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Abstract— Traditional legged runners and climbers have
relied heavily on gait generators in the form of internal clocks
or reference trajectories. In contrast, here we present physical
experiments with a fast, dynamical, vertical wall climbing robot
accompanying a stability proof for the controller that generates
it without any need for an additional internal clock or reference
signal. Specifically, we show that this “self-exciting” controller
does indeed generate an “almost” globally asymptotically stable
limit cycle: the attractor basin is as large as topologically
possible and includes all the state space excluding a set
with empty interior. We offer an empirical comparison of
the resulting climbing behavior to that achieved by a more
conventional clock-generated gait trajectory tracker. The new,
self-exciting gait generator exhibits a marked improvement in
vertical climbing speed, in fact setting a new benchmark in
dynamic climbing by achieving a vertical speed of 1.5 body
lengths per second.

I. INTRODUCTION

Two interconnected problems arise in the design and
control of legged climbing robots: attachment and force
production [1]. Attaching to the wall requires a mechanism
which allows the robot both to cling to a vertical surface
(while producing forces tangent to that surface) and then
to release its grip rapidly and smoothly in order to re-
circulate for the next touchdown. Substantial progress has
been made toward developing attachment mechanisms for a
range of substrates. Specialized approaches using magnets
or a vacuum [2], [3], [4], have recently given way to more
general purpose mechanisms such as microspines [5], [6],
dry adhesives [7], [8], dactyls [6], and bracing/friction [9]
to provide robust, reliable attachment to an ever growing
diversity of vertical surfaces when driven appropriately by
a well tuned, algorithmically controlled set of actuators
[10]. The second challenge, given a functional attachment
mechanism, is to achieve a force pattern which results in
desirable climbing behavior. Here again, growing empirical
evidence indicates that the generation of robust and efficient
force patterns requires both passive mechanical and active
algorithmic design. Just as legged walking and running
machines require a combination of tuned passive mechanisms
and algorithmically controlled actuators to locomote quickly
and efficiently [11], [12], the first legged machines to achieve
mobility on unstructured outdoor walls and trees rely on
a combination of passive mechanical and actively powered
sources of force patterns [1]. This paper addresses the second
aspect of the second problem: the development of algorithms
for actively powering force patterns in dynamical climbing.

The past few years have seen the development of a small
number of climbing robots that rely on their body dynamics
to generate the motions and forces necessary for climbing.
These robots have utilized their body dynamics to climb
more efficiently [13] and to augment friction-only based
contacts to generate upward forces [9]. Our dynamic climber,
DynoClimber, depicted in Fig. 1, was inspired by biological
studies which document remarkable similarities in the force
patterns generated by rapidly climbing animals of different
species [6], [14]. These findings suggest that animals employ
large lateral in-pulling forces and body rotations to achieve
fast, self-stabilizing gaits [14], [15]. DynoClimber was de-
signed to isolate the dynamics of climbing force production
from the attachment problem. As such, it was built to ascend
a prepared (carpeted) vertical surface using curved aluminum
claws which grip the substrate during leg retraction, but can
freely slide during leg recirculation. By yawing as it pulls it-
self upwards, DynoClimber reproduces the force and motion
profiles shown in animals and demonstrates self-stabilizing
upward motions. The combination of an appropriate body
morphology, series passive compliance introduced to mediate
attachment impacts, and parallel passive compliance intro-
duced to smooth the power draw on the actuators was shown
to generate favorable body dynamics, allowing climbing at
documented speeds approaching 1 bodylength per second (30
cm/s) [15].

Though impressive, the performance of this climber had
not yet reached the levels predicted by scaled versions of
the animal-based dynamical “template” [14]. One cause of
this previously documented performance gap is that the robot
exceeded its design weight. In the present revised design we
have tuned the drive mechanism and passive spring constants,
as well as increased actuator power, to address this. More
fundamentally, under scrutiny it became clear that there were
inefficiencies in the patterns of actuator recruitment and coor-
dination developed by the machine’s control algorithm. Here,
we replace the work-directed self-exciting hybrid controller
presented in [15] with one that is based on similar principles,
but implemented in a more rational manner as a smooth
vector field. Our new smooth controller permits an analytical
proof of stability, and it improves performance by reducing
former inefficiencies. Indeed, DynoClimber has proven to
be an ideal platform for developing and testing alternative
legged control paradigms: whereas the resultant climbing
behavior is strongly dependent on the dynamical interactions
between the electromotive and mechanical subsystems, its



Fig. 1. Picture of the robot with annotations.

state space is sufficiently low dimensional to promote ana-
lytical tractability.

This paper is organized as follows. A comparison of
various alternative algorithms used in the active control of
legged locomotion is summarized in Section II. Section III
introduces the central focus of this paper, the work-directed
controller, and presents a proof of the stability of this new
family of active legged climbing force production algorithms.
Section IV offers our first, preliminary experimental results
comparing a more traditional clock-based reference position
generating controller to the new paradigm implemented on
the DynoClimber platform. Section V summarizes the results
and discusses future work.

II. CONTROLLERS FOR ACTIVE PRODUCTION OF
CLIMBING FORCES

In this paper, we examine two extremes of the
feedforward-feedback spectrum in gait generation. The new
class of controllers constructed here explores the feedback
end of the spectrum [16], [17]; in our instantiation, the robot
computes a pair of actuator terminal voltages solely as a
function of the instantaneous limb positions (as measured
by the instantaneous motor shaft angles) with neither the
intermediating construction of a reference trajectory nor
with any recourse to an internal clock. In this sense, our
construction bears closest resemblance to the work-directed
algorithms of Raibert’s hoppers [18] or Buehler’s Scout [19]
that scheduled actuator energy expenditures as a function of
limb state, using no additional clock state. Feedback-based
excitation (“self-excitation”) has also been explored outside
the realm of legged robots in the context of dynamically

dexterous manipulation [20], [21], [22]; this work is charac-
terized, as are [18] and [19], by a scheduled and intermittent
application of force. The central difference between these
earlier work-directed locomotion schemes and ours is that
our use of discrete event-triggered hybrid control is limited
to the introduction of a smooth, piecewise analytic function
applied to a very general actuator model rather than a more
extensive (and generally non-smooth) “case-based” logic
applied to a specific body model.

Many of the most successful dynamic legged robots have
occupied the other end of the spectrum, in which the gait
is primarily excited by a feedforward Central-Pattern Gen-
erator (CPG). At the heart of these gait generation schemes
lies a periodic signal generator, whether a CPU-originated
reference phase trajectory [23] or a combination of neural
oscillators [24]. This signal, the clock, is “shaped” to produce
a position- (and, often, velocity- and acceleration-) based
a reference signal for the limbs which, in consequence of
their actuators’s efforts to track the reference signal, transmit
the appropriate ground reaction forces to the mass center as
they interact with the substrate during the stance phase of
a stride. Mechanical limb compliance modulates the feed-
forward based energy input to produce self-stabilizing be-
havior. Running robots such as Tekken[25], RHex [12], and
Sprawlita [26] have all utilized variants of this approach to
run effectively, and feedforward approaches scale readily to
systems of higher dimensions. CPGs also facilitate the incor-
poration of both gait transitions and feedback into a robot’s
behavioral repertoire. However, it has proven challenging and
time-consuming to tune up highly optimized peformance in
these systems because: (i) the use of position tracking errors
to call up actuator torques represents an indirect approach to
recruiting the active power available within a robot’s energy
reservoir; (ii) the appropriate timing and magnitude of the
errors that achieve this indirect recruitment require significant
empirical tuning [27] because the analytical basis for their
stability remains imperfectly understood [28], [29], [30]; and
(iii) small variations in the clock-generated reference signal
have large and somewhat unintuitive effects on the resulting
behavior [28], [31], [32].

Our controller is further differentiated from those dis-
cussed above by its flexibility in specifying a desired work
outcome. Specifically, we attempt to encode the control task
“apply the maximum possible mechanical power while main-
taining synchronization”. This “work-directed target” can not
be achieved explicitly with the above schemes. Buehler’s
Scout, for instance, relies on a feedforward torque controller
when a leg is in ground contact, partially accomplishing
the explicit work goal, but then relies on a PD controller
to track a reference position signal designed to encode the
coordination task during the robot’s flight phase [19]. The
recourse to reference signal tracking mitigates against a ma-
chine’s achieving maximal power output. In our experience,
with extensive tuning, errors generating near-optimal power
output can be engineered throughout the gait. However, the
dependence of actuator power output upon tracking error
precludes the direct specification of a work-target, as tracking



error can not be neatly forced to the desired level.

A. DynoClimber’s Control Space

Dynoclimber’s electromechanical state space is quite sim-
ple as it possesses only two actuators - one motor per leg.
The extension of the leg is slaved to the rotation of the motor
via the kinematics of a crank-slider four-bar mechanism [15].
The kinematic configuration space of its actuators, then, is
S1 × S1, the 2-torus, T2. Of course, its motors have inertia
and its limbs have mass, so the full configuration space is
the tangent bundle TT2 ≈ (S1×R1)× (S1×R1). The robot
itself has many more degrees of freedom (body rotations
and passive deformation of elastic elements among them),
but the electromechanical state space just described is most
immediately affected by the control policy while reflect-
ing back enough of the “load” (body-substrate) mechanics
to present a useful abstraction of the machine’s climbing
state. In contrast, a careful analysis of the complete, hybrid
switched, high degree of freedom, compound pendulum that
couples this electromechanical abstraction to the physical
environment goes well beyond the scope of our present
understanding. The output of the controller is specified as
a pair of voltages applied to the two motor terminals of the
robot at each time step. The position of each limb is sensed
by a high-resolution optical encoder attached to each joint,
and the velocity of each limb is computed by smoothing the
computed changes in limb positions.

B. Baseline Controller

To provide a basis of comparison for our exclusively
feedback-driven controller, we construct a benchmark feed-
forward controller. This controller is adapted from [14], in
which the legs of the robot in simulation are kept exactly 180
degrees out of phase. Specifically, we command a constant
frequency trajectory in motor shaft space (T2):

r(t) =
[

mod(2πft+ π, 2π)− π
mod(2πft, 2π)− π

]
(1)

This trajectory moves both reference legs at a constant
velocity through motor-shaft space such that the shafts rotate
with frequency f , while keeping both leg targets 180 degrees
out of phase. The reference trajectory specified here is
geometrically identical, for some f , to the emergent limit
cycle generated by our self-exciting controller, making this
reference trajectory the exact feedforward analog of our
feedback controller.

In order to track the reference trajectory, the following
control inputs are used, where Θ(t) is a 2 × 1 vector
containing the motor shaft angles at time t:[

V1(t)
V2(t)

]
= kp(r(t)−Θ(t)) + kd(ṙ(t)− Θ̇(t)) (2)

The gains kp and kd are empirically chosen to yield desirable
behavior and tracking of the reference trajectory, while Vi(t)
is the voltage applied across the ith motor terminal. The
tracking controller presented here does not claim to provide
asymptotically exact tracking. In order to do so, it would

require an accurate model of the system parameters. Given
the difficulty of establishing an accurate system model in the
context of a legged robot, we implement and empirically tune
this PD controller. Indeed, the application of a carefully tuned
PD controller is a routine practice, applied to the tracking
of a periodic reference trajectory on both the RHex[11] and
RiSE[6] platforms.

C. Self-Exciting Controllers

The first controller used on DynoClimber was a “mirror
law” [15]. Inspired by an earlier generation of juggling robots
[33], [22], the controller generated periodic motion of the
legs without using an internal clock. Moreover, this algorithm
guaranteed that the robot’s stance leg would be commanded
to apply the maximum possible voltage. However, the hy-
brid controller was specified by a non-smooth function that
switched based upon the stance and swing states of the limbs,
which sometimes resulted in jerky, halting motions during
certain hybrid state transitions when climbing.

We now “replace” the hybrid mirror-style excitation with
a smooth family of controllers which is similarly self-
excited, yet incorporates a number of relative advantages.
Our new controller admits an analytical proof of stability
with a very general system model and, unlike its mirror-
style predecessor, does not require any gain tuning to
insure tracking. Because the mirror-law employed a PD
tracking controller to generate motor voltages during leg
recirculation, an inadequately tuned controller would result
in a recirculation which is either too slow or too abrupt,
affecting the phase difference between the legs as well as
the overall velocity of the system. In contrast, the work-
directed scheme only requires tuning to alter the transient
behavior of the system, without affecting the eventual limit
cycle, as demonstrated by our proof of stability. Moreover,
we note that simply pulling “as hard as possible” in stance –
as the former controller did – does not guarantee maximum
phase velocity, as a recirculating leg can (and often did) “lag”
the opposing stance leg. To increase overall phase velocity
and therefore climbing speed, our new framework does not
prioritize stance over recirculation and instead attempts to
enforce an antiphase relationship between the legs, limiting
power to the leading leg, as necessary. A user must specify
only a base voltage; from this base voltage, the controller
will generate a limit cycle with some constant velocity (the
actual velocity depends on physical parameters of the motors
and mechanisms). We hypothesized, in consequence, that a
user could achieve higher performance dynamical climbing
(higher velocities) with reduced time spent tuning.

III. THE WORK-DIRECTED, SELF-EXCITING
CONTROLLER

A. Control Objective

There are three principles at work in our new controller
for DynoClimber. First, we aim to maintain antiphase orbits
of the robot’s legs. This is not strictly necessary, as we really
only need the assurance that at least one leg will maintain
ground contact at all times (the leg in “flight” can vary



speeds with impunity). However, an antiphase relationship
should, given our passive mechanical energy storage (each
leg stretches a spring to store energy during recirculation
[15]), be a solution which generates nearly constant motor-
shaft velocity at a constant motor power output level. Second,
we want to generate the most rapid climbing possible by
injecting as much energy at the highest rate possible. Third,
given the machine’s target speeds and dynamic environment,
we strive to build a controller which is largely model-
independent; speaking practically, the less a controller design
relies upon inevitably imperfect and uncertain dynamical
plant models, the easier it will be to implement in any
dynamic environment.

We demonstrate below that our work-directed (”pull as
hard as possible”) controller generates the desired limit cycle,
and requires little knowledge of specific plant parameters.

B. Motor Model

We first introduce a simplified model of the physical motor
system in order to provide some analytical basis for the
success of our controller. This model is not intended to be
highly accurate to our specific robot - rather, we construct
a very general actuator model and prove that our controller
functions as desired if applied to any actuator chosen from
the general class.

The robot has two legs, each with its own identical motor,
and we will denote the pair of motor shaft angles as Θ =
(θ1, θ2) ∈ T2, subject to the traditional second-order linear
motor model:

θ̈iJR

kτ
+
θ̇i
kv

= V (3)

where θ is output shaft angle, J is the moment of inertia
of the commutator, output shaft and mechanism, R is the
winding resistance of the motor, kτ is the torque constant
of the motor, kv is the speed constant of the motor (the
back-emf term), and V is the terminal voltage. This is an
equivalent model to that employed in [34], with the caveat
that we base our analysis on a system which supplies voltage,
not current, to the motors. It is important to note here that
variable loading and frictional effects from the dynamics
of climbing (manifested as substantial time variations in
J and kv) dominate the behavior of the system, and any
forces applied to the foot are reflected through a highly
backdriveable mechanism as torques applied to the motor. As
we design a controller, then, we do not want to be heavily
dependent on an accurate system model, as the parameters
of this model could vary widely based on the operating
regime of the robot. We therefore generalize the motor model
from Eq. 3 to include all constant inertia, Rayleigh-damped,
Hooke’s Law spring potential mechanical systems of the
form

k2θ̈ + k1θ̇ = V (4)

where k1, k2 > 0. We construct a controller which will
achieve its goals regardless of the choice of k1 and k2,
and believe that the generality of the model given here

reinforces the connection between theoretical guarantees and
the behavior of the robot in a dynamic environment.

In order to represent our robot, we use two identical but
independent actuator models, each standing in for one of the
robot’s motors and linkages:

k2Θ̈ + k1Θ̇ =
[
V1(Θ)
V2(Θ)

]
(5)

The controller is designed to dynamically “couple” these
putatively independent motors through a memoryless nonlin-
ear output feedback law that respects their terminal voltage
magnitude constraints and guarantees that in the absence
of external perturbations they will converge as a coupled
system to the desired limit cycle on the torus of paired
shaft angles and its tangent space of paired velocities from
almost every initial condition. In employing this abstrac-
tion we admittedly neglect the motors’ crucial mechanical
coupling through the body, and relegate the actual task-
related properties of body state to the role of “noise” felt
as unmodeled “load” perturbations on independent motor
shafts. We turn to the mechanical design of DynoClimber
[15] to demonstrate effective climbing as long as its legs are
maintained in a roughly antiphase relationship. In further
defense of our coarse abstraction we observe that these
models are sufficiently complex that so far the only analytical
results for work-directed controllers encompassing physical
actuator models explicitly coupled to the physical body state
model have been obtained for one degree of freedom bodies
(e.g. such as [35]) and that we see the present analysis as
a first step along the way to that more informative but far
less tractable problem. We also observe that no smooth work-
directed scheme has heretofore been shown to converge even
on T2.

C. Controller Definition

Formally, letting V := (V1, V2) be the voltage command
signal and δ := θ1 − θ2 we take

V (Θ) = VMax

[
1
1

]
− h(δ) ·

[
u ◦ sin(−δ)
u ◦ sin(δ)

]
(6)

where the unit step function, u, outputs the scalar value 1
if its argument is positive and outputs 0 elsewhere, while
h : S1 → R1 is any smooth, even, positive function that
vanishes if and only if its argument is 0 or π. Conceptually,
the step functions serve to retard exactly one leg of the robot
at a time, choosing to weaken the leading leg as necessary
to guarantee convergence of the two legs into a limit cycle.
For purposes of the present implementation we have chosen
the specific “weakening” function

h(δ) := kdiff sin2(δ)

as it is simple, tunable (giving a choice of 0 < kdiff ≤ 2),
and meets the criteria imposed upon h(·).

Combining controller and plant, our system is

k2Θ̈ + k1Θ̇ = VMax

[
1
1

]
− h(δ) ·

[
u ◦ sin(−δ)
u ◦ sin(δ)

]
(7)



To verify that our control input is smooth, we show that our
term containing step functions,

v(δ) = h(δ) ·
[
u ◦ sin(−δ)
u ◦ sin(δ)

]
is differentiable. First, for δ ∈ (0, π)), noting that u◦sin(δ) =
1 and u ◦ sin(−δ) = 0,

dv

dδ
|δ∈(0,π)= dh/dδ ·

[
0
1

]
and for δ ∈ (−π, 0), similarly,

fracdvdδ |δ∈(−π,0)= dh/dδ ·
[
1
0

]
Because h is nonnegative and smooth with isolated zeroes
when its argument is 0 or π, v(0) = v(π) = 0, and dh/dδ →
0 as δ → 0 orπ from either side. Since the derivative of
a step function is undefined at 0, we define (dv/dδ)(0) =
(dv/dδ)(π) = 0. This makes dv/dδ continuous everywhere
and demonstrates that our control input is smooth despite the
presence of step functions.

A final informal observation about our controller: since the
controller specifies motor voltages directly, it keeps at least
one motor operating along its speed-torque curve at all times.
Our present implementation provides no guarantee that it will
not exceed the motor’s sustainable current rating; using this
control framework to specify voltages, as we have done here,
can indeed require the motors to overheat. In DynoClimber,
this has not been a problem throughout our testing, a trait
we attribute to appropriate gearing and sufficiently powerful
motors. In a more general case, identical analysis to that
presented here can be used to specify motor current, with
the substitution of a maximum desired current IMax, for
VMax. Given this substitution, the present analysis carries
through in a substantially similar manner, presuming the
system contains mechanical damping (ie. it is crucial that the
motor model is damped), as it surely does. In such a scenario,
motor safety is guaranteed at the expense of maximal power
output; we do not apply this approach on DynoClimber, as
controlling for maximum power has not damaged our motors.

D. Proof of Correctness
For α ∈ S1 denote the α-translate of the diagonal in T2

as
∆α := {(θ, θ + α) | θ ∈ S1}.

Proposition 1: The anti-diagonal tangent space,

T∆π := {(θ1, θ2, θ̇1, θ̇2)|θ1 = θ2 + π, θ̇1 = θ̇2} (8)

is an attracting invariant set whose domain includes T (T2)−
T∆0.

Proof: Rewrite (7) in the new coordinates,[
ρ1

ρ2

]
=
[
θ1 − θ2

θ1 + θ2

]
(9)

yielding[
V1(Θ)
V2(Θ)

]
=
[

ρ̈1+ρ̈2
2

ρ̈2−ρ̈1
2

]
k2 +

[
ρ̇1+ρ̇2

2
ρ̇2−ρ̇1

2

]
k1 .

Solving for ρ̈2 in the second equation, substituting it into the
first, and simplifying yields

ρ̈1k2 + ρ̇1k1 =− h(ρ1) · u ◦ sin(−ρ1)
+ h(ρ1) · u ◦ sin(ρ1) (10)

ρ̈2k2 + ρ̇2k1 =V1(Θ) + V2(Θ) (11)

Noting that ρ1 is decoupled from ρ2, we introduce a
LaSalle function over TS1,

E(ρ1, ρ̇1) =k2 ·
ρ̇2

1

2
−H(ρ1);

H(ρ1) :=
∫ |ρ1|

0

h(x) dx (12)

h(ρ1) goes to 0 smoothly as ρ1 → 0, so H is smooth.
By construction, h(x) > 0∀x ∈ S1 − {0, π}, and h(0) =
h(π) = 0. H(ρ1) is strictly decreasing in |ρ1|, and therefore
takes its minimum at π and its maximum at 0, with no other
critical point. It follows that (π, 0) is the unique minimum
of H .

Taking the time derivative of E along the motions of the
system, and recalling that h(·) is an even function, we find

Ė(ρ1, ρ̇1) =
k2ρ̇1ρ̈1 + h(ρ1)ρ̇1(u ◦ sin(−ρ1)− u ◦ sin(ρ1))

(13)

After substituting ρ̈1 from Eq. 10 and cancelling terms,
we obtain

Ė(ρ1, ρ̇1) = −k1ρ̇
2
1 (14)

Thus, Ė is negative semidefinite and E is a suitable LaSalle
function.

Examining the inverse image,

Ė−1(0) = {(ρ1, 0)|ρ1 ∈ S1} (15)

we find the only invariant subsets of Ė−1(0) occur at the
zero section corresponding to the critical points of H , i.e.,
when ρ̇1 = 0 and h(ρ1) = 0, which implies that ρ1 = 0
or ρ1 = π. Since (π, 0) is a minimum of E, while (0, 0)
maximizes E in ρ1, the former is an attractor and the latter
a repellor, and the result follows.

QED
Corollary 1: The restriction dynamics on the attracting

invariant submanifold T∆π ≈ TS1 gives rise to an almost
globally asymptotically stable limit cycle.

Proof:
On T∆π we have (ρ1, ρ̇1) = (π, 0), hence, the restriction

dynamics are given by ρ̈2k2+ρ̇2k1 = 2VMax , and the system
yields a single attracting limit cycle of the form

(ρ2, ρ̇2)(t) = (ρ2(0) + ωt, ω) (16)

where ω := 2VMax/k1.
QED



IV. EMPIRICAL VERIFICATION

A. Robot Overview

In order to establish the potential practical value of this
new controller, we compare its performance to that of the
baseline CPG-clock controller on our experimental platform,
DynoClimber. As shown in Fig. 1, DynoClimber is an
improved version of the climber described in [15].

The most significant changes to DynoClimber v1.0 as
used here, are an increase in mass to 2.6kg due to the
addition of new electronics designed to improve data logging
capabilities, improve robustness, and allow operation of
the motors at voltages up to 35 volts. The basic physical
parameters are summarized in Tab. I.

It bears note that DynoClimber employs a roll-stabilization
bar. Excessive rolling can cause the robot to lose attachment
from the wall, and the robots roll dynamics are not actively
controlled. A horizontal bar is affixed to the bottom of
DynoClimber, which dramatically reduces the magnitude of
roll generated and improves attachment.

TABLE I
PHYSICAL PARAMETERS FOR THE ROBOT

Body size 400 × 116 × 70 mm (excluding cables)
Body mass 2.6 kg
Wrist Spring Stiffness 640 N/m
Arm Spring Stiffness 140 N/m
Motor Maxon RE 25 118752
Gear head Maxon Planetary Gearhead GP 32A 114473

33:1 Gear ratio
Encoder Maxon digital encoder HEDS55 110515

500 count/turn
Bevel Gear 2:1 reduction
Leg stroke 120 mm

B. Experimental Procedure

Experiments were conducted on a 12 foot vertical carpeted
climbing surface. The robot utilized a tethered power supply
at 32v with a peak current capacity of 11A. The external
power supply was utilized rather than onboard batteries in
order to generate repeatable and controlled runs. Further-
more, in order to facilitate robust and rapid data collection,
an ethernet cable was tethered to the robot from a nearby
laptop. Finally, the robot was also belayed using a 3mm
diameter compliant rope in order to reduce the impulsive
force on the robot in the event of a fall. This safety rope also
supported both tethers; as the rope was hoisted as the robot
climbed, the cables were pulled upward alongside the robot,
minimizing the effect of the tethers on the dynamics of the
climber. All control computation was conducted on-board,
and a controlling laptop was used only to send high level
commands and collect data. The robot was labeled with a
center of mass marker; video was post-processed to compute
the robots trajectory.

C. Specific Controller Chosen

The baseline controller was chosen, as described in section
II-B, to be a PD controller driving the system toward a
reference trajectory. The reference was a constant-velocity

path in motor-shaft coordinates with the two legs exactly
180 degrees out of phase (see Eq. 1), resulting in near-
sinusoidal motion of the robot’s wrists. Both the frequency
of the trajectory and the gains used by the PD controller
were chosen empirically to maximize climbing speed. A
driving frequency of 3.25hz was determined to be the peak
achievable frequency of oscillation of the legs of the robot
with this trajectory (while climbing), and the PD gains used
to achieve this maximum frequency were kp = 0.9, kd =
0.25.

The self exciting controller described in Section III-C
was implemented, as described, with the retarding function
h(x) = kdiff · sin2(x). The retarding gain, kdiff , determines
the transient behavior of the system - a larger kdiff forces the
system to converge more quickly, at the expense of speed
of oscillation during the transient period and any time the
system is perturbed from its limit cycle. With a kdiff near
0, on the other hand, the system returns more slowly to its
limit cycle during any transient period, but both motors are,
on average, commanded higher voltages while the system
is away from its limit behavior. As shown in section III-
D, regardless of the choice of kdiff , the system provably
converges to a limit cycle with a velocity which does not
depend on the retarding gain. Moreover, the controller, as
long as kdiff is kept between 0 and 2, will not exceed
the specified maximum voltage, VMax . For the following
experiments kdiff = 0.5.

D. Experimental Results

The first result worthy of note is a confirmation that the
controller induces the desired behavior from the system.
Figure 2 plots the configuration space of the robot, T2, and
shows actual encoder data from the robot while climbing
(single datapoints) against the control vector field (arrows on
graph). The torus is subdivided into quadrants, each quadrant
corresponding to a different combination of left and right
leg-states and is labeled as such. The beginning of the run is
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0
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Fig. 2. The control vector field and a real trajectory



given by the stray ‘strand’ just above the middle of the plot.
Rapidly, the encoder angles hone in on the solid red line in
the plot - this is the line at which θ1 − θ2 = π. Although
the controller was only demonstrated analytically to function
for a simplified model, the generality of that model lent
enough strength to the result that it holds quite well on
the actual robot. These data were taken while the robot
was accelerating from a standstill to full speed dynamical
climbing, and despite this the legs converge quickly to the
neighborhood of the limit cycle specified by the controller.
It bears note that several factors are at work in preventing
exact convergence to the limit cycle. First, the robot’s legs
are subjected to large periodic disturbances as the robot
climbs (any unmodeled loading of the motors); hence, we
see systematic and periodic differences between the desired
limit cycle and the limit cycle achieved. Secondly, the kdiff

chosen is fairly low - this causes the controller to retard the
leading leg less forcefully and effectively places a premium
on absolute speed over rapid convergence of the legs to
the limit cycle. This trade-off does well for the robot, as
demonstrated by its steady-state climbing speed.

Having established that the controller functions as in-
tended, we turn our attention to a comparison between this
self-exciting controller and a traditional feedforward alterna-
tive. In establishing a basic benchmark with the feedforward
controller, we found that at leg frequencies above 3.25hz,
the controller faltered. However, using the self-exciting con-
troller, the robot climbed smoothly with leg frequencies up
to 3.9hz. This increase in frequency is a demonstration of
the judicious use of power in the self-exciting controller.
By permitting the legs to spin “as hard as possible,” a very
substantial increase in stride frequency is achieved.

Finally, the CPG based controller achieved a maximum
speed of 54cm/s, while the self-exciting controller reached
a top speed of 66cm/s. Thus, the self-exciting controller
managed to exceed the traditional controller’s performance
with 20% faster leg movement and a corresponding 22%
increase in top speed. Figures 3 and 4, give a center of
mass trace for the climber, and its vertical displacement and
velocity, respectively.

V. CONCLUSION AND FUTURE WORK

We have presented a controller which has enabled Dyn-
oClimber to break into new climbing regimes. By stripping
the controller of any internal states and and attempting to
encode in it the task of performing maximal possible work
against gravity, our robot achieves the fastest dynamical
legged climbing yet seen: vertical locomotion at speeds up
to 1.5 body lengths/second (66cm/s).

In order to examine the behavior of the system more
thoroughly as well as continue to expand DynoClimber’s per-
formance, additional comparisons between this new family
of controllers and more traditional schemes are necessary.
An experiment examining the robot’s behavior under varied
payload weights will be used to examine our hypothesis that
the self-exciting controller requires less tuning for higher
performance. Similarly, the comparative energy efficiency

Fig. 3. Self exciting controller center of mass. Elapsed time = 4.4s

Fig. 4. Self exciting controller vertical displacement and velocity



of the competing control paradigms may be studied by
monitoring power usage during rapid climbing. Finally, the
behavior of the robot after an unanticipated perturbation is
also of interest and will be tested experimentally.

We believe the self-exciting control scheme presented here
holds substantial promise as a controller for other legged
platforms. The controller is able to both generate a desired
limb coordination pattern and encode the desire for optimal
power output, while requiring no parametric knowledge of
the motors or system it is controlling. The promise of reduced
tuning time coupled with improved performance as well as
analytical guarantees make the self-exciting control paradigm
an appealing option for other robots as well.
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