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We provide a very simple prescription for inserting an arbitrary state into a string

amplitude. The corresponding string measure is defined without any additional informa-

tion whenever the state is BRST-invariant, generalizing the usual physical conditions. In

particular no world-sheet metric is needed. We recover and interpret in a simple way the

“b̂” prescription of Polchinski and explain geometrically how it secures the decoupling of

BRST spurious states.
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Vertex operators were originally understood as operators depending on formal Koba-

Nielsen variables, useful in computing tree-level S-matrix elements in dual theory. The

external lines had to be on-shell in order for the amplitudes so computed to be dual. As

string theory developed, the formal variables took on meaning as positions on a surface,

which could have any topology. In the Polyakov representation of string amplitudes vertex

operators became functions of the world-sheet fields, metrics, and their derivatives; the

on-shell restriction then became the requirement that the conformal factor of the metric

drop out of amplitudes (see e.g. refs. [1]–[5]). Each of these papers found appropriate

vertex operators for the emission of physical states, which among other things are on-shell

and transversely polarized.

Today vertex operators appear in more general contexts. For example a string back-

ground obeying the tree-level equations of motion can lead to tadpole infinities, forcing us

to modify the background to one off-shell from the point of view of the tree-level equations

[6]. Thus we sometimes need to insert slightly off-shell states. Moreover the factorization

of string amplitudes involves the insertions, on each side of the pinch, of vertex operators

at zero momentum, which for most states is far off-shell. Finally, even on-shell one would

like to be able to insert arbitrary longitudinal states in order to obtain gauge-covariant ef-

fective field equations for the backgrounds. Moreover, there are even some gauge-invariant,

BRST-invariant states which do not meet the usual physical conditions, for example the

dilaton state discussed in [7]; we need a prescription for coupling these, too.

The problem of general insertions has been studied in the BRST formalism by Polchin-

ski in ref. [7]. (For earlier approaches see also [8][9].) In this letter we will simplify and

generalize his prescription. Specifically we will explain geometrically his modification to

the ghost insertion needed to convert the inserted state from the fixed to the integrated

picture. The derivation makes no use of a world-sheet metric and so preserves the holo-

morphic structure of conformal field theory. The virtue of this minimalist viewpoint is that

we will see quite clearly the sense in which the modified ghost insertion “covariantizes” the

resulting string measure prescription.

We will for illustration consider mainly the closed bosonic string and the problem

of inserting BRST invariant states. The motivation for the study, however, comes from

the fermionic string, where the holomorphic structure plays a more central role. Using

these methods one can show that the Fischler-Susskind mechanism suffices to remove

the “ambiguity” of string perturbation theory [10]–[12], regardless of whether supermoduli

space is canonically split. Details will appear elsewhere [13]. As in the bosonic case [7], the
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key is to find uniquely defined corrections to the background fields which cancel boundary

obstructions to BRST decoupling. For now we will simply assume that such boundary

terms have been dealt with. For example, we will not discuss the anomaly seen in [9].

We begin by recalling some ideas and notation from refs. [14]–[16]. Let M0 be the

moduli space of surfaces of some genus g. Since we want to insert a state |ψ〉 into the

amplitude associated to a surface Σ, we also let M be the moduli space of Riemann

surfaces of genus g with one marked point P ∈ Σ. (It is easy to extend the treatment to

handle several insertions.) Following [15] we will also let P denote the space of Riemann

surfaces with marked point and a local complex coordinate centered at the point: (Σ, P, z)

where z(P ) = 0. Thus P is a bundle over M. A section σ : M → P of this bundle is just

a choice of local coordinate z for every (Σ, P ). We will also refer to σ as a family of local

coordinates.

To every Σ̃ ≡ (Σ, P, z) in P we can associate a state |Σ̃〉 in the Fock space of first-

quantized string theory [17][14][16]. This state satisfies among other things a conserved

charge condition and variational condition. The former says that

b(v)|Σ̃〉 = 0 (1)

where b(v) ≡
∮
bzzv

zdz, b is the antighost field associated to the Virasoro algebra, and

v is any vector field on the circle {z = 1} which extends analytically to all of Σ̃, except

possibly P . (We will call such v “Borel vectors”.) The latter condition says that

δv|Σ̃〉 = T (v)|Σ̃〉 (2)

for any Virasoro generator v. Here δv is a derivative on P in the direction given by v and

T is the stress tensor. See ref. [16] for the notation.

From |Σ̃〉 one can readily construct a differential (6g − 6)-form µ̃ on P [16]. Simply

let

µ̃(V1, · · ·V3g−3, V̄1, · · · , V̄3g−3) = 〈0|b(v1) · · · b̄(v̄3g−3)|Σ̃〉.

Here Vi are tangents to P at Σ̃ and vi are corresponding elements of Virasoro. 〈0| is the

SL(2,C) - invariant vacuum. The vi are in fact ambiguous by the addition of Borel vectors,

but the condition (1) says that such changes do not matter. In the sequel we will suppress

the antiholomorphic objects V̄i, b̄(v̄i), etc. from the notation.
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Similarly if we are given a state ψ with ghost number appropriate for a vertex operator

we can get a (6g − 4)-form on P by defining

µ̃ψ(V1, · · · , V3g−2) = 〈ψ|b(v1) · · · b(v3g−2)|Σ̃〉, (3)

which again is well-defined by (1).

Unfortunately we don’t want forms on P. For the Polyakov measure we want a form

µ on M0; for the insertion we want a form on M, since we expect to integrate over all

positions of the insertion. In fact in the former case one shows that µ̃ = π∗
0µ where

π0 : P → M0 and µ is a top differential form on M0 [16]. A similar result obtains for the

insertion:

µ̃ψ = π∗µψ, (4)

where π : P → M and µψ is a top form on M, but only if ψ obeys some physical state

conditions [16]. These say that

Lnψ = 0, bnψ = 0, n ≥ 0; (5)

they are the analogs in the BRST formalism of the conditions found in [1]–[5] and else-

where. The first condition says that µ̃ is unchanged if we change (Σ, P, z) to (Σ, P, z′);

the second says that µ̃ annihilates vertical tangent vectors, the v ∈ Vir+, which change

z infinitesimally while leaving (Σ, P ) unchanged. When these are satisfied one can define

µψ at (Σ, P ) by choosing any z and evaluating µ̃ψ; this is what the notation µ̃ψ = π∗µψ

means.

The problem is that (5) excludes some interesting states. For example, the dilaton

state |D〉 = (c1c−1 − c̄1c̄−1)|k〉, where k2 = 0, is a perfectly good, BRST-invariant state

which is not annihilated by b1. One would also like to insert the longitudinal graviton state

n(µkν)a
µ
−1ā

ν
−1c1c̄1|k〉. To avoid complications with the dilaton take k ·n = 0; then this state

describes a coordinate transformation of the spacetime metric Gµν → Gµν+∂(µnν)e
ikx for

any k whatsoever. For k2 6= 0, however, this state fails to satisfy (5). Callan and Gan found

that a related vertex could be inserted, once a suitable auxiliary field was introduced [8].

In BRST form this is [7]

|L〉 =
[
c1c̄1k(µnν)a

µ
−1ā

ν
−1 +

1
4 (c0 + c̄0)k

2nµ(c1a
µ
−1 − c̄1ā

µ
−1)

]
|k〉 . (6)

This state still fails (5), but like |D〉 it is BRST-invariant. In fact it is BRST-exact.
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To deal with these cases momentarily suppose that a global family of local coordinates,

σ : M → P, exists and has been chosen. Then we can let

µψ,σ ≡ σ∗µ̃ψ, (7)

the pullback of µ̃ by σ. This certainly defines a form on M, and if ψ satisfies the physical

state conditions we get precisely that µψ,σ ≡ µψ, independent of σ. This follows from (4)

since π ◦ σ is the identity for any section σ. More generally, though, µψ,σ depends on the

family of local coordinates chosen.

For insertions implementing the Fischler-Susskind mechanism this unwanted depen-

dence on σ cancels certain boundary terms. For the above states no such cancellation

occurs. But consider not the density µ but the full amplitude:

〈〈Vψ〉〉 ≡
∫

M

µψ,σ =

∫

σ(M)

µ̃ψ. (8)

If µ̃ψ is a closed differential form on P then this quantity will not change as we deform

σ. Moreover if µ̃ψ is exact then 〈〈Vψ〉〉 = 0 and ψ decouples. A simple adaptation of an

argument in [16] shows, however, that µ̃ψ is closed (exact) precisely when the state ψ is

itself closed (exact) under the BRST generator Q. Thus we can use (7)–(8) to insert the

states |D〉, |L〉 and other BRST cohomology classes, provided that a global slice σ can

be found, and any other σ′ is homotopy equivalent to σ. In particular (6) decouples as

desired.

In fact no such choice of σ exists for g 6= 1. We can nevertheless proceed using the

observation [7] that if z′ = eiαz for some real phase α independent of z, then µ̃ψ changes

by the action of L0 − L̄0; thus for ψ annihilated by L0 − L̄0 we can find a slice which is

“global enough” to define 〈〈Vψ〉〉. Also any two such slices are homotopic modulo constant

phases.

Thus we have a global prescription for inserting any state invariant under Q and

b0 − b̄0. Note that no covariant derivative on the bundle P → M has entered; indeed no

natural choice of such a connection appears to exist. The prescription is automatically

covariant in the sense that σ∗µ̃ is closed (exact) whenever µ̃ is, a basic property of the

pullback [18], and this is what ensures BRST decoupling. (Recall that in this letter we are

not concerned with subtleties at the boundary of M.)

We now need to show that the above simple prescription reproduces that of Polchinski

when a certain special choice of coordinate family σ has been chosen. We will see that his
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modification of the ghost insertions for the moduli (changing b to b̂) are nothing but the

Jacobian factors needed to make µ̃ transform as a differential form under pullback by σ∗.

Let {Vi} be tangents to M at (Σ, P ), and let σ take (Σ, P ) to (Σ, P, z(Σ,P )). Then we

want to compute

(σ∗µ̃)(V1, · · ·)|(Σ,P ) = µ̃(σ∗V1, · · ·)|(Σ,P,z).

We will for illustration let V + V̄ be the tangent which moves P leaving Σ fixed. So we

will drop Σ from the notation, writing zP for z(Σ,P ). Let us expand zP ′(·) for P ′ near P

as

zP ′(·) = zP (·)− zP (P
′) + zp(P

′)
∞∑

n=1

βn(P )zP (·)n+1

+ zP (P
′)

∞∑

n=1

γn(P )zP (·)n+1 +O
(
zP (P

′)2
)
.

(9)

Here zP (·) is a different function on Σ for each P , while zP (P
′) is a small number. zP ′(·)

must have this form, as it is for fixed P ′ an analytic coordinate centered at P ′ and reducing

to zP (·) when P ′ = P .

Since V just moves P , its image under σ∗ consists of a piece corresponding to L−1,

plus a piece describing how the slice varies as P ′ changes in (9). That is, σ∗V = δv, where

v = ℓ−1 −
∑∞

n=1 β̄nℓ̄n −
∑∞

n=1 γnℓn and ℓn are abstract generators of Virasoro.

One way to get a family σ of local coordinates zP is to introduce a metric on Σ

and require that for each P , zP makes the chosen metric “as flat as possible” at P [7].

With this choice one has γn ≡ 0 and βn(P ) = − 1
4

1
(n+1)! ▽n−1

zP
R(P ), where R is the Ricci

scalar. Thus our prescription applied with this family instructs us to evaluate µ̃ with

v = ℓ−1 +
1
8Rℓ̄1 + · · ·, or in other words to replace b−1Vψ in the path integral by b̂−1Vψ

where b̂−1 = b−1 +
1
8Rb1 + · · ·. The resulting function is to be multiplied by the 2-form

dual to V ∧ V̄ , but this is just
√
gabdσ

1 ∧ dσ2, where gab is the given metric expressed in

terms of any convenient fixed coordinates σa. Thus we recover Polchinski’s prescription

as a special case. In particular 〈〈Vψ〉〉 is Weyl invariant as a special case of its general slice

independence shown above.

The other moduli insertions work similarly. In each case we can, if we please, decom-

pose σ∗Vi into a bit in Vir<0, corresponding to a naive insertion of b(z) integrated with a

Beltrami differential, plus a bit in Vir≥0, corresponding to the new terms in [7]. The point

is that such a decomposition is not necessary. Also the slice-independence of 〈〈Vψ〉〉 and

BRST decoupling are quite general and not limited to the family in [7].
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The family chosen in [7] is not holomorphic, as can be seen by the fact that βn 6= 0.

If we like, we can instead consider slices varying holomorphically with (Σ, P ), a procedure

useful when dealing with chiral theories At once, however, we confront the fact that global

holomorphic families cannot in general be found, even modulo U(1). Instead, we need to

cover M with patches Uα with a different σα on each. To get well-defined answers we must

find compensating contributions Wαβ to 〈〈Vψ〉〉 on patch boundaries, as suggested in [5].

(Such compensators are reminiscent of the “Wu-Yang” terms appearing in [19].) We will

see that they are easy to work out in the present approach.

Suppose we wish to couple the dilaton state |D〉 at zero momentum to a sphere,

Σ = S2. Naively the answer is zero: c1c−1 can absorb two b operators but not bb̄, and so

µ̃D is a (2,0)-form on P (minus its conjugate). Since only (1, 1)-forms can be integrated

over Σ, |D〉 seems to decouple. If σ is not a holomorphic section, however, σ∗µ̃D can have

a (1,1)-form bit which gives a non-zero answer when integrated over Σ. The idea is now

to construct a σ which is holomorphic everywhere except in a very narrow strip about the

equator E of S2. Then 〈〈VD〉〉 will get contributions only near E; we will see that it is just

proportional to the Euler number of Σ, as befits a dilaton.

Let z be the usual coordinate on S2 away from the north pole, and w = z−1 a

coordinate away from the south pole. Near a point Q let zQ(·) = z(·)− z(Q) be a centered

coordinate; obviously zQ depends holomorphically on Q. Similarly one has wQ(·) = w(·)−
w(Q), related by

wQ(·) = −z(Q)−2zQ(·) + z(Q)−3zQ(·)2 + · · · . (10)

Near E we have z = ea where a = y + iθ and y ∼ 0. We would like a single coordinate

family uQ(·) equal to zQ(·) south of E, to wQ(·) north of E, and interpolating smoothly

in a narrow strip 0 < y < ǫ, at least up to U(1). A suitable choice is

uQ(·) = zQ(·)− ǫ−1yz(Q)−1zQ(·)2 , 0 < y < ǫ.

We have multiplied (10) by the phase −e−2iθ and retained only leading terms in ǫ−1.

Differentiating uQ(·) we find that β1 = −ǫ−1 +O(1). Thus

〈〈VD〉〉 ∝
∫

S2

|dz|2
[
〈0|c1c0c−1c̄1c̄0c̄−1 · b−1 · β1b1 · c1c−1|0〉+O(1)

]

∝
∫ 2π

0

∫ ǫ

0

2dydθ

(
−1

ǫ

)
= −2.
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The extra insertions of c take care of the conformal Killing vectors on S2. β is the coefficient

defined in (9). More generally we find that |D〉 couples to the Euler number of any Riemann

surface as required.

The point of this exercise was to demonstrate how one can use only holomorphic

coordinate families and still get global, covariant insertions of general vertex operators.

This was accomplished through the agency of correction terms first envisioned in [5]. For

the dilaton case this term was the whole story; it was a topological invariant by itself. More

generally it combines with integrals over the patches; the combination is then independent

of the chosen family of slices as shown earlier.
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