to determine the equilibrium play at time t+ 1 as per

(2.9).

The mean estimate updates in (2.42) and (2.43), and equilibrium action coeffi-

cients outlined in Fig. 2.1 require recursive computation of the observation matrix

Hi,t, gain matrices Ki
θ(t) and Ki

s(t), and action coefficient vector vi(t). These coef-

ficient recursions can be divided into a block of LMMSE updates for computation

of gains Ki
θ(t) and Ki

s(t), and a block of game updates for computation of Hi,t and
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vi(t) as we show in Fig. 2.2. While these updates are divided into blocks, they are

interconnected in that computation of coefficients in one block demand information

from the other. Given the observation matrix Hi,t from the game block, the gain

matrices Ki
s(t) and Ki

θ(t) in the LMMSE block follow from (2.19) and (2.20), re-

spectively. Inside the LMMSE block, M i
ss(t + 1), M i

θθ(t + 1) and M i
θs(t + 1) follow

from (6.23)-(2.26) by using the observation matrix Hi,t and previously calculated

gains Ki
s(t) and Ki

θ(t). In the game block, mean estimate coefficient matrix Li,t and

the vector ki,t follow from (2.22) and (2.23) using the gain matrices fed from the

LMMSE block.

The next step in the game block is to compute action coefficients vi,t by formulat-

ing and solving the system of equations in (2.11). For formulation of the equations,

the mean estimate matrices {Lj,t}j∈N , and vectors {kj,t}j∈N are needed as they are

building blocks of the matrix Lt and the vector kt in (2.11). As a result, agent i

performs a full network simulation in which he maintains mean estimate coefficients

of all the agents in the QNG filter – see Remark 2.7. He can do this because given

{Hj,t}j∈N , the LMMSE block and mean estimate coefficients Lj,t and kj,t of agent j

can be computed without any information local to agent j ∈ N in Fig. 2.2. Conse-

quently, the matrices Lj,t are used as building blocks of the matrix Lt and the vectors

kj,t are stacked in the vector kt and used to formulate the systems of equations in

(2.11). Solving this system of equations, using L−1
t when it is full rank or its pseudo

inverse when it is not, yields the coefficients {vj,t}j∈N . All of these computations are

local given observation matrices of all agents, {Hj,t}j∈N but providing observation

matrices of all the agents to i is infeasible in a decentralized setting. Nevertheless, we

remark that network is common knowledge that is all of the agents know the neigh-

borhood set of each other. This is critical as given {Lj,t,vj,t}j∈N and the network

structure, agent i can compute the observation matrix Hj,t in (2.18) for all j ∈ N .
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As mentioned before, the game block then feeds the matrices Hj,t to the filter block

since they are used in the LMMSE gains and covariance updates which are fed into

the game block to update mean estimate coefficients Lj,t and kj,t.

This completes one step of the loop in which agent i keeps track of the game and

LMMSE coefficients in Fig. 2.2 for all the agents via internal computations. We

remark that this is possible due to common knowledge of network and signal model.

Above we have mentioned that network knowledge is necessary in computing obser-

vation matrix of other agents. Signal model knowledge is necessary in computing

initial estimation weights and covariance matrices in (2.31)-(2.32). Consequently, all

of these computations for the coefficients of other agents are internal to agent i and

independent of the game realization. Furthermore, the gains can be computed offline

prior to running the game. On the other hand, the computation of the equilibrium

actions a∗i,t in (2.9) and mean estimate updates in (2.42)-(2.43) summarized in Fig.

2.1 depend on observed history hi,t hence they are performed for agent i’s own index

only.

Remark 2.7. There are two reasons for a full network simulation. First, agent i’s

utility is coupled with others’ actions hence computing equilibrium play involves

solving the system of equations in (2.11) for which, agent i needs to build the ma-

trix Lt and vector kt that are formed by the blocks Lj,t and kj,t of all the agents.

Second, agent i refines his estimates from observing neighbors’ actions which in-

volves constructing his observation matrix Hi,t. The building blocks of Hi,t in (2.18)

are {vj,t, Lj,t}j∈Ni
which implies keeping track of action and estimation coefficients

of neighbors including tracking neighbors’ observation matrices {Hj,t}j∈Ni
which in

turn would imply tracking action and estimation coefficients of his neighbors’ neigh-

bors. Consequently, propagating beliefs require keeping track of coefficients of all

the agents in the network.
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Remark 2.8. In the QNG filter, we do not use the fact that estimates Ei,t [θ] and

Ei,t[s] as well as actions ai,t can be written as linear combinations of the private

signals [cf. (2.8) and (2.16)]. While the expressions in (2.8) and (2.16) are certainly

correct, they cannot be used for implementation because s is only partially unknown

to agent i. The role of (2.8) and (2.16) is to allow derivation of recursions that we

use to keep track of the gains used in the QNG filter.

Remark 2.9. The QNG filter can also be used in repeated games with purely informa-

tional externalities. In this case each agent’s payoff is given by u(θ, ai) = −(θ− ai)2,

and the problem is thus equivalent to the distributed estimation of the world state

θ [31]. Our model subsumes the games with purely informational externalities as a

special case. Given this payoff function, the best response of agent i at time t is the

action ai,t = Ei,t[θ]. Hence, it is not necessary to solve (2.11) for the optimal strategy

coefficients vi,t. Other than this the QNG filter remains unchanged. Since in the

case of purely informational externalities the end goal is the estimation of θ, the

QNG filter is tantamount to an optimal distributed implementation of a sequential

LMMSE filter.

2.5 Vector states and vector observations

Consider the case when state of the world is a vector, that is, θ ∈ Rm for m > 1.

Similar to the scalar case, each agent receives initial private signal si ∈ Rm,

si = θ + εi (2.44)

where the additive noise term εi ∈ Rm is multivariate Gaussian with zero mean

and variance-covariance matrix Ci ∈ Rm×m. For future reference, define the vector
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obtained by stacking elements at the kth row and lth column of variance-covariance

matrices of all agents, Ck,l := [C1[k, l], . . . , CN [k, l]]T . We use si[n] to denote the nth

private signal of agent i where n ≤ m. We assume that the noise terms {εi}i∈N are

independent among agents. We define the set of all private signals as

s := [s1[1], . . . , sN [1], . . . , s1[m], . . . , sN [m]]T , (2.45)

where s ∈ RNm×1. We use s[n] := [s1[n], . . . , sN [n]]T to denote the vector of private

signals of agents on the nth state of the world.

At each stage t, agent i takes action ai,t ∈ Rm. Agent i’s action at time t is to

maximize a payoff function which is represented by the following quadratic function

ui(ai, {aj}j∈N\i,θ) = −1

2
aTi ai +

∑
j∈N\{i}

aTi Bijaj + aTi Dθ, (2.46)

where constants Bij and D belong to Rm×m. Similar to the scalar case, other additive

terms that depend on {aj}j∈N\i and θ can exist without changing the results to

follow. We obtain the best response function for agent i by taking the derivative of

the expected utility function with respect to ai, equating it to zero, and solving for

ai:

BRi,t({σj,t(hj,t)}j∈N\i) =
∑
j∈N\i

BijEi,t[σj,t(hj,t)] +DEi,t[θ]. (2.47)

Note that BRt : RNm → RNm.

Similar to the case when the unknown parameter is a scalar, it is sufficient for

agents to keep track of estimates of s in order to achieve the best estimate of θ.

Accordingly, the definitions of estimates of private signals and the unknown param-

eters and their corresponding covariance matrices (2.5)–(2.7) are the same as in the
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scalar case.

In what follows, we show that the mean estimates are linear in private signals

and equilibrium actions are linear in expectations of private signals in the similar

fashion we did for the scalar state of the world.

Lemma 2.10. Consider a Bayesian game with quadratic utility as in (2.46). Suppose

that for all agents i, the joint posterior beliefs on the state of the world θ and the

private signals s given the local history hi,t at time t, Pi,t([θ
T , sT ]), are Gaussian with

means expressed as

Ei,t [θ] = Qi,ts, and Ei,t[s] = Li,ts, (2.48)

where Li,t ∈ RNm×Nm and Qi,t ∈ Rm×Nm are known estimation weights. If there

exists an equilibrium strategy profile that is linear in expectations of private signals,

σ∗i,t(hi,t) = Ui,tEi,t[s] for all i ∈ N , (2.49)

then the action coefficients {Ui,t}i∈N can be obtained by solving the system of linear

equations

LTi,tU
T
i,t =

∑
j∈N\i

LTi,tL
T
j,tU

T
j,tB

T
ij +QT

i,tD
T , for all i ∈ N (2.50)

Proof. The proof is analogous to the proof of Lemma 2.3. By substituting the

candidate strategies in (2.49) to the best response function in (2.47) for all i ∈ N ,

we obtain the following equilibrium equations

Ui,tEi,t[s] =
∑

j∈N\{i}

BijEi,t[Uj,tEj,t[s]] +DEi,t[θ]. (2.51)

for all i ∈ N . After using the fact that Ei,t[Ej,t[s]] = Lj,tEi,t[s] with mean estimate
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assumptions in (2.48) for the corresponding terms in (2.51), we obtain the following

set of equations

Ui,tLi,ts =
∑

j∈N\{i}

BijUj,tLj,tLi,ts +DQi,ts. (2.52)

We ensure that the strategies in (2.49) satisfy the equilibrium equations for any

realization of history by equating coefficients that multiply each component of s in

(2.52) which yields the set of equations given by (2.50).

For a linear equilibrium strategy, the actions can be written as a linear combi-

nation of the private signals using (2.48), that is, the action of agent i at time t is

given by

ai,t = Ui,tLi,ts for all i ∈ N . (2.53)

Being able to express actions as in (2.53) permits writing observations of agents

in linear form. From the perspective of an observer, the action aj,t is equivalent

to observing a linear combination of private signals. As a result, we can represent

observation vector of agent i aNi,t :=
[
aTji,1,t, . . . , a

T
ji,d(i),t

]T ∈ Rmd(i) in linear form as

aNi,t = HT
i,ts = [Uji,1,tLji,1,t; . . . ;Uji,d(i),tLji,d(i),t]s (2.54)

where HT
i,t = [Uji,1,tLji,1,t; . . . ;Uji,d(i),tLji,d(i),t] ∈ Rmd(i)×Nm is the observation matrix

of agent i.

Agent i’s belief of s at time t is normal, and at time t + 1 agent i observes a

linear combination of s. Hence, agent i’s belief at time t + 1 can be obtained by a

sequential LMMSE update. As a result, mean estimates remain weighted sums of

private signals as in (2.48). In the following Lemma, we explicitly present the way

we compute the estimation weights, Li,t+1 and Qi,t+1, at time t+ 1 when θ ∈ Rm.
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Lemma 2.11. Consider a Bayesian game with quadratic function as in (2.46) and

the same assumptions and definitions of Lemma 2.10. Further define the gain ma-

trices as

Ki
s(t) := M i

ss(t)Hi,t

(
HT
i,tM

i
ss(t)Hi,t

)−1
, (2.55)

Ki
θ(t) := M i

θs(t)Hi,t

(
HT
i,tM

i
ss(t)Hi,t

)−1
. (2.56)

If agents play according to a linear equilibrium strategy then agent i’s posterior

Pi,t+1([θT , sT ]) is Gaussian with means that are linear combination of private sig-

nals,

Ei,t+1 [θ] = Qi,t+1s, and Ei,t+1[s] = Li,t+1s, (2.57)

where the estimation matrices are given by

Li,t+1 = Li,t +Ki
s(t)

(
HT
i,t −HT

i,tLi,t
)
, (2.58)

Qi,t+1 = Qi,t +Ki
θ(t)

(
HT
i,t −HT

i,t, Li,t
)
, (2.59)

and the covariance matrices are further given by

M i
ss(t+ 1) =M i

ss(t)−Ki
s(t)H

T
i,tM

i
ss(t), (2.60)

M i
θθ(t+ 1) =M i

θθ(t)−
[
Ki

θ(t)THT
i,tM

i
sθ(t)

]T
, (2.61)

M i
θs(t+ 1) =M i

θs(t)−Ki
θ(t)HT

i,tM
i
ss(t). (2.62)

Proof. The proof is identical to the proof of Lemma 2.4 with the action coefficients

Ui,t taking the place of vi,t.
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Lemma 2.11 shows that when mean estimates are linear combinations of private

signals at time t, they remain that way at time t+ 1. In the next theorem, we show

that the assumption in (2.48) is indeed true for all time by an induction argument and

realizing that the estimates at time t = 1 are linear combinations of private signals.

To simplify presentation of initial conditions, we assume that agent i’s private signals

are independent, Ei,1[si[k]si[l]] = 0 for all k = 1, . . . ,m and l 6= k.

Theorem 2.12. Given the quadratic utility function in (2.46), if there exists a linear

equilibrium strategy σ∗t as in (2.49) for t ∈ N, then the action coefficients Ui,t can

be computed by solving the system of linear equations in (2.50), and further, agents’

estimates of s and θ are linear combinations of private signals as in (2.48) with

estimation matrices computed recursively using (2.55)-(2.56) and (2.58)-(2.62) with

initial values

Qi,1 :=

 eTi 01×N ... 01×N

01×N eTi ... 01×N

... ···
...

...
01×N ... 01×N eTi

 ∈ Rm×Nm, (2.63)

Li,1 := diag
([

1eTi , . . . ,1eTi
])
∈ RNm×Nm, (2.64)

where ei ∈ RN . The initial covariance matrix M i
ss(1) ∈ RNm×Nm is a diagonal block

matrix with N × N blocks ((M i
ss))k,k ∈ RN×N for k = 1, . . . ,m , initial variance

M i
θθ(1) ∈ Rm×m and initial cross covariance M i

θs(1) ∈ Rm×Nm are given by

(
(M i

ss)
)
k,k

= diag(ēi)diag(Ck,k) + ēiē
T
i Ci[k, k], (2.65)

M i
θθ(1) = Ci, (2.66)

M i
θs(1) = Ci

 ēTi 01×N ... 01×N

01×N ēTi ... 01×N

... ···
...

...
01×N ... 01×N ēTi

 (2.67)

Proof. At time t = 1, agents beliefs are normal and have the form in (2.48). Since the

63



only information available to agent i at time t = 1 is the private signal si, it follows

from the observation model in (2.44) that agent i assigns si as his mean estimates

of the underlying parameter vector and the private signals as in (2.63)-(2.64). Next,

consider the initial error covariance matrix M i
ss(1),

M i
ss(1) = Ei,1

[
(s− Ei,1[s]) (s− Ei,1[s])T

]
(2.68)

= Ei,1




s[1]− 1si[1]

...

s[N ]− 1si[N ]




s[1]− 1si[1]

...

s[N ]− 1si[N ]


T (2.69)

Substituting initial mean estimates (2.64) in (2.68) and using the fact that 1eTi s[k] =

1si[k], we get (2.69). Let ε[k] := [ε1[k], . . . , εN [k]]T ∈ RN denote the noise values of

agents on the kth state of the world, then we can write each N × N block of the

matrix obtained in (2.69) as follows

Ei,1
[
(s[k]− 1si[k])(s[l]− 1si[l])

T
]

= Ei,1

[
(ε[k]− 1εi[k]) (ε[l]− 1εi[l])

T
]
. (2.70)

Since initial private signals of agent i are assumed to be independent of each other,

that is, Ei,1[εi[k]εi[l]] = 0 for all k = 1, . . . ,m and l 6= k, (2.70) is zero when k 6= l.

When k = l, (2.70) is equivalent to (2.35). As a result, for the N × N blocks at

the diagonals of M i
ss(1), we obtain (2.65) which is similar to its scalar counterpart

given in (2.32). Consider the variance of θ at time t = 1. Using (2.63), we obtain

that M i
θθ(1) is as given in (2.66). The initial cross covariance can also be calculated

using initial mean estimates in (2.63) and (2.64) in a similar way.

Given the normal prior Pi,1([θT , sT ]) with mean estimates given by (2.63)-(2.64),
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the inductive hypothesis in Lemma 2.10 is satisfied at time t = 1. Further, by our

assumption there exists a linear equilibrium action with weights Ui,1 that can be

calculated by solving the set of equations in (2.50). Lemma 2.11 already provides a

way to propagate beliefs when agents play according to linear equilibrium strategy.

Furthermore, by Lemma 2.11, if the inductive hypothesis is true at time t then it is

also true at time t+ 1.

Similar to the scalar case, when network structure and the equilibrium strategy

profile are common knowledge, agent i can calculate the weights {Uj,t}j∈N for all

t and update his estimates locally. In Algorithm 1, we provide a sequential local

algorithm for agent i to calculate updates for θ and s and to act according to

equilibrium strategy. The Bayesian rational learning defined here in Algorithm 1

for the vector state case follows the same steps for the scalar case defined in Section

2.4 and by Figs. 2.1 and 2.2.

2.6 Cournot Competition

In a Cournot competition model N firms produce a common good that they sell in

a market with limitless demand. The cost per production unit c is common for all

firms and constant for all times. The selling unit price, however, decreases as the

total amount of goods produced by all companies increases. We adopt the specific

linear model p −
∑

j∈N aj for the selling unit price, where p is the constant market

price when no goods are produced. The profit of firm i for production level ai ∈ R+

is therefore given by the utility

ui(ai, {aj}j∈N\i, θ) = −cai + (p− ai −
∑
j∈N\i

aj)ai. (2.71)
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Algorithm 1 QNG filter for θ ∈ Rm

Initialization: Set posterior distribution on θ and s[
θ
s

] ∣∣hi,1 ∼ N ([Qi,1s
Li,1s

]
,

(
M i

θθ(1),M i
θs(1)

M i
sθ(1),M i

ss(1)

))
and {Lj,1, Qj,1}j∈N according to (2.63) and (2.64).

For t = 1, 2, . . .

1. Equilibrium strategy: Solve for {Uj,t}j∈N using the set of equations in (2.50).

2. Play and observe: Take action ai,t = Ui,tEi,t[s] and observe aNi,t.

3. Observation matrix: Construct Hi,t using (2.54).

4. Bayesian estimates: Update Ei,t[s] and Ei,t[θ] using (2.27) and (2.28), respec-
tively. Update error covariance matrices using (2.60)–(2.62).

5. Estimation weights: Update {Lj,t, Qj,t}j∈N using (2.58)–(2.59).

The utility function in (2.71) is not of the quadratic form given in (1.17) because

there are two information externalities, the cost c and the clearing price p. While it

is possible to resort to the vector form of the QNG filter covered in Section 2.5, it is

simpler to write (2.71) in a form compatible with (1.17) by defining the parameter

θ := p − c as the effective unit profit at the market price. Using this definition in

(2.71) and reordering terms yields

ui(ai, {aj}j∈N\i, θ) = (θ − ai −
∑
j∈N\i

aj)ai. (2.72)

Since this utility function is of the form in (1.17), we can use the QNG filter of Section

2.4 as summarized in Figs. 2.1 and 2.2 to determine subsequent BNE production
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Figure 2.3: Line, star and ring networks.

levels. The explicit form of the equilibrium equation in (2.4) is

σ∗i,t(hi,t) =
1

2
Ei,t[θ]−

1

2

∑
j∈N\i

Ei,t[σ
∗
j,t(hj,t)]. (2.73)

It is immediate from (2.73) that when Ei,t[θ] < 0 it is best for firm i to shut down pro-

duction. To avoid boundary conditions we restrict attention to cases where private

signals s are such that Ei,t[θ] > 0 for all i ∈ N and t ∈ N. This can be guaranteed

if all private signals are nonnegative, i.e., s ≥ 0. In a game with complete informa-

tion all private signals s are known to all agents. In this case the (regular) Nash

equilibrium actions of all agents coincide and are given by

a∗i =
E[θ

∣∣ s]

N + 1
for all i ∈ N . (2.74)

The numerical simulations in the next section show that the BNE strategies in (2.73)

converge to the (regular) Nash equilibrium strategy (2.74) in a finite number of steps.

2.6.1 Learning in Cournot competition

The underlying effective unit profit is chosen as θ = $12/unit. Firms observe private

signals with the additive noise term coming from standard normal distribution with

zero mean and variance equal to one. In our simulations, we ignore the rare cases
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Figure 2.4: Agents’ actions over time for the Cournot competition game and networks
shown in Fig. 2.3. Each line indicates the quantity produced for an individual at each
stage. Actions converge to the Nash equilibrium action of the complete information
game in the number of steps equal to the diameter of the network.
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Figure 2.5: Normed error in estimates of privates signals, ‖s − Ei,t[s]‖2
2, for the

Cournot competition game and networks shown in Fig. 2.3. Each line corresponds
to an agent’s normed error in mean estimates of private signals over the time horizon.
While all of the agents learn the true values of all the private signals in line and ring
networks, in the star network only the central agent learns all of the private signals.

in which si < 0 for any i ∈ N . Given this setting, we consider three benchmark

networks: a line network with N = 5 firms, a star network with N = 5 firms, and a

ring network with N = 10 firms (see Fig. 2.3).

The quantities produced by firms over time are shown in Fig. 2.4 for the line

(a), star (b) and ring (c) networks. In all of the cases, we observe consensus in the

units produced. Furthermore, the consensus production a∗ is optimal; that is, firms

converge to the Bayes-Nash equilibrium under complete information (2.74). This

implies that all of the firms learn the best estimate of θ by the convergence time T ,

that is, Ei,T [θ
∣∣hi,T ] = E[θ

∣∣ s] for all i ∈ N .
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Figure 2.6: Mobile agents in a 3-dimensional coordination game. Agents observe
initial noisy private signals on heading and take-off angles. Red and black lines
are illustrative heading and take-off angle signals, respectively. Agents revise their
estimates on true heading and take-off angles and coordinate their movement angles
with each other through local observations.

Figs. 2.5(a)–(c) show the error in estimation of private signals ‖s − Ei,t[s]‖2
2 for

all i ∈ N and t ∈ N. In Figs. 2.5(a) and 2.5(c), corresponding to line and ring

networks, the mean square error in private signal estimates goes to zero for all of the

firms at the end of the convergence time T . On the other hand, in the star network

in Fig. 2.5(b), except for the center firm 5, none of the other firms has zero mean

square error in private signal estimates. This means that these firms do not learn

at least one of the private signals. As we know from Fig. 2.4 (b), all of the firms in

the star network learn the best estimate of θ given all of the private signals. Hence,

in the star network, firms only learn the sufficient statistic to estimate θ (which is

the average of the private signals) rather than learning each of the private signals

individually.

Figs. 2.4(a)–(c) suggest that convergence is achieved in O(∆) steps where ∆ is

the diameter of the graph. In [31], it is argued that for the distributed estimation

problems when the individual utility function is equal to ui(ai, θ) = −(ai − θ)2,

convergence happens in O(∆) steps for tree networks. Our results show that the

convergence rate is O(∆) not only for tree networks such as line and star networks

but also for the ring network when the utility function is quadratic and includes

actions of others.
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2.7 Coordination Game

A network of autonomous agents want to align themselves so that they move toward

a goal (x∗, y∗, z∗) on 3-dimensional space following a straight path, and at the same

time maintain their initial starting formation. When the goal (x∗, y∗, z∗) is far away,

then there exists a common correct direction of movement toward the goal charac-

terized by the heading angle on the x− y plane φ ∈ [0◦, 180◦] and the take-off angle

on the x − z plane ψ ∈ [0◦, 180◦]. Hence, the target movement direction is given

by θ = [φ, ψ]T . Fig. 2.6 illustrates a set of autonomous agents on a 3-dimensional

plane and their initial heading and take-off angle signals where the x, y, z axes are

depicted for agent 1.

Mobile agents have the goal of maintaining the starting formation while moving

at equal speed by coordinating their movement direction with other agents. Agents

need to coordinate with the entire population while communication is restricted to

neighboring agents whose direction of movement they can observe. In this context,

agent i’s decision ai ∈ [0, 180◦]× [0, 180◦] represents the heading and take-off angles

in the direction of movement. The estimation and coordination goals of agent i can

be represented with the following payoff

ui(ai, {aj}j∈V \i,θ) = −1− λ
2

(ai − θ)T (ai − θ)

− λ

2(N − 1)

∑
j∈V \{i}

(ai − aj)
T (ai − aj). (2.75)

The first term is the estimation error in the true heading and take-off angles. The

second term is the coordination component that measures the discrepancy between

the direction of movement and those of other agents. λ is a constant in (0, 1) gauging

the importance of estimation term with respect to the coordination term.
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The same payoff formulation can be motivated by looking at learning in organi-

zations [76]. In an organization, individuals share a set of common tasks and have

the incentive to coordinate with other units. Each individual receives a private piece

of information about the task that needs to be performed while only being able to

share his information with whom he has a direct contact in the organization.

Note that the utility function is of the quadratic form given in (2.46) with vector

states and vector actions. Hence, we can use the QNG filter in Section 2.5 as sum-

marized in Algorithm 1. As postulated in (2.4), the explicit equilibrium equation for

all i ∈ V is

σ∗i,t(hi,t) = (1− λ)Ei,t[θ] +
λ

N − 1

∑
j∈V \{i}

Ei,t[σ
∗
j,t(hj,t))]. (2.76)

In a game with complete information, the Bayes-Nash equilibrium actions of all

agents coincide and are given by

a∗i = E[θ
∣∣ s]. (2.77)

In the next section, we show that the equilibrium actions in (2.76) converge to

the Bayes-Nash equilibrium with complete information as given by (2.77) in finite

number of steps.

2.7.1 Learning in coordination games

The correct direction vector is chosen to be θ = [10◦, 20◦]T . We let λ = 0.5. The noise

terms, εi are jointly Gaussian with mean zero and covariance matrix equal to the

identity matrix. Having an identity covariance matrix implies that E[si[1]si[2]] = 0.

We evaluate equilibrium behavior in geometric and random networks withN = 50
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Figure 2.7: Geometric (a) and random (b) networks with N = 50 agents. Agents
are randomly placed on a 4 meter × 4 meter square. There exists an edge between
any pair of agents with distance less than 1 meter apart in the geometric network.
In the random network, the connection probability between any pair of agents is
independent and equal to 0.1.

agents, Figs. 2.7 (a) and (b), respectively. Geometric random network is created by

placing the agents randomly on a 4 meter × 4 meter square and connecting pairs

with distance less than 1 meter between them. In the random network, there exists

a link between any pair of agents with probability 0.1. The geometric network in

Fig. 2.7 (a) has a diameter of ∆g = 5 where the random network in Fig. 2.7 (b) has

a diameter of ∆r = 4.

The direction of movement of each agent over time is depicted in Figs. 2.8(a)–

(d). Figs. 2.8(a) and 2.8(b) show the heading angle φi of agents in geometric and

random networks, respectively. Figs. 2.8(c) and 2.8(d) show the take-off angle ψi

of agents in geometric and random networks, respectively. Fig. 2.8 illustrates that

agents’ movement directions converge to the best estimates in heading and take-off

angles in a finite number of steps. As a result, at the end of the convergence time

T , we have Ei,t[φ
∣∣hi,T ] = E[φ

∣∣ s[1]] and Ei,t[ψ
∣∣hi,T ] = E[ψ

∣∣ s[2]] for all i ∈ V .

Further, convergence time is in the order of the diameter for both of the networks.

This means that agents learn the sufficient statistic to calculate best estimates in

the amount of time it takes for information to propagate through the network.
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Figure 2.8: Agents’ actions over time for the coordination game and networks shown
in Fig. 2.7. Values of agents’ actions over time for heading angle φi (top) and take-
off angle ψi in geometric (left) and random (right) networks respectively. Action
consensus happens in the order of the diameter of the corresponding networks.

2.8 Summary

In this chapter we introduced the QNG filter that agents can run locally to update

their beliefs and select equilibrium actions in Bayesian network games with Gaussian

information and quadratic payoffs. The QNG filter provides a mechanism to update

beliefs in a Bayes’ way when agents’ initial prior over the state of the world is

Gaussian. We began by showing that when the prior estimates of private signals

are Gaussian with means equal to a linear combination of private signals, and the

equilibrium strategies of agents are linear combination of mean estimates of private

signals, Bayesian updates of estimates of private signals and the underlying state
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follow a sequential LMMSE estimator. This meant that the estimates remain linear

combinations of private signals, and hence, Gaussian. By induction, estimates remain

Gaussian for all times if equilibrium actions that are linear in mean of the estimates

exist at all the stages. Further, we derived an explicit recursion for tracking of

estimates of private signals and calculating equilibrium actions which we leverage

to develop the QNG filter. We then extended the QNG filter to the case when the

state of the world is a vector. We exemplified the QNG filter in Cournot competition

game and coordination of mobile agents on 3-dimensional space. In the former the

state of the world, effective profit, was a scalar, whereas in the latter the state of

the world was a vector including heading and take-off angles. In both examples, the

QNG filter converged to the BNE of the game in number of steps that is equal to

the order of the diameter of the network. This meant that rational agents learn the

sufficient statistic of the state while not necessarily learning all the individual private

signals.
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Chapter 3

Distributed Fictitious Play

3.1 Introduction

Based on the fictitious play algorithm, we introduce a decentralized decision-making

model in unknown environments with networked interactions which we call the dis-

tributed fictitious play algorithm. In fictitious play algorithms, each agent builds a

model of future behavior of other agents by forming a histogram on observed actions

of the past and best responds to its expected payoff [77, 78]. As per the setup in pre-

vious chapters, each agent in a network receives a payoff that depends on own action,

actions of others and an unknown state of the world. In a networked setting, agents

have access to information via their neighbors, that is, all of the past actions is not

available. Therefore, agents need to reason about the behavior of non-neighboring

agents based on past observations of their neighbors only. In addition, agents have

uncertainty on the state of the world and update their beliefs on the state using

private or local information. Our analysis shows that the agents can do the two

processes, namely, reasoning about others’ behavior and learning about the state,

independently and converge to a Nash equilibrium of a potential game, a game with
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identical payoffs [48].

We consider two models of belief formation on other agents’ behavior based on

the type of local information exchanged. In the first model, agents share only their

actions with their neighbors and assume all the other agents follow a ‘centroid’ em-

pirical distribution which they estimate by keeping account of frequency of observed

neighboring actions [59]. In the second information exchange model, agents share

their estimate empirical distribution that they keep on all the other agents with their

neighbors. Agents average their observations of their neighbors’ estimate empirical

distributions to get their estimate empirical distributions in the next time step. In

both models, agents take actions that maximize the expected utility at each stage.

In the action sharing model, expected utility is computed assuming all the other

agents independently follow the estimated ‘centroid’ empirical distribution. In the

histogram sharing model, agents can keep estimate of each agent so they take ex-

pectation over the joint distribution of the estimated empirical frequencies of all the

agents. We analyze the convergence rate of the two models in Lemmas 3.2 and 3.5.

For both models, we show that agents approach to the true empirical distribution

that they estimate at a rate of O(log t/t) irrespective of the state learning and agent

response rules.

The equilibrium convergence results for the two models assume that agents use

a local state learning process in which agents agree asymptotically on a distribution

on the state of the world at a rate faster than or equal to O(log t/t). Various decen-

tralized learning models exist in the literature that achieve the desired convergence

rate under different assumptions [20, 43, 79, 80]. The main convergence result for

the action sharing model states that agents asymptotically reach a consensus Nash

equilibrium of a symmetric potential game in which agents have identical beliefs on

the state (Theorem 3.4). At a consensus Nash equilibrium strategy, all agents use

76



the same strategy and play optimal with respect to others’ equilibrium strategy. For

the estimate empirical distributions sharing model, the process converges to a Nash

equilibrium of a potential game in which agents have identical beliefs on the state of

the world (Theorem 3.6).

We numerically analyze the transient and asymptotic equilibrium properties of

the decentralized fictitious play in the beauty contest and the target covering games

(Section 3.5). In the beauty contest game, a team of robots tradeoff between moving

toward a target direction on which they receive noisy information about and moving

in coordination with each other. In the target covering game, a team of robots would

like to coordinate on covering a given set of targets and receive payoffs from covering

a target that is inversely proportional to their positions. In both of the settings,

the communication constraints among robots limit their information sources to their

local neighborhood. In addition, robots have asymmetric and incomplete information

on the state of the world.

The setup of this work falls under the literature of learning in games that considers

dynamic processes that lead to equilibrium in games [81, 82]. Fictitious play in

which all agents is assumed to observe past history of the game is one such simple

update mechanism that has been shown to converge to a Nash equilibrium strategy

in zero sum [81], certain 2 × 2 [52] and identical interest (potential) games[78].

Recently, the convergence results of the fictitious play algorithm has been shown to

hold for potential games in a setting where agents only make local observations [59].

Our results leverage on their results and incorporate incomplete and asymmetrical

information to the considered environment which is of importance for technological

settings. Our motivation stems from the fact that computational burden of Bayesian

Nash equilibrium strategies on each agent, optimal decision for each selfish agent

given uncertainty about others and state, is not realistic even when the computation
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is possible [64]. However, the impossibility of learning ‘Bayesian equilibria’ strategies

in games of incomplete information has been demonstrated in [60]. We circumvent

this issue by forcing asymptotic agreement among agents’ belief on the state of

the world. We use the fact that an identical interest game with common belief on

the state of the world is an identical interest game with complete information with

agents’ payoffs equal to the expectation over the potential function of the original

game with respect to the belief over the state.

Other variations of the fictitious play algorithm [50, 51] and payoff based learning

algorithms, e.g., reinforcement learning, [58] and their combinations [49] are also

pertinent to the work here. The focus in these works is to either extend the scope of

types of games that admit convergence to its Nash equilibrium through the dynamics

proposed [51], or generate dynamics that lead to certain types of Nash equilibrium,

e.g., pure (deterministic) Nash equilibrium [49], or optimal equilibrium [83].

Notation: For any finite set X, we use 4(X) to denote the space of probability

distributions over X. We use the notation −i to denote the set of players except

i, that is, −i := N \ {i}. For a generic vector x ∈ XN , x−i denotes the vector of

elements of x except the ith element, that is, x−i = (x1, . . . , xi−1, xi+1, . . . , xN). We

use || · || to denote the Euclidean norm of a space.

3.2 Learning in Potential Games with Incomplete

Information

We consider a simultaneous move incomplete information stage game with N players.

Player i ∈ N := {1, . . . , N} chooses action ai from a finite set A := {1, . . . ,m}. The

payoff relevant state of the world θ is drawn by nature at the beginning of the game
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from the space Θ. We define F as the σ-algebra on the set Θ. We let P denote the

set of probability distributions over the space (Θ,F) and define the total variation

distance TV between P1 ∈ P and P2 ∈ P as TV (P1, P2) = supB∈F |P1(B)− P2(B)|.

The payoff to player i ui(·) depends on the action profile a = {a1, . . . , aN} and

the state θ, that is, ui(a, θ) : AN ×Θ→ R. We assume that the utility of each agent

is finite for all action profiles and state realization. We consider potential games

where there exists a potential function u : AN × θ 7→ R such that for all i ∈ N the

following relation holds

ui(ai, a−i, θ)− ui(a′i, a−i, θ) = u(ai, a−i, θ)− u(a′i, a−i, θ) (3.1)

for all ai, a
′
i ∈ A and for all a−i ∈ AN−1 and θ ∈ Θ.

The users have common prior belief over the state θ. Given the common belief

µ, the expected utility of agent i for the action profile a = (a1, . . . , aN) is as follows

ui(a;µ) :=

∫
θ∈Θ

ui(a, θ)dµ(θ). (3.2)

If there is no additional information provided to the agents, that is, agents do not

receive private signals, then the game of incomplete information is equivalent to

a complete information game Γ(µ) with players N , action spaces A and payoffs

ui(a;µ), that is, Γ(µ) = (N ,A, ui(a;µ)).

The mixed strategy of player i σi is a probability distribution on the action

space A, that is, σi ∈ 4(A). Expected utility with respect to the strategy profile

σ := (σ1, . . . , σN) ∈ 4N(A) := ×Ni=14 (A) is as follows

ui(σ;µ) =
∑
a∈AN

ui(a;µ)σ(a). (3.3)
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In the following we provide a series of definitions pertaining to the Nash equi-

librium (NE) solution concept which will be used in the following sections. We first

provide a definition of the NE, and then, respectively, define best response utility,

the set of NE strategies for the game Γ(µ), the set of consensus NE strategies, and

the set of strategies that are δ > 0 away from the consensus NE.

A Nash equilibrium (NE) strategy profile σ∗ for the game Γ(µ) is such that for

all i ∈ N and any σi ∈ 4(A),

ui(σ
∗
i , σ

∗
−i;µ) ≥ ui(σi, σ

∗
−i;µ). (3.4)

A NE strategy is such that assuming all the other agents are playing with respect to

their equilibrium strategies it is optimal for each agent to follow its own equilibrium

strategy. The left hand side of the NE condition in (3.4) is equivalently interpreted

as the best response of agent i to the equilibrium strategy profile of others σ∗−i. We

define the expected utility of agent i when it best responds to a strategy profile of

others σ−i given common prior µ on θ as follows

vi(σ−i, µ) := max
ai∈A

ui(ai, σ−i;µ). (3.5)

Then the expected utility of agent i at NE (3.4) is given by the expected utility when

it best responds to the NE strategies of others, vi(σ
∗
−i, µ) = ui(σ

∗
i , σ

∗
−i;µ).

We define the set of NE strategies of the stage game Γ(µ) as

K(µ) = {σ∗ ∈ 4N(A) : ui(σ
∗;µ) ≥ ui(σi, σ

∗
−i;µ),

for all σi ∈ 4(A), for all i}. (3.6)
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The set of consensus NE strategies for the game Γ(µ) contain the equilibrium strate-

gies in which all agents use the identical strategy,

C(µ) = {σ ∈ K(µ) : σ1 = σ2 = · · · = σN} (3.7)

Observe that for a game Γ(µ) the set of Nash equilibria contains the set of consensus

NE by definition, C(µ) ⊆ K(µ).

The set of consensus strategies that is ε away from the consensus NE set above

is the ε-Consensus NE strategy set, that is,

Cε(µ) = {σ ∈ 4N(A) : ui(σ
∗;µ) ≥ ui(σi, σ

∗
−i;µ)− ε,

for all σi ∈ 4(A), for all i, σ1 = σ2 = · · · = σN} (3.8)

for ε > 0. The distance of a strategy σ ∈ 4N(A) from the set of consensus NE

C(µ) is given by d(σ,C(µ)) = ming∈C(µ) ||σ − g||. Using the definition of distance,

we define the δ consensus neighborhood of C(µ) as

Bδ(C(µ)) =
{
σ ∈ 4N(A) : d(σ,C(µ)) < δ,

σ1 = σ2 = · · · = σN
}
. (3.9)

Note that the δ consensus neighborhood is defined as the set of consensus strategies

that are close to the set C(µ). We can similarly define the ε-NE Kε(µ) and δ

neighborhood of K(µ) as Bδ(K(µ)) by just removing the agreement constraint on

the equilibrium strategies [59].
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3.2.1 Fictitious play

In fictitious play processes, each agent iteratively takes an action ai,t ∈ A and ob-

serves actions of other agents over time t = 1, 2, . . . . Agents use their observations of

actions of others to keep an empirical distribution of others’ play and best respond

to this empirical distribution. We use fi,t ∈ Rm×1 to denote the histogram, i.e. the

empirical distribution, of agent i’s actions until time t. Let Ψi,t : A → {0, 1}m where

its kth element is one if ai,t = k where k ∈ A, that is, Ψi,t(ai,t)(k) = 1 if ai,t = k

and Ψi,t(ai,t)(l) = 0 for l 6= k. Given this definition we formally define the empirical

distribution of i fi,t as follows

fi,t =
1

t

t∑
s=1

Ψi,s(ai,s) (3.10)

The empirical distribution can be represented in a recursive manner by reorganizing

the above equation

fi,t+1 = fi,t +
1

t+ 1

(
Ψi,t+1(ai,t+1)− fi,t

)
(3.11)

When actions are publicly observed, agent i computes fj,t for all j ∈ N and best

responds to the empirical distribution f−i,t ∈ Rm×N−1 and its belief on µ on θ

ai,t+1 = argmax
ai∈A

ui(ai, f−i,t;µ) (3.12)

to receive an expected utility of vi(f−i,t;µ) as per (3.5). We let ft ∈ Rm×N denote

the empirical distribution of the population, that is, ft := {f1,t, . . . , fN,t}.
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3.2.2 Distributed fictitious play

When actions are not public information, agent i ∈ N cannot keep track of all

agents’ empirical distribution. Distributed fictitious play considers the case when

interactions are local over a network G with node set N and edge set E . Agent i’s

neighborhood defined as Ni := {j : (j, i) ∈ E} is its source of information. We make

the following assumption on connectivity of agents unless otherwise stated.

Assumption 3.1. G is a strongly connected network, that is, there exists a path

from one agent to the other for all pairs of agents.

When agent i only observes actions of his neighbors aNi,t := {aj,t : j ∈ Ni}, one

particular quantity he can keep an estimate of is the average empirical play of the

population f̄t,

f̄t =
1

N

N∑
i=1

fi,t. (3.13)

We can equivalently write the above quantity recursively by the recursion for the

histogram of i in (3.11)

f̄t+1 = f̄t +
1

t+ 1

(
Ψ̄t+1(at+1)− f̄t

)
. (3.14)

where Ψ̄t(at) := 1
N

∑N
i=1 Ψi,t(ai,t) is the centroid best response strategy at time t.

We stack N −1 of the centroid empirical distributions to define f̄−i,t := [f̄t, . . . , f̄t] ∈

Rm×N−1 and N centroid distributions to define f̄Nt := [f̄t, . . . , f̄t] ∈ Rm×N .

Agent i keeps an estimate of the average empirical play of the population by

averaging the observations of its neighbors, that is, i’s estimate of f̄t is written as

follows

ˆ̄f it =
1

|Ni|
∑
j∈Ni

1

t

t∑
s=1

Ψj,s(aj,s) (3.15)
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We can equivalently write i’s estimate of average empirical distribution as follows

ˆ̄f it+1 = ˆ̄f it +
1

t+ 1

(
1

|Ni|
∑
j∈Ni

Ψj,t+1(aj,t+1)− ˆ̄f it

)
. (3.16)

Since agent i cannot keep an estimate of individual empirical distributions in the local

observation setting, it, incorrectly, assumes that others are playing with respect to

ˆ̄f it . In consequence, agent i plays a best response to ˆ̄f i−i,t := [ ˆ̄f it , . . . ,
ˆ̄f it ] ∈ Rm×N−1

in distributed fictitious play.

Next, we present an intermediate result that shows the convergence rate of the

belief of agent i on the population’s average empirical distribution ˆ̄f it to the true

average empirical distribution of the population f̄ it .

Lemma 3.2. Consider the distributed fictitious play in which the centroid empirical

distribution of the population f̄t evolves according to (3.14) and agents update their

estimates on the empirical play of the population ˆ̄f it according to (3.16). If the

network satisfies Assumption 3.1 and the initial beliefs are the same for all agents,

i.e., ˆ̄f i0 = f̄0 for all i ∈ N , then ˆ̄f it converges in norm to f̄t at the rate O(log t/t),

that is, || ˆ̄f it − f̄t|| = O( log t
t

)

Proof. See Lemma 2 in Appendix A of [59] for a proof.

Observe that the above result is true irrespective of the game that the agents are

playing and uncertainty in the state. The proof in [59] leverages on the fact that

the change in the centroid empirical distribution is at most 1/t by the recursion in

(3.14). Then by averaging observed actions of neighbors in a strongly connected

network the beliefs of agent i on the centroid empirical distribution evolves faster

than the change in the centroid empirical distribution.
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3.2.3 State Relevant Information

The belief of agent i on the state θ at time t is denoted by µ̂it ∈ P and is formed by

a state learning process SLi. Denoting the information of agent i at time t by Ii,t

the state learning process is a mapping from Ii,t to a belief on θ ∈ Θ, SLi : Ii,t 7→ P.

Throughout the paper, we make the following assumption on the state learning

process.

Assumption 3.3. For any agent i ∈ N , the state learning process SLi and infor-

mation set Ii,t are such that the belief of i converges to a belief µ̂∗ ∈ P, that is,

lim
t→∞

TV (SLi(Ii,t), µ̂
∗) = O

(
log t

t

)
for all i ∈ N . (3.17)

The assumption above states that the total variation distance between the belief

of agent i on the state θ at time t formed by the state learning process SLi and

a distribution on θ µ̂∗ ∈ P shrinks in the order of log t/t. This means that agents

aggregate information fast enough and agree on their belief on the state θ using the

local state learning process. We remark that µ̂∗ is not necessarily the optimal belief

on the state, it is simply a belief on the state to which all agents converge.

Note that the assumption does not restrict the information received by agents and

information exchange among agents. As a result, we can use various social learning

[79, 80], decentralized estimation [12, 13, 15, 16, 17, 18] and averaging models [84, 85]

existing in the literature depending on the information exchange model, as long as

the convergence rate in the above assumption is satisfied. Here we present two

examples of state learning processes that satisfies the above assumption.

Averaging. The state belongs to a finite space Θ and agent i starts with initial

beliefs µi0 ∈ P. At each step t agent i shares its previous belief on the state with its
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neighbors and update its belief by weighted averaging the observed distributions,

µ̂it(θ) =
∑
j∈N

wijµ̂
j
t−1(θ) (3.18)

for all θ ∈ Θ where wij ≥ 0 if j ∈ Ni and
∑

j∈N wij = 1. In this information

of agent i at time t is given by Ii,t = {{µ̂jl }j∈Ni,l=0,1,...,t−1, µi0}. The convergence

rate of averaging models have been analyzed in various generalized scenarios such as

quantization or time varying connectivity [85, 86].

Bayesian Learning. Agent i starts with prior on θ µ̂i0 and at each step t update their

belief on the state µ̂it using the Bayes’ law upon observing noisy signals si,t ∈ S

generated according to a signal generating distribution πi : Θ 7→ S. The information

of agent i at time t is given by Ii,t = {µ̂i0, {si,l}l=1,...,t}. If the signals are informative

and Gaussian then the uncertainty over θ decreases with O(1/tr) for r > 0 [87].

Furthermore, agents can also exchange beliefs on θ among each other and use the

additional information to update their beliefs according to Bayes’ law [19, 20, 30].

3.3 Convergence in Symmetric Potential Games

with Incomplete Information

In this section, we restrict our attention to games in which agents interests are

symmetric, that is, we assume ui(ai, aj, a−i\j, θ) = uj(aj, ai, aj\i, θ) for all i and j.

These games can be shown to admit NE with symmetric strategies, that is, for

any µ ∈ P, the set of consensus NE strategies C(µ) (3.7) is not empty [59]. Note

that in the distributed fictitious play, agents observe local actions, keep track of the

centroid empirical distribution f̄t and assume that this is the mixed strategy that all
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agents play with respect to. Therefore, the process can only converge to an empirical

distribution over the action profile space4N(A) such that each agent is playing with

respect to the same distribution, i.e., it can only converge to a consensus strategy.

That is, if the game does not admit a consensus NE then the distributed fictitious

play will not converge to a NE of the game.

Below, we present our main result for the symmetric games that shows that

distributed fictitious play with local action observations converges to a consensus

NE of the potential game Γ(µ̂∗). The proof presented follows the same outline of the

proof of Theorem 1 in [59] which follows a similar outline to the proof in [78].

Theorem 3.4. Consider the distributed fictitious play updates where agents at each

stage best respond to their local beliefs on the population’s empirical distribution in

(3.15). Then the centroid empirical distribution f̄Nt converges to a consensus NE of

the identical interest game with common state of the world belief µ̂∗ if assumptions

of Lemma 3.2 and Assumption 2 are satisfied.

Proof. Given the recursion for the centroid empirical distribution in (3.14), we can

write the expected utility when all agents follow the centroid empirical distribution

f̄t and have identical beliefs µ̂∗ as follows

u(f̄Nt+1; µ̂∗) = u

(
f̄Nt +

1

t+ 1
(Ψ̄N

t+1(at+1)− f̄Nt ); µ̂∗
)

(3.19)

By the multi-linearity of the expected utility, we expand the above expected utility

as follows [78]

u(f̄Nt+1; µ̂∗) = u(f̄Nt ; µ̂∗)+

1

1 + t

N∑
i=1

u(Ψ̄t+1(at+1), f̄−i,t; µ̂
∗)− u(f̄i,t, f̄−i,t; µ̂

∗) +
δ

(1 + t)2
(3.20)
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where the first order terms of the expansion are explicitly written and the remaining

higher order terms are collected to the term δ/(1 + t)2.

Consider the total utility term in (3.20) where agent i is playing with respect to

the centroid best response strategy at time t + 1 Ψ̄t+1(at+1) and other agents use

the centroid empirical distribution,
∑N

i=1 u(Ψ̄t+1(at+1), f̄−i,t; µ̂
∗). By the definition

of the centroid best response strategy given in Section 3.2.2, we write the term in

consideration as

N∑
i=1

u(Ψ̄t+1(at+1), f̄−i,t; µ̂
∗) =

N∑
i=1

u(
1

N

N∑
i=1

Ψi,t(ai,t+1), f̄−i,t; µ̂
∗). (3.21)

The following equality can be shown by using the multi-linearity of expectation and

permutation invariance of the utility [59],

N∑
i=1

u(Ψ̄t+1(at+1), f̄−i,t; µ̂
∗) =

N∑
i=1

u(Ψi,t+1, f̄−i,t; µ̂
∗). (3.22)

The above equality means that the total expected utility when agents play with the

centroid best response at time t + 1 against the centroid empirical distribution at

time t is equal to the total expected utility when agents best respond to the centroid

empirical distribution at time t.

We substitute in the above equality (3.22) for the corresponding term in (3.20)

to get the following

u(f̄Nt+1; µ̂∗) = u(f̄Nt ; µ̂∗)+

1

1 + t

N∑
i=1

u(Ψi,t+1, f̄−i,t; µ̂
∗)− u(f̄i,t, f̄−i,t; µ̂

∗) +
δ

(1 + t)2
. (3.23)
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We can upper bound the right hand side by adding |δ|/(1 + t)2 to the left hand side.

u(f̄Nt+1; µ̂∗)− u(f̄Nt ; µ̂∗) +
|δ|

(1 + t)2
≥

1

1 + t

N∑
i=1

u(Ψi,t+1, f̄−i,t; µ̂
∗)− u(f̄i,t, f̄−i,t; µ̂

∗) (3.24)

Define Lit+1 := vi(
ˆ̄f i−i,t; µ̂

i
t+1) − u(Ψi,t+1, f̄−i,t; µ̂

∗). Note that since agents have

identical interests, we can drop the subindex of the expected utility of agent i when

it best responds to the strategy profile of others vi(·) defined in Section 3.2 to write

it as v(·). Now we add and subtract
∑N

i=1 Lit+1/t + 1 to both sides of the above

equation to get the following inequality,

u(f̄Nt+1; µ̂∗)− u(f̄Nt ; µ̂∗) +
|δ|

(1 + t)2
+

1

1 + t

N∑
i=1

v( ˆ̄f i−i,t; µ̂
i
t+1)− u(Ψit+1, f̄−i,t; µ̂

∗)

≥ 1

1 + t

N∑
i=1

v( ˆ̄f i−i,t; µ̂
i
t+1)− u(f̄i,t, f̄−i,t; µ̂

∗). (3.25)

Summing the inequalities above from time t = 1 to time t = T + 1, we get

u(f̄NT+1; µ̂∗)− u(f̄N1 ; µ̂∗) +
T+1∑
t=1

|δ|
(1 + t)2

+
T+1∑
t=1

N∑
i=1

Lit+1

1 + t

≥
T+1∑
t=1

1

1 + t

N∑
i=1

v( ˆ̄f i−i,t; µ̂
i
t+1)− u(f̄i,t, f̄−i,t; µ̂

∗). (3.26)

Next we define the following term that corresponds to the inside summation on the

right hand side of the above inequality,

αt+1 :=
N∑
i=1

v( ˆ̄f i−i,t; µ̂
i
t+1)− u(f̄i,t, f̄−i,t; µ̂

∗). (3.27)

The term αt captures the total difference between expected utility when agents best
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respond to their beliefs on the centroid empirical distribution and their beliefs on

θ, and when they follow the current centroid empirical distribution with common

beliefs on the state µ̂∗. Note that by Lemma 3.2 and Assumption 3.3 the conditions

of Lemma 1.1 are satisfied. By the assumption that utility value is finite and Lemma

1.1, the left hand side of (3.26) is finite. That is, there exists a B̄ > 0 such that

B̄ ≥
T+1∑
t=1

αt+1

1 + t
. (3.28)

Next, we define the following term

βt+1 :=
N∑
i=1

v(f̄−i,t; µ̂
∗)− u(f̄i,t, f̄−i,t; µ̂

∗) (3.29)

that captures the difference in expected payoffs when agents best respond to the

centroid empirical distribution and the common asymptotic belief µ̂∗, and when

they follow the current centroid empirical distribution with common beliefs on the

state µ̂∗. When we consider the difference between αt+1 and βt+1, the following

equality is true by Lemma 1.1,

||αt+1 − βt+1|| = ||
N∑
i=1

v( ˆ̄f i−i,t; µ̂
i
t+1)− v(f̄−i,t; µ̂

∗)|| = O(
log t

t
). (3.30)

Further βt+1 ≥ 0. Hence, the conditions of Lemma 1.2 are satisfied which implies

that the following holds
T∑
t=1

βt+1

t+ 1
<∞. (3.31)

From the above equation it follows by the Kronecker’s Lemma that [88, Thm. 2.5.5]

lim
T→∞

1

T

T∑
t=1

βt = 0. (3.32)
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The above convergence result implies that by Lemma 6 in [59], for any ε > 0, the

number of centroid empirical frequencies away from the ε consensus NE is finite for

any time T , that is,

lim
T→∞

#{1 ≤ t ≤ T : f̄Nt /∈ Cε(µ̂∗)}
T

= 0. (3.33)

The relation above implies that the distance between the empirical frequencies and

the set of symmetric NE diminishes by Lemma 1.3, that is,

lim
t→∞

d(f̄Nt , C(µ̂∗)) = 0. (3.34)

The above result implies that when agents share their actions and based on this

information keep an estimate of the empirical distribution of the population, their

responses converge to a consensus NE of the symmetric potential game as long as

their beliefs on the state reach consensus fast enough. The result also indicates that

the state learning process and acquiring of information regarding population’s play

can be designed separately. Note that the responses of agents during the distributed

fictitious play depend on both the state learning process and the process of agents

forming their estimates on the empirical centroid distribution. The analysis above

reveals that these two processes can be designed independently as long as they con-

verge at a fast enough rate. We will make use of this separation in the next section

when we consider agents’ sharing the estimate histograms they keep on the other

agents with their neighbors instead of only their actions to prove convergence to NE

for a general potential game.
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3.4 Distributed Fictitious Play: Histogram Shar-

ing

In this section, we obtain convergence for the general class of potential games defined

in (3.1) when agents share their empirical distribution estimates with their neighbors.

That is, we do not make the assumption that the game is permutation invariant.

Next, we define the distributed fictitious play when agents share their entire beliefs

with their neighbors. Agent i’s estimate of the population’s empirical distribution

at time t is captured by the matrix F̂ i
t ∈ Rm×N ,

F̂ i
t := [f̂ i1,t, . . . , f̂

i
N,t] (3.35)

where f̂ ij,t ∈ Rm×1 is i’s estimate of j’s empirical distribution. In histogram sharing

at each time t agent i takes the action ai,t that is optimal with respect to its belief on

others f̂ i−i,t and its belief on the θ µ̂it. Then it updates its own empirical frequency by

the recursion in (3.11) and shares its estimate of the population F̂ i
t with its neighbors.

We define the update on the estimate of others’ empirical distribution as follows

f̂ ij,t+1 =


f̂ jj,t+1 if j ∈ Ni

⋃
i,∑

k∈N

wij,kf̂
k
j,t if j /∈ Ni

(3.36)

where wij,k > 0 if and only if k ∈ Ni and
∑

k∈N w
i
j,k = 1. The above update rule

means that agent i adopts j’s updated empirical frequency if j ∈ Ni. Note that j’s

estimate of its own empirical distribution is correct, that is, f̂ jj,t = fj,t. Therefore,

agent i adopting of the neighbor’s empirical distribution is the best estimate that

agent i can have of agent j’s empirical frequency. Otherwise, for agents that are not in
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the neighborhood of i k /∈ Ni, agent i updates its estimate of empirical distribution

of k /∈ Ni by taking the weighted average of its neighbors’ estimated empirical

distribution of k {f̂ jkt}j∈Ni
. We can write the above equation as f̂ ij,t+1 =

∑
k∈N w

i
j,kf̂

k
j,t

for all j ∈ N by letting wij,j = 1 for j ∈ Ni
⋃
i.

Next, we present an intermediate result that shows the convergence rate of the

belief of agent i on the population’s empirical distribution F̂ i
t in (3.35) to the true

average empirical distribution of the population ft.

Lemma 3.5. Consider the distributed fictitious play in which the empirical distri-

bution of agent j fj,t evolves according to (3.11) and agent i updates its estimate on

the empirical play of the population ˆ̄f ij,t according to (3.36). If the network satisfies

Assumption 3.1 and the initial beliefs are the same for all agents, i.e., f̂ ij,0 = fj,0

for all i ∈ N , then f̂ ij,t converges in norm to fj,t at the rate O(log t/t), that is,

||f̂ ij,t − fj,t|| = O( log t
t

) for all j ∈ N .

Proof. See Appendix A.2 for the proof.

Similar to Lemma 3.2 the above result is true irrespective of the game that the

agents are playing. The result leverages on the fact that the change in the empirical

distribution of agent j is at most 1/t by the recursion in (3.11) and the belief updates

of i on j’s empirical frequency in (3.36) evolves faster than the change in agent j’s

empirical distribution.

Next, we present the main result of this section that shows convergence of the

histogram sharing distributed fictitious play to a Nash equilibrium of the potential

game. The proof of the following result is similar to the proof of Theorem 3.4, and

in the proof, Lemma 3.5 plays a role equivalent to that Lemma 3.2 plays in Theorem

3.4.
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Theorem 3.6. Consider the distributed fictitious play updates with histogram shar-

ing in (3.36). If assumptions of Lemma 3.5 and Assumption 2 are satisfied then

the empirical distributions of agents ft converge to a NE of the potential game with

common state of the world beliefs µ̂∗, that is, d({fj,t}j∈N , K(µ̂∗)) → 0 where K(µ̂∗)

is defined as in (3.6).

Proof. Proof follows the same proof outline in Theorem 3.4. Start by exploiting the

multi-linearity of the expected utility when all individuals play with respect to their

empirical distributions [78], that is,

u(ft+1; µ̂∗) =u(ft; µ̂
∗) +

1

1 + t

N∑
i=1

u(Ψi,t+1, f−i,t; µ̂
∗)− u(fi,t, f−i,t; µ̂

∗)

+
δ

(1 + t)2
. (3.37)

for some δ > 0 which we collect higher order terms. We move the first term of the

RHS to the left and add |δ|/(t+ 1)2 to the left hand side and get rid of the last term

on the right hand side,

u(ft+1; µ̂∗)− u(ft; µ̂
∗) +

|δ|
(1 + t)2

≥ 1

1 + t

N∑
i=1

u(Ψi,t+1, f−i,t; µ̂
∗)− u(fi,t, f−i,t; µ̂

∗)

(3.38)

Now define Li,t+1 := v(f̂ i−i,t; µ̂
i
t+1)−u(Ψi,t+1, f−i,t;µ

∗). Add
∑N

i=1 Li,t+1/t+1 to both

sides of the above equation to get

u(ft+1; µ̂∗)−u(ft; µ̂
∗) +

|δ|
(1 + t)2

+
1

t+ 1

N∑
i=1

Li,t+1

≥ 1

1 + t

N∑
i=1

v(f̂ i−i,t; µ̂
i
t+1)− u(fi,t, f−i,t; µ̂

∗) (3.39)
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Now we sum up the terms above from time t = 1 to T ,

u(fT+1; µ̂∗)−u(f0; µ̂∗)
T+1∑
t=1

|δ|
(1 + t)2

+
T+1∑
t=1

1

t+ 1

N∑
i=1

Li,t+1

≥
T+1∑
t=1

1

1 + t

N∑
i=1

v(f̂ i−i,t; µ̂
i
t+1)− u(fi,t, f−i,t; µ̂

∗) (3.40)

Consider the left hand side of the above equation. The utility and therefore the

expected utility is bounded. The third term is summable. By Lemma 3.5 and

Assumption 3.3, the conditions of Lemma 1.1 are satisfied. Lemma 1.1 yields that

the last term on the left hand side of (3.40) is summable. Hence, the left hand side of

(3.40) is bounded. Now define αt+1 :=
∑N

i=1 v(f̂ i−i,t; µ̂
i
t+1)−u(fi,t, f−i,t; µ̂

∗). Using the

definition of αt+1 and the boundedness of the left hand side of the above equation,

it follows from (3.40) that there exists some bounded parameter 0 < B̄ < ∞ such

that

B̄ >
∞∑
t=1

α(t)

1 + t
(3.41)

Define βt+1 :=
∑N

i=1 v(f−i,t; µ̂
∗)−u(fi,t, f−i,t; µ̂

∗) and consider the difference between

αt+1 and βt+1

||αt+1 − βt+1|| = ||
N∑
i=1

v(f̂ i−i,t; µ̂
i
t+1)− v(f−i,t; µ̂

∗)|| (3.42)

Lemma 1.1 implies that the above equality is equal to ||αt+1 − βt+1|| = O(log t/t).

By noting that βt ≥ 0, the conditions of Lemma 1.2 are satisfied which implies that

T∑
t=1

βt
t
<∞ (3.43)
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as T → ∞. As a result the time average of the above sum converges to zero by

Kronecker’s Lemma [88, Thm. 2.5.5], that is,

lim
T→∞

1

T

T∑
t=1

βt
t

= 0 (3.44)

We remark that βt captures the difference in expected payoffs when agent i best

responds to others’ empirical distribution f−i,t given the common asymptotic belief

µ̂∗, and when agent i follows its own empirical distribution fi,t with common beliefs

on the state µ̂∗. The desired convergence result follows from the above equation by

Lemma 1.4.

The above result implies that when agents share their beliefs on others’ his-

tograms and based on this information keep an estimate of the empirical distribution

of each agent, their responses converge to a NE of the potential game as long as their

beliefs on the state reach consensus fast enough to some belief µ̂∗. The result lever-

ages on the proof of Theorem 3.4. Theorem 3.6 is a generalization of Theorem 3.4 to

the class of potential games by admitting convergence to a NE given the histogram

sharing dynamics that allows agent i to keep an estimate of all the agents’ empirical

frequency by following (3.36).

3.5 Simulations

We analyze the performance of the algorithm in the beauty contest game and the

target covering game. In these examples, we analyze the effects of the connectivity

structure, the state learning processes and the payoff structure.
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Figure 3.1: Position of robots over time for the geometric (a) and small world net-
works (b). Initial positions and network is illustrated with gray lines. Robots’ actions
are best responses to their estimates of the state and of the centroid empirical dis-
tribution for the payoff in (3.46). Robots recursively compute their estimates of the
state by sharing their estimates of θ with each other and averaging their observations.
Their estimates on the centroid empirical distribution is recursively computed using
(3.16). Agents align their movement at the direction 95◦ while the target direction
is θ = 90◦.

3.5.1 Beauty contest game

A network of N = 50 autonomous robots want to move in coordination and at the

same time follow a target direction θ = [0◦, 180◦] in a two dimensional topology1.

Each robot receives an initial noisy signal related to the target direction θ,

πi(θ) = θ + εi (3.45)

where εi is drawn from a zero mean normal distribution with standard deviation

equal to 20◦. Actions of robots determine their direction of movement and be-

long to the same space as θ but are discretized in increments of 5◦, i.e., A =

(0◦, 5◦, 10◦, . . . , 180◦). The estimation and coordination payoff of robot i is given

1This game is the same as the coordination game in Section 2.7.
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Figure 3.2: Actions of robots over time for the geometric (a) and small world net-
works (b). Solid lines correspond to each robots’ actions over time. The dotted
dashed line is equal to value of the state of the world θ and the dashed line is the
optimal estimate of the state given all of the signals. Agents reach consensus in
the movement direction 95◦ faster in the small-world network than the geometric
network.

by the following utility function

ui(a, θ) = −λ(ai − θ)2 − (1− λ)(ai −
1

N − 1

∑
j 6=i

aj)
2 (3.46)

where λ ∈ (0, 1) gauges the relative importance of estimation and coordination. The

game is a symmetric potential game and hence admits a consensus equilibrium for

any common belief on θ[64].

In the following numerical setup, we choose θ to be equal to 90◦. We assume that

all robots start with a common prior on each others’ empirical frequency of actions

such that they all believe others are going to play each action with equal probability.

Then they update their beliefs according to the recursion in (3.16) upon observing

actions of their neighbors. Robot i moves with a displacement of 0.01 meters in the

chosen direction ai,t.

In Figs. 3.1 and 3.2, we plot robot positions and chosen actions, respectively,
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Figure 3.3: Locations (a) and actions (b) of robots over time for the star network.
There are N = 5 robots and targets. In (a), the initial positions of the robots are
marked with squares. The robots’ final positions at the end of 100 steps are marked
with a diamond. The crosses indicate the position of the targets. Robots follow the
histogram sharing distributed fictitious play presented in Section 3.4. The stars in
(a) represent the position of the robots at each step of the algorithm. The solid lines
in (b) correspond to the actions of robots over time. Each target is covered by a
single robot before 100 steps.

when robots use averaging to update their beliefs on the state θ based on receiving a

single initial private signal with signal generating function in (3.45). That is, robots

share their mean beliefs on the state and average their observations to obtain their

beliefs on θ for the next time step. Figs. 3.1(a) and 3.2(a) correspond to the behavior

in a geometric network when robots are placed on a 1 meter × 1 meter square

randomly and connecting pairs with distance less than 0.3 meter between them.

Figs. 3.1(b) and 3.2(b) correspond to the behavior in a small-world network when

the edges in the geometric network are rewired with random nodes with probability

0.2. The geometric network illustrated in Fig. 3.1(a) has a diameter of ∆g = 5 with

an average length among users equal to 2.52. The small world network illustrated in

Fig. 3.1(b) has a diameter of ∆r = 4 with an average length among users equal to 2.

In figs. 3.2 (a)-(b), solid lines denote agents’ actions over time, the dashed line marks

2Diameter is the longest shortest path among all pairs of nodes in the network. The average
length is the average number of steps along the shortest path for all pairs of nodes in the network.
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the optimal estimate of the state θ given all of the signals which is equal to 96.1◦,

the dotted dashed line is the actual value of the state θ = 90◦. We observe that the

agents reach consensus at the action 95◦ in both networks but the convergence is

faster in the small-world network (39 steps) than the geometric network (78 steps).

We further investigate the effect of the network structure in convergence time by

considering 50 realizations of the geometric network and 50 small-world networks

generated from the realized geometric networks with rewire probability of 0.2. The

average diameter of the realized geometric networks was 5.1 and the average diameter

of the realized small-world networks was 4.1. The mean of the average length of the

realized geometric networks was 2.27 while the same value was 1.96 for the realized

small-world networks. We considered a maximum of 500 iterations for each network.

Among 50 realizations of the geometric network, in 18 realizations the algorithm

failed to reach consensus in action within 500 steps. For small-world networks the

number of failures was 5. The average time to convergence among the 50 realizations

was 228 steps for the geometric network whereas the convergence took 100 steps for

the small-world network on average. In addition, convergence time for the small-

world network is observed to be shorter than the corresponding geometric network

in all of the runs except one.

3.5.2 Target covering game

N autonomous robots want to cover N targets. The position of a target k ∈ T :=

{1, . . . , N} on the two dimensional space is denoted by θk ∈ R2 and are not known

by the robots. Robot i starts from an initial location xi ∈ R2 and makes noisy

observations sik,0 of the location of target k coming from normal distribution with

mean θk and standard deviation equal to σI where I is the 2× 2 identity matrix and
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σ > 0 for all k ∈ T . An action of robot i is one of the targets, that is, A = T .

When robot i takes action ai, it receives a payoff from covering that target inversely

proportional to its distance from the target if no other robot is covering it. The

payoff of robot i from covering target k ∈ (1, . . . , N) ai = k is given by

ui(ai = k, a−i, θ) = 1

(∑
j 6=i

1 (aj = k) = 0

)
h(xi, θk) (3.47)

where 1(·) is the indicator function and h(·) is a reward function inversely propor-

tional to the distance between the target and the robot’s initial position xi, e.g.,

||xi − θk||−2. The first term in the multiplication above is one if no one else chooses

target k otherwise it is zero. The second term in the multiplication decreases with

growing distance between robot i’s initial position xi and the target k’s position θk.

The payoff of i from other targets T \ k is zero.

When all of the robots start from the same location, that is, xi = x for all

i ∈ N , the game with payoffs above can be shown to be a potential game by using

the definition of potential games in (3.1). Furthermore, the game is symmetric.

When the initial locations of robots are not identical the game is not a potential

game. In this setup, we would like each robot to assign itself to a single target

different from the rest of the robots, that is, we are interested in convergence to a

pure strategy Nash equilibrium in which each robot picks a single action similar to

the target assignment games considered in [83]. Observe that the target covering

game can not have a pure consensus strategy equilibrium. To see this, assume that

all robots cover the same target then they all receive a payoff of zero. Any robot

that deviates to another target receives a positive payoff. Therefore, there cannot

be a pure consensus strategy equilibrium. As a result, instead of the action sharing

scheme, we consider the histogram sharing distributed fictitious play by which it
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is possible but not guaranteed that the robots converge to a pure strategy Nash

equilibrium.

In the numerical setup, we consider N = 5 robots with the payoffs in (3.47) and

N targets. The locations of targets are respectively given as follows θ1 = (−1,−1),

θ2 = (1, 1), θ3 = (−1, 1), θ4 = (1,−1), θ5 = (0, 1). We consider the case that the

initial positions of robots are different from each other with the reward function

h(xi, θk) = ||xi− θk||−2. Specifically, the initial positions of the robots equal to x1 =

(−0.1,−0.1), x2 = (0.1, 0.1), x3 = (−0.1, 0.1), x4 = (0.1,−0.1), and x5 = (0, 0.1).

Robots make noisy observations sikt for all k ∈ T after each step. The observations

have the same distribution as sik0 with σ = 0.2 meters. We assume that the robots

update their beliefs on the positions of targets using the Bayes’ rule based on the

observations. Robots move by a distance of 0.02 meters along the estimated direction

of the target they choose at each step of the distributed fictitious play. The estimated

direction is a straight line from the current position to the estimated position of the

chosen target. I.e., the robots make observations and decisions in every 0.02 meters.

Finally, we assume that the robot covers the target if it is 0.05 meters away from a

target and no other robot covers it.

Figs. 3.3(a)-(b) shows the movement of robots and actions of robots over time,

respectively, for the star network. In figs. 3.3(a)-(b), we observe that each robot

comes to 0.05 meters neighborhood of a target within 100 steps. Furthermore, the

robots cover all of the targets, that is, they converge to a pure Nash equilibrium.

Next, we compare the distributed fictitious play algorithm to the centralized

(optimal) algorithm. In the centralized algorithm, at the beginning of each step

agents aggregate their signals and then take the action to maximize the expected

global objective defined as the sum of the utilities of all (3.47), i.e., the utility

in (1.2). Since there exists multiple equilibria in the complete information target
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coverage game, it is not guaranteed that the distributed fictitious play algorithm

converges to the optimal equilibrium at each run. For this purpose, we considered

50 runs of the algorithm where in each run signals are generated from different seeds.

We also assume that the algorithm has converged when each target is covered by a

robot within 0.05units distance from the target. In Fig. 3.4, we plot the evolution

of the global utility with respect to time for the distributed fictitious play algorithm

runs with the best and the worst final payoff, and for the centralized algorithm.

The best final configuration overlaps with the final centralized solution which is

given by a = [1, 2, 3, 4, 5] resulting in a global utility value of 4.25. The worst final

configuration is given by a = [1, 5, 3, 4, 2] resulting in a global utility value of 4.20.

We remark that the distributed fictitious play algorithm here can be considered

as a decentralized stochastic optimization algorithm that guarantees convergence

to a stationary point of the global utility. It is noteworthy that we do not make

any assumptions on the form of the utility function, e.g., convexity, smoothness

etc. Many existing stochastic decentralized algorithms require some structure on the

global objective to compute update steps and to guarantee convergence [8] except

the recent paper by [7] that provides a convex approximation and a decomposition

that allows decentralized processing.

Remark 3.7. The target covering game presented in this section is identical to the

payoff of the target covering problem (1.2) presented in Chapter 1.

3.6 Summary

This chapter introduced the distributed fictitious play algorithm as a bounded ratio-

nal behavior model in potential games of incomplete information. Before presenting

the algorithm, we established that a potential game of incomplete information with
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Figure 3.4: Comparison of the distributed fictitious play algorithm with the central-
ized optimal solution. Best and worst correspond to the runs with the highest and
lowest global utility in the distributed fictitious play algorithm. Out of the 50 runs,
in 40 runs the algorithm converges to the highest global utility.

identical beliefs is equal to a potential game of complete information where the payoff

is obtained by taking expectation of the payoff with respect to the state parameter.

In the algorithm, each agent keeps an empirical distribution of the others based on

the information received from their neighbors and incorrectly assumes that other

agents are going to play with respect to this empirical distribution in the next time.

We considered two types of information exchanges: 1) action observations and 2)

histogram sharing. In addition, each agent makes observations about the unknown

state or share information with each other regarding the state that allows him to

learn about the state parameter through a learning process. We assumed that the

learning process is fast enough to reach a belief agreement among agents. For the ac-

tion sharing, we showed that the empirical distributions converge to a consensus NE

strategy of a symmetric potential game, that is, empirical distribution of everyone
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converges to the same distribution and each agent knows that this is the distribu-

tion that others are playing with respect to. For the histogram sharing model, the

empirical distributions of the population converge to a NE of any potential game

of incomplete information with identical beliefs. We exemplified the algorithm in a

coordination game – a symmetric potential game – and a target covering game – an

asymmetric potential game. In these examples, we observed that the diameter of

the network is influential in convergence rate where the shorter the diameter is, the

faster is the convergence.
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Chapter 4

Learning to Coordinate in Social

Networks

4.1 Introduction

In Chapter 1, we posited MPBE as the rational behavior model1. This chapter

explores the eventual behavior of rational agents in a specific class of BNG where

the payoffs are supermodular. Due to the strategic complementary between their

actions in supermodular games, agents have the incentive to coordinate with, and

learn from others. In the setup of this chapter, agents only observe past actions of

their neighbors. We show that in any MPBE of the BNG, agents eventually reach

consensus in their actions. They also asymptotically receive similar payoffs in spite

of initial differences in their access to information. In Section 4.5, we present a set

of examples of supermodular games from a variety of application domains, ranging

from economics to distributed autonomous systems in engineering.

1This chapter is based on the paper [89]. The conference publications [90, 91, 92] are precursors
to the results presented. The proofs in this chapter are developed over numerous discussions with
Pooya Molavi and their final versions are drafted by Pooya Molavi.
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In this chapter, we motivate the BNG model within a social context where each

agent i is represented by a sequence of short-run players it for t = 1, 2, . . . taking

one time myopic actions. From this perspective an agent is a ‘role’ filled by a

stream of short-run players. Each short-run player inherits the belief of a player

from the previous generation—the player previously occupying his role—and the

actions of some of the players of the last generation—his neighbors. The players

then simultaneously choose actions in order to maximize their payoffs given the

information available to them.

In a society, myopic behavior by short-run players is a good approximation to

individuals’ rational behavior in scenarios where we have a large number of small

players each of whom have a negligible impact on the entire society. We have in mind

a citizen deciding whether to follow a norm, a small costumer deciding whether to

purchase a product, or a protester deciding whether to join a protest. The scenarios

described above could represent a society wherein an informed leader’s actions have

the potential to change the prevailing social norm, or the market for a new technology

in which adoption by an informed user can serve as signal of his belief in the future

of the technology. Similar models have been used to study a wide-ranging set of

phenomena including conventions ([93]), social norms and the rule of law ([94, 95]),

currency runs ([96]), regime change ([97]), markets with externalities ([98], [99, 100]),

and Keynsian coordination failures ([101]), among others. [101] contains additional

examples of the applications of coordination games with asymmetric information in

modeling macroeconomic phenomena. In all of these examples, each individual can

ignore the effect of his current action on the actions of the individuals he encounters

in the future. Alternatively, one can think of each role as a dynasty with each short-

run player representing a member of the dynasty that has access to the entire history

of the dynasty but who only makes a single decision.
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In the social setting motivation for the MPBE this chapter provides an affirmative

answer to the following question. Do rational players with aligned interests best

served by coordinating their actions succeed to coordinate even if they disagree on

the best course? Strategic interactions in which players want to coordinate their

actions are best modeled by supermodular games in which the players’ actions are

strategic complements. Supermodular games have a deep and interesting theory that

has been developed, among others, by [102, 103, 104, 105]. For an excellent survey

of some of the theory and applications of supermodular games see [106]. Here we

consider supermodular games of incomplete information which are also the focus of

global games literature [98, 107, 108] that look at the effects of private signals –

uncertainty – in equilibrium strategies.

Our results show that, if the social network is connected, players eventually

reach consensus both in their actions and their payoffs, in spite of occupying roles

with asymmetric initial information about the state of the world. In other words,

although players in initial generations might disagree on the best course of action,

future generations cannot disagree in the long run. This is similar in spirit to the

argument presented by Aumann [109] that Bayesian agents who share a prior cannot

“agree to disagree.” The key intuition for why this result holds is that the Imitation

Principle applies to our setting. The Imitation Principle was first introduced by

[19] in a social learning model without strategic interactions. According to the

Imitation Principle, the mere fact that, in equilibrium, no player (he) wishes to

deviate by imitating the action of a player (she) whose play he observes infinitely

often is evidence that he believes that his equilibrium action results in a higher

payoff. The Imitation Principle imposes restrictions on the equilibrium beliefs that

can be leveraged to rule out strategies according to which two players in two roles

that frequently observe each others’ actions continue to miscoordinate.
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Our assortment of results suggests that consensus is a ubiquitous phenomenon in

games of strategic complementarity with a common prior. They can be interpreted as

reinforcing the idea presented by [109] that Bayesian agents cannot disagree forever.

Aumann’s argument was presented in a setting with no interaction among players

other than sharing of beliefs. Our results suggest that the conclusion that Bayesian

players cannot agree to disagree is robust to the introduction of strategic interactions,

as long as players’ actions are strategic complements.

As mentioned in Chapter 1, the results of this chapter contribute to Bayesian

learning in networks literature [19, 28, 29, 30, 31, 110, 111] extending it to an en-

vironment with payoff externalities. The results also contribute to the literature on

learning in games [21, 34, 35, 36, 37] extending it to a networked environment for

supermodular games. A particular study worthy of few remarks is in [112, Chap.

4] which considers quadratic symmetric supermodular games – see Section 3.5.1 for

an example – and uses the tractability of the quadratic games to show uniqueness

of MPBE and obtain results on information aggregation. In particular, this study

shows that agents reach consensus in the action that they would have chosen if they

had been able to directly pool their information at the beginning of the game. This

result on information aggregation shows that, when the utilities are quadratic, con-

sensus generically implies optimal information aggregation. They also show that

asymptotic consensus in actions continues to hold in quadratic payoffs case when

the network is random and time-varying, and when the players observe a stream

of signals over time whose distribution depends on the previous actions of players.

Whether these results hold for the general symmetric supermodular games consid-

ered in this chapter remains an open research question.
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4.2 Model

Throughout, we use the usual order and the standard topology on R. Products of

topological spaces are equipped with the product topology. All topological spaces

are endowed with the Borel sigma-algebra. Two measurable mappings are said to

be equal if they have the same domain and codomain and agree almost everywhere.

Given sets X1, . . . , Xn, we use X to denote×n

i=1
Xi with generic element x and use

X−i to denote×j 6=iXi with generic element x−i = (x1, . . . , xi−1, xi+1, . . . , xn).

4.2.1 The game

Consider n roles indexed by i ∈ N = {1, . . . , N}. Role i represents a sequence of

short-run players, each of whom plays only once. We refer to the short-run player

at role i playing in stage t as player it. We refer to the collection of all short-run

players in role i as “big” player i or simply player i.

At the beginning of the game nature chooses the payoff-relevant state of the

world θ from a compact metric space Θ. The players in a given role all observe a

common noisy signal of θ. We denote by si the signal observed by the players in role

i. We assume that si belongs to a countable set Si that is endowed with the discrete

topology. The realized state otherwise remains unknown to the players.

The game is played over a countable set of stages indexed by the set of positive

integers N. In the beginning of stage t ∈ N, player it observes the actions chosen in

the previous stages by a subset of big players, called i’s neighbors and denoted by

Ni. We use the convention that each i is his own neighbor. We further assume that

the neighborhood relationship is symmetric: i is a neighbor of j if and only if j is a

neighbor of i.

At the end of period t, player it chooses a pure action ai,t ∈ Ai simultaneously
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with other short-run players and receives payoff ui(at, θ). We assume that Ai is a

compact subset of R and ui is continuous in all its arguments. We further assume

that the game is symmetric: for all i, j ∈ N , Ai = Aj and ui(at, θ) = uj(a
′
t, θ) if

ai,t = a′j,t and a−i,t is a permutation of a′−j,t. Finally, we assume that ui(at, θ) is

strictly supermodular in at for all θ ∈ Θ.2

We summarize the players’ uncertainty about the exogenous variables by some ω

belonging to the measurable space (Ω,B), where Ω = Θ×S and B is the Borel sigma-

algebra. Note that the canonical projection si : Ω→ Si is continuous and therefore

measurable. We assume that the payoff-relevant state θ and the private signals are

jointly distributed according to some probability distribution P over (Ω,B) and that

this is common knowledge. The expectation operator corresponding to P is denoted

by E.

We restrict our attention to Markovian strategies according to which the players’

actions depend on the history of the game only to the extent that it is informative of

the payoff-relevant state of the world.3 In particular, we define the players’ strate-

gies and information as follows. Let Hi,1 be the smallest sub sigma-algebra of B

that makes si measurable. Hi,1 captures the information available to player i1. A

Markovian strategy for player i1 is a mapping σi,1 : Ω → Ai which is measurable

with respect to Hi,1. For t ≥ 2 define Hσt−1

i,t and σi,t recursively as follows: Denote by

σt−1 = (σ1, σ2, . . . , σt−1), where στ = (σ1τ , . . . , σnτ ), the Markovian strategy profile

2A function f : Rn → R is supermodular if f(min{x, y}) + f(max{x, y}) ≥ f(x) + f(y) for all
x, y ∈ Rn, where min({x, y}) denotes the componentwise minimum and max({x, y}) denotes the
componentwise maximum of x and y. The function is strictly supermodular if the inequality is
strict for any incomparable pair of vectors x and y. If f is twice differentiable, this is equivalent
to requiring that ∂2f/∂xi∂xj > 0 for all 1 ≤ i < j ≤ n. For more on the theory of supermodular
games and their applications in game theory and economics, see [103].

3This is without loss of generality when the players are myopic and the attention is restricted
to pure strategies.
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followed by the short-run players that are active before stage t. Given σt−1, the in-

formation available to player it is captured by Hσt−1

i,t , the smallest sub sigma-algebra

of B that makes si and {σj1, . . . , σj,t−1}j∈Ni
measurable. A Markovian strategy for

player it is a mapping σi,t : Ω → Ai that is measurable with respect to Hσt−1

i,t . We

let σ = (σ1, σ2, . . . ) denote a Markovian strategy profile generated as above and let

Hσ
i,∞ = ∨∞t=1Hσt−1

i,t to be the information available to the players in role i “at the end

of the game” given that players follow strategy σ. Note that, for any strategy profile

σ and all i, Hσt−1

i,t ⊆ Hσt′−1

i,t′ if t ≤ t′. Whenever there is no risk of confusion we use

Hσ
i,t to mean Hσt−1

i,t .

4.2.2 Equilibrium

Definition 4.1. A Markovian strategy profile σ is a Markov Perfect Bayesian Equi-

librium (MPBE) if for all i, t, and Hσt−1

i,t -measurable mappings σ′i,t : Ω→ Ai,

E
[
ui(σi,t, σ−i,t, θ)|Hσt−1

i,t

]
≥ E

[
ui(σ

′
i,t, σ−i,t, θ)|Hσt−1

i,t

]
.

According to our equilibrium notion, the short-run players who are active in stage

t choose an interim pure-strategy Bayesian Nash Equilibrium of a Bayesian game in

which their information is induced by the equilibrium strategies of the short-run

players that played before them.

Proposition 4.2. A MPBE σ exists.

Proof. The proof involves repeated use of Theorem 23 of [105]. The game played by

the short-run players in the first stage is a Bayesian supermodular game that satisfies

the conditions of Theorem 23 of Van Zandt. Therefore, it has an interim pure-

strategy Bayesian Nash equilibrium denoted by σ1 = (σ1,1, . . . , σn,1). Let Hσ1

i,2 denote
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the smallest sub sigma-algebra of B that makes si and {σj1}j∈Ni
measurable. The

sigma-algebras Hσ1

1,2, . . . ,Hσ1

n,2 define a Bayesian supermodular game in the second

stage, which has an interim pure-strategy Bayesian Nash equilibrium σ2. Repeating

this argument inductively, we can construct a MPBE σ = (σ1, σ2, . . . ).

4.2.3 Remarks on the model

The model considers repeated interactions among rational short-run players in given

roles. Initial short-run players are endowed with private signals and succeeding

players inherit the information of their predecessors. Thus in a given role the past

information is not lost. Each short-run player holds additional information when

compared to his predecessors due to the observation of recent events in his social

neighborhood. The locality of information creates a persisting asymmetry in the

information accumulated at each role. Our results focus on characterizing the effects

of this asymmetric information on rational behavior. We note that the players only

observe the actions of their neighbors and do not share their past experiences, signals,

or beliefs with players in other roles. A role can represent a myopic individual with

each short-run player representing the individual’s one time decision. Alternatively,

a role can represent a dynasty with each short-run player representing a member of

the dynasty that has access to the entire history of the dynasty but only makes a

single decision.

A player’s behavior is determined by a Markovian strategy. Player it uses the

knowledge of strategies used in the past, σt−1, and the past observations only to infer

about the current actions of others a−i,t and the state θ. In contrast, long-run players

that follow non-Markovian strategies may experiment, try to build reputations, or

punish other players based on past events. Starting from the period one, a Markovian
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strategy is a function of the state θ and the private signals s. Hence, the inference of

player it about others’ actions reduces to inference about the information on these

exogenous variables given his knowledge of their strategies σ−i,t.

We use MPBE to model the rational behavior of short-run players. Short-run

players differ from their long-run counterparts in repeated games in that rational

short-run players seek to maximize their immediate return on their activities. That

is, at each stage t, player it picks the strategy that maximizes the stage conditional

expected utility given his information Hσt−1

i,t . In his maximization of the expected

utility, the player correctly assumes that the other players are also acting with respect

to strategies σ−i,t that maximize their conditional expected utility and best-responds

to σ−i,t.

4.3 Main Result

Our main result states that short-run players asymptotically reach consensus when

they act according to a MPBE strategy profile. We discuss the implications of the

results presented here in Section 4.4.1.

Theorem 4.3. Let σ be a MPBE. For all i, j ∈ N , σi,t− σj,t → 0, P -almost surely,

as t goes to infinity.

Proof. We let S denote the smallest sub sigma-algebra of B that makes the mapping

ω 7→ s(ω) = (s1(ω), . . . , sn(ω)) measurable, and let Hσ
∞ =

∨n
i=1Hσ

i,∞. Since the

information available to the players in any stage of the game is no more than the

information jointly contained in their private signals, Hσ
∞ ⊆ S. Therefore, σi,t is

measurable with respect to S for all i and t, so σi,t(ω) = σi,t(ω
′) whenever s(ω) =

s(ω′). We can thus define the mapping σi,t : S → Ai, with some abuse of notation, by
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letting σi,t(s) = σi,t(ω(s)), where ω(s) is a selection of Ω(s) = {ω ∈ Ω : s(ω) = s}.

The statement of the theorem is therefore equivalent to the following: σi,t(s) −

σj,t(s)→ 0 for all s ∈ S with P (s) = P (Θ× {s}) > 0.

Suppose to the contrary that there exists some neighboring i, j ∈ N , some s0 ∈ S

with P (s0) > 0, and a divergent sequence {k0t}t∈N such that |σi,k0t(s0) − σj,k0t(s0)|

is uniformly bounded away from zero. Since S is countable, there exists an enu-

meration s1, s2, . . . of S. Since A is a compact metric space, there exists a further

subsequence {k1t}t∈N of {k0t}t∈N such that the sequence {σk1t(s1)}t∈N is convergent.

Likewise, there exists a further subsequence {k2t}t∈N of {k1t}t∈N such that the se-

quence {σk2t(s2)}t∈N is convergent, and by induction, for m ∈ N, there exists a fur-

ther subsequence {km+1,t}t∈N of {kmt}t∈N such that the sequence {σkm+1,t(sm+1)}t∈N

is convergent. Construct the sequence {lt}t∈N by letting lt = ktt. For all s ∈ S,

as t goes to infinity σlt(s) converges to some σ∞(s) ∈ A with σi,∞(s0) 6= σj,∞(s0).

With slight abuse of notation, define the measurable mapping σ∞ : Ω → A by let-

ting σ∞(ω) = σ∞(s(ω)). Since ui is continuous and A and Θ are compact, by the

dominated convergence theorem,

E
[
ui(σlt , θ)

]
→ E

[
ui(σ∞, θ)

]
.

Define the Hσ
i,t-measurable mapping σ′i,t : Ω → Ai as follows: σ′i,1 = σi,1, σ′i,lt+1 =

σj,lt , and σ′i,τ = σ′i,τ−1 for all τ /∈ {1}∪
⋃
t∈N{lt}. This mapping constitutes a feasible

strategy for player i according to which he imitates the actions chosen by player j

in periods {lt}. By construction, (σ′i,lt , σ−i,lt)→ (σj,∞, σ−i,∞) for all ω ∈ Ω. Thus,

E
[
ui(σ

′
i,lt , σ−i,lt , θ)

]
→ E

[
ui(σj,∞, σ−i,∞, θ)

]
.
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Since σ is an equilibrium, E
[
ui(σlt , θ)

]
≥ E

[
ui(σ

′
i,lt
, σ−i,lt , θ)

]
for all t ∈ N, so

E[ui(σi,∞, σ−i,∞, θ)] ≥ E[ui(σj,∞, σ−i,∞, θ)]. (4.1)

By a similar argument,

E[uj(σj,∞, σ−j,∞, θ)] ≥ E[uj(σi,∞, σ−j,∞, θ)]. (4.2)

Let u(ai; aj, a−ij, θ) denote the utility of a player in role i when he chooses ai, player

j chooses aj, and other players choose a−ij. By the symmetry assumption, the payoff

of a player in role j when player j chooses ai, player i chooses aj, and others choose

a−ij is also equal to u(ai; aj, a−ij, θ). Equations (4.1) and (4.2) thus can be written

as

E[u(σi,∞;σj,∞, σ−ij,∞, θ)] ≥ E[u(σj,∞;σj,∞, σ−ij,∞, θ)],

E[u(σj,∞;σi,∞, σ−ij,∞, θ)] ≥ E[u(σi,∞;σi,∞, σ−ij,∞, θ)].

Summing the above equations,

E[u(σi,∞;σj,∞, σ−ij,∞, θ) + u(σj,∞;σi,∞, σ−ij,∞, θ)] ≥

E[u(σi,∞;σi,∞, σ−ij,∞, θ) + u(σj,∞;σj,∞, σ−ij,∞, θ)]. (4.3)

On the other hand, since u is strictly supermodular, for all ai ∈ Ai and aj ∈ Aj,

u(ai; aj, a−ij, θ) + u(aj; ai, a−ij, θ) ≤ u(ai; ai, a−ij, θ) + u(aj; aj, a−ij, θ), (4.4)

with equality if and only if ai = aj. Equations (4.3) and (4.4) imply that σi,∞ =
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σj,∞ for P -almost all ω, contradicting the assumption that σi,∞(s0) 6= σj,∞(s0) and

P (s0) > 0.

An immediate corollary of consensus in strategies is asymptotic consensus in

payoffs.

Corollary 4.4. Let σ be a MPBE. For all i, j ∈ N , ui(σt, θ) − uj(σt, θ) → 0, P -

almost surely, as t goes to infinity.

Proof. Define σi,t : S → Ai as in the proof of Theorem 4.3. It is sufficient to show

that ui(σt(s), θ)− uj(σt(s), θ)→ 0 for all θ ∈ Θ and s ∈ S with P (s) > 0. Suppose

to the contrary that there exists some neighboring i, j ∈ N , some θ0 ∈ Θ and

s0 ∈ S with P (s0) > 0, and a divergent sequence {k0t}t∈N such that
∣∣ui(σk0t(s0), θ0)−

uj(σk0t(s0), θ0)
∣∣ is uniformly bounded away from zero. As in the proof of Theorem 4.3,

we can construct a further subsequence {lt}t∈N of {k0t}t∈N such that for all s ∈ S, as

t goes to infinity, σlt(s) converges to some σ∞(s) ∈ A. Furthermore, by Theorem 4.3,

σi,∞(s) = σj,∞(s) for all i, j ∈ N and s ∈ S. Therefore, since ui is continuous and

symmetric, ui(σlt(s0), θ0) − uj(σlt(s0), θ0) → 0 for all i, j ∈ N , contradicting the

assumption that
∣∣ui(σk0t(s0), θ0) − uj(σk0t(s0), θ0)

∣∣ is uniformly bounded away from

zero for some i, j.

The above result also implies ex ante consensus in the expectation of big players’

asymptotic payoffs. Prior to the start of the game, players in all roles expect their

successors to asymptotically achieve similar payoffs. In Section 4.4.1, we show by

means of an example that players might disagree in their conditional expected payoffs

even when they are receiving the same payoffs.
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4.4 Discussion

In the games considered in Section 4.3, players acquire exogenous private signals si

at time one that reveal information about the state of the world θ. They use this

information to play the MPBE action given the utility ui(at, θ) that they proceed

to execute. At this point we introduce the model of a social network by assuming

that the action played by player i becomes known to a subset of neighboring agents

Ni—as opposed to all other players. From the perspective of player i, the actions of

neighbors j ∈ Ni reveal information about their private signals which can be used

to improve the actions that they play in the subsequent stage. As time progresses,

actions of neighbors reveal more information about their private signals as well as

information about the private signals of their neighbors, and the signals of their

neighbors’ neighbors. If the network is connected, all players eventually observe

actions that carry information about the private signals of all other players. The

results in section 4.3 characterize the asymptotic behavior of the agents involved in

this game. This section discusses the insights that these results provide.

4.4.1 Consensus

When players play this game with incomplete information over a network, how much

do they learn of each other’s private information? Perhaps not all, but Theorem 4.3

asserts that they achieve a steady state in which they have no reason to suspect

they haven’t. Indeed, the claim in Theorem 4.3 is that given any pair of players i

and j their strategies σi,t and σj,t approach each other as the number of plays grow,

with probability one over the probability distribution P of the world and private

information. Since the players use a common strategy in the limit, we say that they

achieve consensus. In this consensus state players select identical actions, which they
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therefore must believe to be optimal given all their available information and the

strategies of other players. Otherwise, deviations to strategies with better expected

payoffs would be possible. To emphasize that players achieve this possibly misguided

consensus we show in Corollary 4.4 that the payoffs of all players eventually coincide.

That players achieve consensus is not unexpected because supermodular games

have strategic complementarity. If the state of the world θ is known to all players

and the action of a player increases, the other players have an incentive to also

increase their actions. But if these other players increase their actions, there is

an incentive for the original deviator to increase its action as well. This positive

feedback loop drives the actions of players to a point in which marginal increases for

deviation are null and all players end up playing a common action. When the state

of the world is not known but rather inferred from private signals and the observed

actions of neighboring players, the incentive to coordinate is still present but there

is uncertainty on what exactly a coordinated action should be. Theorem 4.3 shows

that such uncertainty is eventually resolved.

Expected as it may be, the result in Theorem 4.3 is not obvious because it is

not clear that the uncertainty on what it means to have a coordinated action is

resolved. The fundamental problem in resolving this uncertainty is that players

have to estimate the actions other players are about to take, yet they only know

their strategies—playbooks that maps histories to plays—and observe only actions—

the play selected from the strategy playbook given the observed history. If other

players’ histories were observed, the incentive to coordinate, that is implicit in the

supermodular assumption, would drive players to consensus. However, histories are

not observed. The strategies of players other than i are, indeed, not necessarily

measurable with respect to the information available to i. Lacking measurability,

it is not possible for i to gauge the quality of his actions given the strategies of his

119



neighbors and the positive feedback loop towards consensus cannot be started. The

key step in the proof of Theorem 4.3 is to show that the strategies of neighbors

become measurable in the limit. When strategies become measurable, it is possible

for i to imitate j, if it so happens that the strategy of j is better. Since the player

i acts with respect to MPBE strategy, imitating j’s strategy cannot be optimal. It

follows that the strategy of j is not better than the strategy of i according to i. Yet,

strategic complementarity implies that i cannot think that his strategy in the limit

is better than j’s limit strategy and vice verse, and at the same time their strategies

be different.

According to Corollary 4.4, the differences between the players’ payoffs asymp-

totically vanish. Thus, in spite of the differences in their location in the network

and the quality of their private signals, players asymptotically receive similar pay-

offs. From the point of view of the players, however, the asymptotic payoffs are not

necessarily the same. That is, conditional expectations of the players’ limit payoffs

given their information at the end of the game could be dissimilar. The following

example illustrates this possibility. See also Example 1.2.1.

Example 4.5. Consider two roles i ∈ {1, 2} with payoffs given by the beauty contest

game (3.46) that observe each others’ actions in all stages. The common prior is the

uniform distribution over the set {−2,−1, 1, 2}. Player 2 receives no signal (S2 = ∅),

whereas Player 1’s private signals belong to the set S1 = {1, 2}, with s1 = |θ|. Thus,

Player 1 is informed of the absolute value of θ. Observe that in any equilibrium of

the game σi,t = 0 at all times and for both players, Player 1 learns the absolute

value of θ, whereas Player 2 never makes any informative observations. At the end

of the game, Player 1’s expected payoff conditional on his information is equal to

−(1− λ)|θ|2 while the corresponding payoff for Player 2 is given by −(1− λ)5
2
.
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In the above example, although the conditional expected payoffs are unequal

for any realization of the state, the unconditional expected payoffs and the realized

payoffs are the same for both players because Theorem 4.3 and Corollary 4.4 apply.

We remark that strategic complementarity is the main driver of the consensus

results. In particular, in games with strategic substitutes, it is beneficial for the

players to play different strategies. The games wherein players’ actions are strategic

substitutes might not even have any symmetric pure strategy Nash equilibrium (e.g.,

the hawk-dove game). Hence, the consensus results cannot be generalized to games

with strategic substitutability.

4.4.2 Extensions

Throughout, we assumed that the network is strongly connected. When the network

is not strongly connected, our results do not continue to hold. Consider a single

role i that is disconnected from the rest of the network, and assume that the initial

player in each role only observes a single noisy signal of the state. Unless all players

happen to be perfectly informed of the state, the players in the disconnected role i

will not be in agreement with the rest of the population. Note that this is also true

when the other players can observe the actions of the players in role i but the players

in role i cannot observe any other player in the network.

Some other extensions are beyond the scope of this chapter. For instance, our re-

sults are stated for myopic players but players that optimize for longer time horizons

have even stronger incentives to signal their information. It is therefore reasonable

to expect that all of our theorems hold in this case as well. In fact, it is likely that

stronger results can be derived because non-myopic Markovian players may be able

to aggregate information even if the short-run players cannot.
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4.5 Symmetric Supermodular Games

We present four examples of symmetric strictly supermodular games of incomplete

information to illustrate the range of models to which our consensus results in Section

4.3 are applicable.

4.5.1 Currency attacks

Consider investors who attack a currency by short-selling the currency by ai ∈ [0, 1]

amounts. There is a fixed transaction cost of short-selling, −c < 0, when investor i

attacks ai > 0, otherwise his cost is zero. The strength of the attack is proportional

to the average short-selling actions of the investors: ā =
∑

i ai/N . The govern-

ment follows a thresholded policy to defend against the investors’ attacks based on

the fundamentals of the economy θ. That is, if the attack strength is larger than

h(θ) ∈ (0, 1] where h(·) is an increasing function of θ, then the government does not

defend, otherwise, it defends. When the government defends, the attack fails and

the investors incur the transaction cost. When the government does not defend, the

attack succeeds and each investor receives a benefit proportional on his short-selling

amount, Bi(ai) > 0, which is a continuous strictly increasing function. However,

the investors do not exactly know fundamentals of the economy and only have pri-

vate information regarding θ. We smoothen the government’s threshold response by

introducing the likelihood that ā is larger than h(θ), L(h(θ); ā), which is a continu-

ous and strictly increasing function of ā given θ. Then the payoff of an investor is

summarized as follows.

ui(ai, a−i, θ) =


Bi(ai)L(h(θ); ā)− c if ai > 0,

0 if ai = 0.
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Under certain assumptions, the utility function above is strictly supermodular.

For instance, it is easy to show that the likelihood function L(h(θ); ā) = ā2/(λ+h(θ)2)

results in a strictly supermodular utility function for all λ ≥ 1. Furthermore, the

utility function is symmetric since each investor’s attack contributes equally to the

strength of the attack—see [106] for a variant of this game.

4.5.2 Bertrand competition

Consider an oligopoly price competition model where the demand for firm i is deter-

mined by the price set by firm i, ai ∈ [0, 1], as well as prices of its competitors a−i.

That is, firm i’s demand function is Di(ai, a−i). The demand of firm i is decreasing

in its own price ai and increasing with respect to prices of others a−i. The revenue

of firm i is its price multiplied by the demand, aiDi(ai, a−i). Each firm operates

with an identical uncertain cost per production θ. Then the cost of matching de-

mand Di(ai, a−i) by firm i is θai. The payoff of firm i is its net revenue which is the

difference between revenue and cost,

ui(ai, a−i, θ) = aiDi(ai, a−i)− θai.

We consider a logistic demand function Di(a) = 1/(1+
∑

j 6=i κ exp(λ(ai−aj))) for κ >

0 and λ > 0. This demand function yields a symmetric strictly supermodular utility

function—see [102] for other forms of demand functions that result in supermodular

utilities.
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4.5.3 Power control in wireless networks

Consider the problem of power control in wireless network communication—see [113].4

Each user wants to transmit to a base station using the channel designated to him-

self. User j determines a transmitting power level ai ∈ [0, â] for some â > 0. The

channel gain of user i transmitting to base station is equal to h > 0 which is identical

for all the users. Hence, the received signal of user i at the base station is aih. On

the other hand, the transmission of other users interferes with the gain of user i’s

channel. Given the channel gains h, the signal-to-interference-ratio (SINR) is given

by

SINR(a−i) =
h

h
∑

j 6=i aj + ρ
,

where ρ > 0 is the additive Gaussian noise representing the noise at the base station.

Thus the received SINR by user i when it exerts ai amounts of power is simply

aiSINRi(a−i). The user i incurs a constant uncertain cost θ per unit of power exerted

yielding a total cost of θai when ai units of power is exerted. The payoff of user i

is the difference between a function of the received SINR Bi(aiSINRi(a−i)) and the

cost of power consumption,

ui(ai, a−i, θ) = Bi(aiSINRi(a−i))− θai.

Under certain conditions on the function Bi(·), the payoff is strictly supermodular.

For instance, given Bi(x) = x1−α/(1 − α) where α > 1, we have ∂2ui/∂ai∂aj > 0.

Symmetry of the utility function follows by the definition of the SINR and unanimity

of the channel gain h.

4See [106] for a similar formulation motivated by patent races.
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4.5.4 Arms race

N countries engage in an arms race—see [102]. Country i chooses its arms level

ai ∈ [0, â] and incurs a cost of armament that is captured by the cost function

Ci(ai, θ) that depends on the state of the world θ and own action ai. The benefit

of the armament depends on the distance between self arms, ai, and the average

armament of other countries, ā−i =
∑

j 6=i aj/(n− 1), captured by a strictly concave

smooth function Bi(ai − ā−i). The payoff of country i is given by

ui(ai, a−i, θ) = −Ci(ai, θ) +Bi (ai − ā−i) .

Since ∂2ui/∂ai∂aj = −B′′i (ai − aj) > 0, the game is strictly supermodular. Further-

more, by construction, the utility function is symmetric.

4.6 Summary

This chapter studies a dynamic game in which a number of short-run players repeat-

edly play a symmetric strictly supermodular game of incomplete information. Each

short-run player inherits the beliefs of a player playing in the previous stage while

also observing the last stage actions of the players in his social neighborhood. Each

player’s actions reveal information used by other players to revise their beliefs, and

hence, their actions. We prove formal results regarding the asymptotic outcomes

obtained when agents play the actions prescribed by the BNE – Markov Perfect

Bayesian Equilibrium. In particular, we show that players reach consensus in their

actions and payoffs if the observation network is connected. Finally, we provide

examples of games used in engineering and economics to which are results apply.
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The players in this chapter are assumed to be short-run and hence myopic. How-

ever, we expect our results to generalize to the case of forward-looking agents if

attention is restricted to Markovian strategies. In symmetric supermodular games,

the players’ interests are fully aligned and so they benefit from sharing the infor-

mation available to them with the rest of the population. But short-run players

cannot capture any of the benefits of sharing their information. Nonetheless, as

our results demonstrate, consensus is eventually obtained. With forward-looking

agents, the players’ incentive to inform their peers provide an additional force that

makes consensus and information aggregation, if anything, more likely. We intend

to investigate this direction in future research.
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Part II

Demand Response Management in

Smart Grids
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Chapter 5

Demand Response Management in

Smart Grids with Heterogeneous

Consumer Preferences

Consumer demand profiles and fluctuating renewable power generation are two main

sources of uncertainty in matching demand and supply in energy systems 1. This

chapter proposes a model of the electricity market that captures the uncertainties

on both, the operator and the user side. The system operator (SO) implements a

temporal linear pricing strategy that depends on real-time demand and renewable

generation in the considered period combining Real-Time Pricing with Time-of-Use

Pricing. The announced pricing strategy sets up a noncooperative game of incom-

plete information among the users with heterogeneous but correlated consumption

preferences. An explicit characterization of the optimal user behavior using the BNE

solution concept is derived. This explicit characterization allows the SO to derive

1The results in this chapter are based on the journal publication [114] parts of which has also
been published in conferences [115, 116].
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pricing policies that influence demand to serve practical objectives such as minimiz-

ing peak-to-average ratio or attaining a desired rate of return. These pricing policies

are shown to be optimal as the number of customers grow while at the same time

hedging renewable generation uncertainty.

5.1 Introduction

Matching power production to power consumption is a complex problem in conven-

tional energy grids, exacerbated by the introduction of renewable sources, which,

by their very nature, exhibit significant output fluctuations. This problem can be

mitigated with a system of smart meters that control the power consumption of

customers by managing the energy cycles of various devices while also enabling in-

formation exchange between customers and the system operator (SO) [117, 118]. The

flow of information between meters and the SO can be combined with sophisticated

pricing strategies so as to encourage a better match between power production and

consumption [119, 120, 121, 122, 123]. The effort of operators to guide the consump-

tion of end users through suitable pricing policies is referred to as demand response

management (DR) [124].

To implement DR we can consider pricing mechanisms that combine Real-Time

Pricing (RTP) with Time-of-Use Pricing (TOU). That is, the price depends on total

consumption at each time slot (RTP) and, in addition, the SO divides the operation

cycle into time slots (TOU). The use of TOU allows the SO to apply temporal

policies based on its anticipation of consumption and renewable source generation

in each time. The use of RTP transfers part of the risks and benefits to consumers

and encourages their adaptation to power production. When producers use RTP,

customers agree to a pricing function but actual prices are unknown a priori because
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they depend in the realized aggregate demand. In this context, customers must

reason strategically about the consumption of others that will ultimately determine

the realized price. Game-theoretic models of user behavior then arise naturally and

various mechanisms and analyses have been proposed [119, 120, 124, 125, 126, 127]

– see also [128, 129] for more comprehensive expositions. A common feature of

these schemes is that the SO and its customers run an iterative algorithm to solve

a distributed optimization problem prior to the start of an operating cycle. The

outcome of this optimization results in individual power targets that the customers

agree to consume once the operating cycle starts.

This chapter proposes an RTP mechanism for DR in which customers agree to

a linear price function that depends on the total consumption and a parameter to

incentivize the use of energy produced from renewable sources. Both total consump-

tion and the amount of energy produced by renewable sources are unknown a priori

and customers must decide their consumption based on uncertain estimates made

public by the SO. Instead of running an iterative optimization algorithm prior to the

start of the operating cycle, we assume that this is all the information exchange that

occurs between customers and the SO (Section 6.2). To determine their consumption

levels customers only rely on this information to anticipate the behavior of others, be

aware of their influence on price, and mind renewable resource generation forecasts.

We provide an analysis of this pricing policy in which customers’ anticipatory be-

havior is formally modeled as the actions of rational consumers with heterogeneous

preferences repeatedly taking actions in a game with incomplete information (Section

6.2.2)2. We define the Bayesian Nash equilibria (BNE) in these games as the optimal

2The game and the solution concept presented in this chapter is equivalent to the BNG with no
information exchanges among agents presented in Chapter 1. The redundant presentation of these
concepts here is because of the different notation adopted for the demand response model in Part
II. We draw the connections with the BNG where it is relevant.
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user behavior, provide explicit characterizations of the BNE and use the resulting

characterizations to show desirable properties of the proposed RTP mechanism – e.g.,

the SO can shape uncertain demand based on its expected renewable generation, or

other policy parameters (Sections 6.3 and 6.6). Given the price anticipating user

behavior model, we propose two pricing policies that respectively aim to achieve a

target rate of return and minimize consumption peak-to-average ratio (Section 5.5).

The proposed pricing schemes are compared to TOU and flat pricing schemes in

which customers respond to given price values at each time slot and hence they are

price-takers. In addition, we consider the complete information efficient competitive

equilibrium benchmark where the SO maximizes welfare given all the information and

users maximize selfish utilities [125, 130]. We show analytically that the proposed

RTP is equivalent to TOU and efficient benchmark in expectation and the inefficiency

in price-anticipating behavior diminishes with increasing number of customers if the

correlation among users also diminish. Numerical analyses verify that the proposed

real-time pricing schemes improve customer utility and reduce uncertainty in demand

facilitating higher forecast accuracy. Finally, the proposed PAR-minimizing policy

can indeed achieve its goal with marginal loss to welfare (Section 5.5.3). We discuss

the policy implications of these results in Section 5.6.

5.2 Smart Grid Model

A system operator oversees a DR model withN customers denoted by the setN , each

equipped with a power consumption scheduler. Customer i ∈ N is characterized by

the individual power consumption lih at time slot h ∈ H := {1, . . . , H}. Accordingly,

we represent the total consumption at time slot h with Lh :=
∑

i∈N lih and the

average consumption per user at time h with L̄h := Lh/N .
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5.2.1 System operator model

The total power consumption Lh results in the SO incurring a production cost of

Ch(Lh) units. Observe that the production cost function Ch(Lh) depends on the

time slot h and the total power produced Lh. When the generation cost per unit

is constant, Ch(Lh) is a linear function of Lh. More often, increasing the load Lh

results in increasing unit costs as more expensive energy sources are dispatched to

meet the load. This results in superlinear cost functions Ch(Lh) with a customary

model being the quadratic form3

Ch(Lh) =
1

2

κh
N
L2
h, (5.1)

for given constant κh > 0 that depends on the time slot h and that is normalized by

the number of users N . The cost in (6.1) has been experimentally validated for ther-

mal generators [131] and is otherwise widely accepted as a reasonable approximation

[120, 124, 125].

The SO utilizes an adaptive pricing strategy whereby customers are charged a

slot-dependent price ph that varies linearly with the average power consumption

per capita L̄h. The SO dispatches power from renewable source plants such as wind

farms and solar arrays, and incorporates renewable source generation into the pricing

strategy by introducing a random variable ωh ∈ R that depends on the amount of

renewable power produced at time h Gh – see [123] for models of SO dispatching

renewable sources. The per-unit power price at time slot h ∈ H is set as

ph(L̄h;ωh) = γh(L̄h + ωh/N), (5.2)

3It is possible to add linear and constant cost terms to Ch(Lh) and have all the results in this
paper still hold. We exclude these terms to simplify notation.

132



where γh > 0 is a policy parameter to be determined by the SO based on its objectives

and the renewable source related random variable is normalized by the number of

users. We present how the operator can pick its policy parameter γh > 0 to minimize

PAR or achieve a desired rate of return in Section 5.5 after modeling and analyzing

consumption behavior. The random variable ωh is such that ωh = 0 when renewable

sources operate at their nominal benchmark capacity Ḡh
4; that is, the generation Gh

at time h equals Ḡh. If the realized production exceeds this benchmark, Gh > Ḡh,

the SO agrees to set ωh < 0 to discount the energy price and share the windfall

brought about by favorable weather conditions. If the realized production is below

the benchmark, i.e., Gh < Ḡh, the SO sets ωh > 0 to reflect the additional charge

on the customers. The specific dependence of ωh with the realized renewable energy

production and the policy parameter γh, are part of the supply contract between the

SO and its customers.

The operator’s price function maps the amount of energy demanded to the market

price. This is a standard model in pricing – see [132] for a similar formulation. A

fundamental observation here is that the prices ph(L̄h;ωh) in (6.2) become known

after the end of the time slot h. This is because prices depend on the average demand

per user L̄h and the value of ωh, which is determined by the amount of renewable

power produced in time slot h. Both of these quantities are unknown a priori as

shown in Fig. 5.1.

We assume that the SO uses a model on the renewable power generation – see,

e.g.,[119, 133] for the prediction of wind generation – to estimate the value of ωh

at the beginning of the time h. The corresponding probability distribution Pωh

is made available to all customers at the beginning of the time. Henceforth, we

4The nominal benchmark capacity at time slot h Ḡh refers to the amount of wind power expected
to be available at time h in kWh. It can be determined with respect to the predicted wind power
which then determines an expected generation capacity for the renewable generator [119].
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Users (gh)

Utility

uih(lih, l−ih; gih)

Demand

(l∗1h, . . . , l
∗
Nh)

Figure 5.1: Illustration of information flow between the power provider and the
consumers. The SO determines the pricing policy (6.2) and broadcasts it to the
users along with its prediction of renewable energy term Pωh

. Selfish (6.3) users
respond optimally to realize demand L∗h =

∑
i∈N l

∗
ih. The realized demand per user

L̄∗h together with realized renewable generation term ωh determines the price at time
h.

use Eωh
to denote expectation with respect to the belief Pωh

and ω̄h := Eωh
[ωh]

to denote the mean of the distribution Pωh
. By including a term that depends on

renewable generation in the price function, the SO aims to use the flexibility of

consumption behavior to compensate for the uncertainties in renewables in real-time

[119, 122, 123, 134].

A particular variable that is of interest is the net revenue of the SO at time h

defined as the difference between its revenue Rh(Lh) := Lhph(Lh;ωh) and its cost

Ch(Lh), that is, NRh = Rh(Lh) − Ch(Lh). The net revenue of the SO over the

horizon is the sum over its time slot net revenues, NR :=
∑

h∈HNRh. Another

related metric that measures the well-being of the SO is the rate of return defined

as the ratio of revenue to cost, rh := Rh(Lh)/Ch(Lh).
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5.2.2 Power consumer

The consumption preferences of users are determined by random variables gih > 0

that are possibly different across customers and time. When user i consumes lih

units of power at time slot h we assume that it receives the linear utility gihlih. The

user has a diminishing marginal utility from consumption which is captured by the

introduction of a quadratic penalty αhl
2
ih. This quadratic penalty implies that even

when the price charged by the SO is zero, e.g., when γh = 0, it is not in users’

interest to consume infinite amounts of energy. Note that the decay variable αh may

change across time but it is assumed to be the same for all the consumers. For each

unit of power consumed, the SO charges the price ph(L̄h;ωh), which results in user

i incurring the total cost lihph(L̄h;ωh). The utility of user i is then given by the

difference between the consumption return gihlih, the power cost lihph(L̄h;ωh) and

the overconsumption penalty αhl
2
ih,

uih(lih, L̄h; gih, ωh) = −lihph(L̄h;ωh) + gihlih − αhl2ih. (5.3)

Using the expressions for prices in (6.2) and L̄h, we express (5.3) as

uih(lih, l−ih; gih, ωh) = −lih
[
γh
N

(∑
j∈N

ljh + ωh

)]
+ gihlih − αhl2ih, (5.4)

where we also rewrite the utility of user i as uih(lih, L̄h; gih, ωh)=uih(lih, l−ih; gih, ωh)

to emphasize the fact that it depends on the consumption l−ih := {ljh}j 6=i of other

users. Note that if the SO’s policy parameter is set to γh = 0, the utility of user i

is maximized by lih = gih/2αh– also see [121] that uses the quadratic utility form to

capture target consumption of users at each time slot.

The utility of user i depends on the powers l−ih that are consumed by other
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users in the current slot. These l−ih power consumptions depend partly on their

respective preferences, i.e., g−ih := {gjh}j 6=i, which are, in general, unknown to user

i. We assume, however, that there is a probability distribution Pgh
(gh) on the vector

of consumption preferences gh := [g1k, . . . , gNk]
T from where these preferences are

drawn and this probability distribution is known to all users. We further assume

that Pgh
is normal with mean ḡh1 where ḡh > 0 and 1 is an N × 1 vector with one

in every element, and covariance matrix Σh,

gh ∼ N (ḡh1,Σh) . (5.5)

We use the operator Egh
to signify expectation with respect to the distribution

Pgh
and σhij := [[Σh]]ij where the operator [[·]]ij indicates the (i, j)th entry of its

matrix argument. Having mean ḡh1 implies that all customers have equal average

preferences in that Egh
(gih) = ḡh for all i. If σhij = 0 for some pair i 6= j, it means

that the preferences of these customers are uncorrelated. In general, σhij 6= 0 to

account for correlated preferences due to, e.g., common weather. It is assumed that

preferences gh and gl for different time slots h 6= l are independent, e.g., the jump

in consumption preference from off-peak to peak time is independent.

The probability distributions Pωh
and Pgh

and the parameters αh and γh are

common knowledge among the operator and its customers. That is, the probability

distribution Pgh
in (5.5) is correctly estimated by the SO based on past data by

assumption and is announced to the customers – see [135] for a probabilistic model

and online tracking of user preferences. The pricing parameter γh and the operator’s

belief on the renewable energy parameter ωh, Pωh
is also announced. In addition,

customer i knows its private value of consumption preference gih.

A selfish customer’s goal is to maximize the utility uih(lih, l−ih; gih, ωh) in (6.3)
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given its partial knowledge of the others’ consumptions l−ih. Given the selfish be-

havior of users, the aggregate utility of the population is defined as the sum of

consumers’ utility functions, Uh({ljh}j∈N ; gh, ωh) :=
∑

i∈N uih(lih, l−ih; gih, ωh). The

aggregate utility over the horizon is defined as U :=
∑

h∈H Uh. The welfare of the

system at time h, Wh, considers the well-being of all the entities in the system and

is defined as the sum of the net revenue at time h, NRh, with the aggregate utility

Uh,

Wh := NRh + Uh = −Ch(Lh) +
∑
i∈N

gihlih − αl2ih (5.6)

where the second equality follows from the definition because the monetary cost to

the users cancels out the revenue of the SO. The welfare over the horizon is defined

as W :=
∑

h∈HWh.

The dependence of each user’s utility on the consumption of other users sets up

a game among the users with players i ∈ N and payoffs given in (6.3). The load

consumption that maximizes a player’s payoff requires strategic reasoning, i.e., a

model of behavior for other users, that comes in the form of a BNE strategy that we

introduce in the next section.

5.3 Customers’ Bayesian Game

User i’s load consumption at time h is determined by its belief qih and strategy

sih. The belief of i is a conditional probability distribution on gh given gih, qih(·) :=

Pgh
(·|gih). We use Eih[·] := Egh

[·|gih] to indicate conditional expectation with respect

to belief qih of user i at time h. In order to second-guess the consumption of other

customers, user i forms beliefs on their preferences given the common prior Pgh

and self-preferences up to time h {git}t<h. Observe that self-preferences of previous
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times are not relevant to belief at time h as they are independent from the present

preferences. Note further that if renewable generation is correlated with the user

preferences, the user can refine its beliefs based on the prior Pωh
. User i’s load

consumption at time h is determined by its strategy which is a complete contingency

plan that maps any possible local preference that it may have to its consumption,

that is, sih : gih 7→ R for any gih. In particular, for user i, its best response strategy

is to maximize expected utility with respect to its belief qih given the strategies of

other customers s−ih := {sjh}j 6=i,

BR(gih; s−ih) = arg max
lih

Eωh

[
Eih
[
uih(lih, s−ih; gih, ωh)

]]
. (5.7)

A BNE strategy profile s∗ := {sih}i∈N ,h∈H is a strategy in which each customer

maximizes expected utility with respect to its own belief given that other customers

play with respect to the BNE strategy.

Definition 5.1. A Bayesian Nash equilibrium strategy s∗ is such that for all i ∈ N ,

h ∈ H, and {qih}i∈N ,h∈H,

Eωh

[
Eih
[
uih(s

∗
ih, s

∗
−ih; gih, ωh)

]]
≥ Eωh

[
Eih
[
uih(sih, s

∗
−ih; gih, ωh)

]]
. (5.8)

The definition above is the BNE defined in (1.8) with preferences gh representing

the signals about the state of the world and no information exchanges among users

mi,t = ∅. As a result, the BNE strategy can be defined with the following fixed point

equations as per (1.9),

s∗ih(gih) = BR(gih; s
∗
−ih) (5.9)
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for all i ∈ N , h ∈ H, and gih. Using the definition in (6.10), the following result

characterizes the unique BNE strategy. The proof follows the identical steps of

Lemma 2.3 to obtain a set of linear equations. Here given the fixed structure of the

information – no information exchanges – , we are able to solve it explicitly with

respect to the parameters of the prior Pgh
in (5.5) and the self preferences gih.

Proposition 5.2. Consider the game defined by the payoff in (6.3) at time h ∈ H.

Let the information given to customer i be its preference gih, the common normal

prior on preferences Pgh
as per (5.5) and the prior on renewable generation Pωh

at

each time h. Then, the unique BNE strategy of customer i is linear in ω̄h, ḡh, gih for

all h ∈ H such that

s∗ih(gih) = aih(ḡh − ω̄hγh/N) + bih(gih − ḡh) (5.10)

where the constants aih and bih are entries of the vectors ah = [a1h, . . . , aNh]
T and

bh = [b1h, . . . , bNh]
T which are given by

ah = ((N + 1)γh/N + 2αh)
−11, bh = ρhd(Σh), (5.11)

with constant ρh = (2(γh/N + αh))
−1 and inference vector

d(Σh) = (I + ρhγhS(Σh)/N)−11. (5.12)

obtained from the pairwise inference matrix S(Σh) defined as

[[S(Σh)]]ii = 0, [[S(Σh)]]ij = σhij/σ
h
ii for all i ∈ N , j ∈ N \ i. (5.13)

Proof. See Appendix.
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Proposition 5.2 shows that there exists a unique BNE strategy. Furthermore, the

unique BNE strategy is linear in self-preference gih at each time slot. This is a direct

consequence of the fact that the utility in (6.3) has quadratic form and the prior

on preferences is normal (5.5). From the linear strategy in (5.10), we observe that

increase in mean preference ḡh causes an increase in consumption when aih > bih.

From the first set of strategy coefficients in (5.11), ah, we observe that the estimated

effect of renewable power ω̄h has a decreasing effect on individual consumption. This

is expected since increasing ω̄h implies an expected increase in the price which lowers

the incentive to consume. We remark that the users only need the mean estimate

ω̄h to respond optimally. Hence, the SO does not need to send the distribution of

ωh, Pωh
to the users.

Observe that the strategy coefficients aih and bih do not depend on information

specific to customer i. A consequence of this observation is that the SO knows the

strategy functions of all the rational users via the action coefficient equations in

(5.11). On the other hand, the realized load consumption lih is a function of realized

preference gih, i.e., l∗ih = s∗ih(gih), which is private. Hence, by knowing the strategy

function that the SO cannot predict the consumption level of the users with certainty.

Nevertheless, the SO can use the BNE strategies of users to estimate the expected

total consumption in order to achieve its policy design objectives as we discuss in

Section 5.5.

The strategy coefficients ah and bh in (5.11) depend on the inference vector

d(Σh) which is driven by the covariance matrix Σh. In order to identify the effect of

correlation among preferences on user behavior, we define the notion of σ-correlated

preferences.

Definition 5.3. The preferences of users are σ-correlated at time h if σhij = σ for
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all i ∈ N and j ∈ N \ i and σhii = 1 for all i ∈ N where 0 ≤ σ ≤ 1.

In σ-correlated preferences, the correlation among all users vary according to

the parameter σ. Hence, the definition does not allow heterogeneous correlation

among pairs. When the parameter σ is varied, the preference correlation change is

ubiquitous. The inference vector d(Σh) is well-defined for σ-correlated preferences

where 0 ≤ σ ≤ 1. We interpret the effect of correlation on the BNE strategies of

users with respect to varying σ in the next result.

Proposition 5.4. Denote the BNE strategy weights by aσh, bσh when preferences are

σ-correlated. Then, when σ′′ > σ′, we have the following relationship,

aσ
′

ih = aσ
′′

ih and bσ
′

ih > bσ
′′

ih for all i ∈ N . (5.14)

Proof. When the preferences are σ-correlated, the off-diagonal elements of the in-

ference matrix S(Σh) in (5.13) are equal to σ. As a result, we can write it as

S(Σh) = σ(11T − I) which allows us to express the inference vector as d(Σh) = (I +

ρhγhσ(11T−I))−11. Use the relationship that (I+c(11T−I))−11 = ((N−1)c+1)−11

for a constant c to obtain the following weights for aσh and bσh in (5.11),

aσh = ((N + 1)γh/N + 2αh)
−11,

bσh = ρh((N − 1)γhρhσ/N + 1)−11. (5.15)

The result is obtained by comparing individual entries of (5.15).

Proposition 5.4 shows that user i’s strategy is to place less weight on self-

preference gih when the correlation between the users increases. If the user i’s

preference is higher than the mean, gih > ḡh, then increasing correlation coefficient
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σ decreases consumption of user i. When gih < ḡh, user i’s consumption increases

as σ is increased. The intuition is as follows. Consider the case where gih > ḡh.

As the correlation coefficient increases, it is more likely that others’ preferences are

also above the mean. For instance, others’ preferences are certainly above the mean

when σ = 1, given gih > ḡh. This implies that consumption willingness of others

is similar to i, which then means the price will be higher than what is expected

when the population’s preference is at the mean. As a result, user i decreases its

consumption. An identical reasoning follows when gih < ḡh.

The increase in correlation coefficient enhances the ability of individuals to predict

others’ preferences. Alternatively, this increase in prediction ability can be achieved

via communication among individuals, e.g., sharing of preferences or consumption

levels. Hence, Proposition 5.4 states that if communication is such that the predictive

ability of all the individuals increase, then users place less weight on self-preferences

and more on the mean estimate ḡh. In [76], a similar result is shown to hold for the

beauty contest game where in contrast to the game considered here, individuals have

the incentive to increase their action when others increase theirs.

We note that the strategy coefficients of all users are the same when the prefer-

ences are σ-correlated; that is, aσih = aσjh and bσih = bσjh for all i ∈ N and j ∈ N \ i.

Furthermore, the effect of γh on strategy coefficients is readily identified from (5.15).

BNE strategy coefficients aσh and bσh decrease with respect to increasing γh – see equa-

tions in (5.15). The downward trend on consumption is conceivable since increasing

γh means increasing the elasticity of price with respect to total consumption.

We remark that similar analysis as in Proposition 5.4 follows when σii is equal

to some constant c > σ for all i ∈ N , that is, it suffices that the diagonals of Σh are

equal.
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Figure 5.2: Effect of preference distribution on performance metrics : Aggregate
Utility Uh (a), total consumption Lh (b), price ph(Lh; βh, ωh) (c), and realized rate
of return rh (d). Each line represents the value of the performance metric with
respect to three values of σij ∈ {0, 2, 4} as color coded in the legend of (d). Solid
lines represent the average value over 100 instantiations. Dashed lines indicate the
maximum and minimum values of 100 instantiations. Changes in user preferences
do not affect mean rate of return of the SO.

5.4 Numerical Examples

We numerically explore the effects of the preference distribution Pgh
(Section 5.4.1),

policy parameter γh (Section 5.4.2) and prediction errors of renewable power term

ωh (Section 6.6.4) on aggregate utility Uh, total consumption Lh, price ph in (6.2),

and the SO’s realized rate of return rh defined in Section 6.2.1.

In our simulations, there areH = 6 hours andN = 10 users. The mean preference

profile for the horizon is given as ḡ := [ḡ1, . . . , ḡH ] = [30, 35, 50, 40, 30, 30]. We choose

the preference covariance matrix Σh to be identical for all times, that is, Σh = Σ for
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Figure 5.3: Effect of policy parameter on performance metrics : total consumption
Lh (a), and realized rate of return rh (b). Each solid line represents the average
value (over 100 realizations) of the performance metric with respect to three values
of γ ∈ {0.5, 0.6, 0.7} where γh = γ for h ∈ H color coded in each figure. Dashed
lines mark minimum and maximum values over all scenarios. Total consumption
decreases with increasing γ.

all h ∈ H. Furthermore, we consider σ-correlated preferences with diagonal elements

σii = 4 and the correlation is set to σij = 2 for all users unless otherwise stated.

Note that, we consider σ-correlated preferences but use σij to refer to off-diagonal

elements of Σ. Users are selfish with utility in (6.3) and the decay parameter chosen

as αh = 1.5. The cost function of the SO is as given in (6.1) with the parameter

values κh = 1. For the baseline results, the policy parameter is set to γh = 0.6 for

all h ∈ H. Unless stated otherwise, we let the renewable power term ωh come from

normal distribution with mean ω̄h = 0 and variance σωh
= 2 for h ∈ H.

5.4.1 Effect of consumption preference distribution

In Figs. 6.1(a)-(d), we plot aggregate utility Uh, total consumption Lh, price ph

and realized rate of return rh with respect to time, respectively. Each solid line is

the mean value for the corresponding metric over 100 realizations of the random

variables (gh, ωh) for each correlation value σij = {0, 2, 4}. Each dashed plot refers

to the maximum and minimum values among the scenarios considered. The color
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codes in Figs. 6.1(a)-(d) indicate different correlation values σij = {0, 2, 4}.

Mean preference ḡh has a significant effect on all of the performance metrics except

the realized profit. We observe that as ḡh increases, e.g., from h = 1 to h = 2 or

from h = 2 to h = 3, aggregate utility, total consumption and price increases in Fig.

6.1(a)-(c), respectively. The increase in price is expected in peak hours with a jump

in total consumption – see (6.2). Increase in price does not automatically translate to

an increase in realized profit ratio in Fig. 6.1(d) since both the revenue and the cost

in (6.1) grow quadratically with total consumption. The correlation value σij affects

the minimum-maximum band that total consumption moves in as shown by Fig.

6.1(b). Specifically, the uncertainty in consumption is higher when user preferences

have higher correlation. This is reasonable since higher correlation means that if

one user’s realization of the preference is higher than the mean preference ḡh, others’

preferences are also likely to be higher, whereas in low correlation others are likely to

balance the high consumption preference of a given user. This indicates that the SO

can estimate consumption behavior with higher accuracy and requires less reserve

energy when the preferences are less correlated. We observe the effect of correlation

in our analysis in Section V-B where we show that price becomes deterministic as the

number of users grow if their preferences are uncorrelated. We further observe that

the mean welfare over the horizon W is not affected by the correlation coefficient

and is equal to $100, $99.8 and $100.5 for σij = {0, 2, 4}. Finally, we observe that

the difference between maximum and minimum values of the rate of return decrease

as ḡh increases – see Fig. 6.1(d).
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Figure 5.4: Effect of prediction error of renewable power uncertainty ωh on perfor-
mance metrics : aggregate utility

∑
h∈H Uh (a) and net revenue NR (b). In both

figures, the horizontal axis shows the prediction error for the renewable term in
price, that is, ωh = ω and ω̄h = ω̄ for h ∈ H and it shows ω − ω̄. Each point in
the plots corresponds to the value of the metric at a single initialization. When the
realized renewable term ω is larger than predicted ω̄, net revenue increases. Given
a fixed error in renewable prediction, aggregate utility is larger and net revenue is
smaller when predicted value ω̄ is smaller.

5.4.2 Effect of policy parameter

Figs. 5.3(a)-(b) illustrate the effect of policy parameter γh on total consumption

Lh and realized rate of return rh, respectively. We fix the policy parameter across

time, that is, γh = γ ∈ {0.5, 0.6, 0.7} for all h ∈ H. As before, solid lines indicate

average value over 100 instantiations (gh, ωh) and dashed lines indicate minimum

and maximum values over these 100 runs. The legend in Figs. 5.3(a)-(b) color code

each line according to the policy parameter γ ∈ {0.5, 0.6, 0.7}.

Total consumption decreases as γ increases in Fig. 5.3(a) as noted in the dis-

cussion following Proposition 5.4. Furthermore, PAR in total consumption is not

altered when γ is fixed over the time horizon in Fig. 5.3(a) where PAR of the aver-

age total consumption over all runs is 1.4 for each γ ∈ {0.5, 0.6, 0.7}. As a policy to

reduce PAR, the SO might choose to increase γh when ḡh is high and lower γh when

ḡh is low. Based on this observation, we propose a formal PAR minimizing policy
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in Section 5.5 and compare it with other commonly used pricing schemes. In Fig.

5.3(b), we observe that the mean realized profit ratio is in proportion with the policy

parameter γ. This is expected since both revenue and cost grow with the square of

the total consumption multiplied by constants γ and κh/2, respectively. Hence, the

rate of return is expected to be equal to 2γ/κh which gives us the mean rate of return

in Fig. 5.3(b) for each γ value. We further observe that the mean realized welfare

over the horizon W is not affected by the changes in γ, that is, for γ ∈ {0.5, 0.6, 0.7}

mean welfare is equal to $99, $99.8 and $100.2, respectively. At the same time, mean

user aggregate utility U decreases, that is, for γ ∈ {0.5, 0.6, 0.7} it is equal to $99,

$93.8 and $89, respectively. Hence, the loss in aggregate utility is compensated by

the increase in SO’s net revenue.

5.4.3 Effect of uncertainty in renewable power

From the BNE strategy of customers in (5.10), we observe that an increase in the

expectation ω̄h reduces the load of the customers linearly. Hence, the SO can use the

response of its customers to mitigate the effects of fluctuations in renewable source

generation. However, the contract between the operator and the customers is such

that the latter are charged based on the realization of the random variable ωh. We

analyze the effect of prediction errors of the renewable term, ω− ω̄, on the aggregate

utility U and NR. In Figs. 5.4(a)-(b), we plot U and NR with respect to prediction

error of the renewable term ω− ω̄, respectively. Each point in the plots corresponds

to the value of the metric at a single initialization given ω̄ ∈ {−2, 0, 2}. There are

100 initializations for each ω̄ value.

Fig. 5.4(a) shows that aggregate utility is higher when the predicted ω̄ is low,

i.e., discounts price. This is regardless of the prediction error. We also observe that
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there is a small decrease in mean aggregate utility on average with increasing ω̄, i.e.,

average aggregate utility across all runs is equal to $89.6, $89 and $88.3 respectively

for ω̄ ∈ {−2, 0, 2}. We do not observe any correlation with the prediction error of

renewables and aggregate utility in Fig. 5.4(a). Fig. 5.4(b) shows that NR is likely

to be larger when the realized value of ω is larger that ω̄. This is reasonable since

users respond to ω̄, however when the realized ω is larger than predicted ω̄, users pay

more than what they predicted. Furthermore, given a fixed amount of prediction

error ω − ω̄, observe that a increase in the announced estimate ω̄ is beneficial to

the NR in Fig. 5.4(b). Finally, the mean welfare is not affected by the announced

estimate ω̄, that is, mean welfare across all runs is equal to $100.2 irrespective of the

announced ω̄ ∈ {−2, 0, 2}.

5.5 Pricing policy mechanisms

We propose desired rate of return and PAR minimization as the two objectives

according to which the SO determines its pricing policy parameters {γh}h∈H given

price anticipating users. Below we first explain these two pricing schemes and then

consider two pricing schemes, namely flat and TOU pricing, in which users are price-

takers.

Desired Rate of Return RTP. The SO can pick its policy parameter γh to target

an expected rate of return r∗h = E[Rh(Lh(γh))/Ch(Lh(γh))] at time h. Given its

uncertainties in user preferences gh, the SO can rely on the consumer behavior

determined by the BNE (5.10) to reason about total load Lh(γh). The term Lh(γh)

makes the SO’s influence on consumption behavior through the adjustment of γh

explicit. In a budget balancing scheme, the SO would set desired rate of return to

r∗h = 1. Otherwise, it is customary that r∗h > 1 – see [124, 126] for similar pricing
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policies. Solving the desired rate of return r∗h = E[Rh(Lh(γh))/Ch(Lh(γh))] with

respect to price yields that the policy parameter is equal to γh = r∗hκh/2 when we

neglect the renewable generation term ωh = 0 as per the discussion in Section 5.4.2.

PAR Minimizing Price (PAR). The PAR of load profile {Lh}h∈H is defined as the

ratio of the maximum load over the operation cycle to the average load profile.

The SO can pick the policy parameter {γh}h∈H to minimize the expected PAR of

consumption behavior which is formulated as follows

min
{γh}h∈H

E

[
H maxh=1,...,H Lh(γh)∑H

h=1 Lh(γh)

]
. (5.16)

In computing its expected PAR, the SO relies on the model of user optimal be-

havior as defined by the BNE in (5.10). From the perspective of the SO, the total

consumption at equilibrium Lh =
∑

i∈N s
∗
ih(gih) is a normal random variable with

mean Nah(ḡh− ω̄hγh/N) and variance b2
h(N +N(N − 1)σ) when the preferences are

σ-correlated. We use Lh(γh) above to indicate that the distribution of this normal

random variable is parametrized by the parameter γh. Similarly, the average con-

sumption over the horizon is also a normal variable. Hence, the PAR expression

inside the expectation in (5.16) is a random variable that is the maximum of jointly

normal random variables divided by the sum of these random variables both of which

are parametrized by {γh}h∈H. To the best of our knowledge, an exact expression for

neither the density function nor the mean of this random variable exists. Hence,

we cannot hope to find a closed form solution to the PAR minimization problem in

(5.16).

Therefore, we use the evolutionary algorithm presented in [136] to determine the

minimizing policy profile {γ∗h}h∈H. The evolutionary algorithm starts with a candi-

date set of policy profiles and iteratively evolves the set based on the expected PAR
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achieved for each profile in the set. For each policy profile {γh}h∈H considered in

this set, we evaluate the expected PAR using Monte Carlo sampling.

In both of the pricing schemes above the users are assumed to be price anticipat-

ing and strategic, that is, account for their influence on price and reason strategically

about behavior of others as price value is not known at time of their decision making

as per the discussion in Section 6.2.1. Next, we present two pricing schemes, flat and

TOU pricing, in which the SO determines the price value in advance.

Flat Price (FLAT). Customers are charged with a flat price p across the horizon.

Customers respond by optimizing their utility in (5.3) with price replaced by flat price

p, that is, they are price-takers. The optimal user response is obtained by solving

the first order conditions l∗ih = (gih − p)/2αh assuming a nonnegative solution, that

is, gih > p for all i. Given the user behavior, the SO picks the p∗ that maximizes its

expected welfare over the horizon E[W ], p∗ = argmaxpE[W ]. Note that W depends

on optimal price-taker user response which is random to the SO. However, the SO

can use the form of the price-taking optimal behavior of the user to solve explicitly

for the p∗ based on its expectations. Assuming that αh = α and κh = κ for all

h ∈ H, we obtain the following welfare maximizing flat price,

p∗ =
κ
∑

h∈H ḡh

H(κ+ 2α)
. (5.17)

Note that the price scales linearly with the time average of the mean preferences

{ḡh}h∈H over the horizon. In order for the flat price to maximize welfare, the non-

negative consumption requirement, gih > p∗, needs to be satisfied for all i ∈ N

and h ∈ H. Given the optimal flat price (5.17), this condition is equivalent to

g −
∑

h ḡh/H ≥ −2αg/κ where g := mini∈N ,h∈H{gih}. Since the preferences have
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normal distribution there is always a positive probability that the condition will be

violated depending on the parameters κ, α, ḡh or σ. Specifically, the probability is

small when κ is small or α is large, or when the minimum mean value over the whole

horizon is away from zero, minh∈H ḡh � 0, and time average of the mean preferences

is relatively close to the minimum mean preference.

TOU Price. Customers are charged with hourly prices ph that are determined by

maximizing hourly expected welfare (5.6), that is, p∗h = argmaxpE[Wh] given that

customers optimally respond to announced hourly prices by selecting l∗ih = (gih −

ph)/2αh. Note that the Wh in (5.6) does not explicitly depend on price. Its de-

pendence on ph comes from the optimal user response model. Given the optimal

behavior of users, the price that maximizes expected welfare is explicitly expressed

as

p∗h =
κhḡh

κh + 2αh
. (5.18)

The price above scales linearly with the mean preference of the time slot ḡh. The

condition for non-negativity of consumption reduces to g
h
− ḡh ≥ −2αhgh/κh for all

h ∈ H where g
h

:= mini∈N gih. The probability of violating this requirement is small

when αh is large or κh is small. Furthermore it is small when the smallest mean

preference is large minh∈H ḡh � 0 or when σii is relatively small.

Next, we present the efficient competitive equilibrium pricing with complete in-

formation as a benchmark to compare the aforementioned pricing schemes against

[125, 126].
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5.5.1 Efficient Competitive Equilibrium

A competitive equilibrium is a tuple of price pW := [pW1 , . . . , p
W
H ] and consumption

{lih}i∈N ,h∈H profiles such that each user picks the consumption to maximize its selfish

utility given the price, lWih = (gih − pWh )/2αh and the market clears, that is, total

consumption demand is met by the SO. Note that in a competitive equilibrium,

users respond to announced price value of the SO. A competitive equilibrium is

efficient when it maximizes the welfare W . In order to compare the aforementioned

pricing schemes, in the next proposition we provide an explicit characterization of

the unique efficient competitive equilibrium under certain conditions on the values

of the preferences gh for h ∈ H.

Proposition 5.5. Consider the welfare W with user utility functions in (6.3) and

SO’s cost function in (6.1). There exists a unique competitive equilibrium price

pW := [pW1 , . . . , p
W
H ] such that when price-takers respond optimally by maximizing

their selfish utility, lWih = (gih− pWh )/2αh, the welfare W is maximized. Furthermore,

if the minimum preference value g
h

:= mini∈N{gih} satisfies the following condition

g
h
−
∑
j∈N

gjh/N ≥ −2αhgh/κh (5.19)

for h ∈ H then the competitive equilibrium price pW is characterized as

pWh =
κh
∑

i∈N gih

N(κh + 2αh)
for all h ∈ H. (5.20)

Proof. At the efficient competitive equilibrium, welfare W is maximized and market

clears, that is, demand equals supply,
∑

i∈N lih = Qh where Qh is defined as the

SO’s supply variable. We can translate this definition to the following optimization
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problem.

max
{{lih}i∈N ,Qh}h∈H

∑
h∈H

(
−Ch(Qh) +

∑
i∈N

gihlih − αhl2ih

)
(5.21)

s.t.
∑
i∈N

lih = Qh h ∈ H

lih ≥ 0 i ∈ N , h ∈ H

Consider the Lagrangian of the above optimization problem obtained by relaxing the

market clearance constraint with the corresponding price variables p := [p1, . . . , pH ],

L({{lih}i∈N , Qh}h∈H,p) =∑
h∈H

−Ch(Qh) +
∑
i∈N

gihlih − αhl2ih +
∑
h∈H

ph(Qh −
∑
i∈N

lih) (5.22)

When the Lagrangian (5.22) is maximized with respect to the primal variables lih

and Qh given Ch(Qh) in (6.1), we respectively obtain the following conditions,

gih − 2αlih − ph = 0 for all i ∈ N , h ∈ H (5.23)

−κhQh/N + ph = 0 h ∈ H (5.24)

Note that the first equation enforces that users are price takers, lih = (gih− ph)/2αh

and the second equation indicates that the optimal price is linear in Qh, ph =

κhQh/N . By the KKT optimality conditions, the feasibility conditions stated in

(5.21) has to be satisfied. From the power balance constraint, we get that the opti-

mal price is a linear function of total consumption, that is, ph = κh
∑

i∈N lih/N for

all h ∈ H. Now using the fact that users are price takers in optimal price, we get
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the following

ph =
κh
N

∑
i∈N

(gih − ph)/2αh. (5.25)

Solving the above equation for ph, we get the competitive equilibrium price in (5.20).

When we plug in the price pWh in (5.20) into the price taker consumption lWih = (gih−

pWh )/2αh, the consumption non-negativity is satisfied given the condition κh(gih −∑
j∈N gjh/N) + 2αgih ≥ 0 for all i ∈ N . Since the inequality in the condition has

to be satisfied by all the user preferences, this condition reduces to the condition in

(5.19).

The solution to (5.21) is a competitive equilibrium because each user responds

optimally lWih with respect to their selfish utility by the KKT condition (5.23) and the

market clears at the equilibrium price pWh . Furthermore, the equilibrium is efficient

because W is maximized. Finally, the solution is unique as the optimization in (5.21)

is strictly concave with feasible linear constraints.

The proposition provides a characterization of efficient competitive equilibrium

price pWH in (5.23) given the condition in (5.19) holds. The proof relies on expressing

the efficient competitive equilibrium as a welfare maximization problem with the con-

straints that demand matches supply and the consumption of users is non-negative.

The optimality conditions yield that the user consumption that maximizes welfare is

equivalent to users maximizing their selfish utility (6.3) given the equilibrium price

pWh . This shows that the feasible optimal consumption to the maximization problem

is an efficient competitive equilibrium.

The condition in (5.19) is required due to the non-negativity constraint on user

consumption. When the probability of violation is high, the SO has to consider this

probability that some users might choose not to consume any deferrable loads for

a given time slot. In this case, the user behavior distribution will not be normal
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from the perspective of the SO and hence the competitive price does not have the

form in (5.20). The condition implies that the minimum realized preference g
h

in

the population cannot be too small with respect to the realized mean preference∑
i∈N gih/N . Note that condition is akin to the condition for TOU pricing except

that here we replace ḡh with the mean of realized preferences
∑

i∈N gih/N . As a result

the discussion for TOU pricing on parameters that make the probability of violation

small applies to (5.19) verbatim. That is, for increasing αh, ḡh and decreasing κh,

the violation probability is small. In addition, if the correlation σ among users

increase, the probability of violating the condition decreases. We expect to have

high correlation among user preferences that have means larger than zero – see, e.g.,

the electric vehicle charging demand profiles in [135].

The competitive equilibrium price in (5.20) gives us a benchmark to compare the

proposed pricing schemes that operate under incomplete information of the prefer-

ences. In [130] the authors propose a decentralized algorithm that converges to an

efficient competitive equilibrium when the SO does not know the preferences of its

users. Furthermore, in [125], a taxing scheme which incentivizes users to truthfully

reveal their preferences and which aligns Nash equilibrium of the price anticipating

users with the competitive equilibrium is proposed. In this paper, we only consider

unilateral information feeding from the SO to the users, hence, the SO only has

estimates of the preferences of the users. Next, we comparatively analyze the pro-

posed pricing schemes that operate under incomplete information and the benchmark

competitive equilibrium price (CCE).
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Figure 5.5: Comparison of different pricing schemes with respect to Welfare W (a),
PAR of Total Consumption (b), Total Consumption

∑
h∈H Lh (c). In (a)-(c), each

point corresponds to the value of the metric for that scenario and dashed lines corre-
spond to the average value of these points over all scenarios with colors associating
the point with the pricing scheme in the legend. The PAR-minimizing policy per-
forms better than others in minimizing PAR of consumption while at the same time
being comparable to the competitive equilibrium pricing model (CCE) in welfare.

5.5.2 Analytical comparison among pricing policies

We expand the RTP price by substituting in the BNE strategy in (5.10) given σ-

correlated preferences for the total consumption per capita term L̄h in (6.2),

ph(Lh;ωh) =
γh(Nḡh + ωh(γh/N + 2αh))

N((N + 1)γh/N + 2αh)
+
γhb

σ
h

N

∑
i∈N

gih − ḡh (5.26)

where the coefficient bσh is a single element of the vector bσh in (5.15). The first

term above is obtained by grouping and simplifying all the terms that relate to the

first term in user behavior (5.10) and the term ωh/N in (6.2). When we take the

expectation of price above, the second term is nulled and we replace ω with ω̄ in the

first term. As expected, increasing the expectation of ωh means an expected increase

in price. Furthermore, when ω̄h = 0, we observe that increasing γh increases the price

by decreasing the relative weight of the 2αh term in the denominator. When ω̄ = 0

and γh = κh, the expected price in (5.26) is equal to κhḡh/((N+1)κh/N+2αh) which

is smaller than the TOU price in (5.18) since it has a larger denominator. That is, we

expect the TOU price be larger than RTP when γh = κh. However, the SO can solve
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for γh that equates the expected price of RTP with the TOU price. Moreover the

expectation of competitive price in (5.20), that is, expectation a priori to realization

of the preferences, is equal to the TOU price in (5.18). Consequently, the RTP

price can be made in expectation equal to the expectation of the CCE price by the

selection of γh as per the discussion above. Since in both TOU and CCE pricing

schemes, users respond optimally to the given price, we expect that users in TOU

will behave on average same as the users in CCE. The same argument cannot be

made between the RTP pricing scheme and the CCE pricing as user behavior differs

in the two schemes. Finally, note that flat price is equal to the time average of TOU.

That is, flat price is not equal to the CCE price unless all preferences are distributed

according to the same mean [137].

Next, we consider the effect of population size N on RTP (5.26), flat price (5.17),

TOU price (5.18) and competitive price (5.20). First note that flat and TOU prices

are not affected by the number of users. As N grows, the expectation of RTP price,

i.e., the first term of (5.26), converges to γhḡh/(γh + 2αh) which is identical to TOU

price when γh = κh. Furthermore, when the covariance matrix Σ is diagonal, that

is, σ = 0, the RTP price in (5.26) converges to TOU price almost surely by the

strong law of large numbers. It is possible to obtain convergence of the price when

the correlation coefficient σ is positive but decays with N [138]. The same set of

convergence results can be used to show that the CCE price in (5.20) converges

to TOU price almost surely. Since the users in TOU pricing scheme are price-

takers and by definition TOU price maximizes expected welfare, it is not surprising

that TOU price becomes closer to the competitive equilibrium as N grows. On the

other hand, the same argument is not that straightforward for price anticipating

users. Yet, observe that as N grows RTP price approaches a value that depends on

mean prior preference. As a result, price anticipating users become price-takers as

157



a single user’s influence on price diminishes. Hence, as N grows real-time pricing

schemes approach the competitive equilibrium given diminishing correlation among

preferences. This result is closely related to the competitive limit theorems for

Cournot markets [132, 139].

5.5.3 Numerical comparison among pricing policies

In Figs. 5.5(a)-(c), we numerically compare the aforementioned pricing schemes

with respect to their influence on welfare W , PAR of total consumption, and total

consumption over the horizon
∑

h∈H Lh, respectively. We use the same setup de-

scribed in Section 6.6 unless otherwise stated. We choose the desired rate of return

in RTP to be r∗h = 1.5 which yields γh = r∗hκh/2 = 0.75. For PAR pricing, we

let γh ∈ [0.5, 1.5]. The optimal policy parameters are found to be [γ∗1 , . . . , γ
∗
6 ] =

[0.55, 0.5, 1.5, 0.78, 0.54, 0.6]. The PAR minimizing choices of high policy parameter

in the peak time h = 3 when ḡ3 = 1.5 and lower γh other times supports the intu-

ition developed from Fig. 5.3(b). The flat price is determined according to (5.17) as

κh = 1 and αh = 1.5 for all h ∈ H. The TOU price is determined according to (5.18).

We use CCE to indicate the complete information competitive equilibria with price

determined according to (5.20). Each point in Figs. 5.5(a)-(c) corresponds to the

value attained in the performance metric in that scenario out of the 100 instantia-

tions for a given pricing model. We indicate the mean value over the 100 scenarios

with a colored dashed line, each color corresponding to a pricing model indicated in

the legend.

The flat price is equal to p∗ = $0.09/kWh. The TOU price profile is equal to

p∗ = [0.075, 0.088, 0.125, 0.1, 0.075, 0.075] $/kWh for the six hours. As indicated

in the discussion above, the average CCE price across the scenarios is equal to the
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TOU price. The mean RTP price across the scenarios treads below the TOU price

and is equal to p̄RTP = [0.06, 0.07, 0.1, 0.08, 0.06, 0.06]$/kWh. In comparison, PAR

pricing achieves a lower mean price for low preference hours and higher price in the

high preference hours, p̄PAR = [0.05, 0.05, 0.16, 0.08, 0.05, 0.05]$/kWh. In addition,

the variance of the RTP and PAR prices are low with the standard deviation in the

order of $0.003. We note that some of the variation observed in metrics for RTP

and PAR are due to the uncertainty introduced by the renewable energy term ωh in

(6.2).

In Fig. 5.5(a), we observe that PAR attains the lowest mean welfare $99.4, and

CCE and TOU have the highest mean welfare $100.6. The RTP pricing scheme

is close to the CCE welfare with mean welfare $100.4. The FLAT pricing has a

mean welfare $100.1 that is in between PAR and RTP mean welfares. In addition,

the break down of welfare to aggregate utility and net revenue changes depending

on price-anticipating or price-taking behavior model, e.g., for PAR, mean aggregate

utility U is equal to $83.5 whereas for CCE it is $75.5. This means the SO’s net

revenue is higher in price-taking models.

In Fig. 5.5(b), we see that PAR pricing achieves the lowest mean peak-to-average

ratio of consumption value 1.17 with small deviation from the mean 0.03 across runs.

CCE, RTP and TOU attain mean peak-to-average ratio consumption values close to

each other around 1.4 but TOU pricing has a higher standard deviation 0.05. As can

be expected FLAT price has the largest mean peak-to-average ratio of consumption

value 1.53 and high deviation 0.05 across runs as it does not adjust to varying

consumption preferences of the users.

When we compare the total consumption over the whole horizon in Fig. 5.5(c) we

observe that RTP and PAR pricing have means 561kWh and 558kWh, respectively,

that are close to each other. This is due to the fact that the average of PAR pricing
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policy parameters is
∑

h γh/H = 0.75 which is equal to policy parameter of RTP.

CCE, TOU and FLAT attain a lower consumption mean $537. In addition, the

deviation of total consumption across runs is smaller for RTP and PAR models with

deviation equal to 9.8kWh compared to the standard deviation of total consumption

in TOU and FLAT that is equal to 11.4kWh. This indicates that the forecast

certainty of the SO is higher when users anticipate price.

In sum, the proposed PAR minimizing pricing achieves a low PAR by incen-

tivizing users to shift their consumption to off-peak times. This shift does not hurt

the welfare of the system compared to other pricing schemes and is beneficial to the

aggregate utility of the users compared to CCE and other price-taking schemes. Fur-

ther note that by the analysis in Section 5.5.2, users are facing similar prices. Hence,

the increase in aggregate utility is due to the increased total consumption in RTP

and PAR, that is, users consume more but pay similar amounts of money. In both

RTP and PAR, the price anticipation of the users helps to reduce total consumption

variance increasing the demand predictability for the SO. Finally, PAR and RTP by

design admit renewable integration via the renewable term in price (6.2) as shown

in Section 6.6.4.

5.6 Discussions and Policy Implications

We considered a DR model where customers with unknown and heterogeneous

marginal utilities respond to real time prices announced by the SO ahead of each

time slot. The pricing mechanism is such that the SO announces a pricing function

that linearly increases with total consumption per capita and decreases with increas-

ing renewable energy generation in that time slot. The pricing provides the SO with

the versatility to charge hourly prices that incentivizes users to behave according to
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its goals. However, the users’ consumption preferences are random to the SO and it

may be that the users behave in a manner that trumps the SO’s intentions in order

to achieve their selfish goals. Our analysis shows that this won’t happen if agents,

selfish as they may be, act rationally.

In particular, from the perspective of the SO, the peak-to-average ratio of con-

sumption is reduced when the SO implements a PAR minimizing real time price,

that is, users shift their consumption to time slots in which it is cheaper for SO

to produce. The variance in demand caused by randomness in user preferences at

each time slot reduces, increasing the demand forecast accuracy of the SO. From

the perspective of a regulator invested in the well-being of the system, the proposed

tariff by the SO is fair to the users [140] and the welfare is expected to be close to

the efficient welfare. Furthermore, the renewable penetration is likely to increase

given accurate forecasts of renewable generation due to deferrable loads serving as a

buffer that absorbs the fluctuations of renewable generation. From the perspective

of the users, the proposed tariff is expected to increase user utility, that is, users will

consume the same amounts but at a cheaper price.

It has to be observed that the aforementioned implications depend on specific

modeling choices, namely, the assumption of rational user behavior, the consideration

of perfect knowledge of the preference distribution gh, and the use of a quadratic

form for the SO’s cost. These choices may be simplistic or unrealistic, but the

results outlined here still provide meaningful guidelines if these restrictions are lifted.

Consider, e.g., the case in which users are sub-rational and recall that we considered

two models of rational behavior: price taking and price anticipating. If the users

respond to announced price values, they would be price takers and the price is in

expectation equal to the complete information competitive equilibrium price. If the

users are selfish and anticipate their contribution to price function, then the price is
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shown to approach the competitive price as N grows under certain conditions, and

otherwise numerical results indicate that welfare reduction is tolerable. These models

of behavior capture the two extremes of user behavior, and therefore, sub-rational

behavior is likely to exhibit a behavior that falls in between these two extremes.

Regarding the assumption of perfect knowledge of the user preference distribu-

tion Pgh
it is likely that the SO will have some uncertain estimates, and that the

difference between the two is a random noise term. When the SO utilizes such noisy

predictions of the mean preference ḡh, the rational users will discount the weight on

the public information based on the uncertainty of the SO in their responses. While

the overall performance of the system will degrade, the generalization will not affect

the overall implications of the analysis. As for the use of quadratic energy costs, it

is better to consider a model in which the cost for each device can be modeled as

a linear function of the power dispatched from each device. In this case the cost

model is an increasing piecewise linear function of total consumption as power is dis-

patched from more costly generators with increasing total consumption [123]. The

quadratic cost function is an approximation for the piecewise linear cost function

which is tractable and captures the fundamental property that higher energy pro-

duction requires bringing more costly sources online. The quantitative specifics may

change for piecewise linear functions but the qualitative conclusions will be similar.
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Chapter 6

Demand Response Management in

Smart Grids with Cooperating

Rational Consumers

6.1 Introduction

The specifics of a consumer behavior model and the information provided to the

users impact the welfare of the overall system and is critical in assessing the benefits

or disadvantages of a pricing scheme in the electricity markets [129] 1. Based on

this observation, adopting the electricity market model in Chapter 5, we explore the

effects of consumer behavior models where consumers respond rationally regarding

selfish utility, the population’s aggregate utility or the welfare on the real-time pric-

ing (RTP) scheme (Section 6.2.3). As time progresses, the consumption behavior of

individuals reveal information about the preferences of others which individuals can

1The results in this chapter have been published in conferences [115, 141].
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use to make better estimates of total consumption. For this, we provide three in-

formation exchange models, namely, private, action sharing and broadcast (Section

6.2.4). In the private model, users do not receive any information besides the initial

public signal by the SO. In action sharing there exists a communication network on

which users exchange their latest consumption decisions with their immediate neigh-

bors. In broadcasting, the SO broadcasts the total consumption after each time

step. We assume that the customer’s power control scheduler can adjust the load

consumption between time slots according to his preferences and information. That

is, we are interested in modeling consumption behavior for shiftable appliances, e.g.,

electric vehicles, electronic devices, air conditioners, etc. [142].

We formulate each consumer behavior model and information exchange model

pair as a repeated game of incomplete information and characterize equilibrium

behavior (Section 6.4). Because the user payoff is quadratic (6.3), we can explicitly

derive the BNE by solving a set of linear equations at each stage and updating beliefs

depending on the information exchange model as is done in the QNG filter in Chapter

2. We use the QNG filter to rigorously analyze the effects of each pair of behavior

and information exchange model on total consumption, aggregate consumer utility,

SO’s net revenue (Section 6.6).

Our findings can be summarized as follows. Providing more information to the

consumers do not hurt the expected net revenue of the SO and increases the ex-

pected aggregate consumption utility. In addition, additional information to the

users reduce the uncertainty in total demand. Furthermore, action sharing informa-

tion exchange model eventually achieves the expected utility under full information

when the communication network is connected. The positive effects of additional

information are reduced with growing correlation among preferences. Furthermore,

increasing correlation among consumption preferences has a decreasing effect on the
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expected aggregate utility for all behavior models. Finally, the inefficiency due to

selfish behavior diminishes with the growing number of customers.

6.2 Demand Response Model

In the next two subsections, we briefly review the pricing and consumer behavior

models in Chapter 5.

6.2.1 Real Time Pricing

The SO’s cost of supplying Lh amounts of power is Ch(Lh) units,

Ch(Lh) =
1

2
κhL

2
h, (6.1)

for given constants κh > 0 that depend on the time slot h.

The SO implements an adaptive pricing strategy whereby customers are charged

a slot-dependent price ph that varies linearly with the total power consumption

Lh. The SO is responsible of renewable sources and incorporates renewable source

generation into the pricing strategy by introducing a random variable ωh ∈ R that

depends on the amount of renewable power produced at time slot h. The per-unit

power price at time slot h is set as

ph(Lh;ωh) = γh(Lh + ωh), (6.2)

where γh > 0 is a policy parameter to be determined by the SO based on its ob-

jectives. In the previous chapter, we presented how the operator can pick its policy
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parameter γh > 0 to minimize PAR or achieve a desired rate of return based on ra-

tional selfish consumer behavior. In the previous chapter, we also discussed the role

of the renewable term ωh in hedging against the renewable generation uncertainty.

The operator’s price function maps the amount of energy demanded to the market

price. We remark that the price ph(Lh;ωh) at time h becomes known after the end

of the time slot. This is because prices depend on the total demand Lh and the value

of ωh which are unknown a priori.

6.2.2 Power consumer

Given the pricing model, user i’s consumption at time slot h, lih, depends on his

consumption preference for the time slot gih > 0 and the decay term αh as per the

power consumer model in Chapter 5,

uih(lih, Lh; gih, ωh) = −lihph(Lh;ωh) + gihlih − αhl2ih. (6.3)

We assume the preference distribution is Pgh
is normal as per (5.5).

In the next two subsections, we explain the consumer behavior and information

exchange models which we characterize rational behavior for and analyze the effects

of in the rest of the paper.

6.2.3 Consumer behavior models

Users’ consumption behavior {lih}i=1,...,N determines the population’s aggregate util-

ity at time h,

Uh(lih, l−ih) :=
∑
i

uih(lih, Lh; gih, ωh), (6.4)

166



and the net revenue of the SO defined as its revenue minus the cost

NRh(Lh;ωh) := ph(Lh;ωh)Lh − Ch(Lh) (6.5)

where the SO’s cost Ch(Lh) is as defined in (6.1). The welfare of the overall system

at time h is the sum of the aggregate utility with the net revenue,

Wh(lih, l−ih) := Uh +NRh. (6.6)

User i is selfish when he wants to maximize individual utility in (6.3). He is altru-

istic when he cares about the well-being of other customers, that is, aims to choose

his consumption lih to maximize Uh in (6.4) given his information on preferences of

others. Finally, user i might also consider the well-being of the whole system and

aim to choose his consumption behavior to maximize the welfare Wh in (6.6) given

its information. We use the superscript Γ ∈{S, U, W} in uΓ
ih(lih, l−ih) to indicate

that the consumer i maximizes its selfish payoff S, aggregate utility U or the welfare

W.

6.2.4 Information exchange models

Consumption behavior of other individuals at time h ljh can provide valuable infor-

mation about the consumption preferences gh in that time slot. This information

is of use to the consumer i in estimating consumption for the next time slot h + 1

if the preferences of the users do not change in that time slot, that is, gh = gh+1.

Otherwise, the information is not helpful in estimating behavior of others for time

slot h + 1 because the change in the preference distribution is assumed to be in-

dependent. Next, we present a list of possible information exchange models under
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the assumption that the preferences remain the same for a given amount of time

starting from time h and lasting until there is a change in the consumption prefer-

ences, that is, gh = g0 := [g10, . . . , gN0] with prior distribution Pg0 for the time zone

T = {h ∈ H : gh = g0}. If there is a change in the preference distribution we restart

the information exchange process. The prediction of renewable source term Pωh
is

allowed to vary for h ∈ T . We use IΩ
ih to denote the set of information available to

consumer i at time slot h ∈ T for the information exchange model Ω.

Private. The information specific to consumers is the merest possible when it consists

of the private preference gi0, that is, IPih = {gi0} for h ∈ T .

Action Sharing. Power control schedulers are interconnected via a communication

network represented by a graph G(N , E) with its nodes representing the customers

N = {1, . . . , N} and edges belonging to the set E indicating possibility of commu-

nication. Customer i observes consumption levels of its neighbors in the network

Ni := {j ∈ N : (j, i) ∈ E} after each time slot. The vector of i’s d(i) := #Ni neigh-

bors is denoted by [i1, . . . , id(i)]. Given the communication setup, the information of

customer i at time slot h ∈ T contains his self-preference gi0 and the consumption of

his neighbors up to time h − 1, that is, IASih = {gi0, {lNit}t=0,...,h−1} where we define

the actions of i’s neighbors at time t by lNit := [li1t, . . . , lid(i)t]. We assume that the

power consumption schedulers keep the information received from neighbors private

and that the schedulers know the network structure G.

SO Broadcast. The SO collects all the individual consumption behavior at each

time h and broadcasts the total consumption to all the customers, that is, IBih =

{gi0, L1:h−1}.
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Consumption behavior model, i.e., selfish (S), altruistic (U), or welfare (W) max-

imizer, and the information exchange model, i.e., private (P), action sharing (AS) or

SO broadcast (B) determine the consumption decisions of user i. We remark that in

Chapter 5, the consumption behavior model is Γ = S and the information exchange

model is Ω = P.

In the next section, we define the consumer rational behavior using the solution

concept Bayesian Nash equilibrium. The game and the solution concept presented

in this chapter is equivalent to the BNG presented in Chapter 1. Moreover, the

information structure is Gaussian, hence the consumer behavior model is a Gaussian

quadratic network games to which we defined and analyzed in Chapter 2. In partic-

ular, in the action sharing model agents can use the QNG filter to behave optimally

as we show in Section 6.4. The redundant presentation of these concepts here is

because of the different notation adopted for the demand response model in Part II.

We draw the connections with the BNG and QNG filter where they are relevant.

6.3 Bayesian Nash equilibria

User i’s load consumption at time h ∈ T is determined by his belief qih and strategy

sih. The belief of i is a conditional probability distribution on g0 given IΩ
ih, qih(·) :=

Pg0(·|IΩ
ih). We use EΩ

ih[·] := Eg0 [·|IΩ
ih] to indicate conditional expectation with respect

to belief of qih. In order to second-guess the consumption of other customers, user

i forms beliefs on preferences given the common prior Pg0 and its information IΩ
ih.

User i’s load consumption at time h ∈ T is determined by its strategy which is a

complete contingency plan that maps any possible local observation that it may have

to its consumption, that is, sih : IΩ
ih 7→ R for any IΩ

ih. In particular, for user i, its best

response strategy is to maximize expected utility with respect to its belief qih given
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the strategies of other customers s−ih := {sjh}j 6=i,

BRΓ(IΩ
ih; s−ih) = arg max

lih
Eωh

[
EΩ
ih

[
uΓ
ih(lih, s−ih; gi0, ωh)

]]
. (6.7)

Before we define the BNE solution concept, we state the following lemma that

characterizes the general form of the best response function for all the consumer

models Γ = {S, U, W}.

Lemma 6.1. The best response strategy for the consumer behavior models Γ ∈ {S,

U, W} has the following general form

BRΓ(IΩ
ih; s−ih) =

gi0 − µΓ
hω̄h − λΓ

h

∑
j 6=iE

Ω
ih[sjh]

)
2(τΓ

h + αh)
(6.8)

where λSh = µSh = τSh = γh, λUh = 2γh, µUh = τUh = γh, and λWh = 2κh, µWh = 0,

τWh = κh.

The proof follows by taking the derivative of the corresponding utility with re-

spect i’s consumption lih, equating to zero and solving the equality for lih. Note

that when ω̄ = 0 and γh = κh then aggregate utility maximizers have the same best

response function as the welfare maximizers. A BNE strategy profile is a strategy in

which each customer maximizes expected utility with respect to its own belief given

that other customers play with respect to BNE strategy.

Definition 6.2. A Bayesian Nash equilibrium (BNE) strategy sΓ := {sΓ
ih}i∈N ,h∈T

for the consumer behavior model Γ ∈ {S, U,W} is such that for all i ∈ N , h ∈ T ,

and {IΩ
ih}i∈N ,h∈T ,

Eωh

[
EΩ
ih

[
uΓ
ih(s

Γ
ih, s

Γ
−ih; gi0, ωh)

]]
≥ Eωh

[
EΩ
ih

[
uΓ
ih(sih, s

Γ
−ih; gi0, ωh)

]]
. (6.9)
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A BNE strategy (6.9) is computed using beliefs formed according to Bayes’ rule.

Note that BNE strategy profile is defined for all time slots, that is, no user at any

given point in time has a profitable deviation to another strategy. In (6.9), consumers

keep beliefs on consumption behavior of others, which is a function of their beliefs

and strategies, to respond optimally.

Equivalently, a BNE strategy is one in which users play best response strategy

given their individual beliefs as per (6.7) to best response strategies of other users –

see [34, 62, 64] for similar notions of equilibrium. As a result, the BNE strategy is

defined with the following fixed point equations

sΓ
ih(I

Ω
ih) = BR(IΩ

ih; s
Γ
−ih) (6.10)

for all i ∈ N , h ∈ T , and IΩ
ih. We denote i’s realized load consumption from the

equilibrium strategy sΓ
ih and information IΩ

ih with lΓih := sΓ
ih(I

Ω
ih). Using the definition

in (6.10), we characterize the unique linear BNE strategy in the next section for any

information exchange and consumer behavior model.

6.4 Consumers’ Bayesian Game

It suffices for customer i to keep an estimate of the self-preference profile g0 in order

to keep an estimate of beliefs and strategies of other users [64]. We define the self-

preference profile augmented with mean ḡ0, g̃ := [gT0 , ḡ0]T . The mean and error

covariance matrix of i’s belief qih at time h is denoted by EΩ
ih[g̃] and Mi

g̃g̃(h) :=

E[(g̃ − E[g̃|IΩ
ih])(g̃ − E[g̃|IΩ

ih])
T ], respectively. Next result shows that, for any one

of the information exchange models in Section 6.2.4, there exists a unique BNE

strategy that is calculated by a linear weighting of their mean estimate of g̃ and
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the weights are obtained by solving a set of linear equations that depends on the

consumer behavior model Γ 2.

Proposition 6.3. Consider the Bayesian game defined by the payoff uΓ
ih for Γ ∈ {S,

U, W}. Let the information of customer i at time h ∈ T IΩ
ih be defined by one of

the information exchange models Ω ∈ {P, AS, B}. Given the normal prior on the

self-preference profile g0, the user i’s mean estimate of the preference profile at time

h ∈ T can be written as a linear combination of g̃, that is, EΩ
ih[g̃] = TΩ

i,hg̃ where

TΩ
i,h ∈ RN+1×N+1 for all h ∈ T , and the unique equilibrium strategy for i is linear in

its estimate of the augmented self-preference profile,

sΓ
ih(I

Ω
ih) = vTihE

Ω
ih[g̃] + rih (6.11)

where vih ∈ RN+1×1 and rih ∈ R are the strategy coefficients. The strategy coefficients

are calculated by solving the following set of equations for the consumer behavior

models Γ ∈ {S, U,W}

vTihT
ΩT
i,h + ρΓ

hλ
Γ
h

∑
j∈N\i

vjhT
ΩT
i,h TΩT

j,h = ρΓ
hei for all i ∈ N (6.12)

and

rih + ρΓ
hλ

Γ
h

∑
j∈N\i

rΓ
jh = −ρΓ

hµ
Γ
hω̄h for all i ∈ N (6.13)

where λΓ
h, µ

Γ
h, τ

Γ
h are as defined in Lemma 6.1 for Γ ∈ {S, U,W}, ρΓ

h = (2(τΓ
h +αh))

−1

and ei ∈ RN+1×1 is the unit vector.

Proof. Our plan is to propose a linear strategy as in (6.11) and use the general form

of the best response function (6.8) in the fixed point equations of BNE in (6.10) to

2The proof is adopted from the proof of Theorem 2.5.
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obtain the set of linear equations.

We prove by induction. Assume that users have linear estimates at time h,

EΩ
ih[g̃] = TΩ

ihg̃ for all i ∈ N . We propose that users follow strategy linear in their

mean estimate as in (6.11). Using the fixed point definition of BNE strategy in

(6.10), we get

vTihE
Ω
ih[g̃] + rih =

gi0 − µΓ
hω̄h − λΓ

h

∑
j 6=iE

Ω
ih[v

T
jhEjh[g̃] + rjh]

2(τΓ
h + αh)

(6.14)

for all i ∈ N . The summation above includes user i’s expectation of user j’s expec-

tation of the augmented preferences. Using the induction hypothesis, we can write

this term as

E[E[g̃|IΩ
jh]|IΩ

ih] = TΩ
jhT

Ω
ihg̃ (6.15)

Substituting the above equation for the corresponding terms in (6.14) and using the

induction hypothesis for the expectation term on the left hand side yields the set of

equations

vTihT
Ω
ihg̃ + rih =

(
gi0 − µΓ

hω̄h − λΓ
h

∑
j 6=i v

T
jhT

Ω
jhT

Ω
ihg̃ + rjh

))
2(τΓ

h + αh)
. (6.16)

Next, we equate the terms that multiply g̃ and the constants to obtain the set of

equations in (6.12) and (6.13), respectively.

Since user consumption is based on its BNE strategy at time h, it is linear in his

estimate of the preferences, that is, l∗jh = vTihT
Ω
ihg̃ + rih for all j ∈ N .

Then for any information exchange model Ω ∈ {P,AS,B} the observations of

user i can be expressed as a linear combination g̃ by defining the observation matrix

HΩT
i,h . For the private information model, the observation matrix is zero HPT

i,h = 0 for

any h ∈ T . For the action sharing information model, the observations of consumer
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i can be written using the observation matrix HAST
i,h ∈ Rd(i)×N+1

HAST
i,h := [vTji1,hT

AS
ji1,h

; . . . ; vTjid(i),tT
AS
jid(i),h

] (6.17)

and the vector rNi,h := [rji1,h; . . . ; rjid(i),h], as lΓNi,h
= HAST

i,h g̃ + rNi,h. Finally, when

the SO broadcasts total consumption LΓ
h, the observation matrix is a vector

HBT
i,h =

N∑
j=1

vTj,hT
B
j,h (6.18)

and the total consumption can be written as LΓ
h = HBT

i,h g̃ +
∑N

j=1 rjh. Since the prior

distribution on the preferences are Gaussian, the observations of user i are Gaussian

for all information exchange models Ω ∈ {P, AS, B}. As a result, we can use an

LMMSE estimator with gain matrix

Ki
g̃(h) := Mi

g̃g̃(h)HΩ
i,h

(
HΩT
i,h Mi

g̃g̃(h)HΩ
i,h

)−1
(6.19)

to propagate mean beliefs in the following way

E
[
g̃
∣∣ IΩ

ih+1

]
= E

[
g̃
∣∣ IΩ

ih

]
+Ki

g̃(h)
(
HΩT
i,h g̃ −HΩT

i,h TΩ
i,hg̃
)
, (6.20)

Using the induction hypothesis E[g̃|IΩ
ih] = TΩ

ihg̃ for the first term on the right hand

side of (6.20) and rearranging terms, we get

E
[
g̃
∣∣ IΩ

ih+1

]
=
(
TΩ
i,h +Ki

g̃(h)
(
HΩT
i,h −HΩT

i,h TΩ
i,h

) )
g̃. (6.21)

From (6.21), we observe that the mean estimate at time h+1 is a linear combination

of g̃. Specifically, we can express the linear weights of the mean estimate at time
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slot h+ 1 as

TΩ
i,h+1 = TΩ

i,h +Ki
g̃(h)

(
HΩT
i,h −HΩT

i,h TΩ
i,h

)
(6.22)

where the mean estimate is E
[
g̃
∣∣ IΩ

ih+1

]
= TΩ

i,h+1g̃, completing the induction argu-

ment. Similarly, the updates for error covariance matrices follow standard LMMSE

updates [75, Ch. 12]

Mi
g̃g̃(h+ 1) =Mi

g̃g̃(h)−Ki
g̃(h)HΩT

i,h Mi
g̃g̃(h). (6.23)

At the starting time slot h = 1, we have E[gj0
∣∣ gi0] = (1 − σij/σii)ḡ + (σij/σii)gi0,

hence the induction assumption is true initially E[g̃
∣∣ gi0] = TΩ

i1g̃ for all Ω ∈ {P, AS,

B}.

Since the stage game has the same payoff structure and the information is normal,

it suffices to show the uniqueness for the stage game. The uniqueness of the stage

game is proven in Proposition 1 in [114], also see proof Proposition 2.1 in [143].

Proposition 6.3 presents how BNE consumption strategies are computed at each

time slot which is integrated with belief propagation. The scheduler repeatedly de-

termines its consumption strategy given consumption behavior model Γ and available

information, receives information based on the information exchange model Ω at the

end of the time slot and propagates its beliefs on self-preference profile to use them

in the next time slot. For each consumption behavior Γ ∈ {S, U, W} the user solves

a different set of equations in (6.12)-(6.13) derived from the fixed point equations of

the BNE (6.10). For Private information exchange model, users do not receive any

new information within the horizon hence their mean estimate of g̃ do not change,

that is, TP
i,h = TP

i,1 for h ∈ T , which implies the set of equations (6.12)-(6.13) need
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to be solved only once at the beginning to determine the strategy for the whole time

horizon. For Action Sharing information exchange model, upon observing actions

of its neighbors, user i has new relevant information about self-preference profile

which it can use to better predict the total consumption in future steps. Similarly in

SO Broadcast model, each user receives information about the total consumption at

time h LΓ
h that is useful in estimating total consumption in the following time slot.

We remark that for any pair of behavior Γ and information exchange model Ω falls

under the setup of the Gaussian quadratic network games. For all behavior models

the payoff is quadratic. For the private information model Ω = P, the information

exchange is nul,l mi,t = ∅. For the action sharing model Ω = S, each user announces

its previous consumption to its neighbors, that is, mi,t = ai,t. In particular, when

the information exchange model is action sharing, Ω = AS, each observed action

{lΓjh}j∈Ni
is a linear combination of g̃ by (6.11) and linear mean estimates Ejh[g̃] =

TΩ
j,hg̃ and the observation matrix HT

j,h is computed as in (6.17). For the broadcast

model Ω = B, the information exchange is through the SO, a third party that is

not part of the game, but the information received by each user is still Gaussian. In

particular, when the SO broadcasts total consumption LΓ
h, Ω = B, the observation

matrix (6.18) is a vector that is obtained by summing the product of strategy and

mean estimate coefficients vjhT
Ω
j,h for all j ∈ N . Because we are in the domain of

Gaussian quadratic network games, each user can use the QNG filter presented in

Section 2.4. In Algorithm 2, we provide the QNG filter for user i to compute its

consumption level and propagate its belief given consumer behavior model Γ ∈ {S,

U, W} and the information exchange model Ω = AS.
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Algorithm 2 QNG filter for Ω = AS at User i

Initialization: Consumer behavior model Γ ∈ {S, U,W}. Posterior distribution on
g̃ at time slot h = 1 and {TΩ

j,1,M
j
g̃g̃(1)}j∈N according to distribution (5.5).

While gh = g0

1. Equilibrium for Γ: Solve {vjh, rjh}j∈N using (6.12)-(6.13).

2. Play : Compute sΓ
ih(I

Ω
ih) = vTihE[g̃

∣∣ IΩ
ih] + rih.

3. Construct observation matrix {HΩ
j,h}j∈N : Use (6.17).

4. Gain matrices: Compute {Kj
g̃(h)}j∈N

Kj
g̃(h) := Mj

g̃g̃(h)HΩ
j,h

(
HΩT
j,hMj

g̃g̃(h)HΩ
j,h

)−1

5. Estimation weights: Update {TΩ
j,h+1,M

j
g̃g̃(h+ 1)}j∈N

TΩ
j,h+1 = TΩ

j,h + Kj
g̃(h)

(
HΩT
j,h −HΩT

j,hTΩ
j,h

)

Mj
g̃g̃(h+ 1) =Mj

g̃g̃(h)−Kj
g̃(h)HΩT

j,hMj
g̃g̃(h).

6. Bayesian estimates: Calculate E[g̃
∣∣ IΩ

ih+1]

E[g̃
∣∣IΩ
ih+1] =E

[
g̃
∣∣ IΩ

ih

]
+Ki

g̃(h)
(
lΓNih
−E[lΓNih

∣∣ IΩ
ih]
)
.
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6.4.1 Private and Full information games

In Step 2, Algorithm 2 forms and solves the BNE N2 ×N2 set of equations at each

time. This computation can be avoided in situations where the information of each

consumer remains the same. The information is static in two obvious cases. The

first one is when the information exchange model is private. Second is when all

agents reach full information. For the private information case there exists a close

form solution to the set of equations in (6.12)-(6.13) that is symmetric when the

preference correlation is homogeneous, that is, the off-diagonal elements of Σh are

the same σhij = σ for all i = 1, . . . , N and j ∈ {1, . . . , N} \ i – see Proposition 2 in

[114]. The full information is achieved when the SO broadcasts total consumption

LΓ
h and the preference correlation is homogeneous. That is, for each customer his

private preference and the cumulative realized preference {gih,
∑

j gjh} is a sufficient

statistic of the realized preferences gh for the homogeneously correlated preference

games Γ ∈ {S, U, W} – see [132]. Furthermore, the total consumption LΓ
h conveys the

cumulative realized preference
∑

j gjh. This means that in the broadcast information

exchange model, Ω = B, in the first time slot consumers play a private information

game and from the second time slot onwards they have full information until there

is a change in the preference distribution.

6.5 Price taking Consumers

Consumers are price takers when they do not anticipate their effect on price, that

is, the selfish payoff in (6.3) depends on self consumption lih and price ph,

uih(lih) = −lihph + gihlih − αhl2ih. (6.24)
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Consumer Behavior Model (Γ)

Selfish (S) Altruistic (U) Welfare (W)

σij Ω EL̄ EU ENR EL̄ EU ENR EL̄ EU ENR

0 P 19.93 100.8 67.0 11.74 186.8 19.9 13.85 181.3 29.5
AS 19.80 106.5 66.3 11.57 190.9 19.7 13.70 186.2 29.1
B 19.79 106.8 66.3 11.57 191.1 19.7 13.68 186.6 29.1

1 P 19.83 99.4 66.3 11.60 183.8 19.5 13.72 178.9 28.9
AS 19.78 104.6 66.1 11.56 188.4 19.6 13.68 184.0 28.9
B 19.78 104.9 66.0 11.56 188.7 19.6 13.67 184.3 28.9

2 P 19.79 99.2 66.0 11.57 182.9 19.4 13.67 178.3 28.7
AS 19.77 102.8 65.9 11.56 186.3 19.5 13.66 181.7 28.7
B 19.77 103.0 65.9 11.56 186.5 19.5 13.66 182 28.7

3 P 19.77 99.2 66.0 11.56 182.5 19.4 13.66 178 28.8
AS 19.76 101.1 65.9 11.55 184.1 19.4 13.65 179.5 28.8
B 19.76 101.1 65.9 11.55 184.4 19.5 13.65 179.9 28.8

Table 6.1: Performance for behavior and information exchange models

Given the price at time ph, consumers maximize their payoff by lKih = (−ph+gih)/2αh.

Consumers are charged with hourly prices ph that are determined by maximizing

hourly expected net revenue, that is, ph = maxpE[pLKh − Ch(L
K
h )] where LKh =∑N

j=1 l
K
jh. Maximization of expected net revenue results in ph = (2αh+κh)ḡh/(4αh+

2Nκh). The price taker model provides a benchmark to compare with the price an-

ticipating models presented in the previous section. Note that information exchange

models do not affect consumer behavior in the price taking model.

In the following section we numerically compare the effects of the consumer be-

havior and the information exchange models characterized in Section 6.4 on the total

consumption, utility of the consumers and the revenue of the provider.
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Price-taker (K)

σij EL̄ EU ENR

0 19.19 48.0 122.0
1 19.08 48.5 88.7
2 19.00 49.8 48.0
3 18.96 51.5 6.3

Table 6.2: Performance for Price-taker behavior and information exchange models

6.6 Numerical Analyses

We explore the performance of the smart grid model in two orthogonal axes. In

the first we consider consumer behavior models Γ ∈ {S, U, W, K}. In the second

we vary the information exchange models Ω ∈{P, AS, B}. In each pair of price

anticipating behavior and information exchange model consumers behave rationally

following Algorithm 2. Price takers follow the model in Section 6.5. We determine

average consumption L̄ :=
∑

h Lh/H, aggregate utility U =
∑

h Uh/H, net revenue

NR =
∑

hNRh/H and welfare W =
∑

hWh/H as the performance metrics of the

model.

The numerical setup contains H = 24 hours. The cost function of the SO is

as given in (6.1) with the parameter values κh = 1 for h ∈ H. The price policy

parameter is chosen as γh = 1.2 for all time slots. There are N = 10 users. We

consider a geometric network on a 3 mile by 5 mile radius with a connection threshold

of 2 miles. We experiment with the population size N and discuss the network

structure effects for the AS model in Section 6.6.3. Each user has the same utility

function in (6.3) for the whole horizon with the decay parameter chosen as αh = 1

for h ∈ H. Unless otherwise stated, in order for the information sharing models to be

relevant we assume that the preferences gh and renewable energy related parameter

ωh are realized once and at the beginning of period as per the discussion in Section
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6.4, that is, gh = g and ωh = ω for all h ∈ H. The mean of the preference g

is chosen to be ḡ = 30. We choose the variance of the preference to be identical

for all consumers σii = 4 and the correlation among preferences σij is chosen to

be homogeneous among the population. We consider the effect of the correlation

coefficient on the mean and variance of the performance metrics by varying σij ∈

{0, 1, 2, 3}. Unless otherwise stated, we let ω be normal distributed with mean ω̄ = 0

and variance σω = 2.

We consider 20 instantiations of the random variables g and ω for each σij ∈

{0, 1, 2, 3}. We compute the expected values of average consumption, aggregate

utility and net revenue (EL̄,EU,ENR) by taking an average of all runs for a given

correlation coefficient σij – see Tables 6.1 and 6.2. We discuss the effects of consumer

behavior and information exchange models on the expected performance metrics in

Sections 6.6.1 and 6.6.2, respectively. We further examine the effect of renewable

term ω̄ on user consumption behavior and welfare for anticipatory behavior models

in Section 6.6.4.

Our findings can be summarized as follows. The correlation value σij plays a

critical role in the performance. With increasing preference correlation, expected

utility EU and net revenue ENR tends to decrease for each behavior and infor-

mation exchange model pair. Welfare maximizing W behavior with broadcasting

B information exchange model achieves the highest expected welfare EW . Among

anticipatory behavior models Γ ∈ {S, U, W}, the lowest EW is for S behavior with

P information exchange model. The loss due to selfishness is more noteworthy than

the loss due to information. Providing more information to the consumers is always

beneficial to the expected aggregate utility EU for all price anticipatory behavior

models Γ ∈ {S, U, W} and furthermore this information does not hurt the expected

net revenue of the providers. In the AS information exchange model, we observe
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that consumers eventually learn the sufficient statistic to estimate the preferences of

others that is information sufficient to estimate the price as long as the network is

connected [64]. This behavior also corresponds to the behavior after one step of the

broadcast information exchange model as per the discussion in Section 6.4.1. In sum,

the SO can allow users to share their consumptions and expect that consumer utility

will increase and variance of average consumption will drop without any damage to

the net revenue of the SO.

6.6.1 Effect of consumer behavior

Expected average consumption EL̄ is the largest when consumers are selfish (Γ =

S) and lowest when they maximize aggregate utility (Γ = U). The price-taker (Γ =

K) and welfare maximizer (Γ = W) consumption levels lie in between these two

behaviors where price taker behavior attains an expected average consumption close

to selfish behavior.

While S behavior attains a higher aggregate utility than K behavior, the con-

sumers expect a higher utility when they follow U or W behavior. As their names

imply, U behavior achieves the highest EU and W behavior achieves the highest

EW for all correlation coefficients σij ∈ {0, 1, 2, 3} for a given information exchange

model.

The net revenue of the SO is the largest when σij = 0 and consumers follow

K behavior. However, increasing correlation significantly drops the SO’s expected

net revenue for K behavior from ENR = 122 when σij = 0 to ENR = 6.3 when

σij = 3. Moreover, we observe that the variance of ENR increases from 55 to

274 when correlation coefficient changes from σij = 0 to σij = 3. On the other

hand, among price anticipatory behavior models SO attains the highest ENR under
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S behavior. Furthermore, when the behavior is price anticipatory, the effect of

correlation coefficient on SO’s ENR is small. Under altruistic behavior, the ENR

drops significantly, e.g., the ENR drops to $20 on average when Γ = U. For price

anticipatory models, the effect of correlation on the variance of NR is insignificant.

Among the price anticipatory behavior models the lowest expected welfare values

are registered for the S behavior. Keeping the information exchange model the same,

the difference in expected welfare between W and S behaviors is shrinking with

increasing preference correlation. This implies that at high preference correlation

the loss due to selfishness is less. Note that the loss due to selfishness does not

disappear at any positive value of σij ∈ [0, 4].

6.6.2 Effect of information exchange models

For each consumer behavior model, AS and B information exchange models influ-

ences expected consumer utility EU positively with no significant effect on expected

average consumption and net revenue when compared with the P information ex-

change model. Consequently, AS and B information exchange models improve ex-

pected welfare. We observe that the expected improvement in AS model is always

less than or equal to B model. This is because in AS consumers learn about others’

consumption preferences through their neighbors while in the B model each consumer

learns about the sufficient statistic of the price in the next time step, that is, it takes

longer in AS for all the consumers to reach full information for a connected network

which yields a higher expected utility. As can be guessed, the impact of AS and

B information exchange models vanishes as the preference correlation approaches

σij = 4, i.e., at full correlation P, AS, and B all attain the same performance.

The positive effect of communication on expected welfare is intuitively expected
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since information exchange helps rational users estimate behavior of others better

over time. However, the AS model does not improve the utility of all the consumers

[76, 132]. Hence, another question of interest beyond the scope of this paper is to

consider how to incentivize consumers to share their consumption behaviors with

others for the well-being of the population.

We further consider the variance of average consumption L̄ as a measure of de-

viation from expectations. We observe that the variance of average consumption

among runs increases for AS and B models as preference correlation σij increases.

On the other hand, for P model the variance decreases. Note that at full correlation

σij = 4, the information exchange models are identical. This implies that for the P

model, the variance of average consumption is always higher. That is, in AS and B

models total demand predictions have higher certainty.

6.6.3 Effect of population size (N)

Figs. 6.1(a)-(d) exhibit the total consumption with respect to hours for the popu-

lation size N = {3, 5, 10, 15}, respectively. Given a population size plot, each line

corresponds to a different information exchange model for the selfish consumer be-

havior model – see the legend in Fig. 6.1(d). For the AS information model the

communication network is determined by randomly placing N individuals on a 3

mile×5 mile area and connecting them if they are closer than the threshold connec-

tivity of 2 miles. The diameter of the network is displayed in the horizontal axis

with the population size for each plot. We observe that when the network is con-

nected (Figs. 6.1(b)-(d)), the total consumption in AS model converges to the total

consumption in the B model. Furthermore the convergence occurs in the order of

the diameter of the network. When the network is not connected (Fig. 6.1(a)), the
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Figure 6.1: Total consumption over time for Γ =S and Ω ∈{P, AS, B} for N =
{3, 5, 10, 15} population size. For the AS information each plot corresponds to a
geometric communication network of N consumers on a 3 mile×5 mile area with a
threshold connectivity of 2 miles. When the network is connected, AS information
exchange model converges to the B information exchange model in the number of
steps equal to the diameter of the network.

convergence does not necessarily occur.

We further examine the effect of population size on the expected welfare loss

per capita in Fig. 6.2. Expected welfare loss, EWL, is the difference between the

expected welfare for welfare maximizing consumers with full information, i.e., Γ =

W, Ω = B and the expected welfare for selfish consumers with private information,

i.e., Γ = S, Ω = P, that is, EWL := EW ({sWih (IBih)}i=1,...,N)−EW ({sSih(IPih)}i=1,...,N).

Expected welfare loss per capita normalizes EWL by the number of consumers,

that is, EWL/N . The expected welfare loss incorporates inefficiencies due to selfish

behavior and information. From Fig. 6.2, we observe that the inefficiency disappears
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Figure 6.2: Expected welfare loss EWL/N per capita for population size
N ∈ {10, 100, 500, 1000} with respect to preference correlation coefficient σij ∈
{0, 0.8, 1.6, 2.4, 3.2, 4}. Expected welfare loss EWL is the difference in expected
welfare when Γ =W, Ω =B and when Γ =S, Ω =P. Expectation of welfare is com-
puted by averaging 20 runs with instantiations of the preference profile g and the
renewable sources ω. As the population size increases the EWL/N disappears.

as the number of consumers N increases. Furthermore, the correlation coefficient

σij/σii can increase welfare loss for small values (< 0.2), otherwise its increase has a

decreasing effect on expected welfare loss. From Table 6.1 we know that increase in

correlation coefficient has a decreasing effect on the expected welfare. This means

that increasing σij has more detrimental effect on welfare maximizing behavior with

full information then on selfish behavior with private information. This is due to the

fact that as the correlation coefficient approaches one, σij/σii → 1, the informational

inefficiency disappears.
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Figure 6.3: Effect of mean estimate of renewable energy ω̄ on total consumption
per capita EL̄/N (a) and welfare EW (b). The renewable term ω̄ takes values
in {−2,−1, 0, 1, 2} and the correlation coefficient is fixed at σij = 2.4. For each
anticipatory behavior model Γ ∈{S,U,W} we consider private P and broadcast B
information exchange models. Increasing ω̄ affects the expected welfare positively
when users are S, and negatively when users are U.

6.6.4 Effect of renewable uncertainty

We consider the effect of reported mean estimate of the renewable energy term in the

price (6.2) on anticipatory consumer behavior models in Figs. 6.3(a)-(b). Fig. 6.3(a)-

(b) plot the total consumption per capita EL̄/N and mean welfare EW respectively

when ω̄ ∈ {−2,−1, 0, 1, 2} with fixed correlation coefficient σij = 2.4. As can be

guessed from the best response formulation of the welfare maximizer in Lemma 6.1,

a welfare maximizing user is not affected by the changes in ω̄. On the other hand,

since the increase in ω̄ implies an increase in price, the total consumption per capita

drops for both S and U behavior models – see Fig. 6.3(a). Because the S users have

higher consumption than W users, the decrease in consumption benefits EW of S

users. Analogously, the U users have lower consumption than W users, hence further

decrease in consumption due to increase in ω̄ detriments the EW . Conversely, an

expected discount, that is, decreasing ω̄, can improve EW for U users above the
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levels reached by W users – see Fig. 6.3(b) when ω̄ = −2.

6.7 Summary

We considered rational behavior models under information exchange models for a

power market with heterogeneous user preferences and a SO. The SO exercised a

RTP policy which set up a game of non-cooperative game of incomplete information

for the users. We showed that when the users exchange consumption levels or the SO

broadcasts aggregate demand information, the expected aggregate utility increases

and demand variance decreases without affecting SO’s net revenue.
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Chapter 7

Conclusions

7.1 Dissertation Summary

This dissertation considered the interactive decision-making problem in network

games of incomplete information. In Part I, we proposed rational and bounded

rational models of interactive decision-making in environments of uncertainty and

local information access. In rational behavior models, individuals play according to

a Bayesian Nash equilibrium at each decision time, that is, they have the correct

understanding of the society – behavior of others – and are Bayesian in processing

new information. Bounded rational behavior is the negation of rational behavior

where individuals have incorrect assumptions on the evolution of the society. While

in Part I we focused on applications to distributed autonomous systems, in Part

II we focused on applications to smart grids in power systems. A summary of the

results follows.

In Chapter 1, we defined Bayesian Network games (BNG) in which individuals

with uncertainty on the state of the world act optimally given their information

at each stage while acquiring information from their neighbors. In Chapter 2, we
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derived a tractable rational algorithm called quadratic network game (QNG) filter

for a particular class of BNG in which agents have quadratic payoffs and Gaussian

signals. In Chapter 3, we proposed a class of bounded rational algorithms called

distributed fictitious play algorithms which are adaptations of the fictitious play

algorithm to the network games with incomplete information. Distributed fictitious

play algorithm entailed agents keeping a model of others’ strategies based on past

frequency of actions and learning about the state of the world through local signals.

We showed that the algorithm converges to a Nash equilibrium of any potential

game when agents share their empirical frequencies about the population to their

neighbors. In Chapter 4, we analyzed the eventual outcome in BNG in which agents

have symmetric supermodular utilities. In particular, we showed that, when agents

observe their actions of their neighbors, agents asymptotically reach consensus in

actions and payoffs. In Chapters 2-3, we motivated the algorithms by applications

to technological settings. In particular we considered the beauty contest game as a

model of coordinated movement among a team of robots. We also considered the

target assignment game where a team of robots wants to cover the entrances of a

building.

In Part II, we considered a game-theoretic framework based on smart pricing in

power grids that incorporates heterogeneous user preferences and renewable power

uncertainty. In particular, we considered a demand response management model

where customers with unknown and heterogeneous marginal utilities respond to real-

time prices announced by the system operator ahead of each time in the operation

cycle. The pricing mechanism incorporated a renewable energy term that allows the

provider to incentivize consumption when there is estimated abundance of renew-

able sources within a time zone. In Chapter 5, given the pricing mechanism, we
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discussed the effects of changes in price policy parameters on the customer satisfac-

tion, total consumption and net revenue of the provider. Based on the characterized

rational user behavior and pricing strategy, we proposed a pricing that minimizes

the expected peak-to-average ratio of demand which can be implemented without

any prior communication with the users. Numerical comparisons proved that the

proposed peak-to-average ratio minimizing scheme is effective in minimizing peak-

to-average ratio while performing as good in comparison to other pricing schemes

in customer satisfaction and net revenue. In Chapter 6, we considered rational be-

havior models under information exchange models given the same electricity market

model in Chapter 5. We showed that when the users exchange consumption levels

or the system operator broadcasts aggregate demand information, they can use the

QNG filter to compute their behavior. Moreover, the additional information to the

users increased the expected user satisfaction and lowered demand variance without

affecting system operator’s net revenue.
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Appendix A

Distributed Fictitious Play

A.1 Intermediate convergence results

The following intermediate results are equivalent to derivations of the results stated

in Appendix B in [59]. They are stated here for completeness.

Lemma 1.1. If the processes gt ∈ 4N and ht ∈ 4N are such that for all i ∈ N

||g−it − h−it|| = O(log t/t) and the state learning processes SLi for all i ∈ N that

generates estimate beliefs {{µ̂i}∞t=0}i∈N satisfy Assumption 3.3, then for the poten-

tial utility function defined in Section 3.2 and the expected utility for best response

behavior defined in (3.5), the following holds

||v(g−it; µ̂
i
t)− v(h−it; µ̂

∗)|| = O(
log t

t
). (A.1)

Proof. The proof is detailed in Lemma 4 in [59]. The proof follows by first making

the observation that the expected utility defined in (3.3) for the potential function is

Lipschitz continuous, and second using the definition of the Lipschitz continuity to

bound the difference between the best response expected utilities in (3.5) for g−it, µ̂
i
t
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and h−it, µ̂
∗ by the distance between g−it, µ̂

i
t and h−it, µ̂

∗ multiplied by the Lipschitz

constant.

Lemma 1.2. If
∑T

t=1
αt

t
<∞ for all T > 0, ||αt − βt|| = O( log t

t
) and βt+1 ≥ 0 then∑T

t=1
βt
t
<∞ as T →∞.

Proof. Refer to the proof of Lemma 5 in [59].

Lemma 1.3. If for any ε > 0 the following holds

lim
T→∞

#{1 ≤ t ≤ T : f̄Nt /∈ Cε(µ̂∗)}
T

= 0 (A.2)

then limt→∞ d(f̄Nt , C(µ̂∗)) = 0.

Proof. By Lemma 7 in [59], (A.2) implies that for a given δ > 0 there exists an ε > 0

such that

lim
T→∞

#{1 ≤ t ≤ T : f̄Nt /∈ Bδ(C(µ̂∗))}
T

= 0 (A.3)

Using above equation, the result follows by Lemma 1 in [78].

Lemma 1.4. For the potential game with function u(·) in (3.1) and expected best

response utility (3.5), consider a sequence of distributions ft ∈ 4N for t = 1, 2, . . .

and a common belief on the state µ̂∗ ∈ P. Define the process βt :=
∑N

i=1 v(f−it; µ̂
∗)−

u(fit, f−it; µ̂
∗) for t = 1, 2, . . . . If

lim
T→∞

1

T

T∑
t=1

βt
t

= 0 (A.4)

then limt→∞ d(ft, K(µ̂∗)) = 0.

Proof. By Lemma 6 in [59], the condition (A.4) implies that for all ε > 0

lim
T→∞

#{1 ≤ t ≤ T : ft /∈ Kε(µ̂
∗)}

T
= 0. (A.5)
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By Lemma 7 in [59], (A.5) implies that for all δ > 0 the following is true

lim
T→∞

#{1 ≤ t ≤ T : ft /∈ Bδ(K(µ̂∗))}
T

= 0 (A.6)

The above convergence result yields desired convergence result by Lemma 1 in [78].

A.2 Convergence of Distributed Fictitious Play

with Histogram Sharing

In the following, we analyze the convergence rate of the distributed fictitious play

with histogram sharing presented in Section 3.4.

Denote the lth element of f̂ ijt by f̂ ijt(l). Define the matrix that captures popula-

tion’s estimate on j’s empirical distribution, F̂jt := [f̂ 1
jt, . . . , f̂

N
jt ]T ∈ RN×m. The lth

column of F̂jt represents the population’s estimate on j’s lth local action denoted by

F̂jt(l) := [f̂ 1
jt(l), . . . , f̂

N
jt (l)]T ∈ RN×1.

Observe that j’s estimate of the frequency of its own action l is correct, that

is, f̂ jjt(l) = fjt(l). Define the vector xjlt ∈ RN×1 where its jth element is equal to

the empirical frequency of agent j taking action l ∈ A, that is, xjlt(j) = fjt(l), and

its other elements are zero. Further define the weighted adjacency matrix for belief

update on the frequency of agent j’s lth action Wjl ∈ RN×N with Wjl(i, k) = wijk

for all i and k. We remind that wijk is the weight that i uses to mix agent j’s belief

on agent k’s empirical distribution. Also note that there are m weight matrices Wjl

each corresponding to one action l ∈ A.

The matrix Wjl is row stochastic, that is, the sum of row elements of Wjl is equal

to one for each row by
∑

k∈Ni
wijk = 1 and we have that Wjl(i, j) = 1 for j ∈ Ni

⋃
i.
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The latter condition on Wjl is by the fact that if j ∈ Ni, j sends its updated empirical

frequency to its neighbor i as in (3.36). Given these definitions we can write a linear

recursion for population’s estimate of j’s empirical frequency of its lth action

F̂jt+1(l) = Wjl(F̂jt(l) + xjlt+1 − xjlt). (A.7)

Note that if the above linear system converges to the true empirical frequency

of fjt(l) in all of its elements then it implies that all agents learned its true value.

Now we present the proof of Lemma 3.5 that characterizes the convergence rate of

the above linear system to the true empirical distribution.

Proof of Lemma 3.5. We consider the difference between the population’s estimate

of the empirical frequency of j taking action l ∈ A and j’s true empirical distribution

fjt(l)1. Using the fictitious play updates and the strong connectivity of the graph

we obtain the convergence rate.

Subtract fjt+1(l)1 from both sides of (A.7) to get

F̂jt+1(l)− fjt+1(l)1 = Wjl(F̂jt(l) + xjlt+1 − xjlt)− fjt+1(l)1. (A.8)

Since Wjl is row stochastic, we can move the last term on the right hand side inside

the matrix multiplication,

F̂jt+1(l)− fjt+1(l)1 = Wjl(F̂jt(l) + xjlt+1 − xjlt − fjt+1(l)1). (A.9)

We can equivalently express fjt+1(l) = fjt(l) + xjlt+1(j)− xjlt(j) by the definition of

the vector xjlt. Substituting this expression for the fjt+1(l) on the right hand side
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of the above equation we have

F̂jt+1(l)−fjt+1(l)1 = Wjl

(
F̂jt(l) + xjlt+1 − xjlt

− (fjt(l) + xjlt+1(j)− xjlt(j))1
)
. (A.10)

Let yt := F̂jt(l)− fjt(l)1, then

yt+1 = Wjl(yt + xjlt+1 − xjlt − (xjlt+1(j)− xjlt(j))1). (A.11)

Let δt := xjlt+1 − xjlt − (xjlt+1(j)− xjlt(j))1. Next, we provide an upper bound

for ||δt|| by using the triangle inequality and observing the fact that recursion for

fictitious play in (3.11) can change only the jth element of the vector xjlt by 1/t+ 1,

that is, xjlt+1(j)− xjlt(j) = 1
t+1

(Ψ(ajt+1)(l)− fjt(l)), as follows

||δt|| = ||xjlt+1 − xjlt − (xjlt+1(j)− xjlt(j))1|| (A.12)

≤ ||xjlt+1 − xjlt||+ ||xjlt+1(j)1− xjlt(j)1|| (A.13)

≤ 1

t+ 1
+

N

t+ 1
=
N + 1

t+ 1
= O(

1

t
). (A.14)

Now consider the row stochastic matrix Wjl. Its largest eigenvalue is λ1 = 1

and its right eigenvector is equal to column vector of ones 1 by the Perron-Frobenius

theorem [144, Ch. 2.2]. The left eigenvector associated with the eigenvalue λ1 is given

by eTj . This is easy to see when we interpret Wjl as representing a Markov chain

where state j is an absorbing state and there is a positive transition probability from

any other state to state j. Note that once a state i that is a neighbor of j is reached,

the transition to state j is with probability 1 due to the update rule (3.36). Because

the graph G is strongly connected, for any i /∈ Nj there exists a path to a node
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k ∈ Nj
⋃
j. As a result the absorbing state j is reached with positive probability

which implies the stationary distribution of the Markov chain is given by ej, that is,

with probability 1 the state is j. Moreover, limt→∞W
t
jl → 1eTj .

Now define the matrix W jl = Wjl − 1eTj . By the fact that the limiting power

sequence of the matrix is 1eTj , limt→∞W
t

jl → 0. By its construction the sum of the

row elements of W jl is zero for any row, that is, W jl1 = 0N×1. Further note that

the jth row of W jl is all zeros as well as all the rows k such that j ∈ Nk.

By using the definition of δt, we can equivalently write (A.11) as

yt+1 = Wjl(yt + δt) (A.15)

=
t∑

s=0

W s+1
jl δt−s +W t

jly0 (A.16)

The second line follows by writing the equivalence (A.15) for {ys}s=0,1,...,t and it-

eratively substituting each term on the right hand side of (A.15). Note that by

assumption y0 = 0. So when we consider the norm of yt+1, ||yt+1||, we are left with

||yt+1|| = ||
t∑

s=0

W s+1
jl δt−s|| (A.17)

≤
t∑

s=0

||W s+1
jl δt−s|| (A.18)

Now use the decomposition Wjl = W jl + 1eTj in the above line to get

||yt+1|| ≤
t∑

s=0

||(W jl + 1eTj )s+1δt−s|| (A.19)

Since W jl1 = 0, eTjW jl = 0 and 1eTj = (1eTj )s for any s = 1, 2, . . . , we have

W s
jl = W

s

jl + 1eTj . Then we can upper bound ||yt+1|| by using the triangle inequality
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as follows

||yt+1|| ≤
t∑

s=0

||W s+1

jl δt−s||+ ||(1eTj )s+1δt−s|| (A.20)

Further note δs(j) = 0 for any s = 1, 2, . . . by the definition of xjlt+1 and xjlt, and

therefore eTj δs = 0, which means the second term on the right hand side of the

inequality is zero, that is,

||yt+1|| ≤
t∑

s=0

||W s+1

jl δt−s||. (A.21)

Furthermore, the spectral radius of W jl is strictly less than 1, that is, λ̄1 := ρ(W jl) <

1 because limt→∞W
t

jl → 0 [145, Thm. 1.10]. As a result, we have

||yt+1|| ≤
t∑

s=0

||W s+1

jl δt−s|| ≤
t∑

s=0

ρ(W jl)
s+1||δt−s|| (A.22)

Note that by (A.14), we have ||δt−s|| = N + 1/t − s. Define δavg(t) := 1
t

∑t
s=0

N+1
s

.

By Chebychev’s sum inequality [146] (p. 43-44), we have the following upper bound

from the above relation,

||yt+1|| ≤ δavg(t)
t∑

s=0

λ̄s+1
1 (A.23)

= δavg(t)(λ̄1
1− λ̄t+1

1

1− λ̄1

) ≤ δavg(t)

1− λ̄1

. (A.24)

Noting that δavg(t) := 1
t

∑t
s=0

N+1
s

= O( log t
t

), we have ||yt+1|| = ||F̂jt(l)− fjt(l)1|| =

O( log t
t

) for any l ∈ A. Consequently, ||f̂ ijt − fjt|| = O( log t
t

).
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[115] C. Eksin, H. Deliç, and A. Ribeiro. Distributed demand side management for

heterogeneous rational consumers in smart grids with renewable sources. In

Proc. Int. Conf. Acoustics Speech Signal Process. (to appear), Florence, Italy,

2014.

212
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