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ABSTRACT

ABSTRACTIONS, ANALYSIS TECHNIQUES, AND SYNTHESIS OF

SCALABLE CONTROL STRATEGIES FOR ROBOT SWARMS

Spring Melody Berman

Vijay Kumar

Tasks that require parallelism, redundancy, and adaptation to dynamic, possibly

hazardous environments can potentially be performed very efficiently and robustly

by a swarm robotic system. Such a system would consist of hundreds or thousands

of anonymous, resource-constrained robots that operate autonomously, with little to

no direct human supervision. The massive parallelism of a swarm would allow it

to perform effectively in the event of robot failures, and the simplicity of individual

robots facilitates a low unit cost. Key challenges in the development of swarm

robotic systems include the accurate prediction of swarm behavior and the design of

robot controllers that can be proven to produce a desired macroscopic outcome. The

controllers should be scalable, meaning that they ensure system operation regardless

of the swarm size.

This thesis presents a comprehensive approach to modeling a swarm robotic sys-

tem, analyzing its performance, and synthesizing scalable control policies that cause

the populations of different swarm elements to evolve in a specified way that obeys

time and efficiency constraints. The control policies are decentralized, computed a

priori, implementable on robots with limited sensing and communication capabili-

ties, and have theoretical guarantees on performance. To facilitate this framework

of abstraction and top-down controller synthesis, the swarm is designed to emulate

a system of chemically reacting molecules. The majority of this work considers well-

mixed systems when there are interaction-dependent task transitions, with some

modeling and analysis extensions to spatially inhomogeneous systems.
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The methodology is applied to the design of a swarm task allocation approach

that does not rely on inter-robot communication, a reconfigurable manufacturing sys-

tem, and a cooperative transport strategy for groups of robots. The third application

incorporates observations from a novel experimental study of the mechanics of coop-

erative retrieval in Aphaenogaster cockerelli ants. The correctness of the abstractions

and the correspondence of the evolution of the controlled system to the target be-

havior are validated with computer simulations. The investigated applications form

the building blocks for a versatile swarm system with integrated capabilities that

have performance guarantees.
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Chapter 1

Introduction

Robots have been developed over the past fifty years to perform a variety of tasks that

are undesirable for humans and to increase accuracy and productivity over human

capabilities. However, there are many tasks that cannot be performed efficiently

by a single robot, no matter how complex it is. This is particularly true for tasks

that require many subtasks to be executed in parallel, such as the retrieval of sensor

data over a large region. Redundancy may be a required feature to ensure that the

task can be completed despite system failures, which may be frequent in hazardous

environments. The system may have to readily adapt to a dynamically changing

environment, which can range from outer space to inside of the human body. Security

may be another issue: the system’s mission should be undecipherable from a single

component.

To accomplish these kinds of tasks, we consider the use of a swarm robotic system.

A swarm would consist of hundreds or thousands of autonomous, relatively expend-

able robots with limited sensing, communication, and computation capabilities. The

massive parallelism of a swarm makes its operation robust to robot failures and en-

vironmental disturbances and allows robots to be dynamically added or removed.

Since swarm members have constrained resources, they have a low unit cost, which

allows the system to be affordable. Recent advances in embedded processor, sensor,
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actuator, and communication technologies are paving the way for the development

of such systems. Although they have not yet been implemented in practice outside

of academic research laboratories, there has been a growing interest over the past

decade in developing them for applications including environmental monitoring, ex-

ploration, military surveillance and reconnaissance, battlefield and disaster area com-

munication, chemical source localization, mine detection, search-and-rescue, medical

monitoring and treatment, micromanipulation, nanoscale manufacturing, and even

pollination [2, 20]. The swarm paradigm is particularly essential at the micro- and

nano-scale, in which robotic systems will have extremely limited on-board power,

sensing, and computational capabilities.

Given these factors, it is becoming more and more urgent to develop a rigorous

theoretical framework for modeling robotic swarms, analyzing their collective be-

havior, and synthesizing robot controllers with performance guarantees. The work

presented here employs a framework of this type for a broad range of systems. This

thesis can largely be considered as a handbook of sorts for designing a robotic swarm:

most of the work is devoted to formulating classes of models for a swarm, describ-

ing applicable analysis techniques and controller synthesis methods for each type of

model, and then demonstrating these components on appropriate swarm systems.

Chapter 8 contains a departure from this approach, in that it illustrates an experi-

mental study of a biological example of a swarm and its subsequent modeling based

on observations. Section 1.1 defines the problem that we want to solve and the

challenges inherent in developing our framework, Section 1.2 gives an outline of our

approach, and Section 1.3 enumerates the specific contributions of the thesis.

1.1 Problem Statement

We address the problem of controlling populations of different elements of a swarm in

a way that obeys time and efficiency constraints on system performance and is easily
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adaptable to changes in target populations. The swarm elements are determined

by the application under consideration and may include robots at each of a set

of tasks, objects of distinct types, and various forms of robot-object complexes.

The controllable components of the system are the motion of the robots and their

decisions to switch between tasks and interact with other elements.

The enormous populations in the systems that we consider present certain chal-

lenges in developing an approach to solve this problem. In order to predict the

swarm behavior, it is imperative to create models of the system that can be simu-

lated in a reasonable amount of time. The models should be amenable to analysis

techniques that can establish theoretical guarantees on system performance over a

range of parameters. Since the complexity of most centralized algorithms for co-

ordination is at least quadratic in the number of agents [112], it is impractical to

use centralized control for a group of hundreds or thousands of robots. A decentral-

ized control approach is needed in order for the robot control policies to be scalable

with the population. Decentralized algorithms are implementable on robots with

limited capabilities, since they require only local information without knowledge of

the global state of the system [111]. It is also important to restrict communication

among robots, since bandwidth becomes a limiting factor in communication as the

population size increases.

1.2 Approach

To satisfy the criteria in Section 1.1, we formulate the problem as the manipulation

of trajectories of element populations in an abstraction of the system whose dimen-

sionality is independent of the swarm size, and the subsequent top-down synthesis

of robot controllers from the abstraction parameters. This approach requires a rig-

orous correspondence between the physical swarm and the abstraction in order for

the resulting controllers to produce the desired evolution of element populations.
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Such a correspondence has been established between chemical systems of reacting

molecules and abstractions that take the form of continuous-time Markov chains

and differential equations [45, 51, 75]. The well-developed bodies of theory for these

mathematical tools offer a variety of techniques for simulation, analysis, optimiza-

tion, and control. In addition, the actions of molecules are readily implementable

on the resource-constrained members of a swarm. For these reasons, we choose to

design the robot swarm to emulate such a chemical system. In the majority of this

work (Chapters 3-8), we develop systems that can be modeled as a Chemical Re-

action Network (CRN), which requires spatial homogeneity of the swarm elements

if they interact with each other. Using this paradigm, we formulate the modeling,

analysis, and controller synthesis components of our theoretical framework, which

are illustrated in Figure 1.1. In Chapter 9, we extend the modeling and analysis

methodology to spatially inhomogeneous systems with interactions by defining the

swarm to behave like a reaction-diffusion chemical system that is diffusion-limited

rather than rate-limited.

1.2.1 Methodology

The physical swarm system is represented by the micro-continuous model, which

may range from a simple point-mass model to a realistic 3D multi-robot model at

the highest level of fidelity. The robots’ transitions between tasks are designed to

imitate chemical reactions: they transition stochastically, either spontaneously or

upon encountering certain objects or other robots, at rates that are determined by

constants that are analogous to reaction rate constants. The rate constants are

designed to produce a target macroscopic outcome for the swarm. The robot motion

controllers are defined to produce the execution of the desired tasks and to create the

physical conditions that facilitate the abstraction. If there are task transitions that

can be initiated by encounters, the second factor is achieved by driving the robots

with a random walk to enforce “mixing,” which is superimposed on a deterministic
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Figure 1.1: Levels of abstraction of a swarm robotic system with analysis and syn-
thesis methodologies. The high-dimensional micro-continuous model is mapped to
lower-dimensional representations, the macro-discrete and macro-continuous models,
through the abstractions Fd and Fc.

velocity in spatially inhomogeneous systems. For these systems, the deterministic

and random components of the robot velocities are design parameters in addition to

the rate constants. If all transitions are spontaneous, then there are no abstraction-

motivated constraints on the motion controllers.

In practice, implementations of the micro-continuous model for N robots can be

computationally expensive to simulate and intractable for analysis as N increases.

The macro-discrete model is a lower-dimensional model of the system that can be

simulated much more quickly while retaining some of the features of the micro-

continuous model. This representation is a macroscopic model in the sense that it

abstracts away the identities of the robots, and it considers a swarm as a collection

of discrete agents whose integer populations evolve according to a Markov process.

The performance of the micro-continuous and macro-discrete models is analyzed

by running simulations and examining the statistics of the resulting ensemble of

trajectories or fields. In particular, realizations of the the macro-discrete model are

5



obtained with a stochastic simulation algorithm.

For very large populations, the system can be accurately abstracted to a macro-

continuous model, which represents a swarm as a set of continuous populations gov-

erned by differential equations that are functions of the design parameters. Systems

that can be modeled as CRN’s are abstracted to ordinary differential equations

(ODE’s), while spatially inhomogeneous systems with interactions are abstracted

to partial differential equations (PDE’s). For PDE models, we employ a mesh-free

Lagrangian computational method to obtain the numerical solution of populations

over the domain. We developed the remainder of the methodology for ODE models.

The macro-continuous level analysis verifies whether the continuous model satis-

fies the system requirements. The model equilibria give the steady-state populations

of the swarm elements, and they can be characterized using results from Chemical

Reaction Network theory, algebraic graph theory, and Lyapunov stability theory.

The model may be described as a hybrid system if it consists of discrete modes, cor-

responding to regions in the state space, that are each characterized by a different set

of continuous dynamics. In this case, we can apply a reachability analysis technique

to approximate the system behavior over time.

Using the macro-continuous model, the rate constants are designed to minimize

system convergence time to a target distribution of element populations, possibly

with a specification on efficiency. We formulate both convex optimization and

stochastic optimization approaches to this problem. When the model is a hybrid

system, control terms are added to the dynamics in order to guide the system tra-

jectories through a specified sequence of modes, which in this work correspond to

polytopes in the state space.

1.2.2 Implementation

We now discuss the design principles, control architecture, and robot capabilities

that are needed to implement our top-down control strategy on a swarm robotic
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system. The robots that we consider are unidentified, each identical in hardware

and programmed with the same set of control algorithms. This enables the parallel

execution of tasks, robustness to failures, and ease of adding and removing robots

from the swarm. Using the asymmetric broadcast control (ABC) paradigm [112],

a supervisory node computes the design parameters and broadcasts them to the

swarm, along with information regarding the tasks they are to execute, the allowable

transitions between tasks, and possibly the environment (such as a map). The

supervisory node may obtain global state information about the swarm, such as its

degree of convergence to the target element populations, and use this to update its

computations, but it does not require knowledge of the robot population or individual

robot actions.

To execute the task transitions and motion controllers, the robots must rely

on local information that they obtain via sensing and/or communication. For an

encounter-dependent transition, a robot must identify the type of another robot or

object to determine whether it is a potential “reactant.” This can be done using local

wireless communication, in which the robots exploit communication links when they

become available, or a camera with image processing software. The desired motion

strategy may require localization and the ability to execute a random walk. To avoid

collisions with other swarm elements and obstacles in the environment, a robot may

use infrared proximity sensors, sonar sensors, or a laser rangefinder. Robots may

attach to other elements with a gripper or a magnetic latching mechanism.

1.2.3 The Role of Bio-Inspiration

Swarms in nature are “proofs-of-concept” that complex macroscopic tasks can be

achieved through the local interactions of numerous relatively simple, anonymous

individuals. A prominent example is the self-organized behavior of social insects.

Insect colonies achieve global objectives such as nest construction, colony emigration,

foraging, hunting, and transport by switching between behaviors using local sensing
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and physical contact. The outcomes are robust to perturbations in the environment

and insect population and to noise in the information sensed by individual insects.

Although it may seem to an observer that the members of a swarm are all following

instructions from a leader, such as when birds exhibit incredibly coordinated flocking,

in reality they are behaving in a decentralized manner. In a general sense then,

natural swarms provide us with the principles for designing a robotic system that is

massively parallel, robust to failure, flexible, and economical.

Our particular framework provides a concrete mechanism for incorporating con-

cepts from biology: we can draw on CRN models of biological swarm behaviors that

are useful for robotic systems to define the set of robot tasks and the structure of the

reaction network that dictates the possible transitions. Such models are, most obvi-

ously, abundant in the literature on biochemical networks, for instance the lac operon

in E. coli [157] and the mammalian circadian clock [41]. They are also employed

in population biology; examples include the familiar Volterra-Lotka predator-prey

model [134] and models of nest site selection in ants and honeybees [42]. We can

select a model that describes a certain type of collective behavior, such as allocation

among a set of sites, and adjust it using our controller synthesis methodology to

produce a different macroscopic outcome that is more suitable for our application

(see Chapter 6).

We may also be interested in the physical mechanisms of how a biological system

accomplishes a task in order to define robot motion controllers for a novel decentral-

ized approach to the task, as in the cooperative manipulation problem in Chapter

8. The controllers can be classified as bio-inspired rather than biomimetic because

they are designed to emulate the strategy using the sensor information and actuation

that are available to the robot, which is often not equipped to detect cues such as

chemical signals that are vital to the biological agents.
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1.3 Contributions

The main contribution of this thesis is the use of the theoretical framework described

in Section 1.2 for designing the collective behavior of a robot swarm. This approach

allows us to synthesize robot control policies that can be computed a priori and have

provable guarantees on performance. In the analysis component of our methodology,

we present a novel algorithm for the reachability analysis of hybrid systems with

multi-affine continuous dynamics (see Section 4.3.2).

We use our modeling, analysis, and controller synthesis methodology to design

systems for three types of applications. These applications can be combined to

produce a versatile swarm system with the capabilities of distributing among a set

of sites and subtasks, assembling products from raw materials and/or self-assembling,

and transporting materials and products between sites.

In the first application, the robots are allocated among a collection of tasks,

which are to be performed in parallel, that are located at different sites. In response

to new levels of demand for robots at each task, the robots must quickly and effi-

ciently reallocate themselves among the sites to occupy them according to a target

population distribution. Since the tasks may be far apart from one another, com-

munication between all robots may not be possible due to interference, obstruction,

or power limitations, or it may be too risky, as in military applications. In light of

these issues, we propose a strategy that does not use inter-robot communication.

In the second application, the robots must assemble target quantities of different

types of products from a large supply of heterogeneous parts. In this case, the robots

use local sensing and local communication to pick up parts and join them with parts

carried by other robots. The advantage of this kind of manufacturing system over a

traditional assembly line is its increased flexibility; the robots can respond quickly

to assemble different product quantities when demand changes. We also model a

part retrieval scenario in a spatially inhomogeneous assembly system.

The third application is a fully decentralized control strategy for robots in groups
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of target sizes to cooperatively manipulate objects to specified locations while maneu-

vering past obstacles. Toward this end, we undertake an unprecedented experimental

study of the mechanics of cooperative transport in groups of Aphaenogaster cockerelli

ants and present a hybrid system model of the ant behavior based on observations.

1.4 Organization of this work

This work is organized as follows. Chapter 2 summarizes relevant literature in the

areas of biological aggregations, swarm modeling, stochastic simulations, CRN the-

ory, reachability analysis, controller synthesis, multi-robot task allocation, robotic

assembly systems, and multi-robot transport systems. Chapter 3 describes the three

swarm models shown in Figure 1.1. Chapters 4 and 5 present the analysis and con-

troller synthesis techniques, respectively, that are applied to each model. Chapter

6 describes the application of the methodology to two task reallocation scenarios,

a bio-inspired deployment strategy and a multi-site surveillance system. Chapter

7 discusses the swarm robotic assembly system application. Chapter 8 describes

our experimental study and modeling of collective transport in ants. Chapter 9 ex-

tends the modeling and analysis approaches to spatially inhomogeneous swarms with

encounter-dependent transitions. Finally, Chapter 10 suggests future directions for

the development of our methodology and applications.
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Chapter 2

Literature Review

This chapter outlines relevant literature on the modeling, analysis, and controller

synthesis components of our methodology, as well as on the applications of multi-

robot task allocation, swarm robotic assembly systems, and multi-robot collective

transport.

2.1 Swarms in Biology

Diverse examples of emergent collective behavior can be witnessed in nature: the

coordinated motion of bird flocks and fish schools, the process of nest site selection in

ant and honeybee colonies, and the feat of mound construction in termite colonies,

to name a few examples. I have contributed a catalog of references on collective

behaviors in biology to the online repository at [1] and the online database [21].

2.2 Swarm Models

At the micro-continuous level, swarms have been simulated using agent-based mod-

els such as a biologically-inspired model of flocking behavior [127] and Brownian

agent models of a wide variety of phenomena such as cells responding to stimuli,
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trail formation in ants and pedestrians, urban aggregation, and voter opinion forma-

tion [136]. Our abstraction of the micro-continuous system to an accurate macro-

scopic model is similar to recent work on modeling robot swarms [4, 58, 97]. In the

first two references, it is assumed that robots and their stimuli are uniformly spatially

distributed. Identical robot controllers are defined with stochastic state transitions,

and they are averaged to obtain a set of difference equations [4] or ordinary differen-

tial equations [97]. In [58], the swarm is represented by a Fokker-Planck equation to

model spatial inhomogeneity. System performance is studied by running the mod-

els, which are validated through simulations and experiments, under many different

conditions. This constitutes a “bottom-up” controller synthesis procedure, in con-

trast to our “top-down” approach, which is less computationally expensive and gives

theoretical guarantees on performance.

2.3 Analysis Techniques

2.3.1 Stochastic Simulation Algorithms

A stochastic simulation algorithm is a procedure for computing numerical realizations

of molecular populations over time in a well-stirred chemical reaction network. [51]

provides a thorough survey of algorithms formulated by Gillespie and extensions

that were developed to increase the computational speed, some specifically designed

for stiff systems. A recent addition is the weighted stochastic simulation algorithm

(wSSA) [49, 87], which uses the technique of importance sampling to increase the

frequency of rare events of interest.

2.3.2 Chemical Reaction Network (CRN) Theory

The literature on CRN theory provides techniques for determining the existence,

multiplicity, and stability properties of equilibria of nonlinear dynamical systems of
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certain classes. The results can be applied to networks with high-dimensional, com-

plex dynamics and sometimes hold regardless of the values of the system parameters.

The theory developed by Feinberg, Horn, and Jackson [37,38] describes results that

can be obtained for networks with a fairly general topology using a parameter called

the deficiency; mass action kinetics are required to conclude the possibility of equi-

libria. The theory of monotone dynamical systems gives results for networks with

a more restricted topology and monotone but otherwise arbitrary reaction kinet-

ics [93]. The Deficiency theorems state results for equilibria and cyclic trajectories

in the positive orthant of the real state space, while the theory on monotone systems

extends results on stability and uniqueness to equilibria in the nonnegative orthant.

2.3.3 Reachability Analysis

In order to accurately approximate the global behavior of a set of hybrid system

trajectories, or to verify that they do not enter an undesirable region, it is productive

to consider reachability analysis, a well-known symbolic analysis technique [32, 62,

140]. A typical reachability problem is to determine whether a certain region of the

state space can be reached by a system, starting from a given set of initial conditions.

The reachability problem is decidable when the continuous dynamics are constant

(timed and multirate automata), take values in a constant interval (rectangular

automata) [62], or fall into certain classes of linear systems [90]. If the dynamics are

not of these types, an overapproximation of the reachable set can be computed in

one of two ways. One option is to pursue a discrete abstraction of the hybrid system

via an indirect method. Alternatively, the reach set can be directly calculated the on

the state space via a direct method.

In the indirect method, one generally partitions the continuous state space of

the system into a finite number of sets and explores how states in one set may

reach states in another set. Sets are usually convex regions of the state space; the

exact representation of a set depends on a particular method. An example is the
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multi-affine reachability algorithm developed in [7, 56,81].

HyTech [62] and PHAVer [44] are tools for the verification of linear hybrid au-

tomata. This class of automata has piecewise constant bounds on the derivatives of

the continuous state variables. HyTech and PHAVer overapproximate affine continu-

ous dynamics by linear formulas over the derivatives. PHAVer also has the ability to

partition reachable modes recursively along user-defined hyperplanes. Matisse [52]

and CheckMate [140] are reachability algorithms that use direct techniques for non-

linear hybrid systems.

2.4 Controller Synthesis

Control paradigms for multi-robot systems can be classified as centralized or de-

centralized, and the robots may be individually identified or identical (either to

all other robots in the group or to a subset of the group) and unidentified. As

discussed earlier, the paradigm that we employ for a swarm system involves the

decentralized control of many unidentified robots. Our top-down control synthesis

approach is related in spirit to the work of [8], which presents a systematic approach

to translate group behaviors, modeled as vector fields on a low-dimensional abstract

manifold, into agent behaviors in a high-dimensional manifold derived from copies

of an agent’s state space. At the micro-continuous level, robot motion controllers

for navigation through an environment with obstacles can be defined using naviga-

tion functions [128–130] and vector field design on a cell decomposition of the free

space [30]. Vector field design may also be used to control the state of a hybrid

macro-continuous model through a sequence of modes [7, 55]. Flocking control of

multiple robots can be implemented in a distributed manner using artificial poten-

tial functions [95, 145], which may also be used for inter-robot collision avoidance

alone.
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2.5 Applications

2.5.1 Task Allocation for Robot Swarms

We apply our methodology to the design of a strategy for quickly and efficiently

reallocating a swarm of robots among a set of tasks such that the steady-state pop-

ulations at the tasks follow a target distribution. The tasks are to be performed in

parallel, continuously, and independently of one another. This is an instance of the

single-task robot, multi-robot task problem (ST-MR) [46], where the goal is to assign

teams of robots to tasks in a way that maximizes the system’s performance. This is

known as the coalition formation problem when applied to software agents. Tractable

approaches to this problem, which is NP-hard, rely on extensive agent cooperation

that is not easily implemented in robot systems since communication can be costly

and unreliable and resources are not transferrable [153]. The algorithm in [137] was

adapted to the multi-robot domain in [152], but robots must compute all possible

coalitions and agree on the best ones, and coalition sizes are limited. The ST-MR

problem has recently been addressed with market-based techniques, although allo-

cation strategies for robots have mostly considered the problem of assigning a single

robot to each task [153]. Market-based approaches [35] require robots to execute

complex bidding schemes based on perceived costs and utilities, and the computa-

tion and communication requirements often scale poorly as the number of robots

and tasks increases.

These algorithms are not suitable for the systems that we consider, which have

very large populations and do not employ inter-robot communication to allocate

among the tasks. Instead, we adopt the decentralized paradigm of the approaches

in [3, 84, 89], which are inspired by the self-organized behavior of social insects such

as ants, and those in [4, 97]. In these approaches, robots switch between simple

behaviors based on environmental stimuli and interactions with other robots. We

note that the potential-based algorithm in [138] is also scalable, but it is designed
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for tasks that are depleted and does not address the problem of allocating robots as

quickly as possible.

2.5.2 Swarm Robotic Assembly Systems

We also apply our methodology to the design of a decentralized manufacturing sys-

tem in which a swarm of mobile robots must quickly assemble target amounts of

different products from any initial set of parts. In the taxonomy [54] of macroscopic

self-assembly systems, our objective and approach are most similar to those of [80],

which considers a set of modules that bind through random collisions and detach into

different parts according to programmed probabilities [79]. As in our system, the

interactions between elements are modeled as a CRN. Other assembly systems based

on random collisions between parts are described in [67], which predicts the yield of

complete assemblies from passive, vertically stirred modules, and in [6], which studies

the dynamics of micro scale batch assembly using vibration; both of these systems

are also modeled as CRN’s. In [80], an optimization problem is formulated to com-

pute the module detachment probabilities that maximize the equilibrium yield of

one assembly type. The optimization, which is based on a Markov process model of

the system, requires the enumeration of all reachable states, and is therefore suitable

for a relatively small number of parts.

Our use of robots to transport and join passive parts according to decentralized

rules is similar to the setups in [154], which derives rules for building a single desired

structure out of blocks, and in [83], which presents an algorithm for assembling an

object such as a truss-like structure out of different types of parts.

2.5.3 Multi-Robot Transport Systems

Many approaches to multi-robot manipulation of a load rely on leader/follower or

centralized schemes and knowledge of the load geometry and possibly the contact

force measurements [116]. Other approaches to multi-robot transport include towing
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[39], caging [40], and ant-inspired box-pushing [85]. The first two works incorporate

rigorously derived models and controllers with performance guarantees. [40] presents

a decentralized approach in which sequentially composed vector fields are used to

drive a group of robots to approach, surround, and push an object to a desired

location, maintaining closure by orbiting around the object. [39] formulates a quasi-

static model for the motion of a planar load that is towed by one, two, or three

robots in the presence of dry friction and cable tension constraints. [85] implements

a decentralized approach, inspired by collective transport in ants, to multi-robot

box pushing in which robots switch between simple behaviors in response to locally

sensed cues. The system behavior is investigated through multiple simulations and

experiments; there are no theoretical guarantees on performance.
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Chapter 3

Swarm Models

The material in this chapter was first presented in [11–13, 15, 57, 69, 109].

This chapter presents the three models of a swarm that we use in our analysis

and controller synthesis methodology. Section 3.1 describes the micro-continuous

model, which represents individual robots and other system elements in a physical

environment, incorporating the geometry and dynamics of the robots and possibly

modeling heterogeneity. The robots’ transitions between tasks are modeled as a

Chemical Reaction Network (CRN), and several types of transitions are specified

in Section 3.1.1 and 3.1.2. The micro-continuous model is abstracted to the lower-

dimensional macro-discrete model, outlined in Section 3.2, which models the time

evolution of integer populations of robots at each task and other elements of different

types according to the Chemical Master Equation [45, 48, 75]. The macro-discrete

model can be abstracted to the macro-continuous model, described in Section 3.3, a

set of coupled ordinary differential equations (ODE’s) that model the time evolution

of the continuous populations of robots at each task and other types of elements.

This model is known as the rate equation in literature on CRN’s. Sections 3.3.1,

3.3.2, and 3.3.3 present different classes of macro-continuous models that can be

used to represent robotic systems with the transitions given in Sections 3.1.1 and

3.1.2.
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3.1 Micro-Continuous Model

Consider a population of N robots moving in the continuous state space Yr ⊂ Rd,

d ∈ {2, 3}. At any given time, a robot’s actions are determined by one of a set Ωr of

P controllers. A controller ω ∈ Ωr causes a robot to fulfill a distinct task, or possibly

a subdivision of activity within a task. The micro-continuous model is comprised

of N hybrid automata, Hr = {Yr,Ωr}, each describing a robot in terms of both its

continuous and discrete dynamics. Borrowing CRN terminology, we refer to the S

types of elements in the system as species and call a combination of species that

appears before or after a reaction arrow a complex. A particular species, symbolized

by Xi, represents a robot that is performing task i or an object of type i with which

the robots interact.

The micro-continuous model can be implemented in various ways, depending on

the desired level of realism. If it is important to generate the dynamics associated

with friction, collisions, and other inter-robot or robot-environment interactions,

then the model may be implemented in a 3D multi-robot simulator such as Gazebo

[82] or Webots [113], both of which use the Open Dynamics Engine to simulate

physics, or more accurately with the simulation tool daVinci Code [10] or the multi-

body simulation algorithm in [77]. If such interactions do not play a significant role

in the system performance, then each robot can be described by a point agent that

is governed by a single-integrator or double-integrator model, depending on whether

the motion control input is applied to the robot’s velocity or acceleration. The

applications presented in this thesis use both types of implementations.

In order to be able to abstract the system to the macro-discrete model, the robots’

task transitions must be be executed in a way that conforms to the fundamental

hypothesis of the stochastic formulation of chemical kinetics [47,50]. This hypothesis

states that a reaction that converts complex i into complex j is characterized by a

19



stochastic reaction constant cij, which is defined such that

cijδt = the average probability that a particular combination of elements of the

species types in complex i will transition to the species types in complex

j in the next infinitesimal time interval δt. (3.1)

The corresponding reaction rate constant, kij, is proportional to cij (see the following

sections for its definition). The reaction propensity, aij, is defined such that aijδt is

the probability that the reaction that converts complex i into complex j will occur

in the next δt. It is the product of cij with hij, the current number of distinct

combinations of elements that can undergo the reaction.

In the following sections, we discuss how to ensure the validity of (3.1) in systems

that contain two types of “reactions.” In the first type, described in Section 3.1.1,

robots switch between tasks upon encountering nearby robots or other elements of the

system. In the second type, described in Section 3.1.2, robots switch spontaneously

between tasks.

3.1.1 Interaction-Dependent Task Switching

In our systems, as in CRN’s in general, it is rare that three or more elements en-

counter each other simultaneously. Hence, in this section we only consider “bimolec-

ular” reactions, in which the reactants consist of two species, m and n. We specify

that the robots are moving in a bounded domain with volume V (area A in two

dimensions).

For premise (3.1) to be true, the system must be well-mixed. Gillespie [47, 50]

defines a well-mixed chemical system as one in which molecules are uniformly ran-

domly distributed throughout a container with fixed volume V . He notes that this

property can be maintained by direct stirring or by a very high rate of nonreactive

molecular collisions compared to that of reactive collisions. In our robotic system,

one option is to design the robot controllers to emulate a reaction-diffusion system,
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in which diffusion is implemented by driving the robots with Brownian motion (see

Chapter 9 for a discussion of the class of models to which reaction-diffusion systems

belong). When diffusive motion is the mechanism that drives mixing, the well-mixed

property can be verified by checking that the diffusion rate is much higher than the

reaction rates. This was done for testbeds of stochastically interacting robotic com-

ponents in [24] and [117] using measurements of the diffusion coefficients and rate

constants. Alternatively, the robots can be commanded to execute a random walk

with fixed speed and we can verify that they are uniformly randomly distributed

over the domain.

For bimolecular reactions, the probability cijδt is the product of the probability

that a random pair of reactant elements of complex i will encounter each other in the

next time interval δt, denoted by ceijδt, and the probability that these reactants will

form complex j given that they are in close proximity, cpij [48]. The probabilities cpij

are the parameters that we can design to achieve a macroscopic system objective. In

molecular systems, these probabilities are functions of activation energy [50]. In order

to satisfy the fundamental hypothesis (3.1), ceij and cpij must both be independent

of δt [48]. We can design cpij to be time-independent, and below we discuss cases in

which ceij can be verified to be a constant.

In chemical systems, the well-mixed condition implies that the probability that

the center of any molecule lies in the “collision volume” δVcoll swept out by any other

molecule in the infinitesimal time interval δt is given by δVcoll/V [47, 48, 50]. Using

this premise, Gillespie geometrically derives the average probability that a random

pair of molecules 1 and 2, which we will suppose here are species in a complex i, will

collide in the next time interval δt as

ceijδt = E(δVcoll/V ) =
π

V

(
d1 + d2

2

)2

E(v12)δt, (3.2)

where E(·) denotes expected value, d1 and d2 are the diameters of the molecules

(assumed to be spheres), and v12 is the speed of molecule 1 relative to molecule 2. If

the system is in thermal equilibrium at absolute temperature T , then the molecules

21



have Maxwell-Boltzmann velocity distributions, which results in the scalar value

E(v12) = (8kBT/πm12)1/2, (3.3)

where kB is Boltzmann’s constant and m12 = m1m2/(m1 + m2), with mi denoting

the mass of molecule i [48, 50]. Gillespie and van Kampen [75] (p. 171) note that

the occurrence of a higher frequency of nonreactive collisions than reactive collisions

maintains this type of velocity distribution. From the kinetic theory of gases, it is

known that diffusing particles have Maxwellian velocity distributions, so robots with

Brownian motion should satisfy Equation (3.3). This can be experimentally verified

for a given system, as was done in [19] for a testbed of programmable robotic parts.

If the robots move according to a random walk with constant speed, and in

addition all elements of the system are uniformly distributed throughout the domain,

then ceij can be calculated as [31]

ceij = vw/V, (3.4)

where v is the robot speed and w is the robot’s detection width (assumed to be

constant), which is the width of the area that the robot’s sensing or communication

range sweeps out while it is moving.

We now define the possible types of bimolecular reactions in our systems. Let

Ni be the integer population of elements of species i. For bimolecular reactions,

cij = kij/V and hij = NmNn if m 6= n, and cij = 2kij/V and hij = Nm(Nm − 1)/2 if

m = n [50].

Let Xm denote either a robot performing task m or an object of type m, and let

Xn represent the same. The interaction between these two elements upon encoun-

tering each other can induce one or both to adopt a new task (in the case of a robot)

or identity (in the case of an object), labeled by o and p. This transition is described

by the reaction

Xm +Xn
kij−→ Xo +Xp . (3.5)
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The position of kij above the reaction arrow indicates that it is a reaction rate

constant. Here, Xm +Xn is complex i and Xo +Xp is complex j. When n = p, the

reaction describes a conversion of Xm to Xo that is “catalyzed” by an interaction

with Xn.

Now set Xm to be a robot performing task m and Xn to be an object of type n,

such as a component of a product in an assembly system. If the robot encounters

the object, it can decide to connect to it. Let Xp, which will be labeled as complex

j, symbolize the robot once it has bonded to the object and possibly started a new

activity. The reaction that describes this connection is

Xm +Xn
kij−→ Xp . (3.6)

Alternatively, this reaction may represent the bonding of objects of type m and n to

form an object of type p.

In the implementation of these reactions, a robot in complex i that encounters

another robot or other element with which it can “react” to form complex j computes

a uniformly distributed random number u ∈ [0, 1] and follows through with the

transition if u < cpij.

3.1.2 Spontaneous Task Switching

This section presents reactions that are classified as “unimolecular” since their reac-

tants consist of one species. The fundamental hypothesis (3.1) is valid if a robot at

task i undergoes the transition associated with the reaction at probability per unit

time cij. For these types of reactions, cij = kij and hij = Ni [50].

Let Xi denote a robot that is performing task i, and suppose that the robot

switches to task j at probability per unit time kij. Using CRN notation, this reaction

is written as

Xi
kij−→ Xj . (3.7)

For this type of reaction, kij will also be called a transition rate.
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Now let Xi represent a robot that is executing a task while connected to an object

of type n, labeled by Xn. The robot has a certain probability per unit time, kij, of

disconnecting from the object. Let Xm symbolize the robot once it has disconnected

and possibly started a new activity (even if it is the same activity, we still consider

the detachment to initiate a new “task”), and label Xm + Xn as complex j. Then

the reaction that describes this disconnection is

Xi
kij−→ Xm +Xn . (3.8)

Alternatively, this reaction may represent the disassembly of an object of type i into

objects of type m and n.

In the implementation of these reactions, a robot that is doing task i computes

a uniformly distributed random number u ∈ [0, 1] at each (very small) simulation

timestep dt and executes the transition governed by kij (switching to task j or

disconnecting from an object) if u < kijdt. The number of transitions governed by

kij that occur in a time interval ∆t has a Poisson distribution with parameter kij∆t.

3.2 Macro-Discrete Model

By applying the laws of probability to the fundamental hypothesis (3.1), it is possible

to derive a time-evolution equation for P (n, t|n0, t0) ≡ Prob{N(t) = n given N(t0) =

n0}, where N(t) ∈ RS is the vector of integer species populations Ni at time t [48].

This is the Chemical Master Equation (CME), and it describes a continuous-time

Markov process whose states are all the possible species population vectors N. We

refer to this as the macro-discrete model of the system.

The macro-discrete model can capture phenomena that occur in the physical

system but do not appear in the macro-continuous model. This is because the

stochastic formulation of a system has a more legitimate physical basis than the

deterministic formulation, which does not account for correlations and fluctuations

[50]. Examples of such phenomena include state fluctuations in relatively small
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populations, potentially leading to stochastic transitions between equilibria of multi-

stable systems [73,133].

The Chemical Master Equation itself is not a useful tool for analysis; it cannot

be solved analytically for more than a few simple cases, and it is often difficult to

solve numerically due to the number of its independent variables (S species popula-

tions and the continuous variable t) [47, 51]. Instead of attempting to compute the

probability density function of N(t), we can characterize statistical properties of the

macro-discrete model by generating numerical realizations of N(t) with a stochastic

simulation algorithm that is logically equivalent to the Chemical Master Equation,

i.e., it is also derived from hypothesis (3.1). One such algorithm is described in

Section 4.2.

3.3 Macro-Continuous Models

For the types of systems that we consider, the time evolution of the expected val-

ues of the species concentrations, Ni(t)/V , is described deterministically by a set

of ODE’s which we call the macro-continuous model. When the system contains

only unimolecular reactions, this can be shown by substituting the CME into the

equation for ∂E(N(t))/∂t and using the linearity of expectation [155] (Section 6.7).

When there are bimolecular reactions present, it can be demonstrated by using van

Kampen’s system size expansion of the CME [75] (Ch. 10) if the set of ODE’s has a

unique, globally stable equilibrium [75] (p 355). First, the concentration of species i

is defined as the sum of a deterministic value, xi, and a fluctuating component that

is scaled in inverse proportion to Ω1/2, where Ω is a system size parameter that in

many cases is the system volume V . The rationale behind this is that for constant

average concentrations, relative fluctuations will tend to decrease with V −1/2 [36].

The CME is Taylor-expanded near trajectories of xi, i = 1, ..., S, in powers of V −1/2.

The terms in the expansion of order V 1/2 give an ODE model governing the time
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evolution of xi, and the terms of order V 0 yield a linear Fokker-Planck equation (the

“linear noise approximation”) that can be used to characterize the moments of the

fluctuations around the ODE solution.

In the thermodynamic limit, defined as the limit in which Ni, i = 1, ..., S, and

V all approach infinity in such a way that the concentrations Ni/V approach finite

values [51], the concentration fluctuations become negligibly small and the time

evolution of the system is accurately described by the ODE model. We denote the

vector of continuous species concentrations xi(t) by x(t) ∈ RS. The continuous state

space of these concentrations is labeled by Yp ⊂ RS; the dimensionality of this space

may be reduced by using conservation laws of the system to eliminate variables. Yp

may be divided into a set Ωp of Q regions, called population modes, that are each

associated with different continuous dynamics. Then, the system can be described

by a hybrid automaton Hp = {Yp,Ωp}.
The macro-continuous model is a function of the rate constants kij as well as

the concentrations xi. Each species i is assigned a target concentration, xdi , and

the vector of these values, xd, is called the target species distribution. As described

in Section 5.2, the macro-continuous model is used to design the rate constants kij

that will cause the system to quickly converge to the target distribution, which is

the unique, stable equilibrium of the model. We assume that a central controller

determines xd, computes the kij, and broadcasts these rate constants to the robots.

In the most general case that we consider, the system contains both unimolecular

and bimolecular reactions. The corresponding macro-continuous model is a multi-

affine function of the species concentrations, defined by

ẋ =
2S−1∑
j=0

aj x
i1(j)
1 x

i2(j)
2 ...x

iS(j)
S ; aj ∈ RS , (3.9)

where the concatenation

Θj ≡ i1(j)i2(j)...iS(j), {i1(j), ..., iS(j)} ∈ {0, 1}S (3.10)
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is a binary representation of the integer j. It should be noted that the offset vector a0

is 0 in this model due to the structure of the reactions; however, nonzero components

of a0 are introduced when conservation laws are used to eliminate state variables (see

Section 6.1.2 for an example). If there are no bimolecular reactions in the network,

then the macro-continuous model takes the form of an affine system,

ẋ = Ax + a , (3.11)

where A ∈ RS×S and a ∈ RS.

The multi-affine model is formulated as a matrix equation in Section 3.3.1, and

Section 3.3.2 presents the reduction of the model to a linear form for the case of a

“task reallocation” system, which has reactions of type (3.7) only. Section 3.3.2 also

illustrates how to account for realistic distributions of task transition times within

the linear ODE framework and describes models with transition rates that vary with

the difference between the robot population at a task and a threshold value.

3.3.1 Multi-Affine Model

The set of reactions in a system can be modeled as a directed graph, G = (V , E).

The set of vertices, V = {1, . . . , C}, signifies the complexes, and the set of P directed

edges, E , represents the reaction pathways between the complexes. Complexes i and

j are adjacent, denoted by i ∼ j, if there is a reaction pathway in which complex i

transforms into complex j. We denote this relation by the ordered pair (i, j) ∈ V×V ,

with the set E = {(i, j) ∈ V × V | i ∼ j }. Each pathway (i, j) is associated with

a reaction rate constant kij. Let R denote the number of unordered complex pairs

(i, j) that are connected by at least one reaction pathway; each of these pairs, along

with their corresponding pathway(s), is referred to as a reaction of the system.

Let y(x(t)) ∈ RC define a vector in which entry yi(t) is the product of concentra-

tions of the species in complex i at time t. If complex i consists of one species, Xj,

then yi(t) = xj(t), and if it consists of two species, Xj +Xk, then yi(t) = xj(t)xk(t).
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The reaction rate of a reaction involving complexes i and j is defined as the difference

between the forward flux kijyi(t) and the reverse flux kjiyj(t), which is nonzero if

(j, i) ∈ E . Letting νi(t) denote the reaction rate of reaction i, the vector of reaction

rates is ν(x(t)) ∈ RR.

We define a matrix M ∈ RS×C in which each entry Mji, j = 1, ..., S, of column mi

is the coefficient of species type j in complex i (0 if absent). Finally, let K ∈ RC×C

be a matrix with the properties

KT1 = 0 , (3.12)

Kij ≤ 0 ∀(i, j) ∈ E . (3.13)

These two properties result in the following matrix structure:

Kij =


−kji if i 6= j , (j, i) ∈ E ,
0 if i 6= j , (j, i) /∈ E ,∑

(i,l)∈E kil if i = j .

(3.14)

Then the ODE abstraction of the system can be written in the following form [27]:

ẋ = −MKy(x) . (3.15)

Model (3.15) can equivalently be written in terms of ν(x) and the stoichiometric

matrix S ∈ RS×R, for which each entry Sij is the stoichiometric coefficient of species

i in reaction j [61]:

ẋ = Sν(x) . (3.16)

The ODE model is subject to S − rank(S) linearly independent conservation

constraints on the species concentrations, each of the form

cTx = c, c ∈ RS , c ∈ R , (3.17)

where c is in the null space of ST [61].
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3.3.2 Linear Models

We consider the case in which the CRN representation of the system consists only

of reactions of type (3.7). This models a scenario in which robots reallocate them-

selves among a set of tasks that are to be executed in parallel, continuously, and

independently of one another. For instance, each task could be an activity at a

physical site such as building surveillance, environmental monitoring, construction,

or a search-and-rescue operation. To facilitate robot redistribution, we specify that

robots may switch from any task to any other task, either directly or through a se-

quence of intermediate tasks; thus, no task acts as a source or a sink. Each quantity

xi(t) now represents the continuous population of robots that is performing task i

at time t. We specify xi(t) as a population fraction, the continuous population of

species i divided by the swarm population N , which is practical for scaling as well

as for applications in which losses of robots are common.

The robots must be capable of executing the tasks and transitions. For instance,

if the tasks are situated at different sites, the robots must be able to localize them-

selves in their environment and navigate safely between sites. It is assumed that all

robots have complete knowledge of the tasks to perform and the allowable transitions

between them; this information can be preprogrammed and updated via a broadcast.

The graph G now models the precedence constraints between tasks; V denotes

the collection of tasks, and E represents possible transitions between tasks. The

adjacency relation i ∼ j signifies that a robot that is working on task i can switch

directly to task j. For example, if each task i is an activity at a physical site i, then

G models the site interconnection topology: V is the set of S sites and each edge

(i, j) represents a one-way route that robots can travel from i to j. If there are P

possible routes from i to j, m = 1, . . . , P , each with transition rate kij,m, then they

are represented by distinct edges (i, j)m, and kij =
∑P

m=1 kij,m.

A directed path from task i to task j is a sequence of vertices, {v0, v1, ..., vp} ∈ V ,

such that v0 = i, vp = j, and (vk−1, vk) ∈ E , k = 1, . . . , p. Since we specify that the
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robots can switch from any task to any other task, a directed path exists between

any pair of distinct vertices in G. This implies that G is strongly connected. We also

consider the special case in which robots can switch from any task directly to any

other task without first working on a set of intermediate tasks. In this case, each

vertex in G is adjacent to every other vertex, so the graph is fully connected. For

a strongly connected, but not necessarily fully connected, graph with bidirectional

edges, in which (i, j) ∈ E if and only if (j, i) ∈ E , we explore the advantage of having

a reversible Markov process, which is defined by the detailed balance equations:

kijx
d
i = kjix

d
j ∀(i, j) ∈ E . (3.18)

A. Baseline Linear Model

Since each complex in the system consists of a single species, we have the relations

C = S, y(x(t)) = x(t), and M = I. Thus, model (3.15) reduces to the linear model

ẋ = −Kx . (3.19)

For this model, S is the incidence matrix of the graph G. Since we specify that

G is strongly connected, and thus has one connected component, by Theorem 8.3.1

of [53] rank(S) = S− 1. Therefore, the null space of ST is one-dimensional, yielding

one conservation constraint. By Lemma 8.3.2 of [53], SST is the Laplacian L of G,

for which L1 = 0. Since this implies that 1TSST1 = ||ST1||2 = 0, it follows that

ST1 = 0. Hence, conservation constraint (3.17) for system (3.19) is

1Tx = 1 , (3.20)

where c = 1 because the xi are defined as population fractions. This equation simply

states that the number of robots is conserved, which is an intuitive result since the

system is closed; there is no inflow or outflow of robots.

Model (3.19) subject to (3.20) will be referred to as the baseline linear model,

since it is the simplest expression of the task-allocation system. We can elaborate
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on this point by inspecting the ODE for each component of ẋ,

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t)−
∑

∀j|(i,j)∈E

kijxi(t) . (3.21)

The flux from task i to j at time t is kijxi(t), which can be interpreted physically as

the fraction of robots per unit time that are leaving i to switch to j. Hence, Equation

(3.21) quantifies the rate of change of population fraction xi(t) as the difference

between the total influx and total outflux of robots at task i. The model captures this

effect in a simple way by representing robots as switching instantaneously from one

task to another, ignoring the time that robots take to effect transitions. Because the

kij are constant, robots still switch between tasks at equilibrium, when the net flux

through each task is zero. This contributes to system robustness since the population

at each task, which may be depleted by breakdowns, is constantly replenished. The

persistent switching may also serve a useful function, such as patrolling or sampling

between sites.

B. Linear Chain Model

As mentioned previously, model (3.19) does not account for the fact that in reality,

the influx of robots to task j from task i is delayed by the time taken to switch

between the tasks, τij. If we assume a constant transition time τij for each edge

(i, j), this effect can be included by rewriting Equation (3.21) as a delay differential

equation (DDE):

ẋi(t) =
∑

∀j|(j,i)∈E

kjixj(t− τji) −
∑

∀j|(i,j)∈E

kijxi(t) . (3.22)

Due to the finite τij, there will be robots in the process of switching between tasks;

thus,
∑S

i=1 xi(t) < 1 for t > 0. Let yij(t) be the population fraction of robots that

are in transition from task i to j at time t. Then the conservation equation (3.20)

becomes:
S∑
i=1

xi(t) +
S∑
i=1

∑
∀j|(i,j)∈E

yij(t) = 1 . (3.23)
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In practice, robots will complete a transition in different amounts of time, so

model (3.22) can be made more realistic by defining the τij as random variables,

Tij. In the case where robots effect transitions by traveling between sites, variations

in τij can arise from changes in navigation patterns caused by collision avoidance,

congestion, and localization errors. For this case, we can estimate a reasonable

form for the probability density of the Tij from an analogous scenario in which

vehicles deliver items along roads to different sites. Vehicle inter-site travel times

have been modeled as following an Erlang distribution to capture the fact that

the times have positive, minimum possible values and a small probability of being

large due to accidents, breakdowns, and low energy, as well as the tendency of their

distributions to be skewed toward larger values [131]. We assume that each Tij

follows this distribution with parameters ωij ∈ Z+ and θij ∈ R+:

g(t;ωij, θij) =
θ
ωij

ij t
ωij−1

(ωij − 1)!
e−θijt . (3.24)

In practice, the parameters are estimated by fitting empirical transition time data

to density (3.24).

Under this assumption, the DDE model (3.22) can be transformed into an equiv-

alent ODE model of the form (3.21), which allows us to design the kij using the

methods we develop for this type of model. We use the fact that Tij has the same

distribution as the sum of ωij independent random variables, T1, ..., Tωij
, with a com-

mon distribution f(t; θij) = θije
−θijt [59]. Each of the variables represents a portion

of the transition time between tasks i and j. To model these portions of the transi-

tion, we define a directed path composed of a sequence of virtual tasks, u = 1, ..., ωij,

between the real tasks i and j. Assume that robots transition instantaneously from

virtual task u to u + 1, which is task j when u = ωij, at a constant probability

per unit time, θij. It follows that f(t; θij) is the distribution of the time that a

robot spends doing virtual task u, and therefore, we can define Tu, u ∈ {1, ..., ωij},
as this task execution time. The expected value of Tu is E(Tu) = θ−1

ij . Using the

property E(Tij) =
∑ωij

u=1E(Tu), we see that E(Tij) = ωij/θij. The variance of Tij is
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Figure 3.1: A labeled edge (i, j) = (1, 2) that consists of (a) the real tasks, cor-
responding to model (3.21), and (b) both real and virtual tasks (for ω12 = 2),
corresponding to model (3.25).

V ar(Tij) = E(Tij)
2/ωij.

We denote the population fraction that is doing virtual task u along edge (i, j)

by y
(u)
ij . Then

∑ωij

u=1 y
(u)
ij represents yij, the fraction of robots in transition from task

i to task j. Figure 3.1 illustrates how an edge from model (3.21) is expanded with

two virtual states y
(u)
ij . As in the baseline model, the dynamics of the population

fractions at all real and virtual tasks in the expanded system can be written as a set

of linear ODE’s:

ẋi(t) =
∑

j|(j,i)∈E

θjiy
(ωji)
ji (t) −

∑
j|(i,j)∈E

kijxi(t) ,

ẏ
(1)
ij (t) = kijxi(t) − θijy

(1)
ij (t) ,

ẏ
(m)
ij (t) = θij

(
y

(m−1)
ij (t) − y

(m)
ij (t)

)
,

m = 2, ..., ωij , (3.25)

where i = 1, ..., S and (i, j) ∈ E .

Let y be the vector of y
(u)
ij , u = 1, ..., ωij, (i, j) ∈ E . The system state vector is

then z = [x y]T . We interpret each component of z as the population fraction at task

i ∈ {1, ..., S ′}, where S ′ is the sum of all real and virtual tasks. The interconnection

topology of these tasks can be modeled as a directed graph, G ′ = (V ′, E ′), where

V ′ = {1, ..., S ′} and E ′ = {(i, j) ∈ V ′×V ′ | i ∼ j }. Since G is strongly connected, so

is G ′. Then the ODE model (3.25) can be written in the form of model (3.19),

ż = −K̂z , (3.26)
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where K̂ ∈ RS′×S′ has structure (3.14) with entries k̂ij (in place of kij) defined by

the corresponding coefficients in model (3.25). The conservation equation (3.23) can

be written as

1Tz = 1 . (3.27)

System (3.26) subject to (3.27) will be referred to as the linear chain model, since

it incorporates a chain of virtual tasks between each pair of real tasks.

Remark: The modeling approach in this section can still be applied when the distri-

bution of Tij is complicated (e.g., multimodal) by approximating it as a combination

of Erlang distributions; this is a topic for future work.

3.3.3 Quorum-Based Models

In the linear models of task reallocation, the robots switch between tasks indepen-

dently of one another, which is an appropriate strategy if it is undesirable or unfea-

sible to implement decisions based on robot interactions. It is possible to improve

system performance if the transition rates kij incorporate information about the cur-

rent populations at the tasks. When the distribution of robots among the tasks is

differs greatly from the target distribution xd, it makes sense for the robots to tran-

sition between tasks as quickly as possible to enable fast convergence to xd. Once

the system attains xd, the robots can conserve the energy that they expend during

transitions by switching between tasks at lower rates. (Section 5.2.1 elaborates on

these points.)

We implement this system behavior through the decentralized mechanism of quo-

rum sensing. Each task i is associated with a quorum qi, a threshold robot population

that is specified as a fraction of xdi . We assume that every robot knows the qi as well

as the xdi and can estimate the population fraction xi through local sensing. The

transition rate from task i to an adjacent task j is defined to increase from kij, the

rate in the baseline linear model, to a maximum value when xi/x
d
i ≥ qi. We then
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refer to edge (i, j) as being activated. The transition rate decreases back to kij when

xi/x
d
i < qi. This definition is inspired by ant colony house hunting behavior, detailed

in Section 6.1.1, in which quorum sensing by individual ants speeds up emigration

to a new nest site when it is sufficiently populated.

The following sections present two versions of the quorum-based model. The

first represents the transition rates as continuous functions of xi, which models un-

certainty in robots’ estimation of this quantity. The second represents a scenario with

low uncertainty, in which transition rates can be abstracted as switching between

discrete values, thus giving rise to a hybrid system.

Continuous Quorum-Based Model

We assume that G has bidirectional edges. The continuous quorum-based model is

defined as the baseline linear model, subject to condition (3.18), with transition rates

kij replaced by rates kqij, which are defined as follows. We specify that the increase in

kqij is a continuous function of xi through the use of an analytic switching function,

σi(xi) =

(
1 + e

γ

„
qi−

xi
xd

i

«)−1

, (3.28)

where the constant γ � 1 is chosen such that σi ≈ 1 when xi/x
d
i = qi + ε, where

ε > 0 is small. Note that σi → 1 as xi/x
d
i increases from qi and that σi → 0

as xi/x
d
i decreases from qi. This is similar to threshold methods described by [22]

and [3]. Using switch (3.28), we provide two alternative definitions for kqij. Each

edge (i, j) ∈ E is assigned a maximum possible rate kmaxij , which is derived from

the maximum allowable flux of robots switching between tasks i and j. In a system

where tasks are located at different sites, this flux would be determined by the traffic

capacity of the route from site i to site j. In the first definition, kqij increases to this

maximum:

kqij = kij + σi(xi)
(
kmaxij − kij

)
. (3.29)
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In the second, kqij increases to a multiple α > 0 of kij, with max(i,j)∈E αkij <

min(i,j)∈E k
max
ij :

kqij = kij + σi(xi)(α− 1)kij . (3.30)

Switched Linear System

Another way to represent quorum dependencies in transition rates is to model the

swarm as a hybrid system, specifically a switched linear system [100]. This model

takes the form

ẋ = −Kπx , (3.31)

where {Kp | p ∈ P} is a family of constant matrices that is parameterized by an

index set P , and π : [0,∞) → P is a piecewise constant function of time called

the switching signal. Each Kp is associated with a population mode, ω ∈ Ωp . If

the switched system models the task reallocation scenario described in Section 3.3.2,

then each Kp has structure (3.14). The transition rates (3.29) and (3.30) can be

adapted to this model by replacing the analytic switch σi(xi) with U(xi/x
d
i − qi),

where U is the unit step function,

U(x) =

 1 if x > 0,

0 if x ≤ 0.
(3.32)
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Chapter 4

Analysis Techniques

The chapter presents analysis techniques that can be applied to the swarm models

described in Chapter 3 to study their behavior over time.

4.1 Micro-Continuous Model

As described in Section 3.1, the micro-continuous model can be implemented in

a realistic 3D simulator or, more simply, as a point-agent simulation. The time

evolution of quantities of interest, such as species populations, can be obtained from

the simulation, and statistical properties of the quantities can be derived from an

ensemble of these trajectories.

4.2 Macro-Discrete Model

As explained in Section 3.2, a stochastic simulation algorithm that is equivalent to

the Chemical Master Equation can be used to numerically compute trajectories of

integer species populations. We use Gillespie’s Direct Method [47,50,51] to perform

stochastic simulations of the system. This method simulates a sequence of reactions

in a CRN and their initiation times using the reaction rate constants kij. These

37



reactions describe robot transition events, as described in Section 3.1.

The Direct Method is implemented as follows. First, the initial number of ele-

ments of each type of species is stored in a counter and the propensities aij, defined

in Section 3.1, are calculated. The next reaction is selected according to a uniform

probability distribution over the propensities, and the time until its occurrence, ∆τ ,

is computed from an exponential distribution with
∑

(i,j)∈E aij as its parameter. The

time is advanced by ∆τ and the reaction is simulated by decrementing the species

populations in complex i and incrementing the populations in complex j. The in-

crement of product populations may occur immediately or at a future time that

represents the completion of the reaction, such as the end of a robot’s navigation

between tasks at two different sites. Whenever the counter of species populations

is updated, the propensities must be recalculated and a new reaction and ∆τ are

computed.

The Direct Method can be considered a centralized approach to generating the

time evolution of species populations, since it uses a “global planner” to initiate re-

actions. However, the method is mathematically equivalent to a decentralized agent-

based simulation in which the system elements probabilistically undergo transitions

at every time step ∆t according to the fundamental hypothesis. The advantage of

the centralized simulation is its faster execution than the decentralized approach,

which must loop through all system elements at each time step. The Direct Method

can therefore be used to simulate systems with very large populations in less time

than an agent-based simulation.

4.3 Macro-Continuous Models

4.3.1 Characterization of Equilibria

A general multi-affine system in RS can have multiple equilibria. For the systems

that we consider, which contain only constant, linear, and bilinear terms, these

38



equilibria can be computed in closed form using Sylvester’s method of resultants for

all S when the number of bilinear terms does not exceed 2S − 2, and for S ≤ 16

otherwise [120]. However, as we show in the following sections, the properties of the

macro-continuous models defined in Chapter 3 can be used to prove that they each

have a unique, stable equilibrium. This allows us to design a target distribution xd

to which the system converges from any initial distribution.

Trajectories of the species populations in the macro-continuous models can be

numerically integrated using standard techniques such as the Runge-Kutta method.

Multi-Affine Model

We will discuss results from Chemical Reaction Network theory that can be obtained

using a network parameter called the deficiency [37,38]. The results apply to closed,

spatially homogeneous, constant-volume systems, although they may be extended to

open systems by including “pseudoreactions” of the form 0→ Xi, Xi → 0.

A. Definitions

A linkage class of a CRN is a set of complexes connected by reactions; in other

words, a connected component of graph G. Let L denote the number of linkage

classes in the network. Recalling that the columns of matrix M in model (3.15) are

denoted by mi, i = 1, ..., C, where C is the number of complexes in the system, the

network rank, K, is defined as the rank of the matrix with rows mi−mj, (i, j) ∈ E .

The deficiency of the network, δ, is defined as

δ = C − L−K . (4.1)

A network is weakly reversible if whenever there is a directed arrow pathway from

complex i to complex j, there is also one from j to i.

Each equilibrium of model (3.15), {x̄ |MKy(x̄) = 0}, can be classified as either

a positive equilibrium x̄ > 0 or a boundary equilibrium in which x̄i = 0 for some

i, which can be found by solving y(x̄) = 0 [27]. A cyclic trajectory is a periodic
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solution of model (3.15): x : [0, T ] → RS, x(0) = x(T ). The cyclic trajectory is

called positive if it is entirely contained in the positive orthant of RS.

The stoichiometric subspace for the network is defined as

Z = {z ∈ RS | z =
∑

(i,j)∈E

αij(mj −mi), αij ≥ 0} . (4.2)

The dimension of Z is K. The vector ẋ, and thus x(t) − x(0), is constrained to

Z. This implies that a trajectory starting at x(0) must lie in the set x(0) ⊕ Z

(⊕=Minkowski sum). The positive stoichiometric compatibility class (PSCC) is de-

fined as this set intersected with the positive orthant of RS.

B. Theoretical Results

If δ = 0, then the Deficiency Zero Theorem [37,38] provides the following results.

If the network is not weakly reversible, then there is no positive equilibrium or

positive cyclic trajectory. If the network is weakly reversible and has mass action

kinetics, then each PSCC contains a unique, asymptotically stable equilibrium, and

there is no nontrivial positive cyclic trajectory. Furthermore, by Theorem 4.1 of [139],

this equilibrium is globally asymptotically stable (with respect to the x in its PSCC)

if the network does not admit any boundary equilibria.

The Deficiency One Theorem [37, 38] gives conditions under which there is a

unique equilibrium in each PSCC.

Linear Models

The results in this section were first presented in [12, 13].

The following result applies to the baseline linear model, (3.19) subject to (3.20).

Theorem 1. If the graph G is strongly connected, then the baseline linear model has

a unique, stable equilibrium.

Proof. Since G is strongly connected, the rank of K is S − 1 [118]. The null space

40



of K, xn, is therefore one-dimensional. This null space is intersected by the (S− 1)-

dimensional hyperplane described by constraint (3.20). Thus, system (3.19) subject

to (3.20) has a unique equilibrium point, which we call x̄n = [x̄n1 ... x̄
n
S]T .

Now consider the matrix T = tI −K, where t > 0 and I ∈ RS×S is the identity

matrix. Choose t large enough such that T is a nonnegative matrix. Since G is

strongly connected, the matrix −K, and therefore T, is irreducible. Because T is

nonnegative and irreducible, by the Perron-Frobenius theorem T has a real, positive,

simple eigenvalue λm(T) such that all other eigenvalues of T, λ(T), satisfy |λ(T)| <
λm(T). This eigenvalue also satisfies the inequalities minj

∑S
i=1 Tij ≤ λm(T) ≤

maxj
∑S

i=1 Tij [118]. Since the columns of K sum to 0, both sides of these inequalities

are t, so λm(T) = t. Note that λ(T) = λ(−K) + t. Thus, the eigenvalue of −K

corresponding to λm(T) is 0, and all other eigenvalues of −K satisfy |λ(−K)+t| < t.

It follows that −K has a simple zero eigenvalue and all its other eigenvalues satisfy

Re(λ(−K)) < 0. Therefore, the equilibrium point x̄n is stable.

This equilibrium can be calculated from K as [118]:

x̄ni = Kii/
S∑
j=1

Kjj , i = 1, ..., S , (4.3)

where Kij is the cofactor of K obtained by deleting row i and column j.

Since the linear chain model, (3.26) subject to (3.27), has the same form as the

baseline linear model, the next result immediately follows from Theorem 1.

Corollary 1. If G is strongly connected, then the linear chain model has a unique,

stable equilibrium.

Denote the equilibrium of the linear chain model by z̄n = [x̄n ȳn]T . At equi-

librium in this model, the incoming and outgoing flux at each virtual task along

the path from task i to j is kijx̄
n
i , yielding the following equilibrium values of y

(u)
ij ,

u = 1, ..., ωij:

ȳ
n(u)
ij = kijx̄

n
i /θij . (4.4)
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Substituting ȳnij =
∑ωij

u=1 ȳ
n(u)
ij into Equation (3.23) gives the conservation equation

for this system at equilibrium:

S∑
i=1

x̄ni

1 +
∑

j|(i,j)∈E

kijωij/θij

 = 1 (4.5)

Then the equilibrium values x̄ni can be shown to be [118]:

x̄ni = Kii/

S∑
p=1

(1 +
∑

j|(p,j)∈E

kpjωpj/θpj)Kpp , i = 1, ..., S . (4.6)

Comparing the equilibrium values (4.6) of the linear chain model with the values

(4.3) of the corresponding baseline linear model, it is evident that the ratio between

x̄ni at any two real tasks is the same in both models. However, since kpjωpj/θpj > 0,

the x̄ni of the chain model are lower than those of the baseline model.

Quorum-Based Models

The following result for the continuous quorum-based model is proven in [69] using

Lyapunov stability theory.

Theorem 2. The continuous quorum-based model with kqij defined by Equation (3.30)

and qi = q, i = 1, ..., S, converges asymptotically to xd.

The stability of a switched linear system (3.31) cannot be inferred from the

stability of the system corresponding to each population mode. Lyapunov stability

theorems for hybrid systems can be used to characterize an equilibrium of this type

of system [148].

4.3.2 Reachability Analysis

The material in this section was first presented in [14].

If the macro-continuous model can be represented by a hybrid system, then reach-

ability analysis can be used to determine whether the system can enter a certain
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region of the continuous state space starting from a given set of initial conditions.

Hence, this type of analysis can verify whether a swarm that switches between differ-

ent sets of reaction rate constants can achieve (or avoid) a specified global objective,

defined as a set of species populations. Here we consider hybrid systems in which

the continuous state space associated with each mode is a hyper-rectangle.

This section presents Marco (Multi-Affine Reachability analysis using Coni-

cal Overapproximations), a novel direct reachability analysis algorithm for a hybrid

system whose modes are each characterized by multi-affine continuous dynamics.

Marco is shown to yield results that are superior to those of the indirect multi-

affine reachability algorithm developed in [7, 56, 81], referred to here as the Mar1

algorithm. Mar1 exploits the convexity of multi-affine functions on hyper-rectangles

and the fact that the vector field inside a hyper-rectangle is uniquely determined by

its values at the vertices. Once a state is inside a hyper-rectangle, the algorithm

considers the entire hyper-rectangle to be reachable. Because of this, the algorithm

computes conservative approximations of the reachable set. While this approxima-

tion is guaranteed to include all reachable states, it can be overly conservative and

in many simple cases (for example, constant vector fields along the diagonals of the

hyper-rectangles) yield little insight into the actual behavior of the system.

Marco computes less conservative reachable sets than Mar1 without sacrificing

accuracy. Like Mar1, Marco performs a computationally inexpensive reachability

analysis within each mode by exploiting the convexity property of multi-affine vector

fields on hyper-rectangles. However, Marco determines a better conical approxima-

tion for the reachable set, thus providing a finer level of granularity for the reachable

set without incurring a significantly higher penalty for computations. The technique

used by Marco for overapproximating the reachable set within a mode is similar

to that used in HyTech [62] and PHAVer [44]. A higher degree of precision for the

entire reachable set can be achieved by increasing the resolution of the rectangular

partitions.
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Due to the simplicity of its reachability operations, Marco is suitable for multi-

affine hybrid systems with many modes, such as a system that closely approximates

a hybrid automaton with nonlinear dynamics. Thus, in principle, it is more read-

ily applicable to such systems than existing reachability algorithms that use direct

techniques for nonlinear hybrid systems, such as Matisse [52] and CheckMate [140].

Definitions

A hyper-rectangular multi-affine switched system (HMS) is defined as the seven-tuple

H = (X,X0,Ω, I, F, T, A). X ⊂ Rn is the continuous space of state variables x,

X0 ⊂ X is a set of initial states, and Ω is a set of discrete modes. I maps the modes

to subsets of X such that if the system is at mode ω ∈ Ω, then x ∈ I(ω), the location

invariant of ω. The location invariants are n-dimensional hyper-rectangles, which are

defined as follows. For each dimension j = 1, ..., n, specify a strictly monotonically

increasing sequence of values, {x(j)
0 , x

(j)
1 , · · · , x(j)

Dj
}. A mode ω is labeled by an n-

dimensional coordinate vector ω = (k1, · · · , kn), where kj ∈ {1, ..., Dj}. Then I(ω)

is the hyper-rectangle [x
(1)
k1−1, x

(1)
k1

] × [x
(2)
k2−1, x

(2)
k2

] · · · × [x
(n)
kn−1, x

(n)
kn

]. F is a map that

assigns a continuous, autonomous vector field to each mode ω, ẋ = fω(x) ∈ Rn, where

fω is a multi-affine function (3.9). T is a finite set of transitions between modes,

each defined by a three-tuple (ω, ω′, gω,ω′), in which ω, ω′ ∈ Ω and gω,ω′ ⊂ ∂I(ω) is a

guard set. The transition from ω to ω′ is enabled when x ∈ gω,ω′ . Each guard gω,ω′

of mode ω corresponds to a facet, denoted by H(ω, ω′), that I(ω) shares with I(ω′).

Finally, A is a finite set of symbols that label the transitions.

Definition 1 (Mode trajectory [150]). A trajectory (ω, τ,xω(t)) associated with mode

ω ∈ Ω consists of a nonnegative time τ and a continuous and piecewise differentiable

function xω : [0, τ ] → Rn such that xω(t) ∈ I(ω) and ẋω(t) = fω(xω(t)) for all

t ∈ (0, τ).

Definition 2 (Trajectory of an HMS [150]). A trajectory of an HMS starting from

xω0(0) ∈ X0 ⊂ I(Ω0), where Ω0 ⊂ Ω, is defined as an infinite sequence of mode
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trajectories,

(ω0, τ0,xω0(t))
a0−→ (ω1, τ1,xω1(t))

a1−→ (ω2, τ2,xω2(t))
a2−→ · · · (4.7)

such that at the event times tωj
=
∑j

i=0 τi, xωj
(tωj

) ∈ H(ωj, ωj+1). Since the HMS

is defined to be a switched system, xωj
(tωj

) = xωj+1
(0). The jth transition is labeled

by aj ∈ A.

The ordered set of modes in Equation (4.7) after a finite number of transitions

is represented by a filiation sequence of length d ∈ N, s = {ω0, ω1, · · · , ωd−1}. Now

define a concatenation operation similar to that which is used for strings: s ∗ {σ} =

{ω0, · · · , ωd−1, σ}. In the following definitions, φs designates an HMS trajectory

whose first d modes comprise sequence s, given some xω0 ∈ X0.

Definition 3 (Footprint). A footprint of degree d and filiation sequence s, X
(d)
s,ωd ⊂

H(ωd−1, ωd), is the set consisting of xωd−1
(tωd−1

) from each φs.

Definition 4 (Forward reachable set of a mode). The forward reachable set of mode

ωd from a set B, where B = X0 if d = 0 and B = X
(d)
s,ωd if d > 0, is Xr,ωd

(B) ⊂ I(ωd).

It consists of the union of states

xωd−1
(tωd−1

) = xωd
(0) ∪ {xωd

(t) | t ∈ (0, τd)} ∪ xωd
(tωd

) = xωd+1
(0) (4.8)

from each φs for which ωd ∈ s.

Definition 5 (Forward reachable set of an HMS). The forward reachable set Xr

from an initial set X0 of an HMS is the set of all continuous states xω(t) associated

with each φs.

Definition 6 (Time-elapse cone). The time-elapse cone Cω for mode ω = (k1, · · · , kn)

is the cone generated by nonnegative linear combinations of the velocity vectors at

the vertices of I(ω) (Θj is defined by Equation (3.10)):

Cω = {
2n−1∑
j=0

λΘj
fω(x

(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j)) | λΘj

≥ 0} . (4.9)
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The following definitions specify the core steps of the Marco algorithm.

Definition 7 (Overapproximated reachable set of a mode). Consider a mode ω and

a set B ⊂ I(ω). The overapproximated reachable set in mode ω with initial set B is

defined as:

Rω(B) = (B ⊕ Cω) ∩ I(ω) . (4.10)

Definition 8 (Overapproximated footprint). An overapproximated footprint of de-

gree d and filiation sequence s, F
(d)
s,ωd ⊂ H(ωd−1, ωd) is generated as follows.

F
(1)
{ω0},ω = (X0 ⊕ Cω0) ∩H(ω0, ω)

F
(d+1)
s∗{ωd},ω = (F (d)

s,ωd
⊕ Cωd

) ∩H(ωd, ω) (4.11)

The footprints and their corresponding overapproximated reachable sets form a

tree structure, which in practical implementations is organized as a linked list. The

sequence s distinguishes among repeated passages through the same mode during

the reachability calculation.

Validity of Reachable Set Overapproximation

The following results demonstrate that the reachable set computed by Marco con-

tains the exact reachable set Xr.

Proposition 1 ( [7]). Let fω : I(ω) → Rn be a multi-affine function (3.9) and let

x ∈ I(ω). Then fω(x) is a convex combination of the values of fω at the 2n vertices

of I(ω).

Proposition 2. Let xω(t) be defined as in Definition 1. The displacement vector

∆xω(t) = xω(t) − xω(0), t ∈ [0, τ ], is contained in the convex hull of the set of
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velocities at the vertices of I(ω), scaled by the elapsed time t. That is, ∃ {ΛΘj
}

where ΛΘj
∈ [0, 1], j = 0, ..., 2n − 1, and

∑2n−1
j=0 ΛΘj

= 1, such that:

∆xω(t) = t
2n−1∑
j=0

ΛΘj
fω(x

(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j)) . (4.12)

Proof. The solution to ẋω(t) = fω(xω(t)), t ∈ [0, τ ], is xω(t) = xω(0)+
∫ t

0
fω(xω(s))ds.

From Proposition 1, for s ∈ [0, τ ], ∃ {λΘj
(s)} where λΘj

(s) ∈ [0, 1], j = 0, ..., 2n − 1,

and
∑2n−1

j=0 λΘj
(s) = 1, such that:

fω(xω(s)) =
2n−1∑
j=0

λΘj
(s)fω(x

(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j)) (4.13)

The existence of {λΘj
(s)} is guaranteed but it is not unique; choose one set. The

displacement vector ∆xω(t) = xω(t)− xω(0) at t is:

∆xω(t) =

∫ t

0

2n−1∑
j=0

λΘj
(s)fω(x

(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j))ds

=
2n−1∑
j=0

fω(x
(1)
k0+(k1−k0)i1(j), · · · , x

(n)
kn−1+(kn−kn−1)in(j))

∫ t

0

λΘj
(s)ds (4.14)

Define ΛΘj
as the integrated quantity divided by t:

0 ≤ ΛΘj
=

1

t

∫ t

0

λΘj
(s)ds ≤ 1 (4.15)

2n−1∑
j=0

ΛΘj
=

2n−1∑
j=0

1

t

∫ t

0

λΘj
(s)ds =

1

t

∫ t

0

2n−1∑
j=0

λΘj
(s)ds = 1 . 2 (4.16)

Corollary 2. The set of continuous states xω(t), t ∈ [0, τ ], in a trajectory of mode

ω is a subset of xω(0)⊕Cω, the Minkowski sum of xω(0) and the time-elapse cone.

Proposition 3. Xr,ω(B) ⊂ Rω(B).
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Proof. From Definition 4, Xr,ω(B) is the set of all states xω(t) in the trajectory of

mode ω such that xω(0) ∈ B, which by Corollary 2 is a subset of xω(0)⊕ Cω:

Xr,ω(B) = {xω(t) | xω(0) ∈ B, t ∈ [0, τ ]} ⊂ {xω(0)⊕ Cω | xω(0) ∈ B} = B ⊕ Cω

Since Xr,ω(B) ⊂ I(ω) by definition, Xr,ω(B) ⊂ (B ⊕ Cω) ∩ I(ω) = Rω(B). 2

Proposition 4 (Validity of overapproximation). The set of states xω(t) in the first

d mode trajectories of an HMS trajectory φs with xω0(0) ∈ X0 is contained in the

union of Rω0(X0) with Rωj
(F

(j)
{ω0,...,ωj−1},ωj

), j = 1, ..., d− 1.

Proof. By Proposition 3, xω0(t) ∈ Rω0(X0) for xω0(0) ∈ X0, t ∈ [0, τ0]. Therefore,

by Definition 7, xω0(τ0) ∈ (X0⊕Cω0)∩I(ω0). Also, xω0(τ0) = xω0(tω0) ∈ H(ω0, ω1) ⊂
I(ω0). Thus, by Definition 8, xω0(τ0) = xω1(0) ∈ F (1)

{ω0},ω1
. By Proposition 3 again,

xω1(t) ∈ Rω1(F
(1)
{ω0},ω1

) for t ∈ [0, τ1]. The same set inclusions may be defined for the

remaining modes in s. 2

Termination Conditions

There are two possible termination conditions for the algorithm.

Proposition 5 (Termination condition 1). If Rωd
(F

(d)
s,ωd) is a subset of Rωd

, the union

of the reachable sets previously computed for mode ωd, then all states xω(t) in HMS

trajectories with xω0(0) ∈ F (d)
s,ωd are contained in Rωd

and all reachable sets evolving

from Rωd
.

Since the reachable set might grow by very small amounts for a long time, a

second heuristic condition may be applied to ensure termination within a reasonable

amount of time. Each iteration of the algorithm generates a new set of conical

overapproximations and footprints; let V (Ri) be the volume of the newly computed

reachable set at iteration i and V (S) be the volume of the state space.

Proposition 6 (Termination condition 2). For a small constant ζ, stop if

V (Ri) < V (Ri−1) and V (Ri) < ζ V (S).
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Figure 4.1: Illustration of the Marco algorithm. (a) (upper left) Initial set X0 and
velocities at vertices of mode α; (b) (upper right) definition of the time-elapse cone

Cα; (c) (lower left) computation of reachable set Rα and footprints F
(1)
α,β and F

(1)
α,ε of

adjacent modes; (d) (lower right) computation of Rβ, Rδ, and Rε.

Implementation

The Marco algorithm is written in Matlab and uses the Multi-Parametric Toolbox

(MPT) [88] for polyhedral operations. Figure 4.1 illustrates its steps for a two-

dimensional state space, and Figure 4.2 gives an outline of the algorithm.

The user inputs the specifications of the hybrid system H. First, the set Ω of

reachable modes is initialized with the modes Ω0 ⊂ Ω that contain the initial set

X0. These modes are identified as members of generation 0. In Figure 4.1a, Ω0 = α.

The portion of X0 that intersects the mode invariant I(ω) for ω ∈ Ω0 is the first

incoming footprint of mode ω. For each mode in generation 0, a time-elapse cone

Cω is found according to Definition 6. Figure 4.1a-b shows the creation of cone Cα
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from the velocities at the vertices of mode α. The cone is scaled to extend past the

mode boundaries. Cω is added to the mode footprint via a Minkowski sum and is

then bounded by the mode facets to produce the overapproximated mode reachable

set, Rω(X0 ∩ I(ω)) (Figure 4.1c). Next, each adjacent mode ω′ with a facet that has

a nonempty intersection with Rω(X0 ∩ I(ω)) is added to Ω if it is not already in the

list, and the intersection is designated as the overapproximated incoming footprint

of that mode, F
(1)
{ω},ω′ . These modes are identified as members of the next generation.

In Figure 4.1d, the footprints are F
(1)
α,β, F

(1)
α,ε , and modes β, ε are in generation 1.

The algorithm repeats the reachable set overapproximation and footprint identifi-

cation for modes in each consecutive generation. Note that a mode ω may have mul-

tiple footprints, as does mode δ in Figure 4.1d. Each footprint generates a reachable

set, and the concatenation of these sets is the total reachable set within the mode.

The algorithm terminates according to Proposition 5, Proposition 6, or when there

are no new modes in the current generation, which occurs when the reachable set

hits the boundary of the state space X, as in Figure 4.1d. The algorithm returns the

total reachable set, stored as polyhedral subsets of mode invariants, that is attained

from X0.

Examples

The examples in this section illustrate the improvement of Marco over Mar1.

Figures 4.3 and 4.4 display reachable sets computed by Marco and by a Matlab

implementation of Mar1. The Marco reachable sets are shown in dark gray or

magenta, while the Mar1 sets consist of light gray boxes in the 2D examples and

transparent boxes in the 3D and 4D examples. In each example, both algorithms

used the same state space boundaries and mode partition. All examples were run

on a standard 2 GHz laptop.

In Figure 4.3a, the dynamics in each mode consist of the constant vector field

ẋ1 = 1, ẋ2 = 0.5, and the initial set is the box in the lower left corner. The reachable
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Table 4.1: Definitions of P and Q in Equation (4.18)

xω1,ave (-∞,0.3] (0.3,0.5] (0.5,0.7] (0.7,0.8] (0.8,1.0] (1.0,1.3] (1.3,1.6] (1.6,∞)

P 0.1 -0.2 -0.7 -1.4 0.2 0.53̄ 0.96̄ 1.5

Q 0.0 1.0 2.0 3.0 1.0 0.6̄ 0.3̄ 0.0

set computed by Marco is exact, while Mar1 predicts that all modes are reached.

Figure 4.3b displays a vector field whose integral curves are spirals with a steady

state at the origin. The dynamics are given by

ẋ1 = −x1 + 2x2 ẋ2 = −2x1 − x2 . (4.17)

The initial set is the box containing the steady state. The Marco algorithm ter-

minates and returns a conservative but finite reachable set around the equilibrium

point; it essentially recognizes the presence of the steady state. The Mar1 method

considers the entire space to be reached due to the velocity components pointing out

of the center mode.

Figure 4.3c shows the computation of the reachable set for a three-dimensional

vector field with integral curves that are helical spirals. The results are similar to

those of Figure 4.3b.

Figure 4.4a shows a bistable vector field,

ẋ1 = f(x2)− x1 ẋ2 = x1 − x2 , f(x2) = P +Qx2 , (4.18)

where f(x2) is a piecewise-linear approximation of a sigmoid-shaped function. P

and Q for a mode ω depend on the particular x1 interval that contains the average

x1 coordinate of the mode, xω1,ave, and are defined in Table 4.1. The initial set

is located at a place where the vector field diverges. The Marco reachable set

correctly approaches and terminates at the two steady states while avoiding the

unstable steady state. The Mar1 reachable set is much more conservative.
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Table 4.2: Comparison of computation times and reachable set precision

Vector field Time (sec) Reached vol./State space vol.

Marco Mar1 Marco Mar1

2D constant 4.17 0.42 0.255 1.000

2D linear 2.83 0.42 0.329 1.000

3D linear 4.78 0.78 0.078 1.000

2D affine 7.27 0.94 0.266 0.714

4D multi-affine 130.31 2.53 0.022 0.061

Figure 4.4b illustrates the projection of a four-dimensional multi-affine system,

ẋ1 = (x1 − 10.5)(x2 − 10.5)(x3 − 10.5)(x4 − 10.5)

ẋ2 = (x1 − 4.5)(x2 − 7.5)(x3 − 7.5)(x4 − 1.5)

ẋ3 = (x1 − 7.5)(x2 − 4.5)(x3 − 1.5)(x4 − 7.5)

ẋ4 = (x1 − 1.5)(x2 − 1.5)(x3 − 4.5)(x4 − 4.5) , (4.19)

onto the x2, x3, and x4 dimensions. The system has 24 equilibria; in particu-

lar, the equilibrium xe1 = [10.5 7.5 1.5 4.5]T is stable and the equilibrium xe2 =

[10.5 7.5 4.5 7.5]T is unstable. The initial set for the reachability computation is a

box surrounding xe2. The reachable set diverges at xe2: one branch terminates at

xe1, while the other runs into the state space boundary. Again, the Mar1 reachable

set fails to attain the precision of the Marco set under the same mode partition.

Table 4.2 compares the performance of the two algorithms in terms of the com-

putation time and volume fraction of the state space reached for each example. Note

that although Mar1 is faster on all examples, its overly conservative predictions of

the reachable set cannot be refined with iterative partitioning.
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Input: System dimension n, mode dividers, vertices of initial set I0, dynamical
parameters
Output: R = {Rω0 , ..., RωN

}, ωi ∈ Ω

Ω := {ωi | I(ωi) ∩X0 6= ∅}
for all ωi ∈ Ω : Generation(ωi) = 0; Rωi

= ∅
G = −1
do

G = G + 1
for all {ωi | Generation(ωi) = G}

Rgen
ωi

= ∅
Calculate velocities at vertices of ωi
Create time-elapse cone Cωi

Combine overlapping footprints of ωi
for all footprints F

(G)
s,ωi :

Rωi
(F

(G)
s,ωi) = (F

(G)
s,ωi ⊕ Cωi

) ∩ I(ωi)

for all {ωj | F (G+1)
s∗{ωi},ωj

= (F
(G)
s,ωi ⊕ Cωi

) ∩H(ωi, ωj) 6= ∅}
if ωj 6∈ Ω

Ω = Ω ∗ {ωj}
Rωj

= ∅
Generation(ωj) = G + 1

end
Rgen
ωi

= Rgen
ωi
∗ {Rωi

(F
(G)
s,ωi)}

end
if Rgen

ωi
6⊂ Rωi

Rωi
= Rωi

∗ {Rgen
ωi
}

end
until Rgen

ωi
⊂ Rωi

∀ {ωi | Generation(ωi) = G}

Figure 4.2: Marco reachability algorithm
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Figure 4.3: Reachable sets for (a) 2D constant field; (b) 2D linear field; (c) 3D linear
field
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Figure 4.4: Reachable sets for (a) 2D affine field; (b) 4D multi-affine field
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Chapter 5

Controller Synthesis

Section 5.1 describes the synthesis of robot motion controllers for navigation and

inter-robot collision avoidance in the micro-continuous model. Section 5.2 describes

the optimization of the parameters in the macro-continuous models for quick, ef-

ficient system convergence to the target equilibrium, as well as the synthesis of

feedback control laws for steering the macroscopic system state through a sequence

of population modes in a hybrid system.

5.1 Micro-Continuous Model

Control strategies in the micro-continuous model are used to physically guide the

robots through their environment in a manner that allows them to safely complete

their task. This section describes several different types of robot motion controllers.

We represent each robot i as a planar agent governed by a kinematic model q̇i = ui,

where qi ∈ R2 denotes the robot’s (x, y) coordinates and ui ∈ R2 is a control input.
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5.1.1 Navigation

Navigation Functions

The navigation function control methodology [128–130] can be used to guide a robot

to a destination point while avoiding obstacles in the environment. Navigation func-

tions combine the three problems of path planning, trajectory planning, and robot

control for trajectory tracking by providing a form for a bounded-torque feedback

controller on a robot. The controller produces collision-free motion and convergence

to the goal location, qd, the unique minimum of the function, from almost all ini-

tial free configurations.1 To use navigation function controllers, we assume that the

environment is stationary and that perfect information is available about the ob-

stacles, geometric constants that are derived from them, and the topology of the

free configuration space, F . Additionally, each robot is assumed to have ideal sen-

sors for position and velocity and ideal actuators that can deliver a bounded torque

instantaneously.

Let F ⊂ En be a compact, connected, analytic manifold with boundary. By

Definition 1 in [130], a map ϕ : F → [0, 1] is a navigation function if it is smooth

on F (at least a C(2) function), admissible on F , a Morse function, and polar at a

point qd in the interior of F . The configuration space is restricted to the class of

generalized sphere worlds. Let D(q, ρ) denote a Euclidean n-dimensional disk with

center q and radius ρ. A Euclidean sphere world is a compact, connected submanifold

of Euclidean n-space, En, that is formed by removing from a large disk D0(0, ρ0)

M smaller, disjoint disks, Dj(qj, ρj) (j = 1, ...,M), which represent obstacles. The

complement of D0 is the zeroth obstacle. More complicated generalized sphere worlds

can be deformed onto a Euclidean sphere world through a diffeomorphic mapping.

We describe the construction of ϕ on a Euclidean sphere world. Each obstacle is

implicitly represented by an obstacle function βi in the form obsi = {q : βi(q) ≤ 0},
1Each obstacle introduces at least one saddle point of the navigation function, but in practice

these points do not present a problem because their domain of attraction has an empty interior.
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where βi = 0 on the boundary of the obstacle. The obstacle functions are given by

β0(q) = −‖q− q0‖2 + ρ2
0 , βj(q) = ‖q− qj‖2 − ρ2

j , j = 1, ...,M . (5.1)

The product of obstacle functions is β =
∏M

i=1 βi.

The navigation function is an analytic switch, varying smoothly between 0 at qd

and 1 at the zeros of β, that has been “sharpened” by a function that makes qd a

nondegenerate critical point. The navigation function is defined as

ϕκ(q,q
d) =

‖q− qd‖2

[‖q− qd‖2κ + β(q)]1/κ
, (5.2)

where κ > 0 is a parameter. Theorem 4 of [128] states that ϕκ is a navigation function

on F if κ ≥ N , where N is a positive integer that is a function of the geometric

data. As κ increases, undesired local minima disappear. The control input ui is set

to be proportional to the negative gradient of ϕκ(qi,q
d).

Design of Vector Fields on Convex Polygons

Another provably correct way to integrate path planning and robot control for nav-

igation is presented in [30]. The free space is decomposed into a collection of convex

polygons, and a graph search algorithm is applied to the adjacency graph of the

polygons to find a path from the polygon containing the initial location of the robot

to the polygon containing the goal location. A potential function for each polygon is

defined as the composition of the solution of Laplace’s equation on the unit disk with

a mapping from the polygon to the unit disk. When qi is inside the polygon, the

control input ui is set to be the negative gradient of this potential function, which

is orthogonal to the boundary of the polygon and free of local minima. In this way,

the robot is directed from one polygon in the path to another through the common

boundary of adjacent polygons until it reaches the goal polygon. The methodology

can be extended to define control policies for robots with dynamical constraints.
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5.1.2 Inter-Robot Collision Avoidance

In [145] and [95], artificial potential functions are used to define local robot controllers

that enforce desired inter-robot distances within a group. The functions are shaped

such that two neighboring robots will approach each other when the distance between

them exceeds a specified value and move away from each other when the distance is

less than this value. We can use these functions to implement inter-robot collision

avoidance by activating the controller only when two robots are within the range of

distances associated with repulsion.

The relative position vector between robots i and j is denoted by qij = qi−qj =

[xij yij]
T . Let Ni be the neighbor set of robot i, which may be the robots with

which i is allowed to communicate (giving rise to a fixed network) or the robots that

are physically proximal to i (a dynamic network). Vij = Vij(‖qij‖) is an artificial

potential function that is differentiable, nonnegative, and radially unbounded. It

attains its unique minimum when robots i and j are located at a specified distance,

and it approaches infinity as ‖qij‖ → 0. An example Vij is illustrated in Figure 5.1.

The directional derivative of Vij along the vector qij is computed as:

∇qij
Vij =

∂Vij
∂qij

=
∂Vij
∂‖qij‖

∂‖qij‖
∂qij

=
∂Vij
∂‖qij‖

qij
‖qij‖

, (5.3)

where ∂‖qij‖/∂qij = [∂‖qij‖/∂xij ∂‖qij‖/∂yij]T . ∇qi
Vij and ∇qj

Vij can be calcu-

lated using a similar application of the chain rule. The following relationship exists

between the three directional derivatives:

∇qij
Vij = ∇qi

Vij = −∇qj
Vij . (5.4)

The input ui can now be defined as

ui = −
∑
j∈Ni

∇qi
Vij . (5.5)
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Figure 5.1: Example potential function, Vij = ln2(‖qij‖) + 1
‖qij‖

5.2 Macro-Continuous Model

5.2.1 Optimization

The material in this section was first presented in [13, 109].

The continuous models in Chapter 3 describe a swarm as a function of the re-

action rate constants, kij, which are the designable parameters that control system

performance. The kij must cause the system to converge to the target equilibrium

in a reasonably short amount of time, perhaps while adhering to a specification on

a metric of efficiency. We quantify the degree of convergence of a macro-continuous

model to xd by the fraction of misplaced robots,

µ(x) = ||x− xd||2 . (5.6)

We say that one system converges faster than another if it takes less time tf for µ(x)

to decrease to some small fraction f of its initial value, µ(x0).

This section defines optimization problems for computing the kij according to

these objectives. An advantage of using the macro-continuous models to design the

kij is that the optimization problems are then independent of the number of species,

so they are scalable with the populations in the system.
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Multi-Affine Model

Define k ∈ R|E| as the vector of all kij in the system. We formulate an optimization

problem to compute the k that minimizes the convergence time of model (3.15)

to a target species distribution xd. If the model can be proven to have a unique,

stable equilibrium, then we can set xd to be this equilibrium through the following

constraint on K:

MKy(xd) = 0 . (5.7)

There may be other constraints on the kij such as upper and lower bounds on their

values,

bl ≤ k ≤ bu . (5.8)

It is possible to find the k that directly minimizes the system convergence time

by using a stochastic optimization method to solve the optimization problem below.

We chose to use a Monte Carlo method because of its simplicity and the fact that it

yields reasonable improvements in tf with moderate computing resources.

[PMA] Minimize tf subject to constraints (5.7) and (5.8).

Implementation: At each iteration, k is perturbed by a random vector and projected

onto the null space of linearly independent rows of a matrix N defined such that

Nk = MKy(xd) = 0. Once k also satisfies constraint (5.8), it is used to simulate

model (3.15), and a Newton scheme is used to compute the exact time tf when

µ(x) = fµ(x0).

It may be possible to formulate the problem as a convex optimization problem,

which can be solved efficiently. Toward this end, we construct an analytical expres-

sion for the system convergence time to xd. We quantify this time in terms of the

system relaxation times τi, i = 1, ..., R, the times in which different modes (dynam-

ically independent variables) of the system converge to a stable equilibrium after

perturbation [61, 71]. Various measures of the average relaxation time of a CRN

have been defined, but they are applicable only under certain conditions, such as a
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linear reaction sequence [60] [135]. A common approach to analyzing the dynamical

properties of a CRN is to linearize the macro-continuous model of the system about

an equilibrium point and study the properties of the associated Jacobian matrix

J = SG, where S is the stoichiometric matrix defined in Section 3.3.1 and the en-

tries of G are Gij = dνi/dxj [71]. By constraint (5.7), the equilibrium about which

the model is linearized is xd. Denoting the eigenvalues of J by λi, a common measure

of relaxation time is τi = 1/|Re(λi)|. Since the λi are negative at a stable equilib-

rium, one way to yield fast convergence is to choose rate constants that minimize

the largest λi. An alternative estimate of relaxation time, also derived by linearizing

the system around its equilibrium xd, is defined as [61]

τj =

(
S∑
i=1

(−Sij)
dνj
dxi

)−1

x=xd

. (5.9)

Possible objective functions in the optimization problem are the average τ−1
j and

the minimum τ−1
j . These functions should be maximized to produce fast convergence

to xd. If the selected objective function is a concave function of the kij, then the

problem of maximizing the function subject to constraints (5.7) and (5.8) is a convex

optimization problem.

Linear Models

We consider the problem of redeploying a swarm represented by the baseline linear

model, (3.19) subject to (3.20), from an initial distribution among a set of tasks, x0,

to a target distribution xd. Theorem 1 proves that the baseline linear model always

converges to a single equilibrium x̄n, which represents the steady-state distribution

of population fractions among the S tasks. Hence, we can achieve a predefined xd

from any x0 by specifying that x̄n = xd through the following constraint on K:

Kxd = 0 . (5.10)

When the kij are chosen such that the corresponding K matrix satisfies constraint
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(5.10), a swarm of robots that use the kij as stochastic transition rules will redis-

tribute from any x0 to xd. Since (3.19) is a linear system, the rate of convergence

of x to xd is governed by the real parts of the eigenvalues of K, which are positive

homogenous functions of the kij [144]. Thus, the rate of redistribution can be made

arbitrarily fast by using high kij. However, in actual robotic systems there is often

a substantial cost to using high kij. At equilibrium, the probability that any robot

doing task i will start switching to task j in time step δt is kijn
d
i δt. Thus, raising

kij increases the equilibrium “traffic” of robots transitioning between tasks i and j.

This is also evident from Equation (4.4). This switching expends power; for instance,

if the tasks are at different locations, the robots must travel between them and may

experience delays due to congestion along the route.

Thus, when choosing the kij, we are faced with a tradeoff between rapid conver-

gence to xd and long-term system efficiency, i.e. few idle transitions between tasks

once xd is achieved. In light of this tradeoff, we compute the matrix K as the solu-

tion to an optimization problem that maximizes a measure of the convergence rate

of system (3.19) to xd subject to one of two possible constraints on task transitions

at equilibrium. The first is a limit on the total equilibrium flux of robots switching

between tasks: ∑
(i,j)∈E

kijx
d
i ≤ ctot . (5.11)

Note that in practice, the total equilibrium flux is actually
∑

(i,j)∈E kijbx
d
i ≤ bctot,

where b is the population fraction at the real tasks (i.e., not in transit).

Constraint (5.11) does not dictate how the transitioning population is distributed

among edges. An alternative constraint achieves this with a set of limits on the

equilibrium flux between each pair of adjacent tasks:

kijx
d
i ≤ cij, (i, j) ∈ E . (5.12)

We formulate several versions of this optimization problem, summarized in Table

5.1 (FC=fully connected, ROC= rate of convergence). Each version is tailored to
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Table 5.1: K Optimization Problems

Problem FC x0 Objective

P1
L,P

1R
L maximize asymptotic ROCa

P2
L X maximize overall ROC

P3
L X minimize time to reach 0.1µ(x0)

P4
L X X maximize ROC along xd − x0

aMaximizes all nonzero eigenvalues of K when the Markov process on G is reversible and con-
straint (5.12) is used; see Section 5.2.1A.

an application with a particular combination of properties. The graph G will be

fully connected, in addition to strongly connected, if there are no physical or logical

constraints on the flow of robots between pairs of tasks, such as a path in a disaster

area that is only wide enough for robots to travel in one direction. In addition, it

may be possible to obtain x0, for instance by identifying robots in an image from an

aerial camera.

Problem P3
L is solved using a Monte Carlo method that directly minimizes con-

vergence time. The resulting system is used as a baseline to compare the systems

computed by the other problems, which manipulate convergence time by maximizing

functions of the eigenvalues of K using linear or semidefinite programs. Since these

types of programs can be solved with methods that have polynomial complexity in

the worst case [151], we can efficiently compute the S × S matrix K for large S.

Thus, our allocation approach scales well with the number of tasks.

The K design methods can also be applied to the more realistic model (3.22)

with Erlang-distributed τij when it is expressed as the equivalent linear chain model,

(3.26) subject to (3.27). We list the necessary modifications for the implementation

of Problem P3
L.

A. Maximizing the asymptotic rate of convergence

If G is strongly connected, but not necessarily fully connected, and x0 is unknown,

we can designate the asymptotic rate of convergence of system (3.19) to xd as the

63



quantity to maximize. Let λi(K) signify the eigenvalue of K with the ith smallest

real part of all the eigenvalues. By Theorem 1, λ1(K) = 0 and λi(K) > 0 for

i = 2, ..., S. Thus, the asymptotic rate of convergence is governed by Re(λ2(K)).

Noting that K is usually not symmetric, we first find a symmetric matrix S such

that λ2(S) ≤ Re(λ2(K)). We replace the objective function Re(λ2(K)) by λ2(S).

We can write this problem as a semidefinite program with a linear matrix inequality

that arises from a variational characterization of λ2(S).

Theorem 3. Define Π = diag(xd), which is invertible since xd > 0. Let K be a

matrix with the structure in (3.14). Define the matrices

N = 1
2
(ΠKT + KΠ) , (5.13)

K̃ = Π−1/2KΠ1/2 ,

S = 1
2
(K̃ + K̃T ) = Π−1/2NΠ−1/2. (5.14)

Then λ2(S) ≤ Re(λ2(K)).

Proof. Define a convex, symmetric function h : RS → R,

h(x) = −min{xi + xj} , i, j ∈ {1, ..., S} . (5.15)

Let λ(A) be the vector of the eigenvalues of a matrix A. By Theorem 16.4 of [98],

since h is convex and symmetric, h(Re(λ(K))) is the infimum of h(1
2
λ(M + MT ))

over all matrices M similar to K. Thus, since K̃ is similar to K,

h(Re(λ(K))) ≤ h(1
2
λ(K̃ + K̃T )) = h(λ(S)) , (5.16)

where the equality on the right comes from Equation (5.14).

Now we evaluate both sides of inequality (5.16). By Theorem 1, h(Re(λ(K))) =

−Re(λ2(K)). We observe that λ(S) = Re(λ(S)) because S is symmetric. We now

show that S is positive semidefinite, denoted by S � 0, which implies that h(λ(S)) =

−λ2(S) and hence reduces (5.16) to the inequality λ2(S) ≤ Re(λ2(K)). By Equation
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(5.14), S � 0 if N � 0. Since G is strongly connected, λ2(N) > 0 (Lemma 10

of [156]). Using property (3.12) and constraint (5.10), N1 = 1
2
(ΠKT1 + Kxd) = 0,

and so λ1(N) = 0 with corresponding eigenvector 1. Therefore, N � 0.

Denote the vector of all kij by k ∈ RS2−S, which is the optimization variable.

Both constraints on transitions can be written in the form f(k) ≤ 1, where f :

RS2−S → R is defined as ftot for constraint (5.11) and find for constraint (5.12):

ftot(k) =
∑

(i,j)∈E

kijx
d
i , find(k) = max

(i,j)∈E
{kijxdi /cij}. (5.17)

Now we can state the optimization problem as: maximize λ2(S) subject to f(k) ≤
1, k ≥ 0. We use an alternate formulation [144]: minimize f(k) subject to λ2(S) ≥ 1,

k ≥ 0. The vector q = [(xd1)1/2 ... (xdS)1/2]T is the eigenvector of Π−1/2NΠ−1/2

corresponding to the zero eigenvalue. From Equation (5.14) and the characterization

of eigenvalues in [66], the constraint λ2(S) ≥ 1 can be expressed as:

λ2(S) = inf
||x||=1

xT q=0

xTΠ−1/2NΠ−1/2x ≥ inf
||x||=1

xT q=0

xT (I− qqT )x (5.18)

The problem can now be posed as Problem P1
L, in which the linear matrix

inequality comes from (5.18).

[P1
L] minimize f(k)

subject to Π−1/2NΠ−1/2 � I− qqT , k ≥ 0 .

Denote the optimized vector of rates by k∗. If constraint (5.11) is used, then we

can achieve the maximum total flux by multiplying k∗ by ctot/ftot(k
∗). If constraint

(5.12) is used, we can achieve the maximum flux for each edge by dividing k∗ by

find(k
∗).

Suppose that G is a strongly connected, but not necessarily fully connected,

graph with bidirectional edges for which the two edges between each pair of adjacent

tasks have equal flux capacities. For example, robots may travel between sites along
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identical parallel roads, similar to a two-way highway. Then by condition (3.18),

the Markov process on G is reversible. We adapt the problem of maximizing the

asymptotic rate of convergence to this special case and call it Problem P1R
L .

For constraint (5.11): Condition (3.18) implies that KΠ = ΠKT , so N = KΠ

in Equation (5.13). Substitute KΠ for N in Problem P1 (with f = ftot). Since

K = NΠ−1, K is similar to S, so the constraint λ2(S) ≥ 1 becomes λ2(K) ≥ 1.

Thus, the problem constrains Re(λ2(K)) directly instead of a lower bound on this

value.

For constraint (5.12): We can maximize all the nonzero eigenvalues of K by setting

each transition rate to its maximum value subject to condition (3.18) and constraint

(5.12):

kij = (1/xdi ) min(cij, cji) , (i, j) ∈ E .

This is evident by using the Courant-Fischer min-max theorem [66] to express each

nonzero eigenvalue of S, and therefore of K, in terms of a quadratic form x∗Sx (x∗

is the conjugate transpose of x), which is equal to

∑
(i,j)∈E

kijx
d
i aij āij , aij = xi(x

d
i )
−1/2 − xj(xdj )−1/2 ,

where āij is the complex conjugate of aij.

We investigated the effect of the connectivity of G on λ2(K) for several strongly

connected, directed graphs on three tasks, labeled in Figure 5.2. We used Problem

P1R
L to compute K for graph α with condition (3.18) and Problem P1

L to compute

K for graph α without this condition and for all other graphs. We modeled each

edge in a graph as providing one unit of equilibrium flux capacity by defining cij = 1

for all (i, j) ∈ E in constraint (5.12) and ctot = NE in constraint (5.11). The target

distribution was xd1 = 0.2, xd2 = 0.3, xd3 = 0.5.

Table 5.2 gives the resulting λ2(K) of each graph for both constraints, with

column 2 indicating whether condition (3.18) was imposed. The fully connected
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Figure 5.2: Graphs on three tasks

Table 5.2: Comparison of λ2(K) for graphs on three tasks

Graph Rev. λ2(K), constraint (5.11) λ2(K), constraint (5.12)

α yes 9.6774 7.7299

α no 9.6774 ± 0.0026i 7.7299

β no 8.0645 ± 2.7936i 4.9588 ± 1.6378i

γ no 6.5729 ± 2.9691i 4.6667 ± 2.2111i

δ no 5.1667 ± 2.5766i 5.1667 ± 2.5766i

graph α yields the fastest convergence, which is expected since robots can switch

from any task directly to any other task. Each removal of an edge from graph α

lowers λ2(K), except in the case of constraint (5.12) applied to the 3-edge cycle δ.

This is because the optimization problem maximized the equilibrium flux of each

edge of graph δ (and did not for β and γ), which offset the stricter limits on task

switching than in the other graphs.

B. Maximizing the overall convergence rate

The asymptotic rate of convergence only dictates the long-term system behavior.

If G is fully connected and x0 is unknown, we can speed convergence of the faster

modes by maximizing a measure of the overall convergence rate, which is a function

of all the nonzero eigenvalues of K, Λ(K) = [λ2(K) ... λS(K)]. We define the

quantity to be maximized as 1TΛ, which weights each eigenvalue equally. We use

Equations (3.12) and (5.10) to write k as a linear function of v ≡ [Λ(K) 0]T ∈
RS2−S. This allows us to formulate the optimization problem as a linear program

with optimization variable v and objective function 1Tv.

Let K be a matrix that satisfies Equation (3.12), which sets S constraints on the
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S2 entries of K, and Equation (5.10), which sets S − 1 constraints. We now define

the remaining (S − 1)2 constraints on K in terms of the variable Λ(K). Since no

extra constraints can be applied, no kij may be set to zero, which is why G must be

fully connected.

Construct an orthonormal basis set in RS, D = {d1,d2, ...,dS−1,x
d/||xd||}. De-

fine a matrix in RS×S as

A = [ d1 ... dS−1 1 ]T ≡ [ ÃT | 1 ]T . (5.19)

Since 1Txd = 1 by Equation (3.20), 1 has a nonzero component in the direction of

xd, so the rows of A are linearly independent. Thus, A is invertible. Let B = A−1.

Then

B =
[

ÃT | xd
] I 0

−1T ÃT 1

 ≡ [ B̃ | xd
]
.

Define C ∈ R(S−1)×(S−1) as follows for some fixed Ã:

C = ÃKB̃ . (5.20)

Also define Ĉ ∈ RS×S as C augmented with an added row of zeros and an added

column of zeros.

Theorem 4. A matrix K can be expressed as K = BĈA if and only if it satisfies

Equations (3.12) and (5.10).

Proof. K is similar to P ≡ MKN, where M,P ∈ RS×S and N = M−1. Subdivide

M as [M̃T | m]T and N as [Ñ | n], where m,n ∈ RS×1. Then

MN =

 M̃Ñ M̃n

mT Ñ mTn

 = I , (5.21)

MKN =

 M̃KÑ M̃Kn

mTKÑ mTKn

 = P . (5.22)
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Choose an N with n = xd. It follows from Equation (5.21) that mTxd = 1, which

by Equation (3.20) implies that m = 1.

Suppose that K satisfies Equations (3.12) and (5.10). Since m = 1 and n = xd,

these constraints applied to Equation (5.22) make the last row and last column of P

both 0. To satisfy M̃n = M̃xd = 0 in Equation (5.21), M̃ can be set to Ã. Then

M = A, N = B, and P = Ĉ, so it follows that K = BĈA.

Now suppose that K = BĈA. Since ĈAxd = 0 and 1TBĈ = 0, K satisfies

Equations (3.12) and (5.10).

From this result, K is similar to Ĉ, and so the eigenvalues of C are Λ(K). Thus,

we can define C as:

C ≡ diag(Λ(K)) . (5.23)

Now reformulate Equation (5.10) as Fk = 0, where F ∈ RS×(S2−S), and Equation

(5.20) with C determined by (5.23) as Gk = g, where G ∈ R(S−1)2×(S2−S) and

g = [Λ(K) 0]T ∈ R(S−1)2 . Define F̃ as any S − 1 rows of F. Then k can be written

as

k = [G F̃]−T [gT 0]T ≡ H−1v . (5.24)

Using definition (5.24) for k, constraints (5.11) and (5.12) are

rTH−1v ≤ ctot , H−1v ≤ c , (5.25)

where the entries of r ∈ RS2−S are xdi and the entries of c ∈ RS2−S are cij/x
d
i . In

addition, property (3.13) is

H−1v ≥ 0 . (5.26)

Note that while this property is not needed to prove Theorem 4, it is required to

produce a valid K. The optimization problem can now be posed as Problem P2
L.

[P2
L] Maximize 1Tv subject to vi = 0 for i = S, ..., S2 − S, Equation (5.26), and

one of the constraints in (5.25).

C. Maximizing the convergence rate for a specified x0
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If G is strongly connected, but not necessarily fully connected, and x0 is known,

we can use a stochastic optimization method to directly minimize the time to con-

verge from x0, quantified by tf . We implement Problem P3
L below using a Monte

Carlo method with k as the variable.

[P3
L] Minimize tf subject to Equations (3.12), (3.13), (5.10), and constraint (5.11)

or (5.12).

Implementation: At each iteration, k is perturbed by a random vector such that the

resulting K matrix satisfies (3.12), (3.13), and (5.10). k is then scaled as in Problem

P1 to satisfy constraint (5.11) or (5.12) while maximizing flux capacity. The resulting

K is decomposed into its normalized eigenvectors and eigenvalues, system (3.19) is

mapped into the space spanned by the normalized eigenvectors, and the appropriate

transformation is applied to compute x(t) using exp(t diag([Λ(K) 0])). Since the

system is stable by Theorem 1, µ(x) always decreases monotonically with time, so

a Newton scheme can be used to calculate tf . To compute K̂ for the linear chain

model, this procedure is used with z in place of x, z0 = [x0T 0]T , and the target

distribution zd defined as the null space of K̂ at each iteration. The θij are constants

from the Erlang density (3.24).

To investigate the effect on the k optimization of accounting for task transition

times, we implemented Problem P3
L for the baseline linear and linear chain models

of a simple system with extreme variations in these times. G was defined as graph

α in Figure 5.2, with an average transition time of 1000 for edge (3, 2) and 10 for all

other edges. All robots start at site 3, and the target distribution is xd1 = xd3 = 0.05,

xd2 = 0.9. The baseline model was assigned a relatively high k32 because sending

robots along edge (3, 2) is the most direct reallocation strategy. The chain model,

which accounts for transition times, was assigned a k32 about 2 × 105 times lower

than the baseline model value; most robots in this model switch from site 3 to site

1 and then site 2, avoiding the long route. A stochastic simulation was run using
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Figure 5.3: Fraction of misplaced robots for stochastic simulations using graph α
in Figure 5.2 and k from the baseline linear and linear chain models, which are
optimized using Problem P3

L.

the method in Section 4.2 with 20000 robots and the k from both models. Figure

5.3 shows that the k from the chain model produces a more efficient system since it

yields a lower fraction of misplaced robots at equilibrium. The system using the k

from the baseline model cannot maintain many robots at site 2 because most are in

transit on the long route (3, 2) and leave site 2 relatively quickly.

If G is fully connected and x0 is known, then K can be computed such that

∆ ≡ xd − x0 is one of its eigenvectors with eigenvalue λ > 0. By maximizing λ, we

maximize the convergence rate along the vector from x0 to xd, the most direct route

in RS to the target distribution. We use the decomposition of K from Theorem 4 to

formulate the optimization problem as a linear program that maximizes λ.

Theorem 5. Let K be a matrix that satisfies Equations (3.12) and (5.10); then by

Theorem 4, K = BĈA. Let d1 = d in definition (5.19), where

d = ∆′/||∆′||, ∆′ = ∆−
(
xdT∆/||xd||2

)
xd . (5.27)

Then K∆ = λ∆ if and only if C from (5.20) is defined as

C = [ c | C̃ ], cT = [λ 0] , (5.28)
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where λ and C̃ are unconstrained.

Proof. Suppose that K∆ = λ∆. Then

K∆ = BĈA∆ = λ∆ ⇒ ĈA∆ = λA∆ . (5.29)

Using Equation (5.27) for d1 and the orthonormality of the di:

dTi ∆ = ||∆′||dTi d1 +
(
xdT∆/||xd||2

)
dTi xd = 0 (5.30)

for i = 2, ..., S − 1. From this equation and the fact that 1T∆ = 0 by constraint

(3.20), A∆ = [ dT1 ∆ | 0 ]T . Thus, Equation (5.29) is true if and only if C is defined

as in (5.28).

We can now pose the optimization problem as Problem P4
L, in which property

(3.13) and constraints (5.11) and (5.12) are defined in terms of the entries of BĈA,

with d1 = d and C defined by (5.28). The optimization variables are λ and C̃.

[P4
L] Maximize λ subject to Equation (3.13) and constraint (5.11) or (5.12).

5.2.2 Design of Vector Fields on Polytopes

The previous section discussed the optimization of the rate constants kij for a partic-

ular set of continuous dynamics defined by the multi-affine model (3.15) or the linear

model (3.19). Now suppose that the macro-continuous model can be represented by

a hybrid system, in which each population mode ω ∈ Ωp is associated with a different

set of continuous dynamics. Recall that the systems we design must have a unique,

stable equilibrium that represents the target distribution xd. Our control objective

is to steer the trajectories originating in each mode through a sequence of modes

that terminates in the mode containing this equilibrium. This section describes an

approach to achieving this objective through the application of feedback control to

the dynamics of each mode. We can also employ feedback control to place the target

equilibrium inside the terminating mode (see the application in Section 6.3.1A), and
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if the resulting dynamics of the mode are of the form (3.15) or (3.19), then we can

optimize the kij using the methods in Section 5.2.1.

We consider the case in which each mode corresponds to a region of the continuous

state space that is a full-dimensional polytope, PS ∈ RS. The implicit description

of PS defines it as the intersection of a finite number of closed half-spaces. In this

description, there is an integer K ≥ S + 1, nonzero vectors n1, ...,nK ∈ RS, and

scalars α1, ..., αK such that [55]:

PS = {x ∈ RS | ∀i = 1, ..., K : nTi x ≤ αi} . (5.31)

The intersection of PS with one of its supporting hyperplanes, {x ∈ RS | nTi x =

αi}, is called a facet Fi if the dimension of the intersection is S− 1. The vector ni is

the normal vector of Fi and, by convention, is of unit length and points out of PS.

A point vj ∈ RS, j = 1, ...,M ≥ S+ 1, is called a vertex of PS if it cannot be written

as a convex combination of the other points.

Given a time T0, the system dynamics inside PS are modified by a control input

u : [0, T0]→ U ⊂ Rm, where U is a polyhedral set, in the following way:

ẋ = f(x) +G(x)u , (5.32)

where f : PS → RS and G : PS → RS×m. The objective is to calculate a function

u that steers the state of system (5.32) to a facet of PS, here assumed to be F1,

in finite time. This facet is the boundary between two adjacent polytopes that are

associated with modes in the desired sequence. The velocity vector ẋ(T0) must point

out of PS. The input u should be independent of the initial state, x(0), and take

the form of a continuous feedback law, u(t) = g(x(t)), where g : PS → U .

Control of Affine Systems on Polytopes

Suppose that a mode is associated with linear dynamics (3.19) and the conservation

constraint (3.20) is used to eliminate one variable; then f(x) is defined by the affine
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system (3.11). Let G(x) = B, a constant matrix. For this case, necessary and

sufficient conditions for solvability of the control problem are given by [55]. Here we

state the necessary conditions, which are used in an application in Section 6.3.1A.

First, two index sets will be defined. For i ∈ {1, ..., K}, Vi ⊂ {1, ...,M} is the index

set of the vertices that belong to facet Fi. For j ∈ {1, ...,M}, the set Wj ⊂ {1, ..., K}
contains the indices of the facets connected to vertex vj. The necessary conditions

consist of linear inequalities on the inputs at the polytope vertices, uj = g(vj) ∈ U ,

j = 1, ...,M (Proposition 3.1 in [55]):

(1) ∀j ∈ V1:

nT1 (Avj + Buj + a) > 0 (5.33)

∀i ∈ Wj\{1} : nTi (Avj + Buj + a) ≤ 0 (5.34)

(2) ∀j ∈ 1, ...,M\V1:

∀i ∈ Wj : nTi (Avj + Buj + a) ≤ 0 (5.35)∑
i∈Wj

nTi (Avj + Buj + a) < 0 (5.36)

These inequalities describe a cone of possible velocity vectors at each of the polytope

vertices. The sufficient conditions are given by Theorem 4.1 in [55] and assume that

g is a Lipschitz-continuous function.

If the polytope is a simplex, a polytope in RS with S+1 vertices and S+1 facets,

then the necessary conditions are also sufficient. This results from the property that

every point in a simplex can be described as a unique convex combination of its

vertices. The input can be defined as the affine function

u = Fx + g , (5.37)

where F ∈ Rm×S and g ∈ Rm. This input produces an affine closed-loop system. If

u1, ...,uS+1 can be found to satisfy the necessary conditions, then F and g can be

calculated from a matrix equation that depends only on these input values and the

vertices.
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The construction of feedback controls on a general polytope is similar to the

simplex case. A sufficient condition that effectively replaces necessary condition

(5.36) is introduced; it is always satisfied if the inputs are unconstrained and if

B is right invertible is introduced. Although any point in a general polytope can

be expressed as a convex combination of the vertices, this choice is not necessarily

unique. To construct a feedback law that remains continuous, a specific choice of

vertices for each point must be fixed by triangulating the polytope. If u1, ...,uM can

be found that satisfy the necessary conditions and the sufficient condition, then the

polytope is triangulated and F and g in feedback law (5.37) are computed for each

simplex.

Control of Multi-Affine Systems on Rectangles

For control system (5.32), where f , G, and u are Lipschitz-continuous functions, the

necessary and sufficient conditions for solvability of the control problem on a general

polytope are identical to the conditions in [55] (substituting f(x) for Ax + a and

G(x) for B) [7]. In [7], the sufficient conditions are adapted to the case where f(x)

is defined by the multi-affine function (3.9) and PS is an S-dimensional rectangle. If

G(x) = B and there exist control inputs at all vertices of PS that satisfy the sufficient

conditions, then a continuous multi-affine feedback law u can be constructed as a

convex combination of these inputs to solve the control problem. This feedback

produces a multi-affine closed-loop system.
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Chapter 6

Applications: Bio-Inspired

Deployment and Multi-Site

Surveillance

The work in this chapter was first presented in [11–16, 69].

In this chapter, the modeling, analysis, and controller synthesis methodologies

are used to design stochastic control policies for robots to allocate themselves among

a network of sites according to a target occupancy distribution for the swarm. The

robots execute the transitions either independently of one another or using local

sensor information, without relying on inter-robot communication.

One of our site allocation scenarios is inspired by a dynamical model of ant “house

hunting,” a decentralized process in which a colony of ants chooses a new nest from

several candidate sites and emigrates there through quorum-dependent recruitment

mechanisms. During the selection process, ants transition at experimentally mea-

surable rates between simple behaviors that arise from local sensing and physical

contact, and the pattern of transition rates ensures that the highest quality nest is

usually chosen, with no ants stranded in a lower-quality nest. The quorum sensing
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mechanism speeds up emigration to a site when it is sufficiently populated, a reflec-

tion of many individual decisions on the site’s quality. The resulting group behavior

is robust to environmental noise and to changes in colony population.

From a robotics perspective, an analogy can be drawn between the ants and

robotic agents with limited communication and sensing capabilities that must dis-

tribute themselves and/or transport objects optimally among several locations. The

features of ant house hunting suggest that a deployment model with quorum-based

recruitment will produce a quick, robust distribution of resources. We develop an

extension of the house hunting model in [42] to allow resource allocation throughout

an arbitrary number of sites. Although we try to reflect ant behavior as accurately

as possible, our goal is not to create a new description of ant house hunting, which

has already been modeled in considerable detail [124], but rather to synthesize robot

controllers that will produce ant-like activity. We implement this model for a sce-

nario in which the robots and their transported items deploy to the better of two

sites. We also add control terms to the original house hunting model that cause

the swarm to split between two sites in a predefined ratio. Both models are hybrid

systems because the swarm switches between different sets of behaviors based on the

existence of a quorum.

We applied the task allocation approach discussed in earlier chapters to two sce-

narios in which each task is the surveillance of a particular site, and task transitions

are effected by navigation between sites. In the first scenario, a moderate-sized

swarm must redistribute among the perimeters of four buildings to achieve a target

distribution as quickly as possible while adhering to a limit on inter-site traffic at

equilibrium. Using the optimization methods from Section 5.2.1, we designed the

robot control policies for two site connectivity graphs and both with and without

knowledge of the initial robot distribution. We also emulated realistic inter-site

travel time distributions by augmenting the baseline linear model of the system with

virtual sites, representing the progress of traveling robots, to create a linear chain
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model, and obtained control policies by optimizing this model. In the second sce-

nario, a very large swarm reallocates to a target distribution among 42 sites by using

quorum-dependent switching between maximum transition rates and rates from the

baseline linear model. As in the ant-inspired models, this strategy is intended to

speed up the allocation process using only local information and no communication.

6.1 Modeling

6.1.1 Micro-Continuous Model

Implementation

All micro-continuous models were implemented in C or Matlab, with the robots

represented as point-mass agents governed by kinematic models. Gillespie’s Direct

Method, described in Section 4.2, is used to generate the sequence of robot transition

events and their initiation times.

A. Bio-Inspired Deployment

To define tasks for the robot deployment scenario, we use the model of ant house

hunting behavior presented in [42]. This model, constructed from experimental ob-

servations of Temnothorax albipennis ants, predicts the behavior of a colony of ants

that is faced with a choice between two new nest sites, labeled 1 and 2, following

the destruction of its original nest, site 0. Site 2 is a higher quality nest than site 1.

A fraction p of the colony is actively involved in house hunting, and the remainder

consists of brood items and other “passive” ants that must be carried to a new nest.

The “active” ants perform the following tasks: they may be naive ants that search

for a new site, assessors of site 1 or 2, or recruiters to site 1 or 2. Recruiters to site

i bring ants from site 0 to i, and both their method of recruitment and their target

recruitee depend on whether their population fraction has reached a quorum value,

q. If the population of recruiters to site i is less than q, then the recruiters limit
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themselves to using tandem runs to lead naive ants to assess site i. If the recruiter

population exceeds q, then the recruiters use the faster method of transport to carry

the passive ants at site 0 to site i.

In a robotics context, the active ants are analogous to robots that organize the

distribution of resources or other robots, the “passive” items, among multiple sites.

We will describe the house hunting model in this context from here on.

We define an extension of the house hunting model in which a swarm can dis-

tribute itself across an arbitrary number of sites and transfer passive items anywhere

in the site network. Like the original model, this extended model includes realistic

ant behaviors. Each robot has knowledge of at most two sites, one of which it con-

siders its “home base.” The assessing tasks are subdivided according to the home

base of the robots, and recruiting tasks are subdivided to account for the recruiter’s

starting site. A recruiter starting at the destination site j performs tandem runs

or transports depending on the entire population at j (not just the recruiter pop-

ulation); a recruiter starting at the source site i recruits via transports until it can

determine the population at j. The home base of a recruiter starting at j changes

from i to j when the population at j exceeds q. Assessors as well as naive robots

may be recruited during tandem runs, and passive items may be transferred from

any site to any other site. When recruiters to j find that there are no more passive

items to transport from i, they “forget” this site and become naive robots at j. We

reduce the extended house hunting model to the 3-site scenario of the original model.

In both models, each robot is represented as an entity that stores knowledge of

its task, site 0, another site, position, speed, type of robot it is recruiting (in the

extended model), and whether it is navigating to a site. We assume that the robots

can estimate the population at each site using local sensing, possibly through their

encounter rate with other robots at the site, which is how ants measure population

[126]. When a transition is generated, a random robot in the appropriate task state

that is not already en route to a site is selected to attempt recruitment or switch
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tasks, either immediately or after traveling.

The robots are modeled at the scale of ants. Each of the three sites is represented

as a circle of radius 0.02 m; a robot is considered inside the site once it enters the

circle. For the purpose of navigation control, a robot’s destination is defined as the

center of a site circle. These destinations are 65 cm apart, the inter-site distance

used in experiments to derive the site discovery and recruitment rates [125]. We

consider an environment that lends itself to the construction of navigation functions,

described in Section 5.1.1, and the abstraction of a circular boundary with three

circular obstacles (see Figure 6.1). Robots performing tandem runs move at 1.5

mm/sec, while all other robots move at 4.6 mm/sec, the transport speed [42]. The

transition rate units are min−1.

We note that aside from its specification of navigation controllers, the micro-

continuous model is still a coarse-grained representation [96] since it abstracts away

robot behaviors such as quorum estimation, recruiter-recruitee communication, and

inter-robot collision avoidance. Thus, the model still requires more detail in order to

constitute an executable robot controller. We point out that the quorum dependency

does not pose a theoretical impediment to synthesizing such a controller. In the

model, only the robots that visit a site know whether it has attained a quorum

population. From the perspective of transition dynamics, a robot that has perceived

a quorum is in a different state than a robot that has not, but the two robots are

otherwise identical. Therefore, the quorum condition does not violate the Markov

property of the model.

B. Multi-Site Surveillance

In this scenario, each task is defined as the surveillance of a particular site. We

define two different environments: one with a few sites and a moderate-sized swarm

to demonstrate the incorporation of realistic robot motion controllers, and one with

many sites and a very large swarm to illustrate the scalability of our task allocation

approach.
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Figure 6.1: A three-site environment with obstacles (left) and the model with the
contours of a navigation function (right) [◦ = naive robot, ♦ = assessor ].

In the first environment, the sites to be monitored are four buildings, numbered

and highlighted in Figure 6.2, on the University of Pennsylvania campus. Two dif-

ferent site connectivity graphs G, shown in Figure 6.3, are defined on these buildings.

We assume that the robots can localize themselves on the campus and sense neigh-

boring robots. Robots that are monitoring a building i circulate around the building

perimeter while maintaining their distance from the robot ahead of them. A transi-

tion from building i to building j is randomly assigned to one of these robots. The

selected robot continues to track the perimeter of i until it reaches a point that is

designated as the start of the route from i to j. The robot exits i at this point and

navigates to j while avoiding collisions with other robots, and it begins tracking the

perimeter of j at a designated entrance point. Figure 6.4 illustrates the integration

of switching initiations, perimeter surveillance, and navigation in the simulation.

The robot sensing radius ρ was set to 46 m, which is within the capabilities of

some laser rangefinders. The navigation speed vn is 1.3 m/s, which is attainable

by some mobile robots that are particularly suited to surveillance tasks, such as

PatrolBot R© and Seekur R©. The perimeter surveillance speed vp is 4.5 times slower.

The second environment is a grid of 42 sites whose interconnection topology is

shown in Figure 6.5. We assume that robots can detect the robot population at
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Figure 6.2: Campus map with cell decomposition of the free space used for navigation
(see Section 6.3.2B).

Figure 6.3: Numbering and connectivity of surveyed buildings for (a) a strongly
connected but not fully connected graph; (b) a fully connected graph.

Figure 6.4: Robot activities in the surveillance simulation.
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Figure 6.5: A graph of 42 sites with bidirectional edges.

their current site, and they use this information to determine the rate at which they

switch to neighboring sites. Robots aggregate at sites and travel between them at a

constant velocity; no collision avoidance behaviors are implemented.

CRN Descriptions

A. Bio-Inspired Deployment

We first describe the original house hunting CRN from [42]. A naive robot is

symbolized by X, an assessor of site i ∈ {1, 2} by Zi, a recruiter to site i ∈ {1, 2} by

Yi, and a passive item at site i ∈ {0, 1, 2} by Bi. We use transition rates that were

empirically determined from observations of ant colonies [125]. Naive robots discover

site i at rate µi. Assessors become recruiters to site i at rate ki, which is directly

related to the quality of the site. λi and φi are the rates at which recruiters perform

tandem runs and transports to site i, respectively. ρij is the rate at which assessors

and recruiters at site i encounter site j and switch their allegiance by becoming

assessors of that site.

Each reaction that describes recruitment is switched on or off depending on

whether there are recruitees available and whether the population at the destination

site is above the quorum q. We define these switches using the unit step function U

in Equation (3.32). In each recruitment reaction, the flux of recruited robots has the
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form κyU(w)U(∆(q, y)), where κ is a recruitment rate, w is the population fraction

of recruitees, y is the population fraction of recruiters, and ∆(q, y) is either q− y or

y − q. To formulate recruitment as a reaction of type (3.7) with transition rate β

and a recruitee as the reactant, we set the flux associated with such a reaction, βw,

equal to κyU(w)U(∆(q, y)) and solve for β. In this way, we define the transition

rates βri and βti , which are associated with tandem runs and transports, respectively:

βri = λiyiU(x)U(q − yi)/x,

βti = φiyiU(b0)U(yi − q)/b0, i = 1, 2. (6.1)

Now the original house hunting CRN can be written as:

X
µ1+βr

1−−−→ Z1 X
µ2+βr

2−−−→ Z2

Z1
k1−→ Y1 Z2

k2−→ Y2

Z1
ρ12−−→ Z2 Y1

ρ12−−→ Y2

B0

βt
1−→ B1 B0

βt
2−→ B2 (6.2)

Note that transitions between the active robot tasks are unaffected by the passive

item quantities.

In Section 6.3.1 we define a controlled house hunting model given by (6.22). The

CRN corresponding to this model is the same as the original house hunting CRN,

except that the transition rate in the Y1 → Y2 reaction is ρ12cU(y1 − q) and the

reaction Y2 → Y1 is added with transition rate (ρ21c + d/y2)U(y2 − q).
We now construct the extended house hunting CRN for a network of M + 1 sites.

Yi denotes a naive robot that considers site i its home base and leaves this site to

search for a new site. Zij represents a robot that regards site i as its home base and

is assessing site j. Yij,n represents a robot that is located at site n ∈ {i, j} and leaves

to recruit other robots from i to j. Bi still denotes a passive item at site i.

Let yi, zij, yij,n, and bi be the robot population fractions corresponding to these
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states. The population fraction at a site j is

pj = yj + bj +
∑M

i=0
i 6=j

(yij,j + yji,j + zij) .

The transition rates associated with tandem runs and transports are derived in

the same way as those in (6.1) and are defined as

βrij = λjyij,jU(yi)U(q − pj)/yi ,

βrijk = λkyjk,kU(zij)U(q − pk))/zij ,

βtij = φjyij,jU(bi)(1− U(q − pj))/bi + φjyij,iU(bi)/bi ,

i, j, k ∈ {0, ...,M}. (6.3)

All other transition rates are the same as in the original model (6.2).

The extended house hunting CRN is:

Yi
µj+βr

ij−−−−→ Zij

Zij
ki−→ Yji,j Zij

kj−→ Yij,j Zij
ρjk+βr

ijk−−−−−→ Zik

Yij,j
ρjkU(q−pj)−−−−−−→ Zik Yij,j

ρjk(1−U(q−pj))−−−−−−−−−→ Zjk Yij,j
φj(1−U(q−pj))U(bi)−−−−−−−−−−−→ Yj

Yij,i
φjU(bi)−−−−→ Yij,j Yij,i

φj(1−U(bi))−−−−−−−→ Yj

Bi

βt
ij−→ Bj (6.4)

where i, j, k ∈ {0, ...,M}.

B. Multi-Site Surveillance

The CRN’s corresponding to the surveillance scenarios each have a set of reactions

of type (3.7) only, with the reaction pathways defined by the edges of the strongly

connected graphs in Figures 6.3a,b and Figure 6.5. The transition rates kij in the

4-site environment are constant, and the rates in the 42-site environment obey the

detailed balance condition (3.18) and are given by

kqij = kij + U(xi/x
d
i − q)(kmax − kij) , (6.5)

where q is the quorum for each task.
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6.1.2 Macro-Continuous Models

Bio-Inspired Deployment

For the original house hunting CRN, the species vector is x = [x y1 y2 z1 z2 b0 b1 b2]T ,

where the entries are the population fractions of robots performing the different tasks.

If we ignore the time that robots take to travel between sites, then this CRN can be

abstracted to the following macro-continuous model:

ẋ = −(µ1 + µ2)x− λ1y1U(x)U(q − y1)− λ2y2U(x)U(q − y2)

ẏ1 = k1z1 − ρ12y1

ẏ2 = k2z2 + ρ12y1

ż1 = µ1x+ λ1y1U(x)U(q − y1)− ρ12z1 − k1z1

ż2 = µ2x+ λ2y2U(x)U(q − y2) + ρ12z1 − k2z2

ḃ0 = −φ1y1U(b0)U(y1 − q)− φ2y2U(b0)U(y2 − q)

ḃ1 = φ1y1U(b0)U(y1 − q)

ḃ2 = φ2y2U(b0)U(y2 − q) (6.6)

The model is subject to a conservation constraint on the active robot population:

x+ y1 + y2 + z1 + z2 = p . (6.7)

Due to the unit step functions, which switch the terms describing recruitment on

and off, model (6.6) is a hybrid system Hp. We consider only the five active robot

state variables x, y1, y2, z1, z2, which are decoupled from the three passive robot state

variables b0, b1, b2. Since the active robot fraction p is constant, x can be eliminated

through constraint (6.7). The system therefore evolves on the four-dimensional state

space

Yp = {x ∈ R4 | x ≥ 0, 1Tx ≤ p} . (6.8)

The state space is divided into four population modes by the hyperplanes y1 = q
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and y2 = q. The set of modes is defined as Ωp = {NN,NQ,QN,QQ}, where

NN : y1 < q , y2 < q QN : y1 ≥ q , y2 < q

NQ : y1 < q , y2 ≥ q QQ : y1 ≥ q , y2 ≥ q . (6.9)

When Equation (6.7) is used to replace x with p − y1 − y2 − z1 − z2 in model

(6.6), the dynamics of each mode can be written as an affine model (3.11), where

x = [y1 y2 z1 z2]T , A ∈ R4×4, and a ∈ R4.

The entries of the species vector x for the extended house hunting CRN are yi,

zij, yij,i, yij,j, and bi, where i, j, k ∈ {0, ...,M}. To illustrate the inclusion of inter-

site robot travel times in the ODE abstraction, we write the corresponding macro-

continuous model as a set of delay differential equations, as described in Section 3.3.2.

The state variables in the model represent population fractions that are physically

located at one of the M + 1 sites. Each time delay τij is estimated as the average

of a set of times, obtained from the simulation of the micro-continuous model, that

robots take to travel from site i to site j. If i and j are written in bold, unitalicized

font in a delay τij, then the trip is a tandem run; otherwise, it is a transport or a

solitary journey (which is conducted at the speed of a transport). The measured

time delays are τ01 = τ02 = 6 min, τ01 = τ02 = 2.2 min, τ10 = τ20 = 2.5 min,

τ12 = τ21 = 7.84 min, and τ12 = τ21 = 2.48 min.

We define τji+ij ≡ τji + τij, x ≡ x(t) for each population fraction x, and x[τij] ≡
x(t − τij). We also define ntand as the number of types of robots Yi and Zk,i that a

recruiter robot Yij,j can lead in a tandem run (k 6= i, j). Now the macro-continuous

model corresponding to the extended house hunting CRN can be written as:
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ẏi =
∑M

j=0
j 6=i

[φi(1− U(q − pi[τij+ji]))(1− U(bj[τji]))yji,i[τij+ji]

+ φi(1− U(bj[τji]))yji,j]−
∑M

j=0
j 6=i

[λjU(q − pj[τji])U(yi)yij,j[τji] + µjyi]

żij = µjyi[τij]− (ki + kj)zij +
∑M

k=0
k 6=i,j

[ρkjzik[τkj]− ρjkzij]

+
∑M

k=0
k 6=i,j

[ρij(1− U(q − pi[τij]))yki,i[τij] + ρkjU(q − pk[τkj])yik,k[τkj]]

+
∑M

k=0
k 6=i,j

[λjU(q − pj[τjk+kj])U(zik[τkj])ykj,j[τjk+kj]

− λkU(q − pk[τkj])U(zij)yjk,k[τkj]] + λjU(q − pj[τji+ij])U(yi[τij])yij,j[τji+ij]

ẏij,i = kjzji − φjyij,i
ẏij,j = kjzij + ntand[−λjU(q − pj)yij,j + λjU(q − pj[τji+ij])yij,j[τji+ij]]

− φj(1− U(q − pj))yij,j + φj(1− U(q − pj[τji+ij])U(bi[τij])yij,j[τji+ij]

+ φjU(bi[τij])yij,i[τij]−
∑M

k=0
k 6=i,j

ρjkyij,j

ḃi =
∑M

j=0
j 6=i

[φi(1− U(q − pi[τij+ji])U(bj[τji])yji,i[τij+ji] + φiU(bj[τji])yji,j[τji]]

−
∑M

j=0
j 6=i

[φj(1− U(q − pj[τji])U(bi)yij,j[τji] + φjU(bi)yij,i] (6.10)

Like model (6.6), the total population fraction of active robots is conserved, and

the model can be represented as a hybrid system Hp due to the terms that include

the unit step function.

Suppose that model (6.10) is formulated without time delays. When written

in matrix form, both this model and model (6.6) can be viewed as switched linear

systems described by Equation (3.31), in which each Kp is subject to constraint

(3.12) but not constraint (3.13).

Multi-Site Surveillance

The two CRN’s for the 4-site environment that correspond to the interconnection

graphs in Figure 6.3 are each abstracted to a baseline linear model, Equation (3.19)
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subject to (3.20). In order to investigate the effect of accounting for inter-site travel

times, the CRN for the graph in Figure 6.3a is also abstracted to two versions of the

linear chain model, Equation (3.26) subject to (3.27). To determine the parameters

of a full linear chain model that would most accurately emulate the travel time

distributions in the simulation of the micro-continuous model, we collected a set of

750− 850 τij from the simulation for each edge (i, j), plotted a histogram of the τij,

and then fit an Erlang distribution (3.24) to the histogram to obtain the distribution

parameters ωij and θij. Figure 6.6 shows a sample fitting of an Erlang distribution

to τij data for one edge, and Table 6.1 lists E(Tij) (the average τij) and ωij for each

edge. The optimized K̂ for this chain model is called K̂full. For comparison, we also

computed a optimized K̂, called K̂one, for a one-site linear chain model in which

each ωij = 1 and each θij is 1/E(Tij) = θij/ωij from the full chain model. In this

case, the Erlang distribution reduces to an exponential distribution with the same

mean value.

Note that each travel time τij is measured as the the sum of τaij, the time for

a robot to reach the exit on building i from the position at which it commits to

the transition, and τ bij, the travel time from the exit to building j’s entrance. The

robots at i are uniformly distributed around the perimeter (see Section 6.3.2B) and

are randomly selected for transitions; therefore, τaij has a uniform distribution. The

distribution of τ bij is affected by the congestion on the roads and at the target sites,

which determines the amount of time spent avoiding collisions.

The predictive value of the linear chain model depends on how well the travel time

distributions are characterized. The effects of crowding, localization errors, collision

avoidance, and quorum estimation can be readily incorporated into the linear ODE

framework if we are able to model the distribution of the resulting delays.

The CRN that describes the 42-site environment is abstracted to a switched linear

system (3.31), in which each Kp has the structure (3.14).
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Figure 6.6: Histogram of the travel times from site 1 to site 4 (758 data points) and
the approximate Erlang distribution.

Table 6.1: Data for Erlang distribution parameters

(i, j) (1,2) (1,3) (1,4) (2,3) (2,4) (3,4) (4,1)

E(Tij) 757 738 556 1507 1628 1228 1072

ωij 14 15 9 6 5 7 6

6.2 Analysis

6.2.1 Micro-Continuous and Macro-Discrete Models

We verify that for each environment, the macro-continuous model accurately pre-

dicts the system performance. To do this, we numerically integrate quantities in the

macro-continuous model and compare these trajectories to those of averaged quan-

tities in simulations of the micro-continuous and macro-discrete models. Gillespie’s

Direct Method, described in Section 4.2, was used to simulate the macro-discrete

models and, as mentioned in Section 6.1.1, the task transitions and their times in

the micro-continuous models.

For all transitions in the surveillance scenarios, the number of “product” robots

in the state counter is incremented when the robot finishes navigating between sites.

For transitions in the bio-inspired deployment scenario, the number of “product”
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robots is incremented either immediately, as in the the transition from assessor to

recruiter, or once the robot completes inter-site navigation.

Transitions that are enabled or disabled by unit step functions are implemented

in a way that can be realized on robots that rely on local sensing and do not have

information about robots at other sites. A transition that depends on the population

at a site is enabled based on the population size relative to a quorum value, which as

stated before can be measured by individual robots. In the bio-inspired deployment

scenarios, a transition that depends on the recruitee population at a site is initiated

independently of the recruitee availability, which is not known to a recruiter at

another site. When a transition associated with recruitment is initiated, the number

of robots in the appropriate recruiter state is decremented in the state counter to

reflect the start of a tandem run or transport. If any recruitees are present when the

recruiter arrives at their site, then their population is decremented in the counter.

At the end of the recruiter’s round-trip journey, the counter is updated to reflect the

recruiter’s success or failure at bringing another robot or passive item to the site.

For all environments, the simulation of the micro-continuous model is run in time

steps ∆t to implement the robots’ incremental navigation through their environment.

The completion of inter-site navigation is checked at the beginning of every time

step, and a transition at time τ is initiated when t ≤ τ ≤ t + ∆t. In the macro-

continuous and macro-discrete models, the time delays τij due to inter-site navigation

are measured from this simulation.

Figures 6.10, 6.12, and 6.16 show that the micro-continuous and macro-discrete

trajectories match the macro-continuous model fairly closely. As the robot popula-

tion approaches infinity, the standard deviations of ensembles of these trajectories

should decrease to zero, as illustrated in Figure 6.13.
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6.2.2 Macro-Continuous Model

A. Bio-Inspired Deployment

We apply reachability analysis to investigate certain properties of the original house

hunting model. We consider the dynamics of the active robots only, so that the state

space is defined by (6.8) with population modes (6.9). Since the dynamics of each

mode in this model consist of the affine model (3.11), which is a special case of the

multi-affine model (3.9), we can use the Marco reachability algorithm described in

Section 4.3.2.

First, we determine whether a quorum of recruiters at site 1 will ever be reached

for a certain value of k1, which reflects the quality of site 1, for the situation in which

all robots start as naive. The initial set is the four-dimensional unit cube, and we set

N = 52 robots and qN = 10, according to the values in [42]. Figure 6.7a shows the

new reach set volume per iteration of the algorithm as a fraction of the total state

space volume. The algorithm was set to terminate according to Proposition 6 with

ζ = 0.05. Figure 6.7b shows the projection of the reach set onto the y1N−y2N plane.

The curved black lines are the solutions of the macro-continuous model starting at

the vertices of the initial set. From comparison with these solutions, the reachable

set correctly predicts that site 1 will never achieve a quorum of 10 robots. The large

reach set projection to the right of y1N = 4 resulted from defining some relatively

large modes and from covering footprints with bounding boxes to reduce polyhedral

complexity.

Second, we identified sets of initial conditions that guarantee that a particular

site reaches a quorum before the other site. This analysis was conducted in mode

NN , for which the state space is defined as y1, y2 ∈ [0, 0.0481], z1, z2 ∈ [0, 0.0721].

This space was divided into modes of dimension 0.0120 × 0.0120 × 0.0144 × 0.0144

for refinement of the reachable set. Initial set A is defined as y1 ∈ [0.0337, 0.0385],

y2 ∈ [0, 0.00481], z1, z2 ∈ [0.0288, 0.0337]; initial set B is y1 ∈ [0, 0.00481], y2 ∈
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Figure 6.7: (a) Increase in reachable set volume at each iteration divided by state
space volume as a function of the number of iterations. (b) Projection of 4-D reach-
able set for k1 = 0.0025 (run time = 9251 sec).

[0.0240, 0.0288], z1, z2 ∈ [0.0288, 0.0337].

In Figure 6.8, the unions of gray polygons are two-dimensional projections of the

reachable set from each initial set. The computation took 33.5 minutes and consisted

of 8 generations for box A and 22.3 minutes, 9 generations for box B. Each four-

dimensional box has 16 vertices, which are projected onto the y1 − y2 plane. The

black lines are the solutions of the macro-continuous model starting at these vertices.

As shown by comparison with these solutions, both reachable sets correctly predict

the first site to achieve a quorum of 0.0481. The reachability results show that all

system trajectories starting inside box A and box B will first cross the quorum for

site 1 and site 2, respectively. The algorithm guarantees this without computing any

of the actual trajectories.

B. Multi-Site Surveillance

By Theorem 1 and Corollary 1, the baseline linear and linear chain models of the

4-site environment each converge to a unique, designable distribution of population

fractions at each task starting from any initial distribution x0. We can arrive at the

same result for the linear switched system model of the 42-site environment using
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Figure 6.8: Two-dimensional projection of reachable sets; p = 0.25, q = 0.0481,
µ1 = µ2 = 0.013, λ1 = λ2 = 0.033, ρ12 = 0.004, k1 = 0.019, k2 = 0.020 (values are
from [42], [125]).

the analysis in [69], where this model is represented as a hybrid system with two

modes, a quorum mode in which xi/x
d
i > q for some i and a linear mode in which

xi/x
d
i < q ∀i.

6.3 Controller Synthesis

6.3.1 Macro-Continuous Model

A. Bio-Inspired Deployment

Using results from Section 5.2.2, we add control terms to the original house hunting

model (6.6) to cause the swarm to split between two available sites at a target

occupancy ratio α ≥ 1. We consider the active robots only and require that the

system has one equilibrium at:

x = z1 = z2 = 0 , y1 =
p

1 + α
, y2 =

αp

1 + α
, (6.11)
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Recall that the population modes of the system are defined by (6.9). We require

that the equilibrium (6.11) is inside mode QQ; that is, (1+α)q ≤ p ≤ αp. The state

space associated with this mode is defined by a four-dimensional simplex.

We first add controls to the dynamics of mode QQ so that it contains equilibrium

(6.11) and no trajectories leave the mode. We redefine the dynamics of QQ, given

by (3.11), as the control system ẋ = Ax + Bu + a, where u is the affine feedback

law (5.37). The controlled dynamics are thus:

ẋ = (A + BF)x + (a + Bg) . (6.12)

To enforce the conservation law (6.7), we dictate that the controls must result

in a balance of terms among the differential equations. We only add controls to the

recruiter dynamics, since the recruiter fractions alone determine the current mode

and the steady state:

ẏ1 = k1z1 − ρ12cy1 + ρ21cy2 + d

ẏ2 = k2z2 + ρ12cy1 − ρ21cy2 − d (6.13)

Y2 robots can now switch allegiance to Y1 at rate ρ21c. ρ12c may differ from ρ12 in

the original model, and d is a constant.

To ensure the desired equilibrium, we set ẏ1 = 0, ẏ2 = 0 and substitute the values

in Equation (6.11) for the variables. This results in the equation:

(αρ21c − ρ12c)
p

1 + α
+ d = 0 . (6.14)

To prevent trajectories from escaping mode QQ, we apply conditions (5.34) and

(5.35) at the facets F1 = {x ∈ R4 | nT1 x = −q} and F2 = {x ∈ R4 | nT2 x = −q},
where n1 = [−1 0 0 0]T and n2 = [0 − 1 0 0]T are the normal vectors of F1 and F2,

respectively. The vertices of the simplex corresponding to mode QQ are:

v1 = [q q 0 0]T v4 = [q (p− q) 0 0]T

v2 = [q q (p− 2q) 0]T v5 = [(p− q) q 0 0]T

v3 = [q q 0 (p− 2q)]T (6.15)
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Setting f(x) ≡ ẋ from Equation (6.12) and noting that ẋ = [ẏ1 ẏ2 ż1 ż2]T , the

conditions to be satisfied are:

nT1 f(vi) ≤ 0, i ∈ {1, 2, 3, 4} ⇒ ẏ1 ≥ 0 (6.16)

nT2 f(vj) ≤ 0, j ∈ {1, 2, 3, 5} ⇒ ẏ2 ≥ 0 , (6.17)

where ẏ1 and ẏ2 are evaluated at the designated vertices using the equations in (6.13).

The resulting set of inequalities is satisfied if conditions (6.16) and (6.17) are satisfied

when evaluated only at vertex v1:

ẏ1 = −ρ12cq + ρ21cq + d ≥ 0 (6.18)

ẏ2 = ρ12cq − ρ21cq − d ≥ 0 (6.19)

⇒ d = (ρ12c − ρ21c)q . (6.20)

The relationship between ρ12c and ρ21c may be derived by substituting the ex-

pression for d from Equation (6.20) into Equation (6.14):

ρ12c

ρ21c

=
αp− q(1 + α)

p− q(1 + α)
. (6.21)

We now modify the dynamics of the other three modes so that they contain no

attractors and trajectories starting inside these modes follow the pattern: NN →
NQ or QN , QN → QQ, NQ→ QQ. We do this by replacing the recruiter dynamics

in these modes with the equations in (6.13) with switches that prevent states from

flowing in the −y1 direction in modes NN , NQ and in the −y2 direction in modes

NN , QN .

The controlled house hunting macro-continuous model is thus defined as:

ẋ, ż1, ż2 from model (6.6)

ẏ1 = k1z1 − ρ12cy1U(y1 − q) + (ρ21cy2 + d)U(y2 − q)

ẏ2 = k2z2 + ρ12cy1U(y1 − q)− (ρ21cy2 + d)U(y2 − q) (6.22)

We replace ρ12 in the ż1, ż2 equations with ρ12c.
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Figure 6.9: Trajectories of the original and controlled house-hunting models with
p = 0.25, q = 0.0481, µ1 = µ2 = 0.013, λ1 = λ2 = 0.033, k1 = 0.019, k2 = 0.020
(values are from [42] [125]); α = 1.25, ρ12c = 0.01, ρ21c = 0.0069, d = 0.000147.
The dashed lines are trajectories beginning at (a) [0 0 0 0]T , (b) [0.1 0 0.1 0]T , (c)
[0 0.1 0 0.1]T , (d) [0.2 0 0 0]T , and (e) [0 0.2 0 0]T .

Figure 6.9 displays numerically integrated trajectories of models (6.6) and (6.22)

on a 2-D projection of the state space. The thick solid line is the trajectory of

model (6.6) beginning at x = [0 0 0 0]T . The dashed lines are sample trajectories

of model (6.22) for p = 0.25, α = 1.25. The figure shows that the original model

converges to the equilibrium [0 0.25 0 0]T , whereas the controlled model converges

to the equilibrium (6.11).

B. Multi-Site Surveillance

For the 4-site environment, we compared the convergence of the micro-continuous

model to a target distribution xd for different sets of transition rates k, each com-

puted from one of the optimization problems in Section 5.2.1 using the baseline linear

model. Problems P1
L and P3

L were used to compute rates for the system with graph

Figure 6.3a, and Problems P1R
L , P2

L, P3
L, and P4

L were used for the system with graph

Figure 6.3b. To investigate the utility of the linear chain model in optimizing the
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transition rates, we compared the performance of the micro-continuous model with

k computed from Problem P3
L using the baseline linear model, the one-site linear

chain model, and the full linear chain model.

For the 42-site environment, we compared the convergence of the micro-continuous

model to xd for three different K: Kn, a non-optimal K in the baseline linear model;

Kmax
o , a K in the baseline model optimized by Problem P3

L; and Kq
n, which defines

a linear switched system with rates given by (6.5), in which the kij are from Kn,

kmax = 12, and q = 1.05. Kmax
o is subject solely to constraints kij ≤ kmax with no

constraints on inter-site traffic at equilibrium; this means that it is the optimal K

with respect to system convergence rate.

6.3.2 Micro-Continuous Model

A. Bio-Inspired Deployment

Navigation functions, described in Section 5.1.1, are used to direct robot travel

between sites while preventing collisions with obstacles. The position of a robot

k is updated at each time step by numerically integrating the equation

q̇k = − v

||∇ϕκ(qk,qdk)||2
∇ϕκ(qk,qdk) , (6.23)

where v is the robot’s speed, qdk is its current destination site, and ϕκ is defined

by Equation (5.2). The ϕκ of each robot share a common κ, which was selected

empirically to be high enough to make ϕκ a valid navigation function and to eliminate

local minima. Various combinations of v and qdk are used to produce different robot

motion controllers; for example, one ω ∈ Ωr is navigating from site 0 to site 1 at the

tandem-running speed.

B. Multi-Site Surveillance

This section describes the robot motion controllers for perimeter tracking, inter-site

navigation, and robot collision avoidance in the 4-site environment.
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Suppose that the boundary of a building m is parameterized by a vector s(s) ∈ R2

that maps arc length s to (x, y) coordinates. A robot k monitoring the perimeter

of m moves in the direction of a unit vector tangent to this boundary, n̂m(s) ∈ R2.

To create an approximately uniform distribution of robots around the perimeter, we

specify that the robot k slows down by a fraction ζ of its perimeter-tracking speed

vp if its distance qkl from the robot l in front of it is less than pm/Nm, where pm is

the perimeter length and Nm is the site population. The robot kinematics are then

defined as

q̇k = (1− σ(qkl, pm, Nm)ζ) vp n̂m(qk) ,

where σ(qkl, pm, Nm) = 1 if qkl < pm/Nm and 0 otherwise.

To implement inter-site navigation, we use an approach similar to that described

in Section 5.1.1. First, we decomposed the free space into a tessellation of convex

cells, shown in Figure 6.2. Each edge (i, j) was defined as a sequence of cells to be

traversed by robots moving from an exit point on the perimeter of building i to an

entry point on the perimeter of j. Dijkstra’s algorithm was used a priori to compute

the sequence with the shortest cumulative distance between cell centroids, starting

from the cell adjacent to the exit at i and ending at the cell adjacent to the entrance

at j. The robots are provided with the cell sequence corresponding to each edge.

Define Nk as the set of robots within the sensing radius ρ of robot k and vn as

the navigation speed. The robot kinematics for navigation are

q̇k =
vn

||ng(qk) + na(qk,Nk)||2
(ng(qk) + na(qk,Nk)) ,

where vector ng(qk) is computed from local potential functions to ensure arrival at

the goal cell and vector na(qk,Nk) is computed from repulsive potential functions

to achieve inter-robot collision avoidance, as described in Section 5.1.2.

Suppose that qk is in cell c. Let n̂ce be the unit vector pointing out of c orthogonal

to its exit facet. Let n̂cf1 , n̂cf2 be unit vectors pointing into c orthogonal to each facet

adjacent to the exit facet, and define dk1, dk2 as the distance from robot k to each
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of these facets. Also define η, υ, κ > 0. Then

ng(qk) = η n̂ce + υ (1/dκk1 n̂cf1 + 1/dκk2 n̂cf2) .

In the last cell in the sequence, this vector is replaced with one pointing from qk to

the perimeter entrance point.

Let qkl = ||qkl|| = ||qk − ql|| and ξ > 0. Define a sum of vectors that point away

from each neighboring robot,

nn(qk,Nk) =
∑
l∈Nk

− 1

ξ2q2
kl

(
2 ln (ξqkl)−

1

ξqkl

)
qkl .

This is derived from the example potential function given in Figure 5.1, with the

added parameter ξ that, when lowered, increases the range of repulsion between

robots. Finally,

na(qk,Nk) =
||ng(qk)||2
||nn(qk,Nk)||2

nn(qk,Nk) .

6.4 Results

6.4.1 Bio-Inspired Deployment

We simulated the macro-continuous, macro-discrete, and micro-continuous models

of the extended and controlled house hunting systems. The extended house hunting

system is defined for the case M = 2, the 3-site scenario of the controlled system.

All robots and passive items are initially located at site 0, and all active robots begin

as naive.

Figure 6.10 shows the population fractions at sites 1 and 2 in all three models of

the extended house hunting system. The robot population is N = 832. In all models,

both sites achieve a quorum prior to 30 min and initially experience population

growth. Site 2 outpaces site 1 in growth because robots commit to site 2 more

quickly (k2 > k1) and are more willing to switch allegiance from site 1 to 2 than

vice versa (ρ12 > ρ21). By ∼130 min, all passive items have been transported from
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Figure 6.10: Population fractions at sites 1 and 2 in extended house hunting system;
p = 0.25, q = (10/208)N , µ1 = µ2 = 0.013, λ1 = λ2 = 0.033, ρ12 = 0.008, k1 = 0.016,
k2 = 0.020, φ1 = φ2 = 0.099 (values are from [42], [125]); ρ21 = 0.002, κ = 2.7.
Dashed vertical lines correspond to the times of the snapshots in Figure 6.11.

site 0, and recruiters “forget” this site. The newly naive robots at site 1 or 2 repeat

the process of finding, assessing, and recruiting to the other available site; however,

now they can recruit from the site as well. Assessors at either site are more likely to

recruit to the site of higher quality, which results in a net transport of passive items

to site 2. By ∼376 min in the macro-continuous and micro-continuous models, all

passive items at site 1 have been removed to be reunited with those at site 2; only

active robots remain at site 1. Due to stochastic fluctuations, some passive items

still remain at site 1 in the macro-discrete model.

Figure 6.11 shows snapshots of the micro-continuous simulation at times indicated

by the vertical lines in Figure 6.10. The curvature in the robot paths is due to the

shape of the navigation functions, one of which is displayed in Figure 6.11a. The

snapshots correspond to the initial searching and assessing phase (6.11a), the period

of transport from site 0 (6.11b), the realization that site 0 contains no passive items

(6.11c), and the period of transport between sites 1 and 2 (6.11d).

Figure 6.12 displays the recruiter fractions at sites 1 and 2 in all three models of
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Figure 6.11: Micro-continuous simulation snapshots for extended house hunting sys-
tem (◦ = naive; ♦ = assessor ; F = recruiter ; × = passive) showing the swarm at (a) 2.4
min (top left); (b) 80 min (top right); (c) 130 min (bottom left); and (d) 225 min (bottom
right). The navigation function that is used in a navigation controller (6.23) with qdk at
site 2 is shown at the top left.

the controlled house hunting system. The target occupancy ratio is set to α = 1.25

and the active robot population is pN = 208. At 700 min in the macro-continuous

model, y1 = 0.1089 and y2 = 0.1357, which fall short of the equilibrium values in

(6.11) by the fraction of recruiters that are traveling between sites 1 and 2. The

final values of y1 and y2 in the other two models are close to these fractions. Thus,

the equilibrium occupancy ratio in the macro-discrete and micro-continuous models

approximates α = 1.25.

To investigate the effect of robot population on the equilibrium recruiter fractions,

macro-discrete simulations were run for active robot populations of 52, 208, and 832.
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For each run, y1 and y2 were sampled at intervals as close as possible to 2 min from

1000 to 5000 min. Figure 6.13 shows the resulting frequency distributions of y1

and y2. The vertical lines near the centers of the distributions mark the macro-

continuous equilibrium values. The mean and standard deviation of each variable

are also recorded in the figure. The standard deviation decreases as the number of

robots increases: it is less than 15% of the mean for a relatively modest population

of 52 active robots and less than 4% for a larger but still realistic population of 832.

An interesting question is whether the features of ant house hunting actually

provide an advantage in fulfilling the deployment task. For example, consider the

simpler linear model, which does not rely on quorum sensing or switching between

controllers but has the desired equilibrium fractions of x, y1, and y2 from (6.11):

ẋ = −(µ1 + µ2)x

ẏ1 = µ1x− ρ12cy1 + ρ21cy2 + d

ẏ2 = µ2x+ ρ12cy1 − ρ21cy2 − d , (6.24)

where ρ12c, ρ21c and d satisfy Equation (6.14). It would be possible to use (6.24)

as our macro-continuous model and synthesize robot behaviors from it using our

methodology. Indeed, for the particular set of parameters used in our simulations,

the difference between models (6.22) and (6.24) is not substantial. However, if the

discovery rates µ1 and µ2 in both models are reduced by a factor of 10, the importance

of tandem runs becomes apparent. Fig. 6.14 shows simulation results1 of zi + yi,

i = 1, 2, for the controlled model (6.22) and yi, i = 1, 2, for the simple model

(6.24) in this situation. The controlled model converges significantly faster to the

target equilibrium. This illustrates a possible advantage of the strategy employed

by ants over the more obvious linear model (6.24): the recruitment mechanisms can

significantly speed up the deployment process to compensate for a low discovery rate

arising from environmental constraints.

1Both models were simulated as delay differential equations with the previously defined time
delays to include the effect of navigation.
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Figure 6.12: Recruiter fractions y1, y2 in controlled house hunting system; parameters
are the same as in Figure 6.9.

6.4.2 Multi-Site Surveillance

4-Site Environment

We simulated the macro-continuous and micro-continuous models of the 4-site surveil-

lance scenario. The swarm is initially split equally between buildings 3 and 4 in all

simulations. In the optimization problems, the total equilibrium flux capacity ctot

for all possible edges (graph Fig. 6.3b) was set to 0.175 robots/s and distributed

among the edges in proportion to the cumulative distance between the centroids of

their associated cells.

In the comparison of the system with different optimized k from the baseline

model, we used a population of 250 robots and the target distribution xd1 = 0.1,

xd2 = 0.4, xd3 = 0.2, and xd4 = 0.3. The snapshots in Figure 6.15 illustrate the robot

redistribution for one trial. In Figure 6.16, we compare performance in terms of

||x − xd||1 for 40 simulation runs of the micro-continuous model and the macro-

continuous DDE model (3.22) with the same k. Each time delay τij in the DDE

model was estimated as the average of 750 − 850 robot travel times at equilibrium
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Figure 6.13: Histograms of equilibrium y1 and y2 in controlled house hunting system
for pN = 52 (light gray), 208 (dark gray), and 832 (black), where p = 0.25. Bar
width is 1/N for each value of N . Vertical lines mark y1 = 0.1089 and y2 = 0.1357.

from site i to j, collected from a micro-continuous simulation using site graph Fig.

6.3b. The simulation runs average to a plot that is close to the DDE trajectory and

display little variability, even though the swarm is only of moderate size. We now

discuss several key points from the micro-continuous simulation results.

Tradeoff between convergence rate and equilibrium traffic: Figures 6.17 and 6.18

compare system performance for different k in terms of the distance from equilibrium,

ν(x,y) = ||x− xd||1 − 1Ty . (6.25)

This quantity decreases to zero at equilibrium because then the fraction of travelers,

1Ty, accounts entirely for all the discrepancies |xi − xdi |, i = 1, ..., 4. Each plot is

an average over 40 micro-continuous simulation runs, and the bold numbers beside

the legends are the average traveler fractions at equilibrium for each k. (Standard

deviations are not shown to avoid cluttering the figures; the maximum standard

deviation over all plots is 0.078.) The data in these figures verify that there is a

tradeoff between rapid convergence to equilibrium and the number of idle transitions

105



Figure 6.14: Population fractions at sites 1 and 2 in the controlled house hunting
macro-continuous model and simple model (6.24); parameters are the same as in
Figure 6.9 except for µ1 = µ2 = 0.0013.

between sites at equilibrium. For instance, the runs in Figure 6.17b are the slowest

to converge, and they yield the lowest equilibrium traffic fractions. It is notable that

this tradeoff can occur to different degrees depending on the flux constraint, (5.11)

or (5.12). The Problem P2
L plot converges slightly faster in Figure 6.18b than in

Figure 6.18a, but it has a lower equilibrium traffic fraction.

Faster convergence with increased site connectivity: Figures 6.17 and 6.18 show that

for both flux constraints, (5.11) and (5.12), the runs for graph Figure 6.3b converge

faster to equilibrium than those for graph Figure 6.3a. This is due to the difference in

allowable pathways between the initial and final distributions. In Figure 6.3b, robots

can travel directly from sites 3 and 4 to sites 1 and 2, while in Fig 6.3a, they can only

reach sites 1 and 2 via the path 3 → 4 → 1 → 2, which prolongs the redistribution

process. The greater number of edges in Figure 6.3b also reduces the impact on

convergence of limiting each edge’s flux capacity. The range of convergence times to

equilibrium for Figure 6.3b are similar for both constraints, while the convergence

times for Figure 6.3a increase significantly when constraint (5.12) is applied.
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Figure 6.15: Snapshots of a run using k from Problem P1
L with constraint (5.12). The

red robots (�) are not engaged in a transition; the orange robots (∗) have committed
to travel to another site or are in the process of traveling.
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Figure 6.16: DDE macro-continuous model and micro-continuous simulations using
k from Problem P1

L with constraint (5.12). Micro-continuous plots show the average
over 40 runs ± standard deviation.
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Limits on edge flux capacities eliminate the advantage of knowing x0: Since the k

produced by Problems P3
L and P4

L are optimized for a specific x0, it seems likely

that for any given x0 the Problem P3
L and Problem P4

L runs will converge at least

as fast as the runs corresponding to other problems, which optimize k for the entire

domain of x0. As Figures 6.17a and 6.18a show, this is true if constraint (5.11) is

used. This is because the flux capacity can be distributed among edges in any way

as long as total capacity does not exceed a limit. However, when constraint (5.12)

is used, limits are placed on edges that, if left unconstrained, would be allocated a

higher flux capacity to redistribute robots from x0 to xd. The problems that are

independent of x0 are more robust to these limitations; their corresponding runs

converge as fast as the runs that rely on x0 or outperform them.

K from convex optimization is competitive compared to K from stochastic optimiza-

tion: The fastest-converging runs that use k from Problems P1
L, P1R

L , P2
L, and P4

L

attain equilibrium at least as quickly as the corresponding runs that use k from Prob-

lem P3
L. Hence, we can use efficient convex optimization techniques to compute a k

that yields the same system performance as a k from a much more time-consuming

stochastic optimization approach.2 This facilitates the quick computation of k in

real-time task allocation scenarios.

In the comparison of the system with optimized k from both the baseline and

chain models, we used a population of 240 robots and the target distribution xd1 =

xd2 = xd3 = xd4 = 0.25. In Problem P3
L, the same flux constraint (5.11) is applied

to both the baseline and chain models so that the models have the same equilib-

rium traveler fraction, which is necessary to have a basis for comparing the system

convergence rates due to the tradeoff between these properties that was discussed

earlier.

2On a standard 2 GHz laptop, one Metropolis optimization run used for graph Figure 6.3b took
about 15 minutes for t0.1 to decrease slowly enough with each iteration for K to be deemed close
enough to optimal, while all the convex optimization programs computed an optimal K in less than
a second.
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Figure 6.17: Distance from equilibrium for micro-continuous simulations using graph
Figure 6.3a with (a) constraint (5.11) and (b) constraint (5.12). Each plot is an
average over 40 runs that use k from the problem labeled in the legend. The bold
number to the right of each legend entry is the equilibrium traveler fraction averaged
over 1000 data points of the corresponding plot.

Figures 6.19(b),(d) show that starting at ∼ 15000 sec, each average traveler

fraction over 40 micro-continuous simulation runs oscillates close to the average

equilibrium value from the simulations using K, the optimized matrix in the baseline

model. Thus, K, K̂one, and K̂full yield approximately the same equilibrium inter-site

traffic. Figures 6.19(a),(b) show that K and K̂one produce very similar trajectories

for the average fraction of misplaced robots µ(x), average traveler fraction, and

associated standard deviations. The same can be said of the results for K and K̂full

in Figures 6.19(c),(d), since the relatively high standard deviations indicate that any

disparities may not be significant.

This result arises from the fact that the average τij for the edges are only within a

factor of 3 of each other (see Table 6.1), as opposed to a factor of 100 in the scenario

giving rise to Figure 5.3, so there is not much advantage in terms of convergence

to rerouting robots away from a “long” route. Also, the average τij is at most only
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Figure 6.18: The same quantities as in Figure 6.17 for runs using graph Figure 6.3b.

about a third of the average robot waiting time at site i, k−1
ij , which indicates that

the travel times do not in general contribute as much to system convergence time as

site occupancy times.

The similarity among the results for the micro-continuous simulations run with

transition rates from the baseline and chain models indicates that for the purpose

of controller synthesis, the baseline model is a sufficiently accurate representation

of the system in this case. Hence, we can simply optimize the matrix K and do

not have to incur the greater computational expense that is needed to optimize the

larger matrix K̂.

42-Site Environment

This work was done in collaboration with M. Ani Hsieh and Ádám Halász.

We simulated the macro-continuous and micro-continuous models of the 42-site

scenario using a robot population of 20, 000. The robots are initially distributed
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Figure 6.19: (a),(c) Fraction of misplaced robots µ(x) and (b),(d) fraction of travelers
vs. time for micro-continuous simulations using K, K̂one, and K̂full. Thick lines
are averages over 40 simulation runs; thin lines mark the standard deviations. The
horizontal dashed lines mark the mean equilibrium traveler fraction, 0.237, measured
from the K runs.
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Figure 6.20: Snapshots, sequenced from top left to bottom right, of a simulation in
which 20, 000 robots use the rates in Kn to redistribute to form the design specifi-
cation for the number 8. Created by Ádám Halász; reproduced from Figure 4 in [69].

among sites that form the number 0; they must redistributed to another set of sites

that form the number 8. Snapshots of the simulation are shown in Figure 6.20, in

which the red circles represent the number of the robots at each site. The larger the

circle, the higher the robot population.

Figure 6.21 plots ||x− xd||1 over time for micro-continuous simulations that use

transition rates from each of the three K. The figure shows that the quorum-based

model allows us to maximize transient traffic between sites without sacrificing the

limit on the number of idle trips at equilibrium.

Figure 6.22 shows snapshots of a second, more radical redistribution of 20, 000

robots among the 42 sites. The robots are initially located at the four corner sites,

and the task is to redistribute them to another set of sites that form the letter S.

Robots are denoted by dots that are arranged into circles at each site.
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Figure 6.21: A measure of the fraction of misplaced robots vs. time for micro-
continuous simulations using Kn, Kmax

o , and Kq
n. Created by Ádám Halász; repro-

duced from Figure 6a in [69].

Figure 6.22: Snapshots, sequenced from top left to bottom right, of a simulation in
which 20, 000 robots use the rates in Kq

n redistribute to form the design specification
for the letter S. Created by Ádám Halász; reproduced from Figure 7 in [69].
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6.5 Conclusions

We have presented an approach to the problem of redistributing a swarm of robots

in a decentralized manner among a network of sites without using inter-robot com-

munication. We designed ant-inspired behaviors that cause robots to converge to

the best site or split between two sites in a specified ratio, possibly while transfer-

ring resources. We also demonstrated our task reallocation approach on a realistic

surveillance scenario with 4 sites and a much larger system with 42 sites. In the

4-site scenario, we compared system performance for the kij from the baseline linear

model, which was designed using the optimization methods from Section 5.2.1 for

producing fast convergence to a target distribution and long-term efficiency. We

accounted for inter-site travel times, measured from the micro-continuous simula-

tion, by constructing a linear chain model, which did not yield significantly different

performance in this case. The 42-site scenario employed ant-inspired quorum-based

control policies that, when used with non-optimal kij, outperformed both optimized

and non-optimal baseline models.
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Chapter 7

Application: Swarm Robotic

Assembly System

The work in this chapter was first presented in [17,109] and was done in collaboration

with Löıc Matthey; see individual sections for the division of work.

We consider a scenario in which a large supply of heterogeneous parts must be

assembled into target amounts of different products. The assembly strategy should

be scalable in the number of parts, easily modeled to facilitate the optimization of

appropriate parameters for fast production, and quickly adjustable when product

demand changes.

We fulfill these criteria by using a swarm of autonomous mobile robots to execute

the assembly task in a decentralized fashion. The robots move randomly inside an

assembly workspace, identify and pick up randomly scattered parts, and combine

them according to a predefined assembly plan. These actions are performed using

local sensing and local communication with parts and with other robots. Since

robots and parts are uniformly randomly distributed throughout the workspace, the

system can be modeled as being well-mixed, which allows us to abstract it to an ODE

macro-continuous model according to the justification in Chapter 3. We optimize the

reaction rate constants in the corresponding macro-continuous model to minimize
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system convergence time while enforcing target quantities of all parts at equilibrium.

It should be emphasized that the rate constants are optimized with respect to the

particular assembly plan that has been chosen; the plan itself may be optimized

as well, although this problem is not addressed in this thesis. We then map these

parameters onto probabilities of executing assemblies and disassemblies, which are

used as robot control policies in the micro-continuous model. When product demand

changes, the only adjustment needed is the update of these probabilities, such as via a

broadcast. This strategy can be readily implemented on resource-constrained robots

and is scalable in the number of parts and robots.

We use the modeling, analysis, and controller synthesis methodologies to apply

this strategy to the following assembly task. There are four types of parts, numbered

1 through 4, which are combined to form larger parts according to the assembly plans

in Figure 7.1, culminating in final assemblies F1 and F2. These plans were chosen to

allow subassemblies to be created in parallel, contributing to fast production of F1

and F2. The assembly plans, like the control policies, can be preprogrammed onto

the robots and updated via a broadcast if they are changed. Parts bond through

bi-directional connections at sites along their perimeters. The assembly task is ex-

ecuted by a group of robots in an arena that is sufficiently large to prevent robot

crowding. Initially, robots and many copies of parts 1 through 4 are randomly scat-

tered throughout the arena. There are exactly as many parts as are needed to create

a specified number of final assemblies, and the number of robots is at least the total

number of scattered parts. Each robot has the ability to recognize part types, pick up

a part, combine it with one that is being carried by another robot, and disassemble

a part it is carrying.

116



1

2

3

4

5

6

8

F2

2

2

1

5

6

3

4

7

F1

Figure 7.1: Assembly plans for final assemblies F1 and F2.

7.1 Modeling

7.1.1 Micro-Continuous Model

Implementation

The robot and part controllers were initially coded by Spring Berman and then mod-

ified by Löıc Matthey to improve scalability, accommodate arbitrary assembly plans,

and implement the desired robot motion patterns. Spring Berman designed the robot

arms and parts, and Löıc Matthey designed the arena environment.

We implement the assembly task in the robot simulator Webots [113]. We use

the robot platform Khepera III, which has infra-red distance sensors for collision

avoidance. Each robot is outfitted with a protruding bar with a rotational servo

at the tip. A magnet on the servo bonds to a magnet on the top face of a part,

and the servo is used to rotate the bonded part into the correct orientation for

assembly. Parts bond to each other via magnets on their side faces. Magnets can be

turned off to deactivate a bond. Robots and parts are equipped with an infra-red

emitter/receiver for local communication and for computing relative bearing, which

is used to align robot and part magnets and to rotate a part for assembly. The task
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Figure 7.2: Snapshot of the arena in the realistic physical simulation. Robots carry
parts at the end of a protruding bar.

takes place inside a walled hexagonal arena. Figure 7.2 shows a snapshot of the

simulation.

To achieve the spatial homogeneity that we assume in our models, robots move

according to a random walk, and we verify that the space is uniformly covered

(Figure 7.3). Robots and parts switch between action states based on information

they receive via local sensing and communication. When a robot encounters a part

on the ground, it approaches and bonds to it and starts searching for a robot that is

carrying a compatible part, according to the assembly plans. When one is found, the

two robots align their parts and approach each other to join the parts. One robot

carries off the newly assembled part while the other resumes searching for a part on

the ground. A robot can disassemble a part it is carrying by deactivating a magnetic

part bond, which releases one of the component parts. To control the outcome of

part populations, we directly modify the probabilities of robots starting an assembly

and performing a disassembly.

CRN Descriptions

Löıc Matthey developed the CRN’s in this section.

Each part of type i in Figure 7.1 is symbolized by Xi, and a robot is symbolized by
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Figure 7.3: Average coverage of the arena by 5 robots over 5 runs of 10 minutes
each [108]. The distribution of robots over the arena is approximately uniform.

XR. Xi may be classified asXu
i , an unclaimed part on the ground, or asXc

i , a claimed

part i and the robot that is carrying it. We define a complete CRN, illustrated in

Figure 7.4, that represents each possible action in the micro-continuous model:

XR +Xu
i

ei−→ Xc
i , i = 1, ..., 8

Xc
1 +Xc

2

k+
1−→ Xc

5 +XR Xc
2 +Xc

7

k+
4−→ Xc

F1 +XR

Xc
3 +Xc

4

k+
2−→ Xc

6 +XR Xc
2 +Xc

5

k+
5−→ Xc

8 +XR

Xc
5 +Xc

6

k+
3−→ Xc

7 +XR Xc
6 +Xc

8

k+
6−→ Xc

F2 +XR

Xc
5

k−1−→ Xc
1 +Xu

2 Xc
F1

k−4−→ Xc
7 +Xu

2

Xc
6

k−2−→ Xc
3 +Xu

4 Xc
8

k−5−→ Xc
5 +Xu

2

Xc
7

k−3−→ Xc
6 +Xu

5 Xc
F2

k−6−→ Xc
8 +Xu

6 (7.1)

In this CRN, ei is the rate constant at which a robot encounters a part of type

i, k+
j is the rate constant of assembly process j, and k−j is the rate constant of

disassembly process j. Using the decomposition of the stochastic reaction constant cij

given in Section 3.1.1, we estimate these rate constants as functions of the following
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Figure 7.4: CRN representing all actions in the assembly system.

probabilities:

ei = A pe , k+
j = A pe paj p

+
j , k−j = p−j , (7.2)

where A is the area of the arena. A is included because it is the proportionality

constant between the kij and cij of a bimolecular reaction.

pe is the probability per unit time that a robot encounters a part or another

robot. Since our arena size yields a low robot density, this probability is modeled as

being independent of the robot population. The property that robots and parts are

distributed uniformly throughout the arena allows us to calculate pe as ceij, given by

Equation (3.4). In this equation, v is defined as the average robot speed and w is

twice a robot’s communication radius, since this is the range within which a robot

detects a part or robot and initiates an assembly process.

paj is the probability of two robots successfully completing assembly process j; it

depends on the part geometries.

p+
j is the probability of two robots starting assembly process j, and p−j is the

probability per unit time of a robot performing disassembly process j. These are the

tunable parameters of the system.

In order to be able to prove convergence properties of the system, we reduce its
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dimensionality by abstracting away robots and retaining only interactions between

parts, assuming that the time for a robot to find a part is small and that there are

at least as many robot as parts. Then the complete CRN becomes the reduced CRN,

X1 +X2

k+
1



k−1

X5 X3 +X4

k+
2



k−2

X6 X5 +X6

k+
3



k−3

X7

X2 +X7

k+
4



k−4

XF1 X2 +X5

k+
5



k−5

X8 X6 +X8

k+
6



k−6

XF2 (7.3)

The rate constants in this CRN are also defined by Equation (7.2).

7.1.2 Macro-Continuous Model

Spring Berman defined the model in this section.

Both the complete CRN and the reduced CRN contain bimolecular reactions.

Therefore, the corresponding macro-continuous models take the form of the multi-

affine model (3.15). The complete CRN abstracts to the complete macro-continuous

model, and the reduced CRN abstracts to the reduced macro-continuous model. Here

we describe the latter model. The reduced CRN has S = 10 species, C = 12

complexes, and R = 6 reactions. The species vector x = [x1 . . . x8 xF1 xF2]T

contains the concentrations of different part types. The vector of complexes is

y(x) = [x1x2 x5 x3x4 x6 x2x7 xF1 x5x6 x7 x2x5 x8 x6x8 xF2]T . (7.4)

The rate constants in the CRN can be relabeled as kij according to their associated

reaction pathways (i, j), where complexes i and j are numbered according to their

positions in y(x) (i.e., complex 3 is X3 + X4), and used to define K according to

(3.14). One set of linearly independent conservation constraints on the xi is:

x3 − x4 = N1

x1 + x5 + x7 + x8 + xF1 + xF2 = N2

x2 + x5 + x7 + 2(x8 + xF1 + xF2) = N3

x3 + x6 + x7 + xF1 + xF2 = N4

(7.5)

where Ni, i = 1, ..., 4, are computed from the initial part quantities.
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7.2 Analysis

7.2.1 Micro-Continuous and Macro-Discrete Models

Löıc Matthey ran the simulations described in this section.

To confirm that the complete macro-continuous model is an accurate representa-

tion of the system, we compare the evolution of products in this model to simulations

of the micro-continuous and macro-discrete models. The forward rate constants ei

and k+
j contain the parameters that are measured from the Webots simulations;

therefore, we only simulate assemblies (p+
j = 1, p−j = 0 ∀j) to verify that the system

with these rate constants can be abstracted correctly. We set T = 1 s, and the

other parameters for pe are A = 23.4 m2 (hexagon of radius 3 m), w = 1.2 m,

and v = 0.128 m/s from an average over 50 runs. The pai were measured as

pa = [0.9777 0.9074 0.9636 0.9737 0.8330 1.0] (entries follow the numbering of the

associated reactions) from averages over 100 runs. We numerically integrated the

complete macro-continuous model with the calculated ei and k+
j , and we used the

StochKit toolbox [99] to efficiently perform a stochastic simulation of the macro-

discrete model.

Figure 7.5a shows all part populations, averaged over 100 Webots runs, for a

system of 15 robots and 15 parts of types 1 through 4. The unlabeled trajectories

are the quantities of the subassemblies, which increase as they are created and then

decrease as they are combined to form final products F1 and F2. The standard

deviations are relatively large because the system can create only 3 final products

from the 15 parts.

Figure 7.5b compares the evolution of final products in all three models. Dis-

crepancies among the models arise from several factors. The ODE model is most

accurate for very large populations, while the system has relatively low numbers

of parts and robots so that it would not be too computationally expensive to sim-

ulate. If the robot and part populations were increased, the averaged simulations
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Figure 7.5: Evolution of part populations for a system with 15 robots and parts for
3 final assemblies. Error bars show standard deviations. (a) All part populations
in the micro-continuous model, averaged over 100 runs. (b) F1, F2 populations in
the complete macro-continuous, macro-discrete, and micro-continuous models. The
latter two models are each averaged over 100 runs.

would correspond more closely to the macro-continuous model. Also, in the Webots

simulations, an assembly is occasionally prevented by robot collisions with walls,

the interference of another robot, or erroneous part collisions. We do not model

these failures or the small local effect of a higher availability of parts where they are

dropped, which often leads to the recreation of broken assemblies. Nevertheless, the

macro-continuous model predicts the F1 and F2 populations fairly accurately, and

hence we can use it to design p+
j , p−j to direct the system behavior.
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7.2.2 Macro-Continuous Model

Spring Berman and Löıc Matthey collaborated on this section.

Using the results from CRN theory outlined in Section 4.3.1, we can prove that

reduced macro-continuous model converges to a designable distribution of part quan-

tities from any initial distribution x0.

Theorem 6. The reduced macro-continuous model, subject to conservation equations

(7.5), has a unique, globally asymptotically stable equilibrium x̄ > 0.

Proof. From definition (7.4) of y(x), it can be concluded that in each boundary

equilibrium, all xi = 0 except for one of the four combinations of variables (x1, x3),

(x1, x4), (x2, x3), (x2, x4). Since we only consider systems that can produce xF1 and

xF2, it is not possible for the system to reach any of these equilibria; each one lacks

two part types needed for the final assemblies.

The reduced CRN (7.3) has 12 complexes, 6 linkage classes, and rank 6; hence,

its deficiency, defined by Equation (4.1), is δ = 0. Also, the network is weakly

reversible. Because the network has deficiency 0, is weakly reversible, and does

not admit any boundary equilibria, it has a unique, globally asymptotically stable

positive equilibrium according to Theorem 4.1 of [139].

7.3 Controller Synthesis

7.3.1 Macro-Continuous Model

Spring Berman developed the material in this section.

We consider the problem of designing the reduced macro-continuous model, sub-

ject to Equations (7.5), to produce target quantities of parts as quickly as possible.

The objective will be posed as the design of optimal probabilities p+
i , p

−
i , i = 1, ..., 6,
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that minimize the convergence time of the system to a vector of target part concen-

trations, xd. We formulate an optimization problem in which these probabilities are

written in terms of the rates k+
i , k

−
i , i = 1, ..., 6, using Equation (7.2). Although only

the amounts of the final assemblies F1 and F2 may need to be specified in practice,

our optimization problem requires that target concentrations of all parts be defined.

We first specify xd1, x
d
2, x

d
3, x

d
5, x

d
8 and a parameter

α ≡ xdF1/(x
d
F1 + xdF2) . (7.6)

Then we compute the dependent variables xd4, x
d
6, x

d
7, and xdF1 + xdF2 from the con-

servation equations (7.5) and definition (7.6) and check that they are positive to

ensure a valid xd. In this way, we can keep xdF1 + xdF2 and the target non-final part

quantities constant while adjusting the ratio between xF1 and xF2 using α.

Theorem 6 shows that we can achieve xd from any initial distribution x0 by

specifying that x̄ = xd through constraint (5.7) on K. We quantify the time to

converge to xd in terms of the system relaxation times τi, i = 1, ..., 6, described in

Section 5.2.1. Since it is very difficult to find analytical expressions for the eigenvalues

of the Jacobian matrix J of our system, we use the alternative estimate of relaxation

time given by Equation (5.9). Each reaction j in CRN (7.3) is of the form Xk +

Xl 

k+

j

k−j
Xm. Thus, the reaction rates are vj = k+

j xkxl − k−j xm, and the entries

of column j in the stoichiometric matrix S are all 0 except for Skj = Slj = −1 and

Smj = 1. Then, according to Equation (5.9), the relaxation time for each reaction is

τj = (k+
j (xdk + xdl ) + k−j )−1 . (7.7)

Define k ∈ R12 as the vector of all k+
i , k

−
i and p ∈ R12 as the vector of all p+

i , p
−
i .

Note that according to Equation (7.2), k = k(p). We define the objective function as

the average τ−1
j , which should be maximized to produce fast convergence to xd. The

optimization problem can now be posed as a linear program, which can be solved

efficiently:
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[P] maximize 1
6

∑6
j=1 τ

−1
j

subject to MK(p)y(xd) = 0, 0 ≤ p ≤ 1 .

For comparison, we implemented Problem PMA in Section 5.2.1 using the Monte

Carlo method presented in that section to find the k(p) that directly minimizes the

convergence time. Constraint (5.8) was defined as k(0) ≤ k(p) ≤ k(1), and the

parameter f in the convergence time tf was set to 0.1.

7.3.2 Micro-Continuous Model

The robots execute a random walk that is based on the run-and-tumble motion

of bacteria. Obstacle avoidance is implemented with a Braitenberg algorithm [23],

which computes the angular speed of each wheel as a weighted sum of the distance

sensor values.

7.4 Results

7.4.1 Macro-Continuous model

Spring Berman produced the results in this section.

To investigate the effect of optimization on the convergence time of the reduced

macro-continuous model, we generated non-optimal k, which satisfy constraint (5.7)

and 0 ≤ p ≤ 1 but are not optimized for some objective, and computed k using

Problem P and Problem PMA. The non-optimal k and k from Problem P were

calculated for α ∈ {0.01, 0.02, . . . , 0.99}, and the k from Problem PMA for α ∈
{0.1, 0.2, . . . , 0.9}. We set x0 = [60 120 60 60 0]T and xd = [0.5 2.5 1 1 0.5 1 1 1 57α

57(1− α)]T . Problem P produced the same rate constants for each α (for instance,

p+
i = 1 ∀i) except for the rate constants of disassembly processes 4 and 6, which

vary with α. This shows that the system is flexible enough to yield any α when only

the rates of breaking apart the final assemblies are modified.
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Figure 7.6 compares the convergence time t0.1 of the reduced macro-continuous

model with these different k. It is evident that optimized k produce much faster

convergence times than the average t0.1 (over 100 values) using non-optimal k. The k

from Problem PMA consistently yield the fastest convergence but are time-consuming

to compute: on a standard 2 GHz laptop, it takes about 10 hours for t0.1 to decrease

slowly enough with each Monte Carlo program iteration for k to be considered close

enough to optimal. The k from Problem P, which for each α are computed in less

than a second, yield t0.1 that dip close to the Monte Carlo times for α = 0.2 − 0.5

but increase up to two orders of magnitude outside this range. This shows that

linearizing the ODE model for optimization is most effective within a certain range

of target product distributions.

We numerically integrated the reduced macro-continuous model for α = 0.1, 0.5,

and 0.9 using both optimized and non-optimal k. The evolution of the model for

each k is shown in Figure 7.7. Consistent with Figure 7.6, the optimized models

converge faster to the target final product fractions than the non-optimal model for

each α.

7.4.2 Micro-Continuous model

Löıc Matthey produced the results in this section.

To confirm that optimizing k using the reduced macro-continuous model does

indeed increase the convergence rate of the micro-continuous model, we mapped the

optimized and non-optimal k onto robot actions in the Webots simulation for α =

0.1, 0.5, 0.9. This mapping, described in general terms in Sections 3.1.2 and 3.1.1,

was done as follows. A robot carrying a part that can be disassembled according

to process j computes a uniformly distributed random number u ∈ [0, 1] at each

timestep ∆t (32 ms in Webots) and disassembles the part if u < p−j ∆t. A robot about

to begin assembly process j computes u and executes the assembly if u < p+
j ∆t.

127



Figure 7.6: Time for the reduced macro-continuous model to converge to 0.1∆(x0)
vs. α for optimized and non-optimal k. “Non-opt Ave” is the average of 100 t0.1
corresponding to different random feasible k for each α.

Figures 7.8 and 7.9 plot the time evolution of final product fractions in the micro-

continuous and macro-continuous models for the different k. The results in Figure

7.8 are from a system with 15 robots and 15 parts, and those in Figure 7.9 are from

a larger system with 50 robots and 50 parts. The figures show that the averaged

trajectories from the simulations follow the same trends as the corresponding ODE

trajectories; discrepancies are due to the factors described in Section 7.2.1. For

each α, the simulation runs using the k from Problem PMA make the most progress

toward the target product fractions, the runs using the non-optimal k make very little

progress, and the runs using the k from Problem P display intermediate performance.

Figure 7.9 illustrates that adding more robots and parts decreases the standard

deviations of the final product fractions for simulations using optimized k. However,

simulations with non-optimal k produce final assemblies very infrequently, resulting

in large error bars. For comparison, the average numbers of F1, F2 assemblies at

t = 1200 sec are 0.25, 0.80 when using non-optimal k; 2.90, 2.60 for k from Problem

P; and 2.41, 2.50 for k from Problem PMA. All of these results demonstrate that a
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Figure 7.7: Evolution of final product fractions in the reduced macro-continuous
model for α = 0.1, 0.5, 0.9 using non-optimal k (light solid lines) and k optimized by
Problem PMA (dark solid lines) and Problem P (dashed lines).

simple ODE model can indeed be used to compute control policies that improve the

yield rate when used in a realistic system model.

7.5 Conclusions

We have presented a method to systematically derive decentralized, stochastic con-

trol policies for a swarm of robots to quickly manufacture different products in

response to varying demand. The collective behavior of the system is abstracted to

an ODE model whose parameters, the rate constants of assembly and disassembly,

govern the control policies running on individual robots for executing the assembly
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Figure 7.8: F1, F2 fractions in the micro-continuous (solid lines) and reduced macro-
continuous (dashed lines) models using k optimized by Problem PMA (top row)
and Problem P (center row) and non-optimal k (bottom row). Micro-continuous
models are each averaged over 30 runs and have 15 robots and parts for 3 final
assemblies. xdF1 + xdF2 was computed as the equilibrium xF1 + xF2 of model (3.15)
with x0 = [3 6 3 3 0]T .

task. By tuning these rates, we tune the performance of the system. This opti-

mization relies on global stability properties of a specific class of ODE’s to which

the macro-continuous model belongs, and it is independent of the number of parts

and robots. We map the rates onto robot probabilities of executing assemblies and

disassemblies and find that the average evolution of products over time in the re-

sulting system follows the prediction of the macro-continuous model. It is expected

that performance closer to the ODE model would be observed in a micro-continuous

model with more accurate simulation of rigid body contacts.
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Time (s)

Figure 7.9: F1, F2 fractions (see legend in Figure 7.8) in the micro-continuous (solid
lines) and reduced macro-continuous (dashed lines) models for α = 0.5 using non-
optimal k (left) and k optimized by Problem P (center) and Problem PMA (right).
Micro-continuous models are each averaged over 20 runs and have 50 robots and
parts for 10 final assemblies. xdF1 + xdF2 was computed as the equilibrium xF1 + xF2

of model (3.15) with x0 = [10 20 10 10 0]T .
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Chapter 8

Application: Bio-Inspired

Collective Transport

The work in this chapter was first presented in [18] and was done in collaboration

with Prof. Stephen Pratt, Quentin Lindsey, Mahmut Selman Sakar, Prof. David

Cappelleri, and Travis Van Schoyck; see individual sections for the division of work.

While there are various approaches to cooperative robotic manipulation, there

are very few completely decentralized approaches. Such approaches can provide a

greater degree of flexibility and robustness in construction and manufacturing appli-

cations. Cooperative transport in ants is a striking example of a fully decentralized

manipulation strategy that is scalable in the number of transporters and successful

for a wide range of payloads (food items) and environments, including ones with ob-

stacles. This biological phenomenon offers inspiration for the analogous problem in

robotics, in which a group of robots, each equipped with a gripper, must manipulate

an arbitrarily-shaped payload that is too heavy for a single robot to move through an

obstacle-filled environment. Figure 8.1 shows an example robotic platform for this

task: a SCARAB differential drive robot [111], developed in the GRASP Laboratory,

equipped with a gripper designed by Quentin Lindsey, Michael Shomin, and Travis

Van Schoyck. The robots must employ a scalable transport strategy that uses local
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Figure 8.1: A SCARAB robot equipped with a single-actuator gripper with passive
compliance.

sensing and no inter-robot communication, and they do not have a priori knowledge

about the payload or obstacles.

To extract the rules that govern ant transport behavior and better understand

the mechanisms of successful collective transport, we study this phenomenon in

Aphaenogaster (ex-Novomessor) cockerelli, a monomorphic ant species that is com-

mon in the deserts of the southwestern United States. To our knowledge, this is the

first work that investigates the mechanics of cooperative transport in ants. We fabri-

cate elastic two-dimensional structures that we use as vision-based ant force sensors

and videotape ant retrieval of the structures. We track the structure deformations

produced by the ants, the structure configuration over time, and the evolution of the

ant population in the retrieval group. Using this data, we quantitatively illustrate

salient features of ant transport, including the emergence of consensus, that can be

used as metrics to validate a model of the system. In a step toward implementation

on multi-robot systems, we develop a micro-continuous model of the ant transport

behavior from qualitative observations of the videos of transport trials. We also

outline an approach to synthesizing control policies that will arrange the robots into

transport groups of target sizes in a scenario with multiple payloads.
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8.1 Collective Transport in Ants

The phenomenon of collective transport in ants occurs when a group of ants cooper-

atively retrieves a food item that is too heavy for a single ant to bring back to the

nest on its own. This behavior reduces the worker force required to retrieve a given

weight of food [64, 114], enhancing the colony’s efficiency at food collection. Collec-

tive transport is limited to species with effective recruitment communication, and

it has evolved independently among most subfamilies of ants. It is best developed

in ants of the genera Aphaenogaster (funnel ants), Pheidologeton (marauder ants),

Eciton (army ants), and Oecophylla (weaver ants) [65].

Among the most impressive collective transporters are the group-raiders Eciton

burchelli [43] and Pheidolegeton diversus [114], which form massive swarms that can

retrieve exceptionally large prey items. For instance, P. diversus workers have been

observed to carry objects as much as 5000 times their weight and 10000 times their

volume in groups of as many as 100 ants [114]. The small colonies of A. cockerelli

form no such raids, but they are also skilled at group retrieval [64]. When a solitary

forager finds an item too large to move, she summons a team of nestmates within a

few minutes. Foragers recruit over a short range by releasing poison gland contents

into the air; if this is inadequate, they initiate longer-range recruitment by laying a

pheromone trail back to their nest [64]. These chemical signals can be enhanced by

vibrational signals, and fast running by ants acts as a local recruitment stimulus [107].

In this way, a group of A. cockerelli can quickly retrieve the food before the arrival

of more aggressive, mass-recruiting competitors.

Collective transport is a stigmergic process in the sense that the medium of

communication between individuals is the progress of the transport itself [142]. The

tractive resistance of the prey stimulates orientational and positional changes by the

ants as well as recruitment behavior. When a prey item becomes stuck, ants realign

their bodies without releasing their grasp, and if that fails, they release their grasp

and reposition themselves on the prey [141,143].
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The variability in individual ant forces can aid the transport group in circum-

venting obstacles. In [110], it was observed that a group of Formica polyctena ants

could move a prey out of a fold in a piece of cardboard more quickly when the prey

was 30 m from the nest than at 20 m. This was explained as a result of the ants’

increased difficulty in orienting at this distance, which raised their probability of

moving in the direction opposite the nest, a tendency that helped them overcome

the obstacle.

The process of collective transport has been characterized as having an “uncoor-

dinated” phase in which ants arrive at the prey, either by chance or via a recruitment

process, and pull on it in all directions, essentially immobilizing the prey, and a “co-

ordinated” phase during which a preferred direction emerges from the ants’ exertions

and transport occurs [102], [147]. The transition to the coordinated phase has been

attributed to spatial rearrangements [114], a decrease in number of ants, realign-

ments and rotation of the prey [143], and tensions acting as positive feedback when

associated with success [102].

There has been some debate over the existence of cooperation among ants during

transport. On one hand, the ants often appear to behave as though they were

isolated, at times pulling on the load in opposite directions. Indeed, ants often appear

to exhibit the same behaviors in solitary transport and group transport [141, 143].

However, the concurrent behaviors of multiple ants during group transport produces

some cooperative features: groups can move prey significantly faster [26], develop

higher mean power [143], and exert greater forces than single ants [141]. And, of

course, a group can successfully transport the prey item to the nest. The consensus is

that this apparent collaboration does not arise from conscious deliberation, learning,

or communication, but is rather a juxtaposition of uncoordinated individual forces

on the prey with a strong component toward the nest, the common destination of the

ants [102]. Essentially, the ants agree on the direction of the transport, but disagree

on how to maneuver the prey into that direction. This strategy allows the ants to
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move different types of prey over a variety of surfaces [142].

8.2 Elastic Vision-Based Force Sensor

8.2.1 Design

We initially observed that a group of 5 to 8 ants was able to transport a piece of

fig of mass m = 1.0 − 1.5 g (Figure 8.2). Next, trials were conducted with plastic

disk-shaped loads, which were coated with fig paste to induce retrieval. A group of

about 15 ants was able to transport a disk of mass m = 1.6 g and diameter d = 4.6

cm (Figure 8.3). The ants were better at transport when the perimeter of the disk

had small tabs, measuring 2 mm long and 0.5 mm wide, for their mandibles to grasp.

More than 20 ants participated in carrying a larger disk, with m = 3.4 g and d = 6.9

cm, although they were not as effective as the group carrying the smaller disk.

Using these dimensions as guidelines, we developed and tested several planar

elastic structures, shown in Figure 8.4. Each structure consisted of a circular load

ringed with several springs that were tipped with thin tabs (see the labels on the

structure in Figure 8.4e). In all of the structures, some ants gripped the springs

themselves rather than the tabs; it was difficult to dissuade them from doing this.

However, their contributions to the spring deflections did not seem significant since

most ants gripped the tabs and bars, which were smeared with fig paste.

The first prototype, Figure 8.4a (m = 1.3 g, d = 8.5 cm), was laser cut from 0.75-

mm-thick Lexan material. A group of 12-15 ants carried the structure effectively once

the edges were peeled back with a knife to create 0.5 mm × 2 mm tabs for the ants

to latch onto more easily (Figure 8.5). However, they produced negligible spring

deformations, even when several ants pulled on one spring.

To obtain measurable deformations, we switched to fabricating 3.2-mm-thick

structures out of the soft material polydimethylsiloxane, or PDMS (see Section 8.2.2

for details). We chose PDMS for its mechanical compliance, manufacturability, and
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Figure 8.2: Video frames of ants transporting a piece of fig. The yellow arrow shows
the direction of movement for all frames. At 21 sec, the ant indicated by the red
arrow arrives at the base of the fig stem and induces a counterclockwise rotation
of the fig before it leaves at 24 sec. At 39 sec, the ant indicated by the red arrow
encounters a plant, and seemingly in response, the ants maneuver such that the fig
rotates counterclockwise and the blocked ant can move freely again.

biocompatibility [158]. The prototype in Figure 8.4b (m = 2.6 g, d = 4.5 cm)

was dragged by 3 to 5 ants (Figure 8.6). The transport was slow, indicating that

the structure was subject to a high frictional force. The ants deformed the springs

significantly in the radial (but not tangential) direction; however, adjacent springs

often interfered with each other during transport. The structure in Figure 8.4d

(m = 2.3 g, d = 6.1 cm), which we call structure 1, was designed to reduce this

interference and to measure the force exerted by each individual ant. The springs

were tipped with wide curved bars in an effort to focus the ants’ attention on the

tabs. This structure showed sizable spring deformations in the tangential (but not

radial) direction. For the structure in Figure 8.4e (m = 1.6 g, d = 7.7 cm), which

we call structure 2, we modified the spring geometry to have more similar radial and

tangential stiffnesses. Since the µ for PDMS is relatively large regardless of surface,

we chose to reduce this quantity by applying DuPontTM Teflon R© tape to the bottom
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Figure 8.3: Plastic disk coated in fig paste. Photo by Prof. Stephen Pratt.

of the loads of structures 1 and 2.

We also tested a 1.6-mm-thick version of structure 2 without the curved bars,

shown in Figure 8.4c. This structure was very fragile; three of its springs broke off

during manufacturing. It was light enough to be dragged by one to three ants, and as

the bottom video frame in Figure 8.7 shows, ants grabbed the middle of the springs

as well as the tips and sometimes lifted the springs out-of-plane.

8.2.2 Fabrication

Mahmut Selman Sakar did the fabrication described in this section.

The elastic structures were fabricated using the transfer molding procedure out-

lined in Figure 8.8. The process started with the fabrication of molds of the structure

shape, which was drawn as a CAD file. The substrate used for the mold was acrylic

(Lucite International) because of its strength, elasticity, and ease of manufacturing.

First, a flatbed laser cutter (Universal Laser Systems X-660) was used to cut the

negative structure features (Figure 8.8a). Then the mold and a 5 cm × 5 cm glass

plate were silanized by vapor deposition of (tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-

trichlorosilane for 1h at room temperature in a vacuum chamber. To complete the

construction of the molding setup, the acrylic mold was fixed on the glass plate.

The PDMS elastomer base (Dow Corning, MI) was polymerized by mixing 10:1

(w/w) ratio with curing agent. The solution was stirred and degassed under vacuum
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Figure 8.4: Artificial load designs: (a) and (b) were designed by David Cappelleri;
(c)-(e) were designed by Spring Berman. In (e), the load and spring dimensions are
the same as in (c) and the bar and tab dimensions are the same as in (d).

for 20 min, and the mold was filled with the viscous solution. Excess solution was

scraped off the surface of the mold with a clean razor blade (Figure 8.8b). The

polymer was cured for 2h at 80◦C on a hot plate (Fig 8.8c). Once cured, the structure

was carefully removed with a pair of tweezers.

8.2.3 Calibration

Quentin Lindsey and Travis Van Schoyck performed the calibration.
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Figure 8.5: Video frames of ants transporting the Lexan load. The yellow arrow
shows the direction of movement in each frame. As in the fig transport trials, the
ants can negotiate obstacles by rotating the load. At 71 sec, the ant indicated by the
red arrow climbs onto a rock, and the leftward movement of the load is redirected
downward. The load is slowly rotated clockwise while it is pulled downward, and
the ant, which had resisted the motion at 13 sec and 64 sec (as evidenced by its
stretched hind legs), now contributes to the rotation by stepping sideways.

The calibration setup uses a micro/macro manipulation apparatus to create a

lookup table of applied force vs. spring tip displacement. The load of the elastic

structure is clamped to an acrylic mount such that one spring is in the appropriate

configuration. This mount is attached to a motorized rotary stage (New FocusTM),

which is mounted on a H107 ProScanTMII xy stage with 1 micron repeatability,

step size of 5 microns, and travel of 4 in. × 3 in. A needle, which is attached to

a load cell (Transducer Techniques R©) in compression configuration and allowed to

rotate freely, is inserted into the bar at the tip of the spring. Using an automated

routine, the stage moves to predetermined locations on a rectangular grid, and a
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Figure 8.6: Video frames showing configurations of ants that resulted in motion of
the first PDMS prototype. The yellow arrow shows the direction of movement in
each frame. Note that the ants are predominantly arranged on one side of the load,
in contrast to the arrangement of ants on both sides of the lighter Lexan load.

force measurement is taken using the load cell at each location. To determine the

radial spring force, the longitudinal axis of the spring is aligned parallel to the axis

of the load cell. After the routine has swept the entire grid, the spring is returned to

its rest configuration and rotated with the rotary stage 90 deg clockwise so that its

latitudinal axis is aligned with the load cell in order to measure the tangential forces.

Half of the grid is swept in that configuration so that the load cell is in compression.

The spring is then rotated 180 deg counterclockwise so that the other half of the

grid is swept.

8.2.4 Model

Spring Berman developed the model in this section.

We develop a simple model of the springs that can be used to quickly estimate

their radial and tangential stiffnesses and to design a spring geometry with desired

stiffness properties. Since the springs consist of flexible members that can undergo

large deflections, we apply a pseudo-rigid-body model, a type of model that describes

the behavior of compliant mechanisms [68].

Figure 8.9 shows the most general case of the spring model for structure 2. The

lengths of the spring members in mm are l1 = 9.8, l2 = l4 = 11.9, l3 = 5.6, l5 = 10.9,

and the spring width is h = 0.8 mm. Each member i is represented as a rigid beam
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Figure 8.7: Video frames of ants transporting a thinner version of structure 2. In
the top frames, an ant rotates the load so that it can pull it while walking backward
toward the nest, a behavior observed by Sudd [143].

attached at a pin joint, where a torsional spring with spring constant ki models

the beam’s resistance to deflection. Since the members are fixed-fixed segments, we

define ki = 2γKθEI/lj [68], where j = 1 for i = 1 and j = 2 otherwise. Here

γ = 0.85, Kθ = 2.68, E is Young’s modulus, and I is the moment of inertia of

the beam. Let ∆θi be the angular displacement of beam i from its undeflected

configuration. The moment at each pin joint is Ti = −kiΨik̂, where Ψ1 = ∆θ1,Ψ2 =

∆θ2 −∆θ1,Ψ3 = ∆θ2 −∆θ3,Ψ4 = ∆θ4 −∆θ3,Ψ5 = ∆θ4 −∆θ5.

We define three cases of the applied force F in polar coordinates, given in Table

8.1. We use the principle of virtual work to solve for the force-displacement relations.

In each case, we model the spring as a 1-DOF system with generalized coordinate

θq and include a subset I of the torsional springs, corresponding to members that

display the most noticeable compliance over the calibration displacement range. We

compare the force-displacement models to data from seven calibration trials on the

same spring. The calibrated forces are obtained as x and y components and must
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Figure 8.8: Elastic structure fabrication process. Figure by Mahmut Selman Sakar.

Table 8.1: Spring model parameters for different loading conditions
F θ1 θ2 θ3 θ4 θ5 I

1 Frer, θ = 0 0 θq 0 2π − θq 0 {2,...,5}
2 Fθeθ, θ ≥ 0 0 θq θq − π

2
θq + π θq − π

2
{2}

3 Fθeθ, θ < 0 θq θq + π
2

θq θq + 3π
2

θq {1}

be transformed into Fr, Fθ beforehand. For cases 2 and 3, the Fθ measurements are

interpolated along the circles (x− l1)2 + y2 = (l3 + l5)2 and x2 + y2 = (l1 + l3 + l5)2,

respectively.

Case 1

Let r denote the spring displacement from its undeformed state. We solve for Fr in

terms of θ2, which is related to r geometrically:

Fr =
π/2− θ2

2l2 sin(θ2)

5∑
i=2

ki, θ2 = cos−1

(
r

2l2

)
. (8.1)

Using calibration data, the least squares estimate of E is 1.66 MPa, which is

within the typical range for PDMS (360 kPa to ∼3 MPa) [25]. Figure 8.10a shows

that Equation (8.1) closely matches the calibration curve.
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Figure 8.9: General pseudo-rigid-body model of a spring on structure 2.

Case 2

We solve for Fθ in terms of θ2. Then from l1 +(l3 +l5) sin θ2 = z cos θ, where z = ||z||:

Fθ =
k2

z − l1 cos θ
cos−1

(
z cos θ − l1
l3 + l5

)
, θ ≥ 0. (8.2)

As Figure 8.10b shows, Equation (8.2) matches the averaged calibration data fairly

well. Note that the measured Fθ has much greater variability than Fr.

Case 3

We solve for Fθ in terms of θ1, which due to the constraints on the other members

is equal to θ:

Fθ = k1θ/z, θ < 0. (8.3)

Figure 8.10b shows that the model underestimates |Fθ| in this case. A closer fit

to the data can be achieved by multiplying k1 by 5, as shown by the light dashed

plot.
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Figure 8.10: Experimental and theoretical force-displacement curves: (a) case 1, (b)
cases 2 and 3. Measurements are averaged over seven calibration trials. Error bars
show standard deviations.
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8.3 Experiments

8.3.1 Video recording of group retrieval

Prof. Stephen Pratt conducted the experiments.

Figure 8.11: Experimental

setup for transport trials

with ants.

Experiments were performed in A. cockerelli’s natu-

ral Sonoran desert environment in South Mountain Park,

Phoenix, Arizona using the setup shown in Figure 8.11.

Ants were induced to retrieve an elastic structure placed

approximately one meter from an active nest entrance.

The tabs at the end of the springs were made attrac-

tive to the ants by smearing them with fig paste. The

structure was placed on a flat wooden board (50 cm ×
40 cm) lined with ivory copy paper. This provided a

smooth surface across which the ants could drag the structure, as well as a feature-

less background to aid in automated video tracking. A high definition video camera

(Panasonic HVX200 or Canon HG20) was fixed above the structure on the vertical

post of a copy stand. Its field of view encompassed a region of approximately 35 cm

× 20 cm. A screen blocked direct sunlight from this region, to avoid shadows that

could hinder video tracking. Fig baits in the vicinity of the structure were used to

attract foragers. Once an ant discovered the structure, she soon initiated recruit-

ment after unsuccessful attempts at moving it herself. A group of four to six ants

then cooperated to move the structure toward the nest.

8.3.2 Video data image processing

Quentin Lindsey did the image processing.

In order to extract the structure configuration and the spring deformations from

the video recordings of the transport, certain features of the structure were tracked,

including the load and the tips of the springs. The load was covered with a black
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circular label marked with a small white circle offset from the center. Thresholding

and blob detection were employed using Swistrack [106], a general purpose vision

processing software, to label and track the load center and the dot. The load ori-

entation was obtained by comparing the relative position of the centers of the dot

and the load. If the orientation could not be determined for a particular time step,

the corresponding data was disregarded because the load orientation is a key feature

used to track the spring deformations. The bar on each spring was marked with a

red, blue, or green label and was tracked using similar methods. The deformation

of a spring was calculated from the position of its label, the load pose, and other

geometric quantities.

8.3.3 Results

Mechanics of transport

We found that typical inertial forces mr̈ were on the order of 10−4 mN, which was

negligible compared to the friction force on the structures, µmg = 22 mN, where

µ = 1.4 was measured from inclined plane tests with the structures. This indicates

that the structures undergo quasi-static motion. The structures were often observed

to move by stick-slip, which resulted in noisy data on load speed. The average ant

force ||Fi|| was calculated to be 9.2± 6.2 mN (sample size n = 7177).

Cooperative features of transport

Figure 8.12 and 8.14 show snapshots of recorded transports with structures 1 and 2,

respectively, as well as the evolution of the load configuration over both trials. Figure

8.13 shows the load speed and angular velocity over time for the trial in Figure 8.12.

Figure 8.15 displays the sum of the ant interaction forces [86] for the trial in Figure

8.14, each defined as the projection of the difference in forces applied by two ants
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onto their relative position vector:

||Fint
ij || = (Fi − Fj) · (ri − rj)/||ri − rj|| . (8.4)

This quantity is a measure of the degree of cooperation between two ants; it is zero

when ants are perfectly cooperating.

We see evidence of an initial transport phase of low coordination among the

ants followed by a more highly coordinated phase, as has been documented in the

literature on group transport in ants (see Section 8.1). Figure 8.13 shows that

structure 1 initially moves slowly on average, and then its speed sharply increases to

significantly higher values at t = 68 s. As Figure 8.12 reveals, the transition between

these phases of speed is initiated by the ants’ reorientation of the structure a few

degrees counterclockwise. The trial with structure 2 indicates that the phases can

also be characterized in terms of the sum of the interaction forces, with the transition

occurring as a sizable reduction in this quantity. Figure 8.15 shows that this sum

decreases to about half its initial value on average after t = 32 s. From the snapshots

in Figure 8.14, this increase in cooperation is apparent in the reorientation of the

ants to pull with larger force components toward the nest during the second phase.

Load speed saturation with increased group size

Figure 8.16 shows that three ants are needed to move structure 2, and that when

more than five ants participate in transport, there is on average no increase in the

load speed. This is due to increased interference between ants during transport with

higher populations.

8.4 Micro-Continuous Model

Spring Berman and Quentin Lindsey defined the model in this section.

The transport strategy is represented as a hybrid system with probabilistic tran-

sitions between different task modes. There is a precedent for such a model in [102],
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Figure 8.13: Load speed and load angular velocity over time for the trial in Figure
8.12. Blue lines indicate the times of the snapshots.
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N = 1− 3 were obtained manually. Error bars show standard deviations.

where collective transport in Oecophylla longinoda ants is modeled as a Markov chain

using experimentally determined parameters. Figure 8.17 illustrates the notation

that we use in describing the model.

We consider a population of N ants, each represented as a point-mass agent

governed by a kinematic model,

q̇i = ui (8.5)

where qi = [ri θi]
T = [xi yi θi]

T denotes the position of a point associated with ant

i and the ant’s orientation, both in an inertial frame, and ui = [uxi u
y
i u

θ
i ]
T is the

vector of control inputs.

We model the ants as switching between two behavioral modes, each correspond-

ing to a different ui. In the behavior Search for grasp point, an ant i moves toward

the structure in search of a protrusion to latch onto with its mandibles. If the out-

ermost tip of a spring enters the sensing range of the ant, the ant latches onto the

spring with probability p1. Once attached, the ant is in the Transport mode and

pulls on the spring in a manner that directs the structure toward its estimate of the

nest. The ant reverts to mode Search for grasp point with a probability per time

step p2,i(t), which is defined as a sigmoid function of the magnitude of the force Fi(t)
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that the ant applies to the spring at time t:

p2,i(t) =
(
1 + e−γ(||Fi(t)||−0.8Fmax)

)−1
, (8.6)

where Fmax is the maximum force that the ant can apply, measured from the video

data to be 150 mN, and γ > 1. We chose a sigmoid function to reflect the ants’

tendencies to release the spring more often at large deflections and to occasionally

lose their grip or lose interest even at low deflections. The ants stop moving when

||r− rn|| ≤ ρ, where r = [x y]T and rn = [xn yn]T , the position of the nest, for some

small constant ρ.

Search for grasp point

We define vi and ωi as the forward velocity and angular velocity, respectively, of

ant i. An ant’s estimates of the structure position (x, y), given by (x̂, ŷ), are de-

fined as values of the random variables X̂ ∼ N (x, σ2) and Ŷ ∼ N (y, σ2), where

σ2 is a specified variance. These values are updated at each time step. The ant’s

desired orientation θdi is defined as the angle of the vector from (xi, yi) to (x̂, ŷ). A
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proportional controller is used to steer the ant’s orientation to θdi :

ωi = keθi , eθi = (θdi − θi) ∈ [−π, π] . (8.7)

A feedback linearization scheme is used to relate vi and ωi to the linear velocities

of (xi, yi). Hence the control inputs are
uxi

uyi

uθi

 =


cos θi −r sin θi

sin θi r cos θi

0 1


vi
ωi

 , (8.8)

where r is a small offset distance along the longitudinal axis of the ant.

Transport

An ant i in this mode pulls on its attachment point, whose coordinates are given

by (xi, yi), with a force Fi that is directed along its longitudinal axis. Let nfi be

the unit vector defining the direction of this force, and let nni be the unit vector

from (xi, yi) toward the nest coordinates, (xn, yn). The angles of these vectors in

the inertial frame are θi + π and θni , respectively. We also define θsj as the angle in

the inertial frame of the vector from (xsj , y
s
j ), the point where spring j, the spring

that the ant is grasping, is attached to the load, to (xi, yi). To emulate realistic ant

behavior, we specify that at each time t, the ant can begin to reorient itself to any

angle between θmini (t) = θsj(t)−β and θmaxi (t) = θsj(t) +β, where β ≤ π/2. Similarly

to Equation (8.7), a proportional controller steers θi:

ωi = keθi , eθi = (θdi − (θi + π)) ∈ [−π, π] . (8.9)

The desired orientation θdi at a given time depends on the direction of the nest

relative to the cone of possible ant orientations defined by β. Let R(θ) be the 2D

rotation matrix. Then θdi is defined as

θdi =


θni if nfi · nni ≥ cos β

θmaxi if R(π+β
2

)nfi · nni ≥ cos π−β
2

θmini if R(−π+β
2

)nfi · nni ≥ cos π−β
2

(8.10)
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The control inputs are defined as follows:

ui = [−vi cos θi − vi sin θi ωi]T . (8.11)

8.5 Abstraction, Analysis, and Synthesis

Spring Berman developed the material in this section.

We consider a scenario in which a swarm of robots, such as the ones in Figure 8.1,

is available to transport multiple identical payloads throughout an arena with area

A. Our objective is to synthesize controllers for the robots to quickly form transport

groups in a target distribution of sizes and manipulate the loads to specified locations.

For instance, we may want the groups to contain the minimum number of robots

needed to produce a certain payload speed, so as to free robots for other tasks. The

maximum allowable number of robots in a group is denoted by NT .

The robots’ motion is defined by the micro-continuous model in Section 8.4. Note

that compliance in the robot gripper mechanisms replaces compliance in the attach-

ment points (the springs, which are specific to the loads in the ant experiments). We

assume that robots can determine the number of robots in a transport group through

local sensing. In order to abstract the system to an ODE model as described in Chap-

ter 3, we specify that the robots and payloads are uniformly randomly distributed

throughout the arena. Toward this end, the robots in Search for grasp point mode

execute a random walk with constant speed until the payload enters their sensing

range, at which point they follow the controllers (8.7), (8.8).

To achieve our objective, we can design the stochastic control policies in the

micro-continuous model using our modeling, analysis, and synthesis framework. A

robot in Search for grasp point mode is denoted by species Y , and the combination

of a payload and a group of i ∈ {0, ..., NT} robots manipulating it in Transport mode

is denoted by species Zi. We define a CRN that describes the robot actions in the
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micro-continuous model as follows,

Y + Zi−1

k+
i



k−i

Zi, i = 1, ..., NT . (8.12)

k+
i is the rate constant at which a robot finds and latches onto a payload being

transported by i− 1 robots, and k−i is the rate at which the robot decides to detach

from the payload. These rate constants are defined similarly to the assembly and

disassembly rate constants in Equation (7.2):

k+
i = A pe pai p

+
i , k−i = p−i . (8.13)

pe is the probability per unit time that a robot encounters a payload. The uniform

distribution of robots and payloads throughout the arena allows us to calculate pe as

ceij, defined by Equation (3.4). pai is the probability of a robot successfully latching

onto the payload and can be measured from simulations. p+
i is the probability of a

robot deciding to grasp a payload with a transport group of i − 1 robots, and p−i

is the probability per unit time of a robot deciding to detach from such a payload.

These two probabilities are the tunable parameters of the system.

Since the CRN (8.12) contains bimolecular reactions, it abstracts to a multi-

affine macro-continuous model given by Equation (3.15). The species vector x =

[y z0 z1 ... zNT
]T contains the concentrations of searching robots and payloads with

transport groups of different sizes, and y(x) = [yz0 z1 ... yzNT−1 zNT
]T . We can

show that this model has a unique, globally asymptotically stable equilibrium using

a proof similar to the one in Section 7.2.2. The proof uses the property that the

CRN is deficiency zero since it has 2NT complexes, NT linkages classes, and rank

NT , which is determined by observing the linear independence of the NT vectors

mi−mj associated with the unordered complex pairs (i, j) (recall that mi is column

i of matrix M in model (3.15)). Given this result, we can specify a target distribution

xd and use optimization methods similar to the ones in Section 7.3.1 to compute the

probabilities p+
i , p−i , i = 1, ..., NT , that minimize the system convergence time to xd.
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8.6 Conclusions

We have presented a study of the mechanics of cooperative prey retrieval in A. cock-

erelli ants. We conducted experimental trials with vision-based force sensors and

developed a behavioral model of ant transport based on observations. The exper-

imental data show that this type of distributed transport system is characterized

by an initial disordered phase that transitions to a coordinated phase of increased

payload speed and a higher degree of cooperation among the transporting agents.

The data also demonstrate that additional transporters do not affect the progress of

the task after a threshold population is reached. Our micro-continuous model of ant

transport can be used to define controllers that produce a fully decentralized coop-

erative manipulation strategy in a multi-robot system. We can apply our modeling,

analysis, and synthesis methodology to control populations of transport groups in a

swarm robotic system with many payloads. Plans for continued study of cooperative

retrieval in ants and an expanded transport model, as well as further approaches to

analysis and synthesis for this type of system, are discussed in Chapter 10.
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Chapter 9

Extension to Spatially

Inhomogeneous Systems

We now remove the assumption that the system is well-mixed and consider systems

in which robots and objects with which they interact are arbitrarily distributed

throughout a domain, the robots have a deterministic velocity field superimposed on

their diffusive motion, and the robot movement is slow relative to the rates of the

reactions that define task transitions. Now the species concentrations xs, s = 1, ..., S,

are functions of position, denoted by q ∈ Yr ⊂ Rd, d ∈ {1, 2, 3}, as well as time, t.

The macro-continuous model of the system is given by a set of advection-diffusion-

reaction (ADR) equations [33], which describe the conservation of chemical species

in a fluid:
∂xs
∂t

+∇ · (v(q)xs) = Ds∇2xs +Rs(x), s = 1, ..., S (9.1)

Here v(q) is a velocity field that specifies the deterministic robot motion, Ds is the

diffusion coefficient of species s, and Rs(x) is the function of reaction rates νi given by

row s of Equation (3.16), evaluated at local concentrations x(q). When Rs(x) = 0

this equation is known as the advection-diffusion equation, and when v = 0 it is

known as the reaction-diffusion equation.

To synthesize a target collective behavior in such a system, our design parameters
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are now v(q) and Ds in addition to the reaction rate constants kij. In this chapter,

we address the modeling and analysis components of our methodology for a fixed

set of these parameters. In order to define a micro-continuous model that abstracts

to the ADR equations (9.1) in the limit of infinite species populations, we specify

the robots’ motion using the technique of random walk particle tracking [34, 132],

a method from statistical physics, and implement the reactions that govern robot

task-switching using the formulation given in [9]. The general ADR equations that

define the macro-continuous model cannot be solved analytically, and instead must be

solved using numerical techniques [70]. A widely applied technique is a grid or mesh-

based method such as finite difference, finite volume, and finite element methods [29].

A grid-based method may be Eulerian, in which the grid is fixed in space, Lagrangian,

in which the grid moves and deforms with the material, or employ a combination of

features from both. Grid-based methods are unsuitable for systems that consist of

discrete physical entities (such as robots) rather than a continuum [104], and they can

suffer from numerical dispersion and artificial oscillations when simulating advection-

dominated problems [63, 132], which we may want to design. A more appropriate

technique to use for our type of system is a meshfree method [103], which solves

integral equations and PDE’s with all kinds of boundary conditions using a set of

arbitrarily distributed nodes or particles without imposing connectivity among these

elements with a mesh. We numerically solve the ADR equations using smoothed

particle hydrodynamics, a meshfree particle method that was originally developed

to simulate astrophysical phenomena and has been extended to a variety of problems

in computational fluid dynamics and solid mechanics [104,105].

As an illustration of our methodology, we develop micro- and macro-continuous

models of a spatially inhomogeneous part retrieval scenario for an assembly system

and compare the species concentration fields from both models, where the latter is

solved using smoothed particle hydrodynamics.
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9.1 Micro-Continuous Model

Random walk particle tracking (RWPT) is a Lagrangian approach to solving advection-

diffusion problems. This technique divides the mass of a system among a collection

of N particles, each of which is assigned a mass mi. We consider a particle i to rep-

resent a robot, which is modeled as a point kinematic agent with position qi ∈ Yr,
and mi = m ∀i to be an arbitrary quantity associated with each robot. The displace-

ment of a particle i is governed by a drift term related to advection and a Brownian

motion that drives diffusion. It can be computed using an Itō-Taylor integration

scheme [45]:

qi(t+ ∆t) = qi(t) + v(qi, t)∆t+ BZ(t)
√

∆t , (9.2)

where ∆t is the time step, Z ∈ Rd is a vector of independent, normally distributed

random variables with zero mean and unit variance, and B satisfies 2DI = BBT ,

where D is the diffusion coefficient. This scheme is defined to yield equivalence

between the advection-diffusion equation and the Fokker-Planck equation, which

describes the time evolution of the probability density function of the position of a

particle, in the limit N →∞ [34, 132].

The particle masses are mapped to concentration values as described in [5, 149].

The concentration distribution x(q, t) can be approximated by the smoothed integral

interpolation

x(q, t) =

∫
Yr

x̃(q′, t)w(q− q′) dq′, x̃(q, t) =
N∑
i=1

miδ(q− qi(t)), (9.3)

where δ(q) is the Dirac delta function and w(q) is a projection function with fi-

nite support that satisfies
∫
Yr
w(q)dq = 1 and is ideally invariant with respect to

coordinate transformations. A particle approximation for x(q, t) can be defined as

x(q, t) =
N∑
i=1

mi(t)w(q− qi(t)). (9.4)

Most implementations use w(q) = 1/V for points within a small cube of volume V

around q and w(q) = 0 otherwise [63]. This corresponds to dividing the domain Yr
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into a grid of cubic cells with volume Vc, finding the mass of all particles inside each

cell c, Mc, and defining the concentration at all points q inside cell c as x(q, t) =

Mc/Vc.

The unimolecular reactions (3.7) and (3.8) are implemented the same way as in

the spatially homogeneous case. For the bimolecular reactions (3.5) and (3.6), the

probability cij that a random pair of reactants in complex i will react to become

the product(s) in complex j in the next infinitesimal time interval dt is, as in the

homogeneous case, a function of the probability of the reactants encountering each

other in this time interval. The relative displacement of the reactants must now be

taken into account in the encounter probability. Let r = qo(t)− qp(t) be the initial

relative displacement of two reactants o and p and let ∆q = qp(t+dt)−qo(t+dt)+r.

The probability of the reactants occupying the same position at time t+dt is P (∆q =

r). Defining p(r) as the probability density of ∆q, cij is given by [9]

cij = kijmp(r). (9.5)

We denote by d the radius of a spherical region around a robot that contains the

vast majority of reactants that the robot is likely to reach in the next dt time units.

This region may be a subset of the robot’s sensing or communication range if it is

large enough. In this case, a bimolecular reaction is implemented by having the robot

compute cij for each potential reactant within the region, along with a uniformly

distributed random number u ∈ [0, 1], and execute the reaction with the reactant for

which u < cijdt, if any. Otherwise, this computation is executed as a simulation of

the robot’s random movement within the region and its subsequent decision whether

to interact with a reactant that is then within its sensing or communication range.

Upon reaction, a robot becomes another species, corresponding to a different type

of particle, and may follow a different displacement equation of the form (9.2).
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9.2 Macro-Discrete Model

Stochastic simulation algorithms for spatially inhomogeneous systems [91,92,94] are

designed to simulate trajectories of species populations according to the Multivariate

or Reaction-Diffusion Master Equation, defined in [45,75]. These approaches extend

the algorithms proposed by Gillespie [51] to systems that are divided into subvol-

umes, each assumed to be spatially homogeneous, with diffusion across neighboring

subvolumes modeled as unimolecular reactions.

9.3 Macro-Continuous Model

This section discusses the numerical solution of the ADR equations using smoothed

particle hydrodynamics (SPH). In this method, a function f(q, t) over a domain is

represented in terms of its values at a set of arbitrarily distributed particles. This

converts the governing PDE equations of a system into a set of ODE’s, each of which

describes the time evolution of a variable associated with a particle. The value of a

variable at a particle is influenced by values at particles within a local neighborhood

only.

The SPH formulation is derived by first approximating f(q) with a smoothed

integral interpolation, similarly to Equation (9.3):

f(q) =

∫
Yr

f(q′)W (q− q′, h) dq′ . (9.6)

Here W (q − q′, h) is a differentiable kernel function with smoothing length h and

compact support. W satisfies the properties

lim
h→0

W (q− q′, h) = δ(q− q′) , (9.7)∫
Yr

W (q− q′, h) dq′ = 1 , (9.8)

W (q− q′, h) = 0 for ||q− q′|| > κh , (9.9)

where κ is a constant that defines the support domain of the kernel of point q. The
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kernel function is frequently defined as a Gaussian or a spline that approximates a

Gaussian [104].

The integral (9.6) can be approximated using a Monte Carlo integration scheme

as follows. The spatial distribution of the mass in the system is represented by a set

of M particles. Particle i has position ri, mass mi, and density ρi, where mi/ρi is the

volume associated with the particle. Replacing dq′ in Equation (9.6) by this volume

at the particle locations, the particle approximation for f(q), which is performed at

each time step, is given by

f(q) =
M∑
i=1

mi

ρi
f(ri)W (q− ri, h) . (9.10)

The error in approximating Equation (9.6) by Equation (9.10) is O(h2) [115]. Com-

puting the gradient of f(q) using the particle approximation entails differentiating

the kernel W rather than the function itself.

In recent years, the SPH technique has been used to define decentralized motion

control laws for robot swarms at the micro-continuous level to achieve pattern gener-

ation in obstacle-filled environments [122,123] as well as deployment, sensor coverage,

patrolling, flocking, and formation control behaviors [119, 121]. These works model

a swarm as a fluid, which may be subjected to an external force, and represent each

robot as an SPH particle that has an associated position, velocity, mass, density,

energy, and pressure. The robots use the SPH formulations of the governing equa-

tions for the conservation of mass, momentum, and energy, along with an equation

of state for pressure, to update their associated quantities and compute their control

law. The approach is scalable because these updates only require information from

robots within a local neighborhood that corresponds to the support domain of W .

In contrast, our application of the SPH method at the macro-continuous level

does not associate particles with robots, but rather employs the particles as compu-

tational elements that track concentration values at points in space. We use an SPH

scheme similar to those that have been recently applied to model solute transport in
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porous media [63,146]. The velocity of particle i is given by the velocity field in the

advection term of Equation (9.1),

dri
dt

= v(ri). (9.11)

The diffusion term in Equation (9.1), Ds∇2xs, could be evaluated by differentiating

the interpolated concentration twice. However, the resulting expression contains the

second derivative of W , which can be noisy and sensitive to particle disorder, so

instead we use an SPH discretization of the Laplace operator that involves only first

order derivatives of W [72]. This is derived by taking the Taylor series expansion

for xs(r) in the neighborhood of xs(r
′), neglecting terms of third and higher orders,

and multiplying xs(r)− xs(r′) and the expansion by

F (∆r) =
(∆r) · ∇∆rW (∆r, h)

||∆r||2 , (9.12)

where ∆r = r − r′ and ∇∆rW (∆r, h) is the directional derivative of W along ∆r,

as given by Equation (5.3). Then, integrating over all r, it can be found that the

expansion reduces to ∇2xs|r′ , and so we arrive at the equation

∇2xs|r′ = −2

∫
Yr

(xs(r)− xs(r′)) F (∆r) dr. (9.13)

The particle approximation (9.10) of this integral is

∇2xs|ri
= −2

Ms∑
j=1

mj

ρj
(xs(rj)− xs(ri)) F (rij), (9.14)

where rij = rj − ri. We replace ρj/mj in this sum by nj, the number of particles per

unit volume, which is calculated as [146]

ni =
Ms∑
j=1

W (rij, h). (9.15)

For a set of irregularly spaced particles, ni 6= nj in general, which produces an

asymmetry in the magnitude of the contribution of concentration from particle i to

particle j and vice versa. To rectify this, nj is replaced by either the arithmetic or

163



harmonic average of ni and nj [63]. Choosing the harmonic average and multiplying

Equation (9.14) by Ds, the particle approximation of the diffusion term becomes

Ds∇2xs|ri
= Ds

Ms∑
j=1

ni + nj
ninj

(xs(ri)− xs(rj)) F (rij). (9.16)

The species concentrations in the reaction rate term of the ADR equations are SPH

approximations evaluated at each particle. Thus, the SPH formulation of the ADR

equation for species s at each particle i = 1, ...,Ms is

dxs
dt

∣∣∣∣
ri

= Ds∇2xs|ri
+Rs(x1(ri), ..., xS(ri)). (9.17)

The SPH method is implemented by initializing the particle positions and concen-

trations and then numerically integrating Equations (9.11) and (9.17) using standard

techniques such as Runge-Kutta methods and the Velocity Verlet scheme [104].

9.4 Application: Assembly System Part Retrieval

We consider a spatially inhomogeneous assembly scenario in two dimensions with

robots, labeled species A, and one type of part, species B. A cluster of NA robots

are initially located to the left of a supply of NB parts. The robots search for parts

by moving with a deterministic component to the right superimposed with a random

walk; the diffusive motion enables the swarm to cover a larger area. Upon encoun-

tering a part, a robot picks it up with a predefined probability, becoming species

C, and then travels deterministically to a location to the right of the part supply.

Sections 9.4.1 and 9.4.2 describe the micro-continuous and macro-continuous models

of the time evolution of the species concentrations, xA(q, t), xB(q, t), and xC(q, t),

using the framework discussed in Sections 9.1 and 9.3. Section 9.4.3 evaluates the

accuracy of the two models for a system with diffusion only, and Section 9.4.4 com-

pares the models of the part retrieval to verify that the macro-continuous model is

an accurate abstraction.
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9.4.1 Micro-Continuous Model

We model the robots and parts as kinematic agents according to the strategy in

Section 9.1. The positions of the robots and parts are denoted by qsi ∈ R2, where

s ∈ {A,B,C} and i ∈ 1, ..., Ns, and are updated at each time step ∆t according to

variations on Equation (9.2):

qAi (t+ ∆t) = qAi (t) + v∆t+ BZ
√

∆t (9.18)

qBi (t+ ∆t) = qBi (t) (9.19)

qCi (t+ ∆t) = qCi (t) + v∆t. (9.20)

A robot’s retrieval of a part is represented by the reaction A + B → C, with

the rate constant denoted by k. Since the parts are stationary, the function p(r) in

Equation (9.5) is the probability density of ∆q = qAi (t+dt)−qAi (t) = vdt+BZ
√
dt,

using Equation (9.18). This is a bivariate normal distribution with mean vdt and

covariance matrix 2DAdtI. The radius d is defined as 2(2DAdt)
1/2, twice the standard

deviation of the robot’s motion in the x and y directions.

9.4.2 Macro-Continuous Model

The evolution of the species concentrations over time is governed by the following

ADR equations,

∂xA
∂t

+∇ · (vxA) = DA∇2xA − kxAxB (9.21)

∂xB
∂t

= −kxAxB (9.22)

∂xC
∂t

+∇ · (vxC) = kxAxB. (9.23)

Our SPH formulation of the system uses two sets of particles, each of which is

arranged on a lattice with particle spacing ∆r = h/a, where a is a constant ( [104],

p. 130 suggests a = 1.2). One set has MA particles with positions ri that move with

velocity v, and the other has MB particles with positions sj that remain stationary.
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The velocity v is defined as [∆r/∆t 0]T , so that the positions of moving particles

coincide with those of stationary particles when the lattices overlap. This allows the

moving particles to use the value of xB at overlapping stationary particles in the

reaction rate computations, and vice versa for the value of xA. The SPH equations

(9.11) and (9.17) for the system are

dri
dt

= v, i = 1, ...,MA;
dsj
dt

= 0, i = 1, ...,MB (9.24)

dxA
dt

∣∣∣∣
ri

= DA∇2xA|ri
−

MB∑
j=1

kxA(ri)xB(sj)δ(ri − sj), i = 1, ...,MA (9.25)

dxB
dt

∣∣∣∣
sj

=

MA∑
i=1

kxA(ri)xB(sj)δ(ri − sj), j = 1, ...,MB (9.26)

dxC
dt

∣∣∣∣
ri

=

MB∑
j=1

kxA(ri)xB(sj)δ(ri − sj), i = 1, ...,MA. (9.27)

Let R = ||rij||/h. We define the kernel W as a cubic spline with compact support

and a shape similar to a Gaussian:

W (rij, h) = γ ·


2
3
−R2 + 1

2
R3 if 0 ≤ R < κ/2

1
6
(2−R)3 if κ/2 ≤ R < κ

0 if R ≥ κ

(9.28)

where γ = 15
7πh2 in two dimensions and κ = 2. This function has been widely used in

the SPH literature [104].

At each time step, the particle positions and concentrations are computed by

numerically integrating Equations (9.24)-(9.27) using the Euler method.

9.4.3 Model Validation for Diffusion

The accuracy of the concentration distributions produced by the micro-continuous

model and the SPH solution of the macro-continuous model were tested for a one-

species system undergoing diffusion only, for which an analytical solution can be
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found. A similar comparison was done between concentration profiles from particle

tracking and SPH methods in [63]. We select A as the species to be studied and

set v = 0, k = 0. The corresponding PDE, Equation (9.21), reduces to the heat

equation. The initial concentration distribution is set to

xA(q, 0) = exp
||q− a||2

2α
, a = [2.5 2.5]T , α = 0.09 (9.29)

The solution to the heat equation on an infinite domain with initial condition (9.29)

is

xA(q, t) =
α

α + 2DAt
exp

−||q− a||2
2(α + 2DAt)

. (9.30)

The computations were run on the spatial domain Yr = [0 5]× [0 5] with DA = 1

and ∆t = 0.001. In the SPH method, the particles were placed on an
√
MA ×

√
MA

lattice, and the initial values of xA(ri), i = 1, ...,MA, were defined according to

Equation (9.29). In the micro-continuous model, the domain was divided into a g×g
grid. To compute the mass associated with each of the NA robots, we evaluated

the initial concentration (9.29) at the center qc of each grid cell c and set m =

1
NA

∑g2

c=1 xA(qc, 0)Vc. To initialize the robot positions, we computed the number of

robots per cell as nc = xA(qc, 0)Vc/m, rounded this number to the nearest integer,

and distributed the nc robots uniformly randomly inside the cell.

Figure 9.1 compares the maximum xA computed over the domain by the micro-

continuous model for different combinations of NA and g, the SPH method for dif-

ferent combinations of MA and h, and the solution (9.30) at the corresponding

lattice points or cell centers. The maximum xA values that were computed nu-

merically are close to the theoretical values. Figure 9.2 plots the normalized error

µA = 1
P
||xnumA − xtheorA ||, where P = g2 for the micro-continuous model and MA for

the SPH method, xnumA is the vector of concentrations computed at each lattice point

or cell center, and xtheorA is the vector of the corresponding values of (9.30). These

figures show that increasing NA for fixed g and increasing MA for fixed h results in

more accurate concentration distributions. For MA = 104, raising h, which increases

167



0 0.5 10

0.2

0.4

0.6

0.8

1

Time

M
ax

im
um

 x
A

 

 

0 0.5 10

0.2

0.4

0.6

0.8

1

Time

M
ax

im
um

 x
A

 

 

Analytical
NA=104, g=20

NA=4x104, g=20

Analytical
NA=104, g=30

NA=4x104, g=30

(b)(a)

0 0.5 10

0.2

0.4

0.6

0.8

1

Time

M
ax

im
um

 x
A

 

 

0 0.5 10

0.2

0.4

0.6

0.8

1

Time

M
ax

im
um

 x
A

 

 

Analytical
MA=2.5x103, h=2 r

MA=2.5x103, h=4 r

Analytical
MA=104, h=2 r

MA=104, h=4 r

(c) (d)

Figure 9.1: Maximum xA over time computed by (a),(b) the micro-continuous model
for four combinations of NA, g and by (c),(d) the SPH method for four combinations
of MA, h. Each plot also shows the maximum value of the analytical solution (9.30)
over time.

the number of particles in the support domain of W , increases accuracy at all points

in time.

9.4.4 Model Comparison for Part Retrieval System

We ran the micro-continuous model and the SPH solution for the retrieval system

described by Equations (9.21)-(9.23) with parameters v = [50 0]T , DA = 1, and

k = 350. We use the initial concentration distributions (9.29) and

xB(q, 0) = exp
||q− b||2

2β
, b = [7.5 2.5]T , β = 0.09 (9.31)

xC(q, 0) = 0. (9.32)
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Figure 9.2: Error µA versus time of xA computed by the micro-continuous model for
four combinations of NA, g and by the SPH method for four combinations of MA, h.

We used the parameters in Figure 9.2 that yielded the lowest µA over time for

each model: MA = 104, h = 4∆r, NA = 4 × 104, and g = 30 (used to define

the grid resolution). We set MB = MA and NB = NA. In the SPH method, the

moving particles were initialized as in Section 9.4.3, and the stationary particles were

initialized similarly on the domain [5 10]× [0 5] with xB(sj, 0), j = 1, ...,MB, defined

by Equation (9.31). In the micro-continuous model, the positions of the robots and

parts were initialized as described in Section 9.4.3 over a 90×30 grid. The time step

was set to ∆t = 0.001.

Figure 9.3 shows a sequence of snapshots of the micro-continuous model, and

Figures 9.4-9.6 compare the xA(q, t), xB(q, t), and xC(q, t) distributions computed

by the micro-continuous model and the SPH method at the corresponding times.

There is a close match between the two sets of concentration distributions, which

demonstrates that macro-continuous model can be used to design the parameters v,

DA, and k that will produce desired collective behaviors in the physical system.
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Figure 9.3: Snapshots of the micro-continuous model with NA = NB = 104 at
t = 0, 70, 100, 130, 190. Blue circles are robots searching for a part, red dots are
parts, and black stars are robots carrying parts.
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Figure 9.4: Snapshots of xA(q, t) computed using the SPH method (left column)
with MA = 104 and the micro-continuous model (right column) with NA = 4 × 104

at t = 0, 70, 100, 130, 190.
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Figure 9.5: Snapshots of xB(q, t) computed using the SPH method (left column)
with MA = 104 and the micro-continuous model (right column) with NA = 4 × 104

at t = 0, 70, 100, 130.
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Chapter 10

Conclusion

10.1 Summary of Contributions

This thesis has presented a theoretical framework for the top-down synthesis of col-

lective behaviors for swarm robotic systems. The framework can be used to design

decentralized, scalable robot control policies for a broad range of applications with

spontaneous and encounter-dependent task transitions. Here the framework was

used to synthesize strategies for swarm task allocation, product assembly, and co-

operative transport. Additional contributions of this thesis are a new reachability

analysis algorithm for multi-affine hybrid systems and a novel experimental study of

cooperative retrieval in ants.

10.2 Future Work

10.2.1 Methodology

In order to develop a wider range of swarm behaviors with theoretical guarantees,

analysis and controller synthesis methodologies should be further developed for spa-

tially inhomogeneous swarms. Approaches may include nonlinear stability analy-

sis [74], nonlinear and robust control methods for hyperbolic (advection-reaction)
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and parabolic (reaction-diffusion) PDE’s [28], and Monte Carlo optimization tech-

niques. When the macro-continuous equations are not available in closed form, a mul-

tiscale computational framework called equation-free modeling [78] can be employed

to conduct analysis and controller synthesis by applying wrapper algorithms to ap-

propriately initialized micro-continuous simulations on short time and length scales.

In addition, methodologies may also be investigated for subgroups of swarms whose

collective behavior is more accurately described by stochastic differential equations

(SDE’s) than by ODE’s, using simulation techniques, analytical tools, and control

approaches that have been developed for SDE’s [45, 76].

10.2.2 Extensions to Applications

There are various possible avenues of future work in the design of the macro-continuous

models for task reallocation in a swarm of robots. In the optimization of the linear

models, the constraints on the flux of robots switching between tasks may be applied

to the flux at all times, not only at equilibrium, in order to lower energy expenditure

and prevent congestion during the transient phase of reallocation. It may also be

fruitful to investigate a time-optimal control approach to the reallocation problem.

The models can incorporate robots’ estimation of whether a quorum exists from their

own observations, and a quorum-based switching strategy can be used to halt robots

from transitioning between tasks (and hence expending energy) once they detect

that a task is close enough to the target population. The task transition rates, kij,

may be designed to be time-dependent in order to redistribute the swarm according

to a trajectory of desired distributions, xd(t). Communication between robots may

be incorporated, and nonlinear models can be used to represent robot interactions.

For example, motifs in biomolecular networks can be used as inspiration to design

nonlinear transition rates that produce interesting phenomena such as spontaneous

switching as a result of an external input. In the particular case of reallocation

among a set of physical sites, an aspect to consider is the dependence of inter-site
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travel times on the robot population, which may lead to a generalized definition of

“traffic capacity” that is not well described by a linear model.

For the swarm robotic assembly system presented in Chapters 7, two avenues

of future work are to investigate the optimization of the discrete assembly plans

and to use inter-robot communication to introduce a positive feedback mechanism

that increases the product yield rate. Another is the synthesis of assembly systems

with spatial dependencies, as an extension to the application in Chapter 9 which

considered part retrieval only.

Future objectives for the cooperative transport application include a continued

study of this phenomenon in ants, refinement of the ant behavioral model, develop-

ment of a dynamic and behavioral simulation of transport, and synthesis of decen-

tralized controllers for transport that will be implemented on a multi-robot testbed.

Further experiments with the ants can be conducted to extract the ants’ changing

roles, examine the mechanics of lifting during transport, and investigate the role of

sustained interaction forces in helping to avoid obstacles and overcome deadlocks.

The transport behavior of A. cockerelli can be compared to that of another ant

species that is not as effective at group retrieval in order to better understand the

factors that make transport successful. The experimental trials should use an elastic

structure with reduced friction; for instance, the springs may be elevated slightly

so that they do not drag. The ant behavioral model can be improved by tracking

the positions and orientations of individual ants in the video frames and using this

data to estimate parameters that govern behavioral rules. Since the elastic struc-

tures undergo quasi-static motion during transport (Section 8.3.3), this model can be

combined with a quasi-static dynamic manipulation model similar to the one in [39],

replacing cables with compliant attachment points, to fully replicate the transport

phenomenon in simulations. Such a dynamic model has been created and validated

using the SCARAB robots in Figure 8.1 [101]. The simulated control policies can be
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implemented on these robots for transporting an object to a location while maneu-

vering it around obstacles. The simulation and experiments can be used to study

whether ant transport is optimal in some sense, such as minimizing the forces that

individuals apply.
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