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ABSTRACT

PASSIVE VARIABLE COMPLIANCE FOR DYNAMIC LEGGED ROBOTS

Kevin C. Galloway

Mark Yim

Recent developments in legged robotics have found that constant stiffness passive

compliant legs are an effective mechanism for enabling dynamic locomotion. In spite

of its success, one of the limitations of this approach is reduced adaptability. The

final leg mechanism usually performs optimally for a small range of conditions such

as the desired speed, payload, and terrain. For many situations in which a small

locomotion system experiences a change in any of these conditions, it is desirable to

have a tunable stiffness leg for effective gait control.

To date, the mechanical complexities of designing usefully robust tunable passive

compliance into legs has precluded their implementation on practical running robots.

In this thesis we present an overview of tunable stiffness legs, and introduce a sim-

ple leg model that captures the spatial compliance of our tunable leg. We present

experimental evidence supporting the advantages of tunable stiffness legs, and im-

plement what we believe is the first autonomous dynamic legged robot capable of

automatic leg stiffness adjustment. Finally we discuss design objectives, material

considerations, and manufacturing methods that lead to robust passive compliant

legs.
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Chapter 1

Introduction

1.1 Motivation

As the cost of components used in robot production decrease and microprocessor

capabilities increase, it seems logical that robots will gradually play a more central

role in our daily activities. Yet, there are numerous barriers to the integration of

robotic solutions into our lives. Most centrally our environment was not designed for

robots. Consequently, we must design robots to respond to our environment. The

mobility of robots, given the different terrains that they must traverse, has been a

focus of robotic research and development. Most commercial robotic platforms rely

on traditional wheeled or tracked means for mobility; however, the limitations of

these systems have become increasingly evident. This has motivated considerable

research into robotic legged locomotion which draws inspiration from nature.

In recent years, legged robotic systems have become more capable and sophisti-

cated thanks in part to improved energy density of battery technology, smaller and

more powerful processors, and increased access to light weight composite materi-

als all of which improve the power-to-weight ratio of the final platform. However,

in light of these advances there remains a significant performance gap in terms of

speed, efficiency, and agility between legged animals and robots. Animals have a
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sophisticated high degree-of-freedom musculoskeletal system that is impossible to

duplicate with motors and gears. However, biomechanical studies have shown that

in spite of this sophistication there are behaviors and responses that can be captured

with simple mechanical models. One such response is that animals adjust their leg

stiffness when confronted with changes in speed, payload, and terrain. We speculate

that in order to close the performance gap between the two systems and thereby

improve the utility of legged robots, tunable leg stiffness will play an integral part

in future robotic systems.

To date, little experimental work has been done to understand the role of leg

compliance especially tunable passive leg compliance. This is understandable as

conducting research in this arena requires access to a robust, dynamic legged robot

of which very few exist. Of those that do, most leg development innovations have

produced fixed stiffness passive compliant mechanisms. As we have alluded, one

of the limitations of fixed leg stiffness is a reduced adaptability of the final leg

mechanism as it usually performs optimally for a small range of conditions such as

a certain robot weight, terrain, speed, and gait. Part of the difficulty in designing

a tunable stiffness leg lies in the competing constraints of size, strength, flexibility,

weight and final integration of the robotic appendage. Novel designs are required

to meet these heretofore unmet stringent design requirements and to give robotic

structures the kind of adaptability and robustness found in nature. For without

an experimental platform capable of running with variable passive stiffness, it is

impossible to understand how to apply the lessons from simple models and animals

to improve the performance of legged robotic systems.

1.2 Contribution

An overriding goal throughout this dissertation has been to create a variable passive

compliant leg that extends the capabilities of any running robot, but more specifically
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our RHex-like hexapedal platform, EduBot. The most notable contribution derived

from this work is what we believe is the first autonomous dynamic legged robot

capable of leg stiffness adjustment. This was achieved through innovations on the

method of structure-controlled stiffness, which is a tunable stiffness approach that

changes the active structure of an elastic element. Typically this means changing

the active length of a spring or its second moment of intertia. The proposed final

tunable leg configuration incorporates a self-locking actuation system that changes

the second moment of inertia of a composite C-leg with a compliant tuning element

that slides along the length of the leg. Furthermore, the proposed design strategy

and resulting stiffness adjustment method is not limited to RHex-like robots. It

is quite generic and can be implemented on other robot configurations including

centipede robots. This, then, is a contribution to the larger field of legged robotics.

We also report empirical results which offer insights into the role that passive tun-

able leg compliance has on efficiency and speed. Thousands of running experiments

were performed using a Nelder-Mead optimization scheme and a motion capture sys-

tem to tune our hexapod’s six gait parameters – stride period, stance phase angle,

duty factor, offset angle, proportional gain, and derivative gain (see Chapter 2.6 for

more detail)– for a range of leg stiffnesses. With our tunable leg we experimentally

demonstrate that tuning the leg stiffness enables the robot span a range of speeds

and efficiencies for a variety of terrains and payloads. For example, we find that

increasing mechanical leg stiffness allows our hexapod to run faster. A similar ef-

fect was observed on surfaces of different compliance, where more compliant surfaces

such as carpet padding and grass allowed the robot to run faster and more efficiently

(with and without a payload) than was achieved on carpet. We also found that for

our platform there is an optimal leg stiffness to maximize speed, and legs that are

too stiff result in slow and inefficient locomotion. Lastly, we also report a marginal

improvement in turning agility at higher leg stiffnesses.
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Another important contribution of this thesis work is the construction of a hierar-

chical set of design objectives that should be considered at the outset of any attempt

to design tunable legs. These objectives are generated within the framework of ax-

iomatic design which offers a systems level approach to design. What emerges from

the creation and implementation of these design objectives are two novel tunable

leg designs that innovate on the method of structure-controlled stiffness and serve

as example implementations. Furthermore, during the course of addressing each of

the design objectives we document lessons learned which we anticipate will serve as

a valuable resource future leg innovators.

This thesis also details an approach to understand the non-linear behavior of

RHex’s C-legs under load. For the purposes of modeling, the C-leg has typically

been simplified to a single linear spring even though under load the toe clearly

deflects in two dimensions. Other attempts have tried to model it as a two degree

of freedom system by two orthogonally placed linear springs [44]. We propose a

simpler model to capture the spatial compliant properties of a tunable leg using

a combination standard beam bending theory and the pseudo-rigid-body (PRB)

model, which represents leg stiffness as a torsion spring at the effective center of

rotation.

A last contribution of this work has been the innovation of new robotic hardware

to increase the robustness and capabilities of EduBot. Most notable of these innova-

tions is the integrations of a slip ring into the motor mount assembly, which enables

the passage of power and communication between the robot body and its six contin-

uously rotating legs. This was necessary to achieve reliable autonomous leg tuning;

however, this development also enables future development of a more sophisticated

leg sensory system as there is now a direct electrical connection between the legs and

the robot body.
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Chapter 2

Background

2.1 Review of Mammalian Legged Locomotion

Turning to nature for inspiration has been a growing practice in robotic research

for the last few decades. The studies of legged animals in particular have revealed

musculoskeletal spring behaviors that are common across a very diverse group of

creatures. These insights into animal locomotion offer design principals (both in

mechanics and controls) and benchmarks for the development of running robots. In

this section, we highlight many of the findings from legged animal studies with a

focus on the role of leg stiffness in locomotion. We begin by first introducing the

Spring Loaded Inverted Pendulum (SLIP) model which is the basis for most of the

work on legged locomotion both in biomechanics and robotics [37].

2.1.1 Review of Spring Loaded Inverted Pendulum (SLIP)

Model

The Spring Loaded Inverted Pendulum (SLIP) is a reduced-order dynamic model

that accurately captures the center of mass motion of high degree of freedom legged

locomotion systems [23]. In its simplest form, the SLIP model represents a legged
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Figure 2.1: Spring Loaded Inverted Pendulum (SLIP) Model (adapted from [13])
.

animal as mass on top of a single linear spring which bounces like a pogo stick (see

Figure 2.1). The motion in the sagittal-plane is characterized by two phases: an

aerial and a ground contact phase. As it implies, the entire system is off the ground

(i.e. ballistic) during the aerial phase. As the leg spring touches down with a certain

velocity and touch down angle, Θtd, the kinetic energy is converted into potential

energy as elastic strain energy in the spring. The point mass moves forward pivoting

about the point of contact and sweeping an arc as the spring is loaded and unloaded.

Once maximum compression is reached, generally some form of energy is inserted to

mitigate energy losses (note: more sophisticated models include a damper in parallel

with the spring to account for energy dissipation from the musculoskeletal system

and ground contact) and the potential energy in the spring is converted back into

kinetic energy. Within this framework, leg spring stiffness, kleg, is calculated as the

ratio of the ground reaction force, F, to leg compression, ∆L, when the spring is

maximally compressed [12].

kleg =
F

∆L
(2.1)

Locomotion is far more complicated than the SLIP model reveals as it simplifies

the entire musculoskeletal system (i.e. muscles, tendons, joints and so forth) into

a single leg spring. However, ignoring the inner workings of the musculoskeletal
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system and characterizing the output through inverse dynamics to arrive at the SLIP

model has proven very useful [27]. As Alexander claims, “The advantage of such an

approach is to reveal basic principles that do not depend on the fine details of body

structure” [3]. For example, one principle that has been identified through the SLIP

model is the scaling of individual leg stiffness with body mass. In [23], a comparison

of kleg across a wide range of animal sizes (0.1-140 kg) revealed that kleg increases

proportional to M(0.67) where animal mass is given by M. The resulting resonant

period of vertical vibration was found to be longer in larger animals, proportional

to M0.19. Furthermore, the foot ground contact time nearly matched the resonant

period of vibration with increasing body mass [23].

2.2 Role of Leg Stiffness in Locomotion

In the following section we explore further the role of leg stiffness in locomotion

by presenting experimental and simulation studies. In particular, we consider two

aspects of legged locomotion that have some degree of dependency on leg stiffness

which include work output and gait control. Additionally, we consider how these

findings may be relevant to robotic locomotion.

2.2.1 Work Output

Biomechanical studies and the SLIP model suggest that tuned resonant running

leads to energy efficient and stable locomotion [37]. Matching the leg stiffness to the

stride frequency can minimize the amount of work that must be inserted during each

stance phase. For example, one study estimated that horses generate 40% of positive

mechanical work for trotting and galloping from the elastic coil of their tendons [10].

In another study, researchers estimated that the Achilles tendon conserves as much

as 35% of mechanical work for each stride [41]. Full et al. studied the mechanical

properties of cockroach (Blaberus discoidalis) legs and found the leg resilience in this
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running arthropod to range from 60-75% [22]. There are other factors influence an

animal’s or robot’s gait such as leg touch down angle, velocity, or terrain to name a

few; Irregardless animal studies suggest there is an optimal leg stiffness for a given

mass where kleg ∝ M0.67 [23].

Evidence also suggests that tuned leg stiffness influences passive stability prop-

erties. A SLIP study by [64] concluded that for certain leg touch down angles the

system becomes self-stabilized if the leg stiffness is properly adjusted and a minimum

speed is exceeded.

Hurst also notes the consequences of incorrect leg stiffness for robots [37]. A leg

that is too stiff results in energetically wasteful collisions with the ground, and may

introduce high stresses (potentially damaging) to the robot body and electronics.

On the other hand, leg stiffness that is too soft may experience loads that exceed the

material limits or compression limits of the leg. For example, overly soft legs may

cause the robot to bottom out and cause hardware damage. Soft leg springs also

introduce another form of inefficiency as the robot must support its weight against

gravity over a longer stance phase [37].

Biomechanical evidence also suggests that tunable leg stiffness may be useful

for switching between work output (i.e. tuned resonant running) and high power

activity modes. Passive elastic elements are an efficient means to reduce muscular

work as they recycle energy; however, in animals they can not be turned off. Tendons

will always store energy when the muscle is activated. Roberts claims that “for high

power activities - those that require significant net mechanical work to increase the

potential or kinetic energy of the body - the tendency of the tendons to stretch

can potentially increase the work muscles must do” [59]. Therefore it has been

suggested that stiffer spring elements offer better transmission of mechanical work

for movements such as jumping or accelerating [2] [40] [11]. Tunable stiffness legs

may then offer robots the ability to switch between these two modes as the situation

arises such as jumping across a hole.
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2.2.2 Gait Control with Tunable Legs

A system tuned for a particular environment and speed can produce energy efficient

locomotion; however, changes in desired speed, payload, and terrain can quickly

alter the locomotor’s dynamics and produce energetically wasteful locomotion. A

robot has significantly more utility if it can adapt to a changing environment. Both

biomechanical and robotic research suggest that tunable leg stiffness is one effective

method for gait control [4] [26] [57].

Leg Stiffness vs. Speed

Several studies have shown that tunable leg stiffness may be necessary to achieve a

range of stable forward velocities. Alexander notes that if a leg is swung through the

same angle while the foot is on the ground, a stiffer spring may be needed to achieve

higher or lower speeds [4]. A simple version of this concept has been demonstrated in

human hoppers. Farley et al. conducted human hopping experiments and found that

vertical leg stiffness more than doubled as hopping frequency increased [24]. Even

though hopping isn’t running, there are considerable dynamic similarities between

the two cyclic systems. Raibert and Koechling adjusted the air pressure of linear

air springs in a planar biped to change the effective leg stiffness, and demonstrated

stiffer springs lead to faster running [58]. Simulation results of a two-segmented leg

also suggest that to achieve a large range of speeds and regions of stability, legs with

adjustable joint stiffness are needed [61] [60].

With that said there are some differences of opinion in the biomechanical field

as to the relationship between velocity and leg stiffness. Some animal studies sug-

gest that leg stiffness does not vary with speed [27] [23] [28] [46], but rather animals

increase stride length by their angle of attack at leg touch down. In this way the ver-

tical travel of the center of mass (∆L) is reduced while keeping leg stiffness constant.

Arampatzis et al. [7] on the other hand found that for humans running up to 6.5

m/s (14.5 mph), velocity does influence leg spring stiffness with an approximate 40%

change in leg spring stiffness. Similar results were also found by [42] where there was
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an observed increase in knee joint stiffness over a range of sprint running speeds. It

is proposed that the discrepancy stems from the calculation methods employed [7].

Arampatzis et al. collected force plate and kinematic data while previous work used

ground reaction force data and calculated the theoretical length change of the leg

spring, which overestimated the length change of the leg spring [7].

Leg Stiffness vs. Payload

The SLIP model also suggests that tunable leg stiffness plays an important role

in gait adaptation to changes in payload. A torque-driven SLIP study by Jun and

Clark showed that for changes in a robots body mass (i.e. payload changes) adjusting

leg stiffness without changing the controller adapted for a particular set of physical

parameters, gives stability results in general better than those obtained by opti-

mizing the controller alone [74]. This suggests that very efficient locomotion could

be achieved with very little computing overhead. For example, one could imagine

embedding a robot’s gait parameters into its mechanical structure through clever

gearing. Leg stiffness adjustment alone could be used to adjust the gait in response

to changes in desire forward velocity (i.e. stride frequency) or payload. Furthermore

it should be noted that for some designs, tunable leg stiffness also includes the ability

to safely support heavier loads without failure.

Leg Stiffness vs. Terrain

Tunable leg stiffness may be useful for adapting to terrains of different stiffness.

The hypothesis stands that during running, a compliant surface acts as a second

spring in series with the leg spring. Changes in ground stiffness therefore affect the

total stiffness of the system and can adversely affect the gait. Biomechanical studies

suggest that tunable leg stiffness may be warranted to maintain a constant total

stiffness of the series combination of the leg spring and surface, and thus preserving

consistent center of mass mechanics across the range of surface stiffnesses. A study

of humans hopping in place found that for a desired hopping frequency, leg stiffness

increases as much as 3-fold as the compliance of the running surface increases while

10



Figure 2.2: Taxonomy of tunable compliance methods.

the total stiffness remained relatively unchanged [25]. The same study also noted that

impact of ground stiffness changes on a gait are dependent on the animal size [25].

For example, the leg stiffness of a horse with a body mass of over 600 kg is affected

more by the series combination with the ground stiffness than is a mouse weighing

30 g.

2.3 Compliant Actuation Methods

Leg compliance plays an important role in locomotion especially with regards to

gait stability, efficiency (i.e. energy storage and return), and forward speed. An-

imals control leg compliance with a very complex system of muscles and tendons

that work together to add and store energy to achieve rather efficient forward loco-

motion. Simplifying these behaviors into a robust mechanical device is a topic of

interest within the legged robotics community. Several variable stiffness mechanisms

have been created in recent years for use in robotic legs and various robotic joints;

each with varying degrees of success. While the bulk of this thesis focuses on variable

passive leg compliance, in the following section we present an overview of compli-

ant actuators used in legged (and some non-legged) machines. We will discuss the
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advantages and disadvantages of each in order to provide context for the following

chapters where we discuss the development and design of a tunable stiffness leg. In

this section we treat the topic of compliance very generally and present examples of

each case in the following sections.

The taxonomy of compliant actuators as they relate to legged locomotion can

be represented in hierarchical form as shown in Figure 2.2. Compliant actuators

are devices which can accommodate a certain amount deviation from an equilibrium

position of some end effector or joint without actuator input. This is contrasted with

stiff actuators which track a predefined path and supply the actuator force necessary

to correct any deviations. Within the first sub-group, active compliance and passive

compliance offer two very different approaches to compliant actuation.

Active compliance, also known as force control, is essentially a stiff actuator that

achieves compliance through software. In the case of a robotic leg, this is done

by coordinating the systems response to deviations from the leg’s target position.

Generally, as the deviation increases the restoring torque (or force) increases [70].

Active compliance offers several useful applications in manufacturing and human-

robot interactions for improving safety of the robot and those around it; however,

for implementation in dynamic legged locomotion, this form of software controlled

compliance comes with several drawbacks which include 1) slow reaction to sudden

impacts (reaction rate depends on sampling rate), 2) significant input power required

to accelerate the end-effector, and 3) increased mass (i.e. motors are heavy). The

most significant drawback of active compliance stems from the fact that motors

transmit rotational torque and are not capable of storing and returning energy. As

a result, active compliant locomotion platforms such as Sony’s Asimo bipedal robot

or Aibo robotic dog, require power for every motion and any kinetic energy that is

generated is lost as an inelastic collision with the ground.

Passive compliance is generally thought of as the combination of actuators and

mechanical elasticity [52]. In this case, an actuator may drive an elastic element such
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as a spring, and the element deflects in response to applied loads or impacts. Some

of the useful benefits of such devices in legged locomotion include 1) a seemingly

unlimited bandwidth to impacts compared to active compliance, 2) the capacity to

store and return energy, and 3) reduced power requirements [38]. Within passive

compliance there are two subgroups shown in Figure 2.2: constant and variable pas-

sive compliance. Constant passive compliance features an elastic element with fixed

stiffness properties, and generally features simple designs with few, if any, moving

parts. This increases the mechanism’s reliability and minimizes weight. Much design

effort is therefore invested to determine the leg spring geometry that will integrate

harmoniously with the overall mechanical design and yield dynamic gaits. Variable

passive compliance on the other hand can offer a range of stiffness settings, which for

legged locomotion applications leads to the ability to change the natural dynamics

of the system. The added capability also introduces added complexity as the design

must typically incorporate at least one motor for altering compliance, sensors for

detecting the compliance setting, and so forth.

Variable passive compliance can be achieved through several methods including

antagonistic, mechanical stiffness control, and structure-controlled stiffness (shown

in Figure 2.2). Antagonistic methods offer a means to control joint stiffness and

usually require two motors that work against each other to control the joint stiffness.

Compliance is added by inserting springs between the motors and the joint. Of

the variable passive compliant methods, the antagonistic approach is the most bio-

inspired, though, this doesn’t necessarily make it the best approach. There is a

high degree of complexity associated with these mechanisms as joint compliance

and motor torque can not be decoupled [33]. Furthermore, antagonistic designs

create considerable internal forces which necessitate a stronger and generally heavier

support structure.

Mechanical stiffness control is a relatively recent method for joint stiffness con-

trol and uses two motors to control the compliance and the equilibrium position
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Figure 2.3: (A) Mechanical impedance adjuster changes spring stiffness by adjusting
effective length of a leaf spring [51], (B) the Jack Spring changes the stiffness of a he-
lical spring by adjusting the number of active and inactive coils [34], (C) the stiffness
of stacked cantilever elastic elements can be adjusted by changing the connectivity
between layers [66] [39].

independently of each other [68]. This method essentially creates the effect of a

tunable torsion spring by adjusting the length of the moment arm that extends from

one rigid body and is connected via a spring to the other rigid body. Compared

to antagonistic joint stiffness control, mechanical stiffness control is much easier to

implement and to control as the joint stiffness and equilibrium position setting are

decoupled. This method does, however, require two motors which adds considerable

weight depending on the desired size of the mechanism.

Structure-controlled stiffness is probably the simplest variable passive compliant

method to control and implement. Stiffness is adjusted by changing the active struc-

ture of an elastic element such as its effective length or second moment of inertia.

Figure 2.3 illustrates a few versions of this concept. In Figure 2.3A, the stiffness of a

leaf spring is adjusted by changing the leaf spring’s effective length with a slider [51].

For small deflections of a cantilever beam, the resulting stiffness, K, is related to the

active length, l, through the following relation

K ∝ 1

l3
(2.2)

Changing the effective length of the spring element can have a profound effect on the

resulting stiffness since the length term is cubed. Figure 2.3B demonstrates another
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variation of this idea with a helical spring. The effective stiffness of a helical spring

can be adjusted by changing the number of active and inactive coils (i.e. changing

the effective length) [34]. Figure 2.3C shows a passive cantilever spring element

constructed from several layers of flexible sheets. The mechanical impedance of the

passive element can be adjusted by controlling the connectivity of the layers through

an external stimulus such as a vacuum [66] [39]. For example, when the layers are

not connected the second moment of inertia, I, behaves as

I =
nbh3

12
(2.3)

where I is the second moment of inertia, n is the number of layers, b is the width

of the elastic element, and h is the thickness. If the layers are connected, then the

second moment of inertia increases significantly as the term for the number of layers,

n, is now cubed.

IConnectedLayers =
b(nh)3

12
(2.4)

One must be careful, though, that the intended application does not saturate the

elastic element [37]. However, in general, structure-controlled stiffness methods yield

simpler designs that offer 1) large stiffness ranges, 2) configurations that are easy to

scale up or down in size, 3) designs that behave like a constant passive compliant leg

once locked into position, and 4) a lighter weight solution as one actuator is typically

needed to adjust stiffness.

2.4 Robotic Legged Locomotion

Robotic legged locomotion derives inspiration from biology and is a topic that con-

tinues to fascinate and challenge biomechanists and roboticists [57] [5] [45]. In fact

in 1893, the first bio-inspired locomotion patent was granted for human powered
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Figure 2.4: (A) Bow Leg Hopper from CMU [75]; (B) ARL Monopod II from McGill
[1]; (C) Scout II from McGill [54] and (D) RUSH [76].

mechanical horse [57]. Many of the recent efforts have focused on trying to achieve

locomotion with active compliance some of which include BIP2000, Johnnie, Rabbit,

H6, Asimo and QRIO [37]. While these robots were designed to locomote and in

some cases exhibit some dynamic behavior, the reliance on active compliance for

joint stiffness and joint angle means they will always be energy inefficient. For this

reason we look to robotic legged platforms that have demonstrated the usefulness of

springs for achieving energy efficient and/or fast running.

Raibert’s work was the first to break ground in this field with simple dynamic
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hopping robots capable of achieving dynamically stable gaits. In particular, the Pla-

nar Biped featured an air spring in series with a hydraulic actuator which controlled

the resonant bouncing motion, the air spring pressure (i.e. leg stiffness), and leg

retraction. To our knowledge this platform demonstrated the earliest known imple-

mentation of robotic leg stiffness adjustment. Raibert et al. found that increasing

the leg stiffness by increasing the air pressure in the legs allowed the robot to run

faster [58]. It should be noted though that the Planar Biped was tethered to a

compressed air source which is a rather inefficient method to pursue for leg stiffness

adjustment in an autonomous vehicle.

The CMU Bow Leg Hopper shown in Figure 2.4A, used a physical spring con-

structed from fiberglass and lost only 20-30% of its energy during stance [75]. A

thrust servo in the hip pulled on a bow string to pull the toe inward to insert en-

ergy into the leg during the flight phase. During the stance phase the string slacked

and released the stored energy. The Bow Leg Hopper demonstrated that substantial

energy efficiency could be achieved using a fixed stiffness spring. The design also

showed that making the leg structure and the spring one in the same is an efficient

method to minimize mass. The fiberglass bow leg structure weighs 30 grams.

The ARL Monopod series (I & II) is an under-actuated passive dynamic running

robot leg that has demonstrated impressive efficiency [32] [1] (see Figure 2.4B for an

image of the ARL Monopod II). Weighing 18 kg and standing 0.7 meters tall, the

ARL Monopod II features two passive spring mechanisms; one as a helical spring

built into the prismatic joint to store and return energy during the stance phase, and

the other as a double pulley-spring system with surgical latex tubing as the spring

to passively counter oscillations between leg and body at the hip.

Scout II [14] [15] [56] shown in Figure 2.4C, is another under-actuated quadruped

robot that employs a single actuator per leg to control leg rotation in the sagittal

plane. Each leg features a prismatic spring to passively store and return energy.

Buehler et al. has shown very simple control laws (i.e. positioning the legs at a
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desired touchdown angle) can achieve stable running at speeds up to 1.3 m/s [56].

Rush is a more recent under-actuated quadruped robot that features compliant

kneed joints instead of prismatic ones. Shown in Figure 2.4D, the leg consists of an

upper portion and a lower portion connected to form a passive knee joint. A linear

spring connects two ends of this mechanism to create passive torsional stiffness at

the joint. Rush has demonstrated stable and efficient locomotion at speeds up to 0.9

m/s [76].

These robots and several others share a common feature in that the leg stiffness

is either manually tuned for the test environment or the gait is optimized for the

stiffness of the mechanical system. Therefore, in order to change the stiffness of the

mechanical system, the elastic element must be physically changed. This is where the

value of tunable leg stiffness becomes apparent. For additional background material

on legged robots the following are useful resources [57] [44] [37] [17].

2.5 Related Work on Tunable Legs

The Biped with Mechanically Adjustable Series Compliance (BiMASC) is the first

leg that we are aware of that was designed with the intent of being a variable me-

chanical stiffness leg for a dynamic running robot [37] [38]. The design uses an

antagonistic spring arrangement of non-linear fiberglass springs and a complex sys-

tem of pulleys and cables to adjust joint stiffness. Its final configuration weighed

approximately 30 kg (66 lbs) and stood about 1 meter tall. This prototype revealed

that adjusting leg stiffness through antagonistic springs does not offer an efficient

means of energy storage as one would think. Its creator found significant energy

losses as joint deflection only causes one spring to compress to store energy while

the other relaxes to transfer energy into the compressing spring. Furthermore, the

antagonistic spring arrangement creates significant internal forces that increase the

friction of the system and necessitate stronger (i.e. heavier) parts to support these
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loads. A redesign of BiMASC produced Thumper which had approximately the same

size and shape; however, the tunable joint stiffness capability was removed. Conse-

quently the mechanical stiffness of the system could only be adjusted by physically

changing the antagonistic springs. Thumper was able to demonstrate through sim-

ulation and experimentation that proper selection of spring stiffness could lead to

energy efficient gaits [37].

A recent biped walker was designed with tunable joint stiffness using an an-

tagonistic arrangement of pleated pneumatic artificial muscles (PPAM) where one

actuator pulls while the other relaxes to control joint stiffness and joint angle [69].

Through a 1-DOF pendulum actuated by the antagonistic actuators, researchers

were able to demonstrate that tuning actuator compliance to the natural frequency

of the biped walker can significantly reduce energy consumption [69]. PPAM’s tech-

nology, however, is not a viable solution for autonomous running as it requires a

sizable power source to support the compressor, is difficult to scale down to small

robots (less than 8 kg), and tends to be difficult to model and control.

The Mechanically Adjustable Compliance and Controllable Equilibrium Position

Actuator (MACCEPA) is an example of a mechanical joint stiffness control mecha-

nism [68] which was designed for a passive bipedal walker. Joint stiffness is controlled

by two servo motors; one adjusts the angle of a lever arm which sets the equilib-

rium point, and the other pretensions the spring independently of the equilibrium

position. The MACCEPA is a simple design and works well for controlled passive

walking; however, the power and weight cost of supporting two motors to control a

single joint stiffness makes it a difficult method to implement on a dynamic runner.

2.6 Description of EduBot

The research and development of tunable legs has in large part been inspired by

RHex (see Figure 2.5), which uses a very simple clock-driven, open-loop tripod gait
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Figure 2.5: RHex Figure 2.6: EduBot

Figure 2.7: Shows the gait parameters
of one leg revolution controlled by the
Buehler clock (adapted from [74])

Figure 2.8: Geometric comparison of
RHex and EduBot

to rotate six compliant C-legs to generate forward locomotion. A PD controller

at each hip controls the leg’s angular position and speed which are governed by a

periodic function known as the Buehler Clock [62]. As indicated in Figure 2.7 there

are six gait parameters for this locomotion system where 1) T is the stride period

that specifies the rotation frequency, 2) the angle swept during stance phase is the

difference between, ΨA and ΨB, 3) the duty factor is a percentage of the stride period

that specifies the rotation frequency during the stance phase, 4) the leg offset angle

specifies the angular position of the stance phase (i.e. the leg offset is set to zero in

Figure 2.7, 5) kp is the proportional gain, and 6) kd is the derivative gain. Careful

20



tuning off all these parameters can lead to very fast and efficient locomotion and

impressive performance on even the roughest terrains [72].

EduBot shown Figure 2.6 is a smaller version of RHex weighing 3 kg with a

leg diameter of 11.5 cm compared to RHex’s 8 kg mass and 17.5 cm diameter C-

legs. Using known scaling factors [5], Figure 2.8 uses published RHex data [72] to

calculate the projected and actual performance values for EduBot. It is clear that

the two platforms are geometrically similar; however, in terms of dynamics we find

that EduBot can run faster with better efficiency (as measured by specific resistance

which is covered in more details in Chapter 5), which suggests that EduBot is a

better tuned mechanical system.

Aside from being similar to RHex, the EduBot platform was selected for tunable

leg integration because 1) the mechanical configuration allows for direct integration

of new leg designs without affecting sub-assemblies, and 2) the robot size is easier

to handle.

It should also be noted that while EduBot can run faster than RHex, it is weaker

compared to RHex. The stall torque for a RHex motor is approximately 3.6 Nm,

while the stall torque for an EduBot motor is approximately 1 Nm. The ratio of

stall torque to body mass reveals that EduBot has approximately 30% less torque

output per unit mass than RHex.

2.7 Design Methodology

Tunable legs for dynamic locomotion is a relatively new area of study mainly for the

fact that there are a only a few robots that can run dynamically and fewer still which

can mechanically integrate new leg designs without affecting other sub-assemblies.

With the introduction of most new mechanical designs, designers present visual mod-

els, equations that characterize the mechanism’s behavior, and some experimental
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results. What is not captured or entirely evident are the underlying design deci-

sions that were driven by dependencies on other components (or sub-assemblies)

and constraints unknown to the reader. It is true that many tunable leg designs

will be more or less platform specific (i.e. bipeds, quadrupeds, hexapods); however,

the evaluation of the usefulness of a proposed design for any platform could be im-

proved through a clear explanation of the designer’s intent. By intent we mean the

design requirements the designer weighted most heavily and how those requirements

impacted other aspects of the design.

In our particular case, the design of a variable passive compliant leg for a dy-

namic legged robot requires careful consideration of several components including

the actuation method(s) for tuning leg stiffness, robot-to-leg communication, ma-

terial selection, weight budget, manufacturability, cost, and so forth. Therefore it

is important to have a design model to organize these objectives and capture the

interconnectedness of these features. The motivation of any such model is to provide

a method to objectively evaluate potential solutions and identify those with a higher

probability of success. This section provides a summary of the design model known

as axiomatic design (AD), which offers a scientific approach to design, and serves as

a framework for presenting the mechanical implementations of our tunable legs.

2.7.1 Introduction to Axiomatic Design

Within engineering, design is often pejoratively referred to as a “soft science” as it

lacks the scientific rigor and objectivity found in the “hard sciences.” While it is

true that one can not input design requirements into an equation and obtain the

best design as the output, there clearly exists good designs and bad ones. This

suggests that certain underlying features separate the two [65]. Axiomatic design

offers a systems level approach to design and provides design rules or axioms for

good design. As the theory’s creator, Dr. Nam Suh explains, “The goal of axiomatic

design is to make human designers more creative, reduce the random search process,
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minimize the iterative trial-and-error process, and determine the best design among

those proposed.” The following section is provided as a general overview of AD to

explain its use in the development of a variable passive compliant legs. A more

detailed discussion and examples of this design method can be found in [65].

2.7.2 Axiomatic Design Process

The first step in AD is to attempt to define the problem or the need that must

be addressed. Since you don’t know what you don’t know, the design process is

iterative. Gradually one closes in on the perceived needs as new information is

collected from literature, experimentation and so forth. Therefore at the beginning

of this process, the problem definition is essentially an educated guess based on the

knowledge, experience, and creativity of the designer.

The design process then becomes a game of decomposing the problem definition

into design objectives, also known as functional requirements (FRs), which must be

satisfied to reach a solution. The FRs are then paired up with design parameter’s

(DPs), which define the physical embodiment of “how”’ the FRs will be achieved. For

example, one FR may be to design a tool to open a metal capped bottle. Potential

DPs include a tool that twists, pries, drills, or even cuts the cap off. Projects with

multiple FRs require multiple DPs. Furthermore, FRs and DPs can be arranged in

hierarchies such that DPs must be generated for ith level FRs before DPs can be

generated for ith+1 level FRs.

In addition to defining FRs and generating DPs, design constraints much also

be specified. There are two types of constraints: 1) input constraints which are

constraints in the design specification (i.e. volume, mass, cost, and so forth), 2)

system constraints are those that are imposed by the system in which the design

solution must function. An example of system constraint would be the goal to design

a robot to operate underwater. All subsequent FRs and DPs must be compatible

with this decision.
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Within in this framework of FRs and DPs, good design is governed by two Axioms

[65].

Axiom 1: The independence Axiom. Maintain Independence of FRs.

Axiom 2: The information Axiom. Minimize the information content of the

design.

Axiom 1 simply states that an optimal design has a one-to-one mapping between

FRs and DP’s. In matrix form, the FRs and DPs can be represented as vectors and

the design matrix represents the relation between the two. In a one-to-one mapping

only the diagonal elements of the design matrix are non-zero, which represents an

uncoupled design. According to axiom 1, this is the signature of a good design as new

DPs can be substituted to satisfy FRs without affecting the other FRs. Similarly,

the signature of a bad design has a design matrix with non-zero off diagonal elements

in which FRs depend on more than one DP. This situation can be problematic as it

maybe difficult or impossible to find a combination of DPs that combine to satisfy

multiple FRs.

Axiom 2 states that among the designs that satisfy Axiom 1, the best design

has the least amount of information content where information may be in the form

of drawings, operation instructions, manufacturing processes and so forth. In other

words, the simpler solution is the better design.

2.7.3 Limitations of Axiomatic Design

Generating an uncoupled or decoupled design matrix does not necessarily mean

that the task is complete especially in complex architectures where hierarchies with

multiple FRs exist at each level. AD is merely a conceptual tool used to organize

design objectives and proposed design solutions. It does not consider the technical

feasibility of the physical integration of all the DPs into one entity [67]. In the

shift from the design matrix to the actual product development (in our case the

mechanical implementation of a variable passive compliant leg design) the challenge
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is to preserve the FR-DP relationship through the selection and arrangement of

components in the final configuration. This is an important feature to maintain as the

FR-DP’s may behave one way in isolation and a completely different as an integrated

system [73]. Situations such as these require re-evaluation or adjustment of FR-

DP’s to achieve desired system performance. Maintaining FR-DP independence

should make the outcome of tuning the components of the system more predictable.

Another limitation or characteristic of AD is that it works best in a solution neutral

environment [65]. Therefore one may not derive the greatest benefit from AD for

incremental improvements on mature designs [67].
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Chapter 3

Passive Variable Leg Stiffness with

a Rigid Slider

In this chapter, we present the work surrounding phase one of two of our tunable leg

developments which was presented in [30]. We begin by first stating the objective,

the problem definition, known constraints, and the reasoning behind the selection of

structural controlled stiffness as a tuning method. We then present some of our early

prototypes which were fabricated for the purpose of exploring the design space and

identifying poor assumptions. This eventually led to the development of a variable

stiffness C-leg using a rigid slider. We present this development within the framework

of Axiomatic Design (AD) as it offers a clear presentation of the development and

reasoning process. Static and dynamic experiments were conducted to validate the

strength and weaknesses of the design. We conclude this chapter with a discussion

of the results and prescriptions for phase two development.
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3.1 Mechanical Design

3.1.1 Problem Definition and Constraints

The problem definition formulated for this work was to create a tunable leg for

EduBot by mechanically adjusting leg stiffness. The one system constraint was that

the six legs must be able to rotate continuously. Input constraints were placed on

the leg’s mass and center of mass. Without legs, EduBot weighs approximately 3

kg. Consequently, the leg’s mass is important since any addition (or subtraction) is

multiplied by six. The target weight for each leg was set to 90 grams or less. The

leg’s center of mass was also a constraint as a center of mass located away from the

motor shaft would demand more power from the motor to accelerate. Boundaries

for the center of mass location were never specified, but every attempt was made to

minimize its distance from the axis of rotation. Given the weight constraints and

the need for a small and simple design led to the selection of structural controlled

stiffness as an optimal tuning method.

3.1.2 Early Prototypes

Structure-controlled stiffness mechanisms range in size and configuration; however,

the principal methods employed either change the spring element’s effective length

or the second moment of inertia. The former method was pursued as it was the most

straightforward to implement. The effective spring leg length was adjusted using a

rigid slider where the portion of the leg covered by the slider was considered rigid,

while the remaining portion extending from the slider was considered compliant.

In the first few designs, the elastic element took the form of an epoxy compliant

cantilever beam with a four-bar linkage system to control the slider position (see

Figure 3.1 and 3.2). This concept was motivated in part by an earlier RHex leg

that had a fixed four-bar shape with each link having some compliance [44]. Several
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Figure 3.1: Images A-D illustrate the first concept of a four bar tunable leg design
with a DC actuator located at one of the hip pivots which drove a lead screw to
adjust the orientation of an opposing link and consequently the slider position.

Figure 3.2: A simplified version (i.e. no motor) of the tunable four-bar configuration.
The slider position was manually adjusted and fixed using set-screws. (A) Is the leg
in a soft setting, (B) is a stiffer configuration, (C) illustrates the size of the legs
compared to an earlier version of EduBot.
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leg shapes were prototyped with the objective of learning more about the potential

design weaknesses and challenges of developing structure-controlled stiffness tunable

legs.

Preliminary running trials quickly revealed several flaws in this design including

large impulse torques to the motors, low lateral stiffness, part loosening, and geom-

etry complications. For instance, the cantilever beam design generated significant

reaction torques. The moment arm measured from the leg motor shaft to the touch-

down point at the toe was too long. This combined with the ground reaction forces

during the stance phase, created a reaction torque that exceeded the capabilities of

the motor. Often times the motor was unable to keep up with the PD controller and

would skip rotation cycles. The four-bar design also raised structural issues. For

example, it was difficult to design links that offered enough stiffness in the lateral di-

rection and did not interfere with the slider. Running trials revealed that compliance

in the linkage system allowed the legs to deflect under the robot body. The four-bar

design also had too many parts. After relatively few trials, the joints would come

loose and required constant maintenance. Lastly, the design raised geometric chal-

lenges as the 4-bar design also caused the angle of the cantilever portion to change

with respect to the hip for different leg stiffness settings (see Figure 3.1C and D).

While the controller could have adjusted the leg touch down angle for different leg

stiffness settings, it was clear that calibration and monitoring would be troublesome.

The Z-leg in shown in Figure 3.3 was an attempt to resolve the problems with the

4-bar design. It featured fewer parts, added material in the hip to increase lateral

stiffness, an arc extending back from the toe to reduce impulse torques to the motor

shaft, and a slider adjustment method that used a rack and spur to fix the hip-leg

orientation. Although this design achieved the objectives, new problems were intro-

duced. The added toe weight shifted the center of mass further away from the axis of

rotation. This in effect increased the rotational kinetic energy impacting the ground.

As [4] notes, if the kinetic energy upon impact is too large, the ground reaction forces
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Figure 3.3: The Z-leg features a spur gear and rack configuration for controlling the
slider position, and a larger toe to minimize impulse torques to the motor shaft.

may be large enough to cause the leg to rebound or “chatter.” In this particular case

the chatter disrupted the PD controller. Preliminary locomotion experiments failed

to reveal any net positive impact which led to the eventual abandonment of this

design.

3.1.3 Functional Requirements and Design Parameters

In the following section we propose a leg solution based on the lessons learned from

the previous section. We present this solution within a three-level hierarchy of FRs

and DPs (as depicted in Figure 3.4). Each FR and DP pair will be discussed in

detail and serve as a framework for presenting the mechanical design.

We defined the components of the axiomatic design hierarchy as follows

FR (1,1): Vary the stiffness of a spring element

DP (1,1): Change the effective length using a rigid slider

FR (2,1): Maximize yield strength to flex modulus ratio of elastic element

DP (2,1): TP-4004 epoxy

FR (2,2): Ability to communicate to the legs

DP (2,2): Infrared communication to command stiffness changes

FR (3,1): Ability to adjust leg stiffness
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Figure 3.4: FR-DP hierarchy for proposed rigid slider leg design

DP (3,1): Attach a DC motor to drive the slider

FR(3,2): Detect stiffness setting

DP(3,2): Rotary potentiometer has geared connection to motor

FR(3,3): Ability to sense leg strain

DP(3,3): Embed a flex sensor into leg

Constraint 1: Device mass ≤ 90 grams

Constraint 2: Position center of mass near axis of rotation

FR (1,1): Vary the stiffness of a spring element

DP (1,1): Change the effective length using a rigid slider

Previous work on RHex development investigated several leg shape profiles with

the most successful being the C-shaped leg [6] [62]. Riding on the success of this

design, a tunable C-leg with a rigid slider was pursued. There are two features

of the C-shape that make it suitable for the tunable leg design. First, the simple

geometry offers several manufacturing options which will be explored throughout

this document. Second, the symmetry and constant cross-section allow for easy

integration of the rigid slider. Figure 3.5 depicts a tunable C-leg with a rigid slider
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Figure 3.5: (A) Side view of C-leg with rigid slider at different stiffness settings, (B)
An early version of EduBot with the C-legs mounted.

that moves along the length of the leg to change the effective length of the spring.

Again, it is assumed that any portion of the leg that is covered by the slider is rigid

while the remaining exposed portion of the leg is compliant.

FR (2,1): Maximize yield strength to flex modulus ratio of elastic

element

DP (2,1): TP-4004 epoxy

The leg design process began with much uncertainty regarding optimal materials

and manufacturing methods for robust leg construction. As a result, inexperience

led to the erroneous assumption that we desired a manufacturing method that would

offer considerable design flexibility to fabricate a range of leg geometries and sizes.

The thought being that rapid output of different leg designs would allow us to learn

more and faster than could ever be gained from a simulation. This learning curve

was demonstrated to some extent in section 3.1.2 with the 4-bar and Z-leg designs.

Nevertheless, it will be revealed that selecting a manufacturing method first had the

effect of limiting our selection of materials which in our case was a class of high

performance epoxies.

During this first phase development, energy and resources were spent building

knowledge and experience with Shape Deposition Manufacturing (SDM), which we

believed afforded the design freedom necessary to make robust tunable stiffness legs.
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Table 3.1: Epoxy material properties from Innovative Polymers, Inc. (Saint Johns,
MI) where E is the Young’s modulus, S is the yield strength, and the ratio of S to
E is the yield strength to Young’s modulus ratio. Materials with a high ratio are
desirable in compliant mechanism design.

SDM is a solid free form fabrication process which systemically combines material

deposition with material removal processes. The general SDM design principles and

techniques are covered in detail in [48], and have been applied to robotics [18–21].

SDM offers several advantages over traditional prototyping methods. Some of these

include the ease of embedding components (i.e. actuators and electronics) that save

volume and weight, the flexibility of combining dissimilar materials to create complex

compliant mechanisms, the ability to create whole parts in a layered fashion, and

the advantage of eliminating custom tooling [21]. For the fabrication of tunable leg

designs, the SDM process offered the advantage of quickly iterating the leg shape

and experimenting with different epoxies. For example, the overall leg stiffness can

be adjusted by choosing an epoxy from a family of materials (see Table 3.1) of

different Young’s moduli, E, or by changing the second moment of inertia, I.

Early research [35] suggested that the most suitable epoxy to act as a compliant

element is one that maximizes the strength-to-modulus ratio. A high ratio will

permit larger leg deflections before fracture. For example, nylon (type 66) has a

strength-to-modulus ratio of about 20. The class of epoxies used in the leg designs

have a ratio as high as 46 (see Figure 3.1). TP-4004 (Innovative Polymers, St.

Johns, Michigan, USA) was eventually selected as it offered a relatively low Young’s

modulus with a favorable strength-to-modulus ratio.

FR (2,2): Ability to communicate to the legs
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DP (2,2): Infrared communication to command stiffness changes

The legs on most robotic platforms swing back and forth like a pendulum to

generate forward locomotion. Thus passing communication from the leg to the body

is very straight forward. The legs on RHex-like robots are rigidly attached to a

motor shaft, and rotate continuously to generate forward locomotion. This avoids

toe stubbing as the legs do not retract, but also precludes a wired connected between

the robot body and the legs. Enabling autonomous leg stiffness adjustment then

requires a different means in which the robot can command the legs to adjust overall

stiffness, and a way for the legs to report leg stiffness status back to the robot.

Slip rings were initially considered as they provide a continuous electrical connection

through stationary brushes on rotating contacts; however, at the time, the limited

availability of small, off-the-shelf configurations combined with the high cost (approx.

$1000 for six) steered the design in the direction of a wireless configuration using an

IrDA. In particular, the TFDU4300 is a low profile (2.5 mm maximum dimension)

infrared transceiver module which is compliant with the latest IrDA physical layer

standard for fast infrared data communication, and supports IrDA speeds up to 115.2

kbit/s. This platform was chosen for its small size and relatively high bandwidth (at

least compared to the 6 Hz maximum stride frequency of the legs). The drawback

of this solution stems from the fact that IR requires line of sight. Therefore during a

full leg rotation there would be a small window ( < 15◦) in which the communication

could occur. A wireless solution also requires each leg to have its own power supply

capable of supporting a microcontroller and the actuator for leg stiffness adjustment.

Figure 3.6 offers a high level block diagram description of the proposed system.

In this figure, the robot body and the legs have their own microcontroller, IrDA

encoder/decoder and infrared transceiver. The legs have additional components such

as a H-bridge, motor and potentiometer, which will be discussed in the next section.

The proposed communication path from the robot to each leg would be as follows.

Leg stiffness change commands issued by the robot would be converted to an infrared
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Figure 3.6: Schematic illustrating a wireless solution to control leg stiffness between
the robot body and the continuously rotating legs. IRDa transceiver/receiver pairs
are mounted on each motor mount and on each leg (12 total). IR commands are
sent from the robot to the leg’s microcontroller to change leg stiffness.

signal by the encoder. The infrared receiver on the leg side would then decode the

message, and the microprocessor on the leg side would then execute the command by

activating the actuator to change the leg stiffness. The rotary potentiometer, which

has a geared connection to the motor, allows the leg microcontroller to detect the

leg stiffness setting. The communication direction could also be reversed to update

the robot on leg stiffness setting or pass information regarding other sensors that

may be integrated into the leg.

FR (3,1): Ability to adjust leg stiffness

DP (3,1): Attach a DC motor to drive the slider

The decision to use SDM to fabricate the leg offered weight saving possibilities

by embedding components into the leg as well as the option to minimize the number

of exposed parts that could be damaged from wet environments or collisions. Figure

3.7 below illustrates the desired components for inclusion in the final design which in-

clude the motor, potentiometer, microprocessor, IrDA, and so forth. One additional

sensor was included in the design, a flex sensor, to demonstrate the capabilities of

SDM.
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Figure 3.7: Illustration of the C-leg rigid slider design with desired components for
inclusion in final configuration.

In the proposed design, the stiffness is adjusted using a small, geared DC motor to

drive the rigid slider back and forth. The motor was embedded into the hip structure

with the motor shaft exposed. A spur gear was attached to the motor shaft. The

SDM process offered a unique opportunity to machine gear teeth along the length of

the rigid slider as depicted in Figure 3.8. A summary of the SDM process is outlined

in Figure 3.9, and Figure 3.10 contains an image of the first prototype.

FR(3,2): Detect stiffness setting

DP(3,2): Rotary potentiometer has geared connection to motor

Another functional requirement for the proposed tunable leg centers on the ability

to detect the position of the slider and hence the overall leg stiffness. This was

satisfied by embedding a small potentiometer into the hip region and attaching a

gear to mate with the actuator gear. While the potentiometer offered the capability

of continuous rotation, it could provide measurable changes in resistance up to 340◦.

As result, the pitch diameter of the potentiometer’s gear was sized so that a 340◦

rotation matched the entire slider travel length.
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Figure 3.8: A C-leg rigid slider assembly with desired components incorporated into
the leg structure.

Figure 3.9: A step-by-step outline of the shape deposition manufacturing process.
(A) Machine the negative of the leg shape into a block of machinable blue wax, (B)
deposit part material (TP-4000 epoxy), (C) Machine pockets for components into
cured part material, (D) insert components, (E) deposit more part material to fully
embed components and then machine finished parts out of the mold and assemble
(see Figure3.10)
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Figure 3.10: Photo of first assembled prototype with embedded components includ-
ing dc motor and rotary potentiometer.

FR(3,3): Ability to sense leg stress

DP(3,3): Embed a flex sensor into leg

For the last functional requirement we desired the ability to include additional

sensors as needed to augment leg functions. For example, a “pain” sensor could pro-

vide valuable feedback to the robot. One of the challenges of using passive compliant

legs stems from the fact that robot does know how much stress its legs experience

for a given gait. For untuned gaits, the loading stresses can break these passive com-

pliant legs. To extend the robot’s knowledge of its legs, we selected a flex sensor by

Jameco which offers variable resistance readings depending on the curvature of the

bend. Measuring 6.35 mm wide x 112 mm long x 0.5 mm thick, the flex sensor was

suitable for embedding into the leg. There are three advantages to embedding the

sensor as opposed to applying it to the surface which include 1) increasing robustness

(i.e. protected from environmental hazards) 2) minimizing potential damage from

shear forces, 3) eliminating interference with other components. SDM was used to

embed the flex sensor at the mid-point between the inner and outer surface of the

C-shape as shown in Figure 3.8. In preliminary experiments the leg was mounted

to the leg loading apparatus shown in Figure 3.16 (see section 3.2.5 “Measuring Leg

38



Figure 3.11: Embedded flex sensor resistance vs. leg deflection

Stiffness” for more details) and the resistance was measure for a range of vertical hip

deflections. The preliminary results showed a nearly linear increase in resistance as

leg deflection increased (see Figure 3.11) [53]. It should be noted that this reflects

the resistance change for the leg near its most compliant setting. Unfortunately, this

solution is not suitable for detecting leg stresses at higher stiffness settings as the

rigid slider reduces (if not eliminates) bending that could be detected by the flex

sensor.

3.2 Analysis of Rigid Slider Tunable Leg

It is necessary to identify some form of test or analysis to determine whether or the

not the design satisfies the functional requirements. For this particular leg design,

two features were tested including 1) the stiffness range under static loads, and

2) the ability to store and return energy. For the first feature, we desired a simple

analytical solution that could predict the stiffness range as well as capture the spatial

compliance and factor of safety of the design. Such a tool would allow us to design

variable passive compliant legs to achieve certain performance ranges, and minimize

the time spent conducting trial-and-error experiments. For this we have adapted
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the pseudo-rigid-body model from compliant mechanism theory to characterize leg

compliance. For the second feature, we present a simple test to measure the ability of

the design to store and return energy under controlled dynamic loading conditions.

3.2.1 Compliance Characterization: Previous Work

There have been several iterations on RHex’s compliant leg design [49], with the

initial leg built from a curved rod of delrin which was quickly abandoned for its

inappropriate stiffness compliance and low fracture toughness. The second major

iteration was a 4-bar linkage design whose compliance was generated by the defor-

mation of two fiberglass components on the internal 4-bar linkage mechanism [44].

This planar mechanism was easier to model, and had better deflection properties,

but still had robustness issues as it was assembled from more than 20 parts [49].

The current leg design is a semi-circular shaped fiberglass structure. The curved

shape of the leg aids in standing from rest and allows for the contact point to roll

during stance. Despite its success, little work has been conducted to understand

the C-leg’s non-linear behavior under load. For the purposes of modeling, it has

typically been simplified to a single linear spring even though under load the leg end

clearly deflects in two dimensions (see Figure 3.12A). In [44], it was modeled as a

two degree of freedom system by two orthogonally placed linear springs (see Fig-

ure 3.12B). Although, the two spring model captures the force-deflection behavior

of the compliant leg, it is difficult to work with due to the number of parameters

needed to specify the orientation and magnitude of the springs. We propose a new

model to capture the spatial compliant properties of the leg using a combination of

the pseudo-rigid-body (PRB) model (see Figure 3.12C) and standard beam bending

theory. This model represents an implementation of the pseudo-rigid-body model

for curved beams, where the leg stiffness is represented by a torsional spring at the

effective center of rotation.
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Figure 3.12: Illustrations of different spring models used to understand C-leg com-
pliance under load, P, where (A) represents the linear model, (B) represents the
2-dimensional model, (C) represents the pseudo-rigid-body model where stiffness is
characterized by a torsional spring.

3.2.2 C-leg Compliance in the Sagittal Plane

In the pseudo-rigid-body model, flexible members are represented as rigid links con-

nected via pin joints with torsional springs (see Figure 3.13). This approach was

chosen for two reasons. First, the deflection path followed by the toe is nearly circu-

lar. Thus, representing the leg stiffness as a torsional spring best captures the large

non-linear deflections of the leg under load. Second, the PRB model offers design

and time saving advantages. For example, it is significantly easier to estimate the

leg stiffness for different configurations and dimensions using the PRB model than

it is to update a solid model and constraints in a finite element program. In this

model, the initial curvature and the length of the pseudo-rigid-body link are related

through the non-dimensionalized parameter

ko =
l

Ri

(3.1)

where l is the leg arc length measured along the centroidal axis of the leg from

the point of deflection to the loading point, and Ri is the initial radius of the C-leg.
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Figure 3.13: Pseudo-rigid body model applied to the C-leg. Adapted from [35]

Figure 3.13 details the components of the PRB model where the characteristic radius

factor, ρ, is used to determine the location of the characteristic pivot and the length

of the pseudo-rigid-body link. The PRB angle, Θ, specifies the angle of the PRB

link while, Θi, defines the initial angle of the PRB link. Detailed explanations of

the PRB model can be found in [35]; however, for the purposes of this work we are

primarily interested in the magnitude of the torsional spring constant, Kt, which is

given by

Kt = ρKΘ
EIs
l

(3.2)

where KΘ is the stiffness coefficient, E is the material’s Young’s modulus, and Is

is the second moment of inertia in the sagittal plane. For initially straight beams,

KΘ is a function of the angle at which the load is applied. For initially curved

beams with ko values near 1.0 and higher, KΘ is relatively constant for tangential

and compressive beam loading. This means that KΘ can be approximated from ko.

In the same way, for given ko values, ρ can also be averaged for a range of loading

conditions. These approximations have been captured in a simple look-up table

in [36]. Therefore, once the design inputs have been determined (i.e. E, Is, Ri, and

l) calculating Kt is straight forward as rho and KΘ are functions of ko.
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Figure 3.14: An implementation of a structure-controlled stiffness mechanism applied
to a C-leg. The rigid slider highlighted in gray can slide along the length of the leg
to change the C-leg’s spring length.

3.2.3 Compliance in the Lateral Direction

The C-leg also has compliance in the lateral direction or the direction normal to the

sagittal plane. The leg stiffness in this direction, Kl, can be characterized by the

standard cantilever beam bending equation

Kl = 3
EIl
L3

(3.3)

where L is the linear distance from the point of deflection to the loading point, and

Il is the second moment of inertia in the lateral direction.

It is important to note that Kt and Kl can be independently specified by changing

the second moment of inertia. This feature increases design flexibility and allows

one to adjust spatial compliance in the lateral direction independent of the sagittal

plane. Our model assumes that small deflections in the lateral direction causes

a negligible deflection in the sagittal plane, allowing us to consider the motions

effectively decoupled.

In Figure 3.14, the slider can move continuously between the 0 and 10 markings

where 0 is the most compliant configuration and 10 is the stiffest. Using the PRB

model and the lateral stiffness equation, we can predictably design the tunable leg

to operate within a range of stiffnesses as long as a portion of the slider is supported
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Figure 3.15: Application of PRB-model to tunable a tunable leg where leg stiffness
can be defined by the slider position and the loading point.

by the hip region. For example, if the slider moves past the 10th marker it loses

support from the hip region and the leg will begin to deflect from both ends of the

slider.

It is important to note that moving the slider will affect the stiffness in all di-

rections in a coupled manner. Fortunately the intuition offered from the primary

biomechanical running models–the Spring-Loaded Inverted Pendulum model [12] in

the sagittal plane and Lateral Leg Spring model [63], suggest that the change in

stiffness in each direction should increase with running frequency or robot load.

Although the optimal nature of this coupling for a many-legged spatial robot has

not yet been worked out in detail, our design couples these changes in the correct

direction.

3.2.4 PRB Based Leg Model

Thus far the PRB model has been presented with a single loading force where the

loading point does not change. During operation of the robot, however, the loading

point changes significantly. Generally, the leg touches down at around Point A (see
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Figure 3.15) and rolls through to about Point B during the stance phase. The value

of Kt decreases from A to B according to Equation 3.2 as the value of l increases.

Although calculating the effective stiffness using PRB-based model of bending is

more complex than with a simple linear prismatic spring, there are two notable

features about the C-leg that make it difficult to reduce it to the simple spring

model. First, there exists a coupled two-dimensional compliant behavior in the

sagittal plane. Second, as the leg rolls during the stance phase, the moving point of

contact creates two behaviors that can not be captured by a prismatic model. The

first is that the stiffness of the leg decreases as the leg progresses from touch down to

lift off. The PRB model captures this behavior as changes in l, but the linear model

can not. The other non-linear spring behavior is that the rest length l increases

as the leg rolls through the stance phase. Our experience in designing and testing

alternative legs is that failure to incorporate these behaviors leads to the design of

legs with poor performance characteristics. This has to some extent been shown

through simulation by [61] where it was shown that a softening leg spring is able

to perform self-stable running behavior in significantly broader ranges of running

speed and control parameters (e.g. control of angle of attack at touchdown, and

adjustment of spring stiffness) than an linear prismatic one.

Even though stiffness varies along the length of the leg, it is not critical to de-

termine the exact stiffness of the leg for each loading point since the robot will be

optimized for different stiffness settings. In the design stage, it is more important

to consider the range of stiffnesses, or relative stiffness of the leg. To calculate the

range of stiffnesses for the C-leg presented in Figure 3.15, ko can also be represented

as

ko = θp − θs (3.4)

where in radians θp specifies the loading point, and θs species the angular position of

the slider or point of deflection. Thus to design a C-leg for a range of stiffnesses in
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Figure 3.16: Relaxed and compressed images of a C-leg in the experimental set-up

the sagittal plane there are several design variables in the model that can be adjusted

(e.g. θs, E, Is, and Ri).

3.2.5 Measuring Leg Stiffness

The Kt for a shape deposition manufactured C-leg was collected at each of the even

numbered slider positions shown in Figure 3.14. The leg was mounted to a Micos

linear stage for ease of repeatability and the deflection of the leg against an AMTI

HE6x6 force plate was visually captured (see Figure 3.16). The linear stage has a

resolution of one micrometer and is capable of traveling 80 mm at rates as high as

14 mm/s. The AMTI HE6x6 is a six axis force plate capable of measuring loads as

large as 16 pounds at 200 Hz with 12-bit resolution. Five measurements of the linear

stage pressing the leg into the force plate at 10 mm/s where collected.

The Kt was obtained by marking evenly spaced colored dots along the centroidal

axis of the leg. An image capture system was created to compare the relaxed and

compressed images to determine the loading point, point of deflection, the charac-

teristic pivot, the arc length, l, and the value of the PRB-angle, Θ−Θi.
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The analytical Kt was calculated by inputting the specified material properties,

and l into Equation 3.2. The value for KΘ and ρ were determined from the look-up

table in [36].

The experimental Kt was calculated by first measuring the resultant torque, TR,

about the characteristic pivot using the force data and the horizontal and vertical

distances measured from the characteristic pivot to the loading point. The resultant

torque along with the PRB-angle, Θ−Θi, were then applied to the torsional spring

equation below to determine the experimental torsional spring constant.

Kt =
TR

Θ−Θi

(3.5)

The stiffness in the lateral direction was determined by using the same force plate

and linear stage. The toe was deflected in the lateral direction by pushing it into

an obstruction rigidly anchored to the force plate. This experiment was repeated

ten times for each even numbered slider position. A force-deflection graph was

generated with the data, and a linear curve fit was applied to each experiment for a

given slider position. The slopes of the linear curves were averaged to determine the

average lateral leg stiffness for each slider position.

3.2.6 Results

For the sagittal plane stiffness, we found a reasonable correlation between the PRB

model and the experimental results (see Figure 3.17). The error between the ana-

lytical and average experimental torsional stiffness measurements was less then 3%.

For slider positions 0-8, the analytical results fall within the error bars, however this

not the case for positions 9 and 10. This deviation can be attributed to deflection at

the hip end of the slider. As mentioned earlier, as the slider moves to higher settings

it is supported less and less by the hip region. For example, at slider position 10,

there are noticeable deflections at both ends of the slider. Since this behavior is not
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Figure 3.17: Experimental validation of the PRB-model for estimating torsional
spring constant.

accounted for in the PRB model, it introduces another source of error.

3.2.7 Dynamic Loading

The objective of the following analysis was to observe the dynamic response of the

variable stiffness C-shape leg for a range of payloads, when it was allowed to travel

in the vertical direction only. A linear stage was created using precision ground steel

rods and linear bushings. The linear bushings on each rod were connected via a

laser cut acrylic platform. The platform served as a mounting structure for the leg

and the payload. Steel plates were used to create a 500 g and a 1 kg payload. In

each experiment the platform was raised and allowed to drop a distance of 113 mm

(Figure 3.19). An IR marker was attached to the platform and an Optotrak 3020

motion capture system was used to record the position of marker with sub-millimeter

precision at a rate of 1500 Hz (see Figure 3.20). This data was then used to deter-

mine the frequency of the stance phase (i.e. the amount of time spent loading and

unloading) and the coefficient of restitution as measured from the rebound height.

In these experiments, we expected the ground phase frequency to increase as leg
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Figure 3.18: Experimental validation of the cantilever beam bending model for esti-
mating lateral leg stiffness.

Figure 3.19: Side view of linear stage bounce test showing progression of leg loading
and unloading.

stiffness increased; however, we observed the opposite trend (see Figure 3.21). These

results revealed first hand that in addition to changing leg stiffness, the rigid slider

was also changes the deflection path of the loading point. In essence the rigid slider

design changes the shape and the stiffness of the spring in a way that can not be

decoupled. For example, this was most noticeable at leg stiffness setting four where

there is a noticeable drop in the ground phase frequency and coefficient of restitution.

At this intermediate stiffness setting, the toe prefers to initially deflect more in the

x-direction than in the y-direction which leads to significant frictional energy losses.

Pursuing this design poses a problem during running experiments. The coupled
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Figure 3.20: Sample of motion capture output where y-axis is the rebound height
with y=0 specifying the undeflected leg hip position and x-axis measures elapsed
time where t1 indicates leg touch down and t2 indicates leg lift off. The ground
phase frequency is calculated as 1/(2(t2-t1)).

nature of a stiffness and shape changing spring makes it difficult to isolate the con-

tribution of leg stiffness adjustment to the robot’s locomotion. Therefore, what is

desired is a leg that can change its effective stiffness without significantly altering

the shape of the spring. In other words, can these two effects be uncoupled or at

least minimized.

3.3 Preliminary Running Trials

Despite the coupled shape and stiffness changing nature of the leg design, preliminary

running trials were conducted to test the material limits and learn more about the

design. Observations collected from these experiments revealed two significant flaws

in the design. The first flaw concerned the fatigue yield strength of the epoxy.

After less than 600 meters, legs began to break especially the middle and back legs.
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Figure 3.21: (A) Shows the ground phase frequency which is a measure of the loading
and unloading of the leg for different payloads and stiffness settings. (B) Shows the
coefficient of restitution for the leg at various leg stiffness settings and payloads.

Further research revealed that other material features must be considered including

the density, energy density, fatigue life, and so forth. A high yield strength-Young’s

modulus ratio was not enough to guarantee robust passive compliant legs.

The other flaw in the design, while not apparent at first, was the rigid slider itself.

One of the novel features of the original passive compliant C-shaped legs [50] is that

they enable the robot to navigate rough terrain by allowing compliant ground contact

anywhere along the length of the leg. A leg design with a rigid slider effectively limits

the leg length that is capable absorbing impacts. This is important to consider as

legs are generally stiffer at higher speeds or with larger payloads where the potential

for damage from collision is greatest. Preliminary running trials revealed that poorly

tuned gates allowed the rigid slider to impact the ground and in some cases damaged

the slider.
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3.4 Summary of Variable Passive Compliant Leg

with Rigid Slider

The method of shape deposition manufacturing was explored extensively as a means

to create variable passive compliant legs of arbitrary geometries with epoxies of

different flex moduli and yield strengths. The method proved very useful for rapidly

prototyping various leg structures; however, the epoxy materials themselves proved

to be too weak to handle the cyclic load requirements of our dynamic running robot.

The pseudo-rigid-body model was applied to the rigid slider tuning method and

was found to be a suitable analytical model for capturing the spatial compliance of

the C-leg and the stiffness range. Despite the effectiveness of the model, dynamic

loading tests revealed that in addition to changing leg stiffness, the rigid slider also

changes the shape of the leg spring. The coupled nature of these effects makes

it impossible to evaluate the robot performance based singularly on leg stiffness

adjustment. Furthermore, from a pragmatic view point, the rigid slider narrowed

the window of non-destructive leg touch down angles, which is not acceptable for

this particular dynamic running robot.
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Chapter 4

Passive Variable Leg Stiffness with

a Compliant Slider

In this chapter, we present the work surrounding phase two of our tunable leg de-

velopments which was presented in [31]. In the first phase, a tunable C-leg design

was presented whereby stiffness was adjusted by sliding a rigid element along the leg

length (see Figure 3.14). The portion of the leg covered by the element was assumed

to be rigid, while the remaining exposed portion was considered compliant. It was

demonstrated that the overall stiffness could be varied by as much as 90%; however,

there were undesirable features coupled in the design including: shape changing of

the spring and an increased probability of the rigid slider impacting the ground.

Maintaining a relatively consistent toe deflection path for the continuous range

of stiffness settings is an important feature to consider in a tunable leg. In the

rigid slider design, each stiffness setting altered the deflection path of the leg spring

causing the leg to respond differently to applied loads depending on the stiffness

setting. The effect of this deflection behavior was observed using a one dimensional

bounce test. While this is not an ideal testing method, a stronger design would be

one that exhibits a monotonic increase in leg stiffness even under one dimensional

loading conditions.
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Figure 4.1: FR-DP hierarchy for proposed variable passive compliant leg design.

In the following chapter, we present a new tunable passive compliant leg which

improves upon the shortcomings of the rigid slider by employing a compliant tuning

element. As in the previous chapter, the developments of this work are presented

within the axiomatic design framework.

4.1 Mechanical Design

In this second proposed solution, we defined the components of the revised axiomatic

design hierarchy as follows

FR (1,1): Vary the stiffness of a spring element

DP (1,1): Change the second moment of inertia using a compliant slider

FR (2,1): Must use a springy material and robust material

DP (2,1): Fiberglass

FR (2,2): Ability to communicate to the legs

DP (2,2): Slip Ring
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Figure 4.2: Leg bounce test results with compliant slider tuning element.

FR (3,1): Ability to adjust leg stiffness

DP (3,1): Attach a DC motor to drive the compliant spine

FR(3,2): Detect stiffness setting

DP(3,2): Potentiometer directly connected to DC motor shaft.

FR(3,3): Ability to sense leg strain

DP(3,3): Embed a flex sensor into leg

Constraint 1: Device mass ≤ 90 grams

Constraint 2: Position center of mass near axis of rotation

FR (1,1): Vary the stiffness of a spring element

DP (1,1): Change the effective leg stiffness using a compliant spine

During the final stages of development of the rigid slider design, we were also

investigating the manufacturing process and properties of composite materials for

leg construction (the properties of which will be discussed shortly). Several one-

dimensional drop tests were conducted to validate an early design using a composite

C-leg and a compliant tuning element which we have termed a compliant slider.

We hypothesized that a compliant slider would be able to store and return energy
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while not significantly affecting the shape of the spring in the sagittal plane. The

preliminary results proved very favorable (see Figure 4.2) where it is shown that the

ground phase frequency increased as leg stiffness increased. This suggests that the

compliant spine configuration is a stronger design than the rigid slider.

FR (2,1): Choose a springy and robust material

DP (2,1): Fiberglass

The material selection for the rigid slider design was dictated in large part by

the manufacturing process. At the time, SDM was the most familiar and versatile

prototyping method available, which quickly narrowed the material options to a small

family of epoxies. Preliminary experiments presented in Chapter 3 demonstrated

though that the epoxies lacked the cyclic fatigue strength to sustain the loading

requirements for RHex-like locomotion. Furthermore, narrowing material options

by maximizing the yield strength-Young’s modulus ratio did not consider all the

important features for a compliant leg design. This has led to the development of a

material feature space for leg springs which is an attempt to capture the important

material properties for passive compliant legs.

4.1.1 Material Feature Space

Springs are a very inexpensive and reliable option for converting kinetic energy to

potential energy and back again. They do not require an external power supply;

response time to impacts is instantaneous (since it is not slowed by sensors or pro-

cessors); the stiffness can be designed for the particular task at hand; the geometry

can be a designed to fit within particular dimensional constraints; energy losses can

be small. With that said, springs also have their limitations which generally stem

from the choice of material.

Material selection, aside from leg shape, is the most important decision in a

compliant leg design. The following section does not contain any new findings in
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materials research, but rather serves as a model to highlight relevant material prop-

erties that must be considered at this critical juncture in the design process. The

feature space for leg springs considers the materials energy density, fracture tough-

ness, loss factor, and manufacturability (including cost). Before discussing these

material properties, however, we first provide definitions of the modulus of elasticity,

yield strength, and fatigue yield strength as they will used often in the discussion of

the leg spring feature space.

Modulus of Elasticity

The overall stiffness of any spring element is proportional to the product of the

modulus of elasticity, E, the second moment of inertia, I, and to the inverse of the

spring length, L, cubed

K ∝ EI

L3
(4.1)

where I = bh3/12. For isotropic materials the modulus of elasticity is the same in

every direction and can not be varied. According to equation 4.1, the stiffness of a

spring element with isotropic mechanical properties (i.e. aluminum, steel, and epoxy)

can only be changed by adjusting the spring length and/or the second moment of

inertia. For spring design, however, it is desirable to have as much design freedom

as possible. This includes the ability to change the modulus elasticity. Anisotropic

materials such as composites laminates (i.e. fiberglass and carbon fiber) have the

property wherein the Young’s modulus may be different depending on the orientation

along which the property is measured. This means that a spring element can be

designed to have more than one modulus of elasticity. For example, in the case of

the C-leg, the modulus of elasticity in the sagittal plane and the lateral direction can

be varied without changing the second moment of inertia. Achieving the same range

of stiffness with an isotropic material may lead to designs that do not fit within the

dimensional constraints that the leg must operate.
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Yield Strength

The yield strength of a material specifies the stress at which the material plasti-

cally deforms. A material will elastically deform for any load below its yield stress

and will return to its original shape once the load is removed. While the Young’s

modulus, spring length, and second moment of inertia essentially define the stiffness

of the spring element, it is the yield strength that specifies the loading limits as the

stress in bending increases with the distance from the centerline of the beam to the

outside surface. Therefore a balance must be struck in the geometry of the design

such that the stiffness of the structure is in line with the dynamics of the system,

and that the loads do not exceed the material limits.

Fatigue Yield Strength

The fatigue yield strength, when available, provides a much better measure of the

potential life span of the spring element. All cyclically loaded materials eventually

fatigue and fail. The cyclic longevity of the spring element depends on a number

of factors including the load frequency, the strain or load amount, the temperature,

and the geometry to name a few. Generally a spring element does not survive many

cyclic loads or strains that approach the material’s yield strength. A spring that is

subjected to loads near or below the fatigue yield strength will typically last much

longer. This was a failure in the design of the SDM epoxy leg. Much time was

devoted to finding a geometry that would satisfy a certain radial stiffness and lateral

stiffness while not exceeding the yield strength and space constraints, and little time

was devoted to characterizing the fatigue strength of the epoxy.

Energy Density

The energy density of a material is a measure of the potential energy storage

capacity in a body by virtue of an elastic deformation and is calculated as

U =
σ2

ρE
(4.2)
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Stage 1

No warranty is given for the accuracy of this data.  Values marked * are estimates.
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Figure 4.3: Energy density of a range of materials. This plot was generated from
the Cambridge Engineering Selector (CES) by Granta.

U is the energy density, σ is the yield strength, ρ the material density and E the

elastic modulus of the material. We divide by ρ to identify spring materials that

are lightweight [8]. Figure ?? plots the specific modulus against specific strength

for a selection of materials including plastics, composites, metals and alloys. Light

weight energy dense materials occupy the upper right-hand portion of the graph. It

is worth highlighting that compared to composites, epoxies are an order of magnitude

less energy dense. For spring designs, however, it is better to consider fatigue yield

strength rather than the yield strength. According to equation 4.2, potential energy

storage is maximized by selecting materials with a high fatigue yield strength, and a

low density and elastic modulus. As can be seen in Figure 4.3, composite materials,

Ti alloys, and rubber offer high energy density values compared to other materials.

Fracture Toughness

Fracture toughness is measure of a material’s resistance to the propagation of a

crack which is an important property to consider for passive compliant legs that are

cyclically loaded. A plot of fracture toughness against Young’s modulus for a range
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Stage 2

No warranty is given for the accuracy of this data.  Values marked * are estimates.
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Figure 4.4: Fracture toughness of a range of materials. This plot was generated from
the CES by Granta.

of materials in Figure 4.4 reveals that composites are an order of magnitude tougher

than epoxies. Metals and alloys have approximately the same fracture toughness

with a much higher Young’s modulus.

Loss Coefficient

The loss coefficient is a measure of a material’s intrinsic damping. This in an

important property to consider as a material with a large loss coefficient is likely

to be inefficient at storing and returning energy. However, a material with a very

low loss coefficient may produce robot dynamics that are hard to control or do not

lead to passively stable gaits. Figure 4.5 demonstrates that composites have a loss

coefficient that is approximately an order of magnitude smaller with metals posting

values that even smaller.

Table 4.1 captures many of these material properties and what we find is that fiber

composites are one of the best materials for spring structures, and least expensive.

S2-6781 pre-preg fiberglass (from Applied Vehicle Technologies, Indianapolis, IN),

was selected as the material of choice for several reasons including its relatively low
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Stage 3

No warranty is given for the accuracy of this data.  Values marked * are estimates.
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Figure 4.5: Loss coefficient of a range of materials. This plot was generated from
the CES by Granta.

Table 4.1: Comparison of material properties.
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density and Youngs modulus, high yield strength, comparatively high specific strain

energy capacity and low material cost. In addition to these properties, composite

laminates expand the available design space by offering the ability to vary the Youngs

modulus value by adjusting orientation of the plies.

FR (2,2): Ability to communicate to legs

DP (2,2): Slip ring

The desire to communicate and power the legs led to a slip ring based motor as-

sembly. While a wireless a solution is technically feasible, we foresaw many problems

including the need to constantly remove and charge batteries on each leg, dropped

signals, noise from the environment affecting the IRDa’s and so forth. A slip ring on

the other hand, offers a direct electrical connection between the leg and the robot.

In this way, the legs and sensors are powered by the batteries on the robot, and

sensor signals can be passed in the same manner. This solution is not without dis-

advantages including operating near the recommended RPM limit, a cycle life, and

added resistance to rotation caused by the sliding electrical contact. In light of these

drawbacks, a slip ring offers a more robust configuration to enable accurate collec-

tion of data, and more importantly, will expedite the locomotion experiments by

minimizing robot downtime. In the proposed slip ring motor assembly, a six contact

slip ring was sourced from Keyo Electric Company in China and can operate at 300

RPM continuously handling as much at 2 amps per circuit. Figure 4.6 below details

the entire motor mount assembly, which is the first implementation of a slip ring

for a RHex-like locomotion system. An aluminum shaft extension was created to

accommodate the added spacing between the robot and the leg caused by the slip

ring’s rotor and stator. Furthermore to reduce the load on the motor shaft, a flange

bearing (similar to the method used in RHex) was also incorporated.

FR (3,1): Ability to adjust leg stiffness

DP (3,1): Attach a DC motor to drive the compliant slider

In the proposed design the C-shape is anchored to an aluminum hip structure
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Figure 4.6: An assembled and exploded view of the slip ring incorporated into the
motor assembly to allow legs to continuously rotate and source power from the robot
power supply.
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which also supports the drive mechanism. A thin, flexible rack is anchored to the

back of the compliant slider, and controls the slider position without significantly

altering the compliant slider stiffness. The position of the slider can be adjusted

by activating a small, geared DC motor mounted to the hip, which simultaneously

drives a nylon worm and spur gear (see Figure 4.7). A small plastic guide is attached

at one end of the spine and wraps around the C-leg. The guide holds the spine

against the C-leg, and acts as a mechanical stop when the spine is actuated to

softest stiffness setting. The spacing between the C-leg and the compliant spine

is approximately 2 mm. It is important to maintain this spacing so that the two

compliant elements deform together under load. To enforce this condition, small

spacers were attached to the inside surface of the compliant slider. During operation,

the motor can rotate clockwise or counterclockwise to move the slider through the

continuous spectrum of leg stiffnesses. When the slider reaches a target stiffness

setting, the motor shuts off, and the worm provides sufficient resistance to rotation

in either direction; thus acting as a natural self-locking mechanism. Hence no power

is required to maintain the desired leg stiffness during locomotion. This also results

in a robust and efficient spring as there are no moving parts for a given stiffness

setting. In its final configuration, the tunable C-leg has a 114 mm inner diameter

and weighs less than 85 grams.

An additional feature of the design is a mechanical stop, which is not found

in previous fixed stiffness legs. In Chapter 5, we present empirical evidence that

suggests EduBot, but more generally RHex-like robots, run more efficiently and

faster with very compliant legs. This presents a challenge in that these low stiffness

legs reach their material limits during uneven tripod stance phases. In other words,

the challenge has been to identify a solution where low stiffness legs can support large

loads and deflections without failure. We currently have been unable to identify a

contemporary material that is as economical and easy to handle as composites and

still capable of surviving the loading extremes. Therefore, the current design includes

64



Figure 4.7: A side view of tunable stiffness composite leg design. A) Illustrates
the rotation directions of gears B) shows the compliant slider adjusted to a higher
stiffness setting.

a C-shaped mechanical stop to prevent the robot from deflecting the legs into regions

where failure may occur and to prevent the robot from bottoming out.

FR(3,3): Ability to detect leg stiffness setting

DP(3,3): Attach a rotary sensor to motor shaft

We again offer a simple solution for detecting the leg stiffness setting using a con-

tinuous rotation sensor. In the proposed configuration the rotary sensor in connected

to the worm’s aluminum shaft which is the same shaft the DC motor rotates (see

Figure 4.7). A full rotation of the motor shaft corresponds to the advancement of one

tooth of the rack on the compliant slider. Therefore, counting rotations (clockwise

and counterclockwise) can be mapped to the overall leg stiffness.

FR(3,3): Ability to sense leg stress

DP(3,3): Embed a flex sensor into leg

As discussed in the Chapter 3, we still desired a method to measure leg stress. In

the first implementation, SDM offered considerable flexibility for embedding a flex

sensor into the C-leg. Composite processing is a very different prototyping method;
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Figure 4.8: Active component of the tunable stiffness composite leg design.

however, it still offers the capability of embedding a flex sensor. This is achieved by

following the fabrication steps outlined in Appendix A, and simply inserting the flex

sensor once the first half of laminate layers have been applied. Care must be taken to

protect the wire connections during the curing process. The Jameco flex sensor has

an operating temperature of 80◦C, but can withstand the pre-preg fiberglass curing

cycle of 1 hour at 120◦C without damage.

A tunable leg with an embedded flex sensor was inserted in the leg deflection

fixture (see Appendix B), and the resistance was measured for a range of deflections.

The results shown in Figure 4.9 are very similar to those presented in Figure 3.11,

with the exception that we are now able to measure the stresses on the leg for the

continuous range of leg stiffness settings. In this particular example the resistance-

deflection signature is nearly the same for the different stiffness settings (SS) even

though there is an 90% change in leg stiffness between SS0 and SS3. It should be

noted that while we demonstrate the capability of including a flex sensor in the leg,

we do not explore this feature any further in this work and instead leave it as a topic

for future research.

66



Figure 4.9: Flex sensor vs. deflection results for various leg stiffness settings.

4.1.2 Integration and Testing

In Figure 4.10, we present the integration of all these design parameters (with the

exception of the flex sensor) into our hexapedal robot. Six tunable legs have been

attached to the motor mount assembly shown in Figure 4.6. A PIC18F2553 micro

controller is used to drive each of the DC motors in the worm gear mechanism and to

detect the compliant slider position by counting revolutions of the rotary pot. These

actions are carried out using the slip rings presented in Figure 4.6.

For the experimental results presented in Chapter 5, it should be noted that while

this tunable leg design was tested, the active leg stiffness adjustment was not part

of the optimization experiments. Instead, the tunable stiffness legs were adjusted to

predetermined settings for which the robot’s gait parameters were optimized. This

was done primarily for the fact that we were and still are learning about the role of

tunable stiffness legs and did not want to be burdened with the complexities of an

active tuning component. With that said, the purpose of this section is to document

that the active leg stiffness adjustment design does work. In a simple set of walking

experiments, EduBot was able to stop, change its leg stiffness, and continue walking.

After performing these tests, we suspect that in future developments EduBot should

not have to stop, but instead could actively adjustment its leg stiffness while moving.
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Figure 4.10: Assembled EduBot with tunable stiffness legs.

Figure 4.11 shows three images of EduBot actively adjusting its front left leg.

4.2 Analysis of Compliant Spine Tunable Leg

4.2.1 Compliance Characterization

To estimate the stiffness range of the compliant C-leg with a compliant spine, we

again employ the pseudo-rigid-body (PRB) model [36]. A more detailed explanation

can be found in chapter 3; however, for this work we are primarily interested in the

magnitude of the torsional spring constant, Kt, in Equation 3.2. As it was noted

earlier E, I, Ri, and l are the only values needed to approximate Kt. Currently

the PRB model can only be applied to approximate the stiffness of the C-leg at its

softest and stiffest settings.

When the tunable leg is at the stiffest setting, we have found that the second

moment of inertia is best expressed as

I = Ileg + Islider (4.3)

where Ileg is equal to blegh
3
leg/12 and Islider is expressed as
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Figure 4.11: Side view of the leg actively adjusting its leg stiffness where A) the
leg is at its stiffest setting, B) the slider position moves up to a softer stiffness as
indicated by the black arrow, C) the slider has traveled as far as possible where the
leg is at its softest stiffness setting.

Islider =
Esliderbsliderh

3
slider

12Eleg

(4.4)

This formulation is an adaptation of the one presented in [39]. The ratio of Eslider

to Eleg is a common expression used to account for situations in which members

subject to bending are made of more than one material. With composite materials

it is easy to fabricate the leg and spine for two very different Young’s moduli. When

the tunable leg is at its most compliant setting, we assume that Islider = 0.

Since the PRB model assumes a uniform cross-section, it cannot be used to es-

timate the leg stiffness range and tip trajectory at intermediate stiffness settings.

The finite element method can be used to produce the needed information; however,

this requires a larger investment of time. To expedite the design process, we have

determined that a stiffness setting near the angular position of 50◦ (see Figure 4.7B)

leads to the greatest tip trajectory deviation. Therefore if one can design the tip tra-

jectory at this setting to approximately match the behavior at the stiffness extremes,
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Figure 4.12: Top view of experimental set-up. A) Linear stage is in the home position
and leg is undeflected. B) Platform has been moved a distance, d, and leg is deflected.

then the intermediate settings should also closely approximate the same behavior.

4.2.2 Static Leg Loading Experimental Set-up

To observe the leg deflection behavior and to validate the PRB model, an experimen-

tal apparatus was constructed to measure an applied load and to record the resulting

deflection path. In the present experiment a Micos linear stage and an AMTI HE6x6

force plate were rigidly connected to an aluminum base plate. The linear stage has

a resolution of one micrometer and is capable of traveling 80 mm at rates as high as

14 mm/s. The AMTI HE6x6 is a six axis force plate capable of measuring loads as

large as 16 pounds at 200 Hz with 12-bit resolution. The C-leg’s aluminum hip was

anchored to the linear stage platform and the C-leg was cantilevered out from the

platform. An aluminum leg clamp was affixed to the leg at the position indicated

by Marker 2 in Figure 4.12A. One end of a flexible steel cable was anchored to the

force plate while the other was connected to the leg clamp. A pulley was anchored to
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the hip to provide a rolling contact point and to make the cable normal to the force

plate’s surface. The linear stage was commanded to translate (see Figure 4.12B) the

hip a distance of 20 mm at 10 mm/s in the y-direction (given by the large downward

pointing white arrow on the right side of Figure 4.12A). The force plate collected

the reaction forces at the loading point (Marker 2) at a sampling rate of 200 Hz. An

Optotrak 3020 motion capture system was used to capture the position of Markers

1 and 2 also at a sampling rate of 200 Hz. This was repeated for each of the leg

stiffness settings 0-4 by shifting the compliant slider (see Figure 4.7B) along the

length of the C-leg. The 6-ply fiberglass C-leg and slider were constructed with an

alternating 50/50 blend ratio where 50% of the plies where angled at 45◦ while the

other half were angled at 0◦. The leg inner diameter is 114 mm with a thickness of

2.25 mm and a width of 18 mm. We estimate the Young’s modulus value to be 9.65

GPa.

4.2.3 Static Leg Loading Results

Figure 4.13 plots the experimental results of the force versus radial deflection and

demonstrates that the stiffness increases monotonically. The stiffness, which is in-

dicated as a slope value, k, next to each curve, doubled between the two stiffness

extremes. This was expected as the only difference between the two extremes was a

doubling of the moment of inertia. It is also worth noting that the stiffness increase

from leg stiffness setting (LSS) 0 t0 LSS1 is approximately 9% for this configuration.

In the future, LSS1 could be the home position to allow the leg to reach higher

stiffness settings faster without significantly limiting the stiffness range.

4.2.4 Deflection Results

In Figure 4.14 the xy-deflection path of the leg is presented. The bottom right im-

age in Figure 4.14 provides a bearing for the location and orientation of the xy-axis

while the rectangle reflects the results window. For the tested range of the stiffness
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Figure 4.13: Tunable stiffness leg force-deflection response at four different stiffness
settings each with a curve fit (dotted line) applied the data.

Figure 4.14: Deflection path of the loading point, F, for the tunable leg at various
stiffness settings. Experimental results show that proper selection of slider stiffness
can produce relatively consistent deflection paths for a large range of leg stiffnesses.
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settings, the deflection paths showed low variability. In particular, the deflection

paths of the two extreme stiffnesses (i.e. LSS0 and LSS4) were almost identical and

varied by no more than 0.5 mm from each other. At maximum deflection, these re-

sults were also within 1 mm of the deflection path predicted by the compliant slider

PRB model, which for a total deflection of 20 mm in the y-direction, represents

about a 5% estimation error. As expected, the deflection path at LSS2 showed the

most deviation. At maximum deflection, the y-component deviation was approxi-

mately 2 mm which represents roughly a 10% difference from the compliant spine

PRB curve. For comparison purposes, the same tangential force that produced the

deflection path for LSS2 was applied to a rigid slider PRB model also at LSS2. The

rigid slider tuning method clearly produces very different spring behavior (see curve

labeled ’Rigid Slider LSS2’). The stiffness is much larger, which is given by the

short deflection path, and the smaller characteristic radius. It should be noted that

achieving consistent deflection behavior for all stiffnesses while achieving a large de-

flection range are two competing objectives. If the compliant spine is too soft then

the deflection path will be consistent; however, the stiffness range will be very small.

Similarly, if the compliant spine is too stiff, the deflection path and stiffness range

will begin to reflect the rigid slider model. Therefore, while deviation in deflection

behavior is expected through proper material selection and geometries this can be

minimized while still achieving a considerable stiffness range.

4.2.5 Dynamic Leg Loading Experimental Set-up

To better capture the energy storage and return properties of the compliant spine

design, a new dynamic leg loading apparatus was created as shown in Figure 4.15.

The improved design uses roller bearings which have less energy losses compared to

the linear bearings used in the apparatus presented in Figure 3.19. The hip is still

constrained to translate vertically; however, the toe is now allowed to deflect in the

horizontal and vertical directions and does not touch the ground. A fixed length
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Figure 4.15: Front view of the dynamic leg loading apparatus. A) Shows the leg in
unloaded state while B) shows the leg partially deflected with and also demonstrates
how payloads can be added.

Figure 4.16: Snap shots of the tunable dynamically loaded. A) Platform is raised
up, B) Platform is released and falls storing strain energy in the leg, C) Leg reaches
full compression for given payload and stiffness setting, D) Rebound height.
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Figure 4.17: Leg bounce test results with 4 layer carbon fiber spine

cable connects the toe to the anchored test frame while the hip is anchored to the

linear stage and is allowed to move up and down.

The objective of this new experimental set-up was to determine roughly what

slider stiffness and material type offered the widest stiffness range, and the best

energy storage and return. Three different compliant spines were prototyped includ-

ing 1) a six layer S2-6781 pre-preg fiberglass spine (6L FG), 2) a four layer 11.7

ounce 2x2 twill carbon fiber spine (4L CF), and 3) a three layer 11.7 ounce 2x2 twill

carbon fiber spine (3L CF) (note: all the layers for the sliders were oriented at 0

degrees). The C-leg itself was composed of six layers of S2-6781 pre-preg fiberglass.

Three different payloads (0, 500g, and 1kg) were tested at four different leg stiffness

settings as depicted in figure 4.7B. The stiffness of each leg-spine configuration was

measured (see Appendix B) at each stiffness setting to determine the relative leg

stiffness. The stiffness of the 6-ayer fiberglass C-leg measuring 18 mm wide with

an 11.5 cm diameter and no compliant slider is used as the reference leg and has a

relative leg stiffness (RLS) of one.
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4.2.6 Dynamic Leg Loading Results

For the different compliant slider configurations, the 4L CF and 6L FG sliders of-

fered the widest range of mechanical stiffness adjustment as shown in Figure 4.17.

Although the materials were different, the effective stiffnesses of these sliders were

designed to be the same. This is evident in their RLS ranges of 1 to 1.8 shown in

Figure 4.17. Each produced approximately the same coefficient of restitution at the

highest stiffness setting for each payload. The coefficient of restitution results also

indicate that for the 0.5 and 1 kg payloads, energy storage and return increases as

leg stiffness increases. This is a feature that was not captured in the dynamic leg

loading apparatus presented in Figure 3.19.

4.3 Design Weaknesses

The compliant slider design overcomes many of the drawbacks of the rigid slider

design; however, it does introduce a new set of problems. One weakness, which

is more of a property of structure-controlled stiffness designs, has to do with slider

length. Softer leg settings leave the unused portion of the compliant slider susceptible

to damage as it extends out from the hip. Therefore, one must carefully consider

the desired stiffness range as well as the overall length of the compliant slider.

All materials that are cyclically loaded eventually fatigue and fail and composites

are no exception. The particular composite we are using is thermoset composite

which means heat is required to cure the epoxy matrix to set the final shape of the

part. Cyclic loading causes micro cracks to form in the epoxy which contribute to

an effect known as stiffness softening where the effective Young’s modulus decreases.

For thermoset composites this stiffness softening can be as much as a 15-20% drop

[43]. This effect is nearly impossible to characterize analytically as the properties

of the part vary depending on the epoxy, fiber type, manufacturing process, loading

conditions, and so forth [43]. Therefore an attempt was made to characterize the
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Figure 4.18: Leg stiffness softening of C-legs that are cyclically loaded from running.

stiffness softening of the C-legs by subjecting six legs to controlled running trials. In

this experiment, six fiberglass C-legs were measured before being subjected to any

cyclic loading. A medium-speed gait was selected (forward velocity of 1.2 m/s) and

a 0.5 kg payload was added to increase the stress on the legs. Four-hundred trials

were run where in each leg experienced approximately 15 loading cycles per trial

(roughly 6000 loading cycles in all). The stiffness of each leg was measured at six

different points during the experiment.

The results shown in Figure 4.18 suggest that the legs soften 10-18% depending on

location with the most softening occurring in the first 100-150 trials. This percentage

decrease is inline with related work on thermoset composites [43]. Additionally, the

middle legs appear to soften the most which is not surprising as they must support the

most load in a tripod gait. Two conclusions can be drawn from these results. First,

the legs must be broken in via cyclic loading before optimization experiments (see

Chapter 5) can be run. Second, due to the nature of stiffness softening, leg stiffness

should be carefully monitored during experimentation as the legs may gradually

continue to soften. We can also claim another benefit for tunable leg stiffness. Gaits

are typically tuned for specific leg stiffnesses, but stiffness softening creates a moving
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target. Tunable leg stiffness extends the utility of softened legs such that gaits of

known performance for a given leg stiffness can be implemented.

4.4 Other Materials

Thermoset composites are relatively inexpensive, easy to work with, offer rela-

tively reproducible parts, and require only a small capital investment to get started.

There is, however, a better albeit more expensive material for passive compliant

legs, namely thermoplastic composites. Thermoplastics (especially PEEK) are much

tougher than epoxies as they offer superior resistance to impacts and can handle

higher strain rates. Furthermore, under cyclic loading conditions thermoplastic com-

posites demonstrate an insensitivity to fatigue damage [9] [55]. It should be noted

though that we suspect thermoplastics may be more damped than thermosets; how-

ever, we were unable to confirm this as most companies do not test or publish this

material property. Regardless, future work on passive compliant leg design should

consider this class of composites. This material option was not pursued as it simply

exceeded the allotted funds. Thermoplastic composites become a more economical

option when high volumes are considered.

For the purposes of documentation, nitinol was also considered as a compliant

leg material. Also known as shape memory alloy, nitinol offers a high energy density

and fracture toughness (see Table 4.1). Some other material properties include the

ability to recover from bending strains as large as 10% without plastically deforming

(note: spring steel can manage about 0.2% strain before plastic deformation), and a

low Youngs modulus. However, nitinol has less desirable properties, including a high

raw material cost (approximately $30 per leg), limited available stock geometries,

hysteresis, and difficulty to form various geometries with tight tolerances. For ex-

ample, in order to achieve a desired curvature, nitinol must be clamped to a custom

mold and baked at temperatures of 530◦C. Several legs were fabricated using this
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Figure 4.19: C-leg with nitinol spring element

technique to bake 0.085”’ diameter nitinol wire in a C-shape. SDM was used to em-

bed C-shaped wires into a plastic hip structure (see Figure 4.19); however, achieving

consistent radius and stiffness values from one leg to another proved very difficult.

4.5 Summary

Considerable energy has been spent identifying the mechanical design, materials, and

manufacturing process that will yield robust, tunable leg springs. In Figure 4.10,

we present what we believe is the first implementation of an autonomous dynamic

legged robot with variable leg compliance capabilities. The evolution of the leg

design reflects the challenge of creating tunable legs for dynamic locomotion. Out

of this work, we have articulated our reasons for shifting from epoxies to composite

materials as composites offer a significantly higher energy density, superb fracture

toughness, and low loss factor. Additionally, we presented a modified structure-

controlled stiffness tuning method whereby a compliant slider rather than a rigid

one slides along the length of the leg to change the effective leg stiffness. The goal

of which was to preserve the toe deflection path for the range of leg stiffness settings
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and to eliminate inelastic collisions of a rigid slider with the ground. As part of this

work two important tools where developed, one to measure leg stiffness and the other

to measure the dynamic properties of the leg which include the natural frequency

range and the coefficient of restitution. We also have a better understanding of the

weaknesses of different materials as spring elements especially the stiffness softening

that occurs in composites. In response we have developed a practice to mitigate the

influence of this particular weakness by running the robot to break in the legs.
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Chapter 5

Experimental Results

In the following chapter we now shift from mechanical development to experimental

validation of the structure-controlled stiffness leg on our hexapedal runner, EduBot.

We present our method for optimizing locomotion gaits for a range of leg stiffnesses

and the subsequent empirical results.

5.1 Optimization Method

Early attempts to identify good gaits with EduBot relied on manual teleoperation to

control the robot as it ran back and forth on a path of fixed length. There were several

problems with this arrangement as it required four people to run the experiment;

one to control the robot, one to time, one to adjust the gait parameters, and one to

turn the robot around. Furthermore, the results tended to be very difficult to repeat

as it was hard to maintain a straight heading for many gait settings.

We improved our experimental procedure by developing an automated optimiza-

tion routine similar to the method used to optimize RHex gaits [71]. A Nelder-Mead

optimization scheme was used to tune EduBot’s six gait parameters. Nelder-Mead

is a nonlinear optimization technique that can find a locally optimum solution for

systems with several variables. In [71] Nelder-Mead was employed to optimize RHex

81



gaits and was able to identify gait parameters that enabled a nearly 3x increase in

forward velocity over the best hand-tuned gait. The system relied on an automated

gait tuning configuration whereby a camera mounted to RHex allowed it to collect

visual data to run toward engineered beacons thereby removing the human element

from the experiment. EduBot gait tuning relied on a similar arrangement using a

Vicon motion capture system to control the robot during all aspects of the experi-

ment. Reflective tracking markers mounted to the robot shell allowed the controller

to accurately and repeatably steer the robot from one end of the test arena, known

as an end zone, to the other. The length of each run measured approximately 25

feet with the first 35% reserved for acceleration, and the last 5% reserved for decel-

eration. The robot’s center of mass was tracked with sub-millimeter precision at a

frequency up to 120 Hz. During each trial (i.e. running from one end zone to the

other), the average power and average velocity were recorded. These values were

used to calculate the specific resistance, fsr, which is a dimensionless parameter that

characterizes energy efficiency as the ratio of average power in over average power

out. First introduced in 1950 by [29], specific resistance remains a standard parame-

ter for comparing the energetic performance across a range of locomotion platforms

including legged ones. It is typically written as

fsr =
Pavg

mgvavg

(5.1)

where Pavg is the average power consumed, m is the mass of the robot (EduBot

weights 3.3 kg), g is gravity, and vavg is the average velocity recorded for a given

set of gait parameters. It should be noted that for all of the running experiments

Pavg is measured at the battery and therefore includes the power needed to run

the microprocessor as well as the motors. The power consumed by an idle EduBot

(i.e. no motor actuation) is approximately 10.7 Watts. For purpose of comparison,

the specific resistance for different locomotors as a function of speed is depicted

in Figure 5.1. This figure is adapted from [1] where the red filled circular markers
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Figure 5.1: Specific resistance values as a function of speed for a range of locomotors
[1].

reflect specific resistance values for more recent legged robotic platforms. The shaded

polygon highlights the results posted by several legged robots. One can see that RHex

and EduBot push the boundary for speed and efficiency among the legged robotic

platforms. It is interesting to note that EduBot can run almost as fast as RHex

with an almost 40% reduction in specific resistance. We suspect this due to the fact

that in a scaled comparison, RHex legs are significantly stiffer than EduBot legs (see

Appendix C for calculation). As we will show in the following experiments, legs that

are too stiff converge to slower and less efficient gaits.

As noted in [71], for situations in which we want to identify fast running gaits a

modified version of specific resistance takes the form

fv =
Pavg

mgv3
avg

(5.2)

It was found in [71] that Nelder-Mead optimizations with fsr as a cost function
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typically converge to dynamic, though relatively slower gaits (on the order of 1 – 1.2

m/s). Optimizations with fv as a cost function converge to faster gaits (on the order

of 1.6–2.6 m/s depending on leg stiffness and payload), though, these gaits tend to

be more unstable to perturbations at higher speeds as one would expect. It should

be noted that for the purposes of experimentation we assume that low fsr and fv

values are the signature of a relatively stable gait. An unstable gait is energetically

wasteful with high fsr and fv values. Visually this takes the form of excessive body

pitching and rolling with considerable slipping. Figure 5.2 provides a sample output

from the data collected during an optimization, which highlights the range of gait

parameters tested during a single optimization. In the first two rows of this figure,

we plot the specific resistance recorded for each of the six gait parameters. The

plot offers a high level view of the range of gait parameters tested where each dot

represents one trial. In particular, portions of the graph with a higher density of dots

indicate the gait parameter values that yield low specific resistance values. In the

bottom left graph, we plot specific resistance against forward velocity and find that

this optimization routine using fv as a cost function converged to gait parameters

with a forward speed of about 2.2 m/s. In the bottom middle graph, we find that the

forward velocity increased with stride frequency up to 5.3 Hz at which point forward

velocity quickly drops. This suggests the natural frequency of the mechanical system

was too unstable at higher stride frequencies. One can also find in the bottom right

graph that as the trial number increases the optimizer converges to gaits with a lower

specific resistance.

5.1.1 Optimizing Leg Stiffness for Speed

Previous optimization studies on RHex primarily focused on boosting robot perfor-

mance through gait parameter adjustment [71]. A constant stiffness C-leg was used,

however, no other leg stiffnesses were explored. This begs the question “Would a

softer or stiffer leg have allowed RHex to run even faster or more efficiently?” In
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Figure 5.2: Data of gait parameters investigated during a Nelder-Mead optimization.
The first two rows plot the six gait parameters against the resulting specific resis-
tance. In the bottom left graph we plot specific resistance against forward speed.
The bottom middle graph plots forward speed against stride frequency where opti-
mal speed occurs at a drive frequency near 5.3 Hz. The bottom right graph plots the
specific resistance value recorded for each trial. We find that the optimization routine
eventually converges to gait parameters that yield efficient and fast locomotion.
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Figure 2.7, we show that EduBot and RHex are geometrically similar, however, dy-

namically speaking, EduBot is faster and more efficient. Therefore we anticipate

that experimental results with EduBot can be considered together with the RHex

body of data.

In preliminary optimization experiments, we sought to understand the role of

leg compliance in EduBot. This topic was explored using fixed stiffness C-legs to

eliminate any effects a tunable leg might introduce. Five sets of C-legs were prepared

with the stiffest leg being approximately 3.6x the stiffer than the most compliant

leg. The legs were constructed from S2-6781 pre-preg fiberglass according to the

manufacturing process detailed in Appendix A. The leg stiffness was set during

manufacturing by either changing the number of layers of fiberglass or the leg width.

The softest leg used 5 layers (5L) while the stiffest leg used 9 layers (9L). The leg

labeled 6.5L is actually a 7 layer (7L) leg with a width that was reduced from 18

mm to 15 mm. This was done in order to quickly obtain a leg stiffness that fell in

between a 6L and a 7L. To compare the stiffnesses of these legs, we use a scale called

relative leg stiffness (RLS), where a 6L leg is used as a reference leg and has a RLS

value of 1. The table in Table 5.1 specifies the conversion of RLS to a radial stiffness

value. A Nelder-Mead descent was performed for each combination of leg stiffness

and two different payloads: 0 kg and 0.91 kg. The payload was in the form of steel

plates that were secured to the belly of the robot and positioned so as not to shift

the robot’s projected center of mass.

Running gaits were optimized using fv as the cost function within Nelder-Mead.

The same initial simplex was used for each experiment. The robot typically con-

verged to suitable gaits after 70+ trials. In most cases as the optimizer converged

on suitable gaits minor adjustments were made to the gait parameters on successive

runs. We therefore used these similar gaits to calculate the average and standard

deviation of the measured specific resistance as well as the resulting forward speed.

The reported fv values have been converted to standard specific resistance, fsr, by

86



Table 5.1: This table specifies the conversion from relative leg stiffness to radial leg
stiffness for the variety of fixed stiffness C-legs.

multiplying the resulting fv by the average velocity squared (v2
avg).

The results are reported in Figure 5.3 and 5.4. It can be observed that stiffer legs

ran more efficiently with the payload, but what is most striking is that the increasing

leg compliance improved speed and efficiency up to a point. Figure 5.4 shows that

the no-load average forward speed for a 9L, 7L, 6.5L, 6L, 5L is approximately 0.85,

1.31, 1.5, 2.51, and 1.9 m/s respectively (though under the right conditions we were

able to attain forward velocities of 2.7 m/s with the 6L leg). These results indicate

that the value of tunable leg compliance likely exists near a RLS of 1 or lower where

fsr is lowest and achievable speed is highest.

We also suspect that the softer legs (5L and 6L legs) enable better robot perfor-

mance because they are more capable of maintaining robot stability especially in the

face of an uneven tripod stance phase. For example, if a stiff leg touches down early

(i.e. closer to the hip than to the toe) then the leg essentially behaves as a rigid

element absorbing little energy. The leg falls behind the desired leg position dictated

by the PD controller, and consequently the robot inserts considerable torque in a

short time interval. This has the effect of inserting poorly timed energy into the

system which creates pitching and rolling moments of the robot body that cause

instability on the next tripod. Therefore, the stiffer legs appear to narrow the region

of stable gaits. Compliant legs on the other hand are more capable of deflecting and

absorbing energy even if the leg touches down early, which minimizes the severity
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of ground reaction forces imparted to the body. We suspect that adding mass helps

improve efficiency as it forces stiffer legs to act more compliant and likely offer better

traction. One may also hypothesize that adding mass also closes the gap between

the driving frequency of the motors and the natural frequency of the mechanical

system.

While the softer legs (especially the 5L and 6L) were the top performers, there

was an increased occurrence of leg failure as the payload increased (see the shaded

region labeled low safety factor in Figure 5.3). This is one of the drawbacks of the

dual nature of passive compliant legs (i.e. as a structural support appendage and a

spring). In fact, 5L experiments were terminated after adding only 0.45 kg because

too many legs broke. Over the course of a Nelder-Mead decent the legs are subjected

to many unstable gaits that create very uneven leg loadings and place considerable

stress on individual legs. These conditions are indicative of the scenarios the legs

may experience while running on rough terrain. One could reason that if a set of

legs can not survive an optimization for a given payload then the legs are likely

unsuitable for “real world” conditions. We therefore begin to see the value of adding

a mechanical stop to the design, which we introduced in section 4.1.

5.1.2 Variable Leg Stiffness with a Fixed Gait

In this set of tunable leg experiments, we were interested in exploring the effect of

fixing the robot gait parameters and adjusting the leg stiffness for a set of payloads.

We attempted to add payload and adjust leg stiffness in an intelligent manner such

that an increase (or decrease) in leg stiffness had a matching increase (or decrease)

in payload to maintain the natural frequency of the system. The fixed gait (w =

3 Hz, duty factor = 0.386, leg offset = -0.201 radians, stance sweep angle = 1.197

radians, kp = 0.233, kd = 0.032) was chosen by optimizing the robot as it carried

a 0.91 kg payload and ran with a RLS = 1.29. These gait parameters produce a

stable gait with a forward speed of approximately 1–1.2 m/s depending on the leg
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Figure 5.3: Data from fixed stiffness C-leg optimization experiments with specific
resistance plotted against relative leg stiffness for two payload configurations. The
6L leg is the reference leg stiffness with a relative leg stiffness value of one.

stiffness. Two types of tunable legs were prepared to test a range of stiffness settings.

One type had a relative leg stiffness range of 1 to 1.6 while the other had a range

of 0.5 to 0.87 (see Table 5.2 for the conversion to radial stiffness). The payloads

tested were 0 kg, 0.45 kg, 0.91 kg, and 1.365 kg. For each leg stiffness and payload

combination the robot ran 20 trials with the fixed gait. The average fsr and forward

speed as well as the standard deviation are presented in Figures 5.5 and 5.6. The

results in Figure 5.5 reflect similar findings from the previous section in that softer

legs tended to run faster and more efficiently than the stiffer legs. A relative leg

stiffness of 1 or less in general produced more efficient gaits. The gaits were also

considerably more stable in this stiffness regime evidence of which is given by the

size of the standard deviation error bars. We also find more evidence that there may

be a limit to the value of added compliance as the measured specific resistance either
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Figure 5.4: Data from fixed stiffness C-leg optimization experiments with the result-
ing forward speed plotted against relative leg stiffness.

plateaued or marginally worsened at the softest setting. There is also a noticeable

trend for more efficient locomotion at higher payloads, suggesting that there is a

better return for power input into the system when the robot carries larger loads.

Figure 5.6 shows that the resulting forward speed with the fixed gait peaks with a

RLS = 0.75. What is interesting is that the top speed was reached at the same leg

stiffness for all payloads.

We should note that while the goal was to fix the gait parameters for a range

of leg stiffnesses, the resulting gait turned out to be very different for many of the

leg stiffnesses. For example, high payloads produced short or non-existent aerial

phases and earlier leg touchdown events at softer settings compared to stiffer ones.

Therefore, while the gait parameters may be fixed in the controlled the physical

interaction of the legs with the ground is very different for each leg stiffness setting
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Table 5.2: This table specifies the conversion from relative leg stiffness to radial leg
stiffness for the two tunable legs.

and payload. This may explain why we were unable to observe multiple peaks in

efficiency and speed at the tested combinations of leg stiffness and payloads. An

optimization for each payload and leg stiffness may have produced better efficiency

results than those presented.

Overall the tunable leg design itself performed well. During the course of these

experiments the legs were subjected to roughly 20 thousand leg compressions, ran

a distance over 7k (4.3 miles), and were still capable of running more. It was clear

that some legs experienced stiffness softening more than others. Consequently, the

compliant slider was adjusted to slightly different positions to maintain uniform leg

stiffness among all the legs.

5.1.3 Optimizing Tunable Leg for Speed on Carpet

For the next set of experiments Nelder-Mead optimizations were run with a tunable

leg that offered a RLS range of 0.5 to 0.87. The cost function, fv, was used to

identify fast gaits. Experiments were run at the two relative leg stiffness extremes,

0.5 and 0.87, with a 0.91 kg payload and without a payload. Additional data were

collected for RLS = 0.62 and 0.75, with a 0.91 kg payload and for RLS = 0.75

without a payload. Figure 5.7 is a plot of the top ten results from each optimization

with specific resistance on the y-axis and forward speed on the x-axis. Here we

assume good gaits occupy the bottom right hand corner of the graph where speed

and efficiency are rewarded.
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Figure 5.5: Data from fixed gait experiments shows the average specific resistance
for various leg stiffnesses and payloads.

For the no payload configuration, the softest leg setting (RLS = 0.5) converged

to gait with an average specific resistance of 0.56 +/- 0.03 (SD) and an average speed

of 1.91 +/- 0.05 m/s. We find that if leg stiffness is increased, the robot converges

to faster gaits. For a RLS = 0.75 the specific resistance was 0.51 +/- 0.02 and the

average speed was 2.23 +/- 0.05 m/s. Increasing the leg stiffness by 50% allowed the

robot to run about 10% more efficiently and with 16% increase in average speed. We

found though, at the highest stiffness setting (RLS = 0.87) that there was a slight

drop in efficiency and speed compared to RLS = 0.75 (see Figures 5.8 and 5.9). We

suspect that this is due to a mechanical design oversight. The guide, which holds

the compliant slider against the C-leg, protrudes about 2 mm past the thickness of

the tread and is likely interfering during touch down. We would expect the speed

and efficiency to be equal to or better than the results collected for RLS = 0.75.
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Figure 5.6: Data from fixed gait experiments shows the resulting forward velocity
for various leg stiffnesses and payloads.

For experiments carrying a 0.91 kg payload, we observed a similar trend in that

the robot was capable of running faster and more efficiently at the higher leg stiffness

settings. A RLS = 0.87, allowed the robot to run at speeds up to 2.3 m/s with an

average speed of 2.2 +/- 0.04 m/s and a specific resistance of 0.43 +/- 0.02. The

results at the intermediate stiffness settings provide additional insights into the leg’s

capabilities. At a RLS = 0.75, EduBot ran on average faster (2.28 +/- 0.04 m/s),

but less efficiently (0.46 +/- 0.02) than RLS = 0.87 (see Figure 5.8). At a RLS =

0.62, EduBot performed as one would predict; better than a RLS = 0.5, but not as

well as a RLS = 0.75 or 0.87 in terms of both speed and efficiency. The leg at the

softest setting with a payload posted an average speed of 1.84 +/- 0.06 m/s with a

specific resistance of 0.56 +/- .05. The results suggest that the soft legs are speed

limited especially when a payload is added. This result may be in part due to this
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Figure 5.7: Specific resistance vs. forward speed results for EduBot running on
carpet.

particular leg design. The configuration with a soft leg setting and a payload caused

the C-leg to deflect into the mechanical stop. This most certainly prevented leg

failure; however, the leg’s collision with the mechanical stop imparts poorly timed

impulse forces to the body which contribute to unstable gaits at high speeds. In spite

of this we find evidence that this particular leg design enables the robot to adjust

its leg stiffness to run efficiently for a range of speeds and payloads as depicted in

Figure 5.7.
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Figure 5.8: Specific resistance vs. relative leg stiffness results for EduBot running
on carpet.

5.1.4 Optimizing Tunable Leg for Speed on Carpet Padding

In discussions with people who have worked with RHex, it was noted that the hexa-

pod in general ran better on grass than on pavement. To evaluated the influence

of surface compliance on RHex-like locomotors with tunable legs, the optimization

experiments were repeated on 12.7 mm (1/2”) thick carpet padding (see Figure 5.10

for a picture of the arena). A sample of the carpet and carpet padding where com-

pressed in an Instron machine and the force-deflection data revealed that the stiffness

of the carpet was on the order of 20 kN/m while the stiffness of the carpet padding

was approximately 5 kN/m. This represents about a 4x change in surface stiffness.

The experimental data in Figures 5.11 - 5.13 suggest a more compliant surface en-

ables the robot to run faster and more efficiently for a range of leg stiffnesses and

payloads. Again, we find that the stiffer leg settings enable EduBot to run faster
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Figure 5.9: Forward speed vs. relative leg stiffness results for EduBot running on
carpet.

and more efficiently for both payload configurations over the softer leg settings.

Running on carpet padding as opposed to carpet with a RLS = 0.87 with no pay-

load, enabled EduBot to run 30% more efficiently (0.44 +/- 0.01) and approximately

13% faster ( 2.46 +/- 0.06 m/s). A RLS = 0.87 with a payload, allowed EduBot

to run approximately 17% faster and 16% more efficiently (2.58 +/- 0.06 m/s, 0.37

+/- 0.02). The soft leg setting (RLS = 0.5) also demonstrated an increase in speed

(20% increase without a payload, 25% increase with a payload) and about a 15%

improvement in energetic efficiency. What is interesting though is that even though

the soft leg setting converged to different gait parameters the resulting average for-

ward speed on the carpet padding was about same at 2.3 m/s with and without a

payload.
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While the carpet padding increased the surface compliance there are other inher-

ent physical properties that can not be decoupled. For example, the material does

add more damping which may smooth out otherwise unstable gaits. Additionally,

the padding allows the leg to sink in more than carpet which we suspect allows more

contact area and better traction. There is some evidence that the improved traction

allowed the robot to run faster. A relatively fast gait that was stable on carpet (RLS

= 0.87, 4.79 Hz, duty factor = 0.397, leg offset angle = -0.330 rad, sweep angle =

1.473 rad, kp = 0.239, kd = 0.024) had a average forward speed of 1.75 m/s where

as the same gait on carpet padding achieved an average speed of 1.92 m/s. We spec-

ulate that since this gait was stable on carpet, the damping effects of the padding

had a small contribution to the observed speed increase. The improved traction may

explain why the robot ran faster even at the softest leg stiffness setting. The added

compliance of the carpet padding also has an impact on the robot’s aerial phase.

Preliminary data collected from high speed video suggests that the percent of time

spent in the air during a leg rotation decreased from approximately 35% to 25% or

lower for RLS = 1. For a soft leg setting (RLS = 0.5) it was difficult to observe

any aerial phase. In summary, even though we may not fully understand the im-

pact carpet padding has on the dynamics of EduBot, we do see that this particular

leg design allows the robot to span a range of speeds and efficiencies for different

payloads and terrains.

5.1.5 Optimizing Tunable Leg for Speed on Grass

In addition to running on man made surfaces, we also performed optimizations on

a real world surface, namely grass. To maintain consistency in our optimization

methods, a sod track measuring 6’ x 25’, was assembled in our motion capture arena

(see Figure 5.14). The grass had an approximate blade length of 3 inches with about

3/4” of root and soil support. As in the previous tunable leg optimizations, the

softest and stiffest leg settings with and without a payload (0.91 kg) were tested.

The results from these experiments are plotted in Figures 5.15 - 5.16. These results

97



Figure 5.10: Image of the motion capture arena with carpet padding as the terrain.

show a resemblance to the results obtained from optimizing on carpet padding. We

find from both figures that EduBot runs faster and more efficiently with and without

a payload when the tunable legs are at their highest stiffness setting (RLS = 0.87).

Two optimization experiments were also run with a 7L leg (RLS = 1.6) with and

without a payload. The results support earlier evidence that these legs are simply

too stiff and yield slower, less efficient gaits.

It is important to consider real world surfaces as there are generally interactions

and behaviors that can not be produced in the lab with man made surfaces. In these

particular experiments, we observed that some gaits performed poorly for the fact

that the worm gear mechanism became tangled in the matrix of dead grass near the

soil surface. Clearly a cover must be added for design, but this in an interaction that

would otherwise have been difficult to observe on carpet.
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Figure 5.11: Specific resistance vs. forward speed results for EduBot running on
carpet padding. The grayed portions of the graph offer a comparison of the results
from running on carpet found in Figure 5.7. The data suggests that soft legs (RLS =
0.5) allow faster and more efficient locomotion on carpet without a payload; however,
when a payload is added and/or the surface compliance increases stiffer legs offer
better locomotion performance in both speed and efficiency.

5.1.6 Tunable Leg Optimization Discussion

We have shown that varying leg stiffness for a given payload and terrain can lead to a

range of speeds and efficiencies. For the last part of this analysis we draw additional

insights into the role of leg compliance by stitching together tunable leg and fixed

stiffness leg experimental results. In Figures 5.19 – 5.21, the tunable leg results are

plotted to the left of the gray divider and the fixed leg stiffness results are on the

right. In Figures 5.19 and 5.21, one can see that the stiffness range of the tunable

leg offers efficient locomotion for a range of fast speeds on carpet; however, there

are two discrepancies between the results for the tunable leg RLS = 0.87, and the

99



Figure 5.12: Data of specific resistance plotted against relative leg stiffness for
EduBot running on carpet padding.

fixed stiffness 6L leg (RLS = 1). First, for the no payload configuration, the tunable

performs noticeably worse in both speed and efficiency compared to the 6L leg.

Second, when the payload is added we see that the tunable leg achieves a forward

speed near that of the 6L leg with comparable efficiency; however, this does not

occur at the highest leg stiffness setting, but rather at a RLS = 0.75 instead. There

are several plausible reasons why the robot with a RLS = 0.87 failed to approach the

speed of a 6L layer leg. In section 5.1.3, we speculated that the reduced speed was

due to a mechanical design oversight in which the compliant slider guide extends

about 2 mm past the tread thickness. This may narrow the region of acceptable

touch down angles. It is also possible that the optimization failed to converge on an

optimally fast gait, especially for the no payload scenario. These results also suggest

that EduBot’s leg stiffness tuning range should be increased to include at least the
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Figure 5.13: Data of forward speed plotted against relative leg stiffness for EduBot
running on carpet padding.

stiffness of a 6L leg. However, their is strong evidence that extending the leg stiffness

much beyond a 6L leg will result in slower and less efficient gaits.

For the carpet padding experiments the tunable leg performs as one would expect.

EduBot is capable of running faster at the stiffer leg setting and the difference

in forward speed with the 6L leg is minor. We suspect that the added surface

compliance is more accommodating to the compliant slider fitting than the carpet.

What is interesting though is that the stiffest tunable leg setting enables a lower cost

of transport than the 6L leg.

For slow to intermediate speeds (1.2 – 1.8 m/s) we observed that softer legs

enable very stable and efficient locomotion. In contrast to stiffer legs (such as the

6L leg) the aerial phase of the softer legs is very short or non-existent if the robot

is carrying a payload. Unfortunately, we did not collect center of mass motion data
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Figure 5.14: Picture of grass terrain

during our experiments and therefore can not provide a side-by-side comparison for

the range of leg stiffnesses tested. Though, based on our observations it appears that

soft legs reinforce stability as it severely limits body pitch and roll from one tripod

touchdown to the next. As mentioned earlier, softer legs appear to accommodate the

PD controller better than stiffer legs. If a softer leg touches down early, the reaction

forces imparted to the body are smaller and occur over a long time period, which

gives the controller more time to respond.

A topic that requires further investigation is the role of leg compliance for EduBot’s

slow to intermediate speeds (1.2 – 1.8 m/s). In our experiments, we optimized for

speed and this generally resulted in gaits with forward speeds of 1.8 – 2.6 m/s. From

these experiments we found that softer legs would not allow the robot to run as fast

as stiffer legs, however their specific resistance values weren’t significantly different

even though they were running slower. To characterize this we look at another mea-

sure of efficiency which is joules per meter. To convert specific resistance to joules

per meter one must multiply the specific resistance value by the robot mass and
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Figure 5.15: Data from the optimization experiments showing that the stiffest tun-
able leg setting (RLS = 0.87) ran the fastest. A constant stiffness 7 layer fiberglass
C-leg (RLS = 1.61) was also optimized on the robot and shows that there is a limit
to the value of increasing leg stiffness.

gravity. Therefore, joules per meter is the average power divided by the average

velocity

Joules

meter
=
Pavg

vavg

(5.3)

In more familiar terms, joules per meter can be thought of as the inverse of miles per

gallon or gallons per mile. The advantage of thinking in terms of joules per meter is

it actually places units on the cost of transport. Specific resistance is a dimensionless

value that normalizes for weight, which in the majority of our experimental results,

the robot appears to run more efficiently with a payload. When these results are

converted to joules per meter we typically find that robot is consuming more joules

per meter with a payload than without. When the experimental results for the

tunable stiffness leg and the fixed stiffness legs are plotted as joules per meter against
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Figure 5.16: Data from the optimization experiments showing that the stiffest tun-
able leg setting (RLS = 0.87) on average ran most efficiently. The results also in-
dicate that increasing leg stiffness much beyond RLS = 0.87, will lead to inefficient
locomotion.

speed we find that the tunable stiffness leg and the fixed stiffness 6L leg (RLS = 1)

consumed less than 19 J/m for a range of speeds (see small grayed box in Figure

5.18). The striped box highlights the range of intermediate speeds of interest. In

this box, stiff legs (RLS = 1.3 and 1.6) are noticeably inefficient. Since we did not

optimize the robot to run at these intermediate speeds, we can only plot results which

were collected during the optimization experiments. More specifically, these results

are the gaits that were tested during an optimization and are sorted in ascending

order by specific resistance to yield the most efficient gait we can quickly obtain in

this intermediate speed range. Therefore the results for RLS = 1 and RLS = 0.5

at the intermediate speeds in Figure 5.18 are preliminary results at best. However,

they suggest that increasing leg compliance at the intermediate speeds will enable

the robot to consume fewer joules per meter. Intuitively this makes sense as one

would expect a lower leg stiffness to be better suited at lower driving frequencies.
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Figure 5.17: Data from the optimization experiments showing that the stiffest tun-
able leg setting (RLS = 0.87) on average ran most efficiently and fastest. The results
also indicate that for this terrain increasing leg stiffness much above or below RLS
= 0.87, will lead to inefficient and lower top speed.

At the moment we can only speculate, but there may be an added value to tunable

legs at these intermediate speeds.

An additional observation that emerges from all of these experiments is a need for

further refinement of the controller. The current open-loop PD controller achieves the

very simple task of maintaining leg position and velocity by increasing or decreasing

motor torque output during stance and aerial phases. The system relies on the

natural frequency of the passive compliant legs to work in unison with the driving

frequency of the motors to move the robot forward. At slow and intermediate speeds

this method of control in general enables stable, efficient, and safe locomotion. At

higher speeds, we have found this control scheme leads to gaits that can be rather

unstable. There is a lot of kinetic energy in the high speed gaits and the slight

disturbance or irregular leg touch down can send the robot into an irrecoverable

tail spin where legs spin, the body pitches and rolls, but little forward motion is
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Figure 5.18: Data from the optimization experiments of tunable stiffness leg and
fixed stiffness legs on carpet with no payload. Results are plotted as joules per
meter against forward speed. Preliminary results suggest that a lower stiffness leg
setting (RLS = 0.5) will allow the robot to run more efficiently for intermediate
speeds than a stiffer leg (RLS = 1).

generated. What is needed is a method for dynamic stability control or the equivalent

of a traction control system found in the car industry. Enabling the robot to measure

the stability of its own gait, and to anticipate necessary gait adaptations would

significantly increase its performance in the field.
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Figure 5.19: Data from the optimization experiments showing specific resistance
results from tunable leg and fixed stiffness leg optimizations on carpet.

5.1.7 Tunable Stiffness Legs and Turning Agility

The present tunable leg design also offers a minor improvement in turning perfor-

mance. Several turning experiments were performed with a 1.1 m/s jogging gait. As

depicted in Figure 5.22, EduBot was commanded to run straight for four seconds,

which was enough time to reach a steady state gait, and then commanded to make

a sharp turn for 3 seconds. The sharpness of a turn is measured on a scale from -1

(left) to 1 (right). In these particular experiments the turn value was set to 0.7. It

should be noted that we are not explicitly stating the sharpness of the turning angle,

but rather are comparing the response of the robot to a given turn command for

two different leg stiffnesses. The xy-position of the robot was recorded with a Vicon

motion capture system. To characterize the turning agility, the resulting turning

radius was measured by fitting a circle to the data by minimizing the sum of squared
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Figure 5.20: Data from the optimization experiments showing specific resistance
results from tunable leg and fixed stiffness leg optimizations on carpet padding.

radial deviations. The robot carried a 1.365 kg payload and 10 runs were executed

at a RLS = 0.5 and RLS = 0.87. As shown in Figure 5.23, the stiffest leg setting of-

fered the best turning agility with an average turning radius of 4.12 +/- 0.24 meters.

The turning radius for the softest leg setting was marginally larger at 4.88 +/- 0.28

meters. These results are not unexpected if we assume that turning performance is

related to lateral leg stiffness. In the present design the lateral leg stiffness increases

by 18% from the softest setting to the stiffest. In this particular experiment we see

an 18% improvement between the two leg stiffness extremes. One draw back of the

design is that the compliant slider contributes very little to the lateral stiffness as

it is not rigidly anchored to the hip. This is one mechanical feature that could be

improved in future designs.
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Figure 5.21: Data from the optimization experiments showing forward speed results
from tunable leg and fixed stiffness leg optimizations on carpet and carpet padding.

5.1.8 Legs vs. Wheels

It is obvious that the value of a legged system emerges when the task at hand

involves negotiating non-planar terrains and various surface conditions (i.e. gravel,

sand, grass, pavement and so forth). These are conditions in which legged systems

thrive and wheels struggle. However, in the following experiment we set aside these

performance metrics, and asked the question, how do our compliant C-legs compare

to wheels on flat terrain. For this experiment, six wheels (7 cm radius) were laser

cut from 1/4” thick ABS (see Figure 5.24). Small teeth line the perimeter of each

wheel to give the robot traction on the industrial grade carpet in our test arena.

The Buehler Clock was adjusted (duty factor = 50%, stance phase = Pi rad) so that

the wheels rotated at a constant rate. Ten results including specific resistance and

forward speed where collected at the following rotation frequencies: 3 Hz, 4 Hz, 5
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Figure 5.22: Shows the xy-position of the EduBot during turning experiments at a
soft and stiff leg setting.

Hz, and 6 Hz.

Figure 5.25 shows that as speed increases specific resistance drops for wheeled

and legged platforms. The top curve plots results collected from EduBot running

at three different leg rotation frequencies. The bottom curve plots the results of the

wheeled version of EduBot. Here we find that the leg results parallel the wheeled

results; however, wheels are clearly more efficient on flat terrain.

5.1.9 Tunable Stiffness Legs and Obstacle Traversal

In another experiment, we explored the role of tunable legs in climbing over obstacles.

In this particular experiment, two inch thick sheets of rigid foam home insulation

were cut to 16 inch depths. This depth was chosen because it is 2 inches longer than

the robot’s body length and would force the entire robot to climb up before stepping
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Figure 5.23: Specific resistance results when robot was run with a fixed gait for
various leg stiffnesses and payloads.

down. In previous experiments we found that it was too easy for the robot to step

over obstacles that were not deep enough. Two obstacles placed 10 feet apart on

center with 10 feet of travel leading up to the first obstacle and 10 feet of travel

following the last obstacle. The obstacle heights tested were 2 and 4 inches. Twenty

trials were run at the softest and stiffest leg settings with the same fixed gait used

earlier (w = 3 Hz, duty factor = 0.386, leg offset = -0.201 radians, stance sweep

angle = 1.197 radians, kp = 0.233, kd = 0.032). The robot had no knowledge of the

obstacles and therefore used the same gait for running and climbing. The results

are shown in Figure 5.26 where for comparison purposes the results with no obstacle

are also included. It should be noted that for the 4 inch obstacle results were only

collected for the stiffest leg setting.

As one would expect we find that EduBot expends more energy to climb over

the obstacles, which is given by the increase in specific resistance. The averages of

the results don’t suggest a significant difference in performance between the two leg

stiffness settings climbing over the 2 inch obstacle. Though, if we assume the size

of the error bars are an indication of stability, then the softer leg stiffness setting

offered a quicker return to a stable gait following an encounter with an obstacle. The

same experiments with the two obstacle heights were also conducted with wheels. At

the two inch obstacle height (5.1 cm), the 7 cm radius wheels completed the course

with an average specific resistance of 0.65 and a speed of 1.13 m/s. The results are
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Figure 5.24: Picture of EduBot with 7 cm radius laser cut from 1/4” thick ABS.

worse compared to the same gait with no obstacle (see 3 Hz gait posted in Figure

5.25); however, they are better than the leg results. On the other hand, for the four

inch obstacle, EduBot was unable to complete the course. The wheels demanded

too much torque from the motors that the robot simply did not have enough battery

power to climb over the obstacle. This highlights one of the advantages of legged

locomotion on uneven terrain. A legged machine is more capable of climbing over

obstacles because they can climb with a smaller moment arm. Wheeled platforms

have a fixed radius that requires considerably more power from the robot to overcome

tall obstacles.

5.1.10 Additional Tunable Leg Benefits

In this final section, we want to highlight some additional benefits of tunable legs

aside from influencing speed and efficiency.

Calibration
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Figure 5.25: Comparison of specific resistance and forward velocity results for a
legged and wheeled EduBot.

The ability to calibrate the legs to a desired stiffness is also important as it

combats two problems: leg stiffness variability from manufacturing and stiffness

softening. When a legs are created each one has a slightly different stiffness which

requires a filtering process to group legs of similar stiffnesses. This requires one

to produce many legs so that there are enough legs of a certain stiffness range to

attach to the robot. A tunable leg on the other hand can accommodate variations

in stiffness of the C-leg. This is also important as the legs soften at varying rates

from cyclic loading.

Improved Robot Survivability

In this particular design, increasing leg stiffness also has the effect creating a

splint over the C-leg. In the event that the C-leg should fracture, but not detach,

the compliant slider can offer significant support to the leg at the stiffest setting.

While the robot may not be able to run as fast or efficiently, it does offer a second
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Figure 5.26: Obstacle traversal results for two different leg stiffnesses climbing over
a 2 and 4 inch tall obstacles.

line of support to the legs so the robot can return to base.

Leg Stiffness Differentiation

The last item is a perceived or potential benefit of tunable stiffness legs. Simula-

tion studies suggest that leg stiffness differentiation may be useful to control rolling

behavior and improve stability in response to perturbations. In [16], simulation

of EduBot locomotion demonstrated that maximum roll decreases as the middle

legs are made stiffer. In another simulation, the authors concluded that running

quadrupeds may respond faster to perturbations in ground height if hind leg stiff-

ness is increased [47]. Additionally, if the payload shift to one side of the robot, or

if the robot is runs transverse to a slope, leg differentiation may allow the robot to

run more balanced.
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Chapter 6

Conclusion

Since Raibert’s work in 1980’s, dynamic legged locomotion platforms continue to

evolve and make impressive advances toward the goals of greater autonomy and

robustness. Our goal throughout this work has been to explore, develop, and empir-

ically evaluate robot legs capable of changing their leg stiffness when confronted with

changes in speed, payload, and terrain. In pursuit of this goal, we have surveyed

several mechanical stiffness tuning methods and have identified design principles and

an effective strategy for developing tunable legs. In particular, we present a robust

structure-controlled leg stiffness tuning method suitable for our dynamic running

platform. We have shown that wfith a proper selection of materials and geometries,

the proposed tunable leg can achieve a significant change in stiffness with relatively

minor shape changes. Several materials were considered; however, we have found

that composite materials offer the best combination of energy storage capacity, high

yield strength, ease of manufacturing, and Youngs modulus control. These pieces

have all come together to make what we believe is the first autonomous dynamic

legged robot capable of automatic leg stiffness adjustment.

In addition to developing a robust tunable stiffness leg, we also report empirical

results which offer insights into the role that passive tunable leg compliance has on

efficiency and speed. When the results from thousands of running experiments were
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compiled, we found that a leg stiffness near a RLS of 1 allowed the robot to run fast

and efficiently. Increasing leg stiffness much beyond this point produced slower and

energetically wasteful locomotion. Leg stiffnesses lower than a RLS of 1, converged

to gaits that were slower, but nearly as efficient especially when compared to the

results of the overly stiff legs. This suggests that a tunable leg with RLS range of

one and lower will enable the robot to run efficiently for a range of speeds, payloads

and terrains.

In spite of these successes, much work still needs to be done. A legged machine

is a complicated system wherein the software, the controller, the actuators, and

the natural dynamics of the mechanical system must all work in unison to deliver

fast, stable, and efficient locomotion. With animals as a reference, there are clearly

many more advances necessary before we can even begin to approach their speed and

efficiency. We hope and anticipate that the knowledge gained during the research and

development of the tunable C-leg will serve as a reference to expedite the development

of future leg innovations.
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Appendix A

Composite Leg Fabrication

The manufacture of composite C-legs is a multi-step process that produces a very

springy and robust structure. The process that we have adopted has been outlined

below.

STEP 1: Mold creation and preparation

The mold for Edubot C-legs is a 4.5” diameter aluminum tube. The surface of

the mold must first be cleaned with acetone in order to remove any dirt, dust, oils,

and so forth that may compromise the mold release. Once the surface has been

cleaned, mold release can be applied. We have found Frekote (NC-55) by Loctite

to be a very reliable product (Figure 2.2). Three coats should be applied in the

following manner: apply one coat, wait 5 minutes, apply a second coast, wait five

minutes, apply a third coat, and wait 30 minutes before applying composite plies. It

should be noted that three coats are only necessary for the first use. Only one coat

is necessary for each additional use of the mold.

STEP 2: Cut Pre-preg into sheets

The Edubot and RHex legs are fabricated using S2-6781 pre-preg fiberglass. S2

is a high strength (the S is for strength) fiberglass which means it can handle large

strains before failure. Pre-preg means that the resin is already in the fabric and only

needs to be heated to a specific temperature for a certain time to cure. Generally
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the pre-preg composites come in rolls that must be kept at around -20◦C to prevent

the resin in the fabric from curing. A roll maintained at this temperature can last

up to 1 (one) year in the freezer. Before using the roll, it should be removed from

the freezer and allowed to thaw to room temperature which generally takes about

10-12 hours. If the roll is unwound before a full thaw you risk introducing cracks in

the resin which may end up in the final part and create a weak spot.

Once thawed the pre-preg can be cut into smaller sheets, known as plies, (12”x23”

in our case) as shown in Figure A.2. To make a leg that is both stiff in the sagittal

plane and lateral direction, the plies must be cut at 0◦ and 45◦ to the direction of

the weave. We have found that 6 plies (3 plies cut at 0◦ and 3 at 45◦) offers the best

compliance for Edubot legs.

STEP 3: Laying Up

Arrange the plies in a stack and alternate between 0◦ and 45◦ layers. Peel off

one side of the plastic backing (Figure A.3). We typically remove the glossing side

or the more flexible side first as the stiffer backing makes the ply easier to handle.

Peeling of the glossy layer can be difficult and may require the use of a razor blade

to grab a corner. It also helps to prop up the mold for easy rotation. This can be

done be inserting a 2x4 through through the inside and placing the ends of the 2x4

on supports (Figure A.4). The layers should be wrapped around the mold one layer

at a time by bending the tile at the middle and then pressing one half down followed

by the other half (Figure A.5). It is important to apply a lot of pressure when

pressing the layers to avoid creating wrinkles as they become voids and a source for

delamination after curing. The edge of a small block of wax or wood is a useful tool

for applying a considerable amount of pressure (Figure A.6).

Step 4: Vacuum Bagging

To prepare the mold for vacuum bagging first use a razor blade to even up the

ends of the plies by trimming the excess (Figure A.7). The next step is to prepare

perf layer which has a pattern of perforated holes. During the vacuum curing process
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these holes allow excess resin to be absorbed into the breather layer. The perf layer

should be cut to a size that is larger than needed (Figure A.8). The layer should

be applied in the same manner as the plies (i.e. avoiding wrinkles) (Figure A.9).

Cut off excess material and rub out any air bubbles (Figure A.10). Next take the

vacuum bagging tape shown in Figure A.11, and wrap it around both ends of the

mold (Figure A.12). Cut the breather layer to size so that it fits just inside the tape

at the mold ends (Figure A.13). Lay the mold on top of the vacuum bag plastic and

apply the vacuum bagging tape along the perimeter (Figure A.14). Peel back the

paper cover on the tape and wrap the rest of the vacuum bagging material around

the mold (Figure A.15). Be sure to place the loose half of the the vacuum connector

between the breather layer and the vacuum bagging layer before fully sealing the

mold. Use a razor blade to make a small incision at the through hole of the vacuum

connector (Figure A.16). Connect the two half’s of the vacuum connector together

(Figure A.17), attach the vacuum hose (Figure A.18), and turn on the vacuum pump.

Generally it is very difficult to apply the vacuum bagging layer without creating some

wrinkles along the vacuum bagging tape. Thus it will be necessary to take advantage

of the putty-like nature of the vacuum bagging tape and rub out the wrinkles to fully

seal contents. Once the set-up has reached a full vacuum, disconnect the vacuum

hose, feed it through the top of oven, insert the mold in the oven, reconnect the

vacuum hose, and let it bake (Figure A.19). Baking times vary depending on the

pre-preg resin used so be sure to read manufacturers instructions carefully.

Step 5: Post Processing

When the item has fully cooled after baking, the vacuum bagging materials can

be removed (Figure A.20). The part can generally be removed from the mold by

anchoring one end in a vice and pulling (Figure A.20). Once removed, the next step

is to cut the composite tube into rings. For this tube diameter, a miter saw can

be used (Figure A.22); however, for larger tube diameters, a vertical or horizontal

band saw may be required. Next, the composite rings need to cut into a C-shape. A
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template is useful for cutting C-shapes of consistent arc length (Figure A.23). For

Edubot C-legs, the 188 degree template was laser cut out of ABS. The near final step

involves drilling mounting holes at one end of the C-leg. A small jig was fabricated

with a curved slot for the C-leg, and two through holes on the top for guiding the

drill (Figure A.24). Once a tread has been glued on, and the fiberglass C-shape

can be anchored to a leg mount to complete the fabrication of a composite C-leg as

shown in Figure A.25.
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Figure A.1: Mold release Figure A.2: Cut and arrange plies

Figure A.3: Peel backing Figure A.4: Prop mold up

Figure A.5: Apply Layer Figure A.6: Apply pressure
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Figure A.7: Trim ends with razor blade Figure A.8: Cut peel ply layer

Figure A.9: Lay peel ply layer
Figure A.10: Peel ply layer pressed onto
layer

Figure A.11: Vacuum bagging tape Figure A.12: Wrap tape around tube ends
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Figure A.13: Cut breather layer to size Figure A.14: Apply perimeter tape

Figure A.15: Peel paper off tape and wrap
vacuum bag material around mold

Figure A.16: Cut hole for vacuum connec-
tion

Figure A.17: Connect two halves Figure A.18: Connect vacuum hose
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Figure A.19: Place in oven
Figure A.20: Remove vacuum bag mate-
rial

Figure A.21: Pull off mold Figure A.22: Cut into sections

Figure A.23: Cut into C-shape Figure A.24: Drill mounting holes
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Figure A.25: Attach C-shape to leg Mount
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Appendix B

Leg Stiffness Testing Apparatus

Measuring and recording leg stiffness is important for tracking leg stiffness softening

and ensuring that each tripod is balance. One of the challenges though has been to

determine an appropriate apparatus for measuring leg stiffness. Previous attempts

constrained both ends of the C-shape and allowed only 1 DOF deflections. This

load-deflection configuration approximated that of beam buckling conditions and

not loading behaviour characteristic of RHex-like locomotion.

The leg stiffness measurement apparatus shown in Figure B.1, has 2 DOF. The

leg hip is fixed to the bottom rail, which can travel up and down along the linear

rods; however, gravity forces it to rest on the 1-axis load cell. The top rail can

also move up and down and has a linear guide attached to the underside. The leg

stiffness is measured by raising the top rail, attaching the leg to the bottom rail, and

positioning the linear guide at one end of the top rail. The top rail is then lowered

until the linear bearings on the top rail hit the aluminum shaft clamp stoppers. The

static loading force can then be recorded and the process can be repeated for a new

leg or stiffness setting.
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Figure B.1: Front view of the leg stiffness measurement apparatus. A) Leg is in the
undeflected state where B) shows the leg in the deflected state with the corresponding
load output.
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Appendix C

Leg Stiffness Comparison

When comparing RHex performance to Edubot’s performance, it is important to

investigate a scaled comparison of the legs stiffnesses between both machines. A

mismatch in leg stiffnesses may help explain differences in robot performance at the

high speed gaits. The optimization experiments presented in Chapter 5 suggest legs

that are too stiff converge to slower and less efficient gaits. Table C.1 presents the

measured Young’s modulus of the RHex and Edubot legs, which are made from two

different epoxies in S2-6781 pre-preg fiberglass. The arc length is an estimation of

the leg arc length measured from the hip to a typical touch down point.

For this exercise, we use the pseudo-rigid-body model to calculate the torsional

spring constant for each leg and use this value as a means of comparing the stiffness

of a RHex leg to an Edubot leg. As presented in Chapter 3, the torsional spring

Table C.1: Material and geometric properties of RHex and EduBot legs.
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constant is calculated as

Kt = ρKΘ
EIs
l

(C.1)

where ρ = .749, and KΘ = 2.99, which are determined from a look up table in [35]

by first calculating

ko =
l

Ri

(C.2)

When the values in Table C.1 are inserted into Eqn. C.1 we find that Kt,RHex =

21.4 N*m and Kt,EduBot = 3.3 N*m, which means RHex legs are roughly six times

stiffer than EduBot legs. For a scaled comparison of the EduBot leg stiffness to

RHex leg stiffness we rely on the relationship where

Kleg ∝M0.67 (C.3)

where M is the robot mass [23]. The ratio of RHex’s mass (8.2 kg) to Edubot’s

(3.3 kg) raised to the 0.67 power is 1.84, which means RHex’s legs should be approx-

imately 1.84 times stiffer than EduBot legs when scaled with mass. According to

this approximation current RHex legs are approximately 3.5 stiffer than they need

to be. Clearly this approxmation is subject to some error; however, the magnitude

of the separation between the two leg stiffnesses is hard to ignore, and may explain

why RHex was unable to run as fast and efficiently as Edubot.
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