
416 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

Point-to-Point Connectivity Between Neuromorphic
Chips Using Address Events

Kwabena A. Boahen

Invited Paper

Abstract—This paper discusses connectivity between neuro-
morphic chips, which use the timing of fixed-height fixed-width
pulses to encode information. Address-events (log

2
()-bit

packets that uniquely identify one of neurons) are used to
transmit these pulses in real time on a random-access time-mul-
tiplexed communication channel. Activity is assumed to consist
of neuronal ensembles—spikes clustered in spaceand in time.
This paper quantifies tradeoffs faced in allocating bandwidth,
granting access, and queuing, as well as throughput require-
ments, and concludes that an arbitered channel design is the best
choice.The arbitered channel is implemented with a formal design
methodology for asynchronous digital VLSI CMOS systems,
after introducing the reader to this top-down synthesis technique.
Following the evolution of three generations of designs, it is shown
how the overhead of arbitrating, and encoding and decoding, can
be reduced in area (from to) by organizing neurons into
rows and columns, and reduced in time (fromlog

2
() to 2)

by exploiting locality in the arbiter tree and in the row–column
architecture, and clustered activity. Throughput is boosted by
pipelining and by reading spikes in parallel. Simple techniques
that reduce crosstalk in these mixed analog–digital systems are
described.

Index Terms—Asynchronous logic synthesis, interchip commu-
nication, spiking neurons, virtual wiring.

I. CONNECTIVITY IN NEUROMORPHICSYSTEMS

ENGINEERS are far from matching either the efficacy of
neural computation or the efficiency of neural coding.

Computers use a million times more energy per operation
than brains do [1]. Video cameras use a thousand times more
bandwidth per bit of information than retinas do (see Sec-
tion II-A). We cannot replace damaged parts of the nervous
system because of these shortcomings. To match nature’s com-
putational performance and communication efficiency, we must
co-optimize information processingandenergy consumption.

A small but growing community of engineers is attempting to
build autonomous sensorimotor systems that match the efficacy

Manuscript received November 1999; revised December 1999. This work was
supported by ONR, DARPA, the Beckman Foundation, California Institute of
Technology’s National Science Foundation (NSF) Engineering Research Center
for Neuromorphic Systems, the California Trade and Commerce Agency, the
Office of Strategic Technology, Penn’s Schools of Engineering and Applied Sci-
ences and the School of Medicine (through the IME), the NSF Knowledge and
Distributed Intelligence Program, and the Whitaker Foundation.

The author was with Carver Mead’s Lab, California Institute of Technology,
Pasadena, CA 91125 USA. He is now with the Bioengineering Department,
University of Pennsylvania, Philadelphia, PA 19104-6392 USA.

Publisher Item Identifier S 1057-7130(00)04206-3.

and efficiency of their biological counterparts by recreating the
function and structure of neural systems in silicon. Taking a
structure-to-function approach, theseneuromorphic systemsgo
beyond bio-inspiration [2], copying biological organization, as
well as function [3]–[5].

Neuromorphic engineers are using garden-variety VLSI
CMOS technology to achieve their goal [6]. This effort is
facilitated by similarities between VLSI hardware and neural
wetware. Both technologies:

1) provide millions of inexpensive, poorly-matched devices;
2) operate in the information-maximizing low-signal-to-

noise/high-bandwidth regime.
It is also challenged by these fundamental differences:

1) fan-ins and fan-outs are about ten in VLSI circuits versus
several thousand in neural circuits;

2) most digital VLSI circuits are synchronized by an ex-
ternal clock, whereas neurons use the degree of coinci-
dence in their firing times to encode information.

Neuromorphic engineers have adopted time-division multi-
plexing to achieve massive connectivity, inspired by its suc-
cess in telecommunications [7] and computer networks [8]. The
number of layers and pins offered by commercial microfab-
rication and chip-packaging technologies are severely limited.
Multiplexing leverages the five-decade difference in bandwidth
between a neuron (hundreds of hertz) and a digital bus (tens
of megahertz), enabling us to replace thousands of dedicated
point-to-point connections with a handful of high-speed metal
wires and thousands of switches (transistors). It pays off, be-
cause transistors occupy less area than wires and are becoming
relatively more compact in deep submicron processes.

In adapting existing networking solutions, neuromorphic ar-
chitects are challenged by huge differences between the require-
ments of computer networks and those of neuromorphic sys-
tems. Whereas computer networks connect thousands of com-
puters at the building- or campus-level, neuromorphic systems
need to connect millions of neurons at the chip- or circuit-board
level. Hence, they must improve the efficiency of traditional
computer communication architectures, and protocols, by sev-
eral orders of magnitude.

Mahowald and Sivilotti proposed using anaddress-event rep-
resentationto transmit pulses, or spikes, from an array of neu-
rons on one chip to the corresponding location in an array on a
second chip [9], [4], [10]. In their scheme, depicted in Fig. 1,
an address-encoder generates a unique binary address for each

1057–7130/00$10.00 © 2000 IEEE

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 417

Fig. 1. The AER pulses from spiking neurons are transmitted serially by
broadcasting addresses on a digital bus. Multiplexing is transparent if the
encoding, transmission, and decoding processes cycle in less than�=n s,
where� is the desired spike-timing precision andn is the maximum number
of neurons that are active during this time (adapted from [4]).

neuron whenever it spikes. A bus transmits these addresses to
the receiving chip, where an address decoder selects the corre-
sponding location.

Eight years after Mahowald and Sivilotti proposed it, the ad-
dress-event representation (AER) has emerged as the leading
candidate for communication between neuromorphic chips. In-
deed, at the National Science Foundation (NSF) Neuromorphic
Engineering Workshop held in June/July 1997 at Telluride, CO,
the AER Interchip Communication Workgroup was in the top
two, second only to Mindless Robots in popularity [11].

The performance of the original point-to-point protocol has
been greatly improved. Efficient hierarchical arbitration circuits
have been developed to handle one-dimensional (1-D) and
two-dimensional (2-D) arrays [12]–[14]. Sender and receiver
interfaces have been combined on a single chip to build a
transceiver [15]. Support for multiple senders and receivers
[15]–[17], 1-D nearest-neighbor-connected network topologies
[18], reprogrammable connections, and projective or receptive
fields [19], [15], [17] has been added. Laboratory prototypes
with 20 000 neurons and 120 000 AER-based connections have
been demonstrated [19]. Systems with a million neurons and
a billion connections are on the drawing board. In the near
future, we are bound to see large-scale neuromorphic systems
that rewire themselves—just like neural systems do—by taking
advantage of the dynamically reprogrammable virtual wiring
[20] made possible by AER.

In this paper, the goal is to provide a tutorial introduction to
the design of AER-based interchip communication channels.
The remainder of the paper is organized as follows. A simple
model of neural population activity is introduced in Section II,
which is used to quantify tradeoffs faced in communica-
tion channel design in Section III. This section is divided
into four subsections that cover bandwidth allocation (Sec-
tion III-A), channel access protocols (Section III-B), queuing
(Section III-C), and throughput requirements (Section III-D).
Having motivated an approach to inter-chip communication,
the reader is introduced to a formal design methodology for
asynchronous digital VLSI CMOS systems, and an AER
communication channel implemented using this methodology
is described in Section IV. This section is divided into four
subsections that cover pipelining (Section IV-A), arbitration
(Section IV-B), row–column organization (Section IV-C), and
analog–digital interfaces (Section IV-D). The performance of
three generations of designs is reviewed in Section V and the
paper is summarized in Section VI. Parts of this work have been
described previously in conference proceedings [21], [13], a
magazine article [22], and a book chapter [14].

II. NEURAL POPULATION ACTIVITY

Neuromorphic systems use the same currency of information
exchange as the nervous system: fixed-height fixed-width pulses
that encode information in their time of occurrence. Timing pre-
cision is measured by latency and temporal dispersion.Neuronal
latencyis the time interval between stimulus onset and spiking;
it is inversely proportional to the strength of the stimulus.Neu-
ronal temporal dispersionis due to variability between indi-
vidual neurons; it is also inversely proportional to the strength
of the stimulus. When messages are transmitted to reveal loca-
tions, or identities, of neurons that are spiking, the communi-
cation channel’s finite latency and temporal dispersion add sys-
tematic and stochastic offsets to spike times that reduce timing
precision.

Although a fairly general purpose implementation was
sought, our primary motivation for developing a communica-
tion channel is to read spike trains off neuromorphic chips with
thousands of spiking neurons, organized into 2-D arrays, such
as silicon retinas [23], [24] or silicon cochlears [25], [26]. Neu-
ronal activity is shaped by the preprocessing that occurs in the
sensory epithelium, which is designed to eliminate redundancy
and encode information efficiently [27], [28]. We optimized the
channel design for the resulting neuronal population activity,
and sought an efficient and robust implementation that supports
adaptive pixel-parallel quantization. This design should be well
suited to higher-level neuromorphic processors in so far as they
code information efficiently.

A. Efficient Coding in the Retina

The retina converts spatiotemporal patterns of incident
light into spike trains. Transmitted over the optic nerve, these
discrete spikes are converted back into continuous signals by
dendritic integration in postsynaptic targets. Retinal processing
maximizes the information carried by these spikes. Sampling
at the Nyquist rate, conventional imagers require 40 Gb/s to
match the eyes’ photopic range (17 bits), spatial resolution
(60 cycles/), temporal resolution (10 Hz), and field of view
(). In contrast, coding 2 bits of information
per spike [29], the million-axon optic nerve transmits just 40
Mb/s—a thousand times less.

The retina has evolved exquisitely adaptive filtering and sam-
pling mechanisms to improve coding efficiency, six of which are
highlighted below.

1) Local automatic gain controlat the photoreceptor- [30]
and network-level [24], [31] eliminates the dependence
on lighting; the receptors respond to contrast instead.
Adapting locally extends the retina’s input dynamic
range without increasing its output range.

2) Bandpass spatiotemporal filteringin the outer plexiform
layer (or OPL, the retina’s first stage) [24] passes an in-
termediate range of spatial frequenciesor temporal fre-
quencies. Rejecting low frequencies reduces redundancy,
and rejecting high frequencies reduces noise.

3) High-pass temporal and spatial filteringin the inner
plexiform layer (or IPL, the retina’s second stage) [31]
suppresses the OPL’s strong low temporal-frequency
response at its peak spatial frequency (i.e., sustained

418 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

response to static edge) and its strong low spatial-fre-
quency response at its peak temporal frequency (i.e.,
blurring of moving edge).

4) Half-wave rectificationin ON andOFF output cell types
[31] eliminates the elevated neurotransmitter-release and
spike-firing rates required to signal both positive and neg-
ative signal excursions using a single channel.ON/OFF

encoding is used in bipolar cells (the OPL-to-IPL relay
cells) as well as in ganglion cells (the retina’s output
cells).

5) Phasic transient–sustained responsein the ganglion cells
[32] avoids temporal aliasing by transmitting rapid tran-
sients using brief spike-bursts, and eliminates redundant
sampling by transmitting slow fluctuations using a low
sustained firing rate. Fig. 2 shows responses of silicon
analogs of ganglion cells.

6) Foveated architectureand precise rapid eye movements
provide the illusion of high spatial and temporal reso-
lution everywhere, while sampling coarsely in time cen-
trally and coarsely in space peripherally [33].

Since retinal neurons are driven by intermediate spatial and
temporal frequencies, and are insensitive to low spatial and tem-
poral frequencies, small subpopulations tend to fire together.
Such correlated, but sparse, activity arises because the neurons
respond to well-defined object features and adapt to the back-
ground. There is also evidence that gap-junction coupling be-
tween ganglion cells makes neighboring cells more likely to fire
in synchrony [34], [35], and these coincident spikes drive down-
stream neurons more effectively [36]. The concept of a neuronal
ensemble is introduced in the next section to capture this stim-
ulus-driven fine spatiotemporal structure.

B. The Neuronal Ensemble

We can describe the activity of a neural population by an or-
dered list of locations in spacetime

where each coordinate specifies the occurence of a spike at a
particular location, at a particular time. The same location can
occur in the list several times, but a particular time can occur
only once—assuming time is measured with infinite resolution.

There is no need to record time explicitly if the system that is
logging this activity operates on it in real-time; only the location
is recorded and time represents itself. In that case, the represen-
tation is simply

This real-time code is called theaddress-event representation
(AER) [9], [10].

has a great deal of underlying structure that arises from
events occurring in the real world, to which the neurons are re-
sponding. The elements ofare clustered at temporal locations
where these events occur, and are clustered at spatial locations
determined by the stimulus pattern. Information about stimulus
timing and pattern can therefore be obtained by extracting these
clusters. Also, has an unstructured component that arises from

Fig. 2. Adaptive silicon neuron’s step response. (a) Spike-frequency
adaptation. Top: the integrator’s output current builds up each time the
neuron spikes, modeling calcium-dependent potassium channels. Middle:
The membrane voltage charges from reset (1.5 V) to threshold (2.2 V),
driven by the difference between input and integrator currents. Bottom:
Spikes generated each time the membrane voltage reaches threshold. (b)
Time-constant adaptation. The membrane voltage repolarizes rapidly because
the integrator’s output is temporarily shut off when the neuron is reset,
modeling voltage-dependent potassium channels. Thus, a tight burst of spikes
is generated and adaptation is rapid.

noise in the signal and in the system, and from differences in
gain and state among the neurons. This stochastic component
limits the precision with which the neurons can encode infor-
mation about the stimulus. These statistically-defined clusters
are calledneuronal ensembles.

The probability distributions that describe these neuronal en-
sembles may be determined by characterizing a single neuron,

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 419

Fig. 3. Adaptive silicon neuron’s latency distribution. The time taken to
respond to a 15% step increase in input current was measured 1000 times. (a)
Spike-frequency adaptation: the first spike is distributed more or less uniformly,
with a slight tendency toward shorter latencies. The median is 1.3 ms and the
firing rate immediately after the step (inferred from the longest latency of 2.63
ms) is 380 Hz, compared with a steady-state firing rate of 38.4 Hz. The bin size
was 33.3�s. (b) Time-constant adaptation: the distribution is heavily skewed
toward shorter latencies. The median is 40�s and the peak firing rate is 28.1
kHz, compared with a firing rate immediately after the step of 714.3 Hz and a
steady-state firing rate of 62.5 Hz. The bin size was 2�s.

assuming its state is randomized from trial to trial, just like
the state is randomized across the population. It was measured
how long it takes the adaptive silicon neuron to fire after a step
change was made in its input current, repeated over several trials
(described in [5], [32]). The results obtained with spike-fre-
quency adaptation and time-constant adaptation, implemented
by modeling calcium- and voltage-dependent ion channels in
real neurons, are shown in Fig. 3.

The median of the distribution may serve as a measure of neu-
ronal latency. It gives the expected latency if the target neuron’s
threshold equals 50% of the spikes in the ensemble. Unlike the
simple integrate-and-fire neuron, whose latency is half its in-
terspike interval, adaptive neurons have latencies that are much
shorter than their steady-state interspike interval, as shown in
Fig. 2. The ratio between the firing rate immediately after the
step and the firing rate in steady state is defined as thefre-
quency adaptation, [5]. The measurements shown in Fig. 2(a)
and Fig. 3(a) yield for a silicon neuron that models
calcium-dependent potassium channels. The ratio between the
height of the peak in the distribution and the height of the uni-
form distribution over the same interval is defined as thesyn-
chronicity, [5]. The measurements shown in Fig. 3(b) yield

TABLE I
TIME-MULTIPLEXED COMMUNICATION CHANNEL DESIGNOPTIONS

39.4 for a silicon neuron that models voltage-dependent
potassium channels as well as calcium-dependent ones.

In addition to characterizing the neuron’s spike-timing preci-
sion relative to its steady-state firing rate, frequency adaptation
and synchronicity allow us to compute its throughput require-
ments. Frequency adaptation gives the spike rate for neurons
that are not part of the neuronal ensemble, assuming that these
neurons have adapted. Synchronicity gives the peak spike rate
for neurons in the ensemble. Throughput must exceed the sum
total spike rate for these two segments of the population. A for-
mula is derived for computing channel capacity requirements, as
a function of tolerable percentage errors in spike rate and neu-
ronal latency in the next section.

III. T RADEOFFS INCHANNEL DESIGN

Four important performance criteria for a communication
channel that provides virtual point-to-point connections be-
tween neuronal arrays are the following.

Capacity: The maximum rate at which spikes can be trans-
mitted. It is equal to the reciprocal of the minimum communi-
cation-cycle time.

Latency: The median of the distribution of time intervals be-
tween spike generation in the sending population and spike re-
ception in the receiving population.

Temporal Dispersion:The standard deviation of the latency
distribution.

Integrity: The fraction of spikes that are delivered to the cor-
rect destination.

All four criteria together determine thethroughput, which is
defined as the usable fraction of the channel capacity. Because,
the load offered to the channel must be reduced to achieve more
stringent specifications for latency, temporal dispersion, and in-
tegrity.

Channel performance is affected by the information coding
strategy used. Some alternatives to fixed-height fixed-width,
pulses are listed in Table I, together with their pros and cons.
The choices made in this work are set in boldface. Murray and
Tarassenko explore the use of various pulse-stream representa-
tions to implement abstract models of neural networks [37], and
Reyneri has analyzed and compared the performance of various
pulse coding strategies [38]. However, little attention has been
paid to using precise spike timing and neuronal ensembles

420 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

to encode information, despite increasing neurobiological
evidence in support of such coding schemes [39], [40].

Given an information coding strategy, the communication
channel designer faces several tradeoffs. Should he preallocate
the channel capacity, giving a fixed amount to each user, or
allocate capacity dynamically, matching each user’s allocation
to its current needs? Should she allow users to transmit at will,
or implement elaborate mechanisms to regulate access to the
channel? And how does the distribution of activity over time
and over space impact these choices? Can he assume that users
act randomly, or are there significant correlations between their
activities? Light is shed on these questions in this section, and
some definitive answers are provided.

A. Allocation: Dynamic or Static?

We may use adaptive neurons that sample at when the
signal is changing, and sample at when the signal is
static, where is a prespecified attenuation factor. Let the prob-
ability that a given neuron samples at be . That is, is the
active fractionof the population. Then, each quantizer generates
bits at the rate

because percent of the time, it samples at ; the remaining
percent of the time, it samples at . Furthermore,
bits are used to encode the neuron’s location, using

AER, where is the number of neurons.
On the other hand, we may use conventional quantizers that

sample every location at , and do not locally adapt their
sampling rate. In that case, there is no need to encode location
explicitly. We simply poll all locations, according to a fixed
sequence, and infer the origin of each sample from its temporal
location. As the sampling rate is constant, the bit-rate per quan-
tizer is simply .

The multiple bits required to encode identity are offset by
the reduced sampling rates produced by local adaptation when
activity is sparse. In fact, adaptive sampling produces a lower
bit rate than fixed sampling if

For example, in a 64 64 array of neurons with sampling rate
attenuation , the active fraction must be less than 6.1%.

It may be more important to minimize the number of samples
produced per second—instead of minimizing the bit rate—as
there are usually sufficient I/O pins to transmit all the address’
bits in parallel. In that case, it is the number of samples per
second that is fixed by the channel capacity. Given a certain
fixed throughput in samples/s, we may compare the effec-
tive sampling rates achieved by various sampling strate-
gies.

Adaptive neurons allocate channel throughput dynamically in
the ratio between active and passive fractions of
the population. Hence

(1)

where is the throughput per neuron. The av-
erage neuronal ensemble size determines the active fraction,

Fig. 4. Effective Nyquist sampling rate versus active fraction, plotted
for various frequency adaptation factors (
), with throughput fixed at 10
spikes/neuron/s. As the active fraction increases, the channel capacity must be
shared by a larger number of neurons, and hence, the sampling rate decreases.
It falls precipitously when the active fraction equals the reciprocal of the
adaptation factor.

and frequency adaptation and synchronicity determine the at-
tenuation factor , assuming neurons that are not part of the
ensemble have adapted. Fig. 4 shows how the sampling rate
changes with the active fraction for various frequency adapta-
tion factors . For small and , the sampling rate
may be increased by a factor of at least .

In a retinomorphic system, spatiotemporal bandpass filtering
and half-wave rectification make output activity sparse [32],
yielding active fractions of a few percent. Assuming 0.05,

1 gives for the integrate-and-fire neuron;
gives for the neuron with fre-

quency adaptation; and gives
when the membrane time-constant adapts as well.

B. Access: Arbitered or Unfettered?

Assuming the spiking neurons are described by independent
identically distributed Poisson point processes, the probability
of spikes being generated during a single communication
cycle is given by

where is the expected number of spikes. ,
where is the cycle time and is the mean interval be-
tween spikes. By substituting for , where is the
channel capacity and for , where is the mean
spike rate per neuron and is the number of neurons, we find
that . Hence, is equal to the offered load.

We may derive an expression for the collision probability, a
well-known result from communications theory, using the prob-
ability distribution [8]. To transmit a spike without a
collision, the previous spike must occur at leastseconds ear-
lier, and the next spike must occur at least seconds latter.
Hence, spikes are forbidden in a time interval, centered
around the time that transmission starts. Therefore, the proba-
bility of the spike making it through is , and
the probability of a collision is

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 421

Fig. 5. Throughput versus collision probability. Throughput attains a
maximum value of 18% when the collision probability is 0.64, and the load
is 50%. Increasing the load beyond this level lowers throughput because
collisions increase more rapidly than the load does.

The unfettered channel must operate at high error rates to
maximize channel utilization. The throughput is ,
since the probability of a successful transmission (i.e., no col-
lision) is . Throughput may be expressed in terms of the
collision probability

(2)

This expression is plotted in Fig. 5. The collision probability
exceeds 0.1 when throughput reaches 5.3%. Indeed, the un-
fettered channel utilizes a maximum of only 18% of its ca-
pacity. Therefore, it offers higher transmission rates than the ar-
bitered channel only if it is more than five times faster, since, as
we shall show next, the arbitered channel operates fine at 95%
capacity.Contention occurs if two or more neurons attempt to
transmit simultaneously when we provide random access to the
shared communication channel. We can simply detect and dis-
card samples corrupted by collision [41], or we can introduce an
arbiter to resolve contention and a queue to hold waiting neu-
rons [9], [10]. Unfettered access shortens the cycle time, but col-
lisions increase rapidly as the load increases. Whereas arbitra-
tion lengthens the cycle time, reducing the channel capacity and
queuing causes temporal dispersion, degrading timing informa-
tion.

C. Latency: Queue New or Dump Old?

What about the timing errors introduced by queuing in the
arbitered channel? For an offered load of 95 percent, the colli-
sion probability is 0.85. Hence, collisions occur frequently and
neurons are most likely to spend some time in the queue. By
expressing these timing errors as percentages of the neuronal
latency and temporal dispersion, we can quantify the tradeoff
between queuing new spikes, to avoid losing old spikes, versus
dumping old spikes, to preserve the timing of new spikes.

To find the latency and temporal dispersion introduced by the
queue, we use well-known results from queuing theory which
give moments of the waiting time as a function of moments
of the service time [42]

where is the arrival rate of spikes. These results hold when
spikes arrive according to a Poisson process. With
and , the mean and the variance of the cycles spent
waiting are given by

We have assumed that the service timealways equals , and
therefore .

We find that at 95% capacity, for example, a sample spends
9.5 cycles in the queue, on average. This result agrees with in-
tuition: As every 20th slot is empty, one must wait anywhere
between 0–19 cycles to be serviced, which averages out to 9.5.
Hence, the latency is 10.5 cycles, including the additional cycle
required for service. The standard deviation is 9.8 cycles, virtu-
ally equal to the latency. In general, this is the case whenever the
latency is much more than one cycle, resulting in a Poisson-like
distribution for the wait times.

We can express the cycle-time in terms of the neuronal
latency by assuming that is short enough to transmit half
the spikes in an ensemble in that time. That is, if the ensemble
has spikes and its latency is, the cycle time must satisfy

, since cycles are used to transmit
each spike, on average, and half of them must be transmitted in

seconds. Using this relationship, we can express the wait time
as a fraction of the neuronal latency

The timing error is inversely proportional to the number of neu-
rons because the channel capacity grows with population size.
Therefore, the cycle time decreases, and there is a proportionate
decrease in queuing time, even when the number of cycles spent
queuing remains the same.

Conversely, given a timing-error specification, we can invert
our result to find out how heavily we can load the channel. The
throughput will be equal to the offered load , since every
spike is transmitted eventually. Hence, the throughput is related
to channel latency and population size by

when the channel capacity grows linearly with the number of
neurons. Fig. 6 shows how the throughput changes with the
channel latency. It approaches 100% for large timing errors and
drops precipitously for low timing errors, going below 95%
when the normalized error becomes less than . As

, the error is if the active fraction is 5%. Therefore,
the arbitered channel can operate close to capacity with timing
errors of a few percent when population size exceeds several
tens of thousands.

D. Predicting Throughput Requirements

Given a neuron’s firing rate immediately after a step change
in its input , we can calculate the peak spike rate of active
neurons and add the firing rate of passive neurons to obtain the
maximum spike rate. Active neurons fire at a peak rate of,

422 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

Fig. 6. Throughput versus normalized channel latency, plotted for different
neuronal ensemble sizes(N). Higher throughput is achieved at the expense
of latency because queue occupancy goes up as the load increases. These wait
cycles become a smaller fraction of the neuronal latency as the population size
increases because cycle time decreases proportionately.

where is the synchronicity, and passive neurons fire at
(assuming they have adapted), whereis the frequency adapta-
tion. Hence, we have

where is the total number of neurons andis the active frac-
tion of the population, which form a neuronal ensemble.

We can express the maximum spike rate in terms of the neu-
ronal latency by assuming that spikes from the ensemble ar-
rive at the peak rate. In this case, all neurons will spike
in the time interval . Hence, the minimum latency is

. Thus, we can rewrite our expression for
as

Intuitively, is the neurons’ timing precision and
is the number of neurons that fire during this time.

The throughput must be equal to , and there must be some
surplus capacity to minimize collision rates in the unfettered
channel and minimize queuing time in the arbitered one. This
overhead is over 455% [i.e.,] for the unfettered
channel, but only 5.3% [i.e.,] for the arbitered
one.

In summary, arbitration is the best choice for neuromor-
phic systems whose activity is sparse in space and in time,
because we trade an exponential increase in collisions for a
linear increase in temporal dispersion. Furthermore, holding
utilization constant (i.e., throughput expressed as a percentage
of the channel capacity), temporal dispersion decreases as
technology advances and we build larger networks with shorter
cycle times, even though the collision probability remains the
same. The downside of arbitration is that it takes up area and
time, reducing the number of neurons that can be integrated
onto a chip and the maximum rate at which they can fire.
Several effective strategies for reducing the overhead imposed
by arbitration have been developed; they are the subject of the
next section.

TABLE II
CHP LANGUAGE CONSTRUCTS

IV. A RBITERREDCHANNEL DESIGN

The design of arbitered channels that support point-to-point
connections among spiking neurons on different chips is rather
challenging. Early attempts were plagued by timing problems
and crosstalk [9], [10]. Fortunately, significant progress has
been made in asynchronous digital VLSI systems in recent
years, culminating in the design of a microprocessor that
uses no clocks whatsoever by Martin’s group at Caltech [43].
We apply Martin’s rigorous, correct-by-construction, design
methodology to the arbitered channel, after introducing the
program-based philosophy and notation it employs. Crosstalk,
the pitfall of mixed analog–digital (MAD) system design, must
also be addressed to achieve reliable and robust operation.

Martin’s formal synthesis methodology enables us to design
an asynchronous VLSI circuit by compiling a high-level specifi-
cation, written in thecommunicating hardware processes(CHP)
language, into aproduction rule set(PRS) [45]–[47]. A produc-
tion rule evaluates a boolean expression in real time, and sets or
clears a bit when the expression becomes true; it is straightfor-
ward to implement with MOS transistors. The synthesis proce-
dure involves two intermediate steps: program decomposition
and handshaking expansion.

Throughprogram decomposition(PD), which involves de-
composing the high-level specification into concurrent subpro-
cesses, we:

1) reduce logical complexity by divide-to-conquer;
2) share expensive hardware resources.

At this level, we make architectural design decisions that
simplify the design and minimize its hardware requirements.
We must synchronize concurrent subprocesses and resolve
contention for shared resources.

Portsare used to input data, to output data, or simply to syn-
chronize, given that processes communicate when they reach
particular points in their programs. Communication is described
in CHP simply by writing down the name of the port, say. This
action may be composed with other communications using the
language constructs outlined in Table II. A pair of complemen-
tary ports, oneactive and the otherpassive, are connected to
form a channel, as shown in Fig. 7(a). Apart from complemen-
tary channel assignments, the only constraint on whether a port
can be active or passive is theprobe. A primitive operation, de-
noted , which a process invokes to check if a communication

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 423

Fig. 7. Communication channel signals and timing. (a) Data-bus
(d0; � � � ; d3) and handshake signals (r and a). (b) Timing diagram: the
sender initiates the sequence by driving its data onto the bus and takingr

high. The receiver acknowledges by takinga high, after latching the data.
These two parties perform complementary sequences of actions and waits:
r+; [a]; r�[~a] for the active sender and[r]; a+; [~r]; a� for the passive
receiver. The active port drives the so-calledrequestline while the passive one
drives the so-calledacknowledgeline.

TABLE III
HSE PRIMITIVES

is pending on its port . It returns true if there is one and false
otherwise. The probe only works with a passive port, due to im-
plementation constraints.

Through hand-shaking expansion(HSE), which involves
fleshing out each communication into a full four-phase hand-
shake cycle, we:

1) choose whether to make a port active or passive;
2) reshuffle a communication cycle’s four phases.

At this level, we make logic design decisions that reduce
memory and improve speed. PD and HSE produce sequences
of waits and actions that define concurrent subprocesses. These
sequences are converted into PRS by writing a rule to perform
each action when the preceding wait becomes true.

Thefour-phase handshakeis performed with a pair of wires,
as shown in Fig. 7(b), and specified using the HSE primitives
described in Table III. The active port initiates the handshake by
asserting the so-called request signal (i.e.,). The probe is im-
plemented by monitoring this signal (i.e.,), an opportunistic
implementation that works only with a passive port. Data is as-
sumed to be valid when the request signal arrives, which re-
quires their propagation delays to be matched. The matched de-
lays required by thisbundled-dataprotocol [47] can be avoided
by using adual-rail representation, but this delay-insensitive
scheme requires two lines per data bit [45].

We can describe an transmitter as follows. The format
used to specify a process in CHP is

name(arguments) process(ports)

program

end

We name the transmitter processAEXMT , giving the
number of neurons as an argument, and assign itdataless
ports, named , to service neurons, and a single output
port, named , that writes (represented by !) a -bit
integer.1 All this information is specified in the header

AEXMT process int

program

end

Now, we write a program that probes the-ports to detect
communications initiated by neurons that are spiking, and arbi-
trates (represented by) between them. It then communicates on
the chosen port and transmits its address; these operations may
occur concurrently (represented by). The code for this algo-
rithm is

enc enc

A function , which converts aone-hotcode into a binary
one, is invoked to encode the chosen port’s address. The inner
brackets delimit arbitration while the outer ones delimit repeti-
tion, together with the asterix.

Similarly, we can describe anAER receiver inCHP as fol-
lows. The receiver uses a -bit input port, named ,
to read (represented by “?”) address-events and usesdataless
ports, named , to service neurons. Thus, we have

AERCV

process int

int

int

dec

end

A function dec , which converts from binary to one-hot, is
invoked to decode the address.and are local -bit
and -bit registers, respectively, used to store the input and the
result. The receiver communicates on the port corresponding to
the one set bit in the one-hot code. This port is chosen by
selection(represented by), which is used when there is no need
for arbitration (i.e., the choice is unique). The inner brackets
delimit selection while the outer ones delimit repetition.

A. Pipelining

Pipelining, a well-known approach to increasing throughput,
reduces the time-overhead of arbitration by breaking the com-
munication cycle up into a sequence of smaller steps that ex-

1dxe gives the smallest integer larger than, or equal to,x.

424 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

Fig. 8. Pipelined communication cycle. (a) Communication cycle involving
four-phase handshakes between sending neuron, arbiter, address encoder,
address decoder, and receiving neuron. White and black boxes indicate the
duration of the set and reset halves. Preceeding or succeeding cycles are in
dashed lines. (b) In the pipelined channel, we do not wait for the next stage to
acknowledge us before we acknowledge the previous stage. Similarly, we do
not wait for it to withdraw its acknowledge before we withdraw ours.

ecute concurrently. Concurrency reduces the cycle-time to the
length of the longest step, with several address-events in var-
ious stages of transmission at the same time, as shown in Fig. 8.
Handshaking makes pipelining, and queuing, straightforward:
you can stall a pipeline stage, or make a neuron wait, simply
by refusing to acknowledge it. To become conversant with the
synthesis procedure, let us design a handshake circuit to coordi-
nate the request and acknowledge signals of adjacent stages in
a pipeline and control data transfer.

A data-buffer pipeline stage (also called aFIFO, for first-in
first-out) is described inCHP as

LRBUF process int int

int

end

It reads in a nibble from its port, turns around, and writes out
the nibble on its port. We make passive and active, which

(a)

Fig. 9. Data-buffer pipeline stage. (a) HSE description: each port is fleshed
out into a pair of handshake lines and a set of data lines, and assigned an active
or passive role. (b) Circuit description: the data-buffer consists of a latch and a
C-element—a gate whose output goes high when both inputs are high and goes
low when both inputs are low. As its output is not always actively driven, a weak
feedback inverter, called astaticizer, is added to hold state.

allows buffers to be cascaded, and label these ports’ request and
acknowledge signals as shown in Fig. 9(a). Thus, we obtain the
following HSE:

simply by replacing each communication with a full four-phase
handshaking sequence.

In the pipelined example shown in Fig. 8(b), the first half of
occurs after the first half of ; the second half of remains

at the end. That is

has been postponed to the beginning of the next cycle,
making lazy-active, and adjacent waits and adjacent actions
have been merged. This reshuffling is logically equivalent to our
original CHP program (i.e.,), because both data exchange
and synchronization occur during the communication’s first half
(the second half conveniently returns the signals to their original
state).

The pipelined sequence operates as follows. When data ar-
rives (i.e.,), we latch it and acknowledge receipt ().
However, we wait until the next stage has transmitted the pre-
vious item () so that we can pass on the new data () at
the same time. We must keep data available until we get an ac-
knowledge (). Then it is safe to make the latch transparent
again and to withdraw our request (). However, we wait for
the previous stage to withdraw its request () so that we can
withdraw our acknowledge () at the same time.

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 425

We implement the pipelined sequence by writing production
rules that perform actions in the sequence when preceding waits
become true

A strobe signal has been added, which makes the latch opaque
when low, and transparent when high. Sometimes we have to
strengthenguards to prevent rules from misfiring or interfering
[45], [47], but this is not required here.

The handshake logic for our passive–active data buffer is re-
alized by a single gate, which acknowledges the previous stage,
sends a request to the next stage, and strobes the latch, as shown
in Fig. 9(b). The pull-down implements the first rule and the
pull-up implements the second one. Setup and hold times may
be satisfied by delaying the request, relative to the data, and by
delaying withdrawing the data after an acknowledge is received
[44].

In the unpipelined example shown in Fig. 8(a), on the other
hand, the first half of occurs immediately after . That is

Communications intertwined in this way are specified by the
bullet (i.e.,) in CHP. This HSE is implemented by the
following PRS:

A pair of wires, connecting to and to , suffices!
We have to give up this simplicity to gain the speed-up offered
by pipelining. Additional speed improvements may be made by
exploiting locality in the arbiter and in the array, as shown in the
next two subsections.

B. Arbitration

Arbitration may be performed by a recursive procedure.

1) Divide the neurons into two groups.
2) Choose one group, making sure there is an active neuron

in the group you choose.
3) If the chosen subgroup has more than one neuron, repeat

Steps 1 and 2 with this group.
4) Else, you are done.

Dividing by two balances the sizes of the subgroups, giving neu-
rons in each subgroup equal chances of being picked.

In CHP, our recursive arbitration procedure is described by
the recursive equation

ARB ARB ARB ARB

whereARB is an -input arbiter process, which consists
of three subprocesses that run concurrently. These subprocesses
are connected in a tree-like structure, as shown in Fig. 10(a).
The recursion unwinds atARB or ARB , and hence, we
only need to design a two-input arbiter cell; the one-input case
is trivial. ARB cells, connected in a balanced binary
tree with levels, are needed to arbitrate between
neurons.2

2bxc gives the largest integer smaller thanx.

(a)

Fig. 10. Recursively-defined arbiter. (a) AnX-input arbiter is built from a
X=2-input arbiter (arbt), a(X � X=2)-input arbiter (arbb), and a two-input
arbiter (arbc), connected as shown. TheX=2� and(X �X=2)-input arbiters
are themselves recursively defined by the same procedure. (b) Greedy two-input
arbiter vircuit. Requests,l1i andl2i, propagate down through a modifiedOR

gate (bottom), while acknowledges,~ri, propagate up through a router (middle).
A flip-flop (top) arbitrates between the requests and controls the router, which
steers the active-low acknowledge to the chosen request byNORing it with the
flip-flops’s active-low outputs (the source-switched pFET’s filter metastable
oscillations). A pair ofNAND gates invert active-high acknowledges from the
steering circuit and blocks them when the outgoing active-high requestro is
low.

In CHP, the two-input arbiter cell is described by

ARB process

end

This process probes its ports to determine if there are active
neurons in either subgroup. Next, it communicates on itsport
to ensure that the group of neurons it serves has been chosen.
And finally, it communicates on either of its ports to select
an active subgroup. Thus, requests are relayed up the tree by
probing the -to- channels, while selection is relayed down

426 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

the tree by communicating on the same channels. A second pair
of and communications terminates the selection. The cell
at the top of the tree, which serves all neurons, is special,
since its group is always chosen. Thus, communications on its

port are superfluous. We can connect itsport to a process
that automatically completes the communication (i.e.,).

Making and passive, and active, the synthesis pro-
cedure yielded the circuit shown in Fig. 10(b). All paired com-
munications were implemented using two halves of a single
four-phase communication. As is normally done. A flip-flop
(i.e., cross-coupledNAND-gates) was used to guaranteemutual
exclusionby ANDing one port’s active-high request with the
other’s active-low acknowledge [45].

The reshuffling implemented works as follows. When a re-
quest is received from the lower level (i.e.,), we send it
to the flip-flop () and, without waiting for a decision, we
also relay it to the upper level (). But we make sure the
upper level has cleared its acknowledge to the previous request
first (). If not, we do not make a new request. Instead, we
accept the old acknowledge, assuming it is stable (is high),
and relay it to the lower level () as if it was a new acknowl-
edge, once the arbitration subprocess () acknowledges.

At this point, we are half way through the communication
cycle, and every signal is activated. When the lower level clears
its request (i.e.,), we clear our request to the flip-flop
(). We wait for its acknowledge to clear () before we
clear our acknowledge to lower level (), preventing a new
incoming request from using an unstable signal. However,
we clear our request to the upper level () only if both in-
coming requests have been cleared. A strategy that allows our
sister process to service her daughters with the old acknowledge.

The modifiedOR-gate’s staticizer and the pull-ups of the flip-
flop’s NAND gates must not be too weak. Otherwise, slow tran-
sitions on the incoming request lines (i.e., or) make the
modified OR gate’s output oscillate [refer to Fig. 10(b)]. This
happens when the incoming acknowledge () arrives before
the outgoing request signal () completes its transition,3 be-
cause the pull-up overcomes the staticizer when the active-low
acknowledge disables the pull-down. In practice, this occurs
only at the top cell, where the outgoing request is immediately
fed back through an inverter. And, if the pull-ups in the flip-
flop’s NAND gates are too weak, the router circuit loads the
flip-flop, pulling the higher output down. Thus, it reduces the
differential signal, causes both signals to creep downward, and
produces nonmonotonic transitions.

Additionally, two conditions must be met to prevent a lin-
gering acknowledge from the flip-flop from servicing a new in-
coming request [refer to Fig. 10(b)].

1) , not , fires _ . Hence, when _ goes low, we
know that is high. This condition is easily satisfied,
as the number of gates in these two paths differs a lot.
The downward transition on propagates through the
flip-flop to drive high, but propagates through the
modifiedOR-gate and three gates at the next level to drive

high.

3Tim Horiuchi discovered this instability.

Fig. 11. Layout of recursively-defined arbiter. A seven-input arbiter, with
address encoder and control cells. It is built up from a three-input arbiter
(first two cells) and a four-input arbiter (last three cells), which are connected
together by an additional cell (third cell), for a total of six cells. These three-
and four-input arbiters are built from two- and one-input arbiters; the latter
is just a pair of wires that bypass the lowest level of the tree. An inverter at
the top ties the active-high outgoing request back to the active-low incoming
acknowledge. Wells and selects have been omitted for clarity. Gray is substrate;
black and darker shading is M2. The pitch is 70� and the height is 380�, or 21
�m� 114�m in 0.5-�m technology (� = 0:3 �m).

2) _ , not , fires . Hence, when goes high,
we know that _ is low. This condition requires careful
transistor sizing, as the number of gates is these two paths
are identical. The downward transition on propagates
through the flip-flop and theNOR gate to drive _ low,
but propagates through the modifiedOR gate, and its in-
verter, to drive low.

Layout for the arbiter tree is shown in Fig. 11. This layout was
generated by implementing the recursive algorithm in a silicon
compiler program, starting with layouts for the two-input arbiter
cell. The program was written in using the layout-editor’s
(-Edit) user-programmable interface (UPI) and layout-compi-
lation libraries (-Comp), all from Tanner Research, Inc. We
now turn our attention to reducing the area-overhead of arbitra-
tion by tiling neurons in 2-D arrays.

C. Row–Column Organization

By going to a hierarchical -column– -row organization,
as proposed in [9], [10], we reduce the number of two-input
arbiter cells from to . That is, it cost
us nothing for the first row or column and one arbiter cell for
each additional row or column. Hence, the area-overhead scales
like , where is the number of neurons. The number of
address-encoder and decoder cells are also reduced by a similar
amount: one per row or column, instead of one per neuron. Both
sending and receiving neural populations may be organized into
2-D arrays.

1) 2-D Transmitter: Neurons in a 2-D AER transmitter are
selected by performing hierarchical row-first column-second ar-
bitration, as shown in Fig. 12. First, we use a-input arbiter
to choose one of rows, and then we use a -input arbiter
to choose one of neurons assigned to that row. Hierarchical
arbitration guarantees that only one row is active at any time.

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 427

Fig. 12. Architecture of address-event transmitter and receiver. The sending neuron’s interface circuit [shown in [Fig. 13(a)] communicates spikes to peripheral
circuitry using row and column request–select lines. A row–column controller [Fig. 13(b)] relays requests from a row or column of neurons to the arbiters and
relays the arbiter’s acknowledge back; it also activates the address-encoder [Fig. 15(a)]. On the receiving end, a pipeline stage [Fig. 9(b)] reads and latches the
address (X andY). It acknowledges receipt right way and activates the address decoders [Fig. 15(b)], which select the corresponding row and column. The receiving
neuron [Fig. 14] sends an acknowledge when both its row and column are selected. This signal is relayed to the pipeline stage by a two-level wired-OR circuit.

Hence, we can share a single-input column-arbiter between
all the rows. We mustOR together all requests within each row
to generate requests for the row arbiter, and all requests within
each column to generate requests for the column arbiter. We save
time by servicing all active neurons in the chosen row before we
pick another row [13], [14]. However, we should not wait for its
inactive neurons to communicate on the column lines. Only neu-
rons that were activeat the time that the row was selectedmust
be serviced. This way, inactive neurons cannot prolong comple-
tion indefinitely if they subsequently spike.

This strategy is realized by the neuron-interface and
row–column-control circuits shown in Fig. 13, designed by
decomposingAEXMT into row and column subprocesses,
and following the synthesis procedure. The neuron drives the
row-request line low (i.e.,) when a spike occurs ().
The controller relays this request to the row arbiter ()
and grants the request by driving the row-select line high
() when the arbiter acknowledges (). It also activates
the row-address–encoder (). If necessary, the controller
waits until previous column and encoder communications are
completed (). When the row is selected, all neurons with
spikes place requests on their column lines () and clear
their spikes one by one, by taking low, as these requests
are granted ().

Each neuron releases the row- and column-request lines when
it is serviced. The row-request linegoes high only when all the
spikes have been cleared. The row-controller then withdraws its
request to the arbiter (), but it waits until it receives an ac-
knowledge from the encoder (), since this signal prevents
interference with ongoing communications. As soon as the ar-
biter clears its acknowledge (), the controller withdraws its
request to the encoder () and deselects the row (). The

Fig. 13. Sending-neuron and row–column control circuits. (a) Five-transistor
interface (right half) between neuron (i.e.,lix;

~lox) and row- (~p; s) or
column- (~cox; cix) control circuits. The pull-downs on~p and~cox form row-
and column-wide wired-NOR gates; current source pull-ups are at the edge of
the array. The neuron is disabled when its row is selected (s is high) to prevent
generation of new spikes. Capacitive positive-feedback in the axon-hillock
circuit (left half) provides hysteresis and speeds up transitions. (b) Interface
among row or column (i.e.,~p; s), arbiter (ro; ~ri), and address-encoder
(ao; ~ai). These gates are calledaC-elements(for asymmetric): their outputs
are set when both inputs are high and cleared when a particular input is low
(or vice versa).

guard of was stregthened to ensure that a neuron is reset
only when its rowand its column are selected.

428 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

Fig. 14. Receiver’s neuron interface circuit. Active-high column- and
row-select signalsaxi andbyi are NANDed together to generate an active-low
request~ryxo. The neuron responds with an active-low acknowledge~ryxi.
If desired,~ryxo may be tied directly to~ryxi to produce a minimum-width
active-low pulse. Active-low acknowledges from all neurons in the same
row are NANDed together to generate a active-high row acknowledgeryi.
These row-acknowledges areNORed together to produce a single active-low
acknowledge that is sent back to the decoders.

We can use the same control circuit shown in Fig. 13(b) to
interface a column of neurons with the arbiter and the encoder.
The column logic itself consists of a-input wired-NOR gate,
which feeds into , and aC-elements, which steer to the
correct neuron byANDing it with the row-select. We can elim-
inate theaC-elementsand broadcast the controller’s acknowl-
edge, since it is alreadyANDed with the row-select signal inside
the neuron, provided we clear it before a new row is selected.

To figure out if a new row can be selected before the column-
select is cleared, note that the row-controller selects a new row
afterthe row-encoder clears its acknowledge (i.e.,), and this
signal is essentially synchronous with the column-encoder’s ac-
knowledge, as the encoders simply relay the receiver’s acknowl-
edge. Furthermore, the column- (and row-) controller’s select
signals must be low in order for the encoders to clear their re-
quests to the receiver. Hence, it follows that the column-select
signal is cleared before a new row is selected.

Throughput may be boosted by reading the state of all neu-
rons in a selected row in parallel, and storing their spikes in a
latch on the periphery of the array, where they can be rapidly
relayed to the column arbiter. Stored spikes are transmitted in a
rapid burst, while the array is cycled to select and read the next
row. The performance enhancement achieved by this approach
is described briefly in Section V; design details may be found in
[48]. Let us now turn our attention to organizing the receiving
neurons into rows and columns.

2) 2-D Receiver:The 2-D AER receiver’s structure paral-
lels that of the transmitter, as shown in Fig. 12. First, we use a

-bit decoder to select one of therows, and then we
use a -bit decoder to select one of the output ports
assigned to that row.

This strategy is realized by the circuit shown in Fig. 14,
obtained by decomposingAERCV into neuron, row, and
column subprocesses, and following the synthesis procedure.
The gate that combines the row- and column-selects is changed
from a state-holding C-element to a purely combinational
NAND gate. Thus, we clear our request to the neuron when
either the column select or the row select is cleared, without
waiting for the other line to clear. We run the risk of choosing

Fig. 15. Address-encoder and -decoder circuits. (a) A 1-in-m one-hot to
n-bit binary encoder, wheren = dlog (m)e is built with m � (n + 1)
one-transistor cells. A cell either pulls up the output line with a pFET, driven
by an active-low input line (i.e.,~ami), or pulls it low with a nFET, driven by
an active-high input line (ami). An extra output line (bi) that is always pulled
high provides an active-high request signal. (b) An-bit to 1-in-m decoder,
wherem < 2 , is built with (n + 1) � m two-transistor cells. Then + 1
cells connected to each active-low output (i.e.,~dmo) form an (n + 1)-input
NAND gate, withn+ 1 series-connected nFET’s andn+ 1 parallel-connected
pFET’s. We decode a zero or a one by driving the cell with either an active-high
signal (ani) or an active-low signal (~ani), respectively. The active-high request
signal is connected to the(n+ 1)th input (adapted from [10]).

the wrong neuron next time around, when a lingering row
select signal isNANDed with a new column select signal, or
vice versa. Matching the decoders’ delays minimizes the risk.
Asynchronous versions of traditional circuits used to encode
and decode addresses are shown in Fig. 15.

Our review of 2-D AER transmitter and receiver design is
now complete. We have seen how to reduce the overhead im-
posed by arbitration, encoding, and decoding fromto
by organizing neurons into rows and columns, and how to ex-
ploit this organization, together with locality, to reduce the av-
erage cycle time. As shown in Fig. 12, and described in [13],
[14], a pipeline stage [see Fig. 9(b)] can be inserted between

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 429

the receiver’s input port and its decoders to improve its perfor-
mance. This slack allows the receiver to acknowledge as soon as
it latches the address from bus, and then decode the address and
select the neuron while the sender is clearing it row or column
select signals and selecting a new row or column. Having ad-
dressed the intricacies of asynchronous logic circuit design, we
now turn our attention to the pitfalls of mixed-analog–digital de-
sign.

D. Analog–Digital Interfaces

Neuromorphic chips are MAD systems [49], where sending
and receiving neurons serve as analog-to-digital and digital-to-
analog converters. They use subthreshold analog CMOS circuits
to model dendritic computation [3] and asynchronous digital
CMOS logic to model axonal communication [3], [50]. One of
the greatest difficulties in their design is reducing crosstalk be-
tween the analog and digital parts, given the gigantic differences
in current levels and speeds.

In the analog domain, we use 100-pA currents and 100-fF
capacitors to achieve 1-V/ms slew rates. Whereas in the dig-
ital domain 100- A currents and 100 fF capacitors yield 1-V/ns
slew rates, a million times higher! To match these slew rates,
the neuron’s gain must exceed one million. And to ensure that
less than 5 mV of the 5-V digital swing finds its way into the
analog circuitry, parasitic coupling capacitances must be less
than 0.1 fF! Recalling that a CMOS inverter’s gain is about 10
and a minimum-sized transistor’s drain-to-gate overlap capaci-
tance exceeds 1 fF, you realize how demanding these specifica-
tions are.

To realize a millionfold gain, we use a two-inverter nonin-
verting amplifier with positive feedback, also known as the
axon-hillock circuit. This circuit, shown in Fig. 13(a), is named
after the spike-initiation zone in a biological neuron [3]. If the
loop gain exceeds unity, the output’s rate of change is limited
only by the amplifier’s output current, not by the input current.
Thus, this circuit has an effective gain of 100 000 or more!
Unfortunately, the first inverter, with its input charging up at
1 V/ms, spends 0.5 ms within 0.5 V of threshold, passing a
short-circuit current close to 100A the whole time. Hence, it
consumes a million times more energy than a regular CMOS
inverter.

We may limit the axon-hillock’s power dissipation by
starving the first inverter using an nMOS-style pull-up tran-
sistor, which supplies a fixed bias current of about 1A, as
suggested by Lazzaro [51]. It is unsafe to reduce the current
further because this inverter’s output must switch all the way to

by the time the row is selected [see Fig. 13(a)]. Otherwise,
the second inverter’s pull-down transistor will clear when
its pull-up is disabled by going high.4 Consequently, this
approach reduces the power dissipation to only 10 000 times
that of a regular inverter.

Power-supply rails mediate crosstalk. Transistors connected
to the rails form a multiple-input differential pair, and a device
transiently steals current from the others when it is switched on.
With the axon-hillock’s input and threshold transistors tied to

4Charles Higgins discovered this race condition.

Fig. 16. Bad and good receiver pixels. Both pixels use a diode-capacitor circuit
to integrate spikes and a tilted current-mirror to amplify current, as described in
[32]. The bias voltageVw sets the amount of charge metered onto the capacitor
each time the pixel is selected. The parasitic capacitors shown can pump or inject
current into the integrator, as explained in the text. In (b), the pull-up isolates
the integrator from these parasitic effects.

and , respectively, these rails mediate inhibitory and ex-
citatory interactions, respectively [see Fig. 13(a)]. We can avoid
turning off the current in these transistors by limiting the reset
current and turning it off as soon as the spike is reset, as de-
scribed in [3]. Hence, we can isolate the neuron from the digital
circuitry by moving this inverter to the analog supply, without
corrupting the analog supply. However, we must also move the
second inverter’s pull-down to the analog supply to avoid in-
jecting digital supply noise through the positive-feedback ca-
pacitor (via the second inverter’s pull-down device, which re-
mains on during the interspike interval). The inhibition medi-
ated by this pull-down is acceptable, as it tends to desynchro-
nize the neurons. Unlike excitation, which tends to synchronize
the neurons and increase spiking activity.

Parasitic capacitances within a device, due to overlap between
gate and source/drain diffusion, can turn on a device by driving
its source outside the supply rail. This problem plagued the first
receiver pixel designed [shown in Fig. 16(a)]. Rapid voltage
swings on the column-select line () are transmitted to the
source terminal of the current-source transistor (device with gate
tied to), driving it a fraction of a volt below —if the
node’s voltage sits close to , as it does in this circuit. As
a result, the current source would pass a fraction of a picoamp
even when was tied to .

Parasitic capacitances between series-connected devices
can produce charge-pumping. This problem also plagued the
receiver pixel shown in Fig. 16(a). The pair of transistors
controlled by the row and column select lines, and ,
pump charge from the current-source transistor to ground when
nonoverlapping pulses occur on the select lines. For a 20 fF
parasitic capacitor, a 100-Hz average spike rate per pixel, a

430 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

Fig. 17. Layout of 2� 2 receiver pixels. Pixels are flipped vertically and horizontally to isolate digital and analog circuitry and share contacts [see Fig. 16(b)
for the circuit]. Current-mirror integrators are located centrally, with switched current-sources (large devices at top and bottom edges),NAND-gate pull-downs (two
small series-connected devices tied to the current-sources), andNAND-gate and acknowledge pull-ups (devices withL-shaped gates near left and right edges) on the
periphery.axi, ryi,VA, andIout run vertically in M1,byi runs horizontally in M2,Vw, Vpu andSel run horizontally in Poly1. A second Poly2 select line is used
in odd columns to compensate for hexagonal tiling in the retina chip. An M1 line, tied toVdd, shield’s the current-source transistor’s drain from the M2 row-select
line. Gray is substrate; black and darker shading is M2. The cell width is 63� and its height is 46�, or18:9 �m� 13:8 �m in 0.5-�m technology (� = 0:3 �m).

0.5-V voltage drop, and 64 neurons per row or column, the
current is 64 pA. This current, which scales with the array
size, easily swamps out the subpicoamp current levels we
must maintain in the diode-capacitor integrator to obtain time
constants greater than 10 ms using a 300-fF capacitor.

Capacitive turn-on and charge-pumping can both be elimi-
nated by adding a pull-up, which implements an nMOS-style
NAND gate, as shown in Fig. 16(b). A full CMOSNAND gate
will also work—it eliminates the global bias line but re-
quires an additional transistor. The pull-up keeps the current-
source transistor’s source-terminal close to , making it im-
possible to capacitively drive it below ground, and it is biased
to supply a few microamps, easily overwhelming the pump cur-
rent. Furthermore, the current-source transistor is switched on
by swinging its source terminal from to , a technique
that can meter minute quantities of charge, as demonstrated by
Cauwenberghs [52]. A layout of the receiver pixel is shown in
Fig. 17. In the next section, characterization procedures for AER
communication channels and the performance of some existing
designs are discussed and reviewed, respectively.

V. TEST PROTOCOLS ANDCHANNEL PERFORMANCE

Timing relationships between the control signals must be kept
in mind while debugging these asynchronous interfaces. The di-
agram in Fig. 7(b) indicates which party must act at any stage
in the sequence, helping us to determine who is at fault when
the channel hangs. For example, if it hangs with bothand
high, the arrow indicates that the sender is at fault; it failed to
withdraw its request. Testing is facilitated by interfacing sender
and receiver chips with a computer that can read and write ad-
dresses at high speed. Delbrüucket al. have implemented a
MatLab-based interface on the Mac, using a parallel I/O card

TABLE IV
THREE GENERATIONS OFARBITERED CHANNELS

from National Instruments [53]. They achieved a transfer rate
of 100 kHz by programming at the register level.

The architectural optimizations described earlier reduced
cycle times by more than an order of magnitude, over three
generations of arbitered AER channel designs. Going from
2 s, reported in Mahowald and Sivilotti’s pioneering work, to
as low as 30 ns reported in [48], where spikes are readout from
the array in parallel. Table IV summarizes the evolution.

Address-event streams from the local-readout 6464 neuron
transmitter design [14], fabricated in 2-m technology, reveal
the arbiters’ greedy behavior. This transmitter uses the archi-
tecture shown in Fig. 12, and reads all the spiking neurons in
a selected row, sequentially, before it selects another row. The
row arbiter rearranges the address, as shown in Fig. 18, as it
attempts to span the smallest subtree, going to the nearest row
that is active. Such scanning is beneficial because transversing
an additional level added 37 ns (estimated) to the cycle time.
Scanning is not evident in the addresses because, at the low
load level used, no more than three or four neurons are active
simultaneously within the same row.

Cycle-time measurements from a parallel-readout 10496
neuron transmitter [48], fabricated in 1.2-m CMOS tech-
nology, are shown in Fig. 19. This transmitter used an
architecture similar to the previous one, except that a row-wide
latch was interspersed between the array and the column
arbiter, and the state of all neurons in a selected row were

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 431

Fig. 18. Address-event streams showing arbiter scanning.Y andX addresses
are plotted on the vertical axes, and their position in the stream is plotted on the
horizontal axes. For load at 5% capacity: (a)Y addresses tend to increase with
sequence number; and (b)X addresses are distributed randomly.

read in parallel. The latch’s bit-cells act as slave neurons: they
send requests to the column arbiter, while the neurons in the se-
lected row are reset and another row is selected. The cycle-time
is as low as 30 ns when spikes are read from the latch, and
goes up to 400 ns when data is read from the array. Even this
worst-case cycle-time, which involves arbitration in both di-
mensions, trumps the 730 ns achieved with the earlier local-
readout design [13], [14].

Images in Fig. 20 show the response of the 10496 neuron
retinomorphic chip to a light spot [31]. The address events were
read into a computer, and the images were rendered by modeling
temporal integration in the diode-capacitor integrator. The four
types of ganglion cells on the chip subsample the image by a
factor of two; LSB’s of the and addresses encode the cell
type.

VI. DISCUSSION ANDSUMMARY

This paper has described the design of communication chan-
nels for neuromorphic chips. These designs exploit spatially

sparse, temporally coincident, neural activity, whitened by pre-
processing in the sensory epithelium. Neuronal ensembles cap-
ture this stimulus-driven spatiotemporal activity. They consists
of spikes clustered at distinct temporal locations where events
occur and sparse spatial locations determined by the stimulus
pattern. They also have an unstructured component that arises
from noise in the signal, noise in the system, and from differ-
ences in gain and state among the neurons. This stochastic com-
ponent limits the precision with which neurons encode informa-
tion about the stimulus. Neuronal ensembles can be transmitted
by time-division multiplexing without losing information if the
channel’s timing precision exceeds that of the neurons.

A. Design Tradeoffs

For random-access time-multiplexed channels, the multiple
bits required to encode identity are offset by the reduced sam-
pling rates produced by local adaptation when activity is sparse.
The payoff is even better when there are sufficient I/O pins to
transmit all the address-bits in parallel. In this case, frequency
and time-constant adaptation allocate bandwidth dynamically in
the ratio between active and passive fractions of the
population. For low active fractionsand sampling-rate attenu-
ation factors larger than , the effective Nyquist sampling
rate may be increased by a factor of .

Contention occurs when two or more neurons spike simulta-
neously, and we must dump old spikes to preserve the timing
of new spikes or queue new spikes to avoid losing old spikes.
An unfettered design, which discards spikes clobbered by colli-
sions, offers higher throughput if high spike-loss rates are toler-
able. In contrast, an arbitered design, which makes neurons wait
their turn, offers higher throughput when low-spike loss rates are
desired. Indeed, the unfettered channel utilizes only 18% of its
capacity at the most. Therefore, the arbitered design offers more
throughput if its cycle time is no more than five times longer
than that of the unfettered channel.

The inefficiency of the unfettered channel design, also known
as ALOHA, has been long recognized, and more efficient pro-
tocols have been developed [7]. One popular approach is car-
rier sense multiple access (CSMA), where each user monitors
the channel and does not transmit if it is busy.5 This channel
is prone to collisions only during the time it takes to update its
state. Hence, the collision rate drops if the round-trip delay is
much shorter than the packet-transmission time, as in bit-serial
transmission of several bytes. Its performance is no better than
ALOHA’s; however, if the round-trip delay is comparable to the
packet-transmission time [7], as in bit-parallel transmission of
one or two bytes. Consequently, it is unlikely that CSMA will
prove useful for neuromorphic systems (preliminary results are
reported in [54]).

As technology improves and we build denser arrays with
shorter cycle times, the unfettered channel’s collision prob-
ability remains unchanged for the same normalized load,
whereas the arbitered channel’s normalized timing error
decreases. This desirable scaling arises because timing error is
the product of the number of wait cycles and the cycle-time.
Consequently, queuing time decreases due to the shorter cycle

5The Ethernet, and most local-area-networks, work this way.

432 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

Fig. 19. Cycle times for parallel-readout transmitter—screen dump from a Tektronix TLA704 Logic Analyzer. Top trace: request. Middle: column address.
Bottom: row address. The first and second address events are from different rows, whereas the second and third events are from the same row. The cycle time is
362 ns in the first case and 72 ns in the second case.

Fig. 20. Response of retinomorphic chip. Four ganglion-cell types respond to light or dark spots either in a transient (Increasing, Decreasing) or sustained fashion
(On, Off). (a) Light spot stationary (located where the single active Increasing cell is): sustained cells pick up increased signal at the spot’s location and decreased
signal in surrounding region, due to lateral inhibition. Fixed-pattern noise, due to transistor mismatch, is also evident. (b) Light spot moving up and to the right:
transient cells pick up decrease at inhibitory surround’s leading edge and increase at excitatory center’s leading edge. The mean spike rate was 5 spikes/neuron/s.

times, even though the number of cycles spent waiting remains
the same. Indeed, as the cycle-time must be inversely propor-
tional to the number of neurons, the normalized timing error
is less than 400 for loads below 95% capacity and active
fractions above 5%. For population sizes of several tens of
thousands, the timing errors is just a few percentage points.

For neurons whose timing precision is much better than
their interspike interval, we may estimate throughput require-
ments by measuring frequency adaptation and synchronicity.
Frequency adaptation gives the spike rate for neurons that
are not part of the neuronal ensemble, and synchronicity
gives the peak spike rate for neurons in the ensemble. These
firing rates are obtained from the spike frequency at stimulus
onset by dividing by and multiplying by , respectively. The
throughput must exceed the sum of these two rates if we wish
to transmit the ensemble without adding latency or temporal
dispersion. The surplus capacity must be at least 455% to
account for collisions in the unfettered channel, but may be as

low as 5.3% in the arbitered channel, with subpercent timing
errors due to queuing.

B. Asynchronous Implementation

two-input arbiter cells, arranged in a tree with
levels, are required to arbitrate betweenneurons,

plus address decoder and encoder cells. This area overhead
may be reduced from to by going to a hierarchical
row–column organization. Time overhead is reduced by
adopting three strategies.

Pipelining reduces the time overhead of arbitration by over-
lapping communication sequences of the sending neuron, the
row arbiter, the column arbiter, and the receiving neuron. We
also inserted a pipeline stage between the receiver chip’s input
port and its decoders, allowing it to acknowledge as soon as it
latches the address from bus. It decodes the address and selects
the target neuron, while the sender is clearing its row or column
select signals and selecting a new row or column.

BOAHEN: POINT-TO-POINT CONNECTIVITY BETWEEN NEUROMORPHIC CHIPS 433

Exploiting locality in the row–column organization reduces
time-overhead further by servicing all active neurons in the se-
lected row, redoing row arbitration only when no requests are
left. Throughput is boosted further by reading the state of all
neurons in a selected row in parallel, storing this information in
a latch at the periphery of the array, where it can be readily sup-
plied to the column arbiter. The spikes are transmitted in a rapid
burst, while the array is cycled to select and read the next row.

Exploiting locality in the arbiter tree also reduces time over-
head by spanning the smallest subtree that has a pair of ac-
tive inputs. We implemented this strategy simply by making the
two-input arbiter cell greedy; it services both of its daughters if
they are active. Thus, the arbiter becomes a scanner when neu-
ronal activity is spatially clustered. It transverses one level with
probability 1/2, two with probability 1/4, three with probability
1/8, and so on; this series converges to two levels.

However, exploiting locality trades fairness for efficiency. In-
stead of allowing every active neuron to bid for the next cycle,
or granting service on a strictly first-come–first-served basis, the
transmitter acts like a traveling salesman and services the closest
customer. It may pick up a neuron that is close by over neurons
that fired earlier. Giving priority to location minimizes the av-
erage cycle time, thereby maximizing the channel capacity and
minimizing the average wait time. Unfortunately, service is lim-
ited to a local area when the channel is overloaded, and neurons
outside that area are simply ignored. Irrespective of the fairness
of the selection mechanism we choose, the average wait time
goes to infinity when the channel capacity is exceeded. There-
fore, maximizing channel capacity is my paramount concern.

Special attention must be paid to digital–analog interfaces in
these hybrid designs. It is imperative to use positive feedback
to match analog and digital slew rates; hysteresis alone [41] is
not enough. However, the axon-hillock circuit’s power dissipa-
tion must be reduced drastically (possibly by adapting the bias
current to the output’s rate of change) and excitatory coupling
through the supply rails carefully isolated. Capacitive turn-on
and charge-pumping in receiver-neuron interfaces were elimi-
nated by implementing an nMOS-styleNAND gate.

We may have to adopt bidirectional current-signaling to
achieve subpercent (40 dB) capacitive crosstalk. However,
this technique, which has been used within [55], [24] and
between [56]–[58] chips, must be refined further to reduce
static power dissipation, and the area-overhead in capacitors for
frequency-compensation or in large devices for better matching.

Following a rigorous design methodology for asynchronous
logic circuits has paid off, improving robustness and reliability
considerably. Although the state-of-the-art implementations are
by no means bullet-proof [48], they are getting to the point where
nonexperts can use them with the aid of silicon compilation.
Making it possible for neuromorphic-system designers with lim-
ited expertise in asynchronous communication to successfully
incorporate these channels into their designs [17], [59].

ACKNOWLEDGMENT

The author would like to thank C. Mead for sharing insights
into nervous system organization. The author would also like

to thank M. Mahowald for making available layouts of the ar-
biter, the address encoders, and the address decoders; J. Lazzaro,
A. Martin, J. Tierno, and T. (Bassen) Lande for helpful discus-
sions; T. Delbrück for help with the Macintosh AER interface
and -Comp; and J. Dickson for help with PCB design, and
Tanner Research Inc. for making available a prerelease version
of their -Comp libraries for silicon compilation.

REFERENCES

[1] C. A. Mead, “Neuromorphic electronic systems,”Proc. IEEE, vol. 78,
pp. 1629–1636, Oct. 1990.

[2] E. A. Vittoz, “Analog VLSI Implementation of Neural Networks,”
in Handbook of Neural Computation, E. Fiesler and R. Beale,
Eds. Oxford, U.K.: Oxford Univ. Press, 1995.

[3] C. A. Mead,Analog VLSI and Neural Systems. Reading, MA: Ad-
dison-Wesley, 1989.

[4] M. Mahowald, “VLSI analogs of neuronal visual processing: A
synthesis of form and function,” Ph.D. dissertation, California Inst.
Technol., Pasadena, CA, 1992.

[5] K. A. Boahen, “Retinomorphic vision systems: Reverse engineering
the vertebrate retina,” Ph.D. dissertation, California Inst. Technol.,
Pasadena, CA, 1997.

[6] T. S. Lande, Ed.,Neuromorphic Systems Engineering: Neural Networks
in Silicon. Norwell, MA: Kluwer, 1998.

[7] M. Schwartz,Telecommunication Networks: Protocols, Modeling, and
Analysis. Reading, MA: Addison-Wesley, 1987.

[8] A. S. Tanenbaum,Computer Networks, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1989.

[9] M. Sivilotti, “Wiring considerations in analog VLSI systems, with appli-
cation to field-programmable networks,” Ph.D. dissertation, California
Inst. Technol., Pasadena, CA, 1991.

[10] M. Mahowald,An Analog VLSI Stereoscopic Vision System. Norwell,
MA: Kluwer, 1994.

[11] T. Sejnowski, C. Koch, and R. Douglas, Eds., (1997) Telluride
Workshop on Neuromorphic Engineering. [Online]. Available:
http://www.klab.caltech.edu/ harrison/tell97/report97/index.html

[12] J. Lazzaro, J. Wawrzynek, M. Mahowald, M. Sivilotti, and D. Gille-
spie, “Silicon auditory processors as computer peripherals,”IEEE Trans.
Neural Networks, vol. 4, pp. 523–528, 1993.

[13] K. A. Boahen, “Retinomorphic vision systems ii: Communication
channel design,” inProc. IEEE Int. Symp. Circuits and Systems, May
1996, pp. 14–17.

[14] , “Communicating neuronal ensembles between neuromorphic
chips,” in Neuromorphic Systems Engineering: Neural Networks in
Silicon, T. S. Lande, Ed. Norwell, MA: Kluwer, 1998, ch. 11.

[15] S. R. Deiss, R. J. Douglas, and A. M. Whatley, “A pulse-coded commu-
nications infrastructure for neuromorphic systems,” inPulsed Neural
Networks, W. Maass and C. M. Bishop, Eds. Cambridge, MA: MIT
Press, 1999, ch. 6, pp. 157–178.

[16] J. P. Lazzaro and J. Wawrzynek, “A multi-sender asynchronous exten-
sion to the address-event protocol,” inProc. 16th Conf. Advanced Re-
search in VLSI, W. J. Dally, J. W. Poulton, and A. T. Ishii, Eds., 1995,
pp. 158–169.

[17] C. M. Higgins and C. Koch, “Multi-chip motion processing,” inProc.
20th Anniversary Conf. Advanced Research in VLSI, D. S. Wills and S.
P. DeWeerth, Eds., 1999.

[18] S. P. DeWeerth, G. N. Patel, M. F. Simoni, D. E. Schimmel, and R. L.
Calabrese, “A vlsi architecture for modeling intersegmental coordina-
tion,” in Proc. 17th Conf. Advanced Research in VLSI, R. Brown and A.
Ishii, Eds., 1997, pp. 182–200.

[19] K. A. Boahen, A. G. Andreou, T. Hinck, J. Kramer, and A. Whatley.
(1997.) Computation and memory-based projective field processors.
Telluride Workshop on Neuromorphic Engineering. [Online]. Available:
http://www.klab.caltech.edu/ harrison/tell97/report97/index.html

[20] J. G. Elias, “Artificial dendritic trees,”Neural Comput., vol. 5, pp.
648–663, 1993.

[21] K. A. Boahen, “Retinomorphic vision systems,” inProc. Mi-
croneuro’96: 5th Int. Conf. Neural Networks and Fuzzy Systems, Feb
1996, pp. 2–14.

[22] , “A retinomorphic vision system,”IEEE Micro, vol. 16, pp. 30–39,
Oct. 1996.

[23] M. Mahowald and C. A. Mead, “The silicon retina,”Sci. Amer., vol. 264,
no. 5, pp. 76–82, 1991.

434 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 2000

[24] K. A. Boahen and A. Andreou, “A contrast-sensitive retina with recip-
rocal synapses,” inAdvances in Neural Information Processing 4, J.
E. Moody, Ed. San Mateo, CA: Morgan Kauffman, 1992, vol. 4, pp.
764–772.

[25] R. F. Lyon and C. A. Mead, “An analog electronic cochlea,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. 36, pp. 1119–1134, 1988.

[26] L. Watts, “Cochlear mechanics: Analysis and analog VLSI,” Ph.D. dis-
sertation, California Inst. Technol., Pasadena, CA, 1993.

[27] M. V. Srinivasan, S. B. Laughlin, and A. Dubs, “Predictive coding: A
fresh view of inhibition in the retina,” inProc. R. Soc. Lond. B Biol.
Sci., vol. ASSP-216, 1982, pp. 427–459.

[28] J. Atick and N. Redlich, “What does the retina know about natural
scene,”Neural Comput., vol. 4, no. 2, pp. 196–210, 1992.

[29] D. K. Warland, P. Reinagel, and M. Meister, “Decoding visual informa-
tion from a population of retinal ganglion cells,”J. Neurophys., vol. 78,
pp. 2336–2350, 1997.

[30] T. Delbruck and C. A. Mead, “Analog VLSI Phototransduction by Con-
tinuous-Time, Adaptive, Logarithmic Phtoreceptor Circuits,” Computa-
tion and Neural Systems Dept., California Inst. of Technol., Pasadena,
CA, CNS Memo #30, 1994.

[31] K. A. Boahen, “Retinomorphic chips that see quadruple images,”Proc.
Microneuro’99: 7th Int. Conf. Neural, Fuzzy, and Bio-Inspired Systems,
pp. 12–20, Apr. 1996.

[32] , “The retinomorphic approach: Pixel-parallel adaptive ampli-
fication, filtering, and quantization,”Analog Integ. Circuits Signal
Processing, vol. 13, pp. 53–68, 1997.

[33] R. Etienne-Cummings, J. Van der Spiegel, P. Mueller, and M. Zhang,
“A foveated silicon retina for two-dimensional tracking,” IEEE Trans.
Circuits Syst. II, to be published.

[34] D. N. Mastronade, “Conrrelated firing of cat retinal ganglion cells—I:
Spontaneuosly active inouts tox- andy-cells,”J. Neurophysiol., vol. 49,
pp. 303–324, 1983.

[35] M. Meister, L. Lagnado, and D. A. Baylor, “Concerted signaling by
retinal ganglion cells,”Science, vol. 270, pp. 1207–1210, 1995.

[36] W. M. Usrey, J. B. Reppas, and R. C. Reid, “Paired-spike interactions
and synaptic efficacy of retinal inputs to the thalamus,”Nature, vol. 395,
no. 6700, pp. 384–387, 1998.

[37] A. Murray and L. Tarassenko,Analogue Neural VLSI: A Pulse Stream
Approach. London, U.K.: Chapman and Hall, 1994.

[38] L. M. Reyneri, “A performance analysis of pulse stream neural and fuzzy
computing systems,”IEEE Trans. Circuits Syst. II, vol. 42, pp. 642–40,
Oct. 1995.

[39] W. R. Softky, “The highly irregular firing of cortical cells is inconsistent
with temporal integration of random epsps,”J. Neurosci., vol. 13, pp.
334–350, 1993.

[40] W. Maass and C. M. Bishop, Eds., . Cambridge, MA: MIT Press, 1999.
[41] A. Mortara, E. Vittoz, and P. Venier, “A communication scheme for

analog vlsi perceptive systems,”IEEE Trans. Solid-State Circuits., vol.
30, pp. 660–669, June 1995.

[42] L. Kleinrock, Queueing Systems. New York, NY: Wiley, 1976.
[43] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus,

“The design of an asynchronous microproessor,” inProc. Decennial
Caltech Conf.: Advanced Research in VLSI, C. L. Seitz, Ed., 1989, pp.
351–373.

[44] I. E. Sutherland, “Micropipelines,”Commun. ACM, vol. 32, no. 6, pp.
720–738, 1989.

[45] A. Martin, “Programming in vlsi: From communicating processes to
delay-insensitive circuits,” California Inst. Technol., Pasadena, CA,
Tech. Rep. CS-TR-89-01, 1989.

[46] A. J. Martin, “Compiling communicating processes into delay-insensi-
tive vlsi circuits,”Distrib. Comput., vol. 1, no. 4, pp. 226–234, 1990.

[47] A. J. Martin, “Asynchronous datapaths and the design of an asyn-
chronous adder,”Formal Meth. Syst. Design, vol. 1, no. 1, pp. 119–137,
1990.

[48] K. A. Boahen, “A throughput-on-demand address-event transmitter
for neuromorphic chips,” inProc. 20th Aniversary Conf. Advanced
Research in VLSI, D. S. Wills and S. P. DeWeerth, Eds., 1999, pp.
72–86.

[49] J. Franca and Y. Tsividis,Design of Analog–Digital Vlsi Circuits for
Telecommunications and Signal Processing. Englewood-Cliffs, NJ:
Prentice-Hall, 1994.

[50] B. A. Minch, P. Hasler, C. Diorio, and C. A. Mead, “A silicon axon,” in
Advances in Neural Information Processing Systems 7, G. Tesauro, D.
S. Touretzky, and T. K. Leen, Eds. Cambridge, MA: MIT Press, 1995,
pp. 739–746.

[51] J. P. Lazzaro, “Low-power silicon spiking neurons and axons,” inProc.
IEEE Int. Symp. Circuits and Systems, 1992, pp. 2220–2224.

[52] G. Cauwenberghs and A. Yariv, “Fault-tolerant dynamic multi-level
storage in analog vlsi,”IEEE Trans. Circuits Syst. II, vol. 41, pp.
827–829, Dec. 1995.

[53] T. Delbruck, H. Floberg, and L. Peterson. (1994) Address-event commu-
nication using lab-nb board, matlab, and a mac. California Institute of
Technology, Pasadena, CA. [Online]. Available: http://www.pcmp.cal-
tech.edu/aer/txrx/txrx.pdf

[54] A. Abusland, T. S. Lande, and M. Hovin, “A vlsi communication archi-
tecture for stochastically pulse-encoded analog signals,” inProc. IEEE
Int. Symp. Circuits and Systems, May 1996, vol. III, pp. 401–404.

[55] K. A. Boahen, P. O. Pouliquen, A. G. Andreou, and A. Pavasovic,
“Architectures for associative memories using current-mode mos
circuits,” inProc. Decennial Caltech Conf. VLSI, C. L. Seitz, Ed., 1989,
pp. 175–193.

[56] K. Lam, L. Dennison, and W. Dally, “Simultaneuos bidirectional sig-
nalling for ic systems,” inProc. 1990 Conf. Computer Design (ICCD),
1990, pp. 430–433.

[57] L. Dennison, W. Lee, and W. Dally, “High-perfomance bidirectional sig-
nalling in vlsi systems,” inProc. 1993 Symp. Research on Integrated
Systems, 1993, pp. 300–319.

[58] W. J. Dally and J. W. Poulton, Digital Systems Engi-
neering. Cambridge, U.K.: Cambridge Univ. Press, 1998.

[59] G. A. Indiveri, M. Whatley, and J. Kramer, “A reconfigurable neuro-
morphic vlsi multi-chip system applied to visual motion computation,”
in Proc. Microneuro’99: 7th Int. Conf. Neural, Fuzzy, and Bio-Inspired
Systems, 1999, pp. 37–44.

Kwabena A. Boahenreceived the B.S. and M.S.E.
degrees in electrical and computer engineering
from Johns Hopkins University, Baltimore, MD,
in the concurrent Masters–Bachelors program, in
1989. He received the Ph.D. degree in computation
and neural systems from the California Institute of
Technology, Pasadena, CA in 1997, where he held a
Sloan Fellowship for Theoretical Neurobiology.

He is an Assistant Professor in the Bioengineering
Department, University of Pennsylvania, Philadel-
phia PA, where he holds a Skirkanich Term Junior

Chair and a secondary appointment in electrical engineering. His current
research interests include mixed-mode multichip VLSI models of biological
sensory systems and asynchronous digital interfaces for interchip connectivity.

Dr. Boahen is a member of Tau Beta Kappa.

