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Abstract—This paper discusses connectivity between neuro- and efficiency of their biological counterparts by recreating the

morphic chips, which use the timing of fixed-height fixed-width
pulses to encode information. Address-eventsldg, (IV)-bit
packets that uniquely identify one of N neurons) are used to
transmit these pulses in real time on a random-access time-mul-

function and structure of neural systems in silicon. Taking a
structure-to-function approach, thessuromorphic systengo
beyond bio-inspiration [2], copying biological organization, as

tiplexed communication channel. Activity is assumed to consist Well as function [3]—[5].

of neuronal ensembles—spikes clustered in spacnd in time.
This paper quantifies tradeoffs faced in allocating bandwidth,
granting access, and queuing, as well as throughput require-

ments, and concludes that an arbitered channel design is the best

choice.The arbitered channel is implemented with a formal design
methodology for asynchronous digital VLSI CMOS systems,
after introducing the reader to this top-down synthesis technique.
Following the evolution of three generations of designs, it is shown
how the overhead of arbitrating, and encoding and decoding, can
be reduced in area (from N to 4/IN) by organizing neurons into
rows and columns, and reduced in time (fromlog,(IN) to 2)
by exploiting locality in the arbiter tree and in the row—column
architecture, and clustered activity. Throughput is boosted by
pipelining and by reading spikes in parallel. Simple techniques
that reduce crosstalk in these mixed analog-digital systems are
described.

Neuromorphic engineers are using garden-variety VLSI

CMOS technology to achieve their goal [6]. This effort is
facilitated by similarities between VLSI hardware and neural
wetware. Both technologies:

1) provide millions of inexpensive, poorly-matched devices;

2) operate in the information-maximizing low-signal-to-
noise/high-bandwidth regime.

It is also challenged by these fundamental differences:

1) fan-ins and fan-outs are about ten in VLSI circuits versus
several thousand in neural circuits;

2) most digital VLSI circuits are synchronized by an ex-
ternal clock, whereas neurons use the degree of coinci-
dence in their firing times to encode information.

Neuromorphic engineers have adopted time-division multi-
plexing to achieve massive connectivity, inspired by its suc-
cess in telecommunications [7] and computer networks [8]. The
number of layers and pins offered by commercial microfab-
|. CONNECTIVITY IN NEUROMORPHICSYSTEMS rication and chip-packaging technologies are severely limited.

NGINEERS are far from matching either the efficacy oMultiplexing leverages the five-decade difference in bandwidth

E neural computation or the efficiency of neural Codindgetween a neuron (hundreds of hertz) and a digital bus (tens
Computers use a million times more energy per operatiGh megahertz), enabling us to replace thousands of dedicated
than brains do [1]. Video cameras use a thousand times mBRINt-to-point connections with a handful of high-speed metal
bandwidth per bit of information than retinas do (see Se¥lres and thousands of switches (transistors). It pays off, be-
tion I1-A). We cannot replace damaged parts of the nervoGause transistors occupy less area than wires and are becoming
system because of these shortcomings. To match nature’s c&@fgtively more compact in deep submicron processes.
putational performance and communication efficiency, we must!/nN @dapting existing networking solutions, neuromorphic ar-
co-optimize information processiremdenergy consumption. chitects are challenged by huge differences between the require-

A small but growing community of engineers is attempting tgents of computer networks and those of neuromorphic sys-

build autonomous sensorimotor systems that match the efficdgS- Whereas computer networks connect thousands of com-
puters at the building- or campus-level, neuromorphic systems

. . . . need to connect millions of neurons at the chip- or circuit-board
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Address  Digital  Address Il. NEURAL POPULATION ACTIVITY
Encoder Bus Decoder
1 Neuromorphic systems use the same currency of information
1] 2 exchange as the nervous system: fixed-height fixed-width pulses
that encode information in their time of occurrence. Timing pre-
Ll - cision is measured by latency and temporal disperdienronal

Fig. 1. The AER pulses from spiking neurons are transmitted serially Aatencyls the time interval between stimulus onset and spiking;

broadcasting addresses on a digital bus. Multiplexing is transparent if tli/és inversely proportional to the strength of the stimulNeu-
encoding, transmission, and decoding processes cycle in lesstfians, ronal temporal dispersions due to variability between indi-

whereA is the desired spike-timing precision ands the maximum number ;4,5 neurons; it is also inversely proportional to the strength
of neurons thatare active during this time (adapted from [4)). of the stimulus. When messages are transmitted to reveal loca-

o ] tions, or identities, of neurons that are spiking, the communi-
neuron whenever it spikes. A bus transmits these addressegdon channel’s finite latency and temporal dispersion add sys-
the receiving chip, where an address decoder selects the coiggsatic and stochastic offsets to spike times that reduce timing
sponding location. precision.

Eight years after Mahc_>wa|d and Sivilotti proposed it, the ad? Although a fairly general purpose implementation was
dress-event representation (AER) has emerged as the leadigggnt, our primary motivation for developing a communica-
candidate for co_mmunlc_atlon between_neuromorpmc chips. ll'lbn channel is to read spike trains off neuromorphic chips with
deed, at the National Science Foundation (NSF) Neuromorplig, ;sands of spiking neurons, organized into 2-D arrays, such
Engineering Workshop held in June/July 1997 at Telluride, CQg gjjicon retinas [23], [24] or silicon cochlears [25], [26]. Neu-
the AER Interchip Communication Workgroup was in the t0pyn4| activity is shaped by the preprocessing that occurs in the
two, second only to Mindless Robots in popularity [11]. sensory epithelium, which is designed to eliminate redundancy

The performance of the original point-to-point protocol hagnq encode information efficiently [27], [28]. We optimized the
been greatly improved. EﬁlClenth|erarchlgaI arb'ltratlon circuitShannel design for the resulting neuronal population activity,
have been developed to handle one-dimensional (1-D) afgyy sought an efficient and robust implementation that supports
two-dimensional (2-D) arrays [12]-[14]. Sender and receivegantive pixel-parallel quantization. This design should be well

interfaces have been combined on a single chip to buildggited to higher-level neuromorphic processors in so far as they
transceiver [15]. Support for multiple senders and receivet§qe information efficiently.

[15]-[17], 1-D nearest-neighbor-connected network topologies
[18], reprogrammable connections, and projective or receptixe
fields [19], [15], [17] has been added. Laboratory prototypes
with 20 000 neurons and 120 000 AER-based connections havd he retina converts spatiotemporal patterns of incident
been demonstrated [19]. Systems with a million neurons alght into spike trains. Transmitted over the optic nerve, these
a billion connections are on the drawing board. In the nefliscrete spikes are converted back into continuous signals by
future, we are bound to see large-scale neuromorphic syste#gdritic integration in postsynaptic targets. Retinal processing
that rewire themselves—ijust like neural systems do—by takifigeximizes the information carried by these spikes. Sampling
advantage of the dynamically reprogrammable virtual wiringt the Nyquist rate, conventional imagers require 40 Gb/s to
[20] made possible by AER. match the eyes’ photopic range (17 bits), spatial resolution
In this paper, the goal is to provide a tutorial introduction t660 cycles?), temporal resolution (10 Hz), and field of view
the design of AER-based interchip communication channefg. x 90° x 90°). In contrast, coding 2 bits of information
The remainder of the paper is organized as follows. A simpRe€r spike [29], the million-axon optic nerve transmits just 40
model of neural population activity is introduced in Section [IMb/s—a thousand times less.
which is used to quantify tradeoffs faced in communica- The retinahas evolved exquisitely adaptive filtering and sam-
tion channel design in Section lll. This section is divide®!ing mechanisms toimprove coding efficiency, six of which are
into four subsections that cover bandwidth allocation (Sebighlighted below.
tion 1lI-A), channel access protocols (Section IlI-B), queuing 1) Local automatic gain controat the photoreceptor- [30]
(Section 111-C), and throughput requirements (Section IlI-D). and network-level [24], [31] eliminates the dependence
Having motivated an approach to inter-chip communication,  on lighting; the receptors respond to contrast instead.
the reader is introduced to a formal design methodology for  Adapting locally extends the retina’s input dynamic
asynchronous digital VLSI CMOS systems, and an AER range without increasing its output range.
communication channel implemented using this methodology 2) Bandpass spatiotemporal filteririg the outer plexiform
is described in Section IV. This section is divided into four layer (or OPL, the retina’s first stage) [24] passes an in-
subsections that cover pipelining (Section IV-A), arbitration termediate range of spatial frequencarstemporal fre-
(Section 1V-B), row—column organization (Section IV-C), and qguencies. Rejecting low frequencies reduces redundancy,
analog—digital interfaces (Section IV-D). The performance of  and rejecting high frequencies reduces noise.
three generations of designs is reviewed in Section V and the3) High-pass temporal and spatial filteringh the inner
paper is summarized in Section VI. Parts of this work have been  plexiform layer (or IPL, the retina’s second stage) [31]
described previously in conference proceedings [21], [13], a suppresses the OPL's strong low temporal-frequency
magazine article [22], and a book chapter [14]. response at its peak spatial frequency (i.e., sustained

Efficient Coding in the Retina
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response to static edge) and its strong low spatial-fre- x 107" Step Input and K(Ca) Channel Current
quency response at its peak temporal frequency (i.e., 4.4 '
blurring of moving edge). 34_2'
4) Half-wave rectificationin oN and oFF output cell types “a
[31] eliminates the elevated neurotransmitter-release and a0
spike-firing rates required to signal both positive and neg- 3.8
ative signal excursions using a single chanmel/oFrF Membrane Voltage
encoding is used in bipolar cells (the OPL-to-IPL relay 5 1 ]
cells) as well as in ganglion cells (the retina’s output 8 ’ i
cells). 19 ]
5) Phasic transient—sustained respoirs¢he ganglion cells B1.7 ]
[32] avoids temporal aliasing by transmitting rapid tran- @ 1
sients using brief spike-bursts, and eliminates redundant 15 . |
sampling by transmitting slow fluctuations using a low 5 Spike Tram
sustained firing rate. Fig. 2 shows responses of silicon 4 ]
analogs of ganglion cells. e 3
6) Foveated architecturand precise rapid eye movements g 9
provide the illusion of high spatial and temporal reso- [ 10
lution everywhere, while sampling coarsely in time cen- ol

trally and coarsely in space peripherally [33]. @ 0 2 4 6 8 1012 14 16 18 292
Since retinal neurons are driven by intermediate spatial and 1 Time (S) x 10
temporal frequencies, and are insensitive to low spatial and tem- x 19 Step Input and K(Ca,Vm) Channel C‘m’f
poral frequencies, small subpopulations tend to fire together. ]
Such correlated, but sparse, activity arises because the neurons
respond to well-defined object features and adapt to the back-
ground. There is also evidence that gap-junction coupling be-
tween ganglion cells makes neighboring cells more likely to fire
in synchrony [34], [35], and these coincident spikes drive down- el Membrane Voltage
stream neurons more effectively [36]. The concept of a neuronal 1l ( frr f (ﬁﬁ(
ensemble is introduced in the next section to capture this stim- S0 ]
ulus-driven fine spatiotemporal structure. =

B. The Neuronal Ensemble

[e1]

We can describe the activity of a neural population by an or- 1.
dered list of locations in spacetime

<
& ={(zo; to), (m1; 1), (@5 &), } =
to <ty <---f; <--- g

Spike Train

where each coordinate specifies the occurence of a spike at a
particular location, at a particular time. The same location can
occur in the list several times, but a particular time can occur
Only onC(_a—assuming time is r_neasure_d _With infinite resomtio_nn—'rg. 2. Adaptive silicon neuron’'s step response. (a) Spike-frequency
There is no need to record time explicitly if the system that igiaptation. Top: the integrator's output current builds up each time the
logging this activity operates on it in real-time; only the locationeuron spikes, modeling calcium-dependent potassium channels. Middle:

. . . The membrane voltage charges from reset (1.5 V) to threshold (2.2 V),
is recorded and time represents itself. In that case, the repre ivén by the difference between input and integrator currents. Bottom:

O =2 N W O

(=]

2 4 6 8 10 12 14 16 18 20
®) Time (S) x 1072

tation is simply Spikes generated each time the membrane voltage reaches threshold. (b)
Time-constant adaptation. The membrane voltage repolarizes rapidly because
£ = {370, T, o Ti, }7 to <t < oot <ooe. the integrator's output is temporarily shut off when the neuron is reset,

modeling voltage-dependent potassium channels. Thus, a tight burst of spikes

This real-time code is called thaddress-event representatior/s 9enerated and adaptation is rapid.
(AER) [9], [10].

£ has a great deal of underlying structure that arises framoise in the signal and in the system, and from differences in
events occurring in the real world, to which the neurons are rgain and state among the neurons. This stochastic component
sponding. The elements éfare clustered at temporal locationdimits the precision with which the neurons can encode infor-
where these events occur, and are clustered at spatial locatimasion about the stimulus. These statistically-defined clusters
determined by the stimulus pattern. Information about stimulase calledheuronal ensembles
timing and pattern can therefore be obtained by extracting thes@ he probability distributions that describe these neuronal en-
clusters. Also€ has an unstructured component that arises froeembles may be determined by characterizing a single neuron,
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25 ' ' ‘ TABLE |
TIME-MULTIPLEXED COMMUNICATION CHANNEL DESIGNOPTIONS

Spec Approaches Remarks

Encoding Amplitude Long settling time, static power
Width Capacity o<~ width
Code Inefficient for precision < 6bits
Timing Minimum-width, rail-to-rail

Latency Polling oc Number of neurons
Event-driven o Active fraction

Integrity Rejection Collisions increase exponentially
Arbitration Queue events

Dispersion Dumping No waiting
Quening ! surplus-capacity

005 1 L5 2 25 3 SRR oo
@ Latency (S) x 1073

60 ; ;

50 ] & =39.4 for a silicon neuron that models voltage-dependent

potassium channels as well as calcium-dependent ones.

40 1 In addition to characterizing the neuron’s spike-timing preci-
g sion relative to its steady-state firing rate, frequency adaptation
G 30 and synchronicity allow us to compute its throughput require-

20 ments. Frequency adaptation gives the spike rate for neurons

that are not part of the neuronal ensemble, assuming that these

10 neurons have adapted. Synchronicity gives the peak spike rate

for neurons in the ensemble. Throughput must exceed the sum
00 02 04 06 08 1 4214 total spike rate for these two segments of the population. A for-
®) Latency (S) % 107 mulais derived for computing channel capacity requirements, as

a function of tolerable percentage errors in spike rate and neu-

ronal latency in the next section.
Fig. 3. Adaptive silicon neuron’s latency distribution. The time taken to
respond to a 15% step increase in input current was measured 1000 times. (a)
Spike-frequency adaptation: the first spike is distributed more or less uniformly,
with a slight tendency toward shorter latencies. The median is 1.3 ms and the
firing rate immediately after the step (inferred from the longest latency of 2.63 IIl. TRADEOFFS INCHANNEL DESIGN
ms) is 380 Hz, compared with a steady-state firing rate of 38.4 Hz. The bin size . o o
was 33.3us. (b) Time-constant adaptation: the distribution is heavily skewed Four important performance criteria for a communication

It(oward shorterdlat'err]lcieffs.' The mgdian (ijs_,aA@landﬁthehpeak firinfg rate is 28.1 channel that provides virtual point-to-point connections be-
1z, sompared with a fing rate mmediately ater the step of 714.3 Hz &N een neuronal arrays are the following.

Capacity: The maximum rate at which spikes can be trans-

mitted. It is equal to the reciprocal of the minimum communi-
assuming its state is randomized from trial to trial, just ”k@ation-cycle time.
the state is randomized across the population. It was measuregatency: The median of the distribution of time intervals be-
how |Ong it takes the adaptive silicon neuron to fire after a St%een Spike generation in the Sending popu|ati0n and Spike re-
change was made inits input current, repeated over several tr'@gmion in the receiving population.
(described in [5], [32]). The results obtained with spike-fre- Temporal Dispersion:The standard deviation of the latency
guency adaptation and time-constant adaptation, implemenggstribution.
by modeling calcium- and voltage-dependent ion channels inntegrity: The fraction of spikes that are delivered to the cor-
real neurons, are shown in Fig. 3. rect destination.
The median of the distribution may serve as a measure of neuAll four criteria together determine thiteroughput which is

ronal latency. It gives the expected latency if the target neurorlgfined as the usable fraction of the channel capacity. Because,
threshold equals 50% of the spikes in the ensemble. Unlike the load offered to the channel must be reduced to achieve more
simple integrate-and-fire neuron, whose latency is half its istringent specifications for latency, temporal dispersion, and in-
terspike interval, adaptive neurons have latencies that are mtegrity.
shorter than their steady-state interspike interval, as shown irChannel performance is affected by the information coding
Fig. 2. The ratio between the firing rate immediately after th&trategy used. Some alternatives to fixed-height fixed-width,
step and the firing rate in steady state is defined asfrte pulses are listed in Table |, together with their pros and cons.
quency adaptationy [5]. The measurements shown in Fig. 2(aJhe choices made in this work are set in boldface. Murray and
and Fig. 3(a) yieldy = 9.9 for a silicon neuron that models Tarassenko explore the use of various pulse-stream representa-
calcium-dependent potassium channels. The ratio betweentibas to implement abstract models of neural networks [37], and
height of the peak in the distribution and the height of the unReyneri has analyzed and compared the performance of various
form distribution over the same interval is defined asdfig- pulse coding strategies [38]. However, little attention has been
chronicity, £ [5]. The measurements shown in Fig. 3(b) yielghaid to using precise spike timing and neuronal ensembles
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to encode information, despite increasing neurobiologica 0. 001 0.01 0.1 L.
evidence in support of such coding schemes [39], [40]. = T30

Given an information coding strategy, the communication$ 1000~———] 1000
channel designer faces several tradeoffs. Should he preallocz> Yﬂ}
the channel capacity, giving a fixed amount to each user, c9 ?\
allocate capacity dynamically, matching each user’s allocatio & I
to its current needs? Should she allow users to transmit at wilz %7 0T 100
or implement elaborate mechanisms to regulate access to t~
channel? And how does the distribution of activity over time% ¥=3.2 a—
and over space impact these choices? Can he assume that u« o =1 10
act randomly, or are there significant correlations between the 0.001 0.01 0.1 1.
activities? Light is shed on these questions in this section, ar _ Active Fraction

some definitive answers are provided. i . . . . )
Fig. 4. Effective Nyquist sampling rate versus active fraction, plotted

. . . for various frequency adaptation factors),( with throughput fixed at 10
A. Allocation: Dynamic or Static? spikes/neuron/s. As the active fraction increases, the channel capacity must be

We mav use adaptive neurons that sam |ﬁ1\@11 when the shared by a larger number of neurons, and hence, the sampling rate decreases.
. . y . P P . ~ It falls precipitously when the active fraction equals the reciprocal of the
signal is changing, and sample ft,,/Z when the signal iS adaptation factor.

static, where” is a prespecified attenuation factor. Let the prob-

ability that a given neuron samplesfat,, bea. Thatis,« is the
active fractiornof the population. Then, each quantizer generat

bits at the rate

ggd frequency adaptation and synchronicity determine the at-
tenuation factorZ, assuming neurons that are not part of the
ensemble have adapted. Fig. 4 shows how the sampling rate
Toits = fuyqla+ (1 —a)/Z)log, N changes with the active fraction for various frequency adapta-
] ) __ tionfactorsZ = v. For smalla andZ > 1/a, the sampling rate
because percent of the time, it samples Ag,; the remaining may be increased by a factor of at leag2a.
(1 —a) percent of the time, it samplesﬁtyq/Z.,Furthermore, _ Inaretinomorphic system, spatiotemporal bandpass filtering
log, IV bits are used to encode the neuron’s location, usigq half-wave rectification make output activity sparse [32],
AER, whereN is the number of neurons. . ielding active fractions of a few percent. Assuming= 0.05,
On the other hand, we may use conventional quan'uzers.t t_ 1 QiVes fxyq = fau for the integrate-and-fire neuron;
sample every location afxy,, and do not locally adapt their ; _ v = 10 gives fuyq = 6.9 fa, for the neuron with fre-
sampling rate. In that case, there is no need to encode Ioca%ncy adaptation; and = v¢ = 450 gives fxyq = 19.1 fen

explicitly. We simply poll all V" locations, according to a fixed hen the membrane time-constant adapts as well.
sequence, and infer the origin of each sample from its temporal

Ipcati.on._As the sampling rate is constant, the bit-rate per quag- Access: Arbitered or Unfettered?
tizer is simply fxyq. ) o ) )

The multiple bits required to encode identity are offset by ASSuming the spiking neurons are described by independent
the reduced sampling rates produced by local adaptation wH@gntically distributed Poisson point processes, the probability
activity is sparse. In fact, adaptive sampling produces a low ¥ Spikes being generated during a single communication

bit rate than fixed sampling if cycle is given by
a<(Z/(Z—-1)(1/logy N —1/2). Pk, G) = G*e=C /k!
For example, in a 64 64 array of neurons with sampling rate, here (7 is the expected number of spikes. = Tu,/Tipt,

attenuatiorZ = 40, the active fractiom must be less than 6'1%'whereTCh is the cycle time and,y is the mean interval be-

It may be more import{;\nt to minimiz.e.th.e .number qf Samp"?ﬁ/een spikes. By substitutingy Fy, for 7.1, whereFy, is the
produced per second—instead of minimizing the bit rate—agnne| capacity ant/ (N fou) for Tgpy, wherefy, is the mean
there are usually sufficient I/O pins to transmit all the addresgbike rate per neuron and is the nAumber of neurons. we find
bits in parallel. In that case, it is the number of samples pg{,: — N fuu/Fin. HenceG is equal to the offered I,oad.
second that is fixed by the channel capacity. Given a certainye may derive an expression for the collision probability, a
fixed throughputt, in samples/s, we may compare the effeGzq||_known result from communications theory, using the prob-
tive sampling rategy, achieved by various sampling strateypility distribution P(k, G) [8]. To transmit a spike without a
gies. . collision, the previous spike must occur at [€Bgtseconds ear-

Adaptive neurons allocate channel throughput dynamlcallyh%r, and the next spike must occur at led{ seconds latter.

the ratioa : ,(1 — a)/Z between active and passive fractions qf-lence, spikes are forbidden in24},, time interval, centered
the population. Hence around the time that transmission starts. Therefore, the proba-

- : L . R
Py = fan/(a + (1 = a)/2) 1) bility of the_§p|ke maklrllg. it through i£(0, 2G) = ¢~*“, and
the probability of a collision is
where f4q, = Fu,/N is the throughput per neuron. The av-
erage neuronal ensemble size determines the active fragtion Dol =1—P(0,2G)=1— e~ 26,
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0 v.2 0.4 v.© v.8 ! where X is the arrival rate of spikes. These results hold when
17.5 17-5 gpikes arrive according to a Poisson process. Witk 7.y,
~ 15. 15. and\ = G/T,, the mean and the variance of the cycles spent
~ 125 \ 15 5 waiting are given by
IS}
a 10 \\ 10. W Q ,  w?—w? w2 2o
m= = —Q, m=——FTHm— =M —m.
g 7.5 \ 7.5 Ta, 2(1-G) 7 73 3
E 5. \ 5 We have assumed that the service tizr@ways equald’y,, and
2.5 2.5 thereforez™ = 17} .
0 0 We find that at 95% capacity, for example, a sample spends

0 0.2 0.4 0.6 0.8 1 9.5 cycles in the queue, on average. This result agrees with in-
Collision Probability tuition: As every 20th slot is empty, one must wait anywhere
Fig. 5. Throughput versus collision probability. Throughput attains Qetween 0-19 CyCI?S to be SerVICed’ Wh_ICh averag_e_s outto 9.5.
maximum value of 18% when the collision probability is 0.64, and the loadlence, the latency is 10.5 cycles, including the additional cycle
is 50%. Increasing the load beyond this level lowers throughput becaysgjuired for service. The standard deviation is 9.8 cycles, virtu-
collisions increase more rapidly than the load does. ally equal to the latency. In general, this is the case whenever the
) latency is much more than one cycle, resulting in a Poisson-like
The unfettered channel must operate at high error ratesy{Qribution for the wait times.
maximize channel utilization. The throughputds= Ge 2%, We can express the cycle-tinfe, in terms of the neuronal
§ince the probability of a successful transmissipn (i.e., no C%Tencyu by assuming thal, is short enough to transmit half
lision) is e=>. Throughput may be expressed in terms of thge spikes in an ensemble in that time. That is, if the ensemble
collision probability hasNg spikes and its latency g, the cycle time must satisfy
1— Py 1 /Ty = (Neg/2)(1/G), sincel/G cycles are used to trans_mit _
S=— 111<1 .y 1) (2) each spike, on average, and half of them must be transmitted in
« 1 seconds. Using this relationship, we can express the wait time
This expression is plotted in Fig. 5. The collision probabilitas a fraction of the neuronal latency
exceeds 0.1 when throughput reaches 5.3%. Indeed, the un- __
fettered channel utilizes a maximum of only 18% of its ca- ey = M = “ <ﬁ> .
pacity. Therefore, it offers higher transmission rates than the ar- W Ne \1-G
bitered channel only if it is more than five times faster, since, dhe timing error is inversely proportional to the number of neu-
we shall show next, the arbitered channel operates fine at 998hs because the channel capacity grows with population size.
capacity.Contention occurs if two or more neurons attempt Therefore, the cycle time decreases, and there is a proportionate
transmit simultaneously when we provide random access to tecrease in queuing time, even when the number of cycles spent
shared communication channel. We can simply detect and digreuing remains the same.
card samples corrupted by collision [41], or we can introduce anConversely, given a timing-error specification, we can invert
arbiter to resolve contention and a queue to hold waiting nepur result to find out how heavily we can load the channel. The
rons [9], [10]. Unfettered access shortens the cycle time, but celroughputS will be equal to the offered load:, since every
lisions increase rapidly as the load increases. Whereas arbiijgike is transmitted eventually. Hence, the throughput is related
tion lengthens the cycle time, reducing the channel capacity aactchannel latency and population size by
queuing causes temporal dispersion, degrading timing informa-

tion. e 1 €\ 2 1
S=nNn[%%yL - _ (_u) —
< > T e 2) T2

C. Latency: Queue New or Dump OId?

What about the timing errors introduced by queuing in th‘{é_(hen the channel capacity grows linearly with the number of

eurons. Fig. 6 shows how the throughput changes with the

arbitered channel? For an offered load of 95 percent, the coll " | hes 100% for | S d
sion probability is 0.85. Hence, collisions occur frequently an anne atgnpy. tapproac es LUuvetor arge_t|m|ng errors an
ps precipitously for low timing errors, going below 95%

neurons are most likely to spend some time in the queue. )
. - the normalized error becomes less 2@hVe. As Ng =
expressing these timing errors as percentages of the neurdlaf " . . . T < v
P g g P g , the error is400/ N if the active fraction: is 5%. Therefore,

latency and temporal dispersion, we can quantify the trade

between queuing new spikes, to avoid losing old spikes, verd(§ arbitered channel can operate cloge 0 papacity with timing
dumping old spikes, to preserve the timing of new spikes. errors of a few percent when population size exceeds several

To find the latency and temporal dispersion introduced by thgns of thousands.

queue, we use well-known results from queuing theory whigh Predicting Throughput Requirements
give moments of the waiting time™ as a function of moments

of the service time™ [42] Given a neuron'’s firing rate immediately after a step change
. o in its input f,, we can calculate the peak spike rate of active
_ Aw? 7 o Az neurons and add the firing rate of passive neurons to obtain the
w=—-—— u = U =

2(1-G)’ 3(1 - G) maximum spike rate. Active neurons fire at a peak ratéfof
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0 2. 4. o. 8. 10.
100. 100. TABLE I
E= o | CHP LANGUAGE CONSTRUCTS
Ne=1060"" | .
i~ 80. Ng=320 80. Operation Notation  Explanation
= Process P; A composition of communications
5 60 Ng=10 60. Guard G; = B; = P,. Execute P; if B; is true
% / / Sequential P; Py Py ends before P, starts
o 4y 40 Qverlapping P e P P, starts before P; ends, or vice versa
5 ' ' Concurrent Py || Py There is no constraint
b= Repetition *[P1; P;] = P1; P2; P1; P2;. ... Repeats forever
=20, 20. Selection [G1]G2)  Execute P; for which B; is true
Arbitration [G1|G2]  Required if B; not mutually exclusive
0 0 Input Az Read data from port A to register =
0 2. 4., 6. 8. 10. Output Alz Write data from register = to port A
Channel Latency (%) Probe A Is communication pending on port A?
Data type z :int{m) Location x is an m-bit register
Fig. 6. Throughput versus normalized channel latency, plotted for differe Field z.¢ Register 2’s ith bit
Assignment Y=z Copy data from x to y

neuronal ensemble siz¢d¢ ). Higher throughput is achieved at the expens:
of latency because queue occupancy goes up as the load increases. These wait

cycles become a smaller fraction of the neuronal latency as the population size

increases because cycle time decreases proportionately. IV. ARBITERRED CHANNEL DESIGN

The design of arbitered channels that support point-to-point
where¢ is the synchronicity, and passive neurons firg'gty connections among spiking neurons on different chips is rather
(assuming they have adapted), wheiie the frequency adapta- challenging. Early attempts were plagued by timing problems
tion. Hence, we have and crosstalk [9], [10]. Fortunately, significant progress has
been made in asynchronous digital VLSI systems in recent
years, culminating in the design of a microprocessor that
uses no clocks whatsoever by Martin’s group at Caltech [43].
We apply Martin’s rigorous, correct-by-construction, design
tion of the population. which form a neuronal ensemble methodology to the arbitered channel, after introducing the

' . . : ' rogram-based philosophy and notation it employs. Crosstalk,
We can express the maximum Sp.'ke rate in terms of the n“%)Hé pitfall of mixed analog—digital (MAD) system design, must
rpnal latency by assummg_that spikes from the er_lsem_ble &30 be addressed to achieve reliable and robust operation.
rive at Fhe peak rate. In this case, alv neurons will splke_ Martin’s formal synthesis methodology enables us to design
in the time intervall/(¢f,). Hence, the minimum latency is

" . _ an asynchronous VLSI circuit by compiling a high-level specifi-
/;;nn = 1/(28/a). Thus, we can rewrite our expressiont@ax - ation \written in theommunicating hardware proces€HP)

language, into aroduction rule se(PRS) [45]-[47]. A produc-
N 1—a tion rule evaluates a boolean expression in real time, and sets or
< + ¢ ) . clears a bit when the expression becomes true; it is straightfor-
i ward to implement with MOS transistors. The synthesis proce-
Intuitively, st is the neurons’ timing precision and(a-(1—  dure involves two intermediate steps: program decomposition
a)/(£7))/2 is the number of neurons that fire during this time2nd handshaking expansion. o
The throughput must be equal .., and there must be some  Throughprogram decompositiofPD), which involves de-
surplus capacity to minimize collision rates in the unfetterégPMposing the high-level specification into concurrent subpro-
channel and minimize queuing time in the arbitered one. TH§SS€S, We:
overhead is over 455% [i.€1 —0.18)/0.18)] for the unfettered 1) reduce logical complexity by divide-to-conquer;
channel, but only 5.3% [i.e{] —0.95)/0.95)] for the arbitered ~ 2) share expensive hardware resources.
one. At this level, we make architectural design decisions that
In summary, arbitration is the best choice for neuromosimplify the design and minimize its hardware requirements.
phic systems whose activity is sparse in space and in tinWe must synchronize concurrent subprocesses and resolve
because we trade an exponential increase in collisions foc@ntention for shared resources.
linear increase in temporal dispersion. Furthermore, holdingPortsare used to input data, to output data, or simply to syn-
utilization constant (i.e., throughput expressed as a percentageonize, given that processes communicate when they reach
of the channel capacity), temporal dispersion decreasespasticular points in their programs. Communication is described
technology advances and we build larger networks with shoriatCHP simply by writing down the name of the port, sayThis
cycle times, even though the collision probability remains thection may be composed with other communications using the
same. The downside of arbitration is that it takes up area aafiguage constructs outlined in Table II. A pair of complemen-
time, reducing the number of neurons that can be integratiadly ports, oneactive and the othepassive are connected to
onto a chip and the maximum rate at which they can firéorm a channel, as shown in Fig. 7(a). Apart from complemen-
Several effective strategies for reducing the overhead impogady channel assignments, the only constraint on whether a port
by arbitration have been developed; they are the subject of ttan be active or passive is theobe A primitive operation, de-
next section. notedsS, which a process invokes to check if a communication

-Fmax = aNSfa + (1 - G)Nfa/’}/

wherelV is the total number of neurons aads the active frac-

Fmax =
2”111111



BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 423

r P We can describe afiER transmitter as follows. The format
Sender are a Receiver used to specify a process in CHP is
@ gg > gg name(argumentsE process(ports)
a3 » 43 program

XK 075 XXKKK end

We name the transmitter procesEXMT(N), giving the
number of neuron®’ as an argument, and assigmVtdataless
() ports, named.,,, to serviceN neurons, and a single output
port, namedA4, that writes (represented by !)[og,(V)]-bit

integert All this information is specified in the header
Fig. 7. Communication channel signals and timing. (a) Data-bus
(d0, ---, d3) and handshake signals (@nd a). (b) Timing diagram: the
sender initiates the sequence by driving its data onto the bus and taking
high. The receiver acknowledges by takiaghigh, after latching the data. (|—10g2(N)-|))
These two parties perform complementary sequences of actions and waits:
r+; [a]; r—[a] for the active sender andr]; a+;[f];a— for the passive program
receiver. The active port drives the so-caltequestine while the passive one end
drives the so-calledcknowledgéine. -

AEXMT(N) =process(Ly, Lo, ---, Ly, Alint

Now, we write a program that probes tlieports to detect
communications initiated by neurons that are spiking, and arbi-
trates (represented ljypetween them. It then communicates on

TABLE I = .

HSE RRIMITIVES the chosen port and transmits its address; these operations may
occur concurrently (represented )y The code for this algo-

Operation Notation Explanation ithm i

Signal v Voltage on a node rnnm s

Complement v Inversion of v o

And v &w  High if both are high *[[L; — Alenc(1)||L1]|---|Lnx — Alenc(N)||Lxy]]-

Or vi|w Low if both are low

Set v+ Drive v high A function enc(n), which converts ane-hotcode into a binary

Clear v- Drive v low .. , .

Wait [v] Wait till v is high one, is invoked to encode the chosen port’'s address. The inner

Sequential [ul;v#+ =u -> v+in PRS brackets delimit arbitration while the outer ones delimit repeti-

Concurrent v+, ut ='v+,w+ in PRS ; : :

Repetition T T Just ke o CAP tion, together with the asterix.

Similarly, we can describe afAER receiver inCHP as fol-
lows. The receiver uses [dog,(N)]-bit input port, named,
is pending on its por§. It returns true if there is one and falsl© read (represented by “?”) address-events and ¥sdstaless
otherwise. The probe only works with a passive port, due to ifROS, namedz,,, to servicelV neurons. Thus, we have
plementation constra|r_1ts. _ o AERCV(NV)

Through hand-shaking expansio(HSE), which involves B o )
fleshing out each communication into a full four-phase hand- = m(A.mt( [loga (N)]), Ba, R, -+, Ry)
shake cycle, we: beint([log, (N)1)

c: int(N)

x [A?h; ¢9: =dec(b); [e¢.1 — Ry|| - ||e.N — Ry]]

1) choose whether to make a port active or passive;
2) reshuffle a communication cycle’s four phases.

At this level, we make logic design decisions that reduce end
memory and improve speed. PD and HSE produce sequenges - ion dec

: . . (b), which converts from binary to one-hot, is
of waits and actions that define concurrent subprocesses. These - :
; " invoked to decode the addressandc are local[log,(NV)]-bit
sequences are converted into PRS by writing a rule to perform . . . )
) . . andN-bit registers, respectively, used to store the input and the
each action when the preceding wait becomes true. ; . .
i : ) . result. The receiver communicates on the port corresponding to
Thefour-phase handshake performed with a pair of wires, 6 gne set bit. in the one-hot code. This port is chosen by

as shown in Fig. 7(b), and specified using the HSE primitivegy|ectionrepresented bly), which is used when there is no need

described in Table Ill. The active portinitiates the handshake Ry o rpitration (i.e., the choice is unique). The inner brackets

asserting the so-called request signal (¢e:). The probe isim- e |imit selection while the outer ones delimit repetition.
plemented by monitoring this signal (i.€r]), an opportunistic

implementation that works only with a passive port. Data is aa: Pipelining

sumed to be valid when the request signal arrives, which re'PipeIining a well-known approach to increasing throughput
quires their propagation delays to be matched. The matched de; ’ '

lays required by thisundled-datarotocol [47] can be avoided redu_ces_ the tlme-ove_rhead of arbitration by breaking the com-
. . ) . ; .. munication cycle up into a sequence of smaller steps that ex-
by using adual-rail representation, but this delay-insensitive

scheme requires two lines per data bit [45]. 1[2] gives the smallest integer larger than, or equakto,
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Fig. 9. Data-buffer pipeline stage. (a) HSE description: each port is fleshed
out into a pair of handshake lines and a set of data lines, and assigned an active
or passive role. (b) Circuit description: the data-buffer consists of a latch and a
C-element—a gate whose output goes high when both inputs are high and goes
low when both inputs are low. As its output is not always actively driven, a weak
feedback inverter, calledstaticizer is added to hold state.

<— sung,

) allows buffers to be cascaded, and label these ports’ request and
e Qet ——@ Reset acknowledge signals as shown in Fig. 9(a). Thus, we obtain the

following HSE:
Fig. 8. Pipelined communication cycle. (a) Communication cycle involving

four-phase handshakes between sending neuron, arbiter, address encoder,

address decoder, and receiving neuron. White and black boxes indicate the

duration of the set and reset halves. Preceeding or succeeding cycles are in . o .

dashed lines. (b) In the pipelined channel, we do not wait for the next stage’fitmmy by replacing each communication with a full four-phase

acknowledge us before we acknowledge the previous stage. Similarly, weff@ndshaking sequence.

not wait for it to withdraw its acknowledge before we withdraw ours. In the pipelined example shown in Fig. 8(b), the first half of
R occurs after the first half of ; the second half o2 remains

ecute concurrently. Concurrency reduces the cycle-time to thiethe end. That is

length of the longest step, with several address-events in var- .

ious stages of transmission at the same time, as shown in Fig. 8. *[[f1 & 1i]; 1o+, ro+; [ri & 1i]; lo—, ro—;]

Handshaking makes pipelining, and queuing, straightforward:. I
you can stall a pipeline stage, or make a neuron wait, sim | has been postponed to the beginning of the next cycle,

by refusing to acknowledge it. To become conversant with t aking 1t lazy-active and adjacent waits and adjacent actions

synthesis procedure, let us design a handshake circuit to coom\-’? been merged. This reshuffling is logically equivalent to our

nate the request and acknowledge signals of adjacent stage%“ign'nal CHP program (i.eL; E), because both data exchange

a pipeline and control data transfer and synchronization occur during the communication’s first half
A data-buffer pipeline stage (also callediEO, for first-in (the second half conveniently returns the signals to their original

#[[Li]; Lo+; [1i]; lo—; ro+; [ri]; ro—; [£i]]

first-out) is described iICHP as state). o
The pipelined sequence operates as follows. When data ar-
LRBUF = process(L?int(4), Rlint(4)) rives (i.e.,[11i]), we Ia_tch it and acknowledge rec_eiptoe-).
m However, we wait until the next stage has transmitted the pre-
Hint(4) vious item (ri]) so that we can pass on the new data¥) at
* [L7h; RIB| the same time. We must keep data available until we get an ac-
end knowledge [ri]). Then it is safe to make the latch transparent

again and to withdraw our requesgb(-). However, we wait for
It reads in a nibble from itd port, turns around, and writes outthe previous stage to withdraw its requdsti{) so that we can
the nibble on itk port. We makd. passive and active, which withdraw our acknowledgeLe—) at the same time.
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We implement the pipelined sequence by writing production ARB(X)
rules that perform actions in the sequence when preceding waits arbt:ARB(X/2)
become true Ly Ly
L2 L2
ri & 1i — lo+, ro+, t— : R
ri & 1li — lo—, ro—, t+. : 1
. . Ly Lxn arbc:ARB(2)
A strobe signat has been added, which makes the latch opaque I
when low, and transparent when high. Sometimes we have to Ly, — L BB
strengtherguards to prevent rules from misfiring or interfering Lot L Jr :
[45], [47], but this is not required here. R
The handshake logic for our passive—active data buffer is re-
alized by a single gate, which acknowledges the previous stage, Ly Ly xn
sends a request to the next stage, and strobes the latch, as shown arbb:ARB(X-X/2)
in Fig. 9(b). The pull-down implements the first rule and the
pull-up implements the second one. Setup and hold times may 110 111 @ 121 ~120
be satisfied by delaying the request, relative to the data, and by
delaying withdrawing the data after an acknowledge is received ala az2a
[44].
In the unpipelined example shown in Fig. 8(a), on the other @@
hand, the first half of2 occurs immediately aftdi.i]. That is -alp ~azp
*[[1i]; ro+; [ri];lo+; [Li]; ro—; [Ei]; lo—]. _; . 3’3‘
Communications intertwined in this way are specified by the ¢ N
bullet (i.e.,L e R) in CHP. This HSE is implemented by the {L —iﬂl—%ﬁl— J}
following PRS: 1= =]
li - ro+ ri— lo+ 11 121

We have to give up this simplicity to gain the speed-up offered
by pipelining. Additional speed improvements may be made by
exploiting locality in the arbiter and in the array, as shown in the
next two subsections.

~ ~r ro
li - ro— ri— lo—. y
A pair of wires, connecting.i to ro andri to lo, suffices! N
Hl P
_i

(b)

~ri ro

B. Arbitration

. . . Fig. 10. R ively-defi iter. AXi-i iter i ilt fi
Arbitration may be performed by a recursive procedure. ig. 10 ecursively-defined arbiter. (a) input arbiter is built from a

X/2-input arbiter (arbt), 4 X — X/2)-input arbiter (arbb), and a two-input

1) Divide the neurons into two groups. arbiter (arbc), connected as shown. THig2— and(X — X/2)-input arbiters
; ; : themselves recursively defined by the same procedure. (b) Greedy two-input
2) _Choose one group, makmg sure there is an active neug(é ter vircuit. Requestd,1i and12i, propagate down through a modifiee
in the group you choose. gate (bottom), while acknowledgasi,, propagate up through a router (middle).
3) If the chosen subgroup has more than one neuron, repgéip-flop (top) arbitrates between the requests and controls the router, which
; : steers the active-low acknowledge to the chosen requesokiyng it with the
Steps 1 and 2 with this group. flip-flops’s active-low outputs (the source-switched pFET's filter metastable
4) Else, you are done. oscillations). A pair ofNAND gates invert active-high acknowledges from the

Dividing by two balances the sizes of the subgroups, giving neiijeering circuit and blocks them when the outgoing active-high requetst
rons in each subgroup equal chances of being picked. ow

In CHP, our recursive arbitration procedure is described by
the recursive equation In CHP, the two-input arbiter cell is described by

ARB(X) = ARB(X/2)||ARB(2)||ARB(X — X/2
(X) /2l @Il ( /2) ARB(2) =process(L1, Lo, R)

whereARB(.X) is an X-input arbiter process, which consists «[[L1 — Ry Ly; Ly; R[L; — R; Ly La; R]]
of three subprocesses that run concurrently. These subprocesses
are connected in a tree-like structure, as shown in Fig. 10(a).

The recursion unwinds &RB(2) or ARB(1), and hence, we _ . . Lo .
. : . | . This process probes its ports to determine if there are active
only need to design a two-input arbiter cell; the one-input case

is trivial. (V — 1) ARB(2) cells, connected in a balanced binar neurons in either subgroup. Next, it communicates of iport

tree with |log, (V)| levels, are needed to arbitrate betweeén to ensure th_at the group of neurons It serves has been chosen.
neurons And finally, it communicates on either of it5 ports to select

an active subgroup. Thus, requests are relayed up the tree by
2| x| gives the largest integer smaller than probing theR-to-L channels, while selection is relayed down

end
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T g T e——

the tree by communicating on the same channels. A second p|EEEESERIFSSIE
of L and R communications terminates the selection. The ce | S
at the top of the tree, which serves Al neurons, is special, | ;
since its group is always chosen. Thus, communications on i
R port are superfluous. We can connectitport to a process
that automatically completes the communication (isg.]).
Making L, and L, passive, andk active, the synthesis pro- |
cedure yielded the circuit shown in Fig. 10(b). All paired com-|=
munications were implemented using two halves of a singlf
four-phase communication. As is normally done. A flip-flop
(i.e., cross-coupledAanD-gates) was used to guaranteatual
exclusionby ANDing one port’s active-high request with the
other’s active-low acknowledge [45]. b
The reshuffling implemented works as follows. When a re
quest is received from the lower level (i.€111]), we send it

to the flip-flop (1a-+) and, without waiting for a decision, we _. ) _ _ _ _ _

. Fig. 11. Layout of recursively-defined arbiter. A seven-input arbiter, with
also relay it to the upper Ievefé‘i')' But we make sure the address encoder and control cells. It is built up from a three-input arbiter
upper level has cleared its acknowledge to the previous requ@st two cells) and a four-input arbiter (last three cells), which are connected
first ([rl]) If not, we do not make a new request. Instead, wjegether by an additional cell (third cell), for a total of six cells. These three-

L s and four-input arbiters are built from two- and one-input arbiters; the latter
accept the old acknowledge, assuming it is stableig high), s just a pair of wires that bypass the lowest level of the tree. An inverter at

and relay it to the lower level(lo+) as if it was a new acknowl- the top ties the active-high outgoing request back to the active-low incoming
edge, once the arbitration subproce[aslé]) acknowledges. acknowledge. Wells and selects have been omitted for clarity. Gray is substrate;
. . . .. black and darker shading is M2. The pitch is\7&nd the height is 380 or 21
At this point, we are half way through the communication) ., "114,,m in 0.54m technology & = 0.3 jzm).
cycle, and every signal is activated. When the lower level clears
its request (i.e.[11i]), we clear our request to the flip-flop

(ala—). We wait for its acknowledge to clegfp]) beforewe  2) _11o, notro, fires 110+. Hence, wheri1o goes high,

clear our acknowledge to lower levélio—), preventing a new we know that 110 is low. This condition requires careful
incoming request from using an unstakle signal. However, transistor sizing, as the number of gates is these two paths
we clear our request to the upper leveb{) only if both in- are identical. The downward transition ohi propagates

coming requests have been cleared. A strategy that allows our through the flip-flop and theior gate to drive 110 low,
sister process to service her daughters with the old acknowledge.  but propagates through the modifiee gate, and its in-
The modifiedor-gate’s staticizer and the pull-ups of the flip- verter, to drivero low.
flop’s NAND gates must not be too weak. Otherwise, slow tran- Layout for the arbiter tree is shown in Fig. 11. This layout was
sitions on the incoming request lines (iEli or 12i) make the generated by implementing the recursive algorithm in a silicon
modified OR gate’s output oscillate [refer to Fig. 10(b)]. Thiscompiler program, starting with layouts for the two-input arbiter
happens when the incoming acknowledge)(arrives before cell. The program was written i@’ using the layout-editor’s
the outgoing request signatd) completes its transitioh,be- (L-Edit) user-programmable interface (UPI) and layout-compi-
cause the pull-up overcomes the staticizer when the active-l@tion libraries {.-Comp), all from Tanner Research, Inc. We
acknowledge disables the pull-down. In practice, this occunsw turn our attention to reducing the area-overhead of arbitra-
only at the top cell, where the outgoing request is immediatefipn by tiling neurons in 2-D arrays.
fed back through an inverter. And, if the pull-ups in the flip-
flop's NAND gates are too weak, the router circuit loads the. Row—Column Organization
flip-flop, pulling the higher output down. Thus, it reduces the By going to a hierarchicak -column--row organization,
differential signal, causes both signals to creep downward, agsl proposed in [9], [10], we reduce the number of two-input
produces nonmonotonic transitions. arbiter cells fromY x X —1toY + X — 2. That is, it cost
Additionally, two conditions must be met to prevent a linys nothing for the first row or column and one arbiter cell for
gering acknowledge from the flip-flop from servicing a new ineach additional row or column. Hence, the area-overhead scales
coming request [refer to Fig. 10(b)]. like \/N, whereN is the number of neurons. The number of
1) aip, notri, fires_11o—. Hence,whenlio goeslow, we address-encoder and decoder cells are also reduced by a similar
know thata1p is high. This condition is easily satisfied,amount: one per row or column, instead of one per neuron. Both
as the number of gates in these two paths differs a leending and receiving neural populations may be organized into
The downward transition ob1i propagates through the2-D arrays.
flip-flop to drive aip high, but propagates through the 1) 2-D Transmitter: Neurons in a 2-D AER transmitter are
modifiedor-gate and three gates at the next level to drivéelected by performing hierarchical row-first column-second ar-
ri high. bitration, as shown in Fig. 12. First, we usé& ainput arbiter
to choose one oY rows, and then we use &-input arbiter
to choose one oK neurons assigned to that row. Hierarchical
3Tim Horiuchi discovered this instability. arbitration guarantees that only one row is active at any time.
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Fig. 12. Architecture of address-event transmitter and receiver. The sending neuron’s interface circuit [shown in [Fig. 13(a)] communisadtepeskeral

circuitry using row and column request-select lines. A row—column controller [Fig. 13(b)] relays requests from a row or column of neurons terthanarbit

relays the arbiter's acknowledge back; it also activates the address-encoder [Fig. 15(a)]. On the receiving end, a pipeline stage [Fig. a(h)areeks the

addressX andY). It acknowledges receipt right way and activates the address decoders [Fig. 15(b)], which select the corresponding row and column. The receiving
neuron [Fig. 14] sends an acknowledge when both its row and column are selected. This signal is relayed to the pipeline stage by a twodexateuited-

Hence, we can share a singleinput column-arbiter between ~1oxCLX~COx
all the rows. We musbr together all requests within each row &
to generate requests for the row arbiter, and all requests within v

each column to generate requests for the column arbiter. We save

time by servicing all active neurons in the chosen row before we s
pick another row [13], [14]. However, we should not wait for its Vpuyd f ~p
inactive neurons to communicate on the column lines. Only neu-

rons that were activat the time that the row was selecteaist Iin%—( 1L

be serviced. This way, inactive neurons cannot prolong comple- @ == -

tion indefinitely if they subsequently spike.

This strategy is realized by the neuron-interface and
row—column-control circuits shown in Fig. 13, designed by .
decomposinghEXMT (V) into row and column subprocesses, s D‘O<]—<~l’l
and following the synthesis procedure. The neuron drives the

row-request line low (i.e.p—) when a spike occurgl(ix]). a(?

The controller relays this request to the row arbites) ~al

and grants the request by driving the row-select line high =

(s+) when the arbiter acknowledgef-{]). It also activates P >—{>O_G ro

the row-address—encodesoft). If necessary, the controller
waits until previous column and encoder communications are =

completed [(ai]). When the YOW IS select_eq, all neurons Wlﬂhg. 13.  Sending-neuron and row—column control circuits. (a) Five-transistor
spikes place requests on their column linésx(—) and clear interface (right half)y between neuron (i.eix, lox) and row- .s) or

their spikes one by one, by takirigpx low. as these requeStSCOIUmn' €ox, cix) control circuits. The pull-downs op andcox form row-
. ' ' and column-wide wiredkoR gates; current source pull-ups are at the edge of
are granted[€ix]).

the array. The neuron is disabled when its row is selectésl lfigh) to prevent
Each neuron releases the row- and Co|umn-request lines wiaepgration of new spikes. Capacitive positive-feedback in the axon-hillock

P . . . circuit (left half) provides hysteresis and speeds up transitions. (b) Interface

it is serviced. The row-request lipegoes high onlywhe_n all the among row or column (ie.$, s), arbiter o, £1), and address-encoder

spikes have been cleared. The row-controller then withdraws#s, ai). These gates are calleC-elementgfor asymmetric): their outputs

request to the arbiter$—), but it waits until it receives an ac- are set when both inputs are high and cleared when a particular input is low

knowledge from the encodefa]), since this signal prevents ©" V1@ versa):

interference with ongoing communications. As soon as the ar-

biter clears its acknowledgér(i]), the controller withdraws its guard oflox— was stregthened to ensure that a neuron is reset

request to the encodesd—) and deselects the rowe{). The only when its ronandits column are selected.
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Fig. 14. Receiver's neuron interface circuit. Active-high column- and —
row-select signalsxi andbyi are NANDed together to generate an active-low
requestryxo. The neuron responds with an active-low acknowledigei.

If desired,ryxo may be tied directly taryxi to produce a minimum-width - -
active-low pulse. Active-low acknowledges from all neurons in the same

row are NANDed together to generate a active-high row acknowlerige e

These row-acknowledges ak®Rred together to produce a single active-low s
acknowledge that is sent back to the decoders. (a) -

We can use the same control circuit shown in Fig. 13(b) to
interface a column of neurons with the arbiter and the encoder.
The column logic itself consists of H-input wiredNOR gate,
which feedsox into p, and}” aC-elementswhich steek to the
correct neuron byNDing it with the row-select. We can elim- b Lo
inate theaC-elements&nd broadcast the controller’'s acknowl- .
edge, since it is alreadyNped with the row-select signal inside ant T B
the neuron, provided we clear it before a new row is selected. _

To figure out if a new row can be selected before the column- ~ani
select is cleared, note that the row-controller selects a new row
afterthe row-encoder clears its acknowledge ({#i]), and this
signal is essentially synchronous with the column-encoder’s ac-
knowledge, as the encoders simply relay the receiver’'s acknowl-
edge. Furthermore, the column- (and row-) controller’'s select 20
signals must be low in order for the encoders to clear their re- ijv_
guests to the receiver. Hence, it follows that the column-select ®  ai-dio ~dmo

signal is cleared before a new row is selected. i o )

Throughput may be boosted by reading the sate of all ndf, 5, A%resseneencr w14 ioter sreie, () & wipneriot 1o
rons in a selected row in parallel, and storing their spikes inoge-transistor cells. A cell either pulls up the output line with a pFET, driven
latch on the periphery of the array, where they can be rapidly an active-low input line (i.eami), or pulls it low with a nFET, driven by
relayed to the column arbiter. Stored spikes are transmitted iff acrt)':’oe\;ggg g‘nplgclt'izﬁﬁ“gh Argqixé;? ggﬁ;ﬁ I'(Eigat)itt?g t{iﬁxzaé'zc%ﬂﬁ?
rapid burst, while the array is cycled to select and read the n@erem < 27, is built with (n + 1) x m two-transistor cells. The + 1
row. The performance enhancement achieved by this approgeifs connected to each active-low output (idnp) form an(n + 1)-input
s described briefly in Section V; design details may be found [l 9%, Wit ¥ | seiesconnected e s ande L parsiercomnectec,
[48]. Let us now turn our attention to organizing the receivinggnal ani) or an active-low signabi), respectively. The active-high request
neurons into rows and columns. signal is connected to tHe: + 1)th input (adapted from [10]).

2) 2-D Receiver:The 2-D AER receiver’s structure paral-
lels that of the transmitter, as shown in Fig. 12. First, we usel@e wrong neuron next time around, when a lingering row
[log,(Y)]-bit decoder to select one of therows, and then we select signal isvanDed with a new column select signal, or
use alog,(X)]-bit decoder to select one of tB output ports vice versa. Matching the decoders’ delays minimizes the risk.
assigned to that row. Asynchronous versions of traditional circuits used to encode

This strategy is realized by the circuit shown in Fig. 14and decode addresses are shown in Fig. 15.
obtained by decomposir§ERCV(XN) into neuron, row, and  Our review of 2-D AER transmitter and receiver design is
column subprocesses, and following the synthesis procedurew complete. We have seen how to reduce the overhead im-
The gate that combines the row- and column-selects is changeded by arbitration, encoding, and decoding frimo /N
from a state-holding C-element to a purely combination@ly organizing neurons into rows and columns, and how to ex-
NAND gate. Thus, we clear our request to the neuron wheioit this organization, together with locality, to reduce the av-
either the column select or the row select is cleared, withoeitage cycle time. As shown in Fig. 12, and described in [13],

waiting for the other line to clear. We run the risk of choosinfL4], a pipeline stage [see Fig. 9(b)] can be inserted between

ali - -

~ali - -

ai - -
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the receiver’s input port and its decoders to improve its perfor- axi
mance. This slack allows the receiver to acknowledge as soon as lva ﬁf
it latches the address from bus, and then decode the address and
select the neuron while the sender is clearing it row or column
. . : _ D P<sel
select signals and selecting a new row or column. Having ad- ~ryi Tout
dressed the intricacies of asynchronous logic circuit design, we - -
now turn our attention to the pitfalls of mixed-analog—digital de-
sign. byi \_EI‘—H"
i
D. Analog-Digital Interfaces (a) E = =
Neuromorphic chips are MAD systems [49], where sending aXIT A
and receiving neurons serve as analog-to-digital and digital-to- | VA
analog converters. They use subthreshold analog CMOS circuits /[f
to model dendritic computation [3] and asynchronous digital VU4V < sel
CMOS logic to model axonal communication [3], [50]. One of Zl___ /[L 7 lout
the greatest difficulties in their design is reducing crosstalk be- j‘_
tween the analog and digital parts, given the gigantic differences byi H[.
in current levels and speeds. > -

In the analog domain, we use 100-pA currents and 100-fF
capacitors to achieve 1-V/ms slew rates. Whereas in the dig-
ital domain 1OOF_LA_ currents ahd 100 fF capacitors yleld LV/n%ig. 16. Badand good receiver pixels. Both pixels use a diode-capacitor circuit
slew rates, a million times higher! To match these slew rat@gintegrate spikes and a tilted current-mirror to amplify current, as described in
the neuron’s gain must exceed one million. And to ensure tH3&]. The bias voltag&w sets the amount of charge metered onto the capacitor

R L ; : ; ; ach time the pixel is selected. The parasitic capacitors shown can pump or inject
less than, > IT]V of the _5,V dlglta,‘l swing flr,]ds Its way Into thec(?urrent into the integrator, as explained in the text. In (b), the pull-up isolates
analog circuitry, parasitic coupling capacitances must be |888integrator from these parasitic effects.
than 0.1 fF! Recalling that a CMOS inverter’s gain is about 10

and a minimume-sized transistor’s drain-to-gate overlap capaci-

tance exceeds 1 fF, you realize how demanding these specifiéid andvdd, respectively, these rails mediate inhibitory and ex-
tions are. citatory interactions, respectively [see Fig. 13(a)]. We can avoid

To realize a millionfold gain, we use a two-inverter ncmingurning off the current in these transistors by limiting the reset

verting amplifier with positive feedback, also known as thgurrent and turning it off as soon as the spike is reset, as de-

axon-hillock circuit. This circuit, shown in Fig. 13(a), is name(?_crib_ed in [3]. He_:nce, we can isolate the neuron from the_ digital
after the spike-initiation zone in a biological neuron [3]. If th&!rcuitry by moving this inverter to the analog supply, without

loop gain exceeds unity, the output’s rate of change is Iimit&ﬁ’rrummg the a,nalog supply. However, we must also mOYe.the
only by the amplifier's output current, not by the input curren€cond inverter's pull-down to the analog supply to avoid in-
Thus, this circuit has an effective gain of 100000 or moré®cting digital supply noise through the positive-feedback ca-

Unfortunately, the first inverter, with its input charging up gpacitor (via the second inverter's pull-down device, which re-

1 V/ms, spends 0.5 ms within 0.5 V of threshold passingrQainS on during the interspike interval). The inhibition medi-

short-circuit current close to 1Q0A the whole time. Hence, it &ted by this pull-down is acceptable, as it tends to desynchro-

consumes a million times more energy than a regular cMmoEe the neurons. Unlike excitation, which tends to synchronize
inverter the neurons and increase spiking activity.

We may limit the axon-hillock’s power dissipation by Parasitic capacitances within a device, due to overlap between

starving the first inverter using an nMOS-style pull-up tran_gate and sourqe/drain diffusion., can'turn on a device by driv?ng
sistor, which supplies a fixed bias current of aboutA, as its source put5|det'he supply rail. .ThIS. problem plagu'ed the first
suggested by Lazzaro [51]. It is unsafe to reduce the currRE€Ver pixel designed [shown in Fig. 16(a)]. Rapid voltage
further because this inverter's output must switch all the way &/ings on the column-select linex(i) are transmitted to the
cnd by the time the row is selected [see Fig. 13(a)]. Otherwisg9urce terminal of the current-source transistor (device with gate
the second inverter's pull-down transistor will cleaix when ti€d t0Vw), driving it a fraction of a volt belowGND—if the
its pull-up is disabled by going hight Consequently, this N0de’s voltage sits close D, as it does in this circuit. As
approach reduces the power dissipation to only 10000 timagesult, the current source would pass a fraction of a picoamp
that of a regular inverter. even wheriw was tied toGND.

Power-supply rails mediate crosstalk. Transistors connected®arasitic capacitances between series-connected devices
to the rails form a multiple-input differential pair, and a devic&an produce charge-pumping. This problem also plagued the
transiently steals current from the others when it is switched dgCeiver pixel shown in Fig. 16(a). The pair of transistors

With the axon-hillock’s input and threshold transistors tied tgontrolled by the row and column select lineg;i andaxi,
pump charge from the current-source transistor to ground when

nonoverlapping pulses occur on the select lines. For a 20 fF
4Charles Higgins discovered this race condition. parasitic capacitor, a 100-Hz average spike rate per pixel, a

(b) !
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Fig. 17. Layout of 2x 2 receiver pixels. Pixels are flipped vertically and horizontally to isolate digital and analog circuitry and share contacts [see Fig. 16(b)
for the circuit]. Current-mirror integrators are located centrally, with switched current-sources (large devices at top and bottonardegesle pull-downs (two

small series-connected devices tied to the current-sourcesyaandgate and acknowledge pull-ups (devices witlshaped gates near left and right edges) on the
peripheryaxi, ryi, VA, andIout run vertically in M1,byi runs horizontally in M2Vw, V¥pu andSel run horizontally in Polyl. A second Poly2 select line is used

in odd columns to compensate for hexagonal tiling in the retina chip. An M1 line, tieditoshield’s the current-source transistor’s drain from the M2 row-select
line. Gray is substrate; black and darker shading is M2. The cell widthNsa68 its height is 48, or 18.9 gm x 13.8 pm in 0.54:m technology & = 0.3 pm).

0.5-V voltage drop, and 64 neurons per row or column, the TABLE IV
current is 64 pA. This current, which scales with the array THREE GENERATIONS OFARBITERED CHANNELS
size, easily swamps out the subpicoamp current levels we —gz= Process Read-Out  OydeTime  Throughput
must maintain in the diode-capacitor integrator to obtain time 64x64 2.0pm _ Random  2us 500KS/s [4]
constants greater than 10 ms using a 300-fF capacitor. 23 fzgﬂ O g;’&’ss/ﬁ o 4;?]’]
Capacitive turn-on and charge-pumping can both be elimi-
nated by adding a pull-up, which implements an nMOS-style
NAND gate, as shown in Fig. 16(b). A full CMOSaND gate from National Instruments [53]. They achieved a transfer rate
will also work—it eliminates the global bias lingpu but re- of 100 kHz by programming at the register level.
quires an additional transistor. The pull-up keeps the current-The architectural optimizations described earlier reduced
source transistor's source-terminal clos&/éid, making it im- cycle times by more than an order of magnitude, over three
possible to capacitively drive it below ground, and it is biasegkenerations of arbitered AER channel designs. Going from
to supply a few microamps, easily overwhelming the pump cu2-u:s, reported in Mahowald and Sivilotti's pioneering work, to
rent. Furthermore, the current-source transistor is switched amlow as 30 ns reported in [48], where spikes are readout from
by swinging its source terminal fronmdd to GND, a technique the array in parallel. Table IV summarizes the evolution.
that can meter minute quantities of charge, as demonstrated bf\ddress-event streams from the local-readout @4 neuron
Cauwenberghs [52]. A layout of the receiver pixel is shown itfansmitter design [14], fabricated in;&n technology, reveal
Fig. 17. Inthe next section, characterization procedures for AERe arbiters’ greedy behavior. This transmitter uses the archi-
communication channels and the performance of some existirgture shown in Fig. 12, and reads all the spiking neurons in
designs are discussed and reviewed, respectively. a selected row, sequentially, before it selects another row. The
row arbiter rearranges thé address, as shown in Fig. 18, as it
attempts to span the smallest subtree, going to the nearest row
that is active. Such scanning is beneficial because transversing
Timing relationships between the control signals must be kegnt additional level added 37 ns (estimated) to the cycle time.
in mind while debugging these asynchronous interfaces. The 8ianning is not evident in th& addresses because, at the low
agram in Fig. 7(b) indicates which party must act at any statgad level used, no more than three or four neurons are active
in the sequence, helping us to determine who is at fault wheimultaneously within the same row.
the channel hangs. For example, if it hangs with botinda Cycle-time measurements from a parallel-readout $(86
high, the arrow indicates that the sender is at fault; it failed treuron transmitter [48], fabricated in L;Zn CMOS tech-
withdraw its request. Testing is facilitated by interfacing sendeology, are shown in Fig. 19. This transmitter used an
and receiver chips with a computer that can read and write adehitecture similar to the previous one, except that a row-wide
dresses at high speed. Delbriuekal. have implemented a latch was interspersed between the array and the column
MatLab-based interface on the Mac, using a parallel I/O caadbiter, and the state of all neurons in a selected row were

V. TESTPROTOCOLS ANDCHANNEL PERFORMANCE
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" ' ' ) ' ' sparse, temporally coincident, neural activity, whitened by pre-
K . ; g 0 i processing in the sensory epithelium. Neuronal ensembles cap-
@ & o8 ) 0 ; ° H 1 ture this stimulus-driven spatiotemporal activity. They consists
b4 Y ‘, 8 of spikes clustered at distinct temporal locations where events
S0 4 g o t b . . . .
! s ., ¢ G occur and sparse spatial locations determined by the stimulus
w8 ¢ 4o f g ¥ . pattern. They also have an unstructured component that arises
i ¥ ¢ &. ..: f o4 from noise in the signal, noise in the system, and from differ-
o . . . .

é » e o R oo . P oo ¥ ences in gain and state among the neurons. This stochastic com-
o f;*« f °8 8 5 o o ponent limits the precision with which neurons encode informa-
" s, o0 ®° ° % R | tion about the stimulus. Neuronal ensembles can be transmitted

'fo b °: o8 I ;8 % o‘f‘? by time-division multiplexing without losing information if the
M . , g %o channel’s timing precision exceeds that of the neurons.
1050 o 8 8 K 4
o o
° oig s Do 8 o °t:o ° o .
A SR N N0 S PR A. Design Tradeoffs
0 100 200 300 400 500 600 _ . .
(a) For random-access time-multiplexed channels, the multiple
70 . . Comt : . bits required to encode identity are offset by the reduced sam-
s e, ‘s . P pling rates produced by local adaptation when activity is sparse.
+ + + + . . .
o+ 7.0 o SR : The payoff is even better when there are sufficient 1/0 pins to
A N 5 : .. :’“ Lt ﬁ: transmit all the address-bits in parallel. In this case, frequency
sof W S L e T et and time-constant adaptation allocate bandwidth dynamically in
RIS the ratioa: (1—a)/Z bet tive and passive fractions of th
et e L e L e ra: i0a: ( F—a?/ e _vve?n active and pa55||\_/e ractions of the
40 -* + + * * 4,’ - . - -
A LA af* R population. For low active fractionsand sampling-rate attenu
Poe T oo T ation factorsZ larger thanl /a, the effective Nyquist sampling
++ .
oF LT, :‘ R RS AR S 1 rate may be increased by a factorlga.
id + . - .
Jhey e gt vt ey Contention occurs when two or more neurons spike simulta-
Rasd ++ + + + . . .
A R e I A 1 neously, and we must dump old spikes to preserve the timing
+ - . . . . .
to, Lo e R N ST of new spikes or queue new spikes to avoid losing old spikes.
R e Th Lt e e Y ’::* ‘e, 1 An unfettered design, which discards spikes clobbered by colli-
’I: AN :;; et *; R T W, . sions, offers higher throughput if high spike-loss rates are toler-
"o 2% e w0  able.Incontrast, an arbitered design, which makes neurons wait
(b) their turn, offers higher throughput when low-spike loss rates are

desired. Indeed, the unfettered channel utilizes only 18% of its

Fig. 18. Address-event streams showing arbiter scantirand.X addresses capacity at the most. Therefore, the arbitered design offers more

ﬁfeP'Ot:eld on theF Vegticgl axes. and thfv:if%ogggn in thetStfg?m,iS plotted Qphthﬁoughput if its cycle time is no more than five times longer
orizontal axes. For load a 0 capacity: fa resses tend to increase wi th
: i an that of the unfettered channel.
sequence number; and (i) addresses are distributed randomly. . o .
The inefficiency of the unfettered channel design, also known

as ALOHA, has been long recognized, and more efficient pro-

read in parallel. The latch’s bit-cells act as slave neurons: thi&gols have been developed [7]. One popular approach is car-
send requests to the column arbiter, while the neurons in the 8L sense multiple access (CSMA), where each user monitors
lected row are reset and another row is selected. The cycle-tifié channel and does not transmit if it is b&syhis channel

is as low as 30 ns when spikes are read from the latch, dfdprone to collisions only during the time it takes to update its
goes up to 400 ns when data is read from the array. Even thigte. Hence, the collision rate drops if the round-trip delay is
worst-case cycle-time, which involves arbitration in both dimuch shorter than the packet-transmission time, as in bit-serial

mensions, trumps the 730 ns achieved with the earlier locH@nsmission of several bytes. Its performance is no better than

readout design [13], [14]. ALOHA's; however, if the round-trip delay is comparable to the
Images in Fig. 20 show the response of the X086 neuron packet-transmission time [7], as in bit-parallel transmission of

retinomorphic chip to a light spot [31]. The address events weg€ Or two bytes. Consequently, it is unlikely that CSMA will

read into a computer, and the images were rendered by mode#gve useful for neuromorphic systems (preliminary results are

temporal integration in the diode-capacitor integrator. The fol@Ported in [54]).

types of ganglion cells on the chip subsample the image by a?S technology improves and we build denser arrays with

factor of two; LSB’s of theX andY addresses encode the celphorter cycle times, the unfettered channel’s collision prob-
type. ability remains unchanged for the same normalized load,

whereas the arbitered channel’'s normalized timing error
decreases. This desirable scaling arises because timing error is
VI. DISCUSSION AND SUMMARY the product of the number of wait cycles and the cycle-time.

) ) ) o Consequently, queuing time decreases due to the shorter cycle
This paper has described the design of communication chan-

nels for neuromorphic chips. These designs exploit spatiallyfThe Ethernet, and most local-area-networks, work this way.
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Fig. 19. Cycle times for parallel-readout transmitter—screen dump from a Tektronix TLA704 Logic Analyzer. Top trace: request. Middle: colusan addre
Bottom: row address. The first and second address events are from different rows, whereas the second and third events are from the same romeTise cycle ti
362 ns in the first case and 72 ns in the second case.

Increasing | Decreasing Decreasing

Fig. 20. Response of retinomorphic chip. Four ganglion-cell types respond to light or dark spots either in a transient (Increasing, Decrestsingddastion
(On, Off). (a) Light spot stationary (located where the single active Increasing cell is): sustained cells pick up increased signal at thetspotiadodecreased
signal in surrounding region, due to lateral inhibition. Fixed-pattern noise, due to transistor mismatch, is also evident. (b) Light spot mogitgthp aght:

transient cells pick up decrease at inhibitory surround’s leading edge and increase at excitatory center’s leading edge. The mean spike ias/neag&rgpi

times, even though the number of cycles spent waiting remaloss as 5.3% in the arbitered channel, with subpercent timing
the same. Indeed, as the cycle-time must be inversely properrors due to queuing.

tional to the number of neuroi?¥, the normalized timing error _

is less than 40QV for loads below 95% capacity and activeB- Asynchronous Implementation

fractions above 5%. For population sizes of several tens of ¥ — 1 two-input arbiter cells, arranged in a tree with
thousands, the timing errors is just a few percentage points. |log, (V)| levels, are required to arbitrate betwe®meurons,

For neurons whose timing precision is much better thgius N address decoder and encoder cells. This area overhead
their interspike interval, we may estimate throughput requirgnay be reduced fronV to /N by going to a hierarchical
ments by measuring frequency adaptation and synchroniciiyw—column organization. Time overhead is reduced by
Frequency adaptation gives the spike rate for neurons thahkdopting three strategies.
are not part of the neuronal ensemble, and synchrongity Pipelining reduces the time overhead of arbitration by over-
gives the peak spike rate for neurons in the ensemble. Thegsping communication sequences of the sending neuron, the
firing rates are obtained from the spike frequency at stimulygw arbiter, the column arbiter, and the receiving neuron. We
onset by dividing byy and multiplying byé, respectively. The also inserted a pipeline stage between the receiver chip’s input
throughput must exceed the sum of these two rates if we wigbrt and its decoders, allowing it to acknowledge as soon as it
to transmit the ensemble without adding latency or temporiakches the address from bus. It decodes the address and selects
dispersion. The surplus capacity must be at least 455% th@ target neuron, while the sender is clearing its row or column
account for collisions in the unfettered channel, but may be &glect signals and selecting a new row or column.
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Exploiting locality in the row—column organization reduceso thank M. Mahowald for making available layouts of the ar-

time-overhead further by servicing all active neurons in the seiter, the address encoders, and the address decoders; J. Lazzaro,

lected row, redoing row arbitration only when no requests afe Martin, J. Tierno, and T. (Bassen) Lande for helpful discus-
left. Throughput is boosted further by reading the state of aions; T. Delbriick for help with the Macintosh AER interface
neurons in a selected row in parallel, storing this information end L-Comp; and J. Dickson for help with PCB design, and
a latch at the periphery of the array, where it can be readily sufanner Research Inc. for making available a prerelease version
plied to the column arbiter. The spikes are transmitted in a raéitheir L-Comp libraries for silicon compilation.

burst, while the array is cycled to select and read the next row.
Exploiting locality in the arbiter tree also reduces time over-
head by spanning the smallest subtree that has a pair of ac-
tive inputs. We implemented this strategy simply by making the [1]
two-input arbiter cell greedy; it services both of its daughters if 2]
they are active. Thus, the arbiter becomes a scanner when neu-
ronal activity is spatially clustered. It transverses one level with

probability 1/2, two with probability 1/4, three with probability

1/8, and so on; this series converges to two levels. [4]
However, exploiting locality trades fairness for efficiency. In-
stead of allowing every active neuron to bid for the next cycle, 5

or granting service on a strictly first-come—first-served basis, the
transmitter acts like a traveling salesman and services the closest
customer. It may pick up a neuron that is close by over neuron 6
that fired earlier. Giving priority to location minimizes the av- [7]
erage cycle time, thereby maximizing the channel capacity and
minimizing the average wait time. Unfortunately, service is lim-
ited to a local area when the channel is overloaded, and neurong]
outside that area are simply ignored. Irrespective of the fairness
of the selection mechanism we choose, the average wait ti”}?O]
goes to infinity when the channel capacity is exceeded. There-
fore, maximizing channel capacity is my paramount concern. [11]
Special attention must be paid to digital-analog interfaces in
these hybrid designs. It is imperative to use positive feedback?]
to match analog and digital slew rates; hysteresis alone [41] is
not enough. However, the axon-hillock circuit’'s power dissipa—[13]
tion must be reduced drastically (possibly by adapting the bias
current to the output’s rate of change) and excitatory couplin
through the supply rails carefully isolated. Capacitive turn—or?
and charge-pumping in receiver-neuron interfaces were elimi-
nated by implementing an nMOS-styiaND gate. [15]
We may have to adopt bidirectional current-signaling to
achieve subpercen@0 dB) capacitive crosstalk. However,
this technique, which has been used within [55], [24] and!€]
between [56]-[58] chips, must be refined further to reduce
static power dissipation, and the area-overhead in capacitors for
frequency-compensation or in large devices for better matchind!’]
Following a rigorous design methodology for asynchronous
logic circuits has paid off, improving robustness and reliability[18]
considerably. Although the state-of-the-art implementations are
by no means bullet-proof [48], they are getting to the pointwhere
nonexperts can use them with the aid of silicon compilation[19]
Making it possible for neuromorphic-system designers with lim-
ited expertise in asynchronous communication to successfully

incorporate these channels into their designs [17], [59]. [20]
[21]
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