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ABSTRACT

THE DEVELOPMENT, USE, AND OPTIMIZATION OF SORTASE-TAG EXPRESSED

PROTEIN LIGATION

Robert L. Warden-Rothman

Dr. Andrew Tsourkas

Molecular imaging is an emerging field that seeks to combine the mechanistic detail of biochem-

ical assays with the the broad phenotypic data obtained from non-invasive medical imaging. A

cornerstone of molecular imaging is the ability to chemically attach a contrast-inducing payload to a

targeting ligand, a protein that binds tightly and specifically to the targeted cell population. There

are currently many approaches to bioconjugation. Chemical approaches have broad applicability, but

lack the site-specificity and efficiency desired for contrast agent generation. Enzymatic techniques

are quantitative, efficient, and site-specific, but often have limited scope and can add significant bulk

to the targeting ligand or require additional downstream purification steps. In this work, we create

a novel bioconjugation and protein purification technique, Sortase-Tag Expressed Protein Ligation

(STEPL). By fusing the active domain of S. aureus Sortase A to the targeting ligand as part of a

greater chimeric protein, we are able to combine protein purification and the C-terminal bioconjuga-

tion of that protein into a single step. Using a mass-action kinetics model, we prove that this results

in a modular, efficient system capable of producing high-purity conjugated protein. We then use the

system to generate contrast agents for fluorescent and magnetic imaging studies. The modularity

of the STEPL system allows us to create an array of monospecific and bispecific targeting ligand

dimers, linked by two different spacer regions. The dimers’ binding properties are probed and they

are used to successfully bind and label cells, with the bispecific proteins enhancing contrast of a cell

line that is positive for both targets. Finally the STEPL system is subjected to a number of directed

evolution approaches and screened for a clone that could further improve STEPL’s efficiency and

yield.
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Chapter 1: Introduction and Scope 1

Chapter 1

Introduction and Scope

The field of molecular imaging uses targeted contrast agents to study and diagnose disease [1].

By revealing the molecular basis of a disease, molecular imaging can help the medical community

understand what causes the disease, what treatment options are available, and how well a therapy

progresses. The workhorses of molecular imaging are targeted contrast agents, which can seek out

and interact with diseased cells in a specific fashion as well as influence some physical property on or

near the cells that can alter a medical imaging signal enough that a radiologist can pinpoint where

the contrast agent has found cells to bind. These two functions are usually mediated by separate

chemical entities, so the ability to efficiently link a targeting molecule to a contrast-producing payload

is a cornerstone of molecular imaging.

The importance of the linking reaction has led many groups to develop techniques that accom-

plish this goal. When both the targeting and contrast agents are small molecules, organic chemistry

provides a plethora of efficient linking reactions. However, the targeting ligands are often derived

from proteins, which makes the process much more complicated. A number of chemical crosslinking

approaches have been described that are capable of attaching a broad range of chemical function-

alities to a protein, but they generally suffer from inefficiency and random placement. Enzymatic

systems have produced better results because they tend to be site-specific, efficient, and stoichiomet-

ric, which are all important for generating imaging agents [2]. However, enzymes are often limited in

their substrates, add large amounts of bulk to the imaging agent, or require additional downstream

purifications.
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In this work, we develop and validate a novel, site-specific enzymatic ligation technique and il-

lustrate its applications to molecular imaging. We create a system that is both capable of accepting

most, if not all, categories of potential targeting proteins and payloads. In addition, our system

minimizes waste and avoids difficult purification workups, such as separating conjugated and uncon-

jugated proteins whose chemical differences may be as small as a single functional group. The use

of protein engineering and molecular biology tools enable us to build this ideal system.

This thesis is organized into six chapters. This first chapter provides a brief motivation and

summary of the other chapters. In Chapter 2, we review relevant literature pertaining to the fields

of molecular imaging, bioconjugation, and protein engineering. This will provide a solid background

for my thesis work, which lies at the intersection of all three fields. In Chapter 3, we describe Sortase-

Tag Expressed Protein Ligation (STEPL), a novel bioconjugation and protein expression technique,

which we believe has advantages over many existing bioconjugation technologies. In Chapter 4, we

use STEPL’s inherent modularity to create an array of dimeric targeting ligands and show how these

ligands enhance specificity in molecular imaging. In Chapter 5, we evaluate various strategies to

enhance STEPL through directed evolution. We then design and screen libraries to increase protein

yield. Finally, in Chapter 6, we review the thesis as a whole and discuss its contributions to the

fields of molecular imaging and bioconjugation. We will also describe opportunities to extend and

enhance the STEPL system for even broader applicability.

1.1 Literature Review

In Chapter 2, we briefly discuss topics relevant to this work.

Molecular Imaging

We describe the concepts underlying the field of molecular imaging as well as some of the pressing

medical issues that the field seems poised to solve. We detail the physical chemistry that drives

the five main imaging modalities and how contrast agents can be designed to influence their signals.

Emphasis is put on fluorescence and magnetic imaging, as they are used throughout this thesis. We

then discuss the concepts of passive and active targeting and how contrast agents are localized to

diseases. Next, we define biomarkers. Finally, we look at the emerging science of bispecific targeting

and its advantages over using a single ligand in particular scenarios.
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Targeting Proteins

This section details the origins of many of today’s targeting proteins, as well as the advantages

and downfalls of each technology. Emphasis is put on antibodies, and fragments thereof, as well as

scaffold-derived targeting ligands.

Bioconjugation

In an effort to establish the need for the novel bioconjugation system that is the centerpiece of this

thesis, we describe the history and current challenges in the field of bioconjugation. We discuss

traditional organic chemistry approaches to labeling proteins with bio-orthogonal functional groups.

We detail the mechanisms of these reactions and how the chemistries and proteins can be engineered

to produce better reactants. Additionally, we introduce the concept of “click chemistry,” a class

of efficient, biocompatible chemical reactions. Next, we discuss the use of enzymes to facilitate

bioconjugations. Careful attention is paid to the intein-based Expressed Protein Ligation system

and sortase-mediated transpeptidation, as these form the basis of our novel system.

Protein Engineering

Finally, we discuss the principles and techniques employed by the two schools of protein engineering,

rational design and directed evolution. We describe the power and precision of rational design

approaches, given there is enough known about the subject to use these techniques. Then we

describe the common methods used to evolve proteins by applying an artificial selective pressure to

create useful proteins even with very poor initial characterization.

1.2 Development and Validation of Sortase-Tag Expressed

Protein Ligation

In Chapter 3, we introduce Sortase-Tag Expressed Protein Ligation (STEPL). We discuss the new

technology’s design principles, optimal reaction conditions, and initial uses in molecular imaging.
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STEPL Design Strategy

Our novel bioconjugation system is driven by the desire to combine the best aspects of chemical and

enzymatic bioconjugation techniques while avoiding their downfalls. We accomplish this by using a

sortase domain in the same way that an intein is used in Expressed Protein Ligation. This results in

protein purification becoming dependent on bioconjugation, potentially yielding a pure, conjugated

protein directly off of the IMAC column. For each component of the STEPL system, we discuss the

choice of sequence and location within the chimeric protein.

Determining the Optimal STEPL Reaction

To validate and optimize the STEPL system, we generate an EGFP-STEPL chimera, which allows

us to quantitatively monitor the reaction by observing EGFP’s transfer from the metal resin to bulk

solution. This is first used to determine the optimal concentration for the necessary calcium trigger

ion in order to reduce unwanted random cleavage while maintaining enzyme activity. To optimize

the other elements of the reaction (time, temperature, and peptide concentration), a mass-action

kinetics model is described and fit to EGFP cleavage data. This allows us to determine the optimal

set of conditions for different desired outcomes.

Initial Applications

In order to prove STEPL’s utility in the context of molecular imaging, the system is used to express

small targeting ligands and conjugate fluorescent or chemically functionalized peptides to that ligand.

The fluorescent ligands are used directly for microscopy. The functionalized ligand is efficiently

attached to the surface of a magnetic nanoparticle. Both systems are assayed for their ability to

provide contrast by specifically labeling the cell population to which they are targeted.

1.3 Making Bi-specific Ligands with STEPL

In Chapter 4, we discuss how STEPL is an ideal system for quick and facile generation of useful

bispecific targeting ligands.
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Modular Protein Dimerization

STEPL is used to express two different targeting ligands and conjugate them to four different

functionalized peptides. Ligands bearing compatible chemistries are reacted with one another to

produce a panel of six dimeric ligands, which are confirmed by gel electrophoresis. We then discuss

the advantages STEPL has in dimer generation over other available technologies.

Increasing Contrast Agent Specificity

Wemeasure the differential ability of the monomer and dimer panel to bind and target cells displaying

one or both of the ligands’ antigens. These are then used as fluorescence contrast agents to specifically

label the double-positive cell population.

1.4 Enhancing STEPL Yield with Directed Evolution

In Chapter 5, we evaluate different systems for directed evolution that could be capable of enhancing

the STEPL reaction by decreasing cleavage during expression via altered calcium dependence. We

then discuss library designs and the results of screening those libraries by phage display.

Selecting an Evolution System

First, we explore the use of an E. coli display system. We describe potential display constructs

and screening protocols. Then we briefly consider a yeast display system and discuss why this is

sub-optimal. Finally, we look at the use of phage display by detailing a potential screening procedure

and the assays validating that screen.

Library Design

We discuss the different options available for library design. We explore the features within the

sortase enzyme’s structure that are known to bind the calcium ion and how the choice of degenerate

codons in that area could effect the enzyme’s structure and overall library size and health. Finally,

we look at different methods of generating the library and describe a way to accomplish this without

biasing the sequences toward wild-type.
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Screening Results

This section details our attempts at finding a better sortase domain through phage display. For each

library, we detail the conditions used for the positive and negative screens and the sequences that

the screen returns. We then clone the sequences into the EGFP-STEPL construct and assay them

for activity. For each round, we evaluate potential problems and justify changes that will be made

to the next round of library generation and screening.

1.5 Overall Discussion and Future Directions

Finally, in Chapter 6, we summarize the work presented in the previous chapters and discuss STEPL’s

place in the fields of molecular imaging and bioconjugate chemistry. We also describe future exten-

sions and applications of the technology that will increase its utility and broaden its impact.
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Chapter 2

Targeting Ligands in Molecular

Imaging

2.1 Molecular Imaging

The field of molecular imaging developed out of the desire to combine the advantages of medical

imaging and biochemical assays. While both imaging and biochemical assays are staples of modern

medicine and immensely powerful in their own right, neither can tell the whole story of a patient’s

disease state. Biochemical assays are performed ex vivo, requiring the removal of tissue from the

subject. The biopsy process irreversibly damages the cells and tissue in the sample and the subject.

It also only provides data from a very small portion of an organ at a single point in time, which is

problematic when assessing diseases that have a high degree of heterogeneity [3]. And while medical

imaging can describe the extent and phenotype of a disease, standard radiology can rarely uncover

the underlying mechanisms driving that disease [1]. Despite the limited information obtained by

standard imaging techniques, they are heavily relied on in the clinic.

One area where this information gap is especially pertinent is in cancer diagnosis. Although

cancer is classically thought of as a single disease, the scientific community has come to understand

that what we call “cancer” is really a collection of hundreds of unique proliferation diseases, each

with their own genetic causes, therapeutic interventions, and degrees of pathology [4]. Therefore,
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when imaging or another early detection method reveals a tumor, it is standard medical practice

to assume the worst possible cancer and begin treating that, even though the patient may have a

much milder disease [5]. This led to an overdiagnosis of tumors in recent years [6, 7, 8, 9, 10, 11].

Time and again, meta-analysis of tumor screening studies have shown that the once-touted “early

screening and diagnostics” recommended by oncologists and cancer advocates do more harm than

good [7]. Recently, the overdiagnosis controversy has spilled out of medical journals into mainstream

media [12, 13, 14]. One study casting doubt on the benefits of annual mammograms even landed

on the front page of The New York Times [15, 16]. That study followed 89,835 women over 25

years and found no significant reduction of the mortality rate between those who received yearly

mammograms and those who received yearly physicals. This problem is unlikely to go away unless

early detection screens begin yielding much more information.

This same problem is echoed in the increasingly specific indications for oncology therapeutics.

It is not uncommon for an antineoplastic drug to be effective in fewer than half of its recipients

[17]. This can make it incredibly difficult for a drug to pass clinical trials, requiring vast numbers

of patients to prove statistical efficacy. More importantly, low-response-rate drugs take a toll on

the health of nonresponders, both in unnecessary side effects and time not spent in an effective

therapeutic regimen. To combat these economic, regulatory, and human costs, many pharmaceutical

and biotechnology companies are using mechanistic knowledge about their drugs to target likely

responders by requiring the patients’ tumors to present specific biomarkers, molecular components

of the cells used to identify a specific disease [18, 19]. Use of biomarkers in Phase I and II clinical trials

nearly doubled between 2001 and 2009 [19], with more than 20% of those trials using a biomarker

as inclusion criteria [20]. The increasing popularity of targeted cancer therapies will require facile

and noninvasive ways to determine which patients fall under a drug’s dosing indications.

Molecular imaging stands to solve these problems by connecting the information derived from

fundamental cancer research with the utility and broad appeal of medical imaging. Rather than

imaging the electronic, nuclear, or physical structures inherent to biology, molecular imaging employs

man-made contrast agents that alter the image signal in their vicinity. The contrast agent is then

targeted to interact with a specific cellular phenotype. In this way, the contrast agent alters the

image only where cells exhibit that phenotype, making it possible to visualize microscopic pathology

at a macroscopic level.
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Figure 2.1: Fluorescence Guided Surgery. Injection of a fluorescent contrast agent allows a computer
to create a virtual model of the targeted tissue. That model is then superimposed on the real video
feed so that the surgeon can be sure they are resecting the entirety of the tissue. Reprinted from
[28] with permission from Elsevier.

2.1.1 Modalities

Molecular imaging contrast agents have been produced for all of the major imaging modalities:

fluorescence [21, 22], magnetic resonance [23], positron emission tomography/single-photon emission

computed tomography (PET/SPECT) [24], X-ray computed tomography (CT) [25], and ultrasound

[26]. There is no “ideal” modality. Each must be evaluated for its applicability based on the

resolution, sensitivity, and safety requirements of the project at hand. In this thesis, we label cells

with fluorescent and magnetic agents, which are described below.

Fluorescence

Fluorescence is a chemical phenomenon that occurs due to the excitation and relaxation of a

molecule’s electronic structure. When a compound interacts with a photon of compatible energy, the

electron in its highest occupied molecular orbital can be promoted to a higher-energy, unoccupied

molecular orbital. After promotion, it very quickly relaxes to the lowest vibrational state in the new

orbital, releasing the energy as heat. Even then, the heightened electronic state is unstable, and the

molecule will relax down to its ground state by converting the excess electronic energy into chemi-

cal, thermal, or radiant energy. Radiant energy release is observed as a photon. Thus, fluorescence

is when a compound releases a photon in response to photoexcitation. Due to the intermediate

vibrational relaxation, emitted photons usually have a lower energy than the exciting photon, a

phenomenon known as the Stokes shift [27]. By filtering out the high-energy photons, a clear image

can be obtained of the fluorophore’s location with an optical microscope or fluorescence scanner.
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In media that does not bend or scatter photons, fluorescence has the highest resolution of the

medical imaging modalities, as low as the wavelength of the emitted photon (and even more precise

with computer-aided ultra-resolution imaging), allowing the visualization of a wide range of biological

targets, from sub-cellular organelles to whole organs. Unfortunately, visible excitation photons are

readily absorbed and converted to heat in most biological tissues, limiting fluorescence to the top few

centimeters of tissue [29]. This makes the modality extremely useful for in vitro and small-animal

in vivo imaging, but greatly limits clinical use for diagnosis. However, one clinical application that

has recently emerged is fluorescence-guided surgery [28]. As shown in Figure 2.1, fluorescence and

white-light video feeds are overlayed on each other, allowing the surgeon to see the presence of a

fluorescent contrast agent in real-time. By showing surgeons the contrast agent, they are able to

remove all traces of a targeted cell population, even small tumor foci not visible to the human eye.

Magnetic Resonance

Magnetic Resonance Imaging (MRI) has become a mainstay of medical imaging due to its ability

to acquire high-resolution anatomical images without exposing the patient to ionizing radiation [1].

MR images are obtained by recording the bulk magnetic moment of water protons within a given

voxel. By carefully timing this measurement in relation to a series of applied magnetic fields, signal

differences can be observed between protons belonging to different tissues. MR contrast agents alter

how quickly the protons react to the external fields, resulting in a higher [30] or lower [31] signal

than the unlabeled tissue.

Higher signals, or positive contrast, are obtained with T1-weighted contrast agents, generally

Gd3+ [32]. The paramagnetic ion has seven unpaired electrons in the d-orbital, speeding up the

magnetic relaxation of coordinated water molecules. This results in more protons aligned with the

base magnetic field and a brighter image. Unfortunately, free Gd3+ is a potent calcium channel

inhibitor and is therefore highly toxic [33]. This can be mediated by chelating the ion with agents

such as diethylene triamine pentaacetic acid (DTPA) or 1,4,7,10-tetraazacyclododecane-1,4,7,10-

tetraacetic acid (DOTA), which makes the Gd3+ biologically inert but also occupies seven of its eight

potential coordination sites. This greatly reduces the chelated ion’s ability to bind and relax nearby

water, requiring very high Gd3+ concentrations (10 - 100 µM) in order to produce contrast [34].

However, visible signal can be created by chelating many Gd3+ ions into dendrimer nanoparticles.
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Figure 2.2: SPIO-Mediated Tumor Contrast. MR images of mice before and after administration
of a Her2/neu targeted SPIO nanoparticle. Nanoparticle accumulation in the targeted tumor (B)
greatly decreases signal in the tumor tissue compared to the pre-administration image (A). Contrast
is not see on in the tumor that does not display Her2, either before (C) or after (D) administering
the nanoparticle. Arrows point to the location of the xenograft tumor. Adapted from [2] with
permission from John Wiley and Sons.

Our lab has loaded up to 300,000 Gd3+ ions onto a single dendrimer nanocluster, which successfully

labeled folate-receptor positive tumors in a murine model [35].

Lower signals, or negative contrast, are usually obtained with T2-weighted magnetic nanopar-

ticles, like superparamagnetic iron oxide (SPIO) crystals [32]. SPIO crystals align nearby water

protons to their own magnetic field, lowering the number aligned with the base magnetic field and

creating a darker image where SPIO is present, as shown in Figure 2.2. This effect can be en-

hanced by concentrating many SPIO crystals into the core of a nanoparticle [36]. Our lab also uses

SPIO particles, and has successfully labeled Her2-positive cells in vivo and in vitro on a number of

occasions [2, 37, 38, 39].

Nuclear Imaging

Radioactive nuclei can be detected using one of two techniques, positron emission tomography (PET)

or single-photon emission computed tomography (SPECT), depending on their decay mechanism.

For PET, radiohalides that undergo positron emission (β+) decay, like 18F and 64Cu, spontaneously

emit positrons. These quickly collide with their anti-particle, the electron, and annihilate, creating
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two 511 keV electrons traveling in exactly opposite directions. The electrons are detected and

their detection time and position are used to calculate their origin, thereby locating the agent that

produced them. By far, the most common PET agent used in the clinic is 18FDG, a glucose analog

that is taken up by cells with high metabolic activity. While a highly active glycolysis pathway is

unusual for healthy tissues, it is a common trait shared by many tumors, making 18FDG an effective

broad-spectrum tumor imaging agent [1]. The other nuclear imaging technology, SPECT, detects

radiohalides that decay by gamma emission, like 99mTc and 123I. Because these nuclei only emit

a single photon, their source’s position is harder to determine, making them orders of magnitude

less sensitive than PET agents. They also require halides with longer half-lives, further limiting

SPECT’s clinical relevance due to radio-exposure concerns [1].

X-ray computed tomography

Like a standard X-ray radiograph, X-ray computed tomography (CT) measures the attenuation of

high-energy X-ray photons while traveling through the patient’s body. However, CT is capable of

producing a three-dimensional reconstruction of the patient’s anatomy, making it much easier for

a radiologist to delineate anatomical structures. Because the ionization energy of iodine’s K-shell

electrons is similar to that of the X-ray photons, iodine has a large X-ray attenuation coefficient and

iodinated chemicals can be used to produce CT contrast [40]. These contrast agents generally have

low sensitivity, limiting their clinical utility due to the high amounts of iodinated contrast agent

necessary to alter the bulk X-ray attenuation of a tissue. CT is also limited by the number of times

a patient can be exposed to the ionizing X-ray photons in a given time period to minimize tissue

damage [1].

Ultrasound

Clinical ultrasound (US) detects the mechanical responses of biological tissues to high-frequency, 1 to

20 MHz, sound waves transmitted through that tissue. The US transducer emits a sonic pulse which

then travels along a straight line in the tissue. When that pulse reaches an interface between tissue

types, some of the mechanical energy is reflected back toward the transducer, which then detects the

reflection and calculates the distance to the interface based on the time it took to receive the signal.

The strength of the reflection is determined by the tissue types at the interface, allowing some level
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of delineation. Molecular contrast can be produced by targeted microbubbles, gas-filled liposomes

or polymerosomes. These bubbles can resonate with the US field, making them orders of magnitude

more reflective than normal tissues, enabling detection of micron-sized cell populations [1].

2.1.2 Targeting

Contrast agents need to be directed to their target cell population in some way. This can be

done passively or actively. Passive targeting relies solely on the physical properties of the agent

and target. The most common passive targeting approach utilizes the enhanced permeability and

retention (EPR) effect [41, 42]. The EPR effect is a phenomenon that occurs when a tumor induces

rapid angeogenesis to oxygenate its core. These blood vessels are made quickly and poorly, allowing

solutes in the blood to “leak” into the tumor interstitium. In addition, tumors generally have poor

lymphatic drainage, increasing the retention time of the solutes that leaked in from the blood. As a

whole, the EPR effect allows nanoparticles to “target” a tumor, simply because they preferentially

accumulate in that tissue.

In order for a nanoparticle to take advantage of the EPR effect, it must have a long circulation

time so that it can randomly leak into the tumor [43]. This can be achieved by coating the particle

with hydrophilic, biocompatible, inert materials, such as poly(ethylene glycol) (PEG). The sterics of

the PEG chains make it difficult for monocytes to phagocytose the particles, slowing their excretion.

Many groups have PEGylated their nanoparticles in order to target them via EPR [44, 45, 46].

A better approach for agents that require high concentrations for detection is active targeting.

Actively targeted agents rely on the contrast agent carrying a chemical group that binds tightly

and specifically to the target population. This binding event confers a few advantages on actively

targeted contrast agents. Active agents do not require poor lymphatic drainage to accumulate, as

their affinity to the tumor cells themselves prolongs their retention time [47]. They are able to

be internalized by recycled receptors, which greatly increases their local concentration and signal

contrast. On a decorated particle, the binding is multivalent, which can trigger internalization even

if the target biomarker is not recycled [48].

Targeting ligands can take a number of forms. Popular small-molecule targeting ligands include

folate [35, 38, 49, 50], estrone [51, 52], and TRX-20 [53, 54], which target cell surface folate receptors,

estrogen receptors, and chondroitin sulfate, respectively. These are easily attached by standard
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organic chemistry to nanoparticles or other contrast agents, making them an attractive choice. In

addition, due to their small size, a large number of small molecule ligands can be packed onto a

nanoparticle surface, increasing particle avidity and internalization.

However, small molecule ligands do not exist for most relevant biomarkers (including those

detailed in Section 2.1.3), so more complex targeting proteins are required. Protenaceous targeting

ligands must have a high affinity and specificity for their target biomarker. Sometimes these proteins

can be found in nature, such as using the epidermal growth factor to target the epidermal growth

factor receptor [55], but they are usually antibody derivatives or evolved binding scaffolds. Section

2.2 describes these proteins in detail. Attachment of proteins to the contrast agent is much more

difficult than to small molecules, but several strategies have emerged, which are discussed in Section

2.3. Although multivalency is also possible with protein-decorated nanoparticles, avidity is inhibited

at high protein densities and an optimal ligand density must be determined for each particle [38].

2.1.3 Biomarkers

A biomarker is any objectively measurable characteristic that gives insight into a biological process

or therapeutic response [56]. They can fall into one (or more) of four main categories. First are

diagnostic markers, which can be prognostic, indicating the presence or absence of disease, and/or

predictive, suggesting potential therapeutic treatments. Second, disease activity biomarkers report

the current disease severity, an important quantity when assessing therapeutic efficacy. Third,

drug effect biomarkers show how well a drug is interacting with its intended target and are used

to determine dosing. Note that this is not the same as a disease activity marker because a drug

reaching its target does not mean it will alter the course of the disease. Finally, there are drug kinetics

biomarkers, which measure prodrug processing and transport to the desired tissue. Biomarkers can

also be classified by their location in the tissue: genomic, cytoplasmic, cell surface, or systemic.

In molecular imaging, the focus is on diagnostic biomarkers, like those listed in Table 2.1 and

detailed below, that detect genomic or proteomic differences from healthy cells. In oncology, this

is often in the form of genetic amplifications, which lead to heightened levels of a protein in the

blood or on the surface of a cell. In situ hybridization, quantitative PCR, sequencing, ELISA, and

immunohistochemistry are commonly used to quantify the amount of biomarkers in patient samples.

These biomarker levels can be highly predictive of a patient’s response to a given drug, especially
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Table 2.1: Diagnostic Biomarkers

Marker Disease Type References
AFP Liver Cancer; Germ Cell Tumors Overexpression [57]
ALK Non-small cell lung cancer; anaplastic large cell lymphoma Splice Variants [58, 59]
B2M Multiple myeloma; Chronic Lymphocytic Leukemia; Peripheral Arterial Disease Overexpression [60]
BCR-ABL Chronic Myeloid Leukemia Translocation [59]
Beta-hCG Choriocarcinoma; Testicular Cancer Overexpression [61]
BRAF Cutaneous Melanoma; Colorectal Cancer Mutation [58, 59]
CA125 Ovarian Cancer Overexpression [62]
CA15-3 Breast Cancer Overexpression [63]
CA19-9 Pancreatic Cancer; Gallbladder Cancer; Bile Duct Cancer; Gastric Cancer Overexpression [64, 65]
CD20 Non-Hodgkin Lymphoma Overexpression [1]
CEA Breast Cancer; Colorectal Cancer Expression [1, 66]
CgA Neuroendocrine Tumors Overexpression [67]
Cytokeratin Pancreatic Cancer Splice Variants [68]
EGFR Mutliple Solid Tumors Overexpression; Mutations [1, 3, 56, 58, 59]
ER/PR Breast Cancer Overexpression [58, 59]
HE4 Ovarian Cancer Overexpression [66, 69]
Her2 Breast Cancer; Gastric Cancer Overexpression [1, 3, 58, 59]
Integrin αvβ3 Solid Tumors Overexpression [1]
KIT Gastrointestinal Stromal Tumor; Mucosal Melanoma Mutation [58, 59]
KRAS Colorectal Cancer; Non-Small Cell Lung Cancer Mutation [58, 59]
Mammaprint Breast Cancer Multiple Overexpressions [56]
MMP-2 Melanoma Activity [1, 70]
MMP-9 Melanoma Activity [1, 70]
Oncotype DX Breast Cancer Multiple Mutations [56, 59]
Ova1 Ovarian Cancer Multiple Overexpressions [66, 71]
PDGFR Malignant Pleural Mesothelioma Overexpression [72]
PK11195 Cerebral inflammation Expression [73]
PSA Prostate Cancer Overexpression [1]
Thyroglobulin Thyroid Cancer Overexpression [74]
uPA Breast Cancer Activity [75]
VEGFR Angiogenesis Overexpression [3, 70]

for targeted therapeutics [58]. Biomarkers that can be measured by immunohistochemistry, such

as cell-surface receptors, are prime candidates for molecular imaging because they are accessible to

targeting ligands [1].

EGFR

The epidermal growth factor receptor (EGFR) is the primary member of the ErbB family of receptor

tyrosine kinases, and plays an important role in cellular replication and differentiation [76]. Due to

its importance in regulating proliferation, overexpression of EGFR is common in many solid tumors,

including lung, breast, colorectal, and squamous cell tumors, among others [77]. Many studies have

targeted imaging agents and therapeutics to EGFR-positive tumors [78, 79].

Her2/neu

Human epidermal growth factor receptor 2 (HER2) is another receptor tyrosine kinase in the ErbB

family. It is overexpressed in approximately one third of all breast cancers due to an amplification

of the Her2/neu gene. This results in an overactive proliferation signal and generally aggressive
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cancers with poor clinical prognoses [80, 81]. Due to its extreme clinical relevance, a number of

therapeutics and diagnostics have appeared for Her2-positive tumors both in the clinic [82] and in

academia [83, 84, 85, 86].

2.1.4 Bispecific Ligands

Sometimes, one biomarker is not enough to selectively label a diseased cell. Many biomarkers, like

the ones described in the previous section, are displayed on a wide range of cells, both healthy and

diseased. And while the diseased cells may express the marker at a much higher level, even low

quantities of a surface receptor can mediate the uptake of a targeted particle [87]. One method to

further increase selectivity for a target cell population is to employ a bispecific ligand, a targeting

ligand that can bind to two different biomarkers. Many cancers express multiple disease biomarkers,

often in unusual combinations [88]. By requiring both markers, it is possible to greatly increase the

signal-to-noise ratio of a contrast agent or the therapeutic index of a pharmaceutical. For example,

Yan et al. targeted a 18F labeled bispecific peptide to GRPR (a marker of lung, colon, and prostate

cancers) and integrin αvβ3 (a general marker of solid tumors) [89]. They were then able to use

MicroPET to specifically label double positive PC-3 cells in a murine tumor model. In a different

study, Nie et al. targeted a PEG-PEI polyplex to the often-overexpressed transferrin receptor (TfR)

and integrin αvβ3 to deliver a luciferase gene. Not only did they see increased selectivity for tumor

cells, they also saw a synergistic effect, where the dual-targeted polyplex transfected cells more

efficiently that an equal dose of mixed TfR-targeted polyplex and integrin αvβ3-targeted polyplex

[90]. Synergy has been seen in a number of other studies, as well [91, 91, 92, 93].

A different application of bispecific ligands is to have one binding domain find a biomarker and

the other bind to the imaging agent/therapeutic itself. This is often done with bispecific antibodies

because the long circulation time and poor clearance of the antibody become problematic with toxic

imaging payloads [88]. For instance, Yazaki et al. made a bispecific antibody where one arm bound

the carcinoembryonic antigen (CEA) and the other variable domain bound the chelator DOTA [94].

They injected the antibody into nude mice bearing a CEA-positive tumor and allowed the antibody

to circulate, bind, and clear from the blood. They then gave an injection of 77Lu ·DOTA and allowed

that to bind and clear. Biodistribution studies showed that by using the pretargeting approach, the

group was able to increase the tumor-to-blood ratio of 77Lu from 3:1 with a directly labeled antibody
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to 199:1 with the pretargeted bispecific antibody.

Another use of bispecific ligands is to deliver agents across the blood-brain barrier. Unlike most

other tissues in the body, solutes in the blood do not easily diffuse into the brain. For example, IgG

content in the brain interstitial fluid is only 0.1%-0.7% of what is found in the blood [95]. This makes

it very hard to use molecular imaging to study neurological disorders. However, Yu et al. discovered

that a low-affinity protein targeted to the transferrin receptor was able to undergo transcytosis and

enter the brain compartment, so long as there is a sufficiently high dose of the agent in the blood

to drive binding on that side of the barrier [96]. By making bispecific antibodies with one arm

having a low affinity to transferrin receptor, they were able to separately image both the neuronal

marker NeuN and β-secretase in mouse brains (with the other arm of the antibody localizing to

those targets).

Bispecifics can also be used to crosslink two different cell types. This is most commonly done is the

context of bispecific T-cell engager (BiTE) ligands, which target CD3 on killer T-cells and a tumor

biomarker. Thus, the bispecific ligand recruits CD3+ cells to the tumor environment and activates

their cytolytic pathways. The first BiTE therapeutic, Blinatumomab, was recently approved for

use in the United States, in December 2014, for patients with Philadelphia-chromosome-negative

relapsed/refractory B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) [97]. It targets both

CD3 and CD19, a leukemia biomarker. Not only did the drug put most of its patients into complete

remission within the first treatment cycle, it also removed PCR-detectible traces of residual disease

in 78% of those patients [98]. If these results can be replicated in other tumor types, BiTE may

become a powerful new class of anti-cancer agents.

2.2 Classes of Targeting Proteins

Targeting proteins have a wide array of origins, which influences the final protein’s size, shape,

stability, and manufacturability. Just as there is no ideal imaging modality, there is no best targeting

ligand. Each one must be chosen for the desired application. Desirable targeting proteins will have

high affinity and selectivity for their targets, be small enough to allow polyvalency on a particle,

and simple enough to be produced robustly and cheaply.

Targeting proteins can be sorted into two major categories: those that are derived from antibodies
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and those that are evolved from a scaffold. Antibody-derived targeting proteins consist of portions of

an antibody that has been raised in an animal model. Scaffold-derived targeting proteins are derived

from mutated portions of natural structural or binding protein domains, such that they have a high

affinity for their new target and low affinity for their natural binding partners. Pertinent examples

of both are described below.

2.2.1 Antibodies

Antibodies, specifically IgGs, are the most common class of targeting protein. This is mainly due

to their high affinity and long history of utility in biomedical research [99, 100]. While costly

and complex to manufacture, the process of producing monoclonal antibodies from hybridomas has

been used since the late 1970s, diminishing these factors’ importance [101]. A larger problem to

molecular imaging and targeted therapeutics has been immunogenicity [102]. However, the steadily

dropping cost of DNA sequencing and rise of genetic engineering has made it possible to “humanize”

an antibody by cloning the antigen-binding regions of a non-human antibody into the human IgG

sequence [103]. The final factor to consider is size. Antibodies are the largest targeting proteins we

will discuss, with a hydrodynamic radius of about 5 nm [104]. This limits the number that can be

packed onto a nanoparticle, which may only have a radius of 20 or 30 nm itself [2]. It also gives

IgG a half-life in the blood of 23 days [105], much longer than is desirable for imaging applications

because of extended exposure to toxic imaging agents and prolonged times between imaging studies.

2.2.2 Antibody Fragments

Many of the problems with monoclonal antibodies can be avoided by using antibody fragments.

Protease digestions and molecular cloning have produced a plethora of antibody segments, which can

be seen in Figure 2.3. These smaller antibody pieces have many properties that are better suited to

imaging agents: faster clearance, improved tissue penetration, and increased tumor-to-blood ratios

[99]. However, these improvements are often counterbalanced by lower affinities, manufacturing

difficulties, slower uptake, and aggregation [106]. Still, antibody fragments have shown some clinical

success. Although scFvs were the first monovalent fragments to be developed, they are cleared

from the blood too fast to be good imaging agents on their own. They are ideal for nanoparticle
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Figure 2.3: Antibody Fragments. Protease digestion and recombinant DNA technologies can produce
many useful fragments of both standard and camelid IgGs. Adapted from [106] with permission from
DOVE Medical Press.
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Figure 2.4: Affibody Structure. A) The three-helix bundle structure of an affibody. The thirteen
mutable side chains are shown and their positions colored magenta. B) The mutated face of the
ZHer2 affibody forms the binding interface with the extracellular domain of Her2. The images are
produced using crystal structures determined by Eigenbrot et al. [107].

conjugations, though, as their small size allows for a much denser packing on the particle surface

than an antibody and the particle mass ensures longer circulation times. Diabodies and minibodies,

whose structures are detailed in Figure 2.3, seem to be big enough to have an acceptable half-life

and have been developed into clinically relevant PET/SPECT agents [1].

A currently emerging class of antibody fragments is derived from camelid, or heavy-chain, IgGs.

Usually produced by inoculating llamas, camelid IgGs lack a light chain, disulfides, and glycosylation,

making them much easier to manufacture. Due to the single-domain structure of the VHH region,

the antigen binding domain is much more soluble and can even be expressed in E. coli [106].

2.2.3 Affibodies

Affibodies are small (6.6 kDa) targeting proteins derived from a portion of S. aureus protein A

(SPA) that naturally binds IgG [108]. The 58-amino-acid B domain of SPA was mutated to increase

chemical stability, creating protein Z, shown in Figure 2.4A [109]. Protein Z has a number of useful

properties. The small size and lack of structural disulfides make affibodies ideal candidates for

expression in bacterial systems. Protein Z has also been shown to have remarkable heat resistance

and structural integrity, so much so that it has the fastest refolding time of any measured protein

at just 3 µs [110]. The small size also allows for high ligand to nanoparticle ratios, which increases

particle avidity and uptake [38].

Most importantly, thirteen of the amino acids on one face of protein Z can be simultaneously
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mutated to any other residue without altering the stability and structure of the protein [108]. This

allows the protein Z scaffold to be evolved to bind tightly to a target biomarker (see Section 2.4 for

details). These matured proteins are known as affibodies. Affibodies have been evolved to target a

wide array of biomarkers, including Her2, transferrin, amyloid β peptide, EGFR, Factor VIII, CD25,

HIV gp120, and CD28 [111]. They have very high affinities (in the mid- to low-nanomolar range) for

their targets. Affibodies have a standardized nomenclature of a capitol Z with the target molecule

as a subscript (ZTARGET).

An affibody often seen in the literature is ZHer2, which can be seen binding its target in Figure

2.4B. This affibody has been particularly useful due to its extremely high affinity (KD = 22pM,

[107]) and specificity for Her2. ZHer2 has proven highly successful in a large number of therapeutic,

imaging, and nanoparticle studies [2, 37, 38, 55, 112, 113, 114, 115].

2.2.4 Other Scaffolds

More than 50 different scaffold domains have been employed in creating targeting proteins over

the past few decades. Most of these scaffolds were never developed after their initial publication.

However, a few, like affibodies, have stood out in the literature and continue to be developed by labs

around the world [116].

Monobodies, also called Adnectins, are based on the 10th extracellular domain of human fi-

bronectin III (10Fn3 ) [121]. Monobody domains have structural homology to IgG. The 94 residues

form a β-sandwich fold with 2 or 3 exposed loops, which are often the randomized region. Unlike

IgG however, monobodies lack a central disulfide bridge, making them much easier to express in

prokaryotic systems.

Anticalins are derived from lipocalins [122]. They are the largest of the common affinity scaffolds,

forming a conical β-barrel fold comprised of 180 amino acids, which is still less than one third the size

of an antibody. As shown in Figure 2.5B, the anticalin binding interface is created by randomizing

the loops and internal residues near the wide end of the barrel. The domain shows a high level of

plasticity, often flexing from its ground-state conformation when binding to its target [116].

Designed ankyrin repeat domains (DARPins, Figure 2.5C) are affinity scaffolds that are made of

five stacked, short coiled-coil domains, usually totaling 166 residues [123]. Libraries are created by

randomizing 6 residues along the same side of each repeat structure. The structures are quite rigid,
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(A) Monobody (PDB ID: 4JE4 [117]) (B) Anticalin (PDB ID: 3BX7 [118])

(C) DARPin (PDB ID: 2BKK [119]) (D) Knottin (PDB ID: 4GUX [120])

Figure 2.5: Other Scaffolds. Scaffold proteins are shown in blue or green. Residues that had been
randomized to create a binding interface are colored pink. Disulfide bonds are colored yellow.
Target molecules are displayed in black. An electron density map, represented by a gray mesh,
shows how well the evolved residues of the affinity ligand fit with the target protein.
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and usually bind their target with a lock-and-key mechanism [116].

Another common structural motif is the knottin. These are the smallest of the scaffolds, usually

around 30 amino acids [124]. Six cysteine residues, forming three disulfide bridges (shown in yellow

in Figure 2.5D), are required so that a protein this small can have a stable tertiary structure. These

interlocking disulfides also make knottin ligands exceptionally stable with regards to boiling, low pH,

and many proteases. Unfortunately, the large number of disulfides make them notoriously difficult

to express and manufacture efficiently.

2.3 Targeting Ligand Conjugation

Bioconjugation is the process of forming a chemical bond between a biological agent, such as a

protein or nucleic acid, and a synthetic agent. This is critical to molecular imaging because the

targeting and imaging aspects of a contrast agent are rarely entirely biological or synthetic. 18FDG

and chimeric fluorescent proteins are notable exceptions. As such, bioconjugations are widely used

in the field of molecular imaging, and the existence of quantitative, efficient conjugate chemistries

are of the utmost importance [1, 125].

2.3.1 Chemical Ligations

A number of chemical methods have been developed to label ligands with cargo, including maleimide,

N-hydroxysuccinimide, carbodiimide, and click chemistries, all of which will be described below

[50, 126, 127, 128]. However, many of these approaches suffer from poor reaction efficiencies and

indiscriminate labeling of nucleophilic residues (e.g. lysines and cysteines) on the targeting ligand.

Random labeling of targeting ligands is problematic because a poorly placed cargo can greatly reduce

a ligand’s affinity for its target. Additionally, each targeting ligand may be labeled with any number

of functional moieties, eliminating their ability to be quantitative or stoichiometric.

Carboxyl-Amine Crosslinkers

Carbodiimides are a class of chemicals that can activate carboxylic acids by readily undergoing

condensation reactions and then serving as excellent leaving groups for amide formation with free

amines. The mechanisms are shown in Figures 2.6A and 2.6B. The carbodiimide group is relatively
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(A) Carbodiimide Heterobifunctional Ligation

(B) Carbodiimide-NHS Heterobifunctional Ligation

(C) Maleimide Ligation

(D) Strain-Assisted Azide-Alkyne Cycloaddition

Figure 2.6: Chemical Ligations
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unstable [129], thus, it is often used in combination with N -Hydroxysuccinimides (NHS) to improve

reaction efficiencies.

Typically, the reactive carboxylate resides on the imaging agent. Carboxylic acids are much more

common on proteins than primary amines [130], so activation of the imaging agent will decrease the

heterogeneity of the conjugation. Pre-activated agent will then be mixed with the targeting ligand,

which will form amide bonds with the imaging agent, producing a targeted contrast agent. Although

this conjugation strategy is popular, it is not efficient. Reaction yields are commonly between 1 and

20% when attaching a targeting ligand to a nanoparticle [129]. It also produces links at random

sites on the protein, which is deleterious to imaging agent efficacy [38].

Thiol-Amine Crosslinkers

Another popular chemistry for heterobifunctional crosslinking is the maleimide-thiol reaction. The

groups undergo an addition reaction in the presence of even a modest base, as shown in Figure 2.6C

[131]. The maleimide is generally only part of a crosslinker, not a part of the imaging agent itself.

The commonly used crosslinker is NHS-maleimide, which acts as a heterobifunctional thiol-amine

crosslinker. Part of the popularity of this linking reaction is due to the fact that while thiol groups

(cysteines) are present in most proteins, they are even less abundant than primary amines [132].

Some proteins, like Annexin A5 (an apoptosis biomarker) have no natural cysteine residues at all,

allowing Fonge et al. to introduce a single cysteine by site-directed mutagenesis [133]. They were

then able to conjugate their cys-Annexin A5 site-specifically and quantitatively to 99Tm−HYNIC.

Thiols can also be added to a protein via treatment with N-succinimidyl S-acetylthioacetate (SATA),

which converts free amines to sulfhydryl groups. Caution must be used while adding free thiol groups,

however, because they can spontaneously form disulfide bonds that lead to unwanted dimerization

and protein aggregation.

The converse, cysteine removal, is also possible. This type of cysteine engineering is often used

in the context of antibody drug conjugates. Antibodies naturally have eight cysteine residues that

form four disulfide bridges. Oddly, antibodies assemble correctly and retain their antigen affinity

with these bonds removed, although they lose some effector functions [134]. Thus, they can be used

as bioconjugation handles, allowing quantitative addition of eight drug molecules [135]. However, a

2-3 fold increase in therapeutic window is achieved by reducing the number of drugs per antibody to
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2-4 [136]. Reducing the number of conjugates has the unfortunate effect of introducing heterogeneity

to the antibody-drug conjugate, which is undesirable from efficacy, manufacturing, and regulatory

standpoints. Because the eight cysteine residues are not required, McDonagh et al. were able to

mutate some of the residues to serine without changing the structure or binding function of an

α-CD30 monoclonal antibody [137]. They were able to create homogeneous, effective antibody-

drugs conjugates by cysteine engineering and maleimide chemistry.

Azide-Alkyne Cycloaddition

A chemistry growing in popularity is the azide-alkyne cycloadditon, which creates a covalent link-

age in the form of a 1,2,3-triazole (shown in Figure 2.6D). The reaction is reliable, high yielding,

biocompatible, and bio-orthogonal. In fact, this reaction is efficient enough to be deemed a “click”

chemistry, which was defined by Sharpless et al. in 2001 [138] to be reactions that are: “modular,

wide in scope, give very high yields, generate only inoffensive byproducts that can be removed by

nonchromatographic methods, stereospecific (but not necessarily enantioselective).” They must also

have the following process characteristics: “simple reaction conditions (ideally, the process should

be insensitive to oxygen and water), readily available starting materials and reagents, the use of no

solvent or a solvent that is benign (such as water) or easily removed, and simple product isolation.”

In the presence of a copper catalyst, several groups have shown cycloaddition yields of greater than

90% in less than 24 hours at standard temperature and pressure [139, 140]. Unfortunately. the

copper catalyst has also shown cytotoxicity, limiting its usefulness [141]. To increase the biocom-

patibility while retaining reaction efficiency, the linear alkyne functional group was replaced by a

cyclooctyne [142]. The cyclic structure creates enormous ring strain and primes the triple bond for

cycloaddition. Not only did this allow the click reaction to proceed without a catalyst, it also accel-

erated the reaction compared to the copper-catalyzed incarnation [142]. The acceleration effect was

further enhanced by electrophilic substitutions at C3 and C8 around the cyclooctyne ring. Two of

these substituted rings, dibenzocyclooctyne (DBCO) and difluorocyclooctyne (DIFO) show triazole

formation rates 60-fold faster than their unsubstituted counterparts [143, 144]. The major drawback

of azide-alkyne cycloadditions in bioconjugation is that neither functional group is found in nature,

so they must be conjugated to a protein by another method, such as NHS-azide or DBCO-maleimide,

prior to the click reaction.
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2.3.2 Enzymatic Ligations

Enzymatic ligation techniques overcome many of the shortcomings attributed to chemical ligations

because they are generally site-specific and stoichiometric [128]. However, many naturally-derived

ligases are limited to natural, or minimally modified, substrates like biotin or lipoic acid [128]. These

additives can then be reacted with the desired cargo. Additionally, the enzymes need to be purified

from the conjugate product, a potential difficulty. Other enzymatic systems, such as SNAP tags,

fuse the enzyme itself to the protein of interest, adding significant and potentially disruptive bulk

to the targeting ligand [126].

Expressed Protein Ligation

Inteins are a class of enzymes that catalyze their own extraction from a mature protein by using

a cysteine or serine residue (the first amino acid within the intein domain) to displace the peptide

bond immediately preceding it, as shown in Figure 2.7. A transesterification then occurs between

the newly formed (thio)ester and a nucleophilic residue immediately following the intein domain.

Finally, a glutamine in the intein cleaves the intein domain from the branched polypeptide and the

ester rearranges to form a peptide bond, leaving an intact protein.

Many intein domains can be split to act in cis, allowing them to ligate together two separate

proteins. An intein particularly adept at this is the intein domain from Nostoc punctiforme DnaE

[145]. It can be split into a 123 a.a. N-terminal domain (IN) and a 36 a.a. C-terminal domain (IC)

that spontaneously associate and restore intein activity. The C-terminal domain is small enough to

be produced by solid-state peptide synthesis, making it amenable to the inclusion of bio-orthogonal

chemistries or non-canonical amino acids. Borra et al. took advantage of this possibility to site-

specifically label a transcription factor in situ [146]. They synthesized an IC peptide containing a

FITC fluorophore C-terminal to the intein region and a dabcyl within the intein, which showed 99%

quenching and improved their signal 30-fold. They transfected the quenched peptide into cell lines

expressing the YY1 transcription factor fused to the IN domain. The split intein reacted in the

cytosol to create a fluorescent YY1 that they tracked to show the effect of active vs. passive nuclear

transport on YY1.

By removing catalytic residues either N-terminal or C-terminal to the intein domain, a crippled
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Figure 2.7: Expressed Protein Ligation. A) Schematic of the intein purification system. The fusion
protein is isolated by affinity chromatography and cleaved off of the column with addition of a
sulfhydryl group. B) The molecular mechanism of intein purification. Four different purification
options are presented. EPL is pathway III, with the cysteine being the N-terminal residue of a
synthetic peptide. Reprinted from [147], Copyright 1997, with permission from Elsevier.
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intein is formed. These can only partially complete their mechanism, leaving a primed thioester that

can be displaced by a different sulfur nucleophile, generally mercaptoethanesulfonic acid (MESNA)

[145]. As detailed in Figure 2.7, Expressed protein ligation (EPL) takes advantage of this by fusing

one end of a crippled intein to a chitin binding domain and the other end to the target protein.

Because the target can be fused to either side of the intein, it can be labeled on either the N or

C terminus. The chimera is expressed in E. coli, bound to a chitin column, and washed to remove

impurities. MESNA is then added overnight to cleave the target off of the intein and column. A

cysteine-containing peptide can then displace the MESNA, labeling the target with whatever else

the peptide contains.

Our group has used EPL extensively to attach affibodies and antibody-linked Protein Z to a

variety of nanoparticles [2, 37, 38, 39]. EPL allows us to attach an alkyne moiety to the C-terminus

of our targeting ligand. This is then covalently bound to particles displaying azide groups via highly

efficient click chemistry. We have also shown that using EPL instead of traditional chemistries

has significant advantages in particle targeting, presumably because the C-terminal label gives the

targeting ligand orientation relative to the particle [2]. For the same reason, Venter et al. used EPL

to produce antigens for a nanoparticle-based vaccine. Maltose-binding protein was expressed and

linked to a peptide containing an aminooxy group, which was subsequently linked to benzaldehyde-

displaying virus-like particle. The aniline-catalyzed ligation produced a particle displaying antigen

in a defined orientation with icosahedral symmetry, which greatly increased the B-cell response over

antigen alone.

Sortase-Tag

Sortase is a transpeptidase found in gram-negative bacteria. It catalyzes the cleavage of the Thr-Gly

peptide bond within its LPXTG recognition motif and the subsequent formation of a new peptide

bond between the now-C-terminal threonine of the motif-containing protein and the primary amine

of a glycine residue (Figure 2.8A). This is done by a reverse-protonated, mono-iso bi bi ping pong

reaction mechanism with a hydrolytic shunt [148], as depicted in Figure 2.8B. At the enzyme’s

optimal pH of 7.8, only a small fraction of the catalytic residues C189 and H120 are correctly

protonated. Therefore, very little of the enzyme is in an active state, about 0.06% [148]. Despite its

low activity, sortase has proven to be one of the most useful enzymes for bioconjugations [149, 150].
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Figure 2.8: Sortase A Mechanism. A) Reaction diagram of the sortase catalytic mechanism. First,
Cys184 cleaves the LPXTG motif between the T and G via tholysis. Then, a peptide beginning with
glycine cleaves the LPXT from the acyl-enzyme intermediate, regenerating the sortase enzyme. B)
Sortase reaction schematic featuring both the transpeptidation and hydrolysis pathways. Adapted
from [148] with permission from John Wiley and Sons.
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The only requirements for sortase tagging, or “sortagging”, seem to be an LPXTG motif and an

N-terminal glycine, although using three to five glycine residues has been shown to improve reaction

efficiency [151]. Calcium is also needed to activate the enzyme. Either can be preceded or followed

by a fully-folded protein or synthetic peptide. As such, sortagging has proven to be a flexible and

broad approach to enzymatically tagging the N- or C- termini of proteins.

Many groups have successfully used the soluble domain of Sortase A (SrtA) from S. aureus in

concert with a fused LPETG motif. That system has been used to label full-length antibodies with

radiohalides for imaging studies [152], an isotopically-labeled, insoluble SH3 domain with a non-

labeled GH1 solubility tag for protein NMR [153], bacterial adhesins to fluorescent microspheres

to study bacterial adhesion to host cells [154], as well as many other applications that have been

previously reviewed [149, 150].

One challenge in sortagging has been that the ligation regenerates an LPXTG motif and produces

a new glycyl-amine, which can lead to the production of the original motif-containing protein and

reduce reaction efficiency. To mitigate this reverse reaction, some have run the ligation in dialysis

tubing to selectively remove the unwanted product [153]. More recently, the Liu group has replaced

the glycyl-amine of the peptide tag with a hydrazine [155]. The modification is still recognized by

the enzyme for ligation but the product is no longer able to serve as a cleavage substrate. Thus,

they produced an irreversible sortagging reaction that led to higher yields and increased purity.

Because the sortase mechanism includes both a cleavage and ligation, the enzyme can be used to

concurrently purify and conjugate a target protein. Chilkoti et al. fused an LPETG motif between

their target protein and an elastin-like-peptide (ELP) [156]. By raising the temperature, they

aggregate the ELP fusions and purify their protein from bulk lystate. They then add an ELP-

tagged sortase, calcium, and a synthetic peptide, which cleaves the ELP tag off of the target protein

while ligating the synthetic peptide to the target. By again inducing ELP aggregation, the ligated

target protein is separated from the unligated target, cleaved ELP tags, and enzyme.

Biotin Ligase

Biotinylation is an attractive method for labeling proteins due to the small size and high specificity

of the tag as well as the femtomolar interaction between biotin and avidin [125]. The E. coli biotin

ligase, BirA, catalyzes the ligation of adenylated biotin to the lysine residue within the 15-amino-
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Figure 2.9: Biotin Analogs. Both ketone 1 (A, [157]) and cis–propargyl biotin (B, [162]) can be
ligated to the biotin acceptor peptide and directly enable bio-orthogonal chemistries.

acid biotin acceptor peptide (BAP) sequence, GLNDIFEAQKIEWHE. BirA is highly specific for

the BAP sequence; overexpressing the enzyme in mammalian cells does not result in biotinylation

of any endogenous proteins [157]. Only one protein is naturally modified by BirA in E. coli cells,

the biotin carboxyl carrier protein (BCCP).

The interaction between biotin and avidin-family proteins is well-characterized and the most

common method of functionalizing a BirA-modified protein. Fluorescently-labeled streptavidin has

been used to image EGFR and AMPA trafficking [157, 158], nanoparticle biodistributions [159, 160],

and even track single neurotrophic factors moving along an axon in real time [161].

While BirA is exquisitely selective for the BAP sequence, it tolerates some promiscuity in the

biotin moiety itself. For example, Chen et al. determined that wild-type BirA will ligate ketone

1 (Figure 2.9A), allowing direct modification of labeled protein with a hydrazine [157]. Slavoff et

al. tested biotin ligases from eight species for activity with a number of biotin analogs [162]. They

found that the enzyme from Pyrococcus horikoshii accepts desthiobiotin azide and cis-propargyl

biotin (which has an alkyne group, Figure 2.9B), allowing them to directly modify proteins for use

in click-chemistry reactions.

Transglutaminase

Microbial transglutaminase (mTG), most often from Streptomyces mobaraensis, catalyzes the trans-

amination reaction of the γ-carbonyl amide of a glutamine with the ε-amine of a lysine or another

primary amine supplied in excess. mTG exhibits broad specificity toward its substrate glutamines,

which is convenient if genetic manipulation of the target protein is impractical. Although there are

no specific sequence requirements for mTG, it generally only recognizes one or two of a protein’s
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surface-exposed glutamine residues. This common belief of limited active glutamines may be due

to publishing bias, however [163]. mTG’s specificity is instead due to local secondary structure (the

Gln must be on a loop) and the properties of nearby residues. Thus, the active glutamines must be

empirically determined for each protein of interest.

A number of approaches have been developed to limit mTG activity to a single site on a target

protein. For instance, producing human IgG1 without glycosylation allows only a single γ-carbonyl

amide to be recognized in the constant region of the heavy chain. Thus, Dennler et al. were able

to produce homogenous antibody-drug conjugates with enzymatically deglycosylated commercial

Trastuzumab (Herceptin) [164]. Mero et al. took advantage of the structural specificity of mTG

by running the enzymatic labeling reaction in PBS with an organic co-solvent, which generally

alters protein structure by disrupting hydrophobic collapse. Adding 30% (v/v) DMSO and 50%

(v/v) ethanol led to site-specific PEGylation of salmon calcitonin and human growth hormone,

respectively, which each have two natural mTG sites [165].

If a target protein has no natural mTG sites, a Q-Tag (PKPQQFM) or K-Tag (MKHKGS)

can be engineered into the protein sequence [166, 167]. For example, Kitaoka et al. attached a

K-tagged alkaline phosphatase to DNA containing glutamine labeled dUTP to produce a sensitive

DNA hybridization probe that could detect as little as 10 fg of target DNA [168].

Aldehyde Tag

Formylglycine-generating enzyme (FGE) can be used to create a unique aldehyde functional group

on a protein. Posttranslationally, FGE oxidizes the cysteine residue within a CxPxR motif to create

a formylglycine (fGly) residue, which can be further functionalized by hydrazone or oxime formation

[169]. Because aldehyde groups are not present in any of the canonical amino acids, the conversion

of a cysteine to formylglycine creates a site-specific, genetically-encoded conjugation handle. Ad-

ditionally, FGE is expressed naturally in the cytoplasm of many prokaryotes and eukaryotes [170]

and can be artificially expressed in secretion pathways [171], making the aldehyde tag accessible to

nearly all expression systems.

Another major advantage of the aldehyde tag is that it is not limited to the N- or C-terminus of the

target protein, but can be present anywhere that is surface accessible. This has proven particularly

useful when engineering monoclonal antibodies to display a specific glycosylation pattern because
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the sugar moiety can be placed in its usual location along the Fc molecule [172]. In a different

study, Drake et al. created a small library of monoclonal antibodies displaying an aldehyde tag in

different locations [173]. After conjugating a drug to the aldehyde, they found that the location not

only affected conjugation efficiency, but also the pharmacodynamics and pharmacokinetics of the

antibody-drug conjugate.

One drawback of the hydrazone and oxime chemistry generally used with the aldehyde tag is

that it is reversible, complicating robust and quantitative protein labeling. To address this issue,

Agarwal et al. created tryptamine derivatives that first react with an aldehyde to create a traditional

oxime and then continued with a Pictet-Spengler reaction that creates a stable carbon-carbon bond

[174]. After being incubated for a week at room temperature, proteins ligated by the Pictet-Spengler

method remained largely conjugated, while those conjugated using oxime chemistry showed nearly

complete hydrolysis.

Sugar Remodeling

IgG carries two well-characterized N-linked glycans. These sugar trees can be trimmed and regrown

post-purification. Because the glycosyltransferases necessary to rebuild the glycan are known to

tolerate chemical modification of their sugar-nucleotide substrates, it is possible to include small

bio-orthogonal functional groups in the remade glycosylation pattern [125]. For example, Li et al.

used a galactosyltransferase (GalT) to remove the outer galactose and sialic acid from a monoclonal

antibody and then religate the galactose residue [175]. They then added recombinant sialyltrans-

ferase (ST6GalI) and azido-modified sialic acid to finish the glycosylation pattern and incorporate

four azide groups per antibody. They then used strain-assisted azide-alkyne click chemistry to add

a variety of chemical functions to the antibody in a site-specific and quantitative manner. While

this technique is powerful and has been used by a number of groups [176, 177, 178], it is limited to

proteins that have well-defined surface glycans.

Fusion Protein Tags

The SNAP tag consists of the active domain of the human DNA repair protein O6-alkylguanine-

DNA alkyltransferase (hAGT) [179]. In the cell, hAGT transfers a methyl group from an O6-

alkylguanine, irreversibly generating a guanine residue and converting the hAGT active site cysteine
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into a methionine. Keppler et al. correctly hypothesized that they could use this mechanism to

permanently ligate other alkyl chains to the hAGT active site. They found that the protein was

incredibly tolerant of O6-benzylguanine (BG) derivatives, allowing them to conjugate biotin and a

number of fluorophores to hAGT. And by genetically fusing hAGT to the N- or C-terminus of a

target protein, they were able to directly and specifically ligate their BG derivatives to the target

protein in any cellular compartment. The technique’s ease of use and broad applicability made

it popular in the scientific literature. Largely used for fluorescence imaging, including advanced

techniques like super-resolution imaging [180] and total internal reflection fluorescence microscopy

[181].

The popularity of the SNAP tag led Gautier et al. to evolve the CLIP tag [182]. Eight mutations

were able to alter the specificity of hAGT from O6-benzylguanine to O6-benzylcytosine (BC), while

maintaining promiscuity in the O6-alkyl chain. In fact, the change in substrate specificity was so

complete that SNAP and CLIP tags can be used in tandem for multichannel labeling of cellular

proteins. An example SNAP/CLIP system is provided by Maurel et al., who used SNAP- and

CLIP-tagged proteins to show membrane protein interactions by independently labeling them with

fluorophores capable of performing time-resolved fluorescence resonance energy transfer [183].

The major drawback of all fusion tags is their ability to alter the functions of the target protein.

This was specifically put to the test by Landgraf et al. by fusing their protein of interest, a Clp

protease to a variety of fusion tags [184]. Prior to the Landgraf study, the Clp family of proteases

had widely been reported to form foci in the E. coli cytoplasm. They hypothesized that after cell

division, an observable (fluorescent) protein should be degraded by Clp faster in the daughter cell

that retained the Clp foci than the daughter cell that needed to synthesize a new one. However, they

saw no difference in degradation rates between daughter cells with untagged ClpX. This led them to

fuse more than 20 visualization tags to ClpX, including the SNAP tag. The result, shown in Figure

2.10, shows the incredible differences in ClpX localization due entirely to their fusion partner. So

while fusion tags can be very powerful tools, the consequences of adding a large fusion domain must

also be kept in mind.
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Figure 2.10: Effects of Fusion Domains. Landgraf et al. fused the protein ClpX to a number of dif-
ferent fusion tags, mostly fluorescent proteins, which caused the proteins to congregate in foci within
the E. coli cell. From the paper: “(a) Schematic of antiparallel fluorescent protein dimer (yellow)
dissociating into monomers (top) and of avidity effects potentially clustering tagged ClpX hexamers
(blue; bottom). For simple monomers, re-association is slow because the molecules diffuse apart;
for tagged oligomers, the complex acts as a scaffold to facilitate re-association. (b) Immunofluores-
cence microscopy with an antibody to ClpX (anti-ClpX) in the wild type (left; magnification of the
boxed region is shown on the right), clpX-Venus strain (middle; Venus fluorescence is shown on the
right) and ∆clpX strain (right). Insets, phase-contrast images. (c) Fluorescence images of bacte-
ria expressing ClpPSNAP tag labeled with tetramethylrhodamine (TMR), compared to wild type
(negative control). Insets, phase-contrast images. (d) Fluorescence images of bacteria expressing
the indicated constructs. Cell outlines (red) are shown for cells with weak cytoplasmic signal. (e,f)
HILO microscopy of gently fixed cells expressing ClpX-mGFPmut3 (e) and ClpP-mGFPmut3 (f).
(g) Phase-contrast (left) and live-cell HILO microscopy fluorescence images (right) of cells expressing
ClpP-mGFPmut3 taken one second apart at time points t1-t4. Scale bars, 1 µm.”
Reprinted by permission from Macmillan Publishers Ltd: Nature Methods [184], copyright 2012.
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2.4 Engineering Ligands and Enzymes

Nature has provided a host of interesting proteins that can be used for both targeting and ligations.

However, native proteins are often unsuitable for man-made systems, as was previously discussed

in Section 2.2. When this happens, it is the province of protein engineers to deliver a custom

protein tailored to the system at hand. The techniques used to develop novel proteins fall into two

broad categories: rational design and directed evolution. As the name implies, proteins created

by the rational design approach are the result of deliberate mutations, fusions, or deletions that

are hypothesized to add or remove specific functionality. In contrast, directed evolution involves

introducing a large number of mutations, in excess of 107, to a coding sequence. The resulting

proteins are expressed in parallel with some link to their coding sequence and then subjected to

rounds of rigorous screening. Only the proteins that meet the conditions of the screen are recovered.

Those sequences then receive additional mutations and are put through another screen; a cycle that

is repeated until a protein that completes its objective with the desired quality is recovered. Both

schools of thought have significant benefits and downfalls, which will be discussed.

2.4.1 Rational Design

The rational design of proteins leverages basic science discoveries in structural biology, systems

biology, and enzymology to create proteins with novel functionalities. Rational design approaches

have the advantage of being hypothesis-driven and testable, making it easy to determine efficacy.

Because so much is known about the systems chosen for rational design, they have a higher likelihood

of success. A heavy dependence on biophysical data is a major downfall of the approach, due to

relative scarcity of well-characterized protein systems and the extensive time and cost required to

obtain that data. Even with those limitations, rational design has been producing useful proteins

for as long as we have been able to read and modify the genetic code.

Chimeric Proteins

Like the mythical beast of ancient Anatolia that had the heads of a lion, goat, and snake, protein

chimeras consist of globular domains from different proteins that have been fused together into a

single polypetide chain. Utilizing molecular cloning techniques or direct DNA synthesis, the engineer
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Figure 2.11: Chimeric Scaffolds Enhance Biosynthetic Pathways. A) Dueber et al. fuzed enzymes
in the mevalonate biosynthetic pathway to protein binding domains and created a scaffold protein
to co-localize the enzymes in specific ratios. B) Mevalonate synthetic flux is altered by changed
the scaffold:enzyme ratios while holding enzyme expression constant. Reprinted by permission from
Macmillan Publishers Ltd: Nature Biotechnology [186], copyright 2009.

is able to create a coding sequence containing the genetic instructions for each desired domain in

series and in frame. By doing this, we can combine the functions of disparate proteins.

Often, these combinations are used to alter the localization, regulation, or binding partners

of a useful enzyme. For example chimeric antigen receptors (CARs) are the fusion of one of the

targeting ligands mentioned in Section 2.2 with the transmembrane and signaling domain of CD3ζ

[185]. When transfected into killer T-cells, CARs redirect the cells’ cytotoxic effect toward a cell

population determined by the targeting ligand. This effect was later enhanced by fusing additional

signaling domains (CD28 and CD134) C-terminal to CD3ζ. This allowed the CAR to simultaneously

activate co-stimulatory pathways that maintain the activated, cytolytic phenotype for longer periods

of time, making the cells much more effective.

Another common use of chimeras is to fuse a binding domain to a protein of interest to direct its

localization inside or outside of the cell. The simplest example of this is the hexahistidine tag; six

histidine residues fused to the N- or C-terminus of a protein imparts high affinity for certain transition

metals. This is used to localize proteins in a cell lysate slurry to added metal-coated beads, purifying

the target protein from the bulk cell solution. This same concept can enable much more complex

interactions. For instance, Dueber et al. fused the enzymes AtoB, HMGS, and HMGR to orthogonal,

transgenic protein-binding domains [186]. They then expressed chimeras of the partner domains

in varying ratios to create scaffold proteins (Figure 2.11). The scaffold significantly increased the

effective concentration of each enzyme in the biosynthetic pathway, allowing them to produce 77-fold
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more product without the additional metabolic burden of overexpressing the enzymes individually.

Due to the innate modular nature of proteins, each globular domain is often fully functional in

the new context of a chimera because globular domains tend to fold independently of one another. To

ensure the independent folding and functionality of each of a chimera’s domains, linker regions can

be included between domains. While linkers are not generally a primary design focus, their selection

can play an important role in protein stability and function [187]. Variations of the glycine-serine

linker, (GGS)n, are the most frequently used linkers due to their flexibility, solubility, and resistance

to proteolysis. On the other end of the spectrum, α-helical linkers, (EAAAK)n, are rigid and can

be used to deter interactions between domains.

Crystal Structures and Computational Analysis

Crystal structures are one of the most important tools in rational design. Using a suite of in silico

tools, such as PyMol [188] and Rosetta [189], the effects of mutations, deletions, and fusions can be

modeled and analyzed before ever reaching the wet lab. Homology modeling allows us to approximate

the tertiary structure of chimeric proteins and predict interactions between domains [190]. Modeled

binding interfaces enabled Han et al. to create a decoy TLR4 receptor specific to the MD2 ligand

[191]. By using a crystal structure of the bound proteins and predicting the change in free energy

resulting from mutations to TLR4, they increased the affinity twenty-fold.

As our understanding of protein structure and function matures, de novo protein design software

is becoming more common and useful. For example, Richter et al. used the Rosetta3 enzyme

modeling suite [192] to design a custom esterase [193]. They used the software to first scan and score

214 potential scaffold enzymes. Next, Rosetta produced a series of mutations to try and optimize

enzyme binding to the transition state of the thiolysis reaction, creating a library of theozymes

(theoretical enzymes). Quantum mechanical calculations were then run on the theozyme mechanisms

to predict reaction rates and cull the library down to 55 candidates, which were cloned and screened

in the wet lab for valid enzymes.

Site-Directed Mutagenesis

Site-directed mutagenesis (SDM) is a simple method that can make profound changes to a protein’s

stability or function. In SDM, a protein engineer makes specific, targeted changes to the DNA
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encoding a protein, resulting in an altered primary structure. The mutations are generally driven

by knowledge of the protein’s crystal structure or the enzyme’s mechanism.

One of the first applications of SDM in protein engineering was to improve protein stability.

A primary source of instability is oxidative stress, especially if the protein has been removed from

its natural environment, which often occurs with industrial enzymes. Subtilisin, a promiscuous

protease found in the Bacillus family, is one such enzyme. It was known that exposure to oxidative

stress led to the conversion of Met222 to methionine sulfoxide and complete inactivation of the

enzyme within minutes [194]. Using SDM, Estell et al. were able to mutate M222 to all 19 other

amino acids and measure their activity and peroxide tolerance [195]. They found that while the

M222A mutation reduced activity by 47%, it also made the enzyme impervious to even 1M H2O2.

The mutated enzyme is also resistant to inactivation by bleach and is now a common ingredient in

laundry detergent [196].

Perhaps the most common modern application of SDM is a loss-of-function mutation. Most

enzyme families have one or two residues that are necessary for their function. These can be

easily identified as they are highly conserved when comparing primary structures. For example,

the C-terminal asparagine is strictly conserved in all intein domains [197]. Mutation of the critical

asparagine residue to alanine results in a branched protein because the intein is unable to complete

its splicing function, resulting in a crippled intein. These partially inactivated inteins form the

basis of the expressed protein ligation technique described in Section 2.3.2 by leaving the N-extein

attached to the protein by a thioester that can be cleaved by an external sulfide group [198].

Less common is a gain-of-function mutation. It is much harder to intuit how altering one or two

amino acids will add a function than how removal of a reserved residue will remove functionality from

a protein. It can be done, however by studying naturally occurring mutations that result in a change

of substrate, product, or binding partner. For example, Reitman et al. mined cancer mutation data

to identify candidates for an enzyme to synthesize (R)-2-hydroxyadipate [199]. They found that a

mutation in the enzyme isocitrate dehydrogenase (IDH) catalyzes a reaction whose product is only

one carbon shorter than (R)-2-hydroxyadipate (Figure 2.12B). The wildtype IDH enzyme is closely

related to homoisocitrate dehydrogenase (HIDH), which serves the same catalytic function as IDH,

but with a metabolite one carbon longer (Figure 2.12C). They correctly hypothesized that making

the analogous mutation to HIDH would lead to the formation of (R)-2-hydroxyadipate, giving the
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(A) Wild-type IDH (B) Mutant IDH (C) Wild-type HIDH (D) Mutant HIDH

Figure 2.12: Gain of Function Mutation. Reitman et al. determined the mutation required to
alter the IDH substrate from (2R,3S)-isocitrate (A) to 2-oxoglutarate (B). They then mapped that
mutation onto the homologous enzyme HIDH, enabling the desired conversion of 2-oxoadipate to
(R)-2-hydroxyadipate (D). Differences in IDH and HIDH substrates are drawn in red. Difference
between the wild-type and mutant substrates are drawn in blue. Adapted with permission from
Macmillan Publishers Ltd: Nature Chemical Biology [199], copyright 2012.

enzyme a new function with only a single mutation.

Recently, SDM has also been gaining traction as a way to introduce unnatural amino acids. Life

has done amazing things with the current twenty canonical amino acids since the standard genetic

code was set at least 2.5 billion years ago [200]. However, the natural amino acids exclude large

portions of the chemistry that can be performed in a lab environment. To bridge this gap, many

research groups have devised ways of incorporating synthetic amino acids with novel functionality

into a cell’s genetic code. The most common way to do this is by suppressing the amber stop codon

(UAG), which accounts for only 7% of E. coli stop codons and is rarely the terminator of critical

genes [201]. By co-transforming cells with orthogonal tRNA and tRNA synthetases, it is possible to

introduce a 21st amino acid into the genetic code. SDM is then used to mutate a natural codon to

TAG, which will be translated by the ribosome into the unnatural amino acid. An example comes

from Hui and Tsourkas, who used amber suppression to replace residues in Protein Z with p-benzoyl-

L-phenylalanine (BPA), a phenylalanie analog containing a benzophenone photocrosslinker [202].

They used SDM to incorporate BPA into 11 unique sites and then measured their ability to form

covalent bonds with different IgGs. These created stable, site-specific IgG-protein Z conjugates that

could never exist using the repertoire of natural amino acids. Researchers have also incorporated

BODIPYFL-lysine, photocaged lysine, and F-para-phenylalanine into proteins to create a FRET
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sensor, activate a signaling pathway with a UV pulse, and study the effects of π interactions on

ligand binding, respectively [203, 204, 205, 206].

2.4.2 Directed Evolution

Directed evolution approaches are useful when there are no known or characterized proteins that

serve a needed function. They require little, if any, biochemical knowledge of the desired outcome. As

a result, many surprising and unpredictable sequences have arisen from evolutionary techniques. For

example, when screening for affibodies with high affinity for Amyloid β, the characteristic biomarker

of Alzheimer’s disease, Grönwall et al. found that their best binder was actually an affibody dimer

linked by a disulfide bond [207]. No one has ever purposely built a bridged affibody homodimer

to bind a single target molecule, so directed evolution provided a solution that had never been

considered.

There are three fundamental aspects of every directed evolution experiment. First, a library

encoding a large number of protein coding sequences quickly creates the genetic diversity that would

occur over eons in a natural setting. Second, a screen that recovers the desired phenotypes provides

an artificial selective pressure that culls the non-functional phenotypes. Finally, a way to link each

sequence in the genetic library to the specific version of the protein it encodes. The most important

of these aspects is the phenotype-genotype link, as that will determine the maximum library size

and available screening methods. The major classes of links are described in detail below.

The major downside of this approach is a large front-end time and capital investment with no

guarantee of success. The largest library may still not contain a functional sequence. The best

sequence may simply not express well in its host organism. The screen may be passable by an

unexpected, undesired phenotype that out-competes the desired phenotype. Still, directed evolution

has been immensely popular and useful.

Cell Surface Display

Cell surface display co-opts the secretory pathways of bacteria and yeast to produce library-encoded

proteins that are anchored to the extracellular surface of the cell membrane. When selecting for

targeting ligands, the cells are incubated with fluorescently labeled target protein and sorted via flu-

orescence activated cell sorting (FACS), which reads the fluorescence signal of each cell individually
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Figure 2.13: Bacterial Surface Display Strategies. A) Proteins and peptides can be cloned into the
loops of OmpA, a well-studied E. coli surface protein. B) Fusions to ice nucleation proteins allow
flexible spacing from the cell surface by including internal repeating domains. C) Autotransporters
express the protein in the periplasm and then actively pull the protein through a channel for it to
refold outside the cell. Adapted from [208], with permission from Elsevier.

and sorts high-signal and low-signal cells into separate collection tubes. The highly fluorescent cells

are subsequently expanded and screened again under more stringent conditions until a suitable bind-

ing partner is found. Although the selection methods for enzyme maturation are less generalizable,

surface display is necessary for precise control of substrate concentrations.

Proteins can be trafficked to the surface of E. coli by a number of methods, shown in Figure 2.13

[208]. In one example, Binder et al. found the autotransporter EspP was the most robust method of

displaying their Anticalin library [209]. They then produced a library of 2× 109 Anticalin variants

with error-prone PCR and sorted for cells that retained fluorescence after one hour of competition

with unlabeled target. The library was able to increase the dissociation half-life of the natural binder

by ten-fold.

Yeast display is generally done with S. cerevisiae by fusing the library protein to Aga2p [210].

During secretion, Aga2p is linked by disulfide bonds to the integral membrane protein Aga1p, which

carries it to the surface. Thus, the displayed protein is transiently in the endoplasmic reticulum

and is subject to ER post-translational modifications like glycosylation and proteolysis. This can

be a disadvantage if displaying an enzyme or cytosolic protein, as glycosylation can disrupt activity

and participate in binding. On the other hand, if the end product will be produced solubly in a

eukaryotic system, yeast display is preferred because it will mimic the end product [211]. Yeast

have been glyco-engineered to reproduce human N-linked glycosylation patterns, making them the

system of choice for selecting and displaying humanized antibodies [212].

Unfortunately, cell surface display systems usually have the lowest library sizes (generally 1×107
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Figure 2.14: Bacteriophage M13. Adaptations of figures from [214] are allowed under the Creative
Commons License v4.0.

to 1×109) [213]. The libraries are limited by the inherent inefficiency of stable genetic transformation.

However, this is balanced by the relevance of the display system to the downstream application [212].

It is much more likely for a targeting ligand evolved in yeast to express robustly in yeast.

Phage Display

Perhaps the most common display technique is phage display, specifically filamentous phage display.

The filamentous bacteriophage M13 (see Figure 2.14) has a simple, circular single-stranded DNA

(ssDNA) genome that encodes only eleven proteins. The life cycle of the phage is well characterized.

It first binds to the F pilus on E. coli. Then it injects its genome and replication enzymes into

the bacterium, which synthesizes the second strand of the genomic plasmid. The eleven genes are

then expressed and assembled in the bacterial periplasm. Newly syntheisized ssDNA genomes are

transported into the assembling phage and extruded from the cell in the pVIII coat protein. Finally,

five copies of pIII are used to cap the phage and it is released into the media. The E. coli cell survives

the infection, albeit with a slower growth rate. For some strains of M13, such as KO7, the genome’s

packaging signal contains mutations that lower its affinity for the coat protein. The phage is thus

capable of preferentially incorporating the ssDNA of a separate plasmid, known as a phagemid,

rather than its genome. When the resulting phage infects a bacterium, the E. coli receives a copy

of the phagemid and will not produce any phage. To create more phage with the phagemid, the

transformed bacteria must be superinfected with M13KO7, which provides the necessary structural

and assembly proteins. If the phagemid encodes one of the phage’s coat proteins, the encoded version

will be randomly incorporated into the daughter phage along with the phagemid that encodes it.

This is the phenotype-genotype link in phage display [215]. Due to the extremely small size of

bacteriophage, libraries of up to 1× 1011 unique sequences can be screened [213].
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Commonly, the protein to be evolved is fused to the N-terminus of the cap protein pIII. pIII

chimeras have been used to evolve many different proteins, but affinity targeting proteins are the

most common. Antibodies [216, 217], scFvs [218], affibodies [108], monobodies [219], and short

peptides [220] have all been evolved by phage display, among many others. Phage have even been

used to select for high-affinity D-peptides by screening against synthesized D-antigens and relying

on the mirror-image hypothesis, which makes an L-peptide binding a D-target equivalent to a D-

peptide binding an L-target [221]. The screen involved in all of these is a binding assay. Briefly,

phage libraries are expressed and purified from E. coli and bound to antigen-coated plates. After a

sufficient amount of time has passed for binding, unbound phage are washed away. Bound phage are

then eluted with acid, protease, or excess antigen. While acid or protease elution can ensure recovery

of all bound phage, eluting with excess antigen can be used to find phage with a particular binding

affinity [222]. The eluted phage infect fresh E. coli cells, which can be grown up for sequencing,

phage production, further cloning, or storage. Phage may also be subjected to a negative screen,

where they are panned against similar antigens, such as different isoforms of the antigen, to remove

non-specific phage.

One of the major advantages of phage display is the robustness of the phage themselves. Bac-

teriophage M13 is heat and acid stable and can only infect E. coli bearing the F plasmid, making

them essentially orthogonal to mammalian systems. Of the major display techniques, phage display

is the only one capable of being screened directly on cultured cells or even in vivo. When screening

against cultured cells, it is imperative to have a good negative screen consisting of cells that differ

from the positive line by only the target antigen. In vivo, the negative screen is the rest of the body

and the target antigen is an unknown molecule on the target tissue [223]. In one example, Arap

et al. injected a phage library into immunodeficient mice bearing a MDA-MB-435 xenograft breast

tumors [224, 225]. They then recovered the phage for amplification and sequencing. The peptides

were tested for affinity and selectivity to determine the best sequence. Finally, they conjugated

the optimal peptide to the chemotherapeutic doxorubicin and administered the targeted drug to

tumor-bearing mice, which showed improved survival over the untargeted drug.

To speed up phage display, Esvelt et al. developed a technique called phage assisted continuous

evolution (PACE) [226]. As shown in Figure 2.15, PACE encodes its library onto an M13 genome

that is missing pIII. Phage infect cells that have been transformed with a plasmid with an error-
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Figure 2.15: Phage Assisted Continuous Evolution. Host cells continuously flow through a lagoon,
where they are infected with selection phage (SP) encoding library members. Functional library
members induce production of pIII from the accessory plasmid (AP) and release progeny capable
of infecting new host cells, whereas non-functional library members do not. Increased mutagenesis
is triggered through induction of the mutagenesis plasmid (MP). Host cells flow out of the lagoon
on average faster than they can replicate, confining the accumulation of mutations to replicating
phage. Reprinted by permission from Macmillan Publishers Ltd: Nature [226], copyright 2011.
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prone polymerase for mutagenesis and a plasmid that codes for an intercellular screen, using the

phage protein pIII as a reporter gene. Because pIII is necessary for phage infection, only phagemids

that code for a passing protein can produce infectious phage. Constructs that cannot pass the screen

are therefore not infective because they lack the necessary cap protein. And because the mutagenic

plasmid is constantly introducing mutations in the phage genome, the library will continue evolving

as the screen is running. Continuous systems such as PACE represent a major advance in directed

evolution, as a few days of PACE can be the equivalent of hundreds of rounds of evolution and

screening. However, PACE is limited to being intercellular screens, which are only applicable to the

evolution of targeting proteins if both the ligand and biomarker can be expressed in E. coli.

Ribosome Display

Ribosome display is a fully in vitro technique. Because it does not require an extremely inefficient

transformation step, it can produce the largest libraries, containing up to 1× 1013 unique sequences

[213]. The key to ribosome display is that the screened sequences must not contain a stop codon.

During protein synthesis, the stop codon recruits release factor proteins that dissociate the ribosomal

subunits from the messenger RNA and nascent peptide chain. By expressing these libraries via in

vitro protein synthesis, the ribosome will stall when it reaches the end of the mRNA because it is

unable to disassemble without a release factor. Thus, the ribosome itself will act as a link between

the coding mRNA and translated protein. The genotype is recovered by simply amplifying the

mRNA with a reverse transcriptase and running a standard PCR.

While ribosome display can screen libraries 100-fold larger than the most diverse phage display

libraries, it is not nearly as robust [227]. Nature treats external RNA as a threat, so enzymes

that degrade RNA, ribonucleases, are everywhere in our environment [228]. And due to the high

specific activity of ribonucleases, a small contamination can destroy an entire sample. In addition,

the genotype-phenotype linkage of a ribosome is not covalent, meaning that inhospitable buffer

conditions such as high/low pH, high temperature, detergents, or organic solvent can disrupt the

ribosome complex and destroy the sample. Thus, ribosome display can only be performed in vitro

in nuclease-free wells with purified antigen.
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Library Generation

None of the above screening techniques can work without a good library of genes for them to screen.

A common way of producing libraries is through random mutagenesis [229]. By amplifying a gene

of interest with Taq polymerase in error prone conditions, which include the presence of MnSO4

and uneven dNTP ratios, it is possible to randomly introduce mutations during the PCR reaction.

The introduction of random mutations mimics natural evolution and generally produces a stable

library. However, stability is traded for lack of diversity, as error-prone PCR only introduces a few

mutations per kilobase. In order to introduce a large number of mutations, like the 13 randomized

amino acids of an affibody, the DNA must be synthesized. Degenerate oligonucleotides allow for

any mixture of nucleic acids at a specific location, making it easy to quickly produce large, targeted

libraries. These libraries of oligonucleotides can be incorporated into the gene in a number of ways,

including PCR, overlap extension, site-directed mutagenesis, and Kunkel mutagenesis [219, 230].

And with the rapid advance of DNA synthesis technologies, entire genes can simply be purchased

with degenerate positions, although this is currently too expensive for routine use.

When designing degenerate oligonucleotides, an important consideration is codon choice [231].

There are 64 codons, but only 20 amino acids, so the NNN codon (N = A, T, C, or G) skews the

library toward the more commonly represented amino acids, like leucine. By instead using NNK (K

= G or T), the codon space is reduced by half, while maintaining the amino acid space. By further

paring down the possible codons, it is possible to design libraries with positions skewed toward

codons more likely to produce a stable result, such as heavily biasing an amino acid toward being

charged or hydrophobic [231, 232, 233, 234, 235].
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Chapter 3

Sortase-Tag Expressed Protein

Ligation

Abstract

Efficient labeling of protein-based targeting ligands with various cargos (drugs, imaging agents,

nanoparticles, etc.) is essential to the fields of molecular imaging and targeted therapeutics. Many

common bioconjugation techniques, however, are inefficient, nonstoichiometric, not site-specific,

and/or incompatible with certain classes of protein scaffolds. Additionally, these techniques can

result in a mixture of conjugated and unconjugated products, which are often difficult to separate. In

this study, a bacterial sortase enzyme was utilized to condense targeting ligand purification and site-

specific conjugation at the C-terminus into a single step. A model was produced to determine optimal

reaction conditions for high conjugate purity and efficient utilization of cargo. As proof-of-principle,

the sortase-tag expressed protein ligation (STEPL) technique was used to generate tumor-specific

affinity ligands with fluorescent labels and/or azide modifications at high purity (>95%) such that it

was not necessary to remove unconjugated impurities. Click chemistry was then used for the highly

efficient and site-specific attachment of the azide-modified targeting ligands onto nanoparticles.

Adapted with permission from [236]. Copyright 2013 American Chemical Society.
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3.1 Introduction

As described in Section 2.3.2, EPL and sortagging have a number of advantages over chemical (and

many enzymatic) bioconjugation strategies. Both are site-specific, stoichiometric, and can attach a

wide array of payloads to the target protein. Despite their advantages, however, the techniques still

fall short of an ideal system for conjugating imaging cargo to a targeting ligand. Ligation of a small

cargo, such as a fluorophore, often has minimal effect on the protein’s physical properties (mass,

charge, hydrophobicity, etc.), making it difficult to separate conjugated products from unligated

reactants in either system. EPL relies heavily on thiol chemistry, so it is incompatible with classes

of targeting ligands that possess disulfide bonds, such as knottins (Section 2.2.4) and antibodies

(Section 2.2.1). In Sortase-mediated transpeptidation, the conjugated product must be purified

from the enzyme as well as the unconjugated proteins.

In this chapter, we set out to create a system that retains all of the advantages of EPL while mak-

ing the technique more efficient, expanding the pool of potential targeting ligands, and simplifying

downstream purification.

3.2 Design Strategy

To mitigate the shortfalls of sortase labeling and expressed protein ligation, we combine the strategies

into a single conjugation and purification technique called Sortase-Tag Expressed Protein Ligation

(known hereafter as STEPL). In a single chimeric protein, we express a targeting ligand in frame

with the sortase recognition motif LPXTG, a (GGS)5 linker, SrtA∆59, and a His6 tag (Figure 3.1).

After binding the chimera to a metal resin, addition of calcium and any protein/peptide with an N-

terminal glycine (and attached cargo, if desirable) activates the sortase domain, ligating the protein

of interest to the peptide while simultaneously cleaving it from the rest of the sortase chimera. Thus

the conjugate is released while the sortase enzyme is retained on the column via the His-tag. By

making purification and conjugation codependent, STEPL remains site-specific and stoichiometric

in nature but does not require any additional steps to remove SrtA from the purified protein sample.

Further, large excesses of peptide are not essential since only correctly ligated product is released

from the affinity column and conditions can be optimized to nearly exhaust any added peptide. The

rationale behind this design is described below:
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Figure 3.1: Sortase-tag expressed protein ligation scheme: Ligands are cloned in series with the amino
acid sequence LPXTG, a (GGS)5 linker, SrtA, and a hexahistidine tag, respectively. The chimeric
protein is expressed and isolated on a nickel column. The addition of calcium and a peptide with an
N-terminal glycine (and optimally three glycines) allows the SrtA enzyme to simultaneously catalyze
ligand release and peptide ligation. This allows any cargo (e.g. a fluorophore, azide, biotin, PEG,
proteins, etc., represented by the star) that is attached to the triglycine peptide to be site-specifically
conjugated to the ligand.
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S. aureus SrtA∆59

Sortase A is uniquely suited to a system that links conjugation to purification because its catalytic

mechanism (described in detail in Section 2.3.2) involves the thiolysis of one peptide bond followed by

the formation of another. Both steps are necessary for transpeptidation, creating a firm link between

substrate cleavage and ligation. By expressing a ligand in cis with a tethered sortase domain, we

can instead link ligand release (cleavage) to ligand bioconjugation (ligation). Additionally, sortase

activity can be modulated by calcium, allowing the chimera to stay intact through expression until

release is desired.

In nature, sortase A is an extracellular protein consisting of an N-terminal transmembrane domain

and a C-terminal soluble domain [237]. By deleting the first 59 amino acids, we are left with only

the soluble catalytic domain that can be used in vitro [149, 150].

LPETG Motif

Although sortase recognizes the ambiguous LPXTG motif (where X is any amino acid), the biocon-

jugation literature quickly converged on X=E as the motif of choice [150]. Thus, LPETG is used as

the sortase recognition motif in this and all subsequent studies.

N-Terminal Ligand

Placing the ligand N-terminal to the sortase motif and catalytic domain is the key differentiator

between STEPL and the Mao sortase expression system [238]. In the previous system, the protein

of interest was expressed at the C-terminus of the chimera so that only the thiolyis step is required

for release and a single N-terminal glycine is left as an expression scar. By reversing the order of

domains in STEPL, the initial thiolysis of the T−G bond keeps the protein of interest attached to

the catalytic domain (and therefore the solid substrate) via an acyl-enzyme intermediate. Only when

a glycine-initiated peptide is used to reform a T−G peptide bond is the protein of interest actually

released from the enzyme. This mechanism requires the protein of interest to have a C-terminal

conjugation to be recovered from the column. STEPL has a larger expression scar (LPET), but this

is irrelevant since a larger C-terminal conjugate is the desired outcome.
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Figure 3.2: STEPL Flexible Linker Design. A) Crystal structure of Sa-SrtA active domain showing
24.5Å between the N-Terminus of the domain and Cα of the LPETG ligand.

(GGS)5 Linker

Five GGS repeats were chosen for this fusion construct because the crystal structure (shown in Figure

3.2) reports a length of 24.5Å between the N-terminus of the sortase domain and its active site [239],

corresponding to the length of approximately three GGS repeats (8.8Å each). Thus a (GGS)5 linker

was expected to provide sufficient spatial flexibility for the sortase domain to recognize and bind the

LPETG motif.

His6 Affinity Tag

The hexahistidine tag for metal ion affinity chromatography enjoys widespread use in biology because

it is a small, soluble tag which binds tightly to inexpensive nickel or cobalt resins. Thus, His6 was

chosen for STEPL due to its ubiquity and simplicity. Notably, STEPL avoids one of the major

drawbacks of the His6 tag, generally “sticky” proteins; because the column is never eluted with

imidazole, the impurities remain bound to the column.
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Figure 3.3: Western Blot of EGFP released from an affinity column under various conditions. An
EGFP · STEPL fusion protein was expressed and washed on an affinity column. The column was
then treated with various concentrations of triglycine and Ca2+. Released GFP was detected by
western blot.

Triglycine Peptide

Only one N-terminal glycine is necessary for sortase-mediated ligation. However, beginning the

peptide with three glycine residues allows the sortase to accommodate the peptide more easily and

results in greater efficiency [150]. Thus, all STEPL peptides described will begin with GGG.

3.3 Determination of Calcium Dependence

A valuable feature of the STEPL system is that it allows for the site-specific labeling of recombinantly

expressed proteins without requiring any steps in addition to what is normally required for protein

purification. Under optimal conditions, all of the recombinant protein that is released from the

affinity column would be labeled with the desired cargo as a result of the SrtA-mediated ligation

reaction. To evaluate the efficiency of this ligation reaction and to assess the extent of any non-

specific cleavage of the LPXTG motif, in the absence of ligation, a model system was designed with

EGFP as the “ligand” (EGFP · STEPL). This allowed for quantitative monitoring of protein release

from the affinity column in the presence and absence of triglycine and calcium. Notably, peptides

with two or more glycines are typically preferred for SrtA-mediated ligations since they exhibit

significantly improved binding and catalysis [238].

Initial studies with the EGFP-STEPL system, in the presence and absence of Ca2+ (5mM) and

triglycine ([GGG], 25µM or 100 µM), revealed that release of the GFP from the affinity column

increased with triglycine concentration (Figure 3.3). However, it was also observed that Ca2+ alone

could lead to some non-specific release of GFP, albeit at lower levels than when triglycine was also

present. In the absence of Ca2+, no GFP was released from the affinity column, with or without

triglycine. These results suggested that it was important to identify an optimal Ca2+ concentration
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Figure 3.4: Effect of calcium on the efficiency of protein ligation. An EGFP · STEPL fusion protein
was expressed and washed on an affinity column. The column was then treated with various con-
centrations of Ca2+, in the presence of triglycine, at 37◦C for 4hrs. These experiments provided a
measure of the total amount of ligated and unligated product ([EGFP]Total) released from the affinity
column for each Ca2+ concentration. The amount of unligated product ([EGFP]unligated) was deter-
mined by performing analogous experiments in the absence of triglycine. The percent protein con-
jugated ([EGFP]ligated) was then calculated as ([EGFP]Total− [EGFP]unligated)/([EGFP]Total) ∗ 100.

that would maximize the ratio of ligated (i.e. GFP-triglycine conjugates) to unligated recombinant

protein. Therefore, GFP-STEPL was performed in the presence of a fixed concentration of triglycine

(25µM) and increasing concentrations of Ca2+ (0 to 5 mM). These experiments provided a measure

of the total amount of ligated and unligated product released from the affinity column for each

Ca2+ concentration. The amount of unligated product was determined by performing analogous

experiments in the absence of triglycine. The maximum percent of ligated product occurred at

Ca2+ concentrations below 100µM (Figure 3.4). Therefore, a Ca2+ concentration of 100µM was

used for all subsequent experiments.

3.4 Modeling and Optimization of the STEPL Reaction

In order to further optimize the GFP-STEPL procedure, a systematic study on the effect of triglycine

concentration, reaction temperature, and reaction time on the amount of recombinant protein re-

leased from the affinity column was conducted (Figure 3.5). As expected, the rate of protein release

increased with triglycine concentration and reaction temperature. All experimental data was fit with
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Figure 3.5: Modeled and actual EGFP release from an affinity column as a function of temperature,
triglycine concentration, and time. An EGFP · STEPL fusion protein was expressed and washed on
an affinity column. The column was then treated with 0mM (asterisk), 25µM (star), 100µM (dia-
mond), 200µM (square), or 5mM (circle) triglycine and 100µM Ca2+. EGFP release was monitored
as a function of time. Protein release experiments were conducted at 37◦C(top), 25◦C(middle), and
6◦C(bottom). All data was fit using a kinetic model of EGFP cleavage that takes into account both
triglycine-dependent and triglycine-independent pathways. Modeled GFP release (lines) has been
superimposed onto the recorded data (symbols).
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a kinetic model of the reaction, detailed below in Reaction C3.1.

EGFP + SrtA←−
k1

EGFP · SrtA +GGG−−−−→
k2

EGFP ·GGG+ SrtA (C3.1)

This model assumes that transpeptidation is the rate-limiting step of the glycine-dependent pathway

and therefore collapses reversible peptide binding and transpeptidation into a single second-order

rate constant. To include temperature dependence, the model also assumes that the rate constants

can be modeled by the Arrhenius equation. Thus, the model’s parameters are the preexponential

constants and activation energies of the two pathways (Table 3.1). As shown in Figure 3.5, the

model provides an acceptable fit to the observed data.

The kinetic model was used to predict the effect of various reaction conditions on three outcomes:

(i) the percentage of released protein that is ligated to the peptide, (ii) the percentage of peptide

consumed in the reaction, and (iii) the yield of ligated protein (i.e. the amount of ligated protein

normalized by the total amount of protein initially bound to the affinity column) (Figure 3.6). The

value for each of the desired outcomes was determined for reaction times of 2, 4, 6, and 24 h, with

100µM CaCl2, initial triglycine peptide concentrations of 1 to 1000 µM, reaction temperatures of

4, 25, or 37◦C, and assuming 100µM initial protein concentration on the affinity column. It was

determined that the purity of the ligated protein was independent of reaction time, as it is simply

a ratio of the two rate constants. As a result, adding excess peptide could be used to drive the

ligation reaction and overwhelm the basal cleavage rate. Overall, if a highly pure ligated product is

desirable, >95% purity can be achieved by simply using 2-fold or greater molar excess of triglycine-

containing peptide compared with the concentration of total column-bound protein (at 37◦C, Figure

3.6C). This is significantly lower than the 10-fold excess of peptide typically required for efficient

intein-based EPL [2].

If it is more desirable to exhaust all of the triglycine peptide than achieve high purity of the

ligated product, perhaps because the peptide is functionalized with a cargo that is cost-prohibitive,

Table 3.1: Model Parameters. The kinetics model determined Arrhenius pre-exponential constants
and activation energies for the glycine-free (k1) and glycine-dependent pathways (k2).

Pathway Pre-exponential Constant (A) Activation Energy (∆G‡) Rate Constant at 37◦C
Glycine-free 4.0568× 102s−1 3.8463× 104J/mol 0.0419s−1

Glycine-dependent 2.9246× 1010s−1M−1 5.4958× 104J/mol 5.0352× 103s−1M−1
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Figure 3.6: Model predictions of STEPL ligation efficiency, triglycine peptide utilization, and the
percent yield of expressed GFP that is recovered from the affinity column. The kinetic model of
GFP cleavage from the STEPL system was evaluated with initial conditions of 100µM Ca2+, 100µM
EGFP · SrtA, and 1µM to 1mM triglycine at 4◦C, 25◦C, and 37◦C for 0 to 24hrs. The percentage
of GFP that has been ligated to triglycine (time independent) and the percentage of triglycine
peptide consumed during a 6 hr incubation was determined for reaction temperatures of (A) 4◦C,
(B) 25◦C, and (C) 37◦C. Dotted lines at 90% and 95% are included for reference. The percentage of
ligated GFP recovered after a 2, 4, 6, and 24 hour incubation was determined as a function of excess
triglycine (relative to the total amount of EGFP · SrtA) for reaction temperatures of (D) 4◦C, (E)
25◦C, and (F) 37◦C.
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Table 3.2: Synthetic Peptides

Peptide Molecular Weight (Da) λex/λem

P3.1 NH2-Gly-Gly-Gly-Lys(HiLyteFluor 750)-NH2 1,327 754/778
P 3.2 NH2-Gly-Gly-Gly-Lys(5-FAM)-Gly-Gly-Ser-Lys(N3)-NH2 1,030 492/518

Figure 3.7: Her2/neu affibody expression and ligation. An SDS-PAGE gel was run with (1) marker,
(2) raw lysate of bacterially expressed STEPL-Her2 affibody, and (3) Her2 affibody purified using a
2-fold excess of HiLyte 750-labeled triglycine peptide, 100µM Ca2+ at 37◦C for 6hr. Black signal is
from SimplyBlue SafeStain protein stain. Red signal is HiLyte 750 peptide fluorescence.

then >90% peptide consumption can be achieved by adopting reaction conditions whereby the

recombinantly expressed protein is in 4-fold or greater molar excess over the peptide (at 37◦C,

Figure 3.6C). However, this comes at the cost of reduced purity of the ligated product and will likely

require additional purification to remove unligated targeting ligands.

Higher reaction temperatures can be used to speed up the reaction and improve peptide utiliza-

tion, particularly at lower triglycine peptide concentrations, but purity of the ligated product is only

marginally improved. When yield is considered, the STEPL system clearly favors higher tempera-

tures regardless of whether high purity of the ligated protein or high peptide utilization is desirable.

(Figure 3.6D-F). Of course, some proteins may be unstable at high temperatures, requiring longer

reactions to be performed at room temperature or in a cold room.

3.5 Fluorophore Ligation

To demonstrate the utility of STEPL as a general methodology for the site-specific labeling of

tumor targeting ligands with imaging agents, the coding sequence for a Her2/neu-targeting affibody

(ZHer2) was cloned into the STEPL vector. The affibody was expressed and conjugated to a triglycine

peptide containing the near-infrared dye HiLyte Fluor 750 (Table 3.2, P 3.1) using conditions that

were expected to result in >95% purity of the fluorescent labeled affibody, based on the kinetic



Section 3.5: Fluorophore Ligation 60

Figure 3.8: Functional evaluation of the Her2 affibody-HiLyteFluor 750 conjugate. (A) Her2/neu
positive and negative cells were incubated with Her2/neu-targeted affibodies that were conjugated
to HiLyteFluor 750 (red) using the STEPL system. Cells were also stained with Hoechst 33342
(nuclear stain, blue). (B) In-cell western quantification of HiLyteFluor 750 fluorescence.

model established above (2-fold excess peptide, 100µM Ca2+, 37◦C, 6hr). Efficient ligation between

the affibody and the fluorescently-labeled peptide was confirmed by SDS-PAGE (Figure 3.7). The

major band in the 700nm channel (protein stain) co-localized with the single fluorescent band in the

800nm channel (HiLyte Fluor 750), following removal of excess free peptide by dialysis. Only a very

faint signal stemming from the unligated protein was observed in the 700 nm channel, at a slightly

lower molecular weight than the ligated product. To confirm that the affibody remained functional

following the ligation reaction, it was incubated with T6-17 and NIH/3T3 cells in vitro, which are

positive and negative for the Her2/neu receptor, respectively (Figure 3.8). As expected, the affibody

labeled the T6-17 cells exclusively, with no observable labeling of the NIH/3T3 cells. Further,

the addition of excess unlabeled affibody (i.e. cleaved with triglycine) competitively inhibited the

binding of the fluorescently labeled affibody to T6-17 cells, suggesting that binding was specific for

the Her2/neu receptor. Quantification using an in-cell western assay (Figure 3.8B) corroborated the

fluorescence microscopy findings. Similar results were obtained by applying the epidermal growth

factor receptor (EGFR)-targeted affibody, ZEGFR, to EGFR-positive and negative cells (Figure 3.9).
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Figure 3.9: Functional evaluation of the EGFR affibody-FAM conjugate. EGFR positive and neg-
ative cells were incubated with Her2/neu-targeted affibodies that were conjugated to FAM (green)
using the STEPL system. Cells were also stained with Hoechst 33342 (nuclear stain, blue).

3.6 Azide Ligation and Nanoparticle Synthesis

In addition to imaging agents, STEPL can also be used to conjugate various other functional moieties

including bio-orthogonal reactive groups (e.g. azide) onto the C-terminus of targeting ligands. The

site-specific introduction of azides onto recombinant proteins provides a very favorable approach

for the efficient coupling of targeting ligands to nanoparticles using click chemistry. In particular,

this approach allows tight control over both ligand orientation and density on the nanoparticle

surface. We have previously shown that both of these factors can have a dramatic impact on

nanoparticle avidity [38]. As proof-of-principle, the Her2/neu affibody was conjugated to a synthetic

peptide containing a green fluorophore (5-FAM) as well as an azide group (Table 3.2, P 3.2). This

conjugate was then reacted with superparamagnetic iron oxide (SPIO) nanoparticles functionalized

with azadibenzocyclooctyne (ADIBO). ADIBO is a dibenzocyclooctyne derivative capable of copper-

free click reactions with azides. The resulting ZHer2-SPIO conjugates were incubated with T6-17

and NIH/3T3 cells. Cell labeling was then assessed by acquiring T2 relaxation times and T ∗
2 -

weighted images of cell lysates (Figure 3.10). The Her2-positive cells exhibited a marked decrease
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Figure 3.10: Functional evaluation of the Her2 affibody-SPIO conjugates. Her2/neu-positive and
Her2/neu-negative cells were incubated with Her2-SPIO conjugates in the presence and absence of
excess free affibody. Free affibody served as a competitive inhibitor to confirm specific binding of the
Her2/neu receptor. Relaxivity measurements and T ∗

2 -weighted MR images of each cell suspension
were acquired.
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in T ∗
2 -relaxation times, consistent with the presence of SPIO, in comparison to Her2-negative cells.

An observable negative contrast was also observed upon MR imaging of the Her2-positive cells.

Competitive inhibition, using an excess of unlabeled ZHer2, led to a loss in MR contrast, indicative

of receptor-specific binding. Therefore, these results provide clear evidence that STEPL can be

combined with click chemistry for the site-specific attachment of targeting ligands onto nanoparticles.

3.7 Discussion

STEPL offers a number of features that make it a very favorable approach for bioconjugation reac-

tions. First and foremost, STEPL combines release of recombinant proteins from the affinity column

and bioconjugation into a single step. This greatly simplifies the entire bioconjugation procedure

since no subsequent labeling and purification steps are required, saving time, money, and complexity.

Second, STEPL allows for the site-specific conjugation of cargo. Site-specific functionalization has

been shown to be beneficial in a number of applications including the preparation of protein-drug

conjugates, which often exhibit higher efficacy than randomly labeled targeting ligands [240]. It has

also been shown that the site-specific attachment of targeting ligands to nanoparticles can improve

nanoparticle avidity [162]. Third, STEPL conjugates the peptide to ligand in a stoichiometric man-

ner. This is particularly important when labeling targeting ligands with imaging agents, since it

allows for precise quantitative imaging. Fourth, the conditions used to release protein from the affin-

ity column can be manipulated to ensure that essentially all of the recovered protein is conjugated

with the desired cargo. This eliminates the often difficult process of purifying conjugated products

from unconjugated proteins. Since in many applications a large protein is labeled with low molecular

weight drugs or imaging agents, the conjugated and unconjugated forms of the protein can differ

by as little as a few hundred to a few thousand Da, potentially without any significant change to

hydrophobicity or charge. Fifth, construction of the STEPL system as a single expressible protein

removes the additional step of removing sortase from the conjugated product, a common feature of

current sortase conjugation systems [150, 156, 241]. Additionally, in systems where unconjugated

ligand is easily separable, the reaction conditions could be altered to ensure that expensive synthetic

peptides can be exhausted in the ligation reaction. Thus, STEPL is a single-chain, self-cleavable

system where high-cost components can be fully utilized; traits highly desirable in industrial protein
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production as they reduce overall cost and time [242].

The one identified shortcoming of Sortase A is that it exhibits some cleavage even in the absence

of glycine. Previous studies have addressed this problem by making a destabilizing mutation to Trp-

194. However, we hypothesized that reducing the calcium concentration would have a similar effect

with finer control. This was found to be true, as sub-millimolar calcium concentrations provided a

sharp, dose dependent drop in background cleavage. There is also potential for background cleavage

during expression due to cytosolic calcium in the bacterium. However, the calcium level inside E.

coli is estimated to be between 0.1 - 1µM [243], so while there is likely some loss, it should be

minimal and could always be discouraged by the aforementioned mutation.

To further optimize and understand the cleavage reaction, a kinetic model was established and

its parameters (time, temperature, and initial triglycine concentration) were systematically varied.

To simplify the model, the reversible binding of peptide to the enzyme and product conversion were

condensed into one second-order rate constant. This is justifiable because the applicable peptide

concentrations do not appear to saturate the binding curve and the determined rate constants are

well below the diffusion limit [244, 245], implying that product conversion is rate limiting.

The model reveals a fundamental conflict between conjugate purity and peptide utilization. The

glycine-independent pathway can be easily overwhelmed by adding a large excess of peptide to drive

the glycine-dependent pathway. On the other hand, the peptide can be fully utilized by making

it the limiting reactant. Therefore, if product purity is required and downstream purification of

unreacted ligand would be difficult, it is optimal to use excess peptide. If peptide utilization is the

primary concern, the optimal conditions are 37◦C with a 1:4 ratio of synthetic peptide to STEPL

protein, although it is important to note that in this latter case additional purification is needed

to purify conjugated product from unconjugated proteins. Systems where the peptide enables the

conjugate to be immobilized onto a surface or particle are ideal candidates for peptide exhaustion.

In this study, STEPL was used to functionalize affibodies with chemical groups useful for molec-

ular imaging. A near-IR fluorophore was utilized to optically differentiate between cells expressing

and lacking the proto-oncogene Her2/neu. The NIR-dyed affibody was used to quantify Her2/neu

expression differences between the T6-17 and NIH/3T3 cells, which demonstrates STEPL’s utility

for in-cell western techniques. Additionally, STEPL was used to conjugate a bio-orthogonal reactive

group (an azide) to the Her2/neu affibody. The azide readily reacted to a strained alkyne on the
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surface of superparamagnetic iron oxide nanoparticles. Due to the site-specific nature of STEPL,

the affibody was linked in a specific orientation, which greatly increases the particle’s efficacy in dis-

tinguishing between cells expressing and lacking Her2/neu. STEPL has the potential to conjugate

many other moieties to its target protein, such as biotin, poly(ethylene-glycol), antibiotics, metal

chelates, and photocrosslinkers, all of which have been proven compatible with the sortase enzyme

[150].

3.8 Conclusions

STEPL has proven to be a flexible and efficient system for molecular imaging and targeted therapeu-

tic applications. This study validated and optimized the system for ligand purity and peptide-cargo

utilization. STEPL was then used to visualize and quantify Her2/neu and EGFR expression in vitro.

Moreover, because it has the ability to link virtually any protein expressible in bacteria with any

cargo that can be attached to a triglycine peptide, STEPL has potential applications in many fields.

3.9 Materials & Methods

Cloning

Sa-SrtA∆59 [238] was amplified from pGMBCS-SrtA (Addgene plasmid 21931 [153]) with an N-

terminal (GGS)5 sequence and C-terminal H6 sequence. To facilitate blue/white screening, the Lac

operon was amplified from pUC19 (Invitrogen) in an antisense orientation with a C-terminal sequence

coding for the restriction site XhoI, the sortase recognition sequence LPETG, and the (GGS)5 linker.

Overlap-extension PCR was used to join the Lac operon product to the Sa-SrtA59 product. The

full sequence was then cloned into pRSET-A (Invitrogen) via the NdeI and MluI restriction sites,

creating the STEPL vector, pSTEPL (see Plasmid Map 3.1). Sequences were verified by restriction

analysis and sequencing. The EGFP sequence, ZHer2 sequence [113], and ZEGFR sequence [114] were

amplified with 5’ NdeI and 3’ SalI sites and cloned into pSTEPL via its NdeI and XhoI sites (Plasmid

Maps 3.2, 3.3, and 3.4, respectively). White colonies were picked and verified by restriction analysis

and sequencing.
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Plasmid Map 3.1: pSTEPL

Feature Location
T7 Promoter 20-39
LacZ 384-106
LacZα 222-154
LacO 424-402
Plac -10 434-429
Plac -35 458-453
CAP Binding Site 490-478
Sortase Motif 497-511
(GGS)5 Linker 512-556
Sa-SrtA∆59 557-997
His6 998-1015
T7 Terminator 1044-1173
f1 Origin 1244-1699
bla Promoter 1731-1835

AmpR 1830-2690
pUC Origin 3508-2835
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Plasmid Map 3.2: pSTEPL/EGFP

Feature Location
T7 Promoter 20-39
Chimeric ORF 100-1344
EGFP 100-816
Sortase Motif 823-837
(GGS)5 Linker 838-882
Sa-SrtA∆59 883-1323
His6 1324-1341
T7 Terminator 1370-1499
f1 Origin 1570-2025
bla Promoter 2057-2161

AmpR 2156-3016
pUC Origin 3843-3161
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Plasmid Map 3.3: pSTEPL/Her2Affb

Feature Location
T7 Promoter 20-39
Chimeric ORF 100-816
Her2 Affibody 100-288
Sortase Motif 295-309
(GGS)5 Linker 310-354
Sa-SrtA∆59 355-795
His6 796-813
T7 Terminator 842-971
f1 Origin 1042-1497
bla Promoter 1529-1633

AmpR 1628-2488
pUC Origin 3306-2633
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Plasmid Map 3.4: pSTEPL/EGFRAffb

Feature Location
T7 Promoter 20-39
Chimeric ORF 100-804
EGFR Affibody 100-276
Sortase Motif 283-297
(GGS)5 Linker 298-342
Sa-SrtA∆59 343-783
His6 784-801
T7 Terminator 830-959
f1 Origin 1030-1485
bla Promoter 1517-1621

AmpR 1616-2476
pUC Origin 3294-2621
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Protein Expression, Cleavage, & Bioconjugation

Constructs were transformed into the BL12-derived Rosetta2 BL21(DE3) line (EMD Millipore).

50mL starter cultures were grown overnight in LB-Ampicillin. These were added to 450mL of LB

and grown to an OD600 of 0.8-1 before induction with 0.5mM Isopropyl β-D-1-thiogalactopyranoside

(IPTG). Cultures were allowed to express for 24hrs at 25◦C. Cells were then harvested by centrifu-

gation (6000g, 15min) and resuspended in 10mL of lysis buffer (50mM NaH2PO4, 300mM NaCl,

1mg/mL Lysozyme, 1 EDTA-free cOmplete Mini protease inhibitor tablet (Roche), pH 7.5). Lysates

were incubated at room temperature for 30min under gentle agitation before freezing overnight at

-80◦C. Samples were then thawed and incubated for 30min with DNAse I (Roche) under gentle

agitation. Lysates were then sonicated and separated by centrifugation (10,000 rpm, 30min).

For optimization experiments, 8mL of clarified lysate for each condition was incubated for 1 hr

with 0.6mL Talon resin (Clontech, equilibrated in lysis buffer). The lysate and beads were then added

to a column and beads were washed with 6mL STEPL buffer (20mM Tris-base, 50mM NaCl, pH

7.5). Washed beads were resuspended in a total of 1.2mL of STEPL buffer containing the indicated

amounts of CaCl2 and triglycine (Sigma-Aldrich) and aliquoted into three 1.5mL microcentrifuge

tubes. Samples were shaken at 1,000 rpm, the indicated temperature, and protected from light. At

each timepoint, samples were spun down at 3,000 rpm for 5min. Absorbance spectra were taken

of the supernatants from 400-600nm using a Cary 100 Bio UV-Visible Spectrophotometer (Varian)

and the sample was returned to shaking. At the end of the timecourse, beads were washed three

times with 1mL STEPL buffer and incubated for 30 min in 100mM EDTA. Stripped beads were

spun down as before and the absorbance spectra were taken of the supernatants from 400 600nm.

For bioconjugation experiments, 8mL of clarified lysate was incubated for 1hr with 0.5mL Talon

resin (equilibrated in lysis buffer). The lysate and beads were added to a column and beads were

washed with 5mL STEPL buffer. 400µL of STEPL buffer containing 150µM synthetic peptide (Table

3.2) or 5mM triglycine (for labeled and unlabeled preparations, respectively) and 100µM CaCl2 was

flowed over the beads until it replaced the wash buffer. Columns were protected from light and

reacted for 6hrs at 37◦C. 1mL of STEPL buffer was added to the column and the flowthrough

collected. To remove unreacted peptide, flowthrough was dialyzed three times against 4L of STEPL

buffer at 4◦C while protected from light (Slide-A-Lyzer2 cassettes, 3.5K cutoff, Thermo Scientific).
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EGFP Release Analysis & Model Design

Absorbance spectra obtained from optimization samples were baseline corrected and the EGFP

concentration was determined using the Beer-Lambert law (ε(EGFP, 488nm) = 55, 000M−1cm−1,

[246]). EGFP concentrations were fit to the sum of equations (3.4) and (3.5) in the following system

of ODEs using non-linear least squares:

d [EGFP · SrtA]
dt

= −k1 [EGFP · SrtA]− k2 [EGFP · SrtA] [GGG] (3.1)

d [SrtA]

dt
= k1 [EGFP · SrtA] + k2 [EGFP · SrtA] [GGG] (3.2)

d [GGG]

dt
= −k2 [EGFP · SrtA] (3.3)

d [EGFP]

dt
= k1 [EGFP · SrtA] (3.4)

d [EGFP ·GGG]

dt
= k2 [EGFP · SrtA] [GGG] (3.5)

k1 = A1Te
−∆G‡

1/RT (3.6)

k2 = A2Te
−∆G‡

2/RT (3.7)

where the model fits for A1, A2,∆G‡
1, and ∆G‡

2. Temperatures are on the Kelvin scale. Initial

EGFP · SrtA concentration was determined by adding the concentration of EGFP in the final time-

point to the concentration of EGFP from the stripped beads. Initial triglycine concentration and

temperature were varied experimentally. Initial conditions for [SrtA], [EGFP], and [EGFP ·GGG]

were zero. Model predictions were produced with the following initial conditions: 100µM Ca2+,

100µM EGFP · SrtA, 1µM - 1µM triglycine, 4◦ - 37◦C.

Cell Culture

NIH/3T3 and T6-17 cells (i.e. NIH/3T3 cells engineered to stably express Her2/neu; kindly provided

by Dr. Mark Greene, University of Pennsylvania) were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine serum, 1% penicillin/streptomycin at 37◦C

and 5% CO2. H1666 cells expressing pLKO.shCTRL and pLKO.shEGFR [247] (kindly provided by

Dr. Matthew Lazzara, University of Pennsylvania) were maintained in RPMI supplemented with

10% fetal bovine serum, 1% penicillin/streptomycin at 37◦C and 5% CO2.
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Fluorescence Analysis of Cell Targeting

NIH/3T3 and T6-17 cells were incubated with 1µM Her2/neu affibody conjugated to HiLyte Fluor

750 for 4 hours in full media with and without a 10-fold excess of unlabeled ZHer2. Cells were washed

3 times with affibody-free media before being imaged in serum-free DMEM. Imaging was performed

with an Olympus IX81 inverted fluorescent microscope with a back-illuminated EMCCD camera

(Andor) and a SOLA excitation source (Lumencor). Images of HiLyte Fluor 750 were acquired

using the filter set (HQ710/75, HQ810/90, Q750LP) (Chroma). A LUC PLAN FLN 40X objective

(NA 0.6) was used for all imaging studies. ImageJ was used to merge the fluorescent images and

equalize levels. After optical imaging, the plate was scanned by an Odyssey Imaging System (Li-

Cor). User-defined regions of interest were drawn within each well and fluorescence within the

800-channel was quantified to determine relative Her2/neu expression.

Relaxation Measurements of Cell Targeting and MR Imaging

Azodibenzocyclooctyne (ADIBO)-functionalized superparamagnetic iron oxide (SPIO) nanoparticles

were synthesized as previously described [38]. Azide-modified ZHer2 was conjugated to ADIBO-SPIO

nanoparticles by combining 5mg Fe/mL SPIO nanoparticles with 30µM affibody. Reactions were

mixed overnight at room temperature and affibody-SPIO conjugates were purified on PD-10 columns

(GE Healthcare).

T6-17 and NIH/3T3 cells were incubated with 125µg Fe/mL of Her2/neu-targeted SPIO for 45

minutes in full media with and without a 100-fold excess of unlabeled ZHer2 in triplicate. Cells were

transferred to 1.5mL microcentrifuge tubes and washed with 500µL PBS three times before being

resuspended in 300µL RIPA Lysis Buffer (Millipore). T2 measurements were taken using a benchtop

relaxometer (Bruker mq60). Following relaxation measurements, cell lysates were combined and

100µL was transferred to wells of a 364-well plate. Images of the cells were taken on a 9.4-T magnet

interfaced to a Varian INOVA console using a 70 mm inner diameter volume coil for radiofrequency

transmission and reception. T ∗
2 -weighted gradient echo (GRE) MR images were collected using

parameters as follows: repetition time (TR) = 200 ms, echo time (TE) = 5 ms, flip angle = 20◦,

slice thickness = 0.5 mm, number of acquisitions = 8.
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Chapter 4

Making Bispecific Ligands with

STEPL

Abstract

Bispecific targeting ligands have proven to be useful in a number of applications, such as targeted

immunotherapies, molecular imaging, and delivery across the blood-brain barrier. However, the

generation of such agents can be difficult. In this study, we use the Sortase-Tag Expressed Protein

Ligation system to produce eight monomeric and dimeric targeting ligands from only two optimized

expression cassettes for the affibodies ZHer2 and ZEGFR. The ligands are then assayed to determine

their apparent affinity for Her2/neu-positive, EGFR-positive, and Her2/neu/EGFR double-positive

cell lines. This data is used to predict the ligand concentration that will maximize contrast between

the single- and double-positive cell lines, which is supported by fluorescence microscopy.
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4.1 Introduction

As described in Section 2.1.4, bispecific targeting ligands have proven useful in increasing the speci-

ficity of an imaging agent, recruiting killer T-cells to a tumor, and transporting agents across the

blood-brain barrier, among other applications. The Sortase-Tag Expressed Ligation (STEPL) system

is particularly adept at creating bispecific ligands due to the inherent modularity and site specificity

of its active enzyme, S. aureus Sortase A, a calcium-dependent bacterial transpeptidase that cleaves

the threonine-glycine peptide bond in its recognition motif, LPXTG, and subsequently ligates any

other protein that begins with a glycine residue to restore a threonine-glycine bond [237]. The ability

of sortase to link any two proteins, so long as one contains LPXTG and the other an N-terminal

glycine, makes sortagging an incredibly powerful and versatile bioconjugation strategy. By making

one of the reactant proteins synthetically, non-canonical amino acids can be included that can give

the protein bio-orthogonal chemical reactivities, fluorescence, lipid anchors, PEG chains, and an-

tibiotics, among many other functionalizations [149]. Notably, synthetic peptides are not limited to

just a single modification, so they can be added in controlled combinations and stoichiometries.

STEPL further improves on traditional sortase-mediated conjugations by expressing the target

protein, sortase recognition motif, a flexible linker, the sortase active domain, and a hexahistidine

tag as a single fusion protein. This chimeric design allows the active enzyme to be immobilized onto

a metal resin along with any unconjugated ligand, eliminating the need for inefficient downstream

purifications. The addition of calcium and a synthetic peptide activates the sortase domain and re-

sults in the simultaneous cleavage of the target protein off of the column and C-terminal conjugation

of the synthetic peptide, resulting in >95% of the collected protein being ligated to the synthetic

peptide [236]. In addition to being efficient, STEPL is also modular. Once a ligand has been cloned

into the pSTEPL vector and its expression has been optimized, it can be ligated to any number

of synthetic peptides. This makes it easy to incorporate different functionalities onto a targeting

ligand, such as the bio-orthogonal crosslinking groups necessary for the production of bispecifics.

When crosslinking two biomolecules, the strain-assisted azide-alkyne cycloaddition reaction has

emerged as a robust strategy [248]. In addition to being a “click” reaction, which designates it as

efficient, biocompatible, and modular [138], the reaction is also bio-orthogonal, which limits potential

unwanted products. The azide and dibenzocyclooctyne (DBCO) groups can be incorporated into
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Figure 4.1: Bispecific Ligand Generation using STEPL. Arrays of hetero- and homodimers are
easily generated in the STEPL system. First, the targeting ligands must be cloned into pSTEPL
and expressed. Second, targeting ligands are cleaved off of separate columns using peptides that
contain bio-orthogonal chemistries, such as the azide-alkyne click groups. These peptides may
contain multiple lengths and categories of spacer regions. Finally, dimers are created by simply
mixing monomers with compatible reactive groups. Although this figure depicts the ligands and
peptides used in this study, they may be substituted for any of the wide range of ligands and
peptides compatible with the STEPL system with the same effect.
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Table 4.1: Synthetic Peptides

Peptide Molecular Weight (Da) λex/λem

P3.2 NH2-Gly-Gly-Gly-Lys(5-FAM)-Gly-Gly-Ser-Lys(N3)-NH2 1,030 492/518
P 4.1 NH2-Gly-Gly-Gly-Lys(TAMRA)-Gly-Gly-Ser-Cys-NH2 1,034 541/568
P 4.2 NH2-Gly-Gly-Gly-Lys(TAMRA)-Gly-Gly-Ser-Cys(DBCO-maleimide)-NH2 1,462 541/568
P 4.3 NH2-Gly-Gly-Gly-Lys(TAMRA)-Gly-Gly-Ser-Cys(DBCO-(PEG)4-maleimide)-NH2 1,709 541/568

synthetic peptides, making the reaction compatible with the STEPL system as well. By purifying

one ligand with a peptide containing an azide and one with a peptide containing DBCO, the ligands

can be crosslinked by simply incubating them together in Tris buffer, generating dimeric ligands

of controlled specificity and stoichiometry. The modularity inherent to the STEPL system allows

for easy alteration of the chemical crosslinking strategy as well as the length of the spacer region

between the constituent ligands, making STEPL exquisitely well-suited to the generation of bispecific

targeting ligands.

In this study, we produced an array of homodimeric and heterodimeric affibodies with two differ-

ent spacer regions using the STEPL system (Figure 4.1). The affibodies are then used to compare

the effects of dimerization and spacing on targeting specificity and relative affinity.

4.2 Affibody Dimerization

One of the major advantages of the STEPL system is that it is easy to produce the same protein with

a number of different modifications. Taking advantage of this capability, we expressed the ZHer2-

and ZEGFR-STEPL constructs cloned in Chapter 3, cleaving each with Peptides P 3.2, P 4.2, and

P 4.3 (Table 4.1), which contain functional groups compatible with the strain-assisted azide-alkyne

cycloaddition click chemistry.

The modified affibodies were then incubated with each other in various combinations to create a

variety of hetero- and homodimers (Table 4.2). Affibody dimerization was verified by SDS-PAGE.

As shown in Figure 4.2, purified dimers have a higher apparent molecular weight (approximately

20 kDa) than the monomers (6.6 kDa). It was expected that the dimers would exhibit an apparent

molecular weight of roughly twice the monomers, around 13 kDa. However, the bulky dibenzocy-

clooctyne and poly(ethylene-glycol) groups added by the peptide likely inhibit motility through the

poly(acrylamide) gel, giving it a higher apparent molecular weight.

In all, we were able to create eight unique affibody constructs while only optimizing two protein
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Table 4.2: Affibody Click Reactions. Homo- and heterodimeric affibodies were created by incubating
one azide-conjugated affibody with one DIBO-conjugated affibody. Created dimers are indicated
with a X. Construct names are in parentheses.

ZHer2 ·DIBO ZHer2 · (PEG)4 ·DIBO ZEGFR ·DIBO ZEGFR · (PEG)4 ·DIBO None
ZHer2 ·N3 X(HH) X(H4H) X(HE) X(H4E) X(H)
ZEGFR ·N3 X(EE) X(E4E) X(E)

Figure 4.2: Affibody Dimerization. Affibody monomers and dimers were analyzed by SDS-PAGE and
imaged by UV fluorescence. Dimers have an apparent molecular weight of nearly 20kD, indicating
successful click reactions.
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expression protocols. We easily incorporated two different linker lengths, which could potentially

alter binding properties. It was also possible to include fluorophores on each of the peptides, which

enabled us to quantify the samples to ensure equimolar click reactions and to use both monomers

and dimers in downstream imaging and flow cytometry applications. The site-specific and stoichio-

metric bioconjugation of multiple chemical functionalities would be much more complicated in other

chemical and enzymatic bioconjugation systems.

This study gave only a small example of the combinatorial possibilities of creating bispecific

ligands with STEPL. There are many biomarkers that already have affinity ligands compatible with

the STEPL system (See Section 2.1.3). Expressing just five of these ligands via STEPL enables

quick access to ten unique bispecific molecules, five homodimers, and five monomers per linkage. A

panel of ten would give 45 bispecific ligands, in addition to the ten monomers and ten homodimers.

As the number of potential biomarkers increases, the modularity of STEPL becomes more and more

powerful, quickly entering the realm of medium to high-throughput screens.

STEPL’s modular approach to creating bispecific proteins would also benefit systems where one

of the affinity ligands is always the same. For example, the generation of BiTE agents could be made

much more efficient by scaling production of the α-CD3 ligand. Partner ligands could then simply

be expressed in STEPL, cleaved with a compatible peptide, and reacted with stock α-CD3 ligand.

Many other groups have recognized the utility in a modular approach to creating bispecific tar-

geting ligands and published their own techniques to accomplish this [249, 250, 251, 252]. However,

using STEPL to generate modularity has distinct advantages over these previous technologies. Un-

like modular systems relying on IgG heavy and light chain interactions, STEPL is not limited to

any one class of proteins. Ligand classes could even be mixed and matched using STEPL. It would

work just as well linking a nanobody to an scFv as it would dimerizing two affibodies. Also, since

the linker is being introduced by conjugation, the system is symmetric, as opposed cloned systems

where asymmetry is coded into the protein, such as knob-in-hole bispecific antibodies. There is no

need to clone different constructs for the ligand to receive an azide or alkyne functionalization. That

is decided post-expression, during purification. Finally, spacer regions have been shown to have a

large effect on bispecific functionality [253]. The inclusion of a spacer region in the peptide rather

than the cloning sequence allows that to be changed and optimized as easily as the linking chemistry.

One previously reported method for bispecific generation also uses sortase A and azide-alkyne

click chemistry [252]. Wagner et al. also took advantage of the incredible flexibility of the sortase
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Figure 4.3: T6-17/Affibody Binding Curves. Mean fluorescence intensity as determined by flow
cytometry was fit to a ligand binding model. Modeled fractional saturation (lines) were superimposed
onto the measured mean intensities (circles) for affibodies that showed affinity for the T6-17 cell line
in the measured range. Monospecific ZEGFR ligands showed no binding to T6-17 cells.

enzyme to create a modular system. Although this is very similar to what is described in this

study, STEPL still retains all of the advantages over traditional sortagging that we have previously

described [236]. Specifically, linking protein purification to sortase activity leads to purer samples,

less peptide waste, and simpler downstream processing.

4.3 Determination of Apparent Affibody KDs

To quantify the differences between the six dimeric and two monomeric affibodies that were gener-

ated, the ligands were applied to the Her2/neu+ cell line T6-17, the EGFR+ cell line KB, and the

Her2/neu+/EGFR+ cell line SK-BR-3. 5 × 104 cells were incubated with affibody concentrations

ranging from 100 nM to 100 fM before being assayed for cell binding by flow cytometry. The mean

fluorescence intensity fluorescence intensity for each sample was then fit to a ligand-binding curve

to determine the apparent dissociation constant (KD) for each affibody-cell line pair. These curves

are detailed in Figures 4.3, 4.4, and 4.5. As expected, the ZEGFR homodimers and monomer showed

no affinity for the EGFR-negative T6-17 cells, while ZHer2 homodimers and monomer showed no

affinity for the Her2/neu-negative KB cell line. All of the affibodies bound to the double-positive
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Figure 4.4: SK-BR-3/Affibody Binding Curves. Mean fluorescence intensity as determined by flow
cytometry was fit to a ligand binding model. Modeled fractional saturation (lines) were superimposed
onto the measured mean intensities (circles) for affibodies that showed affinity for the SK-BR-3 cell
line in the measured range, which was all eight.

Figure 4.5: KB/Affibody Binding Curves. Mean fluorescence intensity as determined by flow cy-
tometry was fit to a ligand binding model. Modeled fractional saturation (lines) were superimposed
onto the measured mean intensities (circles) for affibodies that showed affinity for the KB cell line
in the measured range. Monospecific ZHer2 ligands showed no binding to KB cells.
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Table 4.3: Ligand Binding Parameters. Values and 95% confidence intervals are listed for the ligand
KDs and receptor copy numbers per cell as determined by the mathematical model.

Ligand KDs (nM) T6-17 SK-BR-3 KB
H 10.45 ± 0.31 4.89 ± 0.94
E 21.08 ± 43.21 10.18 ± 0.72
HH 3.12 ± 1.41 1.60 ± 0.14
H4H 5.11 ± 0.37 2.21 ± 0.76
HE 21.07 ± 1.84 4.82 ± 0.57 17.59 ± 5.63
H4E 19.41 ± 1.19 4.34 ± 0.43 17.83 ± 1.76
EE 40.15 ± 73.91 41.92 ± 61.21
E4E 25.03 ± 8.92 7.29 ± 0.70

Receptor Copy Number
Her2/neu 7,223,620 ± 69,665 3,081,328 ± 2,304,491 4,994 ± 81,526
EGFR 0 ± 2,958 316,433 ± 359,378 1,806,512 ± 290,473

SK-BR-3 cells to some extent. The ZHer2-derived affibody constructs showed tighter binding than

did the ZEGFR-derived constructs, consistent with previous measurements of the monomeric affibod-

ies’ affinities [112]. Values of the fitted parameters are listed in Table 4.3. The model did a good job

fitting the ZHer2-containing ligands, it did less well at determining the parameters involving EGFR.

This is most likely due to a combination of EGFR being expressed in lower amounts than Her2/neu

and ZEGFR having a lower molecular affinity for its target than ZHer2.

The ligand binding experiments clearly illustrate the utility in being able to quickly screen dimers

with different linker properties. For the ZHer2 homodimers, the (PEG)4-containing linker reduces

affinity of the ligand by around 50% for both the T6-17 and SK-BR-3 cell lines. The opposite is

true for the ZEGFR homodimers, where the addition of the (PEG)4 group doubles the affinity as

compared to the E4E protein. And the (PEG)4 group makes no difference for the heterodimers.

These conflicting results are not easily predicted, so it is important to be able to easily and modularly

incorporate different linker regions so that the best design can be determined empirically.

4.4 Increased Fluorescence Specificity

An enhancement index was determined for each of the affibodies to quantify its selectivity for the

double-positive cell line. The enhancement index for a given ligand was defined as the ratio of

apparent dissociation constants for that ligand with the double-positive line to the ligand with a

single-positive cell line multiplied by the ratio of the available receptors on the double-positive line to
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Figure 4.6: Affibody Enhancement Indices. Ratios of the apparent dissociation constants and 95%
confidence intervals for each affibody between the double-positive SK-BR-3 cell line and the single-
positive T6-17 and KB lines. Positive values indicate stronger binding to the double-positive line.

the available receptors on the single-positive line. Positive enhancement indices indicate a selective

advantage for the double-positive cells and negative values mean tighter binding to the single-positive

line. The calculated values, presented in Figure 4.6, showed that monomers and homodimers are

more selective for the single-positive lines or are statistically indifferent. This is likely because of

the higher receptor expression on the T6-17 and KB cell lines. The heterodimers, however, showed

selectivity for the SK-BR-3 double-positive cell line. Selectivity for SK-BR-3 cells over KB cells is

higher than selectivity for T6-17 cells, probably driven by the higher affinity of the ZHer2 component.

Before obtaining images of the cells, the optimal ligand concentrations to enhance selectivity were

determined by subtracting the fractional saturation curve of a ligand against the signal-positive cell

lines from the fractional saturation curve of the ligand against double-positive cell lines. Shown in

Figure 4.7, the concentrations that show the maximum difference vary between affibodies, but are

generally near 1 × 10−8 molar. Thus, all of the cell lines were incubated with 10 nM ligand and

the images in Figures 4.8, 4.9, and 4.10 were obtained. In agreement with the flow cytometry data,

both monomers labeled the single-positive lines more than the double-positive line. Homodimers

did not obviously distinguish between single- or double-positive lines, with the exception of the E4E

construct that clearly selected for the KB cells, as the enhancement index predicted. However, the

bispecific ligands were able to specifically label the SK-BR-3 double-positive cells to a greater extent
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Figure 4.7: Differential Ligand Binding. The difference was calculated between fractional saturation
curves between the single- and double-positive cell lines. Maximum values denote the optimal ligand
concentration to select for one cell line over the other.

T6-17 SK-BR-3 KB
Her2+ Her2/EGFR+ EGFR+

H

E

Figure 4.8: Bispecific Fluorescence Imaging: Monomers. Fluorescence images of cell lines treated
with monomeric affibodies. ZHer2 labels both Her2/neu positive cell lines, while ZEGFR labels both
EGFR positive cell lines.
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T6-17 SK-BR-3 KB
Her2+ Her2/EGFR+ EGFR+

HH

H4H

EE

E4E

Figure 4.9: Bispecific Fluorescence Imaging: Homodimers. Fluorescence images of cell lines treated
with homodimeric affibodies. ZHer2 dimers label both Her2/neu positive cell lines, while ZEGFR

dimers label both EGFR positive cell lines.
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T6-17 SK-BR-3 KB
Her2+ Her2/EGFR+ EGFR+

HE

H4E

Figure 4.10: Bispecific Fluorescence Imaging: Heterodimers. Fluorescence images of cell lines treated
with heterodimeric affibodies. In both cases, the bispecific affibody labels the double-positive line
to a greater extent than the single-positive lines.
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than the T6-17 Her2/neu-positive cell and the KB EGFR-positive cells. These images validate the

hypothesis that the bispecific ligands will provide enhanced selectivity for a cell line presenting both

ligands. There may also be a synergistic effect to drive this selectivity despite a lower receptor count

on the SK-BR-3 cells.

4.5 Conclusions

STEPL is a facile and modular system for generating bispecific targeting ligands. Using four peptides

and two affibody-STEPL chimeras, a panel of eight homo- and heterodimeric affibodies were created

in a matter of days. The affinities of these ligands were determined by flow cytometry and used

to calculate the optimal ligand concentration to specifically label a double-positive cell line. This

simple example demonstrates how the inherent flexibility of the STEPL system to conjugate a wide

array of targeting ligands to any synthetic peptide with an N-terminal glycine allows this one system

to create ligand dimers with differing specificities, spacers, and multiple chemical functionalities.

4.6 Materials & Methods

Peptide Labeling

Peptide P 4.1 (synthesized by Anaspec, Inc., 6 mg/mL in dimethylformamide (DMF)) was incu-

bated with a 2-fold excess of tris(2-carboxyethyl)phosphine (TCEP) (Sigma, 0.5M) and a 4-fold

excess of either dibenzocyclooctyne−maleimide (DIBO-maleimide, Sigma, 5 mg/mL in DMF) or

dibenzocyclooctyne−(PEG)4−maleimide (Sigma, 5 mg/mL in DMF) for 4 hours at room temper-

ature. 10 volumes of methyl tert-butyl ether (Sigma) was then added to precipitate the peptide,

which was pelleted and resuspended in 0.1M Tris Buffer, pH 8 (Mediatech). DIBO-linked peptide

was purified by reverse-phase high performance liquid chromatography (RP-HPLC) (Agilent) and

resuspended in STEPL buffer (20mM Tris-base, 50mM NaCl, pH 7.5).

Protein Expression, Cleavage, & Bioconjugation

ZHer2 and ZEGFR sequences were cloned into the pSTEPL vector (see Section 3.9). 25mL starter

cultures were grown overnight in LB-Ampicillin. These were added to 225mL of LB and grown
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to an OD600 of 0.8-1 before induction with 0.5mM Isopropyl β-D-1-thiogalactopyranoside (IPTG).

Cultures were allowed to express for 24hrs at 25◦C. Cells were then harvested by centrifugation (3000

RPM, 15min) and resuspended in 10mL of lysis buffer (50mM NaH2PO4, 300mM NaCl, 1mg/mL

Lysozyme, 1 EDTA-free cOmplete Mini protease inhibitor tablet (Roche), pH 7.5). Lysates were

incubated at room temperature for 30min under gentle agitation before freezing overnight at -80◦C.

Samples were then thawed and incubated for 30min with DNAse I (Roche) under gentle agitation.

Lysates were then sonicated and separated by centrifugation (16,000g, 30min).

8mL of clarified lysates was incubated for 1hr with 0.5mL Talon resin (equilibrated in lysis buffer,

Clontech). The lysate and beads were added to a column (BioRad) and resin was washed with 5mL

STEPL buffer. 600µL of STEPL buffer containing 200µM synthetic peptide and 100µM CaCl2 was

flowed over the beads until it replaced the wash buffer. Columns were protected from light and

reacted for 6hrs at 37◦C. 1mL of STEPL buffer was added to the column and the flowthrough

collected. Conjugated affibody was purified from excess peptide by RP-HPLC and resuspended in

0.1M Tris-HCl, pH 8.

Dimerization

For the dimerization reactions, equimolar azide-conjugated and DIBO-conjugated affibody were

incubated together for 24 hours. Reactions were then purified by RP-HPLC and resuspended in

0.1M Tris-HCl, pH 8. Dimerization was confirmed by SDS-PAGE (4-12% Gel, Life Technologies).

After PAGE, fluorescent bands were imaged by UV transillumination. Then proteins were visualized

by incubating the gel with SimplyBlue SafeStain (Life Technologies) for 1 hour, followed with an

overnight wash in deionized water.

Cell Culture

KB (ATCC) and T6-17 cell lines (NIH/3T3 (ATCC) cells engineered to stably express Her2/neu;

kindly provided by Dr. Mark Greene, University of Pennsylvania) were maintained in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum and 1% penicillin/

streptomycin at 37◦C and 5% CO2. SK-BR-3 cells (ATCC) were maintained in McCoy’s medium

supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin at 37◦C and 5% CO2.
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Flow Cytometry

Cells were lifted off their plates with enzyme-free dissociation buffer (PBS base, Millipore) and

concentrated to 5 × 105/mL. Serial dilutions of affibody (100 nM - 100 fM, 10-fold dilutions) were

incubated with 5 × 104 cells in full media for 30 min at 37◦C while shaking to maintain reaction

homogeneity. Cells were then held on ice until samples were analyzed on a BD LSR II flow cytometer

(5,000 counts/sample, 532 nm laser, 575/26 nm filter).

Computational Analysis

The mean fluorescence intensities (MFIs) for each cell line/affibody pair were simultaneously fit to

determine that affibody’s apparent dissociation constant (KD,app) and receptor copy number (NR)

for each cell line using Equation 4.1 in MATLAB. Because the affinities were weaker than expected

for all of the ligands, the data could not be fit to the standard ligand binding model of [L]/(KD+[L]),

which requires multiple fully saturated points to fit a reliable dissociation constant. Therefore, data

was fit to a more complicated model that does not rely on the excess ligand assumption:

MFI = F0 + (Fmax − F0) ∗
[A] + [Ri] +KD,app −

√
([A] + [Ri] +KD,app)

2 − 4 [A] [Ri]

2 [RT]
(4.1)

[R] =
NR ∗NC

NA ∗ V
(4.2)

where Fmax and F0 scale the fractional saturation curve to the fluorescence data, [A] is the affibody

concentration, [Ri] is the concentration of surface receptor that binds to the affibody being fit

(Her2/neu, EGFR, or both), [RT] is the sum of Her2/neu and EGFR ligand concentrations, NC

is the number of cells per well, NA is Avogadro’s number, and V is the volume of media in the

well. Parameter confidence intervals were also determined by MATLAB. For plotting, all curves

were normalized such that the predicted values spanned the range of [0,1].

The enhancement index (EI) was calculated by dividing the single-positive dissociation constant

by the double-positive dissociation constant for each affibody (ER, Equation 4.3) and submitting it

to the transformation in Equation 4.4, which ensures the magnitude of EI is greater than 1 while
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changing the sign if the ligand is more selective for the single-positive cells.

ER =
KD,app,T6−17 or KB

KD,app,SK−BR−3
∗ NR,SK−BR−3

NR,T6−17 or KB
(4.3)

EI = exp (|lnER|) ∗ lnER

|lnER|
(4.4)

The optimal concentration of bispecific affibodies was then determined by subtracting the mod-

eled fractional saturation curve for T6-17 or KB cells from the curve for SK-BR-3 cells for each of

the affibodies.

Fluorescence Imaging

All cell lines were incubated with the optimal concentration of each bispecific affibody for 1 hour in

full media. Cells were washed 3 times with affibody-free media before being imaged in serum-free

DMEM. Imaging was performed with an Olympus IX81 inverted fluorescent microscope with a back-

illuminated EMCCD camera (Andor) and a SOLA excitation source (Lumencor). Images of 5-FAM

and TAMRA fluorescence were acquired using the filter sets (HQ545/30, HQ620/60, Q570lp) and

(HQ710/75, HQ810/90, Q750LP) (Chroma) after focusing with white light. A LUC PLAN FLN

40X objective (NA 0.6) was used for all imaging studies. All images were exposed for 2 seconds and

are displayed with the same linear contrast curve.
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Chapter 5

Enhancing STEPL Yield through

Directed Evolution

Abstract

Sortase-tag expressed protein ligation (STEPL), a robust and flexible system for protein expression

and bioconjugation, is plagued by a reduction in protein yield due to unwanted sortase activity dur-

ing protein expression. This study set out to evolve the STEPL system to reduce in situ cleavage by

decreasing the calcium sensitivity of the sortase enzyme or by changing the trigger ion to manganese,

a less-abundant, biocompatible, and industry-friendly divalent cation. Bacterial, yeast, and bacte-

riophage evolution systems were explored to produce an assay for sortase activity that contained a

genotype-phenotype linkage. Phage display libraries were produced by randomizing the amino acids

in the two loops known to bind the native calcium ion with directed, optimized degenerate codons.

A number of screens and screening strategies were employed. However, none of the screens were

able to produce a viable candidate for an improved STEPL system.
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5.1 Introduction

In Chapter 3, it was described in detail how well the STEPL system works once the chimeric protein

is in a controlled buffer setting. However, it was only briefly mentioned that STEPL can be unstable

when in culture media during expression, due to inherent calcium in the media. In fact, the initial

expression studies show that much of the STEPL protein is cleaved before ever reaching the column

(Figure 5.1). While this early cleavage does not effect the final product’s purity, it does greatly

reduce the overall yield.

We postulated that the early cleavage was due to calcium ions present in the growth media and

within the cells themselves [243]. This problem could be fixed in one of three ways. First, calcium

could be eliminated from the growth media by using M63 minimal media produced in reverse-

osmosis water [254]. However, protein expression is difficult in minimal media, requiring a number

of potential additives to finally produce a “witch’s brew” STEPL expression media. This route could

potentially work in E. coli, which do not require calcium to grow, but it restricts STEPL’s use in

eukaryotes and even other prokaryotes. A second strategy would be to alter sortase such that it

needs an additional small molecule to be activated. Finally, the sortase catalytic domain could be

evolved to alter its relationship with calcium in one of the following ways:

Eliminate Calcium Ion Sensitivity By eliminating the need for calcium entirely, we would also

abolish the calcium-driven background cleavage. Instead, sortase activity would be triggered

solely by the presence of a triglycine peptide. Thus, no cleavage would occur until the peptide

was added to the column. This would greatly increase purity as well.

Weaken Calcium Binding If it were harder for sortase to bind calcium, more would be needed

to trigger cleavage. Raising the necessary calcium concentration to well above what would be

present in a cell would also avoid cleavage until it is desired on the column.

Alter the Trigger Ion While calcium is generally present at high concentration in biological sys-

tems, many other divalent cations are not. By altering sortase to bind one of those instead of

calcium, it would be likely to avoid unwanted cleavage due to a trace element’s presence.

The evolution option is the most promising because it is the smallest change to the STEPL system

that could yield the desired outcome.
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Figure 5.1: Early Cleavage Expression Fractions. A large amount of cleavage product can be seen
in the lysate lanes (i.e. EGFP and Sa-SrtA∆59-His6), indicating that most of the STEPL chimera
is cleaved during expression and therefore cannot be conjugated or recovered.



Section 5.2: Selection of Evolution System 93

In this chapter, we will evaluate the feasibility of making these alterations by exploring the

evolution systems and library designs that could be used to reduce the unwanted background cleavage

during STEPL expression.

5.2 Selection of Evolution System

The first consideration when evaluating a directed evolution system is the choice of genotype-

phenotype linkage, a number of which are described in Section 2.4.2. Background cleavage is occur-

ring within the cell, so a living display technology is ideal because it will most closely replicate those

conditions. In addition, a cellular screen will also select for constructs with better expression profiles.

This is normally a downfall of display screens, but because STEPL is an expression system, it is a

desirable trait in this case. Therefore, E. coli, yeast, and phage display systems were considered as

potential screens.

5.2.1 E. coli Display

E. coli display seemed like the best option to evolve the STEPL system for many reasons. Sortase

naturally occurs on the surface of gram-positive bacterial cells, so it is likely that STEPL should

work extracellularly as well. In addition, STEPL has already been thoroughly proven in a bacterial

system. Also, the entire problem of background cleavage during expression was defined in the context

of E. coli. It may not exist or have a different cause in other systems. For all these reasons, E. coli

display was chosen as the first evolution system to be evaluated.

The screening strategy for an E. coli display system is depicted in Figure 5.2. In the proposed

system, E. coli is transformed with a membrane-anchored STEPL system that has a fluorescent

ligand. The cells are grown to a high density, pelleted, and resuspended in a negative screen buffer.

The negative buffer contains a calcium level deemed to be tolerable and no triglycine. Sequences

with background cleavage, such as wild-type, will cleave while incubating in this buffer and lose their

fluorescent ligand. The cells are then sorted by fluorescence-activated cell sorting (FACS), which

is able to sort individual cells into different tubes based on the cell’s fluorescent signal. Cells with

high signal will pass the negative screen and be regrown to density. These cells are pelleted and

resuspended in a positive reaction buffer, which contains the desired metal ion and Gly3. Mutants
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(A) Molecular Mechanism (B) Screen Design

Figure 5.2: Bacterial Display Scheme. A) STEPL can be adapted for bacterial display by using a
fluorescent ligand and a C-terminal membrane anchor. This will give a high fluorescent signal if the
construct has not cleaved and a low signal if it has cleaved. B) A library of Sa-SrtA∆59 mutants
is cloned into the surface display system and expressed in E. coli Mutants are then exposed to a
negative screen and sorted by FACS. Highly fluorescent cells will pass the screen, be amplified, and
be incubated in the desired reaction conditions. FACS sorting for non-fluorescent cells will provide
the desired genotypes.
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that were unable to cleave in the previous buffer but can cleave in the positive buffer now lose their

fluorescent ligand. After incubation, these cells are also sorted by FACS, but this time, the cells

with low signal will be chosen. Surviving clones are randomly chosen for sequencing and biochemical

analysis.

There are a few strategies for trafficking proteins to the outer membrane of E. coli (see Figure

2.13), but only one that allows the C-terminal anchor needed for STEPL, the autotransporter.

Autotransporters are a class of structural proteins in gram-negative bacteria that are expressed in

the periplasm. The C-terminal domain is a transmembrane pore that actively translocates the N-

terminal domain out of the periplasm into extracellular space. Due to the inherent modularity of

autotransporters and their ability to translocate large globular domains across the outer membrane,

they are the display strategy of choice for enzymatic screens [208]. Therefore, pSED/sfGFP (Plasmid

5.1) was created by cloning in frame an N-terminal periplasmic signal sequence, super-folder GFP

(sfGFP), the sortase motif LPETG, (GGS)5, Sa-SrtA∆59, and the autotransporter EspP. Super-

folder GFP was used because EGFP is known to export poorly from E. coli and sfGFP was designed

to survive the E. coli secretion pathways [255]. The autotransporter EspP was chosen because it

performed well in other studies [208, 209].

To validate pSED/sfGFP, the construct was expressed in E. coli overnight. Cells were then

pelleted and resuspended into STEPL buffer, where the cleavage reaction could be monitored. Since

sortase concentration was a critical parameter while initially characterizing the STEPL system, 1

mL aliquots of the cells were pelleted and resuspened in 0.1 to 1 mL of STEPL buffer to create

different resuspension densities and therefore different sortase concentrations. As shown in Table

5.1, even after incubating the reactions at 37◦C overnight with high concentrations of CaCl2 and

Gly3 (5 mM each), no sfGFP cleavage was observed.

Because sortase is known to work extracellularly, it was hypothesized that the STEPL construct

was trapped in the bacterial cytoplasm or periplasm. To test this, cells expressing pSED/sfGFP

were labeled and assayed for surface exposed GFP. Figure 5.3 shows that the cells expressing the

surface displayed pSED/sfGFP were able to be stained by α-GFP antibodies as well as Co-NTA resin

bound to EGFP. The cytosolically expressed pSTEPL/EGFP could not be stained by the antibody.

Thus, the pSED construct must be correctly trafficked to the bacterial surface.

Sortase activity could also be impaired if the enzyme is physically too close to the autotransporter
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Figure 5.3: GFP Surface Expression. E. coli expressing pSED/sfGFP were stained with an
α-GFP antibody, indicating surface expression of sfGFP. Cells expressing the internal construct
pSTEPL/EGFP as well as Co-NTA beads with and without bound EGFP were used as staining
controls.

Figure 5.4: Bacterial Display Cleavage. All three generations of pSED constructs were assayed for
EGFP release into the supernatant. None show enough cleavage to be used in a directed evolution
system.
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to refold or find its LPXTG motif. If this is the case, adding a linker between the autotransporter and

sortase should allow the enzyme to regain activity. With that in mind, pSED2/sfGFP (Plasmid 5.2)

and pSED2.5/sfGFP (Plasmid 5.3) were cloned to insert (GGS)5 and ECFP between Sa-SrtA∆59

and EspP. The new clones were expressed in E. coli, resuspended in STEPL buffer with and without

5mm CaCl2 and Gly3, and allowed to react for six hours at 37◦C. Unfortunately, neither provided

a working STEPL display system, as shown in Figure 5.4. Thus, spacing from the bacterial surface

was not likely to be the issue.

If sortase is active in the extracellular context naturally, being expressed on the surface, and

sufficiently spaced from cell but is still inactive in the display context, it may not be refolding

properly after transport through the EspP pore complex. A potential fix for this problem is to use

another autotransporter. Therefore, pSED3/sfGFP (Plasmid 5.4) was cloned by replacing EspP with

EstA, the second best performing system as per Binder et al. [209]. This construct was also expressed

in E. coli, resuspended in STEPL buffer with and without 5mm CaCl2 and Gly3, and allowed to

react for six hours at 37◦C. It still showed no activity (Figure 5.4). Thus, it was presumed that the

STEPL system was incompatible with E. coli display.

5.2.2 Yeast Display

The second system that was considered was yeast display. The yeast display screen is conceptually

identical to the bacterial display screen. The major difference is that the STEPL chimera would

be trafficked to the yeast secretory pathway co-translationally, rather than the post-translational

translocation through the E. coli autotransporter. This is much easier on the enzyme, as evidenced

by the prior use of sortase within eukaryotic secretory pathways [256, 257]. However, Dr. Colin

Greineder, a collaborator working to adapt STEPL to yeast systems, discovered that Sa-SrtA∆59 is

heavily glycosylated in the secretory pathways of both P. pastoris (Figure 5.5) and S. cerevisiae (data

not shown). These glycogens have the potential to influence the evolution process by interacting

with the sortase in ways that would not occur within the cell. Therefore, yeast display was likely

not a viable evolutionary technique in this case.
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Figure 5.5: Sortase Glycosylation in Yeast. STEPL constructs were produced in P. pastoris ex-
pression vectors and targeted to the cytosol or the secretory pathway. Cultures were grown of each
and analyzed via Western blot. When expressed intercellularly, the STEPL construct runs at the
expected molecular weight of 46 kDa. The secreted STEPL construct runs much higher as a result
of N-linked glycosylation. Figure courtesy of Dr. Colin Greineder.
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5.2.3 Phage Display

Phage display is another viable option for evolving the STEPL system to acquire altered divalent

cation sensitivity. Like bacterial display, the constructs would be expressed in the proven E. coli

system. But Bacteriophage M13 is assembled in the periplasm, so the enzyme would only need to

survive one translocation in phage display. This is expected to help mediate the problems that were

associated with E. coli display.

Figure 5.6 shows a schematic of the phage display screen for STEPL. First, a library of Sa-

SrtA∆59 mutants fused to pIII is transformed into E. coli. Those cells are then amplified and

infected with CM13 helper phage to induce phage production. STEPL-pIII fusions are randomly

incorporated into phage as they are assembled and secreted. The phage are isolated and resuspended

into the negative screening buffer. The STEPL “ligand” mediates phage attachment to an antigen

coated plate. After incubating the phage in the negative buffer, the wells are washed to remove any

phage that cleave during expression or the negative screen. The wells are then filled with positive

screening buffer and allowed to incubate again. Supernatant containing phage that cleaved under

the desired conditions is used to infect fresh E. coli cells, which are then amplified for additional

screening and/or plated onto agar plates for clonal sequencing and analysis.

Two different phagemids were constructed to perform the above screen. Both encoded a fu-

sion protein with the PelB periplasmic signal sequence, a ligand, LPETG sortase recognition motif,

(GGS)5 linker, Sa-SrtA∆59, a flexible linker, and the C-terminal portion of M13 pIII. As the “lig-

and”, the plasmid pComb3XM/SBP (Plasmid 5.6) contained the sequence for the streptavidin bind-

ing peptide (SBP) [258] and the other, pComb3XM/Avi (Plasmid 5.7), contained the sequence for

the biotin acceptor peptide, also known as the Avi-Tag [157]. Both mediate specific binding to strep-

tavidin (SAv), although with very different strengths. SBP has nanomolar affinity for SAv, whereas

a biotinylated Avi-Tag has femtomolar affinity, approximately a million times tighter [213, 258]. The

Avi-Tag construct is obviously preferred, but both were moved forward in parallel. To validate the

assay, both phagemids were mutated to eliminate sortase activity by changing the active cysteine,

C180, to an alanine residue.

All four constructs were transformed into E. coli cells, which were then infected with CM13

helper phage to induce phage production. The Avi-Tag phage were assembled in an E. coli strain
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Figure 5.6: Phage Display Screening Cycle. Phagemid libraries were electroporated into E. coli,
which produced modified phage displaying the modified pIII and a streptavidin-binding ligand.
Phage were then bound to wells coated in streptavidin and incubated in the negative buffer. Phage
with sortase mutants that cleaved during expression (yellow, orange, red) or during the negative
screen (purple) were washed away. Next, the remaining phage were incubated in positive buffer.
Phage that cleaved during the positive screen (blue, green) were collected, leaving phage that could
not cleave (brown, pink) bound to the plate. That supernatant then infected E. coli cells that
could be amplified for another round of phage display or plated for further analysis.
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Figure 5.7: Phage Display Validation Assay. SBP and Avi-Tag containing STEPL-pIII phage were
incubated in STEPL blocking buffer with and without calcium and triglycine. All phage were also
added to unblocked wells as a positive control and inactivated C180A phage were added to blocked
wells without streptavidin as a negative control. Stock CM13 phage bound to unblocked wells was
a positive control for expression. Avi-Tag constructs did not bind the plate. SBP constructs bound
if the sortase enzyme had been inactivated.

that overexpresses biotin ligase so that the STEPL-pIII fusion would contain a biotin conjugation.

Isolated phage were split into two pools and incubated in STEPL blocking buffer (STEPL buffer

with 2% w/v powdered, biotin-free milk) or STEPL blocking buffer supplemented with 100 µM

CaCl2 and 200 µM Gly3. After four hours, the phage were applied to blocked wells that had

been coated with SAv. As a positive control, phage in STEPL buffer without milk were added to

unblocked wells, where they could freely adsorb to the surface. Blocked wells with no streptavidin

provided negative controls. After washing the wells vigorously, phage remaining in the wells were

quantified by phage ELISA. As shown in Figure 5.7, the Avi-Tag phage did not bind to any blocked

wells, indicating a lack of biotin conjugation. The PelB signal sequence translocates proteins to

the periplasm post-translationally, however this may occur too quickly for biotin ligase to label the

Avi-Tag in the cytoplasm. The SBP phage showed robust binding when inactivated, but binding

was significantly reduced in the active constructs both with and without calcium and triglycine.

Most likely, this is due to the high levels of calcium in the powdered milk, nearly 4 mM in 2% milk

[259]. This does not allow for fine control of calcium concentrations, so a number of other blocking

buffers were analyzed to determine the best option (Figure 5.8). Milk performed significantly better

than the other options. Since the purpose of the screen is to make STEPL insensitive to high levels

of calcium, the calcium in the powdered milk is acceptable and was used in all subsequent assays.
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Figure 5.8: Blocking Buffers. Wild-type and C180A SBP-STEPL phage were incubated in various
blocking buffers before being bound to streptavidin coated plates, washed, and assayed for binding.
Biotin-free 2% milk showed less non-specific binding than any other buffer.

Table 5.2: Trace Elements Approved for Bolus Injection. Metal ions in this table are approved for
bolus inection by the FDA. Maximum bolus injection doses are calculated for a 80kg patient with a
5 L blood volume.

Ion Blood Concentration [260] Bolus Concentration Citation
Cr(III) 7 µM 100 µM [261]
Cu(III) 16 µM 30 mM [262]
Mn(II) 14 nM 19 mM [263]
Zn(II) 16 µM 78 mM [264]

Thus, pComb3XM/SBP can be screened for STEPL activity and served as the wild-type con-

struct for phage display.

5.3 Selection of Metal Ion

One of the evolution options identified in Section 5.1 was changing STEPL’s calcium sensitivity

to a different metal ion. The ion must be a biocompatible trace element, which greatly reduces

the potential field of elements. Those elements were further narrowed to chemicals approved for

bolus injection by the U.S. Food and Drug Administration because they will be safe if any of the

metal contaminates a STEPL-derived imaging agent and will enable future applications that involve
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(A) NNK Library Structure (B) Optimized Library Structure

Figure 5.9: Sortase Calcium Binding Loop. Crystal structures of the Sa-SrtA∆59 calcium binding
loop are color coded to show the hydropathy index of each randomized amino acid in the NNK (A)
and optimized (B) libraries. Pink NNK codons are slightly hydrophilic. Blue VRK codons are very
hydrophilic. Gray codons are hydrophobic.

Table 5.3: Degenrate Codons

Codon Hydropathy Index Possible Amino Acids Number of Codons
NNK -0.22 20 ACDEFGHIKLMNPQRSTVWY* 32
VRK -3.02 9 DEGHKNQRS 12
NTR 3.75 4 ILMV 8

STEPL as a cleaving agent in vivo (see Chapter 6). Those metals are described in Table 5.2. Of

those metals, chromium was eliminated due to the low bolus dose. Copper was eliminated due to

toxicity [141]. Zinc, while having the largest maximum dose, is heavily regulated and eliminated due

to potential downstream manufacturing issues. Manganese had a reasonable bolus concentration,

the lowest basal concentration in the blood, and is compatible with mass production. Therefore,

Mn2+ was chosen to replace calcium as the STEPL trigger ion.

5.4 Library Design

Structural biology revealed that Sa-SrtA∆59 binds its calcium ion through five specific amino acids

in the β3/β4 and β6/β7 loops [265]. Therefore, the phage display libraries used in this study focus

on the twenty amino acids that make up those loops, as shown in Figure 5.9. If all 20 positions

were to be randomized with standard NNK codons, which code for all possible amino acids, the

codon and amino acid spaces would be astronomical, 1.2 × 1024 and 1.4 × 1021, respectively. The

vast majority of these libraries will be non-functional because they will not code for valid loops,

greatly decreasing the probability of finding the desired protein sequence. By optimizing the codons
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(A) Codon Hydropathy

(B) Codon Diversity

Figure 5.10: Degenerate Codon Properties. (A) Average codon hydropathy index is plotted for each
randomized position for both libraries. The optimized library attempts to mirror wild-type residues.
(B) Codon and amino acid diversity at each position are plotted for both libraries. As desired, the
optimized library has significantly reduced diversities.
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in the library, overall amino acid and codon spaces can be reduced and the library skewed toward

sequences that are more likely to encode functional sortase clones. Figures 5.9 and 5.10 compare the

properties of an optimized library. The optimized library was designed by picking degenerate codons

that encode for amino acids with similar overall properties to the wild-type residues (Figure 5.10A).

Most of the residues, 16 of 20, should be hydrophilic, polar amino acids because most of the loops

are surface exposed and oxygen or nitrogen atoms would be needed to coordinate with calcium or

manganese ions. These residues are encoded by VRK, whose possible amino acids are enumerated in

Table 5.3. Two residues in the wild-type sequence are hydrophobic. Labeled in gray in Figure 5.9B,

these reach into the core of the protein and hold the β3/β4 loop close to the protein. Because these

are most likely necessary for a stable structure, those two positions were encoded by NTR, which

will translate to a hydrophobic residue. The final two positions are serines in the wild-type enzyme,

which are only slightly hydrophilic. It is unclear how these interact with their neighboring residues

and the overall structure, so they were encoded by NNK, whose average hydropathy also mimics

that of serine. As shown in Figure 5.10B, the optimized library’s diversity was much lower than the

NNK library, reducing the codon and amino acid spaces to 5.8 × 1017 and 2.0 × 1015, respectively.

These are still larger than the most diverse phage display libraries (approximately 1× 1011), but a

much higher percentage of the potential library could be translated to phage.

Before a screen could be performed, it was necessary to define a robust method of library creation.

The first successful Sa-SrtA∆59 libraries were created by synthesizing degenerate oligonucleotides

and using them to amplify the internal portion of Sa-SrtA∆59 between the β3/β4 and β6/β7 loops.

Those were then woven together with the C-terminal portion of Sa-SrtA∆59 by PCR, and inserted

into the rest of pComb3XM/SBP via restriction-ligation reactions (see Section 5.7 for more detail).

Sequencing data from a pool of the resulting plasmids showed that this method produced libraries

heavily biased toward the wild-type sequence (Figure 5.11, top and middle chromatograms). This

most likely occurred because oligonucleotides that resemble the wild-type sequence will bind better

to the region and therefore act as better primers in the amplification reaction. To avoid this,

a new strategy was developed whereby the entire region of Sa-SrtA∆59 between the β3/β4 and

β6/β7 loop libraries was constructed from synthetic oligonucleotides. This strategy is depicted in

Figure 5.12. Briefly, a series of overlapping oligonucleotides were designed that included the entire

region between and including the two libraries. The oligos served as primers for one another in an
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Figure 5.11: Library Quality by Generation Method. Base calls and the chromatagram for the
β6/β7 loop of the wild-type Sa-SrtA∆59 sequence (top) and libraries generated by amplifying a Sa-
SrtA∆59 section off of the plasmid with degenerate oligonucleotides (middle) or by weaving together
synthetic oligonucleotides (bottom). The amplification sequence shows a heavy bias toward the wild-
type sequence, especially for the G/C bases. The woven library shows no such bias. Randomized
bases are annotated and should be VRK VRK VRK VRK (V=A/C/G, R=A/G, K=G/T).
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Figure 5.13: Recovered Sequences from Library X4Gβ.

isothermal weaving reaction, which filled in the missing bases and ligated the strands together. The

most important aspect of this is that no oligonucleotides bound to the randomized regions of the

degenerate oligonucleotides. The complement strand was thus created by a DNA polymerase that

has no bias toward any sequence, wild-type or other. This library generation method allowed for a

truly random library, as shown by the bottom chromatogram in Figure 5.11.

5.5 Screening Results

5.5.1 Phage Library X4Gβ

The first library to be screened was created by isothermal weaving and also combined with the rest

of the pComb3XM/SBP vector by isothermal assembly, creating a library of 5.4×106 unique phage.

Although this was a small library, it was large enough to screen. Resulting phage were subjected to

a negative screen of 2 hours in 4 mM Ca2+ and a positive screen of 4mM Ca2+ and 200 µM Gly3 for

either 1 hour at 37◦C or 30 minutes at room temperature. After 5 rounds of screening (successive,

with no mutagenesis in between rounds), 24 colonies from each group were sent to sequencing. Of

those 48 colonies, 5 sequences were recovered, shown in Figure 5.13. These five sequences were cloned

into pSTEPL/EGFP (Plasmid 3.2) and assayed for observable cleavage. The results are tabulated

in Table 5.4. All of the clones either did not cleave under any conditions or cleaved no matter the

condition. Note that colony M, which contained a stop codon in the library sequences, was not

assayed.
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Figure 5.14: Recovered Sequences from Library X4WNLε.

The vast majority of the clones submitted to sequencing in this and the previous library did

not contain a coding sequence for Sa-SrtA∆59. The plasmids contained a deletion between the

(GGS)5 linker in STEPL and the flexible linker at the N-terminus of pIII. These sequences are

highly similar and GC rich, so this was likely due to a recombination event, which is possible during

isothermal assembly. Therefore, the remaining libraries were placed into the pComb3XM/SBP vector

by ligation.

5.5.2 Phage Library X4WNLε

With no success in the initial trial of tuning sortase’s calcium sensitivity, the next library was also

screened for manganese-triggered activity. This library of 4.0× 106 unique phage was also split into

two screens. All went through a 2 hour negative screen in 4 mM Ca2+ and positive screens for 4

hours at 37◦C with either 4mM Ca2+ and 200 µM Gly3 or 4mM Ca2+, 200 µM Gly3, and 10 mM

MnCl2. 16 colonies in each group were sequenced after both rounds 4 and 5, resulting in 26 unique



Section 5.5: Screening Results 112

potential sequences (Figure 5.14). Of these, 5 sequences from each screen were chosen to be cloned

into pSTEPL/EGFP and assayed. Table 5.4 again shows that none of the sequences performed as

expected within 4 hours.

One clone that was screened for reduced calcium sensitivity, however, did show cleavage only

under high-calcium conditions at 24 hours, G5.22. That clone was therefore subjected to random

mutagenesis along the entire length of the Sa-SrtA∆59 sequence to create a phage library of 2.5×106

unique clones. Those were screened for activity at room temperature in 1 hour. After 5 rounds, 16

clones were sent to sequencing. None contained DNA that could be sequenced. It might not have

been possible to increase the activity of G5.22, so it was no longer pursued.

A common feature of the clones resulting from the calcium screens is a cysteine at position 109.

That implies that it plays an important role in how these phage are passing the screen. Since the

bacterial cytoplasm (where the assayed proteins are produced) is a reducing environment, but the

periplasm (where the phage are produced) is oxidizing, the pSTEPL/EGFP mutants containing the

conserved cysteine may not be able to make a critical disulfide. They were therefore expressed in

a special E. coli strain that has an oxidizing cytoplasm. Unfortunately, all colonies again showed

negative results (data not shown), so a reduced thiol was not the problem.

5.5.3 Phage Library XH4WSLα

After having no duplicate sequences in Library X4WNLε, the screens were made harder to pass,

with the hope that this would further narrow the field and allow a consensus sequence to emerge.

A library of 6.0× 107 clones was screened under four different conditions:

1. A negative screen of 4mM Ca2+ for 2 hours at 37◦C followed by a positive screen of 4mM

Ca2+ and 200 µM Gly3 for 1 hour at room temperature.

2. A negative screen of 4mM Ca2+ for 2 hours at 37◦C followed by a positive screen of 4mM

Ca2+, 5mM MnCl2, and 200 µM Gly3 for 1 hour at room temperature.

3. A negative screen of 4mM Ca2+ and 200 µM Gly3 for 2 hours at 37◦C followed by a positive

screen of 10mM Ca2+ and 200 µM Gly3 for 1 hour at room temperature.

4. A negative screen of 4mM Ca2+ and 200 µM Gly3 for 2 hours at 37◦C followed by a positive

screen of 4mM Ca2+, 5mM MnCl2, and 200 µM Gly3 for 1 hour at room temperature.
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Figure 5.15: Recovered Sequences from Library XH4WSLα.

Table 5.5: Sortase Activity after Acid Shock. pSTEPL/EGFP proteins were expressed, bound to
cobalt resin, and their ability to release EGFP into the supernatant was measured qualitatively by
UV transillumination to be nonfluorescent (—), slightly fluorescent (+), fluorescent (++), or highly
fluorescent (+++) after 4 hours at 37◦C.

Acid Conditons Cleavage Conditions
pH Time 0 µM CaCl2, 0 µM Gly3 100 µM CaCl2, 200 µM Gly3
4 10 min — +++
7 N/A — +++

After 5 rounds of screening conditions 1 and 2, and 4 rounds of screening conditions 3 and 4, 24

clones of each were sent to sequencing. 17 viable sequences were returned (Figure 5.15). Again these

sequences had no duplicates or consensus. Still, all 17 were cloned into pSTEPL/EGFP and assayed

for activity in the positive and negative buffers. None showed conditional activity (Table 5.4).

5.5.4 Phage Library X4WEALβ

To try and improve the display results, a new screening method was employed, as shown in Figure

5.16. It was hypothesized that the SBP-streptavidin interaction was not strong enough to hold for the

long negative and positive incubations in the coated wells, so the new screen was designed to minimize

the time that phage spent bound to the plate. Briefly, libraries are transformed into E. coli, which
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Figure 5.16: Altered Phage Display Screening Cycle. Phagemid libraries were electroporated into
E. coli, which produced modified phage displaying the modified pIII and a streptavidin-binding
ligand. Phage were then incubated in the negative buffer before being bound to wells coated in
streptavidin. Phage with sortase mutants that cleaved during expression (yellow, orange, red) or
during the negative screen (purple) could not bind and were washed away. Next, the remaining
phage acid eluted off of the plate before being incubated in positive buffer. These phage were then
applied to a different streptavidin-coated well. Phage that cleaved during the positive screen (blue,
green) were collected, leaving phage that could not cleave (brown, pink) bound to the plate. That
supernatant then infected E. coli cells that could be amplified for another round of phage display
or plated for further analysis.
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are induced to produce phage that randomly include the mutant STEPL-pIII chimeras as well as the

encoding plasmid. The phage are incubated in the negative selection buffer in a polypropylene tube.

With 30 minutes remaining in the incubation, the phage are transferred to a streptavidin coated

plate and allowed to bind. Then, unbound phage are washed away with vigorous pipetting, which

removes any mutants that cleave during expression or in the negative screening buffer. Uncleaved

phage that remain bound to the plate are eluted in pH 4 acetate buffer for 10 minutes. These

phage are then neutralized with sodium hydroxide and incubated in positive screening buffer in

another polypropylene tube. Again, phage are transferred to a streptavidin-coated well with 30

minutes remaining in the positive incubation. Supernatant, which contains STEPL mutants that

were inactive during expression and the negative screen but gained activity during the positive screen,

is collected and used to infect fresh bacterial cells. The bacteria are then used to produce phage for

another screen or grown on plates for sequencing and analysis. STEPL’s ability to maintain activity

after the acid elution was determined by assaying wild-type pSRTA/EGFP for EGFP cleavage after

a 10 minute pH 4 acid shock (Table 5.5).

In addition, it was theorized that the optimized β3/β4 and β6/β7 loop library may have been too

optimal, resulting in almost entirely functional proteins because loops are very tolerant of mutations

between similar amino acids. Therefore, another layer of diversity was added by running error-

prone PCR reactions on top of the randomized loops. The inclusion of random mutations should

allow for even harsher screening conditions because residues that more directly affect the enzymatic

mechanism could be altered.

A library of 1.0× 107 mutants was screened under four conditions:

1. A negative screen of 4mM Ca2+ for 1.5 hours at room temperature followed by a positive

screen of 4mM Ca2+ and 200 µM Gly3 for 4 hours at room temperature.

2. A negative screen of 4mM Ca2+ for 1.5 hours at room temperature followed by a positive

screen of 4mM Ca2+ and 200 µM Gly3 for 30 minutes at room temperature.

3. A negative screen of 4mM Ca2+ and 200 µM Gly3 for 1.5 hours at room temperature followed

by a positive screen of 4mM Ca2+, 80mM MnCl2, and 200 µM Gly3 for 4 hours at room

temperature.
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Figure 5.17: Recovered Sequences from Library X4WEALβ.

4. A negative screen of 4mM Ca2+ and 200 µM Gly3 for 1.5 hours at room temperature followed

by a positive screen of 4mM Ca2+, 80mM MnCl2, and 200 µM Gly3 for 30 minutes at room

temperature.

The manganese screens had a much larger concentration of MnCl2 to try and pull out sequences

with even a low affinity for manganese, which could then be increased in subsequent libraries.

After five days, 16 clones from each condition were sent for sequencing. No viable sequences

resulted from conditions 1 or 2, but 9 identical sequences resulted from conditions 3 and 4 (Figure

5.17). However, Table 5.4 again shows that the sequence had no activity in cells with oxidizing or

reducing cytoplasms.

5.5.5 Phage Library X5ALα/X4WSLβ

Finally, a pooled library of Sa-SrtA∆59 with only random mutagenesis and Sa-SrtA∆59 with only

the optimized loop library was screened under the following conditons:

1. A negative screen of 4mM Ca2+ for 1.5 hours at room temperature followed by a positive

screen of 4mM Ca2+ and 200 µM Gly3 for 4 hours at room temperature.

2. A negative screen of 4mM Ca2+ and 200 µM Gly3 for 1.5 hours at room temperature followed

by a positive screen of 4mM Ca2+, 80mM MnCl2, and 200 µM Gly3 for 4 hours at room

temperature.

Beginning with 3.7×106 sequences, 16 clones from each condition were sequenced. One good sequence

was returned, from the manganese screen, containing a single point mutation, Q64R (Figure 5.18).

The clone showed no activity (Table 5.4).
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Figure 5.18: Recovered Sequences from Library X5ALα/X4WSLβ.

5.6 Conclusions

Unfortunately, this study was unable to produce STEPL mutants with a lower calcium sensitivity

or a manganese sensitivity. Bacterial display was not a viable strategy because the sortase enzyme

could not survive translocations across both E. coli membranes. Yeast display was not attempted

due to heavy glycosylation of the sortase in the endoplasmic reticulum. Phage display produced a

construct with an active sortase and an assay that physically held or released the phage based on

enzymatic activity. However, despite the use of both randomly generated and specifically optimized

libraries under a number of different screening conditions, no clones were obtained that were also

functional in the original STEPL assay.

5.7 Materials & Methods

Bacterial Display

Cloning

To construct pSED/sfGFP (see Plasmid Map 5.1), the coding sequence for EspP and the OmpA

signal were obtained from the NCBI nucleotide database (accession no. FJ875095) and synthesized

by IDT. sfGFP was amplified off of the instructional plasmid pGlo (Bio-Rad). The sequences for

LPETG, (GGS)5, and Sa-SrtA∆59 were amplified together off of pSTEPL. These three amplicons

were then woven together via PCR and cloned into pRSET-A via restriction-ligation. pSED2/sfGFP

(Plasmid Map 5.2) and pSED2/sfGFP (Plasmid Map 5.3) were cloned by first inserting an EagI

restriction site between the coding sequences for Sa-SrtA∆59 and EspP in pSED/sfGFP. Oligos

containing (GGS)5 and appropriate overhangs were ligated into pSED/sfGFP that had been digested

with EagI to create pSED2/sfGFP. pSED2.5/sfGFP was then constructed by amplifying ECFP off

of pECFP and cloning it into the same restriction site. pSED3/sfGFP was created by ordering the
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entire expression cassette from IDT and cloning it into pRSET-A. The EstA sequence was obtained

from the NCBI nucleotide database (accession no. AF005091.1). Insert directionality and all final

vectors were verified by sequencing.

Cleavage Assay

First, single colonies or stabs of glycerol stocks were grown for 24-hours in 10 mL of ZYP-5052

(Ameresco) supplemented with 100 µg/mL Amp. 1 mL aliquots were pelleted at 6,000g for 5

minutes and then resuspended in the appropriate amount of STEPL buffer with or without 5 mM

CaCl2 and 5 mM Gly3 (Sigma). Cultures were then shook at 37◦C overnight. For the first six hours,

cells were pelleted and observed with UV light once per hour.

Immunohistochemistry

Both pSED/sfGFP and pSTEPL/EGFP expression cells were grown for 24-hours in 10 mL of ZYP-

5052 (Ameresco) supplemented with 100 µg/mL Amp. For half of the pSTEPL/EGFP stock, the

chimeric protein was purified and bound to Talon resin (Clontech) as previously described (Section

3.9). Cells and beads were pelleted at 8,600g for 3 minutes and washed three times with 1 mL ice-cold

STEPL buffer. Samples were then resuspeneded in 1 mL ice-cold STEPL buffer with Rabbitα-GFP

(GE) antibody and shook for 2 hours at 4◦C. After another three washes, samples were resuspended

in 1 mL ice-cold STEPL buffer with α-Rabbit secondary antibody conjugated to a 700nm fluorophore

(LiCor) and shook for 1 hour at 4◦C. Samples were again washed 3 times and then resuspended in

100 µL ice-cold STEPL buffer. These were then transferred to a 96-well plate that was imaged and

quantified by the LiCor Odyssey fluorescence scanner.

Phage Display

Phagemid Cloning

All of the phagemids were derived from pComb3X (generously gifted by Dr. Donald Siegel). Before

any other cloning, the amber stop codon in pComb3X’s linker region was deleted by site-directed

mutagenesis (Quikchange II Kit, Agilent Genomics), creating the vector pComb3XM (see Plasmid

Map 5.5). The mutation was validated by sequencing.
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Plasmid Map 5.1: pSED/sfGFP

Feature Location
T7 Promoter 20-39
Chimeric ORF 100-2382
OmpA Signal 103-165
sfGFP 172-888
Sortase Motif 895-909
(GGS)5 Linker 910-954
Sa-SrtA∆59 955-1395
EspP β Domain 1396-2301
T7 Terminator 2330-2495
f1 Origin 2530-2985
bla Promoter 3017-3121

AmpR 3116-3976
pUC Origin 4794-4121
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Plasmid Map 5.2: pSED2/sfGFP

Feature Location
T7 Promoter 20-39
Chimeric ORF 100-2382
OmpA Signal 103-165
sfGFP 172-888
Sortase Motif 895-909
(GGS)5 Linker 910-954
Sa-SrtA∆59 955-1395
(GGS)5 Linker 1426-1470
EspP β Domain 1477-2382
T7 Terminator 2411-2540
f1 Origin 2611-3066
bla Promoter 3098-3202

AmpR 3197-4057
pUC Origin 4875-4202
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Plasmid Map 5.3: pSED2.5/sfGFP

Feature Location
T7 Promoter 20-39
Chimeric ORF 100-2382
OmpA Signal 103-165
sfGFP 172-888
Sortase Motif 895-909
(GGS)5 Linker 910-954
Sa-SrtA∆59 955-1395
ECFP 1426-2151
EspP β Domain 2158-3063
T7 Terminator 3092-3221
f1 Origin 3292-3747
bla Promoter 3779-3883

AmpR 3878-4738
pUC Origin 5556-4883
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Plasmid Map 5.4: pSED3/sfGFP

Feature Location
T7 Promoter 20-39
Chimeric ORF 100-2415
OmpA Signal 103-165
sfGFP 172-888
Sortase Motif 895-909
(GGS)5 Linker 910-954
Sa-SrtA∆59 955-1395
EstA β Domain 1426-2415
T7 Terminator 2447-2576
f1 Origin 2647-3102
bla Promoter 3134-3121

AmpR 3116-3976
pUC Origin 4794-4121
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Plasmid Map 5.5: pComb3XM

Feature Location
Lac Promoter 145-172
LacO 179-201
OmpA Signal Sequence 222-284
M13 pIII-C 494-1027
F1 Ori 1501-1195

AmpR 1848-2507
ColE1 Ori 2605-3287
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The streptavidin binding peptide (SBP) sequence (MDEKTTGWRGGHVVEGLAGELEQL-

RARLEHHPQGQREP) and the Avi-Tag sequence (GLNDIFEAQKIEWHE) were codon-optimized

and synthesized by IDT. The j5 program was used to design PCR primers to amplify the pComb3XM

backbone and sortase A active site with the linker and LPETG motif from pSTEPL [266]. The lin-

ear PCR fragments were combined through isothermal assembly [267] to create pComb3XM/SBP-

STEPL and pComb3XM/Avi-STEPL (see Plasmid Maps 5.6 and 5.7). Gibson reactions were

transformed into Top10 competent cells (Life Technologies). Resultant vectors were validated by

sequencing. Site-directed mutagenesis (Quikchange II Kit, Agilent Genomics) was used to intro-

duce the inactivating C180A mutation into both vectors, creating pComb3XM/SBP-C180A and

pComb3XM/Avi-C180A (Plasmid Maps not shown). Resultant vectors were validated by Sanger

sequencing.

To create a phagemid that linked the STEPL system to pIII via a helical linker, the α-helical linker

sequence (GSG(EAAAK)4GSG) plus 20bp upstream/22bp downstream overlaps was synthesized by

IDT as a series of single-stranded oligonucleotides. The pComb3XM/SBP vector was amplified to

create a linear product that excluded the native glycine-serine linker but included the upstream

and downstream overlaps. The PCR product was then digested with DpnI (New England Biolabs),

purified on a 0.7% low-melt agarose gel (Lonza), and re-amplified by PCR with the PhireII-Hotstart

Enzyme (Thermo Fisher). 1 pmol of backbone was then combined with 10 µM of each oligo and

2X Gibson Assembly Master Mix (New England Biolabs) and incubated at 50◦C for 1 hour before

being transformed into Top10 cells (Life Technologies). Resultant vectors (see Plasmid Map 5.8)

were validated by sequencing.

Helper Phage Preparation

Overnight cultures of XL1-Blue cells (Agilent) were grown in SB Media (Gentrox) containing 10

µg/mL tetracycline. The following day, 10 µL of the culture was added to 10 mL of SB Media with

tetracycline and shook at 37◦C for 1 hour. Then 10 µL of CM13 helper phage stock (Antibody

Design Labs) was added to the culture and allowed to infect at room temperature for 15 minutes

before being shook for an additional 2 hours at 37◦C. The culture was then added to 500 mL of

SB Media containing 70 µg/mL kanamycin before being shook overnight at 37◦C. The next day,

the culture was split into 50 mL aliquots and bacterial cells were removed by pelleting at 3,000g
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Plasmid Map 5.6: pComb3XM/SBP-STEPL

Feature Location
Lac Promoter 145-172
LacO 179-201
Chimeric ORF 222-1496
OmpA Signal Sequence 222-284
Streptavidin Binding Peptide 285-398
Sortase Motif 399-413
(GGS)5 Linker 414-458
Sa-SrtA∆59 459-899
β3/β4 Loop 594-629
β6/β7 Loop 789-800
C184 Catalytic Residue 831-833
M13 pIII-C 963-1496
F1 Ori 1970-1664

AmpR 2317-2976
ColE1 Ori 3074-3756



Section 5.7: Materials & Methods 126

Plasmid Map 5.7: pComb3XM/Avi-STEPL

Feature Location
Lac Promoter 145-172
LacO 179-201
Chimeric ORF 222-1496
OmpA Signal Sequence 222-284
Avi-Tag R⃝ 285-329
Sortase Motif 330-344
(GGS)5 Linker 345-389
Sa-SrtA∆59 390-830
β3/β4 Loop 525-560
β6/β7 Loop 720-731
C184 Catalytic Residue 762-764
M13 pIII-C 894-1427
F1 Ori 1901-1595

AmpR 2248-2907
ColE1 Ori 3005-3687



Section 5.7: Materials & Methods 127

Plasmid Map 5.8: pComb3XH/SBP-STEPL

Feature Location
Lac Promoter 145-172
LacO 179-201
Chimeric ORF 222-1496
OmpA Signal Sequence 222-284
Streptavidin Binding Peptide 285-398
Sortase Motif 399-413
(GGS)5 Linker 414-458
Sa-SrtA∆59 459-899
β3/β4 Loop 594-629
β6/β7 Loop 789-800
C184 Catalytic Residue 831-833
α-helical Linker 963-1040
M13 pIII-C 1041-1493
F1 Ori 1967-1661

AmpR 2314-2973
ColE1 Ori 3071-3753



Section 5.7: Materials & Methods 128

for 15 minutes. Supernatants were then incubated at 70◦C for 20 miuntes before being centrifuged

again at 3,000g for 15 minutes. Supernatants were transferred to new tubes and stored at 4◦C until

needed.

Preparation of Streptavidin plates

10 µg of purified streptavidin (Fisher, diluted to 4 mg/mL in PBS, pH 5) was added to 96-well,

clear, flat bottom, half area, high bind plates (Corning). Plates were sealed and incubated for 2

hours at 37◦C. The PBS solution was removed and wells were then blocked by filling them with

STEPL buffer with 2% w/v biotin-free powdered milk (LabScientific) and incubating for at least 1

hour at 37◦C or room temperature.

Phage Assay Validation

First, the vectors pComb3XM/SBP-STEPL, pComb3XM/Avi-STEPL, pComb3XM/SBP-C180A,

and pComb3XM/Avi-C180A were transformed into Biotin XCell
TM

F’ electrocompetent cells (Lu-

cigen). Transformed colonies were used to inoculate 10 mL overnight cultures in SB Media (50

µg/mL carbenicillin, 10 µg/mL tetracycline) at 37◦C. The next day, the cultures were expanded to

50 mL of SB Media (50 µg/mL carbenicillin, 10 µg/mL tetracycline) and grown to an OD600 of 1

by shaking at 37◦C. At that point 2 mL of helper phage were added to each culture, and allowed

to infect stationary at room temperature for 15 minutes. Cultures were then expanded to 200 mL

of SB Media (50 µg/mL carbenicillin, 10 µg/mL tetracycline) and shook for an additional 2 hours

at 37◦C. Finally, kanamycin was added to a concentration of 70 µg/mL and cultures were shook

overnight at 25◦C.

The following day, bacterial cells were removed from the overnight cultures by pelleting at 3,000g

for 15 minutes. Sodium chloride (Fisher, 3% w/v) and poly(ethylene glycol) (Sigma, MW 8000, 4%

w/v) were dissolved into the supernatants by shaking vigorously at 37◦C for 5 minutes before being

incubated on ice for 30 minutes. Phage were then pelleted by centrifugation at 15,000g for 15

minutes. Pellets were resuspended in 2 mL of STEPL Buffer with 2% w/v bovine serium albumin

by gentle rocking for 30 minutes at room temperature. Impurities were removed by centrifugation

at 10,000g for 5 minutes at 4◦C. Supernatants were finally passed through a steile filter to obtain

purified phage.
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Table 5.6: Phage Library Nomenclature. In order to keep track of the libraries that were created, a com-
mon nomenclature was employed. All libraries follow the scheme [Vector(s)][Generation][Cloning][Attempt].
The vector, generation, and cloning portions are described in the table. The attempt portion is a sequential
Greek letter used to separate libraries created with the same cloning plan.

Vectors Library Generation Cloning Techniques
Symbol Vector Symbol Technique Symbol Technique
H pComb3XH 1 Kunkel Mutagenesis A AgeI/NcoI Digest
X pComb3XM 2 Site-Directed Mutagenesis E Error-prone PCR Amplifcation

3 Degenerate Oligo PCR G Gibson Assembly
4 Gibson Oligo Weaving H HindIII Digest
5 Error-Prone PCR L Ligation

M MluI Digest
N HindIII/NcoI Digest
S HindIII/NcoI Digest, Short primers
W PCR Weaving

Phage were then added in a 4:1 ratio to STEPL Buffer containing 10% w/v biotin-free powdered

milk (LabScientific, final 2% w/v) and incubated at room temperature for 1 hour. Triglycine (Sigma)

and CaCl2 (Sigma) were added with final concentrations of 5 mM and 100 µM, respectively, in half

of the sample and phage were allowed to cleave for 1 hour at 37◦C. Phage were then added to a

streptavidin-coated plate (see above) and incubated for 4 hours at 37◦C. Then, wells were washed

six times with TBS + 0.05% Tween-20 by vigorously pipetting and incubating with wash buffer for

4 minutes before shaking out the solution. Anti-M13 antibody conjugated to horseradish peroxidase

(Abcam) was diluted to working concentrations in STEPL buffer with 2% w/v biotin-free powdered

milk and incubated in the wells for 1 hour at 37◦C. Wells were again washed six times with TBS

+ 0.05% Tween-20 by vigorously pipetting and incubating with wash buffer for 4 minutes before

shaking out the solution. TMB substrate solution (Pierce) was added to the wells and allowed to

react for 30 minutes before measuring the absorbance at 370 nm on a Tecan Infinate 200 Plate

Reader. Positive controls were produced by incubating phage in unblocked wells. A control for

streptavidin binding was produced by incubating C180A samples in blocked wells that had not been

coated in streptavidin. All samples were run in triplicate.

Phage Library Cloning

Phage Libraries were cloned in a number of different ways. The component techniques are summa-

rized in Table 5.6 and described below.
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Library Generation: Method 1 – Kunkel Mutagenesis

First, pComb3XM/SBP-STEPL was electroporated into electrocompetent XL1-Blue cells (Agilent

Genomics, 2500 V, 25 µF, 200 Ω, 2 mm cuvette). 6 colonies were picked in the morning and used

to inoculate 200 mL of 2xYT Media with 100 µg/mL carbenicillin and 12.5 µg/mL tetracycline.

The culture was shook at 37◦C until it reached an OD600 of 0.5. 5 mL of helper phage (see above)

was added to the culture and it was allowed to infect for 15 minutes at room temperature before

being shook for an additional hour at 37◦C. Cells were then pelleted by centrifugation at 3,000g

for 15 min and resuspended in 200 mL of fresh 2xYT Media with 100 µg/mL carbenicillin, 12.5

µg/mL tetracycline, and 0.25 µg/mL uridine. The culture was then shook for 24 hours at 25◦C. The

following day, bacterial cells were removed from the overnight cultures by pelleting at 3,000g for 15

minutes. Sodium chloride (Fisher, 1.5M) and poly(ethylene glycol) (Sigma, MW 8000, 24% w/v)

were added to the supernatant and the phage were allowed to precipitate at room temperature for

15 minutes. Phage were then pelleted by centrifugation at 15,000g for 10 minutes at 15◦C. Tubes

were inverted for 10 minutes to drain excess supernatant before phage were resuspended in 6 mL

of PBS. Uracil-doped-single-stranded DNA (ssDNA) was then obtained with a QiaPrep R⃝ Spin M13

Kit (Qiagen).

4.4 pmol of 5’-phosphorylated mutagenic oligonucleotides (IDT) were annealed to 8 µg of ssDNA

in buffer TM (50 M Tris−HCl, 10 mM MgCl2, pH 7.5) by heating to 90◦C for 2 minutes and then

decreasing the temperature by 1◦Cminute until it reached 25◦C. The DNA was then supplemented

with ATP (0.8 mM final concentration, New England Biolabs), DTT (5 mM final concentration,

Fisher), dNTP mix (0.8 mM final concentration, each, Fisher), T4 ligase (20,000 units, New England

Biolabs), and T7 polymerase (30 units, New England Biolabs). The reaction was run for 3 hours at

20◦C followed by 20 minutes at 75◦C to inactivate the enzymes. The QiaQuik PCR Cleanup Kit

(Qiagen) was used to recover double-stranded DNA, which was then electroporated into 200 µL of

electrocompetent XL1-Blue cells (Agilent Genomics, 2500 V, 25 µF, 200 Ω, 2 mm cuvette).

Library Generation: Method 2 – Site-Directed Mutagenesis

Methylated pComb3XM/SBP-STEPL was obtained via the QIAquick Spin miniprep Kit (Qiagen)

from overnight cultures of transformed Top10 cells. 10 PCR reactions were run, each consisting
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of 1X Phire Green Reaction Buffer (Thermo Fisher), 200 µM dNTPs, 2% v/v DMSO, 100 ng of

pComb3XM/SBP-STEPL, 0.5 µM of each forward strand mutagenic oligonucleotide, and 1 unit

Phire Hot Start II polymerase (Thermo Fisher). After 50 cycles of PCR, according to the product

protocol, 20 units of the restriction enzyme DpnI (New Englnad Biolabs) was added to each reaction

and incubated at 37◦C for 2 hours to degrade the template DNA. Reactions were then concentrated

and purified using the QIAquick PCR Cleanup Kit. DNA was then electroporated into 200 µL of

electrocompetent XL1-Blue cells (Agilent Genomics, 2500 V, 25 µF, 200 Ω, 2 mm cuvette).

Library Generation: Method 3 – Degenerate Oligonucleotide PCR

The central portion of Sa-SrtA∆59 was amplified from 50 ng of pComb3XM/SBP-STEPL using

the sense-strand mutagenic oligonucleotides for the β3/β4 loop and the antisense-strand mutagenic

oligonucleotide for the β6/β7 loop. After 50 cycles of PCR, according to the Phire Hot Start II

polymerase protocol, product was purified from the template by agarose gel electrophoresis. The

gel band was then cut out and purified with a QIAquick Gel Extraction Kit (Qiagen).

Library Generation: Method 4 – Gibson Oligonucleotide Assembly

A series of overlapping oligonucleotides were designed with melting temperatures near 50◦C (see

Figure 5.12), which were produced by IDT. Oligos were diluted to 10 µM and mixed together. The

mixture was heated to 95◦C for 5 minutes and then cooled 1◦C/minute until reaching 25◦C. 1 µL

of the annealed oligos was then mixed with 9 µL of deionized water and 10 µL of Gibson Assembly

Master Mix (New England Biolabs). The reaction was held at 60◦C for 1 hour. After, the entire

Gibson reaction was used as template DNA in a PCR reaction, using the primers Weave Lib Fwd

and Weave Lib Rev (see Figure 5.19). After 50 cycles of PCR, according to the Phire Hot Start II

polymerase protocol, product was purified from the template by agarose gel electrophoresis. The

gel band was then cut out and purified with a QIAquick Gel Extraction Kit (Qiagen).

Library Generation: Method 5 – Error-Prone PCR

Random mutations were added to the wild-type Sa-SrtA∆59 sequence by amplifying the entire se-

quence with an error-prone polymerase (Clontech Diversify Kit). 50 ng of pComb3XM/SBP-STEPL

was amplified by the TITANIUM Taq Polymerase using the Weave N Fwd and Weave C Rev Short
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primers (see Figure 5.19) with the addition of 640 µM MnSO4 to further reduce the Taq fidelity

to 3.5 mutations/kb (roughly 2 mutations per Sa-SrtA∆59 sequence). The PCR product was then

diluted 1:1000 and used as the template in a second round of error-prone PCR, with the same con-

ditions (roughly 4 mutations per Sa-SrtA∆59 sequence). All of the second round product was used

in a high-fidelity PCR reaction (Phire Polymerase, Thermo Fisher) to amplify the library to the

necessary quantities.

Cloning Technique E

For libraries with an E in the cloning strategy, the entire Sa-SrtA∆59 gene was assembled by other

methods (generally PCR weaving). The Sa-SrtA∆59 fragment was then amplified by error-prone

PCR in the same way as Library Generation Method 5 above.

Cloning Technique G

For libraries with a G in the cloning strategy, backbone vectors and libraries were amplified by

PCR. Products were then subjected to DpnI digestion and agarose gel purification, which removed

all template DNA. Purified fragments were again amplified by PCR to obtain at least 1 µg of

backbone DNA. Backbone and library amplicons were combined in a 1:3 ratio and added to 2X

Gibson Assembly Master Mix (New England Biolabs, 20 µL total reaction per 1 pmol of backbone

DNA) and incubated at 50◦C for 1-4 hours.

Phage Library Screening

Phage Screening: Libraries X4Gβ, X4WNLε, and XH4WSLα

6 µg of each library DNA was electroporated into 800 µL of electrocompetent XL1-Blue cells (Agilent

Genomics, 2500 V, 25 µF, 200 Ω, 2 mm cuvette). Transformants were diluted into 5 mL of SOC

Media (Corning) and allowed to recover by shaking for 1 hour at 37◦C. Then, 8 mL of pre-warmed SB

Media was added to the cells along with carbenicillin (20 µg/mL final concentration) and tetracycline

(10 µg/mL final concentration) and shook for an hour at 37◦C. Carbenicillin was then added to raise

the concentration to 50 µg/mL and the cells were shook for another hour at 37◦C. Next, 2 mL of

CM13 helper phage (see above for preparation) was added and cells were incubated stationary at
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room temperature for 15 minutes. Infected cultures were added to 185 mL of pre-warmed SB Media

(50 µg/mL carbenicillin, 10 µg/mL tetracycline) and shook at 37◦C for 2 hours. Finally, kanamycin

was added to a final concentration of 70 µg/mL and cultures were shook overnight at 37◦C.

For each day of screening, phage were harvested as described above (Phage Assay Validation).

Phage were added to STEPL Buffer containing 10% w/v biotin-free powdered milk (LabScientific)

and appropriate solutes to produce the negative screening conditions described in Section 5.5. Phage

were then added to a streptavidin-coated plate (see above) and incubated for the amount of time

indicated in Section 5.5 at 37◦C. Then, wells were washed six times with TBS + 0.05% Tween-20

by vigorously pipetting and incubating for 4 minutes before shaking out the wash buffer. STEPL

Buffer containing 2% w/v biotin-free powdered milk and appropriate solutes to produce the positive

screening conditions described in Section 5.5 was then added to the wells, which were then incubated

as described in Section 5.5. Supernatants were gently transferred to 2 mL of XL1-Blue cells (OD600 =

1) and allowed to infect for 15 minutes at room temperature. 2 µL of infected culture was used for

titering.

6 mL of pre-warmed SB Media was added to the infected cells along with carbenicillin (20 µg/mL

final concentration) and tetracycline (10 µg/mL final concentration) and shook for an hour at 37◦C.

Carbenicillin was then added to raise the concentration to 50 µg/mL and the cells were shook

for another hour at 37◦C. Next, 1 mL of CM13 helper phage was added and cells were incubated

stationary at room temperature for 15 minutes. Infected cultures were added to 91 mL of pre-

warmed SB Media (50 µg/mL carbenicillin, 10 µg/mL tetracycline) and shook at 37◦C for 2 hours.

Kanamycin was added to a concentration of 70 µg/mL and cultures were shook overnight at 37◦C.

Phage Screening: Libraries G5.22-5ALα, X4WEALβ, X5ALα, and X4WSLβ

3 µg of each library DNA was electroporated into 300 µL of electrocompetent XL1-Blue cells (Agilent

Genomics, 2500 V, 25 µF, 200 Ω, 2 mm cuvette). Transformants were diluted into 5 mL of SOC

Media (Corning) and allowed to recover by shaking for 1 hour at 37◦C. Then, 8 mL of pre-warmed

SB Media (Gentrox) was added to the cells along with carbenicillin (20 µg/mL final concentration)

and tetracycline (10 µg/mL final concentration) and shook for an hour at 37◦C. Carbenicillin was

then added to raise the concentration to 50 µg/mL and the cells were shook for another hour at

37◦C. Next, 2 mL of CM13 helper phage (see above for preparation) was added and cells were
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incubated stationary at room temperature for 15 minutes. Infected cultures were added to 185 mL

of pre-warmed SB Media (50 µg/mL carbenicillin, 10 µg/mL tetracycline) and shook at 37◦C for

2 hours. Finally, kanamycin was added to a concentration of 70 µg/mL and cultures were shook

overnight at 37◦C.

For each day of screening, phage were harvested as described above. Phage were added to STEPL

Buffer containing 10% w/v biotin-free powdered milk (LabScientific) and appropriate solutes to pro-

duce the negative screening conditions described in Section 5.5 and incubated at room temperature

for 1 hour. Phage were then added to a streptavidin-coated plate (see above) and incubated for

30 minutes at room temperature. Then, wells were washed six times with TBS + 0.05% Tween-20

by vigorously pipetting and immediately shaking out the wash buffer. Remaining phage were then

eluted with acetate buffer (pH 4) for 10 minutes. Eluate was transferred to a microcentrifuge tube

containing 3.5% v/v 0.5 M sodium hydroxide. 5X STEPL Buffer containing 10% w/v biotin-free

powdered milk and appropriate solutes to produce the positive screening conditions described in

Section 5.5 was then added to the neutralized phage, which were then incubated at room temper-

ature for the amount of time conditions described in Section 5.5. With 30 minutes remaining in

the incubation time, phage were added to a streptavidin-coated plate (see above) and incubated at

room temperature. Supernatants were gently transferred to 2 mL of XL1-Blue cells (OD600 = 1)

and allowed to infect for 15 minutes at room temperature. 2 µL of infected culture was used for

titering. Finally, phage were amplified as described above.

Cloning of Library Results into pSTEPL/EGFP

The library regions of interesting clones and the pSTEPL/EGFP backbone were amplified by

PCR and agarose gel purified. Products were then re-amplified to obtain at least 1 pmol of

pSTEPL/EGFP backbone and 3 pmol library per reaction. The fragments were incubated in 1X Gib-

son Assembly Master Mix (New England Biolabs) for 1 hour at 50◦C. 1:3 dilutions of the isothermal

assembly reactions were then transformed into One-Shot Top10 cells (Life Technologies). Plasmids

were verified by sequencing before being transformed into Rosetta2 BL21 DE3 cells (EMD Millipore)

or the disulfide-forming SHuffle T7 Express cells (New England Biolabs).
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Preliminary Clone Characterization

25mL starter cultures were grown overnight in LB-Ampicillin. These were added to 225mL of LB

and grown to an OD600 of 0.8-1 before induction with 0.5mM Isopropyl β-D-1-thiogalactopyranoside

(IPTG). Cultures were allowed to express for 24hrs at 25◦C. Cells were then harvested by centrifuga-

tion (6000 RPM, 15min) and resuspended in 10mL of lysis buffer (50mM NaH2PO4, 300mM NaCl,

1mg/mL Lysozyme, 1 EDTA-free cOmplete Mini protease inhibitor tablet (Roche), pH 7.5). Lysates

were incubated at room temperature for 30min under gentle agitation before freezing overnight at

-80◦C. Samples were then thawed and incubated for 30min with DNAse I (Roche) under gentle ag-

itation. Lysates were then sonicated and separated by centrifugation (10,000 rpm, 30min). 8mL of

clarified lysate was incubated for 1 hr with 0.5mL Talon resin (Clontech, equilibrated in lysis buffer).

The lysate and beads were then added to a column and beads were washed with 5mL STEPL buffer.

Washed beads were resuspended in a total of 1mL of STEPL buffer containing the indicated amounts

of CaCl2, triglycine, and MnCl2 (Sigma-Aldrich) and aliquoted into 1.5mL microcentrifuge tubes.

Samples were shaken at 1,000 rpm, the indicated temperature, and protected from light. At each

timepoint, samples were spun down at 3,000 rpm for 5min. GFP fluorescence was then observed

with a UV transilluminator.
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Chapter 6

Overall Conclusions and

Future Directions

6.1 Thesis Discussion

6.1.1 Design and Optimization of Sortase-Tag Expressed Protein Ligation

The ability to attach a payload to a targeting ligand is a fundamental requirement in the field of

molecular imaging. While this is simple to do if both the ligand and payload are small molecules,

the problem becomes much more complex when either is a protein. Many chemical approaches to

bioconjugation have been developed. However, these techniques are often not efficient, stoichiomet-

ric, or site specific. They may also exclude large numbers of potential ligands, such as those with

disulfide bonds. Enzymatic bioconjugation techniques ameliorate some of these issues, but are also

limited by constraining useable payloads to structures chemically similar to their natural substrates,

requiring large fusions that alter the properties of the targeting ligand, or necessitating difficult

downstream purifications. Keeping all of these considerations in mind, we set out to create a novel

bioconjugation technology that combines the small size and flexibility of chemical techniques with

the efficiency and specificity of enzymatic approaches.

We were able to do this by utilizing the transpeptidation activity of S. aureus Sortase A. In

the presence of Ca2+, the enzyme recognizes the pentapeptide sequence LPXTG and then catalyzes
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the replacement of the glycine residue with any other polypeptide that has an N-terminal glycine.

Nearly any molecule, biological or synthetic, can flank the LPXTG peptide or follow the N-terminal

glycine of the second molecule, yielding an efficient, site-specific transformation unprecedented in

its flexibility. Our novel technique, Sortase-Tag Expressed Protein Ligation (STEPL), harnessed the

power of the sortase enzyme by expressing its active domain as part of a larger chimeric protein.

The STEPL chimera consisted of, from N- to C-terminus, the protein to be conjugated, the sortase

recognition motif LPETG, a flexible linker sequence, the sortase active domain, and a hexahistidine

tag. The construct was then expressed in the E. coli cytoplasm and purified by metal affinity

chromatography. However, rather than eluting the chimeric protein off of the metal resin, the bound

beads were incubated with CaCl2 and a short, synthetic peptide. This activated the sortase domain,

cleaving the target protein off of the column via conjugation of the peptide. In theory, linking

protein cleavage to bioconjugation should result in complete bioconjugation of all target protein

that is released from the beads, eliminating the need for large excesses of synthetic peptide and

greatly simplifying downstream workups.

In practice, the system works in much the same way. The major difference is due to a peptide-

independent hydrolytic shunt in the sortase mechanism. To quantify the effect of this side reaction,

a simple test system was constructed using the reporter protein EGFP as the target protein to

be conjugated and triglycine as the synthetic peptide. We were able to monitor STEPL activity

under a number of initial conditions by measuring the EGFP concentration in the supernatant,

which would only occur if the enzyme actively cleaved the protein off of the beads. First, we used

this assay to determine the optimal CaCl2 concentration. While the hydrolytic shunt is active

in the absence of peptide, calcium is necessary even for this side reaction. By titering CaCl2 in

the presence and absence of 25 µM triglycine, we calculated a ratio of ligated to unligated free

EGFP as a function of calcium concentration. In less than 100 µM CaCl2, the system reported a

high percentage of conjugated product. This ratio quickly dropped off at higher concentrations, so

100 µM was determined to be the optimal calcium concentration for the STEPL system.

After that, we used the EGFP-STEPL reporter construct to analyze the effects of reaction time,

reaction temperature, and peptide concentration. These parameters are not independent of one

another, so a mass-action kinetics model was developed that used the Arrhenius definition of a rate

constant to capture temperature-dependence. The model was fit to wet-lab quantification of EGFP
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release under varying conditions to determine the pre-exponential constants and activation energies

of both the glycine-dependent and glycine-independent pathways of the sortase mechanism. The

calculated parameters had reasonable magnitudes and model-predicted EGFP release fit the data

well. The model was finally used to predict the yield of conjugated protein, the percentage of re-

leased protein that would be conjugated, and the percentage of peptide consumed by the STEPL

reaction. Conjugation percentage was heavily dependent on initial peptide concentration and weakly

temperature dependent, with more peptide and higher temperatures leading to more pure results.

A ratio of initial peptide to initial chimera that gave >95% conjugated protein could be found for

all temperatures and times greater than 30 minutes. For a 6 hour reaction, only a two-fold excess of

peptide was needed for 95% purity at 37◦C. Peptide utilization was heavily dependent on both tem-

perature and initial peptide concentrations. The peptide dependence was the inverse of conjugation

purity, with peptide utilization increasing with decreasing initial peptide concentrations. Although

peptide utilization of >90% were possible, this only occurred within 6 hours at 37◦C. Finally, overall

yield increased with temperature and peptide concentration. Thus, 37◦C was determined to be the

optimal temperature for all outcomes. Interestingly, peptide utilization and conjugate purity were

found to be competing interests. Therefore, STEPL reactions can be optimized for peptide utiliza-

tion if downstream applications facilitate easy separation of conjugated and unconjugated protein,

such as subsequent surface functionalization, or for high purity if further purifications would be

difficult, for instance if the protein will be used directly for imaging or therapy.

This novel system for protein purification and bioconjugation offers many advantages over other

chemical and enzymatic ligation technologies by combining their advantages and avoiding their

shortcomings. Like chemical crosslinkers, but unlike most enzymes, STEPL can conjugate a broad

selection of bio-orthogonal functionality to a protein while adding minimal bulk. However, being an

enzymatic reaction, it is more efficient, site-specific, and quantitative, unlike most chemical conju-

gations. Because STEPL consists of a single chimeric protein, it eliminates the need for subsequent

purification of the sortase enzyme from the ligation products. What makes STEPL truly unique in

the field of bioconjugation, however, is that it links protein purification to bioconjugation. In doing

this, it can produce a high-purity, quantitatively labeled product or utilize most of an expensive

reagent. Both approaches reduce the time, cost, and complexity of bioconjugation, making it a

significant advance in the field with applications throughout academia and industry. STEPL has
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the potential to aid in the production of protein-drug conjugates, PEGylated biologics, biophysical

probes, and of course molecular imaging agents, among many other applications.

6.1.2 Applications of the STEPL System

Though promising, the STEPL system is only useful if it eases or enables the production of useful

conjugated proteins. With that in mind, we tested STEPL’s ability to create ligands for interesting

downstream applications. For this thesis, STEPL was used to express the affibodies ZHer2 and

ZEGFR, small proteins that bind tightly and specifically to the extracellular domains of the Her2/neu

and EGFR receptors, respectively. Affibodies were chosen because they express easily in the E. coli

cytoplasm and are very stable after purification, allowing us to focus on the contributions of the

STEPL system without adding complications derived from the targeting ligand itself.

Fluorescence Imaging

STEPL’s first use was the generation of targeted fluorescence contrast agents. The ZHer2 affibody

was cloned into pSTEPL and expressed in bacterial cells. A synthetic peptide containing the near-IR

fluorophore HiLyteFluor750 was used to cleave the affibody off of the column. After simple dialysis

of the column eluate into Tris-buffered saline to remove excess peptide, the sample was analyzed

by SDS-PAGE, which showed a single, fluorescent band that corresponded to the size of ZHer2. No

unconjugated affibody could be visualized on the gel, indicating that STEPL did indeed produce a

high-purity protein conjugate as predicted by the model. The conjugated affibody was then applied

to Her2/neu positive and negative cell lines. Fluorescence imaging revealed that the fluorescent

ZHer2 successful labeled only the Her2/neu positive cells, which could also be greatly reduced by

competitive inhibition with unlabeled ZHer2. In addition to microscopy, affibody labeling of the

Her2/neu positive cell line was quantified with a fluorescence scanner, essentially creating an in-cell

western reagent. These results were then duplicated by cleaving an ZEGFR-STEPL construct with

a synthetic peptide containing a different fluorophore, 5-FAM, a fluorescein derivative. Again, the

reagent specifically labeled an EGFR-positive cell line, as determined by florescence microscopy.

Thus, STEPL quickly and efficiently produced a fluorescence contrast agent with all of the expected

properties and a simpler downstream purification. The only workup step, dialysis to remove excess

labeling reagent, would be necessary in any system.
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Nanoparticle Synthesis

The ZHer2-STPEL chimera was also cleaved with a peptide containing a lysine residue that was

modified to have an azide functional group, which is capable of participating in the azide-alkyne

cycloaddition click reaction. While the label used for fluorescence imaging could be incorporated

anywhere that does not interfere with binding, the C-terminal location of the azide functionalization

has been proven to significantly improve the final performance of a targeted nanoparticle [2]. The

ZHer2-azide conjugate was then reacted with superparamagnetic iron oxide (SPIO) nanoparticles that

displayed a strained cyclooctyne derivative, which efficiently formed covalent bonds with the azide

moiety on the affibody. The resulting targeted SPIO particle was able to decrease the T ∗
2 relaxivity

of Her2/neu positive cells, while inducing no change in the relaxivities of Her2/neu negative cells

or those in subjected to competitive inhibition. These changes in T ∗
2 were echoed in MR images,

which showed significant darkening of the Her2/neu positive cell lines. STEPL was able to quickly

and efficiently create a targeted nanoparticle with all of its expected properties intact.

Modular Generation of Bispecific Ligands

The ZHer2 and ZEGFR chimeras were each cleaved with three different peptides: one containing a

fluorophore and a DBCO, one containing a fluorophore and a DBCO separated from the peptide

by a flexible (PEG)4 linker, and the azide peptide described above. DBCO-conjugated affibod-

ies were then incubated with azide-conjugated affibodies to create a set of six dimeric affibodies

ZHer2-ZHer2, ZHer2-(PEG)4-ZHer2, ZHer2-ZEGFR, ZHer2-(PEG)4-ZEGFR, ZEGFR-ZEGFR, and ZEGFR-

(PEG)4-ZEGFR. Dimerization was confirmed by SDS-PAGE. Affibody titers were then incubated

with a Her2/neu-positive cell line, an EGFR-positive cell line, and a double-positive cell line. By

measuring the mean fluorescence intensity of each binding reaction, we were able to calculate ap-

parent dissociation constants for each of the affibody-cell line pairs and compare the effects of

homodimerization against heterodimerization and using a long spacer against a short spacer. The

calculated dissociation constants were then used to determine the concentration of heterodimers

that will most enhance selection for the double-positive cell line, 10 nM. That concentration of each

affibody was finally incubated with cells to obtain fluorescence images that supported our hypothesis

that the bispecific ligand would show enhanced specificity for the double-positive cell line.
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This was a simple illustration of what promises to be a much more powerful technology. Using

STEPL and click chemistry as a method for generating modular bispecifics expands the field from

specific IgG heavy-light chain interactions to any two ligands that can be expressed in bacterial cells.

The inherent flexibility in STEPL would allow for the mixing of different classes of targeting ligands

and easy assaying of different spacer moieties.

6.1.3 Directed Evolution of the STEPL System

The STEPL system has proven to be very useful, but it could always be better. One of STEPL’s

shortcomings was that there was always a reduction of protein yield due to calcium-induced cleavage

within the expression cell. To remedy this, we proposed evolving the sortase enzyme to either require

much higher calcium concentrations for activity or to require a different divalent metal ion entirely.

We then attempted bacterial and phage display screens that would enable directed evolution of the

sortase active domain in the STEPL context.

An E. coli display system was designed that used an autotransporter protein to facilitate trans-

port of super-folder GFP (sfGFP), the LPETG recognition motif, a flexible linker, and the sortase

active domain across the outer membrane and hold the chimera on the cell surface. This seemed to

be the most promising option because sortase is naturally on the surface of gram-positive bacteria

and the construct would be expressed in E. coli, where all the previous STEPL work had already

been done. However, the system had no detectable sortase activity even in saturating levels of

triglycine and calcium. Immunohistochemistry assays showed that sfGFP had indeed been exported

to the surface of the cell, so the system was altered by introducing a second flexible linker to in-

crease the distance between the cell surface and STEPL domains. This had no effect. Neither did

separating the STEPL domains from the surface by including a fully functional ECFP domain or

using a different autotransporter. Most likely, the sortase active domain did not re-fold correctly

after being denatured during transport to the cell surface.

A yeast display system was briefly considered. However, data showed that the sortase domain

was heavily glycosylated in the yeast endoplasmic reticulum. This could potentially have large and

unknown effects on the evolutionary process, so yeast display was not pursued.

A phage display system was designed that linked the STEPL domains to the phage surface by

the coat protein pIII. The STEPL “ligand” bound the structure to streptavidin either by directly
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including the streptavidin binding peptide (SBP) or the biotin acceptor peptide, which is biotiny-

lated in vivo. An active sortase domain would cleave off the ligand and release the phage from

a streptavidin-coated plate, an easy physical separation that is much less subjective than sorting

cells based on fluorescence. When assayed for activity, only the SBP-bearing phage bound to the

plate. The phage displaying the biotin acceptor peptide probably did not spend enough time in

the cytosolic compartment to be biotinylated, so that construct was discarded. The SBP-STEPL

phage, however, showed robust activity in the phage system. Due to high levels of calcium in the

milk-based blocking buffer, the only phage that did not cleave were those with the C180A mutation

that eliminates sortase activity. Phage were assayed in a number of other blocking buffers, but none

prevented non-specific binding as well as the 2% milk. Because all of the screening buffers would

have contained high calcium concentrations in order to weaken its binding affinity for sortase, the

biotin-free 2% milk was chosen as the blocking buffer. Thus, a phage display screening assay was

validated and it was chosen as the method of directed evolution for the STEPL system.

Now that a screen had been established, a library to screen could be designed. The β3/β4 and

β6/β7 loops constitute the calcium binding pocket in sortase, so mutations were focused on the

twenty residues that make up those two loops. The potential library size of randomizing all twenty

positions to all twenty amino acids was astronomically large, so an optimized library was designed.

In this library, the available amino acids for each position would mimic the hydrophobicity of the

wild-type residue. This design would ensure that the β3/β4 loop was still anchored to the core of

the protein by two hydrophobic residues. It would also provide an abundance of residues capable of

coordinating a metal ion. By restricting the codons of 18 of the 20 positions, the potential library

size was reduced by a factor of 106, yielding a library that is still too large to sample most of

the sequences but is enriched for sequences more likely to work. While cloning the library, it was

observed that the standard method of using degenerate oligonucleotides as PCR primers resulted in

biasing the library toward the wild-type sequence, especially for the GC bases. To avoid this effect,

libraries were instead produced as a system of overlapping oligonucleotides that were combined by

isothermal assembly. Thus, complimentary library regions were created by a polymerase without

any bias toward the wild-type bases.

With a screen and a library, evolution could begin. The first evolution experiment consisted

of five rounds of screening the phage and resulted in only five sequenceable plasmids, each unique.
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These were cloned into the EGFP-STEPL construct used to validate the system and assayed in the

same way. Unfortunately, all of the clones either cleaved under all conditions or did not cleave under

any conditions.

Many of the sequenced plasmids had undergone recombination to delete the sortase sequence

entirely, so the cloning methods were altered to add stability and the screen was run again. After

another five rounds of screening, 26 sequences were returned, again all unique. Ten clones were

chosen to be assayed. None were modulated by the addition of glycine or manganese, the ion chosen

as a calcium replacement during the 4 hour reaction. When left overnight, one of the clones did

cleave only in the presence of high calcium. However, this was independent of glycine. This was

subjected to random mutagenesis to create a second generation screen, which returned no sequences.

The next library was screened under much harsher conditions to try and obtain a consensus

sequence. After five rounds of screening, seventeen sequences were obtained, all unique yet again.

All of the clones were assayed. None could be modulated by high calcium or manganese.

At this point, the screening method was altered to reduce non-specific dissociation from the

streptavidin-coated plates. This screen included a 20-fold increase in manganese concentration in

hopes of obtaining even a weakly dependent clone. After five rounds of screening, nine identical

sequences were obtained. However, the sequence yielded inactive sortase under all conditions.

Finally, a library of only random mutations to the entire sortase sequence was screened. After

five rounds, one sequence was obtained. This also was inactive under all conditions.

A constant bias for a cysteine at position 109, which was allowed to sample all twenty amino

acids, indicated that the screens were indeed selecting for something. Unfortunately, they did

not select for conditional sortase activity as intended. One theory is that the screens selected for

calcium- or manganese-mediated streptavidin binding. Many affinity ligands are evolved using a

similar randomization of two loops, so this was a distinct possibility. However, the SBP domain

should have still held inactive phage to the plate, which was the most common phenotype assayed.

Another possibility is that the screens selected for a metal-modulated SBP-binding domain, which

would explain why they no longer bound the streptavidin in the positive screening buffers. It is also

possible that this bound conformation was stabilized by a disulfide bond, explaining the consensus

cysteine found in most of the sequences.
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6.2 Future Directions

6.2.1 Extending STEPL to Other Expression Systems

An obvious next step in the development of STEPL is to extend it to other prokaryotic and eukaryotic

expression systems. While the E. coli cytoplasm is a convenient and scalable place to express

proteins, it is severely limited in the types of proteins that can be expressed. scFvs for example,

have much more complex structures than affibodies and often contain multiple disulfide bonds, which

cannot form in the reducing environment of the cytoplasm. When overexpressed proteins are poorly

folded, they can precipitate in vivo, forming occlusion bodies that complicate harvesting proteins

[268]. There are a few strategies for avoiding these precipitates, but the problem is usually best

solved by changing expression systems entirely.

The simplest change is to express the STEPL chimera in the bacterial periplasm, which is an

oxidizing environment that has been reported to be a favorable compartment for scFv expression

[269]. This is accomplished by fusing the OmpA or PelB signaling peptide to the N-terminus of

the chimera, before the targeting ligand. The peptide facilitates transport across the inner mem-

brane before being proteolyzed, resulting in the original STEPL chimera. During phage display,

the STEPL-pIII protein was transported to the periplasm via the OmpA signal peptide. Phage

displaying the sortase enzyme showed activity, which is a good indication that periplasmically ex-

pressed STEPL chimeras will also remain functional. We have already begun working on expressing

scFv-STEPL chimeras in the periplasm. The STEPL chimera has been cloned into the pET20(+)

expression plasmid, which directs periplasmic expression via the PelB signal. Initial experiments

resulted in poor yield of scFv fusion proteins, so the project has been delegated to the experts at

the Wistar Institute’s Protein Expression Facility.

When expressing complicated proteins, however, the best options are eukaryotic. Yeast, insect,

and mammalian cells all have a secretory system capable of folding and secreting complex proteins

with a myriad of post-translational modifications [270]. Yeast are particularly well suited for protein

expression because they can be grown to high densities and secrete the protein for easy isolation and

continuous manufacturing [271]. Although they grow slowly compared to bacterial cells, they outpace

other eukaryotic systems by a considerable amount. Currently, a collaborator in the Muzykantov

group at Penn is working to optimize expression of an scFv-STEPL fusion in the P. pastoris yeast



Section 6.2: Future Directions 146

strain. By optimizing STEPL in eukaryotic expression systems, its utility would grow enormously

as it could then be capable of expressing and conjugating full-length antibodies and enzyme-derived

therapeutic proteins.

6.2.2 Improved Directed Evolution Strategies

While the directed evolution attempts described in Chapter 5 were unable to produce sortase enzymes

with reduced background cleavage, this will still be necessary to accelerate adoption of the technology

throughout the scientific community. To that end, there are a few potential options for improving

the directed evolution strategy, depending on what the problem with the current system actually is.

In Section 5.5.4 we altered the screening protocol in an attempt to solve one potential problem,

that SBP-streptavidin binding affinity may be too low, resulting in random release of inactive phage.

Another solution to that problem is to change the affinity ligand from SBP to one with a stronger

interaction with its target. We are already in the process of doing this, cloning a phagemid that

displays a hexahistidine tag rather than SBP. The tight binding of His6 with immobilized metal

resins is well documented [272, 273, 274, 275]. Even in this thesis, we have shown that a cobalt

resin is capable of retaining protein for a full 24 hours. Using a His-tag for immobilization may also

reduce the potential to evolve a binding pocket for the affinity ligand because it is much shorter

than SBP and lacks any sort of structure necessary for protein-protein interactions.

Another way to avoid evolving an affinity ligand binding pocket is to use larger ligands, such as

monobodies or nanobodies. Even if a modulated, tight binder were to emerge, it would have a much

lower chance of binding the ligand in a configuration that impairs binding to an immobilized target.

To further ensure this, several copies of the ligand could be strung together one after another. Not

only would that greatly increase the overall avidity to the plate, it would also leave extra ligands

that are capable of binding the plate even if one of them was sequestered by an evolved binding

loop, making it much more difficult for that phage to pass the screen.

Phage display itself may be too complicated of a system for the delicate evolution of an enzyme.

If that is the case, a delicate screening system such as ribosome display may be more appropriate.

Ribosome display is entirely in vitro, so it removes many possible complications, such as STEPL-

phage interactions, the oxidizing environment of the periplasm, and transport across the inner

membrane. It would also allow much larger libraries that could increase the possibility of recovering

clones with the desired phenotype.
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6.2.3 Triggered Cleavage with Dual-Sortase Constructs

Creating a manganese-triggered sortase would allow for more than just higher protein yields. It

would also enable STEPL proteins with two independently active sortase domains. By creating

a fusion protein that consists of a targeting ligand, Sa-SrtA∆59Mn, the sortase motif LPEGT, a

flexible linker, Sa-SrtA∆59, and a His6 tag, it would be possible to use the Ca-triggered Sa-SrtA∆59

to perform the standard STEPL conjugation and purification and later use the Mn-triggered Sa-

SrtA∆59 to cleave that label off of the protein. This would be especially useful in nuclear imaging.

The radiotoxicity of PET and SPECT agents forces them to either use nuclides with short half-lives,

agents that can be excreted quickly, or low doses of contrast agent [1, 276]. With the dual-STEPL

system, a nuclide could be conjugated to the targeting ligand, which is then injected and allowed

to equilibrate for contrast. After an image is obtained, Mn is injected to trigger the cleavage of

the nuclide from the targeting ligand, allowing the toxin to be quickly excreted. Because the time

that the targeting protein spends in the patient would be decoupled from the length of time that

the radiolabel would be present, higher activities of more stable nuclei could be used. For example,

the major nuclide used for PET, 18F, has a half-life of 110 minutes. This short half-life allows high

activities to be used for imaging, while limiting the radiation dose to the patient. It also requires an

on-site cyclotron to produce the contrast agents, which greatly increases the expense of PET imaging

and limits it to only a handful of clinics. With the dual-STEPL approach, it would be possible to

produce the contrast agents off-site and in bulk with a different positron-emitter like 125I, which has

a half-life of 60 days, because the patient dose could be mitigated by cleavage rather than a short

life-span.

6.3 Concluding Remarks

In this thesis, we have documented the design, optimization, and initial applications of a novel

protein system capable of condensing protein purification and conjugation into a single enzymatic

step. By modeling the underlying chemical principles of the STEPL system, we proved that it is one

of the most efficient bioconjugation systems, capable of producing yields of more than 95% purity

while at the same time reducing the amount of conjugate needed to achieve that purity. We then

showed examples of STEPL’s inherent flexibility and modularity by making a panel of affibody-
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peptide conjugates that were used as monomeric and dimeric fluorescence imaging agents as well

as targeting ligands for magnetic nanoparticles. As proteins continue to become a larger portion

of the pharmaceutical portfolio, technologies like STEPL will become foundational to the future of

medicine and biotechnology in general. This will be even more likely once STEPL has been adapted

for use in eukaryotes and evolved to increase protein yields. The incredible flexibility of the sortase

enzyme coupled with STEPL’s cost-, material-, and time-efficient single-protein design give STEPL

the potential for widespread use in academic and industrial settings.
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[61] Lempiäinen, A., Hotakainen, K., Blomqvist, C., Alfthan, H. & Stenman, U. H. k. Hyper-

glycosylated human chorionic gonadotropin in serum of testicular cancer patients. Clinical

Chemistry 58, 1123–1129 (2012).

[62] Menczer, J., Ben-Shem, E., Golan, A. & Levy, T. The Significance of Normal Pretreatment

Levels of CA125 (¡35 U/mL) in Epithelial Ovarian Carcinoma. Rambam Maimonides Medical

Journal 6, e0005 (2015).

[63] Ruibal, A. et al. CA15.3 Serum Concentrations in Older Women with Infiltrating Ductal Car-

cinomas of the Breast. International Journal of Molecular Sciences 15, 19870–19876 (2014).

[64] Kim, J. et al. Postoperative Carcinoembryonic Antigen as a Complementary Tumor Marker of

Carbohydrate Antigen 19-9 in Pancreatic Ductal Adenocarcinoma. Journal of Korean Medical

Science 30, 259–263 (2015).

[65] Jeong, Y. et al. Postoperative Radiotherapy for Gallbladder Cancer. Anticancer Research 34,

5621–5629 (2014).

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3621010&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3621010&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1016/S1470-2045(12)70271-1
http://dx.doi.org/10.1038/nrclinonc.2014.202
http://dx.doi.org/10.1038/nrclinonc.2014.202
http://www.discoverymedicine.com/Ann-M-Bailey/2014/02/07/implementation-of-biomarker-driven-cancer-therapy-existing-tools-and-remaining-gaps/
http://www.discoverymedicine.com/Ann-M-Bailey/2014/02/07/implementation-of-biomarker-driven-cancer-therapy-existing-tools-and-remaining-gaps/
http://rmmj.org.il.websitepanel.co.il/(S(sv1ptdx43ak3mvb410ac2rp2))/Pages/Article.aspx?manuId=457
http://rmmj.org.il.websitepanel.co.il/(S(sv1ptdx43ak3mvb410ac2rp2))/Pages/Article.aspx?manuId=457
http://www.mdpi.com/1422-0067/15/11/19870/
http://www.mdpi.com/1422-0067/15/11/19870/


REFERENCES 155

[66] Macuks, R., Baidekalna, I. & Donina, S. An ovarian cancer malignancy risk index composed of

HE4, CA125, ultrasonographic score, and menopausal status: Use in differentiation of ovarian

cancers and benign lesions. Tumor Biology 33, 1811–1817 (2012).

[67] Wang, Y.-h. et al. Chromogranin A as a Marker for Diagnosis, Treatment, and Survival in

Patients With Gastroenteropancreatic Neuroendocrine Neoplasm. Medicine 93, e247 (2014).

[68] Cherenfant, J. et al. Comparison of tumor markers for predicting outcomes after resection of

nonfunctioning pancreatic neuroendocrine tumors. Surgery 156, 1504–10; discussion 1510–1

(2014).

[69] Moore, R. G. et al. Serum levels of the ovarian cancer biomarker HE4 are decreased in

pregnancy and increase with age. American Journal of Obstetrics and Gynecology 206, 349.e1–

349.e7 (2012).

[70] Karagiannis, P., Fittall, M. & Karagiannis, S. N. Evaluating biomarkers in melanoma. Fron-

tiers in Oncology 4, 1–11 (2014).

[71] Toss, A. et al. Ovarian cancer: Can proteomics give new insights for therapy and diagnosis?

International Journal of Molecular Sciences 14, 8271–8290 (2013).

[72] Tsao, A. S. et al. Elevated PDGFRB gene copy number gain is prognostic for improved survival

outcomes in resected malignant pleural mesothelioma. Annals of Diagnostic Pathology 18,

140–145 (2014).

[73] Carpenter, K. L. H. et al. Systemic, Local, and Imaging Biomarkers of Brain Injury: More

Needed, and Better Use of Those Already Established? Frontiers in Neurology 6, 1–20 (2015).

[74] Rinaldi, S. et al. Thyroid-stimulating hormone, thyroglobulin, and thyroid hormones and risk

of differentiated thyroid carcinoma: The EPIC study. Journal of the National Cancer Institute

106 (2014).

[75] Duffy, M. J., McGowan, P. M., Harbeck, N., Thomssen, C. & Schmitt, M. uPA and PAI-1

as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast

Cancer Research 16, 428 (2014).

http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00005792-201412020-00048
http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00005792-201412020-00048
http://www.sciencedirect.com/science/article/pii/S0039606014005212
http://www.sciencedirect.com/science/article/pii/S0039606014005212
http://www.sciencedirect.com/science/article/pii/S0002937811024689
http://www.sciencedirect.com/science/article/pii/S0002937811024689
http://journal.frontiersin.org/article/10.3389/fonc.2014.00383/abstract
http://www.sciencedirect.com/science/article/pii/S1092913414000100
http://www.sciencedirect.com/science/article/pii/S1092913414000100
http://www.frontiersin.org/Neurotrauma/10.3389/fneur.2015.00026/abstract
http://www.frontiersin.org/Neurotrauma/10.3389/fneur.2015.00026/abstract
http://breast-cancer-research.com/content/16/4/428
http://breast-cancer-research.com/content/16/4/428


REFERENCES 156

[76] Agrawal, a., Gutteridge, E., Gee, J. M. W., Nicholson, R. I. & Robertson, J. F. R. Overview

of tyrosine kinase inhibitors in clinical breast cancer. Endocrine-related cancer 12 Suppl 1,

S135–44 (2005).

[77] Flynn, J. F., Wong, C. & Wu, J. M. Anti-EGFR Therapy: Mechanism and Advances in

Clinical Efficacy in Breast Cancer. Journal of oncology 2009, 526963 (2009).

[78] Milane, L., Duan, Z. & Amiji, M. Development of EGFR-targeted polymer blend nanocarriers

for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast

and ovarian tumor cells. Molecular pharmaceutics 8, 185–203 (2010).

[79] Medina, O. P. et al. Optimizing tumor targeting of the lipophilic EGFR-binding radiotracer

SKI 243 using a liposomal nanoparticle delivery system. Journal of controlled release : official

journal of the Controlled Release Society 149, 292–8 (2011).

[80] Lin, S.-X. et al. Molecular therapy of breast cancer: progress and future directions. Nature

Reviews Endocrinology 6, 485–493 (2010).

[81] Santin, A. D., Bellone, S., Roman, J. J., McKenney, J. K. & Pecorelli, S. Trastuzumab treat-

ment in patients with advanced or recurrent endometrial carcinoma overexpressing HER2/neu.

International journal of gynaecology and obstetrics: the official organ of the International Fed-

eration of Gynaecology and Obstetrics 102, 128–31 (2008).

[82] Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R. Tumour biology: herceptin acts

as an anti-angiogenic cocktail. Nature 416, 279–280 (2002).

[83] Conlin, A. K. et al. Phase II trial of weekly nanoparticle albumin-bound paclitaxel with carbo-

platin and trastuzumab as first-line therapy for women with HER2-overexpressing metastatic

breast cancer. Clinical breast cancer 10, 281–7 (2010).

[84] Ito, A. et al. Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of

antibody therapy with hyperthermia. Cancer letters 212, 167–75 (2004).

[85] Tan, M. & Yu, D. Molecular Mechanisms of ErbB2-Mediated Breast Cancer Chemoresistance.

Advances in Experimental Medicine and Biology 608, 119–129 (2007).

http://www.ncbi.nlm.nih.gov/pubmed/16113090
http://www.ncbi.nlm.nih.gov/pubmed/16113090
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2668926&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2668926&tool=pmcentrez&rendertype=abstract
http://pubs.acs.org/doi/abs/10.1021/mp1002653
http://pubs.acs.org/doi/abs/10.1021/mp1002653
http://pubs.acs.org/doi/abs/10.1021/mp1002653
http://www.ncbi.nlm.nih.gov/pubmed/21047536
http://www.ncbi.nlm.nih.gov/pubmed/21047536
http://www.ncbi.nlm.nih.gov/pubmed/18555254
http://www.ncbi.nlm.nih.gov/pubmed/18555254
http://www.nature.com/nature/journal/v416/n6878/abs/416279b.html
http://www.nature.com/nature/journal/v416/n6878/abs/416279b.html
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3883128&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3883128&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3883128&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/15279897
http://www.ncbi.nlm.nih.gov/pubmed/15279897
http://www.ncbi.nlm.nih.gov/books/NBK6194/


REFERENCES 157

[86] Weng, X. et al. Carbon nanotubes as a protein toxin transporter for selective HER2-positive

breast cancer cell destruction. Molecular bioSystems 5, 1224–31 (2009).

[87] Saul, J. M., Annapragada, A. V. & Bellamkonda, R. V. A dual-ligand approach for enhancing

targeting selectivity of therapeutic nanocarriers. Journal of controlled release : official journal

of the Controlled Release Society 114, 277–87 (2006).

[88] May, C., Sapra, P. & Gerber, H.-P. Advances in bispecific biotherapeutics for the treatment

of cancer. Biochemical pharmacology 84, 1105–12 (2012).

[89] Yan, Y. et al. A new 18F-labeled BBN-RGD peptide heterodimer with a symmetric linker for

prostate cancer imaging. Amino Acids 41, 439–447 (2011).

[90] Nie, Y. et al. Dual-targeted polyplexes: one step towards a synthetic virus for cancer gene

therapy. Journal of controlled release : official journal of the Controlled Release Society 152,

127–34 (2011).

[91] Lu, D. et al. A fully human recombinant IgG-like bispecific antibody to both the epidermal

growth factor receptor and the insulin-like growth factor receptor for enhanced antitumor

activity. The Journal of biological chemistry 280, 19665–72 (2005).

[92] Meng, S. et al. Enhanced antitumor effect of novel dual-targeted paclitaxel liposomes. Nan-

otechnology 21, 415103 (2010).

[93] Willmann, J., Lutz, A. & Paulmurugan, R. Dual-targeted Contrast Agent for US Assessment

of Tumor Angiogenesis in Vivo. Radiology 248 (2008).

[94] Yazaki, P. J. et al. A series of anti-CEA/anti-DOTA bispecific antibody formats evaluated for

pre-targeting: comparison of tumor uptake and blood clearance. Protein engineering, design

& selection : PEDS 26, 187–93 (2013).

[95] Watts, R. J. & Dennis, M. S. Bispecific antibodies for delivery into the brain. Current opinion

in chemical biology 17, 393–9 (2013).

[96] Yu, Y. J. et al. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a

transcytosis target. Science translational medicine 3, 84ra44 (2011).

http://www.ncbi.nlm.nih.gov/pubmed/19756312
http://www.ncbi.nlm.nih.gov/pubmed/19756312
http://www.ncbi.nlm.nih.gov/pubmed/16904220
http://www.ncbi.nlm.nih.gov/pubmed/16904220
http://www.ncbi.nlm.nih.gov/pubmed/22858161
http://www.ncbi.nlm.nih.gov/pubmed/22858161
http://www.ncbi.nlm.nih.gov/pubmed/21392549
http://www.ncbi.nlm.nih.gov/pubmed/21392549
http://www.ncbi.nlm.nih.gov/pubmed/15757893
http://www.ncbi.nlm.nih.gov/pubmed/15757893
http://www.ncbi.nlm.nih.gov/pubmed/15757893
http://www.ncbi.nlm.nih.gov/pubmed/20852356
http://radiology.rsna.org/content/248/3/936.short
http://radiology.rsna.org/content/248/3/936.short
http://www.ncbi.nlm.nih.gov/pubmed/23175797
http://www.ncbi.nlm.nih.gov/pubmed/23175797
http://www.ncbi.nlm.nih.gov/pubmed/23570979
http://www.ncbi.nlm.nih.gov/pubmed/21613623
http://www.ncbi.nlm.nih.gov/pubmed/21613623


REFERENCES 158

[97] Sanford, M. Blinatumomab: First Global Approval. Drugs 321–327 (2015).

[98] Bollard, C. Blinatumomab Knocks Out Residual Disease. Cancer Discovery 5, 103–103 (2015).

[99] Zhao, H., Cui, K., Muschenborn, A. & Wong, S. T. Progress of engineered antibody-targeted

molecular imaging for solid tumors. Molecular Medicine Reports 1, 131–134 (2008).

[100] Petering, J., McManamny, P. & Honeyman, J. Antibody therapeutics - the evolving patent

landscape. New biotechnology 28, 538–44 (2011).

[101] Milstein, C. The hybridoma revolution: an offshoot of basic research. BioEssays 21, 966–973

(1999).

[102] Carson, K. R. et al. Monoclonal antibody-associated progressive multifocal leucoencephalopa-

thy in patients treated with rituximab, natalizumab, and efalizumab: a Review from the

Research on Adverse Drug Events and Reports (RADAR) Project. The Lancet. Oncology 10,

816–24 (2009).

[103] Kashmiri, S. V. S., De Pascalis, R., Gonzales, N. R. & Schlom, J. SDR grafting–a new approach

to antibody humanization. Methods (San Diego, Calif.) 36, 25–34 (2005).

[104] Hawe, A., Hulse, W. L., Jiskoot, W. & Forbes, R. T. Taylor dispersion analysis compared to

dynamic light scattering for the size analysis of therapeutic peptides and proteins and their

aggregates. Pharmaceutical Research 28, 2302–2310 (2011).

[105] Lobo, E. D., Hansen, R. J. & Balthasar, J. P. Antibody pharmacokinetics and pharmacody-

namics. Journal of pharmaceutical sciences 93, 2645–68 (2004).

[106] Siontorou, C. G. Nanobodies as novel agents for disease diagnosis and therapy. International

journal of nanomedicine 8, 4215–4227 (2013).

[107] Eigenbrot, C., Ultsch, M., Dubnovitsky, A., Abrahmsén, L. & Härd, T. Structural basis for
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