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ABSTRACT
ABSTRACTIONS, ANALYSIS TECHNIQUES, AND SYNTHESIS OF
SCALABLE CONTROL STRATEGIES FOR ROBOT SWARMS
Spring Melody Berman
Vijay Kumar

Tasks that require parallelism, redundancy, and adaptation to dynamic, possibly
hazardous environments can potentially be performed very efficiently and robustly
by a swarm robotic system. Such a system would consist of hundreds or thousands
of anonymous, resource-constrained robots that operate autonomously, with little to
no direct human supervision. The massive parallelism of a swarm would allow it
to perform effectively in the event of robot failures, and the simplicity of individual
robots facilitates a low unit cost. Key challenges in the development of swarm
robotic systems include the accurate prediction of swarm behavior and the design of
robot controllers that can be proven to produce a desired macroscopic outcome. The
controllers should be scalable, meaning that they ensure system operation regardless

of the swarm size.

This thesis presents a comprehensive approach to modeling a swarm robotic sys-
tem, analyzing its performance, and synthesizing scalable control policies that cause
the populations of different swarm elements to evolve in a specified way that obeys
time and efficiency constraints. The control policies are decentralized, computed a
priori, implementable on robots with limited sensing and communication capabili-
ties, and have theoretical guarantees on performance. To facilitate this framework
of abstraction and top-down controller synthesis, the swarm is designed to emulate
a system of chemically reacting molecules. The majority of this work considers well-
mixed systems when there are interaction-dependent task transitions, with some

modeling and analysis extensions to spatially inhomogeneous systems.



The methodology is applied to the design of a swarm task allocation approach
that does not rely on inter-robot communication, a reconfigurable manufacturing sys-
tem, and a cooperative transport strategy for groups of robots. The third application
incorporates observations from a novel experimental study of the mechanics of coop-
erative retrieval in Aphaenogaster cockerelli ants. The correctness of the abstractions
and the correspondence of the evolution of the controlled system to the target be-
havior are validated with computer simulations. The investigated applications form
the building blocks for a versatile swarm system with integrated capabilities that

have performance guarantees.
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Chapter 1

Introduction

Robots have been developed over the past fifty years to perform a variety of tasks that
are undesirable for humans and to increase accuracy and productivity over human
capabilities. However, there are many tasks that cannot be performed efficiently
by a single robot, no matter how complex it is. This is particularly true for tasks
that require many subtasks to be executed in parallel, such as the retrieval of sensor
data over a large region. Redundancy may be a required feature to ensure that the
task can be completed despite system failures, which may be frequent in hazardous
environments. The system may have to readily adapt to a dynamically changing
environment, which can range from outer space to inside of the human body. Security
may be another issue: the system’s mission should be undecipherable from a single

component.

To accomplish these kinds of tasks, we consider the use of a swarm robotic system.
A swarm would consist of hundreds or thousands of autonomous, relatively expend-
able robots with limited sensing, communication, and computation capabilities. The
massive parallelism of a swarm makes its operation robust to robot failures and en-
vironmental disturbances and allows robots to be dynamically added or removed.
Since swarm members have constrained resources, they have a low unit cost, which

allows the system to be affordable. Recent advances in embedded processor, sensor,



actuator, and communication technologies are paving the way for the development
of such systems. Although they have not yet been implemented in practice outside
of academic research laboratories, there has been a growing interest over the past
decade in developing them for applications including environmental monitoring, ex-
ploration, military surveillance and reconnaissance, battlefield and disaster area com-
munication, chemical source localization, mine detection, search-and-rescue, medical
monitoring and treatment, micromanipulation, nanoscale manufacturing, and even
pollination [2,20]. The swarm paradigm is particularly essential at the micro- and
nano-scale, in which robotic systems will have extremely limited on-board power,

sensing, and computational capabilities.

Given these factors, it is becoming more and more urgent to develop a rigorous
theoretical framework for modeling robotic swarms, analyzing their collective be-
havior, and synthesizing robot controllers with performance guarantees. The work
presented here employs a framework of this type for a broad range of systems. This
thesis can largely be considered as a handbook of sorts for designing a robotic swarm:
most of the work is devoted to formulating classes of models for a swarm, describ-
ing applicable analysis techniques and controller synthesis methods for each type of
model, and then demonstrating these components on appropriate swarm systems.
Chapter 8 contains a departure from this approach, in that it illustrates an experi-
mental study of a biological example of a swarm and its subsequent modeling based
on observations. Section 1.1 defines the problem that we want to solve and the
challenges inherent in developing our framework, Section 1.2 gives an outline of our

approach, and Section 1.3 enumerates the specific contributions of the thesis.

1.1 Problem Statement

We address the problem of controlling populations of different elements of a swarm in

a way that obeys time and efficiency constraints on system performance and is easily



adaptable to changes in target populations. The swarm elements are determined
by the application under consideration and may include robots at each of a set
of tasks, objects of distinct types, and various forms of robot-object complexes.
The controllable components of the system are the motion of the robots and their

decisions to switch between tasks and interact with other elements.

The enormous populations in the systems that we consider present certain chal-
lenges in developing an approach to solve this problem. In order to predict the
swarm behavior, it is imperative to create models of the system that can be simu-
lated in a reasonable amount of time. The models should be amenable to analysis
techniques that can establish theoretical guarantees on system performance over a
range of parameters. Since the complexity of most centralized algorithms for co-
ordination is at least quadratic in the number of agents [112], it is impractical to
use centralized control for a group of hundreds or thousands of robots. A decentral-
ized control approach is needed in order for the robot control policies to be scalable
with the population. Decentralized algorithms are implementable on robots with
limited capabilities, since they require only local information without knowledge of
the global state of the system [111]. It is also important to restrict communication
among robots, since bandwidth becomes a limiting factor in communication as the

population size increases.

1.2 Approach

To satisfy the criteria in Section 1.1, we formulate the problem as the manipulation
of trajectories of element populations in an abstraction of the system whose dimen-
sionality is independent of the swarm size, and the subsequent top-down synthesis
of robot controllers from the abstraction parameters. This approach requires a rig-
orous correspondence between the physical swarm and the abstraction in order for

the resulting controllers to produce the desired evolution of element populations.



Such a correspondence has been established between chemical systems of reacting
molecules and abstractions that take the form of continuous-time Markov chains
and differential equations [45,51,75]. The well-developed bodies of theory for these
mathematical tools offer a variety of techniques for simulation, analysis, optimiza-
tion, and control. In addition, the actions of molecules are readily implementable
on the resource-constrained members of a swarm. For these reasons, we choose to
design the robot swarm to emulate such a chemical system. In the majority of this
work (Chapters 3-8), we develop systems that can be modeled as a Chemical Re-
action Network (CRN), which requires spatial homogeneity of the swarm elements
if they interact with each other. Using this paradigm, we formulate the modeling,
analysis, and controller synthesis components of our theoretical framework, which
are illustrated in Figure 1.1. In Chapter 9, we extend the modeling and analysis
methodology to spatially inhomogeneous systems with interactions by defining the
swarm to behave like a reaction-diffusion chemical system that is diffusion-limited

rather than rate-limited.

1.2.1 Methodology

The physical swarm system is represented by the micro-continuous model, which
may range from a simple point-mass model to a realistic 3D multi-robot model at
the highest level of fidelity. The robots’ transitions between tasks are designed to
imitate chemical reactions: they transition stochastically, either spontaneously or
upon encountering certain objects or other robots, at rates that are determined by
constants that are analogous to reaction rate constants. The rate constants are
designed to produce a target macroscopic outcome for the swarm. The robot motion
controllers are defined to produce the execution of the desired tasks and to create the
physical conditions that facilitate the abstraction. If there are task transitions that
can be initiated by encounters, the second factor is achieved by driving the robots

with a random walk to enforce “mixing,” which is superimposed on a deterministic
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Figure 1.1: Levels of abstraction of a swarm robotic system with analysis and syn-
thesis methodologies. The high-dimensional micro-continuous model is mapped to
lower-dimensional representations, the macro-discrete and macro-continuous models,
through the abstractions F; and F..

velocity in spatially inhomogeneous systems. For these systems, the deterministic
and random components of the robot velocities are design parameters in addition to
the rate constants. If all transitions are spontaneous, then there are no abstraction-

motivated constraints on the motion controllers.

In practice, implementations of the micro-continuous model for N robots can be
computationally expensive to simulate and intractable for analysis as IV increases.
The macro-discrete model is a lower-dimensional model of the system that can be
simulated much more quickly while retaining some of the features of the micro-
continuous model. This representation is a macroscopic model in the sense that it
abstracts away the identities of the robots, and it considers a swarm as a collection

of discrete agents whose integer populations evolve according to a Markov process.

The performance of the micro-continuous and macro-discrete models is analyzed
by running simulations and examining the statistics of the resulting ensemble of

trajectories or fields. In particular, realizations of the the macro-discrete model are



obtained with a stochastic simulation algorithm.

For very large populations, the system can be accurately abstracted to a macro-
continuous model, which represents a swarm as a set of continuous populations gov-
erned by differential equations that are functions of the design parameters. Systems
that can be modeled as CRN’s are abstracted to ordinary differential equations
(ODE’s), while spatially inhomogeneous systems with interactions are abstracted
to partial differential equations (PDE’s). For PDE models, we employ a mesh-free
Lagrangian computational method to obtain the numerical solution of populations
over the domain. We developed the remainder of the methodology for ODE models.

The macro-continuous level analysis verifies whether the continuous model satis-
fies the system requirements. The model equilibria give the steady-state populations
of the swarm elements, and they can be characterized using results from Chemical
Reaction Network theory, algebraic graph theory, and Lyapunov stability theory.
The model may be described as a hybrid system if it consists of discrete modes, cor-
responding to regions in the state space, that are each characterized by a different set
of continuous dynamics. In this case, we can apply a reachability analysis technique
to approximate the system behavior over time.

Using the macro-continuous model, the rate constants are designed to minimize
system convergence time to a target distribution of element populations, possibly
with a specification on efficiency. We formulate both convex optimization and
stochastic optimization approaches to this problem. When the model is a hybrid
system, control terms are added to the dynamics in order to guide the system tra-
jectories through a specified sequence of modes, which in this work correspond to

polytopes in the state space.

1.2.2 Implementation

We now discuss the design principles, control architecture, and robot capabilities

that are needed to implement our top-down control strategy on a swarm robotic



system. The robots that we consider are unidentified, each identical in hardware
and programmed with the same set of control algorithms. This enables the parallel
execution of tasks, robustness to failures, and ease of adding and removing robots
from the swarm. Using the asymmetric broadcast control (ABC) paradigm [112],
a supervisory node computes the design parameters and broadcasts them to the
swarm, along with information regarding the tasks they are to execute, the allowable
transitions between tasks, and possibly the environment (such as a map). The
supervisory node may obtain global state information about the swarm, such as its
degree of convergence to the target element populations, and use this to update its
computations, but it does not require knowledge of the robot population or individual
robot actions.

To execute the task transitions and motion controllers, the robots must rely
on local information that they obtain via sensing and/or communication. For an
encounter-dependent transition, a robot must identify the type of another robot or
object to determine whether it is a potential “reactant.” This can be done using local
wireless communication, in which the robots exploit communication links when they
become available, or a camera with image processing software. The desired motion
strategy may require localization and the ability to execute a random walk. To avoid
collisions with other swarm elements and obstacles in the environment, a robot may
use infrared proximity sensors, sonar sensors, or a laser rangefinder. Robots may

attach to other elements with a gripper or a magnetic latching mechanism.

1.2.3 The Role of Bio-Inspiration

Swarms in nature are “proofs-of-concept” that complex macroscopic tasks can be
achieved through the local interactions of numerous relatively simple, anonymous
individuals. A prominent example is the self-organized behavior of social insects.
Insect colonies achieve global objectives such as nest construction, colony emigration,

foraging, hunting, and transport by switching between behaviors using local sensing
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and physical contact. The outcomes are robust to perturbations in the environment
and insect population and to noise in the information sensed by individual insects.
Although it may seem to an observer that the members of a swarm are all following
instructions from a leader, such as when birds exhibit incredibly coordinated flocking,
in reality they are behaving in a decentralized manner. In a general sense then,
natural swarms provide us with the principles for designing a robotic system that is

massively parallel, robust to failure, flexible, and economical.

Our particular framework provides a concrete mechanism for incorporating con-
cepts from biology: we can draw on CRN models of biological swarm behaviors that
are useful for robotic systems to define the set of robot tasks and the structure of the
reaction network that dictates the possible transitions. Such models are, most obvi-
ously, abundant in the literature on biochemical networks, for instance the lac operon
in E. coli [157] and the mammalian circadian clock [41]. They are also employed
in population biology; examples include the familiar Volterra-Lotka predator-prey
model [134] and models of nest site selection in ants and honeybees [42]. We can
select a model that describes a certain type of collective behavior, such as allocation
among a set of sites, and adjust it using our controller synthesis methodology to
produce a different macroscopic outcome that is more suitable for our application

(see Chapter 6).

We may also be interested in the physical mechanisms of how a biological system
accomplishes a task in order to define robot motion controllers for a novel decentral-
ized approach to the task, as in the cooperative manipulation problem in Chapter
8. The controllers can be classified as bio-inspired rather than biomimetic because
they are designed to emulate the strategy using the sensor information and actuation
that are available to the robot, which is often not equipped to detect cues such as

chemical signals that are vital to the biological agents.



1.3 Contributions

The main contribution of this thesis is the use of the theoretical framework described
in Section 1.2 for designing the collective behavior of a robot swarm. This approach
allows us to synthesize robot control policies that can be computed a priori and have
provable guarantees on performance. In the analysis component of our methodology,
we present a novel algorithm for the reachability analysis of hybrid systems with
multi-affine continuous dynamics (see Section 4.3.2).

We use our modeling, analysis, and controller synthesis methodology to design
systems for three types of applications. These applications can be combined to
produce a versatile swarm system with the capabilities of distributing among a set
of sites and subtasks, assembling products from raw materials and /or self-assembling,
and transporting materials and products between sites.

In the first application, the robots are allocated among a collection of tasks,
which are to be performed in parallel, that are located at different sites. In response
to new levels of demand for robots at each task, the robots must quickly and effi-
ciently reallocate themselves among the sites to occupy them according to a target
population distribution. Since the tasks may be far apart from one another, com-
munication between all robots may not be possible due to interference, obstruction,
or power limitations, or it may be too risky, as in military applications. In light of
these issues, we propose a strategy that does not use inter-robot communication.

In the second application, the robots must assemble target quantities of different
types of products from a large supply of heterogeneous parts. In this case, the robots
use local sensing and local communication to pick up parts and join them with parts
carried by other robots. The advantage of this kind of manufacturing system over a
traditional assembly line is its increased flexibility; the robots can respond quickly
to assemble different product quantities when demand changes. We also model a
part retrieval scenario in a spatially inhomogeneous assembly system.

The third application is a fully decentralized control strategy for robots in groups



of target sizes to cooperatively manipulate objects to specified locations while maneu-
vering past obstacles. Toward this end, we undertake an unprecedented experimental
study of the mechanics of cooperative transport in groups of Aphaenogaster cockerelli

ants and present a hybrid system model of the ant behavior based on observations.

1.4 Organization of this work

This work is organized as follows. Chapter 2 summarizes relevant literature in the
areas of biological aggregations, swarm modeling, stochastic simulations, CRN the-
ory, reachability analysis, controller synthesis, multi-robot task allocation, robotic
assembly systems, and multi-robot transport systems. Chapter 3 describes the three
swarm models shown in Figure 1.1. Chapters 4 and 5 present the analysis and con-
troller synthesis techniques, respectively, that are applied to each model. Chapter
6 describes the application of the methodology to two task reallocation scenarios,
a bio-inspired deployment strategy and a multi-site surveillance system. Chapter
7 discusses the swarm robotic assembly system application. Chapter 8 describes
our experimental study and modeling of collective transport in ants. Chapter 9 ex-
tends the modeling and analysis approaches to spatially inhomogeneous swarms with
encounter-dependent transitions. Finally, Chapter 10 suggests future directions for

the development of our methodology and applications.
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Chapter 2

Literature Review

This chapter outlines relevant literature on the modeling, analysis, and controller
synthesis components of our methodology, as well as on the applications of multi-
robot task allocation, swarm robotic assembly systems, and multi-robot collective

transport.

2.1 Swarms in Biology

Diverse examples of emergent collective behavior can be witnessed in nature: the
coordinated motion of bird flocks and fish schools, the process of nest site selection in
ant and honeybee colonies, and the feat of mound construction in termite colonies,
to name a few examples. I have contributed a catalog of references on collective

behaviors in biology to the online repository at [1] and the online database [21].

2.2 Swarm Models

At the micro-continuous level, swarms have been simulated using agent-based mod-
els such as a biologically-inspired model of flocking behavior [127] and Brownian

agent models of a wide variety of phenomena such as cells responding to stimuli,
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trail formation in ants and pedestrians, urban aggregation, and voter opinion forma-
tion [136]. Our abstraction of the micro-continuous system to an accurate macro-
scopic model is similar to recent work on modeling robot swarms [4,58,97]. In the
first two references, it is assumed that robots and their stimuli are uniformly spatially
distributed. Identical robot controllers are defined with stochastic state transitions,
and they are averaged to obtain a set of difference equations [4] or ordinary differen-
tial equations [97]. In [58], the swarm is represented by a Fokker-Planck equation to
model spatial inhomogeneity. System performance is studied by running the mod-
els, which are validated through simulations and experiments, under many different
conditions. This constitutes a “bottom-up” controller synthesis procedure, in con-
trast to our “top-down” approach, which is less computationally expensive and gives

theoretical guarantees on performance.

2.3 Analysis Techniques

2.3.1 Stochastic Simulation Algorithms

A stochastic simulation algorithm is a procedure for computing numerical realizations
of molecular populations over time in a well-stirred chemical reaction network. [51]
provides a thorough survey of algorithms formulated by Gillespie and extensions
that were developed to increase the computational speed, some specifically designed
for stiff systems. A recent addition is the weighted stochastic simulation algorithm
(wSSA) [49,87], which uses the technique of importance sampling to increase the

frequency of rare events of interest.

2.3.2 Chemical Reaction Network (CRN) Theory

The literature on CRN theory provides techniques for determining the existence,

multiplicity, and stability properties of equilibria of nonlinear dynamical systems of
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certain classes. The results can be applied to networks with high-dimensional, com-
plex dynamics and sometimes hold regardless of the values of the system parameters.
The theory developed by Feinberg, Horn, and Jackson [37,38] describes results that
can be obtained for networks with a fairly general topology using a parameter called
the deficiency; mass action kinetics are required to conclude the possibility of equi-
libria. The theory of monotone dynamical systems gives results for networks with
a more restricted topology and monotone but otherwise arbitrary reaction kinet-
ics [93]. The Deficiency theorems state results for equilibria and cyclic trajectories
in the positive orthant of the real state space, while the theory on monotone systems

extends results on stability and uniqueness to equilibria in the nonnegative orthant.

2.3.3 Reachability Analysis

In order to accurately approximate the global behavior of a set of hybrid system
trajectories, or to verify that they do not enter an undesirable region, it is productive
to consider reachability analysis, a well-known symbolic analysis technique [32,62,
140]. A typical reachability problem is to determine whether a certain region of the
state space can be reached by a system, starting from a given set of initial conditions.
The reachability problem is decidable when the continuous dynamics are constant
(timed and multirate automata), take values in a constant interval (rectangular
automata) [62], or fall into certain classes of linear systems [90]. If the dynamics are
not of these types, an overapproximation of the reachable set can be computed in
one of two ways. One option is to pursue a discrete abstraction of the hybrid system
via an indirect method. Alternatively, the reach set can be directly calculated the on
the state space via a direct method.

In the indirect method, one generally partitions the continuous state space of
the system into a finite number of sets and explores how states in one set may
reach states in another set. Sets are usually convex regions of the state space; the

exact representation of a set depends on a particular method. An example is the

13



multi-affine reachability algorithm developed in [7,56,81].

HyTech [62] and PHAVer [44] are tools for the verification of linear hybrid au-
tomata. This class of automata has piecewise constant bounds on the derivatives of
the continuous state variables. HyTech and PHAVer overapproximate affine continu-
ous dynamics by linear formulas over the derivatives. PHAVer also has the ability to
partition reachable modes recursively along user-defined hyperplanes. MATISSE [52]
and CheckMate [140] are reachability algorithms that use direct techniques for non-

linear hybrid systems.

2.4 Controller Synthesis

Control paradigms for multi-robot systems can be classified as centralized or de-
centralized, and the robots may be individually identified or identical (either to
all other robots in the group or to a subset of the group) and unidentified. As
discussed earlier, the paradigm that we employ for a swarm system involves the
decentralized control of many unidentified robots. Our top-down control synthesis
approach is related in spirit to the work of [8], which presents a systematic approach
to translate group behaviors, modeled as vector fields on a low-dimensional abstract
manifold, into agent behaviors in a high-dimensional manifold derived from copies
of an agent’s state space. At the micro-continuous level, robot motion controllers
for navigation through an environment with obstacles can be defined using naviga-
tion functions [128-130] and vector field design on a cell decomposition of the free
space [30]. Vector field design may also be used to control the state of a hybrid
macro-continuous model through a sequence of modes [7,55]. Flocking control of
multiple robots can be implemented in a distributed manner using artificial poten-
tial functions [95,145], which may also be used for inter-robot collision avoidance

alone.
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2.5 Applications

2.5.1 Task Allocation for Robot Swarms

We apply our methodology to the design of a strategy for quickly and efficiently
reallocating a swarm of robots among a set of tasks such that the steady-state pop-
ulations at the tasks follow a target distribution. The tasks are to be performed in
parallel, continuously, and independently of one another. This is an instance of the
single-task robot, multi-robot task problem (ST-MR) [46], where the goal is to assign
teams of robots to tasks in a way that maximizes the system’s performance. This is
known as the coalition formation problem when applied to software agents. Tractable
approaches to this problem, which is NP-hard, rely on extensive agent cooperation
that is not easily implemented in robot systems since communication can be costly
and unreliable and resources are not transferrable [153]. The algorithm in [137] was
adapted to the multi-robot domain in [152], but robots must compute all possible
coalitions and agree on the best ones, and coalition sizes are limited. The ST-MR
problem has recently been addressed with market-based techniques, although allo-
cation strategies for robots have mostly considered the problem of assigning a single
robot to each task [153]. Market-based approaches [35] require robots to execute
complex bidding schemes based on perceived costs and utilities, and the computa-
tion and communication requirements often scale poorly as the number of robots

and tasks increases.

These algorithms are not suitable for the systems that we consider, which have
very large populations and do not employ inter-robot communication to allocate
among the tasks. Instead, we adopt the decentralized paradigm of the approaches
in [3,84,89], which are inspired by the self-organized behavior of social insects such
as ants, and those in [4,97]. In these approaches, robots switch between simple
behaviors based on environmental stimuli and interactions with other robots. We

note that the potential-based algorithm in [138] is also scalable, but it is designed
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for tasks that are depleted and does not address the problem of allocating robots as

quickly as possible.

2.5.2 Swarm Robotic Assembly Systems

We also apply our methodology to the design of a decentralized manufacturing sys-
tem in which a swarm of mobile robots must quickly assemble target amounts of
different products from any initial set of parts. In the taxonomy [54] of macroscopic
self-assembly systems, our objective and approach are most similar to those of [80],
which considers a set of modules that bind through random collisions and detach into
different parts according to programmed probabilities [79]. As in our system, the
interactions between elements are modeled as a CRN. Other assembly systems based
on random collisions between parts are described in [67], which predicts the yield of
complete assemblies from passive, vertically stirred modules, and in [6], which studies
the dynamics of micro scale batch assembly using vibration; both of these systems
are also modeled as CRN’s. In [80], an optimization problem is formulated to com-
pute the module detachment probabilities that maximize the equilibrium yield of
one assembly type. The optimization, which is based on a Markov process model of
the system, requires the enumeration of all reachable states, and is therefore suitable
for a relatively small number of parts.

Our use of robots to transport and join passive parts according to decentralized
rules is similar to the setups in [154], which derives rules for building a single desired
structure out of blocks, and in [83], which presents an algorithm for assembling an

object such as a truss-like structure out of different types of parts.

2.5.3 Multi-Robot Transport Systems

Many approaches to multi-robot manipulation of a load rely on leader/follower or
centralized schemes and knowledge of the load geometry and possibly the contact

force measurements [116]. Other approaches to multi-robot transport include towing
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[39], caging [40], and ant-inspired box-pushing [85]. The first two works incorporate
rigorously derived models and controllers with performance guarantees. [40] presents
a decentralized approach in which sequentially composed vector fields are used to
drive a group of robots to approach, surround, and push an object to a desired
location, maintaining closure by orbiting around the object. [39] formulates a quasi-
static model for the motion of a planar load that is towed by one, two, or three
robots in the presence of dry friction and cable tension constraints. [85] implements
a decentralized approach, inspired by collective transport in ants, to multi-robot
box pushing in which robots switch between simple behaviors in response to locally
sensed cues. The system behavior is investigated through multiple simulations and

experiments; there are no theoretical guarantees on performance.
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Chapter 3

Swarm Models

The material in this chapter was first presented in [11-13, 15,57, 69, 109].

This chapter presents the three models of a swarm that we use in our analysis
and controller synthesis methodology. Section 3.1 describes the micro-continuous
model, which represents individual robots and other system elements in a physical
environment, incorporating the geometry and dynamics of the robots and possibly
modeling heterogeneity. The robots’ transitions between tasks are modeled as a
Chemical Reaction Network (CRN), and several types of transitions are specified
in Section 3.1.1 and 3.1.2. The micro-continuous model is abstracted to the lower-
dimensional macro-discrete model, outlined in Section 3.2, which models the time
evolution of integer populations of robots at each task and other elements of different
types according to the Chemical Master Equation [45,48,75]. The macro-discrete
model can be abstracted to the macro-continuous model, described in Section 3.3, a
set of coupled ordinary differential equations (ODE’s) that model the time evolution
of the continuous populations of robots at each task and other types of elements.
This model is known as the rate equation in literature on CRN’s. Sections 3.3.1,
3.3.2, and 3.3.3 present different classes of macro-continuous models that can be
used to represent robotic systems with the transitions given in Sections 3.1.1 and

3.1.2.
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3.1 Micro-Continuous Model

Consider a population of N robots moving in the continuous state space Y, C R
d € {2,3}. At any given time, a robot’s actions are determined by one of a set (2, of
P controllers. A controller w € (2, causes a robot to fulfill a distinct task, or possibly
a subdivision of activity within a task. The micro-continuous model is comprised
of N hybrid automata, H, = {Y,, {2.}, each describing a robot in terms of both its
continuous and discrete dynamics. Borrowing CRN terminology, we refer to the S
types of elements in the system as species and call a combination of species that
appears before or after a reaction arrow a complex. A particular species, symbolized
by X;, represents a robot that is performing task ¢ or an object of type ¢ with which

the robots interact.

The micro-continuous model can be implemented in various ways, depending on
the desired level of realism. If it is important to generate the dynamics associated
with friction, collisions, and other inter-robot or robot-environment interactions,
then the model may be implemented in a 3D multi-robot simulator such as Gazebo
[82] or Webots [113], both of which use the Open Dynamics Engine to simulate
physics, or more accurately with the simulation tool daVinci Code [10] or the multi-
body simulation algorithm in [77]. If such interactions do not play a significant role
in the system performance, then each robot can be described by a point agent that
is governed by a single-integrator or double-integrator model, depending on whether
the motion control input is applied to the robot’s velocity or acceleration. The

applications presented in this thesis use both types of implementations.

In order to be able to abstract the system to the macro-discrete model, the robots’
task transitions must be be executed in a way that conforms to the fundamental
hypothesis of the stochastic formulation of chemical kinetics [47,50]. This hypothesis

states that a reaction that converts complex ¢ into complex j is characterized by a
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stochastic reaction constant c;;, which is defined such that

c;j0t = the average probability that a particular combination of elements of the
species types in complex ¢ will transition to the species types in complex

J in the next infinitesimal time interval Jt. (3.1)

The corresponding reaction rate constant, k;;, is proportional to ¢;; (see the following
sections for its definition). The reaction propensity, a;;, is defined such that a;;0t is
the probability that the reaction that converts complex ¢ into complex j will occur
in the next 6t. It is the product of ¢;; with h;;, the current number of distinct
combinations of elements that can undergo the reaction.

In the following sections, we discuss how to ensure the validity of (3.1) in systems
that contain two types of “reactions.” In the first type, described in Section 3.1.1,
robots switch between tasks upon encountering nearby robots or other elements of the
system. In the second type, described in Section 3.1.2, robots switch spontaneously

between tasks.

3.1.1 Interaction-Dependent Task Switching

In our systems, as in CRN’s in general, it is rare that three or more elements en-
counter each other simultaneously. Hence, in this section we only consider “bimolec-
ular” reactions, in which the reactants consist of two species, m and n. We specify
that the robots are moving in a bounded domain with volume V (area A in two
dimensions).

For premise (3.1) to be true, the system must be well-mized. Gillespie [47, 50]
defines a well-mixed chemical system as one in which molecules are uniformly ran-
domly distributed throughout a container with fixed volume V. He notes that this
property can be maintained by direct stirring or by a very high rate of nonreactive
molecular collisions compared to that of reactive collisions. In our robotic system,

one option is to design the robot controllers to emulate a reaction-diffusion system,
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in which diffusion is implemented by driving the robots with Brownian motion (see
Chapter 9 for a discussion of the class of models to which reaction-diffusion systems
belong). When diffusive motion is the mechanism that drives mixing, the well-mixed
property can be verified by checking that the diffusion rate is much higher than the
reaction rates. This was done for testbeds of stochastically interacting robotic com-
ponents in [24] and [117] using measurements of the diffusion coefficients and rate
constants. Alternatively, the robots can be commanded to execute a random walk
with fixed speed and we can verify that they are uniformly randomly distributed
over the domain.

For bimolecular reactions, the probability c¢;;0t is the product of the probability
that a random pair of reactant elements of complex ¢ will encounter each other in the
next time interval 0¢, denoted by cf;dt, and the probability that these reactants will
form complex j given that they are in close proximity, ¢j; [48]. The probabilities cj;
are the parameters that we can design to achieve a macroscopic system objective. In
molecular systems, these probabilities are functions of activation energy [50]. In order

to satisfy the fundamental hypothesis (3.1), ¢f; and ¢}; must both be independent

(4]
of 6t [48]. We can design ¢}; to be time-independent, and below we discuss cases in
which ¢f; can be verified to be a constant.

In chemical systems, the well-mixed condition implies that the probability that
the center of any molecule lies in the “collision volume” dV,,; swept out by any other
molecule in the infinitesimal time interval dt is given by 0V, /V [47,48,50]. Using
this premise, Gillespie geometrically derives the average probability that a random

pair of molecules 1 and 2, which we will suppose here are species in a complex 7, will

collide in the next time interval 6t as

dy+d
& 5t:E(5vcou/V):1< 1; 2

i v ) E(v12)dt, (3.2)

where E(-) denotes expected value, d; and dy are the diameters of the molecules
(assumed to be spheres), and v15 is the speed of molecule 1 relative to molecule 2. If

the system is in thermal equilibrium at absolute temperature 7', then the molecules
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have Maxwell-Boltzmann velocity distributions, which results in the scalar value
E(Ulg) = (8]€BT/7TTTL12)1/2, (33)

where kp is Boltzmann’s constant and myy = myms/(my + my), with m; denoting
the mass of molecule i [48,50]. Gillespie and van Kampen [75] (p. 171) note that
the occurrence of a higher frequency of nonreactive collisions than reactive collisions
maintains this type of velocity distribution. From the kinetic theory of gases, it is
known that diffusing particles have Maxwellian velocity distributions, so robots with
Brownian motion should satisfy Equation (3.3). This can be experimentally verified
for a given system, as was done in [19] for a testbed of programmable robotic parts.

If the robots move according to a random walk with constant speed, and in
addition all elements of the system are uniformly distributed throughout the domain,

then cf; can be calculated as [31]
ci; = vw/V, (3.4)

where v is the robot speed and w is the robot’s detection width (assumed to be
constant), which is the width of the area that the robot’s sensing or communication
range sweeps out while it is moving.

We now define the possible types of bimolecular reactions in our systems. Let
N; be the integer population of elements of species ¢. For bimolecular reactions,
¢i; = kij/V and h;; = N, N, if m # n, and ¢;; = 2k;;/V and h;; = N, (N, — 1)/2 if
m =n [50].

Let X, denote either a robot performing task m or an object of type m, and let
X, represent the same. The interaction between these two elements upon encoun-
tering each other can induce one or both to adopt a new task (in the case of a robot)
or identity (in the case of an object), labeled by o and p. This transition is described
by the reaction

X+ X, 2 X, +X,. (3.5)
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The position of k;; above the reaction arrow indicates that it is a reaction rate
constant. Here, X,, + X,, is complex ¢ and X, + X, is complex j. When n = p, the
reaction describes a conversion of X,, to X, that is “catalyzed” by an interaction
with X,.

Now set X,, to be a robot performing task m and X,, to be an object of type n,
such as a component of a product in an assembly system. If the robot encounters
the object, it can decide to connect to it. Let X,,, which will be labeled as complex
7, symbolize the robot once it has bonded to the object and possibly started a new

activity. The reaction that describes this connection is
X, . (3.6)

Alternatively, this reaction may represent the bonding of objects of type m and n to
form an object of type p.

In the implementation of these reactions, a robot in complex ¢ that encounters
another robot or other element with which it can “react” to form complex j computes
a uniformly distributed random number u € [0,1] and follows through with the

transition if v < cfj

3.1.2 Spontaneous Task Switching

This section presents reactions that are classified as “unimolecular” since their reac-
tants consist of one species. The fundamental hypothesis (3.1) is valid if a robot at
task 7 undergoes the transition associated with the reaction at probability per unit
time ¢;;. For these types of reactions, ¢;; = k;; and h;; = N; [50].

Let X; denote a robot that is performing task ¢, and suppose that the robot
switches to task j at probability per unit time k;;. Using CRN notation, this reaction
is written as

X X (3.7)

For this type of reaction, k;; will also be called a transition rate.
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Now let X; represent a robot that is executing a task while connected to an object

of type n, labeled by X,,. The robot has a certain probability per unit time, k;;, of

7R
disconnecting from the object. Let X, symbolize the robot once it has disconnected
and possibly started a new activity (even if it is the same activity, we still consider
the detachment to initiate a new “task”), and label X,, + X,, as complex j. Then

the reaction that describes this disconnection is

Alternatively, this reaction may represent the disassembly of an object of type i into
objects of type m and n.

In the implementation of these reactions, a robot that is doing task ¢ computes
a uniformly distributed random number u € [0, 1] at each (very small) simulation
timestep dt and executes the transition governed by k;; (switching to task j or
disconnecting from an object) if u < k;;dt. The number of transitions governed by

k;; that occur in a time interval At has a Poisson distribution with parameter k;; At.

3.2 Macro-Discrete Model

By applying the laws of probability to the fundamental hypothesis (3.1), it is possible
to derive a time-evolution equation for P(n, t|ng, ty) = Prob{IN(t) = n given N(t) =
ng}, where N(¢) € R® is the vector of integer species populations N; at time ¢ [48].
This is the Chemical Master Equation (CME), and it describes a continuous-time
Markov process whose states are all the possible species population vectors N. We
refer to this as the macro-discrete model of the system.

The macro-discrete model can capture phenomena that occur in the physical
system but do not appear in the macro-continuous model. This is because the
stochastic formulation of a system has a more legitimate physical basis than the
deterministic formulation, which does not account for correlations and fluctuations

[50]. Examples of such phenomena include state fluctuations in relatively small
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populations, potentially leading to stochastic transitions between equilibria of multi-
stable systems [73,133].

The Chemical Master Equation itself is not a useful tool for analysis; it cannot
be solved analytically for more than a few simple cases, and it is often difficult to
solve numerically due to the number of its independent variables (S species popula-
tions and the continuous variable t) [47,51]. Instead of attempting to compute the
probability density function of N(¢), we can characterize statistical properties of the
macro-discrete model by generating numerical realizations of N(¢) with a stochastic
simulation algorithm that is logically equivalent to the Chemical Master Equation,
i.e., it is also derived from hypothesis (3.1). One such algorithm is described in

Section 4.2.

3.3 Macro-Continuous Models

For the types of systems that we consider, the time evolution of the expected val-
ues of the species concentrations, N;(t)/V, is described deterministically by a set
of ODE’s which we call the macro-continuous model. When the system contains
only unimolecular reactions, this can be shown by substituting the CME into the
equation for OE(N(t))/0t and using the linearity of expectation [155] (Section 6.7).
When there are bimolecular reactions present, it can be demonstrated by using van
Kampen’s system size expansion of the CME [75] (Ch. 10) if the set of ODE’s has a
unique, globally stable equilibrium [75] (p 355). First, the concentration of species i
is defined as the sum of a deterministic value, x;, and a fluctuating component that
is scaled in inverse proportion to Q%2, where € is a system size parameter that in
many cases is the system volume V. The rationale behind this is that for constant
average concentrations, relative fluctuations will tend to decrease with V~1/2 [36].
The CME is Taylor-expanded near trajectories of z;, i = 1, ..., S, in powers of V~1/2.

The terms in the expansion of order V/2 give an ODE model governing the time
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evolution of z;, and the terms of order V? yield a linear Fokker-Planck equation (the
“linear noise approximation”) that can be used to characterize the moments of the
fluctuations around the ODE solution.

In the thermodynamic limit, defined as the limit in which N;, « = 1,..., 5, and
V' all approach infinity in such a way that the concentrations N;/V approach finite
values [51], the concentration fluctuations become negligibly small and the time
evolution of the system is accurately described by the ODE model. We denote the
vector of continuous species concentrations x;(t) by x(¢) € R®. The continuous state
space of these concentrations is labeled by Y, C R®; the dimensionality of this space
may be reduced by using conservation laws of the system to eliminate variables. Y,
may be divided into a set {2, of @) regions, called population modes, that are each
associated with different continuous dynamics. Then, the system can be described
by a hybrid automaton H, = {Y,, {2,}.

The macro-continuous model is a function of the rate constants k;; as well as
the concentrations x;. Each species i is assigned a target concentration, z¢, and

dis called the target species distribution. As described

the vector of these values, x
in Section 5.2, the macro-continuous model is used to design the rate constants k;;
that will cause the system to quickly converge to the target distribution, which is
the unique, stable equilibrium of the model. We assume that a central controller

determines x4

, computes the k;;, and broadcasts these rate constants to the robots.
In the most general case that we consider, the system contains both unimolecular
and bimolecular reactions. The corresponding macro-continuous model is a multi-

affine function of the species concentrations, defined by

251
X = Z a; :c?(j)w?(j)...x?(j) . a; eRY (3.9)
=0
where the concatenation
6) = i1(7)is(7)-is(i),  {i1(7),is()} € {0,1}5 (3.10)
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is a binary representation of the integer j. It should be noted that the offset vector ag
is 0 in this model due to the structure of the reactions; however, nonzero components
of ag are introduced when conservation laws are used to eliminate state variables (see
Section 6.1.2 for an example). If there are no bimolecular reactions in the network,

then the macro-continuous model takes the form of an affine system,
Xx=Ax+a, (3.11)

where A € R%*% and a € R”.

The multi-affine model is formulated as a matrix equation in Section 3.3.1, and
Section 3.3.2 presents the reduction of the model to a linear form for the case of a
“task reallocation” system, which has reactions of type (3.7) only. Section 3.3.2 also
illustrates how to account for realistic distributions of task transition times within
the linear ODE framework and describes models with transition rates that vary with

the difference between the robot population at a task and a threshold value.

3.3.1 Multi-Affine Model

The set of reactions in a system can be modeled as a directed graph, G = (V,€).
The set of vertices, V = {1,...,C}, signifies the complexes, and the set of P directed
edges, £, represents the reaction pathways between the complexes. Complexes i and
7 are adjacent, denoted by ¢ ~ j, if there is a reaction pathway in which complex ¢
transforms into complex j. We denote this relation by the ordered pair (7, j) € VXV,
with the set &€ = {(i,j) € V x V | i ~ j }. Each pathway (i, ) is associated with
a reaction rate constant k;;. Let R denote the number of unordered complex pairs
(7,7) that are connected by at least one reaction pathway; each of these pairs, along
with their corresponding pathway(s), is referred to as a reaction of the system.

Let y(x(t)) € RY define a vector in which entry y;(¢) is the product of concentra-
tions of the species in complex ¢ at time ¢. If complex ¢ consists of one species, X},

then y;(t) = z;(¢), and if it consists of two species, X; + Xj, then y;(t) = x;(t)zx(1).

27



The reaction rate of a reaction involving complexes ¢ and j is defined as the difference
between the forward flux k;;y;(t) and the reverse flux kjy;(t), which is nonzero if
(7,7) € E. Letting v;(t) denote the reaction rate of reaction i, the vector of reaction
rates is v(x(t)) € R

We define a matrix M € R9*¢ in which each entry Mj;, j = 1, ...,., of column m;
is the coefficient of species type j in complex i (0 if absent). Finally, let K € R¢*¢

be a matrix with the properties
K'1=0, (3.12)
K;; <0 V(i,je€. (3.13)
These two properties result in the following matrix structure:

_kji if 17&]7 (jai)Eg)

Kij=14 0 it i#j, (J,i) g€, (3.14)
Z(z’,l)es ky if 1=7.

Then the ODE abstraction of the system can be written in the following form [27]:
x = —MKy(x) . (3.15)

Model (3.15) can equivalently be written in terms of v(x) and the stoichiometric
matriz S € R for which each entry S;; is the stoichiometric coefficient of species
i in reaction j [61]:

x = Sv(x) . (3.16)

The ODE model is subject to S — rank(S) linearly independent conservation

constraints on the species concentrations, each of the form
c’'x=¢, ccR’, ceR, (3.17)

where ¢ is in the null space of ST [61].
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3.3.2 Linear Models

We consider the case in which the CRN representation of the system consists only
of reactions of type (3.7). This models a scenario in which robots reallocate them-
selves among a set of tasks that are to be executed in parallel, continuously, and
independently of one another. For instance, each task could be an activity at a
physical site such as building surveillance, environmental monitoring, construction,
or a search-and-rescue operation. To facilitate robot redistribution, we specify that
robots may switch from any task to any other task, either directly or through a se-
quence of intermediate tasks; thus, no task acts as a source or a sink. Each quantity
x;(t) now represents the continuous population of robots that is performing task ¢
at time t. We specify x;(t) as a population fraction, the continuous population of
species ¢ divided by the swarm population N, which is practical for scaling as well
as for applications in which losses of robots are common.

The robots must be capable of executing the tasks and transitions. For instance,
if the tasks are situated at different sites, the robots must be able to localize them-
selves in their environment and navigate safely between sites. It is assumed that all
robots have complete knowledge of the tasks to perform and the allowable transitions
between them; this information can be preprogrammed and updated via a broadcast.

The graph G now models the precedence constraints between tasks; V denotes
the collection of tasks, and &£ represents possible transitions between tasks. The
adjacency relation ¢ ~ j signifies that a robot that is working on task ¢ can switch
directly to task j. For example, if each task i is an activity at a physical site i, then
G models the site interconnection topology: V is the set of S sites and each edge
(1,7) represents a one-way route that robots can travel from i to j. If there are P
possible routes from i to j, m = 1,..., P, each with transition rate k;;,,, then they
are represented by distinct edges (7, j)m, and k;; = Zizl Kijm.-

A directed path from task i to task j is a sequence of vertices, {vg, v1,...,v,} € V,

such that vy =4, v, = j, and (vk_1,v) € €, k =1,...,p. Since we specify that the

29



robots can switch from any task to any other task, a directed path exists between
any pair of distinct vertices in G. This implies that G is strongly connected. We also
consider the special case in which robots can switch from any task directly to any
other task without first working on a set of intermediate tasks. In this case, each
vertex in G is adjacent to every other vertex, so the graph is fully connected. For
a strongly connected, but not necessarily fully connected, graph with bidirectional
edges, in which (7, j) € £ if and only if (j,7) € £, we explore the advantage of having

a reversible Markov process, which is defined by the detailed balance equations:

? J

A. Baseline Linear Model

Since each complex in the system consists of a single species, we have the relations

C =385, y(x(t)) =x(t), and M = I. Thus, model (3.15) reduces to the linear model
%= —Kx . (3.19)

For this model, S is the incidence matrix of the graph G. Since we specify that
G is strongly connected, and thus has one connected component, by Theorem 8.3.1
of [53] rank(S) = S — 1. Therefore, the null space of S is one-dimensional, yielding
one conservation constraint. By Lemma 8.3.2 of [53], SS” is the Laplacian L of G,
for which L1 = 0. Since this implies that 17SS”1 = ||ST1]||y = 0, it follows that

ST1 = 0. Hence, conservation constraint (3.17) for system (3.19) is
1"x=1, (3.20)

where ¢ = 1 because the x; are defined as population fractions. This equation simply
states that the number of robots is conserved, which is an intuitive result since the
system is closed; there is no inflow or outflow of robots.

Model (3.19) subject to (3.20) will be referred to as the baseline linear model,

since it is the simplest expression of the task-allocation system. We can elaborate
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on this point by inspecting the ODE for each component of x,

Bi(t) = D kpmi(t)— Y kymi(t) . (3.21)

vil(5,1)e€ vil(i.g)e€

The flux from task ¢ to j at time ¢ is k;;2;(¢), which can be interpreted physically as
the fraction of robots per unit time that are leaving 7 to switch to j. Hence, Equation
(3.21) quantifies the rate of change of population fraction z;(¢) as the difference
between the total influx and total outflux of robots at task . The model captures this
effect in a simple way by representing robots as switching instantaneously from one
task to another, ignoring the time that robots take to effect transitions. Because the
k;; are constant, robots still switch between tasks at equilibrium, when the net flux
through each task is zero. This contributes to system robustness since the population
at each task, which may be depleted by breakdowns, is constantly replenished. The
persistent switching may also serve a useful function, such as patrolling or sampling

between sites.

B. Linear Chain Model

As mentioned previously, model (3.19) does not account for the fact that in reality,
the influx of robots to task j from task ¢ is delayed by the time taken to switch
between the tasks, 7;;. If we assume a constant transition time 7;; for each edge
(1,7), this effect can be included by rewriting Equation (3.21) as a delay differential
equation (DDE):

Bi(t) = > kwt—7) — > kga(t) . (3.22)

Vil (5,9 €€ vil(i.5)€€

Due to the finite 7;;, there will be robots in the process of switching between tasks;
thus, 325 24(t) < 1 for t > 0. Let y;;(t) be the population fraction of robots that
are in transition from task i to j at time ¢. Then the conservation equation (3.20)

becomes:

in(t)—i-z > oyt = 1. (3.23)

=1 Vj|(i,j)€E
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In practice, robots will complete a transition in different amounts of time, so
model (3.22) can be made more realistic by defining the 7;; as random variables,
T;;. In the case where robots effect transitions by traveling between sites, variations
in 7;; can arise from changes in navigation patterns caused by collision avoidance,
congestion, and localization errors. For this case, we can estimate a reasonable
form for the probability density of the T;; from an analogous scenario in which
vehicles deliver items along roads to different sites. Vehicle inter-site travel times
have been modeled as following an Erlang distribution to capture the fact that
the times have positive, minimum possible values and a small probability of being
large due to accidents, breakdowns, and low energy, as well as the tendency of their
distributions to be skewed toward larger values [131]. We assume that each T;;

follows this distribution with parameters w;; € Z* and 6;; € R*:

eéijtwijfl ot
g<t;wij79ij) = (w~ N 1)'€ Y (324)
ij .

In practice, the parameters are estimated by fitting empirical transition time data
to density (3.24).

Under this assumption, the DDE model (3.22) can be transformed into an equiv-
alent ODE model of the form (3.21), which allows us to design the k;; using the
methods we develop for this type of model. We use the fact that 7;; has the same
distribution as the sum of w;; independent random variables, T, ..., T,,,., with a com-
mon distribution f(¢;6;;) = 6;;e~%* [59]. Each of the variables represents a portion
of the transition time between tasks ¢ and j. To model these portions of the transi-
tion, we define a directed path composed of a sequence of virtual tasks, u =1, ..., w;;,
between the real tasks ¢ and j. Assume that robots transition instantaneously from
virtual task w to w4+ 1, which is task j when u = w;;, at a constant probability
per unit time, 6,;. It follows that f(¢;6;;) is the distribution of the time that a
robot spends doing virtual task u, and therefore, we can define T3, v € {1,...,w;;},
as this task execution time. The expected value of T, is E(T,) = Qi_jl. Using the
property E(Ti;) = Yo7, E(T,), we see that E(T};) = w;;/60;;. The variance of Tj; is

u=1
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Figure 3.1: A labeled edge (7,7) = (1,2) that consists of (a) the real tasks, cor-
responding to model (3.21), and (b) both real and virtual tasks (for wj; = 2),
corresponding to model (3.25).

Var(Ty;) = E(T;)? wij.

We denote the population fraction that is doing virtual task u along edge (3, j)
by yl(]u) Then Y o7, yz(j“) represents y;;, the fraction of robots in transition from task
i to task j. Figure 3.1 illustrates how an edge from model (3.21) is expanded with

two virtual states y(u)

;i - As in the baseline model, the dynamics of the population

fractions at all real and virtual tasks in the expanded system can be written as a set

of linear ODE’s:

() = Y O = > k()

Jl(g,1)e€ jl(i,5)€eE
Dy = ko) — 000
yl] ( ) le( ) inj ( ) )
. (m m—1 m
0w = 0 (W - W)

m = 2, sy Wi (325)

where ¢ = 1,...,5 and (i,7) € €.

Let y be the vector of y” ,u=1,...,wj, (1,7) € £ The system state vector is
then z = [x y]7. We interpret each component of z as the population fraction at task
i€{l,..,5"}, where S’ is the sum of all real and virtual tasks. The interconnection
topology of these tasks can be modeled as a directed graph, G' = (V',&’), where

={1,....,8}and & ={(i,j) € V' x V' | i ~ j }. Since G is strongly connected, so
is G’. Then the ODE model (3.25) can be written in the form of model (3.19),

z=-Kz (3.26)
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where K € RS has structure (3.14) with entries k;; (in place of k;;) defined by
the corresponding coefficients in model (3.25). The conservation equation (3.23) can

be written as

17z=1. (3.27)

System (3.26) subject to (3.27) will be referred to as the linear chain model, since

it incorporates a chain of virtual tasks between each pair of real tasks.

Remark: The modeling approach in this section can still be applied when the distri-
bution of T;; is complicated (e.g., multimodal) by approximating it as a combination

of Erlang distributions; this is a topic for future work.

3.3.3 Quorum-Based Models

In the linear models of task reallocation, the robots switch between tasks indepen-
dently of one another, which is an appropriate strategy if it is undesirable or unfea-
sible to implement decisions based on robot interactions. It is possible to improve
system performance if the transition rates k;; incorporate information about the cur-
rent populations at the tasks. When the distribution of robots among the tasks is
differs greatly from the target distribution x9, it makes sense for the robots to tran-
sition between tasks as quickly as possible to enable fast convergence to x%. Once
the system attains x9, the robots can conserve the energy that they expend during
transitions by switching between tasks at lower rates. (Section 5.2.1 elaborates on
these points.)

We implement this system behavior through the decentralized mechanism of quo-
rum sensing. FEach task ¢ is associated with a quorum g;, a threshold robot population
that is specified as a fraction of 2¢. We assume that every robot knows the ¢; as well
as the z¢ and can estimate the population fraction x; through local sensing. The
transition rate from task ¢ to an adjacent task j is defined to increase from k;;, the

rate in the baseline linear model, to a maximum value when z;/z¢ > ¢;. We then
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refer to edge (i, j) as being activated. The transition rate decreases back to k;; when
x; /2 < q;. This definition is inspired by ant colony house hunting behavior, detailed
in Section 6.1.1, in which quorum sensing by individual ants speeds up emigration
to a new nest site when it is sufficiently populated.

The following sections present two versions of the quorum-based model. The
first represents the transition rates as continuous functions of z;, which models un-
certainty in robots’ estimation of this quantity. The second represents a scenario with
low uncertainty, in which transition rates can be abstracted as switching between

discrete values, thus giving rise to a hybrid system.

Continuous Quorum-Based Model

We assume that G has bidirectional edges. The continuous quorum-based model is

defined as the baseline linear model, subject to condition (3.18), with transition rates

q

kij replaced by rates kj;, which are defined as follows. We specify that the increase in

k?j is a continuous function of x; through the use of an analytic switching function,

oi(zs) = (1 +e”(q"‘5?)>_ | (3.28)

where the constant v > 1 is chosen such that o; ~ 1 when z;/ x? = ¢; + €, where
€ > 0 is small. Note that o; — 1 as x;/z¢ increases from ¢; and that o; — 0
as z;/x¢ decreases from ¢;. This is similar to threshold methods described by [22]

and [3]. Using switch (3.28), we provide two alternative definitions for £;. Each

edge (i,j) € & is assigned a maximum possible rate k7%, which is derived from
the maximum allowable flux of robots switching between tasks ¢ and j. In a system
where tasks are located at different sites, this flux would be determined by the traffic
capacity of the route from site i to site j. In the first definition, kfj increases to this

maximum:
k= kij 4 o) (K™ — ki) (3.29)
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In the second, kf; increases to a multiple a > 0 of k;;, with max; jyee aky; <

max.

ming jee ki

Switched Linear System

Another way to represent quorum dependencies in transition rates is to model the
swarm as a hybrid system, specifically a switched linear system [100]. This model
takes the form

x = —K,x, (3.31)

where {K, | p € P} is a family of constant matrices that is parameterized by an
index set P, and 7 : [0,00) — P is a piecewise constant function of time called
the switching signal. Fach K, is associated with a population mode, w € §2,. If
the switched system models the task reallocation scenario described in Section 3.3.2,
then each K, has structure (3.14). The transition rates (3.29) and (3.30) can be
adapted to this model by replacing the analytic switch o;(z;) with U(z;/2¢ — @),

where U is the unit step function,

1 if z>0,
Ux) = ' (3.32)
0 if z<0.
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Chapter 4

Analysis Techniques

The chapter presents analysis techniques that can be applied to the swarm models

described in Chapter 3 to study their behavior over time.

4.1 Micro-Continuous Model

As described in Section 3.1, the micro-continuous model can be implemented in
a realistic 3D simulator or, more simply, as a point-agent simulation. The time
evolution of quantities of interest, such as species populations, can be obtained from
the simulation, and statistical properties of the quantities can be derived from an

ensemble of these trajectories.

4.2 Macro-Discrete Model

As explained in Section 3.2, a stochastic simulation algorithm that is equivalent to
the Chemical Master Equation can be used to numerically compute trajectories of
integer species populations. We use Gillespie’s Direct Method [47,50,51] to perform
stochastic simulations of the system. This method simulates a sequence of reactions

in a CRN and their initiation times using the reaction rate constants k;;. These
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reactions describe robot transition events, as described in Section 3.1.

The Direct Method is implemented as follows. First, the initial number of ele-
ments of each type of species is stored in a counter and the propensities a;;, defined
in Section 3.1, are calculated. The next reaction is selected according to a uniform
probability distribution over the propensities, and the time until its occurrence, A,
is computed from an exponential distribution with Z(i, j)ee Gij @s its parameter. The
time is advanced by A7 and the reaction is simulated by decrementing the species
populations in complex ¢ and incrementing the populations in complex j. The in-
crement of product populations may occur immediately or at a future time that
represents the completion of the reaction, such as the end of a robot’s navigation
between tasks at two different sites. Whenever the counter of species populations
is updated, the propensities must be recalculated and a new reaction and A7 are
computed.

The Direct Method can be considered a centralized approach to generating the
time evolution of species populations, since it uses a “global planner” to initiate re-
actions. However, the method is mathematically equivalent to a decentralized agent-
based simulation in which the system elements probabilistically undergo transitions
at every time step At according to the fundamental hypothesis. The advantage of
the centralized simulation is its faster execution than the decentralized approach,
which must loop through all system elements at each time step. The Direct Method
can therefore be used to simulate systems with very large populations in less time

than an agent-based simulation.

4.3 Macro-Continuous Models

4.3.1 Characterization of Equilibria

A general multi-affine system in R® can have multiple equilibria. For the systems

that we consider, which contain only constant, linear, and bilinear terms, these
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equilibria can be computed in closed form using Sylvester’s method of resultants for
all S when the number of bilinear terms does not exceed 2S5 — 2, and for S < 16
otherwise [120]. However, as we show in the following sections, the properties of the
macro-continuous models defined in Chapter 3 can be used to prove that they each
have a unique, stable equilibrium. This allows us to design a target distribution x¢
to which the system converges from any initial distribution.

Trajectories of the species populations in the macro-continuous models can be

numerically integrated using standard techniques such as the Runge-Kutta method.

Multi-Affine Model

We will discuss results from Chemical Reaction Network theory that can be obtained
using a network parameter called the deficiency [37,38]. The results apply to closed,
spatially homogeneous, constant-volume systems, although they may be extended to

open systems by including “pseudoreactions” of the form 0 — X;, X; — 0.
A. Definitions

A linkage class of a CRN is a set of complexes connected by reactions; in other
words, a connected component of graph G. Let L denote the number of linkage
classes in the network. Recalling that the columns of matrix M in model (3.15) are
denoted by m;, i =1, ..., C, where C'is the number of complexes in the system, the
network rank, K, is defined as the rank of the matrix with rows m; —m;, (i,5) € £.

The deficiency of the network, 9, is defined as
0=C—-L-K. (4.1)

A network is weakly reversible if whenever there is a directed arrow pathway from
complex i to complex j, there is also one from j to .

Each equilibrium of model (3.15), {X | MKy (X) = 0}, can be classified as either
a positive equilibrium X > 0 or a boundary equilibrium in which z; = 0 for some

i, which can be found by solving y(X) = 0 [27]. A cyclic trajectory is a periodic
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solution of model (3.15): x : [0,7] — R® x(0) = x(T"). The cyclic trajectory is
called positive if it is entirely contained in the positive orthant of R,

The stoichiometric subspace for the network is defined as

Z={zeR%|z= )Y a;(m;—m;), a;>0}. (4.2)

(i,j)€€
The dimension of Z is K. The vector %, and thus x(t) — x(0), is constrained to
Z. This implies that a trajectory starting at x(0) must lie in the set x(0) & Z
(=Minkowski sum). The positive stoichiometric compatibility class (PSCC) is de-

fined as this set intersected with the positive orthant of R,
B. Theoretical Results

If § = 0, then the Deficiency Zero Theorem [37,38] provides the following results.
If the network is not weakly reversible, then there is no positive equilibrium or
positive cyclic trajectory. If the network is weakly reversible and has mass action
kinetics, then each PSCC contains a unique, asymptotically stable equilibrium, and
there is no nontrivial positive cyclic trajectory. Furthermore, by Theorem 4.1 of [139],
this equilibrium is globally asymptotically stable (with respect to the x in its PSCC)
if the network does not admit any boundary equilibria.

The Deficiency One Theorem [37, 38] gives conditions under which there is a

unique equilibrium in each PSCC.

Linear Models

The results in this section were first presented in [12, 15].

The following result applies to the baseline linear model, (3.19) subject to (3.20).

Theorem 1. If the graph G is strongly connected, then the baseline linear model has

a unique, stable equilibrium.

Proof. Since G is strongly connected, the rank of K is S — 1 [118]. The null space
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of K, x", is therefore one-dimensional. This null space is intersected by the (S —1)-
dimensional hyperplane described by constraint (3.20). Thus, system (3.19) subject

n

to (3.20) has a unique equilibrium point, which we call X = [z} 7.

Now consider the matrix T = ¢I — K, where ¢t > 0 and I € R%*S is the identity
matrix. Choose t large enough such that T is a nonnegative matrix. Since G is
strongly connected, the matrix —K, and therefore T, is irreducible. Because T is
nonnegative and irreducible, by the Perron-Frobenius theorem T has a real, positive,
simple eigenvalue A,,(T) such that all other eigenvalues of T, \(T), satisfy |A\(T)| <
Am(T). This eigenvalue also satisfies the inequalities min; Y7 | Ty < A, (T) <
max; Zil T,; [118]. Since the columns of K sum to 0, both sides of these inequalities
are t, so A, (T) = t. Note that A(T) = AM(—K) + ¢t. Thus, the eigenvalue of —K
corresponding to A, (T) is 0, and all other eigenvalues of —K satisty |A\(—K)+1t| < t.
It follows that —K has a simple zero eigenvalue and all its other eigenvalues satisfy

Re(A(—K)) < 0. Therefore, the equilibrium point X* is stable. O

This equilibrium can be calculated from K as [118]:

where Kj; is the cofactor of K obtained by deleting row ¢ and column j.
Since the linear chain model, (3.26) subject to (3.27), has the same form as the

baseline linear model, the next result immediately follows from Theorem 1.

Corollary 1. If G is strongly connected, then the linear chain model has a unique,

stable equilibrium.

Denote the equilibrium of the linear chain model by z* = [X® y°]7. At equi-

librium in this model, the incoming and outgoing flux at each virtual task along
the path from task 7 to j is k;;Z7, yielding the following equilibrium values of yg),
u = 1, vy Wit

G = ki@ [0 (4.4)
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Substituting 775 = >0, 71, ™) into Equation (3.23) gives the conservation equation

for this system at equilibrium:

S
i=1

JlG@.5)e€

Then the equilibrium values z}' can be shown to be [118]:

S
= KZZ/Z(I + Z k’pjij/gpj)Kpp N 1= 1, ,S . (46)

p=1 ilp.j)ee
Comparing the equilibrium values (4.6) of the linear chain model with the values
(4.3) of the corresponding baseline linear model, it is evident that the ratio between
Z' at any two real tasks is the same in both models. However, since k;wy;/60,; > 0,

the ' of the chain model are lower than those of the baseline model.

Quorum-Based Models

The following result for the continuous quorum-based model is proven in [69] using

Lyapunov stability theory.

Theorem 2. The continuous quorum-based model with kfj defined by Equation (3.30)

and ¢; =q, i =1,..., S, converges asymptotically to x9.

The stability of a switched linear system (3.31) cannot be inferred from the
stability of the system corresponding to each population mode. Lyapunov stability
theorems for hybrid systems can be used to characterize an equilibrium of this type

of system [148].

4.3.2 Reachability Analysis

The material in this section was first presented in [14).

If the macro-continuous model can be represented by a hybrid system, then reach-

ability analysis can be used to determine whether the system can enter a certain
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region of the continuous state space starting from a given set of initial conditions.
Hence, this type of analysis can verify whether a swarm that switches between differ-
ent sets of reaction rate constants can achieve (or avoid) a specified global objective,
defined as a set of species populations. Here we consider hybrid systems in which

the continuous state space associated with each mode is a hyper-rectangle.

This section presents MARCO (Multi-Affine Reachability analysis using Coni-
cal Overapproximations), a novel direct reachability analysis algorithm for a hybrid
system whose modes are each characterized by multi-affine continuous dynamics.
MARCO is shown to yield results that are superior to those of the indirect multi-
affine reachability algorithm developed in [7, 56, 81], referred to here as the MAR1
algorithm. MART1 exploits the convexity of multi-affine functions on hyper-rectangles
and the fact that the vector field inside a hyper-rectangle is uniquely determined by
its values at the vertices. Once a state is inside a hyper-rectangle, the algorithm
considers the entire hyper-rectangle to be reachable. Because of this, the algorithm
computes conservative approximations of the reachable set. While this approxima-
tion is guaranteed to include all reachable states, it can be overly conservative and
in many simple cases (for example, constant vector fields along the diagonals of the

hyper-rectangles) yield little insight into the actual behavior of the system.

MARCO computes less conservative reachable sets than MAR1 without sacrificing
accuracy. Like MAR1, MARCO performs a computationally inexpensive reachability
analysis within each mode by exploiting the convexity property of multi-affine vector
fields on hyper-rectangles. However, MARCO determines a better conical approxima-
tion for the reachable set, thus providing a finer level of granularity for the reachable
set without incurring a significantly higher penalty for computations. The technique
used by MARCO for overapproximating the reachable set within a mode is similar
to that used in HyTech [62] and PHAVer [44]. A higher degree of precision for the
entire reachable set can be achieved by increasing the resolution of the rectangular

partitions.
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Due to the simplicity of its reachability operations, MARCO is suitable for multi-
affine hybrid systems with many modes, such as a system that closely approximates
a hybrid automaton with nonlinear dynamics. Thus, in principle, it is more read-
ily applicable to such systems than existing reachability algorithms that use direct

techniques for nonlinear hybrid systems, such as MATISSE [52] and CheckMate [140].

Definitions

A hyper-rectangular multi-affine switched system (HMS) is defined as the seven-tuple
H = (X, Xo,Q,I,F,T,A). X C R" is the continuous space of state variables x,
Xo C X is a set of initial states, and €2 is a set of discrete modes. I maps the modes
to subsets of X such that if the system is at mode w € Q, then x € I(w), the location
invariant of w. The location invariants are n-dimensional hyper-rectangles, which are

defined as follows. For each dimension j = 1,...,n, specify a strictly monotonically

increasing sequence of values, {:L‘((]j ),xgj ), e ,x%i} A mode w is labeled by an n-
dimensional coordinate vector w = (ky,--- ,k;,), where k; € {1,..., D,;}. Then I(w)
is the hyper-rectangle [x,gll)_l,x,gll)] X [x,(é)_l,az,(i)] cee X [a:,(;z)_l, :c,(;z)] F is a map that

assigns a continuous, autonomous vector field to each mode w, x = f,(x) € R™, where
f. is a multi-affine function (3.9). 7T is a finite set of transitions between modes,
cach defined by a three-tuple (w,w’, g, ), in which w,w’ € Q and ¢, C 0I(w) is a
guard set. The transition from w to ' is enabled when x € g, .. Each guard g, .-
of mode w corresponds to a facet, denoted by H(w,w’), that I(w) shares with ().
Finally, A is a finite set of symbols that label the transitions.

Definition 1 (Mode trajectory [150]). A trajectory (w, T, x,(t)) associated with mode
w € ) consists of a nonnegative time T and a continuous and piecewise differentiable
function x, : [0,7] — R" such that x,(t) € I(w) and X,(t) = f,(x,(t)) for all
t € (0,7).

Definition 2 (Trajectory of an HMS [150]). A trajectory of an HMS starting from

X (0) € Xo C I(Q0), where Qo C Q, is defined as an infinite sequence of mode
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trajectories,
<w07 70, Xwg (t)) = <w17 T1, Xwy (t)) = <w27 T2, Xws, (t)) 2 (47)

such that at the event times t.,, = S T Xy, (tw;) € H(wj,wjy1). Since the HMS

is defined to be a switched system, X, (t,,) = Xu,,,(0). The j™ transition is labeled

by a; € A.

The ordered set of modes in Equation (4.7) after a finite number of transitions
is represented by a filiation sequence of length d € N, s = {wo, w1, -+ ,wq_1}. Now
define a concatenation operation similar to that which is used for strings: s * {o} =
{wo, ++ ,wq_1,0}. In the following definitions, ¢, designates an HMS trajectory

whose first d modes comprise sequence s, given some z,,, € Xp.

o . . . . d
Definition 3 (Footprint). A footprint of degree d and filiation sequence s, Xﬁ,ﬁd C

H(wg—1,wa), is the set consisting of X, ,(tw,_,) from each ¢s.
Definition 4 (Forward reachable set of a mode). The forward reachable set of mode

wq from a set B, where B = Xy ifd =0 and B = Xﬁgd ifd >0, is X, ,(B) C I(wa).

It consists of the union of states

Xopgr (fwg—y) = %0, (0) U {x0, (1) [ £ € (0,70)} U Xy (tug) = %0, (0) - (4.8)
from each ¢4 for which wy € s.

Definition 5 (Forward reachable set of an HMS). The forward reachable set X,
from an initial set Xy of an HMS is the set of all continuous states x,,(t) associated

with each ¢s.

Definition 6 (Time-elapse cone). The time-elapse cone C,, for mode w = (ky,- -+ , ky)
is the cone generated by nonnegative linear combinations of the velocity vectors at

the vertices of I(w) (0; is defined by Equation (3.10)):
2n—1
— (1) (n)
Co = {Z A6, o (Thot by ko) ()" 2 Tl 14 (b 1)in (i) | A0y 2 0F o (4.9)
=0
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The following definitions specify the core steps of the MARCO algorithm.

Definition 7 (Overapproximated reachable set of a mode). Consider a mode w and
a set B C I(w). The overapprozimated reachable set in mode w with initial set B is

defined as:
R,(B) = (BaC,)NI(w) . (4.10)

Definition 8 (Overapproximated footprint). An overapprozimated footprint of de-

gree d and filiation sequence s, Féf}d C H(wg_1,wq) is generated as follows.

FO = (Xo®Cuy) N H(wo,w)
FUE) ., = (F9,@C0) N Hwgw) (4.11)

The footprints and their corresponding overapproximated reachable sets form a
tree structure, which in practical implementations is organized as a linked list. The
sequence s distinguishes among repeated passages through the same mode during

the reachability calculation.

Validity of Reachable Set Overapproximation

The following results demonstrate that the reachable set computed by MARCO con-

tains the exact reachable set X,.

Proposition 1 ( [7]). Let f, : I(w) — R" be a multi-affine function (3.9) and let

x € I(w). Then f,(x) is a convex combination of the values of f,, at the 2" vertices

of I(w).

Proposition 2. Let x,,(t) be defined as in Definition 1. The displacement vector
Ax,(t) = x,(t) — x,(0), t € [0,7], is contained in the convex hull of the set of
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velocities at the vertices of I(w), scaled by the elapsed time t. That is, 3 {Ae,}

where Ao, € [0,1], 7 =0,...,2" — 1, and 22 Ao, =1, such that:
on_1
1) (n)
AXW =t Z A@ f"‘) ko+ ki—ko)ir(j)’ " ’Ikn—1+(kn_kn—1)in(j)) : (412)

Proof. The solution to X, (t) = f.(x,(t)),t € [0, 7], is x,(t) = XW(O)—l—f[;f fo(x,(s))ds
From Proposition 1, for s € [0,7], 3 {Ae,(s)} where Ag,(s) € [0,1], j =0,...,2" — 1,
and Z?igl Ao, (s) = 1, such that:

2m—1

(n)
Z Ao, (5) ful %+ bi—ko)in () Ty 1+ 1)in(i) (4.13)

The existence of {Ae,(s)} is guaranteed but it is not unique; choose one set. The

displacement vector Ax,(t) = x,,(t) — x,(0) at t is:

t2"—1
_ (n)
Axull) = / Z Ao, (8)fu( $k0+<k1 K0)ir ()" Thoy a1 Yin (7)) 95
21 t
_ (1) (n)
= D STyt Thes b on b 1)in()) /0 Ao, (s)ds (4.14)
§=0

Define Ag; as the integrated quantity divided by ¢:

1 t
0 S A@j = ;/ )\@j(S)dS S 1 (4.15)
0
2n_1 on —1 s 2n—1
ZA@ _Z /)\@ / D de,(s)ds=1. O (4.16)

Corollary 2. The set of continuous states x,(t), t € [0,7], in a trajectory of mode

w is a subset of x,(0) ® C,,, the Minkowski sum of x,,(0) and the time-elapse cone.

Proposition 3. X, ,(B) C R,(B).
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Proof.  From Definition 4, X, ,(B) is the set of all states x,(t) in the trajectory of
mode w such that x,,(0) € B, which by Corollary 2 is a subset of x,,(0) & C,:

Xy w(B) = {xu(t) | x,(0) € B,t € [0,7]} C {x,(0) & C, | x,(0) e B} =Ba&C,
Since X, ,,(B) C I(w) by definition, X, ,(B) C (B® C,)NI(w) = R,(B). O

Proposition 4 (Validity of overapproximation). The set of states x,(t) in the first
d mode trajectories of an HMS trajectory ¢5 with x,,(0) € Xq is contained in the
union of R, (Xo) with ij(F(j) ),j=1,..,d—1.

{wo,wj—1}w;
Proof. By Proposition 3, x,,(t) € Ry, (Xo) for x,,(0) € X, t € [0, 7). Therefore,
by Definition 7, x,,,(79) € (Xo®Cy) NI (wp). Also, X, (T0) = Xuwy (tw,) € H(wo,wr) C
I(wo). Thus, by Definition 8, x,,(70) = %, (0) € F{.), .
X (t) € Ry, (L)

{wo}w1

By Proposition 3 again,
) for ¢t € [0,71]. The same set inclusions may be defined for the

remaining modes in s. O

Termination Conditions
There are two possible termination conditions for the algorithm.

Proposition 5 (Termination condition 1). Iwad(F,fod) is a subset of R,,,, the union
of the reachable sets previously computed for mode wy, then all states x,,(t) in HMS
trajectories with x,,(0) € Fﬁfj}d are contained in R, and all reachable sets evolving

from R,,.

Since the reachable set might grow by very small amounts for a long time, a
second heuristic condition may be applied to ensure termination within a reasonable
amount of time. KEach iteration of the algorithm generates a new set of conical
overapproximations and footprints; let V' (R;) be the volume of the newly computed

reachable set at iteration ¢ and V' (S) be the volume of the state space.

Proposition 6 (Termination condition 2). For a small constant , stop if
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Figure 4.1: Illustration of the MARCO algorithm. (a) (upper left) Initial set X, and
velocities at vertices of mode «; (b) (upper right) definition of the time-elapse cone

Cy; (c) (lower left) computation of reachable set R, and footprints F 651% and F{Y of
adjacent modes; (d) (lower right) computation of Rg, Rs, and R..

Implementation

The MARCO algorithm is written in Matlab and uses the Multi-Parametric Toolbox
(MPT) [88] for polyhedral operations. Figure 4.1 illustrates its steps for a two-
dimensional state space, and Figure 4.2 gives an outline of the algorithm.

The user inputs the specifications of the hybrid system H. First, the set € of
reachable modes is initialized with the modes Qy C 2 that contain the initial set
Xo. These modes are identified as members of generation 0. In Figure 4.1a, 0y = a.
The portion of X, that intersects the mode invariant [(w) for w € € is the first
incoming footprint of mode w. For each mode in generation 0, a time-elapse cone

C,, is found according to Definition 6. Figure 4.1a-b shows the creation of cone C,,
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from the velocities at the vertices of mode a. The cone is scaled to extend past the
mode boundaries. C,, is added to the mode footprint via a Minkowski sum and is
then bounded by the mode facets to produce the overapproximated mode reachable
set, R,(XoNI(w)) (Figure 4.1c). Next, each adjacent mode w’ with a facet that has
a nonempty intersection with R, (XoNI(w)) is added to € if it is not already in the
list, and the intersection is designated as the overapproximated incoming footprint
of that mode, F {(i)}’w,. These modes are identified as members of the next generation.
In Figure 4.1d, the footprints are F a(lg, Félg, and modes [3, € are in generation 1.
The algorithm repeats the reachable set overapproximation and footprint identifi-
cation for modes in each consecutive generation. Note that a mode w may have mul-
tiple footprints, as does mode ¢ in Figure 4.1d. Each footprint generates a reachable
set, and the concatenation of these sets is the total reachable set within the mode.
The algorithm terminates according to Proposition 5, Proposition 6, or when there
are no new modes in the current generation, which occurs when the reachable set
hits the boundary of the state space X, as in Figure 4.1d. The algorithm returns the
total reachable set, stored as polyhedral subsets of mode invariants, that is attained

from Xj.

Examples

The examples in this section illustrate the improvement of MARCO over MARI.
Figures 4.3 and 4.4 display reachable sets computed by MARCO and by a Matlab
implementation of MAR1. The MARCO reachable sets are shown in dark gray or
magenta, while the MAR1 sets consist of light gray boxes in the 2D examples and
transparent boxes in the 3D and 4D examples. In each example, both algorithms
used the same state space boundaries and mode partition. All examples were run
on a standard 2 GHz laptop.

In Figure 4.3a, the dynamics in each mode consist of the constant vector field

1 =1, 5 = 0.5, and the initial set is the box in the lower left corner. The reachable
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Table 4.1: Definitions of P and @ in Equation (4.18)

% e || (-00,0.3]{(0.3,0.5/(0.5,0.7] |(0.7,0.8] {(0.8,1.0] |(1.0,1.3]/(1.3,1.6] |(1.6,00)
P o1 02 | -0.7 14 0.2 0.53 | 0.96 1.5
Q |00 1.0 |20 3.0 1.0 06 |03 0.0

set computed by MARCO is exact, while MAR1 predicts that all modes are reached.

Figure 4.3b displays a vector field whose integral curves are spirals with a steady

state at the origin. The dynamics are given by

Zi’l = —T + 2232 .i?g = —21’1 — T9 . (417)
The initial set is the box containing the steady state. The MARCO algorithm ter-
minates and returns a conservative but finite reachable set around the equilibrium
point; it essentially recognizes the presence of the steady state. The MAR1 method

considers the entire space to be reached due to the velocity components pointing out

of the center mode.

Figure 4.3c shows the computation of the reachable set for a three-dimensional
vector field with integral curves that are helical spirals. The results are similar to

those of Figure 4.3b.

Figure 4.4a shows a bistable vector field,

1= f(xa) —w1 do=x1—22, [f(xa)=P+Quy, (4.18)
where f(x2) is a piecewise-linear approximation of a sigmoid-shaped function. P
and @ for a mode w depend on the particular x; interval that contains the average
z1 coordinate of the mode, z7,,., and are defined in Table 4.1. The initial set
is located at a place where the vector field diverges. The MARCO reachable set
correctly approaches and terminates at the two steady states while avoiding the

unstable steady state. The MAR1 reachable set is much more conservative.
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Table 4.2: Comparison of computation times and reachable set precision

Vector field Time (sec) Reached vol./State space vol.
MARCO MAR1 MARCO MAR1

2D constant 4.17 0.42 0.255 1.000
2D linear 2.83 0.42 0.329 1.000
3D linear 4.78 0.78 0.078 1.000
2D affine 7.27 0.94 0.266 0.714
4D multi-affine 130.31 2.53 0.022 0.061

Figure 4.4b illustrates the projection of a four-dimensional multi-affine system,

T =
Ty =
i’g -

Ty =

onto the z9, x3, and

(21 — 10.5) (25 — 10.5) (x5 — 10.5) (x4 — 10.5)
(21— 7.5)(
(1’1 — 15)(1’2 — 15)($3 — 45)(&74 — 45) s

x4 dimensions.

xo — 4.5)(x3 — 1.5) (x4 — 7.5)

(4.19)

The system has 24 equilibria; in particu-

lar, the equilibrium x.; = [10.5 7.5 1.5 4.5]T is stable and the equilibrium x., =

[10.5 7.5 4.5 7.5]7 is unstable. The initial set for the reachability computation is a

box surrounding x.,. The reachable set diverges at X.»: one branch terminates at

X.1, while the other runs into the state space boundary. Again, the MAR1 reachable

set fails to attain the precision of the MARCO set under the same mode partition.

Table 4.2 compares the performance of the two algorithms in terms of the com-

putation time and volume fraction of the state space reached for each example. Note

that although MAR] is faster on all examples, its overly conservative predictions of

the reachable set cannot be refined with iterative partitioning.
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Input: System dimension n, mode dividers, vertices of initial set Iy, dynamical
parameters

Output: R={R,,,..., Ruy}, wi €

Q= {wi | ](wz) F‘IXO #@}
for all w; € Q : Generation(w;) = 0; R, =0
G=-1
do
G=G+1
for all {w; | Generation(w;) = G}
RS =)
Calculate velocities at vertices of w;
Create time-elapse cone C,,
Combine overlapping footprints of w;
for all footprints Fsg) :
Ru, (FiE) = (FLZ) @ Cu) NI (w;)
for all {w; | FG5Y = (FIZ @ CL) N H(wiw)) # 0}
if w; & J
Q=Qx{w;}
R, =0
Generation(w;) = G + 1
end
Re™ = R+ {R,, (FI9)
end
if R ¢ R
Ro. = Ru  {R™)
end
until RS C R, ¥V {w; | Generation(w;) = G}

Figure 4.2: MARCO reachability algorithm
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Figure 4.3: Reachable sets for (a) 2D constant field; (b) 2D linear field; (¢) 3D linear
field
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Figure 4.4: Reachable sets for (a) 2D affine field; (b) 4D multi-affine field
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Chapter 5

Controller Synthesis

Section 5.1 describes the synthesis of robot motion controllers for navigation and
inter-robot collision avoidance in the micro-continuous model. Section 5.2 describes
the optimization of the parameters in the macro-continuous models for quick, ef-
ficient system convergence to the target equilibrium, as well as the synthesis of
feedback control laws for steering the macroscopic system state through a sequence

of population modes in a hybrid system.

5.1 Micro-Continuous Model

Control strategies in the micro-continuous model are used to physically guide the
robots through their environment in a manner that allows them to safely complete
their task. This section describes several different types of robot motion controllers.
We represent each robot ¢ as a planar agent governed by a kinematic model q; = u,,

where q; € R? denotes the robot’s (z,y) coordinates and u; € R? is a control input.
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5.1.1 Navigation
Navigation Functions

The navigation function control methodology [128-130] can be used to guide a robot
to a destination point while avoiding obstacles in the environment. Navigation func-
tions combine the three problems of path planning, trajectory planning, and robot
control for trajectory tracking by providing a form for a bounded-torque feedback
controller on a robot. The controller produces collision-free motion and convergence
to the goal location, q, the unique minimum of the function, from almost all ini-
tial free configurations.® To use navigation function controllers, we assume that the
environment is stationary and that perfect information is available about the ob-
stacles, geometric constants that are derived from them, and the topology of the
free configuration space, F. Additionally, each robot is assumed to have ideal sen-
sors for position and velocity and ideal actuators that can deliver a bounded torque
instantaneously.

Let 7 C E” be a compact, connected, analytic manifold with boundary. By
Definition 1 in [130], a map ¢ : F — [0, 1] is a navigation function if it is smooth
on F (at least a C'® function), admissible on F, a Morse function, and polar at a
point q? in the interior of F. The configuration space is restricted to the class of
generalized sphere worlds. Let D(q, p) denote a Euclidean n-dimensional disk with
center q and radius p. A Euclidean sphere world is a compact, connected submanifold
of Euclidean n-space, E", that is formed by removing from a large disk Dy (0, po)
M smaller, disjoint disks, D,(q;, p;) (j = 1,..., M), which represent obstacles. The
complement of Dy is the zeroth obstacle. More complicated generalized sphere worlds
can be deformed onto a Euclidean sphere world through a diffeomorphic mapping.

We describe the construction of ¢ on a Euclidean sphere world. Each obstacle is

implicitly represented by an obstacle function f3; in the form obs; = {q: 8i(q) < 0},

'Each obstacle introduces at least one saddle point of the navigation function, but in practice
these points do not present a problem because their domain of attraction has an empty interior.
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where (3; = 0 on the boundary of the obstacle. The obstacle functions are given by

Bo(@) = ~lla—aol*+p5,  Bila)=lla—qll*-pj, j=1..M. (51)
The product of obstacle functions is § = Hf\il B;.

The navigation function is an analytic switch, varying smoothly between 0 at q?
and 1 at the zeros of 3, that has been “sharpened” by a function that makes q¢ a
nondegenerate critical point. The navigation function is defined as

la — q¢||?
la — qd||>* + B(q)]/=

¢x(a,q%) = | (5.2)

where £ > 01is a parameter. Theorem 4 of [128] states that ¢, is a navigation function
on F if K > N, where N is a positive integer that is a function of the geometric
data. As k increases, undesired local minima disappear. The control input u; is set

to be proportional to the negative gradient of o, (q;, q%).

Design of Vector Fields on Convex Polygons

Another provably correct way to integrate path planning and robot control for nav-
igation is presented in [30]. The free space is decomposed into a collection of convex
polygons, and a graph search algorithm is applied to the adjacency graph of the
polygons to find a path from the polygon containing the initial location of the robot
to the polygon containing the goal location. A potential function for each polygon is
defined as the composition of the solution of Laplace’s equation on the unit disk with
a mapping from the polygon to the unit disk. When q; is inside the polygon, the
control input u; is set to be the negative gradient of this potential function, which
is orthogonal to the boundary of the polygon and free of local minima. In this way,
the robot is directed from one polygon in the path to another through the common
boundary of adjacent polygons until it reaches the goal polygon. The methodology

can be extended to define control policies for robots with dynamical constraints.
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5.1.2 Inter-Robot Collision Avoidance

In [145] and [95], artificial potential functions are used to define local robot controllers
that enforce desired inter-robot distances within a group. The functions are shaped
such that two neighboring robots will approach each other when the distance between
them exceeds a specified value and move away from each other when the distance is
less than this value. We can use these functions to implement inter-robot collision
avoidance by activating the controller only when two robots are within the range of
distances associated with repulsion.

The relative position vector between robots ¢ and j is denoted by q;; = q; —q; =
[zi; yi;]T. Let A; be the neighbor set of robot i, which may be the robots with
which i is allowed to communicate (giving rise to a fixed network) or the robots that
are physically proximal to ¢ (a dynamic network). V;; = V;;(||lq;;||) is an artificial
potential function that is differentiable, nonnegative, and radially unbounded. It
attains its unique minimum when robots 7 and j are located at a specified distance,
and it approaches infinity as ||q;;|| — 0. An example V;; is illustrated in Figure 5.1.

The directional derivative of V;; along the vector q;; is computed as:

Vo Vi = oVi;  0Vy Ollagll Vi qy

_ _ , (5.3)
Oqi;  Ollai;ll Oai;  Olla; | [yl

where 9llqy;|/0ai; = [Ollas;||/Oxs; Ollaisll/Oyis]". Vg, Vij and Vg, Vi; can be calcu-
lated using a similar application of the chain rule. The following relationship exists

between the three directional derivatives:
qu‘jvi' = Vg Vi = _vqy‘vi' : (5'4)
The input u; can now be defined as

JEN;
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Figure 5.1: Example potential function, Vi; = In®(||q;||) + m
5.2 Macro-Continuous Model

5.2.1 Optimization

The material in this section was first presented in [13, 109].

The continuous models in Chapter 3 describe a swarm as a function of the re-
action rate constants, k;;, which are the designable parameters that control system
performance. The k;; must cause the system to converge to the target equilibrium
in a reasonably short amount of time, perhaps while adhering to a specification on
a metric of efficiency. We quantify the degree of convergence of a macro-continuous

model to x4 by the fraction of misplaced robots,
p(x) = |lx — x> . (5.6)

We say that one system converges faster than another if it takes less time ¢, for p(x)
to decrease to some small fraction f of its initial value, u(x?).

This section defines optimization problems for computing the k;; according to
these objectives. An advantage of using the macro-continuous models to design the
k;; is that the optimization problems are then independent of the number of species,

so they are scalable with the populations in the system.
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Multi-Affine Model

Define k € RI¥l as the vector of all k;; in the system. We formulate an optimization
problem to compute the k that minimizes the convergence time of model (3.15)
to a target species distribution x9. If the model can be proven to have a unique,
stable equilibrium, then we can set x4 to be this equilibrium through the following
constraint on K:

MKy (x%) =0 . (5.7)

There may be other constraints on the k;; such as upper and lower bounds on their

values,

b,<k<h,. (5.8)

It is possible to find the k that directly minimizes the system convergence time
by using a stochastic optimization method to solve the optimization problem below.
We chose to use a Monte Carlo method because of its simplicity and the fact that it

yields reasonable improvements in ¢y with moderate computing resources.
[Pma]  Minimize ¢y subject to constraints (5.7) and (5.8).

Implementation: At each iteration, k is perturbed by a random vector and projected
onto the null space of linearly independent rows of a matrix N defined such that
Nk = MKy(x9) = 0. Once k also satisfies constraint (5.8), it is used to simulate
model (3.15), and a Newton scheme is used to compute the exact time t; when
pu(x) = fu(x°).

It may be possible to formulate the problem as a convex optimization problem,
which can be solved efficiently. Toward this end, we construct an analytical expres-
sion for the system convergence time to x4. We quantify this time in terms of the
system relazation times 7;, i = 1,..., R, the times in which different modes (dynam-
ically independent variables) of the system converge to a stable equilibrium after
perturbation [61,71]. Various measures of the average relaxation time of a CRN

have been defined, but they are applicable only under certain conditions, such as a
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linear reaction sequence [60] [135]. A common approach to analyzing the dynamical
properties of a CRN is to linearize the macro-continuous model of the system about
an equilibrium point and study the properties of the associated Jacobian matrix
J = SG, where S is the stoichiometric matrix defined in Section 3.3.1 and the en-
tries of G are G;; = dv;/dx; [71]. By constraint (5.7), the equilibrium about which
the model is linearized is x¢. Denoting the eigenvalues of J by \;, a common measure
of relaxation time is 7, = 1/|Re()\;)|. Since the \; are negative at a stable equilib-
rium, one way to yield fast convergence is to choose rate constants that minimize
the largest A;. An alternative estimate of relaxation time, also derived by linearizing

the system around its equilibrium x4, is defined as [61]

5 dv; -
T = (Z(_Sij)d_:ci> : (5.9)

i=1

1

Possible objective functions in the optimization problem are the average 7,7 and

the minimum T]-_l. These functions should be mazimized to produce fast convergence

to x4. If the selected objective function is a concave function of the k;;, then the

17
problem of maximizing the function subject to constraints (5.7) and (5.8) is a convex

optimization problem.

Linear Models

We consider the problem of redeploying a swarm represented by the baseline linear
model, (3.19) subject to (3.20), from an initial distribution among a set of tasks, x°,
to a target distribution x9. Theorem 1 proves that the baseline linear model always
converges to a single equilibrium X™, which represents the steady-state distribution
of population fractions among the S tasks. Hence, we can achieve a predefined x4

from any x° by specifying that x* = x9 through the following constraint on K:
Kx?=0. (5.10)
When the k;; are chosen such that the corresponding K matrix satisfies constraint
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(5.10), a swarm of robots that use the k;; as stochastic transition rules will redis-
tribute from any x° to x9. Since (3.19) is a linear system, the rate of convergence
of x to x4 is governed by the real parts of the eigenvalues of K, which are positive
homogenous functions of the k;; [144]. Thus, the rate of redistribution can be made
arbitrarily fast by using high k;;. However, in actual robotic systems there is often
a substantial cost to using high k;;. At equilibrium, the probability that any robot
doing task i will start switching to task j in time step 0t is k;jnddt. Thus, raising
k;; increases the equilibrium “traffic” of robots transitioning between tasks ¢ and j.
This is also evident from Equation (4.4). This switching expends power; for instance,
if the tasks are at different locations, the robots must travel between them and may
experience delays due to congestion along the route.

Thus, when choosing the k;;, we are faced with a tradeoff between rapid conver-
gence to x4 and long-term system efficiency, i.e. few idle transitions between tasks
once x¢ is achieved. In light of this tradeoff, we compute the matrix K as the solu-
tion to an optimization problem that maximizes a measure of the convergence rate
of system (3.19) to x9 subject to one of two possible constraints on task transitions
at equilibrium. The first is a limit on the total equilibrium flux of robots switching

between tasks:

Z kijad < cror - (5.11)
(i,5)€€

Note that in practice, the total equilibrium flux is actually Z(@ i)ee kijbx? < beior,
where b is the population fraction at the real tasks (i.e., not in transit).

Constraint (5.11) does not dictate how the transitioning population is distributed
among edges. An alternative constraint achieves this with a set of limits on the

equilibrium flux between each pair of adjacent tasks:
k’zjl'gl S Cij, (Z,]) cé&. (512)

We formulate several versions of this optimization problem, summarized in Table

5.1 (FC=fully connected, ROC= rate of convergence). Each version is tailored to
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Table 5.1: K Optimization Problems

Problem | FC | x° Objective

Pl PR maximize asymptotic ROC*
P? v maximize overall ROC
P3 v/ | minimize time to reach 0.1p(x°)
Pf v | v | maximize ROC along x9 — x°

*Maximizes all nonzero eigenvalues of K when the Markov process on G is reversible and con-
straint (5.12) is used; see Section 5.2.1A.

an application with a particular combination of properties. The graph G will be
fully connected, in addition to strongly connected, if there are no physical or logical
constraints on the flow of robots between pairs of tasks, such as a path in a disaster
area that is only wide enough for robots to travel in one direction. In addition, it
may be possible to obtain x?, for instance by identifying robots in an image from an
aerial camera.

Problem P$ is solved using a Monte Carlo method that directly minimizes con-
vergence time. The resulting system is used as a baseline to compare the systems
computed by the other problems, which manipulate convergence time by maximizing
functions of the eigenvalues of K using linear or semidefinite programs. Since these
types of programs can be solved with methods that have polynomial complexity in
the worst case [151], we can efficiently compute the S x S matrix K for large S.
Thus, our allocation approach scales well with the number of tasks.

The K design methods can also be applied to the more realistic model (3.22)
with Erlang-distributed 7;; when it is expressed as the equivalent linear chain model,
(3.26) subject to (3.27). We list the necessary modifications for the implementation
of Problem P3.

A. Maximizing the asymptotic rate of convergence

If G is strongly connected, but not necessarily fully connected, and x° is unknown,

we can designate the asymptotic rate of convergence of system (3.19) to x4 as the
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quantity to maximize. Let )\;(K) signify the eigenvalue of K with the " smallest
real part of all the eigenvalues. By Theorem 1, A\(K) = 0 and \;(K) > 0 for
i = 2,...,5. Thus, the asymptotic rate of convergence is governed by Re(A2(K)).
Noting that K is usually not symmetric, we first find a symmetric matrix S such
that Ao(S) < Re(A(K)). We replace the objective function Re(Ao(K)) by Aa(S).
We can write this problem as a semidefinite program with a linear matrix inequality

that arises from a variational characterization of Ay(S).

Theorem 3. Define I1 = diag(x?), which is invertible since x4 > 0. Let K be a

matriz with the structure in (3.14). Define the matrices

N = YIIK"+KII), (5.13)
K — H—l/QKHI/Q ’

S = JK+K")=IT"">NII""/2 (5.14)
Then Xo(S) < Re(X2(K)).
Proof. Define a convex, symmetric function h : R® — R,
h(x) = —min{z; +z,;} , i,7€{1,...5}. (5.15)

Let A(A) be the vector of the eigenvalues of a matrix A. By Theorem 16.4 of [98],
since h is convex and symmetric, h(Re(A(K))) is the infimum of A(A(M + MT))

over all matrices M similar to K. Thus, since K is similar to K,

h(Re(M(K))) < h(ANK +KT)) = h(\(S)) , (5.16)

1
2

where the equality on the right comes from Equation (5.14).

Now we evaluate both sides of inequality (5.16). By Theorem 1, h(Re(A(K))) =
—Re(A2(K)). We observe that A(S) = Re(\(S)) because S is symmetric. We now
show that S is positive semidefinite, denoted by S > 0, which implies that A(\(S)) =
—X2(S) and hence reduces (5.16) to the inequality A2(S) < Re(A2(K)). By Equation
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(5.14), S = 0 if N = 0. Since G is strongly connected, A\o(N) > 0 (Lemma 10
of [156]). Using property (3.12) and constraint (5.10), N1 = (ITK”1 + Kx%) = 0,

and so A\;(N) = 0 with corresponding eigenvector 1. Therefore, N > 0. [

Denote the vector of all k;; by k € RS*~S which is the optimization variable.
Both constraints on transitions can be written in the form f(k) < 1, where f :

R5*~5 — R is defined as fiot for constraint (5.11) and f;,q for constraint (5.12):

frot(k) = (i%g kijad,  fina(k) = (M?gg{kiﬂf/%}- (5.17)

Now we can state the optimization problem as: maximize \y(S) subject to f(k) <
1, k > 0. We use an alternate formulation [144]: minimize f(k) subject to A2(S) > 1,
k > 0. The vector q = [(z{)/% ... (z&)Y/?]T is the eigenvector of TT-Y/2NII~1/2
corresponding to the zero eigenvalue. From Equation (5.14) and the characterization

of eigenvalues in [66], the constraint A»(S) > 1 can be expressed as:

Xo(S) = Hiﬂf xITI7Y2NIT /2% > Hiﬂf x'(I - qq’)x (5.18)
x||=1 x||=1
xTq=0 xTq=0

The problem can now be posed as Problem Pj, in which the linear matrix
inequality comes from (5.18).
[P1] minimize f(k)
subject to II7V2NII-'/2>1—-qq”, k>0.
Denote the optimized vector of rates by k*. If constraint (5.11) is used, then we

can achieve the maximum total flux by multiplying k* by ¢/ fior(k*). If constraint

(5.12) is used, we can achieve the maximum flux for each edge by dividing k* by
f ind(k*>-
Suppose that G is a strongly connected, but not necessarily fully connected,

graph with bidirectional edges for which the two edges between each pair of adjacent

tasks have equal flux capacities. For example, robots may travel between sites along
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identical parallel roads, similar to a two-way highway. Then by condition (3.18),
the Markov process on G is reversible. We adapt the problem of maximizing the

asymptotic rate of convergence to this special case and call it Problem PR,

For constraint (5.11): Condition (3.18) implies that KIT = IIK”?, so N = KII
in Equation (5.13). Substitute KII for N in Problem P1 (with f = fi,). Since
K = NII!, K is similar to S, so the constraint \y(S) > 1 becomes \o(K) > 1.
Thus, the problem constrains Re(A2(K)) directly instead of a lower bound on this

value.

For constraint (5.12): We can maximize all the nonzero eigenvalues of K by setting
each transition rate to its maximum value subject to condition (3.18) and constraint
(5.12):

kij = (]./ZL'?) min(cij, Cji) s (Z,]) & 5 .

This is evident by using the Courant-Fischer min-max theorem [66] to express each
nonzero eigenvalue of S, and therefore of K, in terms of a quadratic form x*Sx (x*

is the conjugate transpose of x), which is equal to
> kyrfagty , ai; =2 - a7
(ij)€E€

where @;; is the complex conjugate of a;;.

We investigated the effect of the connectivity of G on Ay(K) for several strongly
connected, directed graphs on three tasks, labeled in Figure 5.2. We used Problem
PR to compute K for graph o with condition (3.18) and Problem P} to compute
K for graph « without this condition and for all other graphs. We modeled each
edge in a graph as providing one unit of equilibrium flux capacity by defining ¢;; = 1
for all (7,7) € € in constraint (5.12) and ¢,y = Ng in constraint (5.11). The target
distribution was z¢ = 0.2, 24 = 0.3, 24 = 0.5.

Table 5.2 gives the resulting A(K) of each graph for both constraints, with

column 2 indicating whether condition (3.18) was imposed. The fully connected
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Figure 5.2: Graphs on three tasks

Table 5.2: Comparison of \y(K) for graphs on three tasks

Graph | Rev. | A2(K), constraint (5.11) | Ao(K), constraint (5.12)
ves | 9.6774 7.7299
o} no | 9.6774 £ 0.0026¢ 7.7299
I} no | 8.0645 £ 2.7936¢ 4.9588 £ 1.6378¢
ol no | 6.5729 £ 2.9691¢ 4.6667 + 2.2111¢
4] no | 5.1667 £ 2.5766¢ 5.1667 + 2.57661

graph « yields the fastest convergence, which is expected since robots can switch
from any task directly to any other task. Each removal of an edge from graph «
lowers \y(K), except in the case of constraint (5.12) applied to the 3-edge cycle 4.
This is because the optimization problem maximized the equilibrium flux of each
edge of graph ¢ (and did not for 3 and «), which offset the stricter limits on task
switching than in the other graphs.

B. Maximizing the overall convergence rate

The asymptotic rate of convergence only dictates the long-term system behavior.
If G is fully connected and x° is unknown, we can speed convergence of the faster
modes by maximizing a measure of the overall convergence rate, which is a function
of all the nonzero eigenvalues of K, A(K) = [M(K) ... A¢(K)]. We define the
quantity to be maximized as 17 A, which weights each eigenvalue equally. We use
Equations (3.12) and (5.10) to write k as a linear function of v = [A(K) 0] €
RS*=S. This allows us to formulate the optimization problem as a linear program
with optimization variable v and objective function 17v.

Let K be a matrix that satisfies Equation (3.12), which sets S constraints on the
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S? entries of K, and Equation (5.10), which sets S — 1 constraints. We now define
the remaining (S — 1)? constraints on K in terms of the variable A(K). Since no
extra constraints can be applied, no k;; may be set to zero, which is why G must be
fully connected.

Construct an orthonormal basis set in R¥, D = {d;,dy,...,ds_1,x9/[|x9||}. De-

fine a matrix in R¥*S as
A=[d..de,1])7 = [AT|1]". (5.19)

Since 17x9 = 1 by Equation (3.20), 1 has a nonzero component in the direction of
x4, so the rows of A are linearly independent. Thus, A is invertible. Let B = A~!.
Then

Bo[Arpe ]| U =[BIx ]

Define C € R(S—Dx(5-1) a5 follows for some fixed A:
C = AKB . (5.20)

Also define C € R5*S as C augmented with an added row of zeros and an added

column of zeros.

Theorem 4. A matriz K can be expressed as K = BCA if and only if it satisfies
FEquations (3.12) and (5.10).

Proof. K is similar to P = MKN, where M, P € R%*% and N = M~!. Subdivide
M as [M” | m]” and N as [N | n], where m,n € RS*!. Then
MN Mn
MN = _ =1, (5.21)
m’N m’n

MKN MKn
MKN = _ =P. (5.22)
m KN m’Kn
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Choose an N with n = x9. Tt follows from Equation (5.21) that m”x? = 1, which
by Equation (3.20) implies that m = 1.

Suppose that K satisfies Equations (3.12) and (5.10). Since m = 1 and n = x4,
these constraints applied to Equation (5.22) make the last row and last column of P
both 0. To satisfy Mn = Mx9 = 0 in Equation (5.21), M can be set to A. Then
M=A,N =B, and P = C, so it follows that K = BCA.

Now suppose that K = BCA. Since CAxd = 0 and 1”BC = 0, K satisfies
Equations (3.12) and (5.10). O

From this result, K is similar to C, and so the eigenvalues of C are A(K). Thus,
we can define C as:

C = diag(A(K)) . (5.23)

Now reformulate Equation (5.10) as Fk = 0, where F € R® x(52=5) and Equation
(5.20) with C determined by (5.23) as Gk = g, where G € RE-D*x(5*-5) anq
g = [A(K) 0]T € R5-D?, Define F as any S — 1 rows of F. Then k can be written
as

k=[G F| 7[gl o' =H 'v . (5.24)

Using definition (5.24) for k, constraints (5.11) and (5.12) are
r'rH'v<e¢,, Hlv<c, (5.25)

where the entries of r € RS*~5 are 2¢ and the entries of ¢ € RS~ are ¢;;/z% In
addition, property (3.13) is
H'v>0. (5.26)

Note that while this property is not needed to prove Theorem 4, it is required to

produce a valid K. The optimization problem can now be posed as Problem P3.

[P?] Maximize 17v subject to v; = 0 for i = S,...,S? — S, Equation (5.26), and

one of the constraints in (5.25).

C. Maximizing the convergence rate for a specified x°
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If G is strongly connected, but not necessarily fully connected, and x° is known,
we can use a stochastic optimization method to directly minimize the time to con-
verge from x°, quantified by ¢;. We implement Problem P§ below using a Monte

Carlo method with k as the variable.

[P?] Minimize ¢ subject to Equations (3.12), (3.13), (5.10), and constraint (5.11)
or (5.12).

Implementation: At each iteration, k is perturbed by a random vector such that the
resulting K matrix satisfies (3.12), (3.13), and (5.10). k is then scaled as in Problem
P1 to satisfy constraint (5.11) or (5.12) while maximizing flux capacity. The resulting
K is decomposed into its normalized eigenvectors and eigenvalues, system (3.19) is
mapped into the space spanned by the normalized eigenvectors, and the appropriate
transformation is applied to compute x(t) using exp(t diag([A(K) 0])). Since the
system is stable by Theorem 1, u(x) always decreases monotonically with time, so
a Newton scheme can be used to calculate t;. To compute K for the linear chain
model, this procedure is used with z in place of x, z° = [XOT 0]7, and the target
distribution z¢ defined as the null space of K at each iteration. The 0;; are constants

from the Erlang density (3.24).

To investigate the effect on the k optimization of accounting for task transition
times, we implemented Problem Pj for the baseline linear and linear chain models
of a simple system with extreme variations in these times. G was defined as graph
« in Figure 5.2, with an average transition time of 1000 for edge (3,2) and 10 for all
other edges. All robots start at site 3, and the target distribution is x¢ = x4 = 0.05,
3 = 0.9. The baseline model was assigned a relatively high ks, because sending
robots along edge (3,2) is the most direct reallocation strategy. The chain model,
which accounts for transition times, was assigned a kszp about 2 x 10° times lower
than the baseline model value; most robots in this model switch from site 3 to site

1 and then site 2, avoiding the long route. A stochastic simulation was run using
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Figure 5.3: Fraction of misplaced robots for stochastic simulations using graph «
in Figure 5.2 and k from the baseline linear and linear chain models, which are
optimized using Problem P3.

the method in Section 4.2 with 20000 robots and the k from both models. Figure
5.3 shows that the k from the chain model produces a more efficient system since it
yields a lower fraction of misplaced robots at equilibrium. The system using the k
from the baseline model cannot maintain many robots at site 2 because most are in

transit on the long route (3,2) and leave site 2 relatively quickly.

If G is fully connected and x° is known, then K can be computed such that
A = x4 — x0 is one of its eigenvectors with eigenvalue A\ > 0. By maximizing \, we
maximize the convergence rate along the vector from x° to x4, the most direct route
in R® to the target distribution. We use the decomposition of K from Theorem 4 to

formulate the optimization problem as a linear program that maximizes \.

Theorem 5. Let K be a matriz that satisfies Equations (3.12) and (5.10); then by
Theorem 4, K = BCA. Let d; = d in definition (5.19), where

d=AJ||A), A =A- (XdTA/||xd||2> xd . (5.27)
Then KA = AA if and only if C from (5.20) is defined as
C=[c|C], I'=[\o0], (5.28)
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where A and C are unconstrained.

Proof. Suppose that KA = AA. Then
KA =BCAA =)A = CAA=)AA. (5.29)
Using Equation (5.27) for d; and the orthonormality of the d;:
dfA = [[AldTdy + (x* A/ ) dfxt = 0 (5.30)

for i = 2,...,5 — 1. From this equation and the fact that 1A = 0 by constraint
(3.20), AA =[d]{A | 0]7. Thus, Equation (5.29) is true if and only if C is defined
as in (5.28). O

We can now pose the optimization problem as Problem Pj, in which property
(3.13) and constraints (5.11) and (5.12) are defined in terms of the entries of BCA,
with d; = d and C defined by (5.28). The optimization variables are A and C.

[P{] Maximize \ subject to Equation (3.13) and constraint (5.11) or (5.12).

5.2.2 Design of Vector Fields on Polytopes

The previous section discussed the optimization of the rate constants £;; for a partic-
ular set of continuous dynamics defined by the multi-affine model (3.15) or the linear
model (3.19). Now suppose that the macro-continuous model can be represented by
a hybrid system, in which each population mode w € 2, is associated with a different
set of continuous dynamics. Recall that the systems we design must have a unique,
stable equilibrium that represents the target distribution x¢. Our control objective
is to steer the trajectories originating in each mode through a sequence of modes
that terminates in the mode containing this equilibrium. This section describes an
approach to achieving this objective through the application of feedback control to
the dynamics of each mode. We can also employ feedback control to place the target

equilibrium inside the terminating mode (see the application in Section 6.3.1A), and
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if the resulting dynamics of the mode are of the form (3.15) or (3.19), then we can
optimize the k;; using the methods in Section 5.2.1.

We consider the case in which each mode corresponds to a region of the continuous
state space that is a full-dimensional polytope, Pg € R%. The implicit description
of Ps defines it as the intersection of a finite number of closed half-spaces. In this
description, there is an integer K > S + 1, nonzero vectors ni,...,ng € R% and

scalars aj, ..., g such that [55]:
Ps={xecR”|Vi=1,.., K :nlx <o} . (5.31)

The intersection of Pg with one of its supporting hyperplanes, {x € R® | nfx =
a;}, is called a facet F; if the dimension of the intersection is S — 1. The vector n; is
the normal vector of F; and, by convention, is of unit length and points out of Ps.
A point v; € R®, j =1,.., M > S+1, is called a vertez of Py if it cannot be written
as a convex combination of the other points.

Given a time Tj, the system dynamics inside Ps are modified by a control input

u:[0,75) = U C R™, where U is a polyhedral set, in the following way:
x = f(x)+ G(x)u, (5.32)

where f : Ps — RS and G : Ps — R5*™. The objective is to calculate a function
u that steers the state of system (5.32) to a facet of Pg, here assumed to be F,
in finite time. This facet is the boundary between two adjacent polytopes that are
associated with modes in the desired sequence. The velocity vector x(7,) must point
out of Pg. The input u should be independent of the initial state, x(0), and take

the form of a continuous feedback law, u(t) = g(x(¢)), where g : Ps — U.

Control of Affine Systems on Polytopes

Suppose that a mode is associated with linear dynamics (3.19) and the conservation

constraint (3.20) is used to eliminate one variable; then f(x) is defined by the affine
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system (3.11). Let G(x) = B, a constant matrix. For this case, necessary and
sufficient conditions for solvability of the control problem are given by [55]. Here we
state the necessary conditions, which are used in an application in Section 6.3.1A.
First, two index sets will be defined. For ¢ € {1,..., K}, V; C {1, ..., M} is the index
set of the vertices that belong to facet F;. For j € {1,..., M}, theset W; C {1,..., K}
contains the indices of the facets connected to vertex v;. The necessary conditions
consist of linear inequalities on the inputs at the polytope vertices, u; = g(v;) € U,

j=1,.., M (Proposition 3.1 in [55]):

(1) V5 € Vi:
n{ (Av; + Bu; +a) >0 (5.33)
Vi € W;\{1} : nf (Av; + Bu, +a) <0 (5.34)
(2) Vi el,...,M\Vi:
Vi€ W; :n] (Av; +Bu;+a) <0 (5.35)
Y nf(Av;+Bu; +a) <0 (5.36)

iew;
These inequalities describe a cone of possible velocity vectors at each of the polytope
vertices. The sufficient conditions are given by Theorem 4.1 in [55] and assume that
g is a Lipschitz-continuous function.
If the polytope is a simplez, a polytope in R® with S+ 1 vertices and S+ 1 facets,
then the necessary conditions are also sufficient. This results from the property that
every point in a simplex can be described as a unique convex combination of its

vertices. The input can be defined as the affine function
u=Fx+g, (5.37)

where F € R™* and g € R™. This input produces an affine closed-loop system. If
ui,...,ugs1 can be found to satisfy the necessary conditions, then F and g can be
calculated from a matrix equation that depends only on these input values and the

vertices.
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The construction of feedback controls on a general polytope is similar to the
simplex case. A sufficient condition that effectively replaces necessary condition
(5.36) is introduced; it is always satisfied if the inputs are unconstrained and if
B is right invertible is introduced. Although any point in a general polytope can
be expressed as a convex combination of the vertices, this choice is not necessarily
unique. To construct a feedback law that remains continuous, a specific choice of
vertices for each point must be fixed by triangulating the polytope. If uy,...,uy; can
be found that satisfy the necessary conditions and the sufficient condition, then the
polytope is triangulated and F and g in feedback law (5.37) are computed for each

simplex.

Control of Multi-Affine Systems on Rectangles

For control system (5.32), where f, G, and u are Lipschitz-continuous functions, the
necessary and sufficient conditions for solvability of the control problem on a general
polytope are identical to the conditions in [55] (substituting f(x) for Ax + a and
G(x) for B) [7]. In [7], the sufficient conditions are adapted to the case where f(x)
is defined by the multi-affine function (3.9) and Ps is an S-dimensional rectangle. If
(G(x) = B and there exist control inputs at all vertices of Pg that satisfy the sufficient
conditions, then a continuous multi-affine feedback law u can be constructed as a
convex combination of these inputs to solve the control problem. This feedback

produces a multi-affine closed-loop system.
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Chapter 6

Applications: Bio-Inspired
Deployment and Multi-Site

Surveillance

The work in this chapter was first presented in [11-16, 69].

In this chapter, the modeling, analysis, and controller synthesis methodologies
are used to design stochastic control policies for robots to allocate themselves among
a network of sites according to a target occupancy distribution for the swarm. The
robots execute the transitions either independently of one another or using local

sensor information, without relying on inter-robot communication.

One of our site allocation scenarios is inspired by a dynamical model of ant “house
hunting,” a decentralized process in which a colony of ants chooses a new nest from
several candidate sites and emigrates there through quorum-dependent recruitment
mechanisms. During the selection process, ants transition at experimentally mea-
surable rates between simple behaviors that arise from local sensing and physical
contact, and the pattern of transition rates ensures that the highest quality nest is

usually chosen, with no ants stranded in a lower-quality nest. The quorum sensing
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mechanism speeds up emigration to a site when it is sufficiently populated, a reflec-
tion of many individual decisions on the site’s quality. The resulting group behavior

is robust to environmental noise and to changes in colony population.

From a robotics perspective, an analogy can be drawn between the ants and
robotic agents with limited communication and sensing capabilities that must dis-
tribute themselves and /or transport objects optimally among several locations. The
features of ant house hunting suggest that a deployment model with quorum-based
recruitment will produce a quick, robust distribution of resources. We develop an
extension of the house hunting model in [42] to allow resource allocation throughout
an arbitrary number of sites. Although we try to reflect ant behavior as accurately
as possible, our goal is not to create a new description of ant house hunting, which
has already been modeled in considerable detail [124], but rather to synthesize robot
controllers that will produce ant-like activity. We implement this model for a sce-
nario in which the robots and their transported items deploy to the better of two
sites. We also add control terms to the original house hunting model that cause
the swarm to split between two sites in a predefined ratio. Both models are hybrid
systems because the swarm switches between different sets of behaviors based on the

existence of a quorum.

We applied the task allocation approach discussed in earlier chapters to two sce-
narios in which each task is the surveillance of a particular site, and task transitions
are effected by navigation between sites. In the first scenario, a moderate-sized
swarm must redistribute among the perimeters of four buildings to achieve a target
distribution as quickly as possible while adhering to a limit on inter-site traffic at
equilibrium. Using the optimization methods from Section 5.2.1, we designed the
robot control policies for two site connectivity graphs and both with and without
knowledge of the initial robot distribution. We also emulated realistic inter-site
travel time distributions by augmenting the baseline linear model of the system with

virtual sites, representing the progress of traveling robots, to create a linear chain
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model, and obtained control policies by optimizing this model. In the second sce-
nario, a very large swarm reallocates to a target distribution among 42 sites by using
quorum-dependent switching between maximum transition rates and rates from the
baseline linear model. As in the ant-inspired models, this strategy is intended to

speed up the allocation process using only local information and no communication.

6.1 Modeling

6.1.1 Micro-Continuous Model

Implementation

All micro-continuous models were implemented in C or Matlab, with the robots
represented as point-mass agents governed by kinematic models. Gillespie’s Direct
Method, described in Section 4.2, is used to generate the sequence of robot transition

events and their initiation times.
A. Bio-Inspired Deployment

To define tasks for the robot deployment scenario, we use the model of ant house
hunting behavior presented in [42]. This model, constructed from experimental ob-
servations of Temnothoraz albipennis ants, predicts the behavior of a colony of ants
that is faced with a choice between two new nest sites, labeled 1 and 2, following
the destruction of its original nest, site 0. Site 2 is a higher quality nest than site 1.
A fraction p of the colony is actively involved in house hunting, and the remainder
consists of brood items and other “passive” ants that must be carried to a new nest.
The “active” ants perform the following tasks: they may be naive ants that search
for a new site, assessors of site 1 or 2, or recruiters to site 1 or 2. Recruiters to site
¢ bring ants from site 0 to ¢, and both their method of recruitment and their target
recruitee depend on whether their population fraction has reached a quorum value,

q. If the population of recruiters to site ¢ is less than ¢, then the recruiters limit
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themselves to using tandem runs to lead naive ants to assess site i. If the recruiter
population exceeds ¢, then the recruiters use the faster method of transport to carry

the passive ants at site 0 to site .

In a robotics context, the active ants are analogous to robots that organize the
distribution of resources or other robots, the “passive” items, among multiple sites.

We will describe the house hunting model in this context from here on.

We define an extension of the house hunting model in which a swarm can dis-
tribute itself across an arbitrary number of sites and transfer passive items anywhere
in the site network. Like the original model, this extended model includes realistic
ant behaviors. Each robot has knowledge of at most two sites, one of which it con-
siders its “home base.” The assessing tasks are subdivided according to the home
base of the robots, and recruiting tasks are subdivided to account for the recruiter’s
starting site. A recruiter starting at the destination site j performs tandem runs
or transports depending on the entire population at j (not just the recruiter pop-
ulation); a recruiter starting at the source site i recruits via transports until it can
determine the population at j. The home base of a recruiter starting at j changes
from ¢ to 7 when the population at j exceeds q. Assessors as well as naive robots
may be recruited during tandem runs, and passive items may be transferred from
any site to any other site. When recruiters to j find that there are no more passive
items to transport from ¢, they “forget” this site and become naive robots at 7. We

reduce the extended house hunting model to the 3-site scenario of the original model.

In both models, each robot is represented as an entity that stores knowledge of
its task, site 0, another site, position, speed, type of robot it is recruiting (in the
extended model), and whether it is navigating to a site. We assume that the robots
can estimate the population at each site using local sensing, possibly through their
encounter rate with other robots at the site, which is how ants measure population
[126]. When a transition is generated, a random robot in the appropriate task state

that is not already en route to a site is selected to attempt recruitment or switch
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tasks, either immediately or after traveling.

The robots are modeled at the scale of ants. Each of the three sites is represented
as a circle of radius 0.02 m; a robot is considered inside the site once it enters the
circle. For the purpose of navigation control, a robot’s destination is defined as the
center of a site circle. These destinations are 65 cm apart, the inter-site distance
used in experiments to derive the site discovery and recruitment rates [125]. We
consider an environment that lends itself to the construction of navigation functions,
described in Section 5.1.1, and the abstraction of a circular boundary with three
circular obstacles (see Figure 6.1). Robots performing tandem runs move at 1.5
mm/sec, while all other robots move at 4.6 mm/sec, the transport speed [42]. The
transition rate units are min—?.

We note that aside from its specification of navigation controllers, the micro-
continuous model is still a coarse-grained representation [96] since it abstracts away
robot behaviors such as quorum estimation, recruiter-recruitee communication, and
inter-robot collision avoidance. Thus, the model still requires more detail in order to
constitute an executable robot controller. We point out that the quorum dependency
does not pose a theoretical impediment to synthesizing such a controller. In the
model, only the robots that visit a site know whether it has attained a quorum
population. From the perspective of transition dynamics, a robot that has perceived
a quorum is in a different state than a robot that has not, but the two robots are

otherwise identical. Therefore, the quorum condition does not violate the Markov

property of the model.
B. Multi-Site Surveillance

In this scenario, each task is defined as the surveillance of a particular site. We
define two different environments: one with a few sites and a moderate-sized swarm
to demonstrate the incorporation of realistic robot motion controllers, and one with
many sites and a very large swarm to illustrate the scalability of our task allocation

approach.
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Figure 6.1: A three-site environment with obstacles (left) and the model with the
contours of a navigation function (right) [O = naive robot, ) = assessor].

In the first environment, the sites to be monitored are four buildings, numbered
and highlighted in Figure 6.2, on the University of Pennsylvania campus. Two dif-
ferent site connectivity graphs G, shown in Figure 6.3, are defined on these buildings.
We assume that the robots can localize themselves on the campus and sense neigh-
boring robots. Robots that are monitoring a building ¢ circulate around the building
perimeter while maintaining their distance from the robot ahead of them. A transi-
tion from building ¢ to building j is randomly assigned to one of these robots. The
selected robot continues to track the perimeter of ¢ until it reaches a point that is
designated as the start of the route from ¢ to j. The robot exits ¢ at this point and
navigates to j while avoiding collisions with other robots, and it begins tracking the
perimeter of 5 at a designated entrance point. Figure 6.4 illustrates the integration

of switching initiations, perimeter surveillance, and navigation in the simulation.

The robot sensing radius p was set to 46 m, which is within the capabilities of
some laser rangefinders. The navigation speed v, is 1.3 m/s, which is attainable
by some mobile robots that are particularly suited to surveillance tasks, such as

PatrolBot® and Seekur®. The perimeter surveillance speed v, is 4.5 times slower.

The second environment is a grid of 42 sites whose interconnection topology is

shown in Figure 6.5. We assume that robots can detect the robot population at
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Figure 6.2: Campus map with cell decomposition of the free space used for navigation
(see Section 6.3.2B).
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Figure 6.3: Numbering and connectivity of surveyed buildings for (a) a strongly
connected but not fully connected graph; (b) a fully connected graph.
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Figure 6.4: Robot activities in the surveillance simulation.
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Figure 6.5: A graph of 42 sites with bidirectional edges.

their current site, and they use this information to determine the rate at which they
switch to neighboring sites. Robots aggregate at sites and travel between them at a

constant velocity; no collision avoidance behaviors are implemented.

CRN Descriptions

A. Bio-Inspired Deployment

We first describe the original house hunting CRN from [42]. A naive robot is
symbolized by X, an assessor of site ¢ € {1,2} by Z;, a recruiter to site ¢ € {1,2} by
Y;, and a passive item at site i € {0,1,2} by B;. We use transition rates that were
empirically determined from observations of ant colonies [125]. Naive robots discover
site ¢ at rate p;. Assessors become recruiters to site ¢ at rate k;, which is directly
related to the quality of the site. \; and ¢; are the rates at which recruiters perform
tandem runs and transports to site i, respectively. p;; is the rate at which assessors
and recruiters at site ¢ encounter site 7 and switch their allegiance by becoming
assessors of that site.

Each reaction that describes recruitment is switched on or off depending on
whether there are recruitees available and whether the population at the destination
site is above the quorum g. We define these switches using the unit step function U

in Equation (3.32). In each recruitment reaction, the flux of recruited robots has the
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form kyU(w)U(A(q,y)), where k is a recruitment rate, w is the population fraction
of recruitees, y is the population fraction of recruiters, and A(q,y) is either ¢ — y or
y — q. To formulate recruitment as a reaction of type (3.7) with transition rate (3
and a recruitee as the reactant, we set the flux associated with such a reaction, Sw,
equal to kyU(w)U(A(q,y)) and solve for 5. In this way, we define the transition

rates 3 and (3¢, which are associated with tandem runs and transports, respectively:

B = XyU(x)U(q — vi)/,
5; = ¢iyiU(bo)U(yi — q)/bo, i=1,2. (6.1)

Now the original house hunting CRN can be written as:

u1+067
-

X D s N

Z 5y oz, B oy,

Zy 5 2y Y1 PV
B B3
By — By By — DB (6.2)
Note that transitions between the active robot tasks are unaffected by the passive
item quantities.

In Section 6.3.1 we define a controlled house hunting model given by (6.22). The
CRN corresponding to this model is the same as the original house hunting CRN,
except that the transition rate in the Y; — Y, reaction is p12.U(y1 — q) and the
reaction Y5 — Y] is added with transition rate (po1. + d/y2)U(y2 — q).

We now construct the eztended house hunting CRN for a network of M + 1 sites.
Y, denotes a naive robot that considers site 7 its home base and leaves this site to
search for a new site. Z;; represents a robot that regards site 7 as its home base and
is assessing site j. Y;;, represents a robot that is located at site n € {4, j} and leaves
to recruit other robots from ¢ to j. B; still denotes a passive item at site 1.

Let vi, zij, Yijn, and b; be the robot population fractions corresponding to these
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states. The population fraction at a site j is

M
pj =Y; +0;+ Z@#Q(yijd + Yjig + Zij) -
17#]

The transition rates associated with tandem runs and transports are derived in

the same way as those in (6.1) and are defined as

o= AU U(g =) /vi s
e = MlikwU(25)U(q — )/ 25
L= iU b)) (1= U(qg — p;) /i + dyi5,:U (bi) /i

i,k € {0,..., M}, (6.3)

All other transition rates are the same as in the original model (6.2).

The extended house hunting CRN is:

Y, w8 7
Zij LN Yiij Zij N Y, 7. Pik B Z
Yiji ParUla=ps) Z Y, Pir1-Ula=p;)) Z, Yy, i (1—U(g—p;))U (b:) v,
Y;j’i M) j,J Yz‘j,i w Y}
B %o, (6.4)

where i, 5,k € {0, ..., M }.
B. Multi-Site Surveillance

The CRN’s corresponding to the surveillance scenarios each have a set of reactions
of type (3.7) only, with the reaction pathways defined by the edges of the strongly
connected graphs in Figures 6.3a,b and Figure 6.5. The transition rates k;; in the
4-site environment are constant, and the rates in the 42-site environment obey the

detailed balance condition (3.18) and are given by
Ky = ki + U(i/2f — @) (K™ — kyy) (6.5)
where ¢ is the quorum for each task.
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6.1.2 Macro-Continuous Models
Bio-Inspired Deployment

For the original house hunting CRN, the species vector is x = [x y; y2 21 22 by by bg]T,
where the entries are the population fractions of robots performing the different tasks.
If we ignore the time that robots take to travel between sites, then this CRN can be

abstracted to the following macro-continuous model:

@ = —(u A+ p2)r — A U@)U(q — y1) — AaeU(2)U(q — 92)
Y1 = k12— pn

Yo = kazo+ prats

Z1 = mzr+ MU (@)U(qg—y1) — pr2z1 — k12

Zy = oz + MoypU(2)U(q — o) + proz1 — koo

50 = —yU(bo)U(yr — q) — d242U (bo)U (y2 — q)
bi = ¢nUbo)U(y —q)
by = ¢22U(bo)U(y2 — q) (6.6)

The model is subject to a conservation constraint on the active robot population:
x+y1+y2+zl+zQ:p. (67)

Due to the unit step functions, which switch the terms describing recruitment on
and off, model (6.6) is a hybrid system H,. We consider only the five active robot
state variables x, y1, ¥, 21, 22, which are decoupled from the three passive robot state
variables by, by, bs. Since the active robot fraction p is constant, z can be eliminated
through constraint (6.7). The system therefore evolves on the four-dimensional state
space

Y,={xeR|x>0, 1"x<p}. (6.8)
The state space is divided into four population modes by the hyperplanes y; = ¢
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and y2 = ¢. The set of modes is defined as 2, = {NN, NQ, QN, QQ}, where

NN: y1<q, y2<q QN : y1>q, y2<q

NQ: yi<q, y2>q QRQA: y1>q, y2>q. (6.9)

When Equation (6.7) is used to replace x with p — y; — ya — 21 — 22 in model
(6.6), the dynamics of each mode can be written as an affine model (3.11), where

X =[y1 y2 21 227, A € R4 and a € R%.

The entries of the species vector x for the extended house hunting CRN are y;,
Zijs Yijis Yijj, and b;, where 4,5,k € {0,..., M}. To illustrate the inclusion of inter-
site robot travel times in the ODE abstraction, we write the corresponding macro-
continuous model as a set of delay differential equations, as described in Section 3.3.2.
The state variables in the model represent population fractions that are physically
located at one of the M + 1 sites. Each time delay 7;; is estimated as the average
of a set of times, obtained from the simulation of the micro-continuous model, that
robots take to travel from site i to site 5. If ¢ and j are written in bold, unitalicized
font in a delay 7;;, then the trip is a tandem run; otherwise, it is a transport or a
solitary journey (which is conducted at the speed of a transport). The measured
time delays are 791 = To2 = 6 min, 79, = Tps = 2.2 min, 7,9 = Ty = 2.5 min,

T12 = T21 — 7.84 min, and Tio = To1 = 2.48 min.

We define 7;1i; = 7j; + 735, * = x(t) for each population fraction z, and z[r;;] =
x(t — 7i;). We also define ng,,q as the number of types of robots Y; and Z;; that a
recruiter robot Y;;; can lead in a tandem run (k # 4, j). Now the macro-continuous

model corresponding to the extended house hunting CRN can be written as:
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Yij,i

Yij.j

Like model (6.6

+
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Zjiq 651 = Ulg — pylm) U (bo)yis ] + 63U (b)) (6.10)

), the total population fraction of active robots is conserved, and

the model can be represented as a hybrid system H,, due to the terms that include

the unit step function.

Suppose that model (6.10) is formulated without time delays.

in matrix form, both this model and model (6.6) can be viewed as switched linear

systems described by Equation (3.31), in which each K, is subject to constraint

(3.12) but not constraint (3.13).

Multi-Site Surveillance

The two CRN’s for the 4-site environment that correspond to the interconnection

graphs in Figure 6.3 are each abstracted to a baseline linear model, Equation (3.19)

38
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subject to (3.20). In order to investigate the effect of accounting for inter-site travel
times, the CRN for the graph in Figure 6.3a is also abstracted to two versions of the
linear chain model, Equation (3.26) subject to (3.27). To determine the parameters
of a full linear chain model that would most accurately emulate the travel time
distributions in the simulation of the micro-continuous model, we collected a set of
750 — 850 7;; from the simulation for each edge (i, ), plotted a histogram of the 7;;,
and then fit an Erlang distribution (3.24) to the histogram to obtain the distribution
parameters w;; and 6;;. Figure 6.6 shows a sample fitting of an Erlang distribution
to 7;; data for one edge, and Table 6.1 lists E(T;;) (the average 7;;) and w;; for each
edge. The optimized K for this chain model is called K fuil- For comparison, we also
computed a optimized K, called Kone, for a one-site linear chain model in which
each w;; = 1 and each 0;; is 1/E(T};) = 6;;/w;; from the full chain model. In this
case, the Erlang distribution reduces to an exponential distribution with the same

mean value.

Note that each travel time 7;; is measured as the the sum of 7, the time for

77
a robot to reach the exit on building ¢ from the position at which it commits to

the transition, and Tf},

the travel time from the exit to building j’s entrance. The
robots at ¢ are uniformly distributed around the perimeter (see Section 6.3.2B) and
are randomly selected for transitions; therefore, 7% has a uniform distribution. The
distribution of TZ-I} is affected by the congestion on the roads and at the target sites,

which determines the amount of time spent avoiding collisions.

The predictive value of the linear chain model depends on how well the travel time
distributions are characterized. The effects of crowding, localization errors, collision
avoidance, and quorum estimation can be readily incorporated into the linear ODE

framework if we are able to model the distribution of the resulting delays.

The CRN that describes the 42-site environment is abstracted to a switched linear

system (3.31), in which each K, has the structure (3.14).
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Figure 6.6: Histogram of the travel times from site 1 to site 4 (758 data points) and
the approximate Erlang distribution.

Table 6.1: Data for Erlang distribution parameters
(i,5) || (1,2) | (1,3) | (14) | (23) | (24) | B4) | (4,1)
E(T;;) || 757 | 738 | 556 | 1507 | 1628 | 1228 | 1072
Wij 14 15 9 6 5 7 6

6.2 Analysis

6.2.1 Micro-Continuous and Macro-Discrete Models

We verify that for each environment, the macro-continuous model accurately pre-
dicts the system performance. To do this, we numerically integrate quantities in the
macro-continuous model and compare these trajectories to those of averaged quan-
tities in simulations of the micro-continuous and macro-discrete models. Gillespie’s
Direct Method, described in Section 4.2, was used to simulate the macro-discrete
models and, as mentioned in Section 6.1.1, the task transitions and their times in
the micro-continuous models.

For all transitions in the surveillance scenarios, the number of “product” robots
in the state counter is incremented when the robot finishes navigating between sites.

For transitions in the bio-inspired deployment scenario, the number of “product”
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robots is incremented either immediately, as in the the transition from assessor to

recruiter, or once the robot completes inter-site navigation.

Transitions that are enabled or disabled by unit step functions are implemented
in a way that can be realized on robots that rely on local sensing and do not have
information about robots at other sites. A transition that depends on the population
at a site is enabled based on the population size relative to a quorum value, which as
stated before can be measured by individual robots. In the bio-inspired deployment
scenarios, a transition that depends on the recruitee population at a site is initiated
independently of the recruitee availability, which is not known to a recruiter at
another site. When a transition associated with recruitment is initiated, the number
of robots in the appropriate recruiter state is decremented in the state counter to
reflect the start of a tandem run or transport. If any recruitees are present when the
recruiter arrives at their site, then their population is decremented in the counter.
At the end of the recruiter’s round-trip journey, the counter is updated to reflect the

recruiter’s success or failure at bringing another robot or passive item to the site.

For all environments, the simulation of the micro-continuous model is run in time
steps At to implement the robots’ incremental navigation through their environment.
The completion of inter-site navigation is checked at the beginning of every time
step, and a transition at time 7 is initiated when ¢t < 7 < t + At. In the macro-
continuous and macro-discrete models, the time delays 7;; due to inter-site navigation

are measured from this simulation.

Figures 6.10, 6.12, and 6.16 show that the micro-continuous and macro-discrete
trajectories match the macro-continuous model fairly closely. As the robot popula-
tion approaches infinity, the standard deviations of ensembles of these trajectories

should decrease to zero, as illustrated in Figure 6.13.
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6.2.2 Macro-Continuous Model

A. Bio-Inspired Deployment

We apply reachability analysis to investigate certain properties of the original house
hunting model. We consider the dynamics of the active robots only, so that the state
space is defined by (6.8) with population modes (6.9). Since the dynamics of each
mode in this model consist of the affine model (3.11), which is a special case of the
multi-affine model (3.9), we can use the MARCO reachability algorithm described in

Section 4.3.2.

First, we determine whether a quorum of recruiters at site 1 will ever be reached
for a certain value of kq, which reflects the quality of site 1, for the situation in which
all robots start as naive. The initial set is the four-dimensional unit cube, and we set
N = 52 robots and ¢N = 10, according to the values in [42]. Figure 6.7a shows the
new reach set volume per iteration of the algorithm as a fraction of the total state
space volume. The algorithm was set to terminate according to Proposition 6 with
¢ = 0.05. Figure 6.7b shows the projection of the reach set onto the y; N —y, N plane.
The curved black lines are the solutions of the macro-continuous model starting at
the vertices of the initial set. From comparison with these solutions, the reachable
set correctly predicts that site 1 will never achieve a quorum of 10 robots. The large
reach set projection to the right of y; /N = 4 resulted from defining some relatively
large modes and from covering footprints with bounding boxes to reduce polyhedral
complexity.

Second, we identified sets of initial conditions that guarantee that a particular
site reaches a quorum before the other site. This analysis was conducted in mode
NN, for which the state space is defined as yi,ys € [0,0.0481], z1, 22 € [0,0.0721].
This space was divided into modes of dimension 0.0120 x 0.0120 x 0.0144 x 0.0144
for refinement of the reachable set. Initial set A is defined as y; € [0.0337,0.0385],
y2 € [0,0.00481], z1, 2z € [0.0288,0.0337]; initial set B is y; € [0,0.00481], yo €
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Figure 6.7: (a) Increase in reachable set volume at each iteration divided by state
space volume as a function of the number of iterations. (b) Projection of 4-D reach-
able set for k; = 0.0025 (run time = 9251 sec).

[0.0240, 0.0288], 21, 2o € [0.0288,0.0337].

In Figure 6.8, the unions of gray polygons are two-dimensional projections of the
reachable set from each initial set. The computation took 33.5 minutes and consisted
of 8 generations for box A and 22.3 minutes, 9 generations for box B. Each four-
dimensional box has 16 vertices, which are projected onto the y; — y, plane. The
black lines are the solutions of the macro-continuous model starting at these vertices.
As shown by comparison with these solutions, both reachable sets correctly predict
the first site to achieve a quorum of 0.0481. The reachability results show that all
system trajectories starting inside box A and box B will first cross the quorum for
site 1 and site 2, respectively. The algorithm guarantees this without computing any

of the actual trajectories.

B. Multi-Site Surveillance

By Theorem 1 and Corollary 1, the baseline linear and linear chain models of the
4-site environment each converge to a unique, designable distribution of population
fractions at each task starting from any initial distribution x°. We can arrive at the

same result for the linear switched system model of the 42-site environment using
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Figure 6.8: Two-dimensional projection of reachable sets; p = 0.25, ¢ = 0.0481,
1 = pe = 0.013, Ay = Ay = 0.033, p12 = 0.004, k; = 0.019, ky = 0.020 (values are
from [42], [125]).

the analysis in [69], where this model is represented as a hybrid system with two
modes, a quorum mode in which z;/2¢ > ¢ for some i and a linear mode in which

z;/xd < q Vi.

6.3 Controller Synthesis

6.3.1 Macro-Continuous Model
A. Bio-Inspired Deployment

Using results from Section 5.2.2, we add control terms to the original house hunting
model (6.6) to cause the swarm to split between two available sites at a target
occupancy ratio o« > 1. We consider the active robots only and require that the

system has one equilibrium at:

p ap
= 6.11
1+Oé y Y2 1+Oé ) ( )

r=21=2=0, y =
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Recall that the population modes of the system are defined by (6.9). We require
that the equilibrium (6.11) is inside mode Q@Q; that is, (14 «a)g < p < ap. The state
space associated with this mode is defined by a four-dimensional simplex.

We first add controls to the dynamics of mode Q@) so that it contains equilibrium
(6.11) and no trajectories leave the mode. We redefine the dynamics of QQ), given
by (3.11), as the control system x = Ax 4+ Bu + a, where u is the affine feedback

law (5.37). The controlled dynamics are thus:
x = (A +BF)x+ (a+ Bg) . (6.12)

To enforce the conservation law (6.7), we dictate that the controls must result
in a balance of terms among the differential equations. We only add controls to the
recruiter dynamics, since the recruiter fractions alone determine the current mode

and the steady state:

g1 = k121 — pracyr + pareye +d

Y2 = koza + pract — paicy2 — d (6.13)
Y5 robots can now switch allegiance to Y; at rate poi.. p12. may differ from pio in
the original model, and d is a constant.

To ensure the desired equilibrium, we set y; = 0, 1o = 0 and substitute the values

in Equation (6.11) for the variables. This results in the equation:

(Oépglc - p120) + d=0. (614)

l+a

To prevent trajectories from escaping mode QQ, we apply conditions (5.34) and
(5.35) at the facets F; = {x € R* | n{x = —¢} and F, = {x € R* | nlx = —¢},
where n; = [-1 00 07 and ny = [0 — 1 0 0]” are the normal vectors of Fy and F,

respectively. The vertices of the simplex corresponding to mode Q@) are:

vi = [gq00]" vi=q(p—q) 00"
vo = [qq(p—2q) 0" vs=[(p—q)q00]"
vs = [gq0(p—29)]" (6.15)
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Setting f(x) = x from Equation (6.12) and noting that x = [y, 4o 21 Z»]7, the

conditions to be satisfied are:
nl f(v;) <0, i€{1,2,3,4} = 9§ >0 (6.16)
ny f(v;) <0, j€{1,2,3,5} = % >0, (6.17)
where ¢; and 7, are evaluated at the designated vertices using the equations in (6.13).

The resulting set of inequalities is satisfied if conditions (6.16) and (6.17) are satisfied

when evaluated only at vertex vy:

Y1 = —p12cq + paeq+d >0 (6.18)
Yo = pracqd — paeg—d=>0 (6.19)
= d = (pr2c — P21c)q - (6.20)

The relationship between pis. and po1. may be derived by substituting the ex-
pression for d from Equation (6.20) into Equation (6.14):

pr2e _ ap—q(l+a)
pare  p—q(l+a)

(6.21)

We now modify the dynamics of the other three modes so that they contain no
attractors and trajectories starting inside these modes follow the pattern: NN —
NQor QN, QN — QQ, NQ — Q. We do this by replacing the recruiter dynamics
in these modes with the equations in (6.13) with switches that prevent states from
flowing in the —y; direction in modes NN, N@ and in the —y, direction in modes

NN, QN.

The controlled house hunting macro-continuous model is thus defined as:

&, Z1, Zy from model (6.6)
th = k121 — precn Uy — q) + (parcyz + d)U(y2 — q)
Yo = kozo + p12cy1U(y1 - q) - (p21c92 + d)U(?JQ - Q) (6-22)

We replace p1o in the Z;, 25 equations with po..
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Figure 6.9: Trajectories of the original and controlled house-hunting models with
p = 0.25, ¢ = 0.0481, p1 = po = 0.013, Ay = Ay = 0.033, k; = 0.019, ky = 0.020
(values are from [42] [125]); o = 1.25, p1a. = 0.01, pa1. = 0.0069, d = 0.000147.
The dashed lines are trajectories beginning at (a) [0 0 0 0], (b) [0.1 0 0.1 0], (c)
00.100.1]7, (d) [0.20 0 0]7, and (e) [0 0.2 0 0]

Figure 6.9 displays numerically integrated trajectories of models (6.6) and (6.22)
on a 2-D projection of the state space. The thick solid line is the trajectory of
model (6.6) beginning at x = [0 0 0 0]7. The dashed lines are sample trajectories
of model (6.22) for p = 0.25, @ = 1.25. The figure shows that the original model
converges to the equilibrium [0 0.25 0 0]7, whereas the controlled model converges

to the equilibrium (6.11).

B. Multi-Site Surveillance

For the 4-site environment, we compared the convergence of the micro-continuous
model to a target distribution x¢ for different sets of transition rates k, each com-
puted from one of the optimization problems in Section 5.2.1 using the baseline linear
model. Problems P! and P} were used to compute rates for the system with graph
Figure 6.3a, and Problems P} P? P3 and P} were used for the system with graph

Figure 6.3b. To investigate the utility of the linear chain model in optimizing the
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transition rates, we compared the performance of the micro-continuous model with
k computed from Problem P using the baseline linear model, the one-site linear
chain model, and the full linear chain model.

For the 42-site environment, we compared the convergence of the micro-continuous
model to x¢ for three different K: K,,, a non-optimal K in the baseline linear model;
K™ a K in the baseline model optimized by Problem P$; and K¢, which defines
a linear switched system with rates given by (6.5), in which the k;; are from K,
kMt =12, and ¢ = 1.05. K[ is subject solely to constraints k;; < kK™% with no
constraints on inter-site traffic at equilibrium; this means that it is the optimal K

with respect to system convergence rate.

6.3.2 Micro-Continuous Model
A. Bio-Inspired Deployment

Navigation functions, described in Section 5.1.1, are used to direct robot travel
between sites while preventing collisions with obstacles. The position of a robot
k is updated at each time step by numerically integrating the equation

v

- Veor(a af) 6.23
Wotanal " P i) (6.23)

qr =
where v is the robot’s speed, qf is its current destination site, and ¢, is defined
by Equation (5.2). The ¢, of each robot share a common x, which was selected
empirically to be high enough to make ¢, a valid navigation function and to eliminate
local minima. Various combinations of v and q¢ are used to produce different robot

motion controllers; for example, one w € (2. is navigating from site 0 to site 1 at the

tandem-running speed.

B. Multi-Site Surveillance

This section describes the robot motion controllers for perimeter tracking, inter-site

navigation, and robot collision avoidance in the 4-site environment.
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Suppose that the boundary of a building m is parameterized by a vector s(s) € R?
that maps arc length s to (x,y) coordinates. A robot k monitoring the perimeter
of m moves in the direction of a unit vector tangent to this boundary, fi,,(s) € R
To create an approximately uniform distribution of robots around the perimeter, we
specify that the robot k£ slows down by a fraction ( of its perimeter-tracking speed
v, if its distance gy from the robot [ in front of it is less than p,,/N,,, where p,, is

the perimeter length and N,, is the site population. The robot kinematics are then

defined as
qk = (1 - U(leapmaNm)C) Up ﬁm(qk) )

where (g, Pm, Nim) = 1 if qu < pm /Ny and 0 otherwise.

To implement inter-site navigation, we use an approach similar to that described
in Section 5.1.1. First, we decomposed the free space into a tessellation of convex
cells, shown in Figure 6.2. Each edge (7, ) was defined as a sequence of cells to be
traversed by robots moving from an exit point on the perimeter of building ¢ to an
entry point on the perimeter of j. Dijkstra’s algorithm was used a priori to compute
the sequence with the shortest cumulative distance between cell centroids, starting
from the cell adjacent to the exit at ¢ and ending at the cell adjacent to the entrance
at j. The robots are provided with the cell sequence corresponding to each edge.

Define N, as the set of robots within the sensing radius p of robot & and v, as
the navigation speed. The robot kinematics for navigation are

Un
g (ar) + na(ar, Ni) |2

qx (ng(qr) + ng(ar, M)

where vector n,(qy) is computed from local potential functions to ensure arrival at
the goal cell and vector n,(qg, i) is computed from repulsive potential functions
to achieve inter-robot collision avoidance, as described in Section 5.1.2.

Suppose that qy is in cell c. Let A be the unit vector pointing out of ¢ orthogonal
to its exit facet. Let nj , N, be unit vectors pointing into ¢ orthogonal to each facet

adjacent to the exit facet, and define dy;, dgo as the distance from robot k£ to each
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of these facets. Also define n,v,x > 0. Then
ny(qi) = n g + v (1/d 8f +1/dg;, 05,) .

In the last cell in the sequence, this vector is replaced with one pointing from qj to
the perimeter entrance point.
Let qu = ||qw|] = ||ax — ai|| and £ > 0. Define a sum of vectors that point away

from each neighboring robot,

n, (aqe, Ni) = . (2 In (§qi) — L) Al -

5 San &

This is derived from the example potential function given in Figure 5.1, with the
added parameter ¢ that, when lowered, increases the range of repulsion between

robots. Finally,

_ |my(qe)ll2
na(qkaNk) - Hnn(qk,Nk)Han(qk’Nk) .

6.4 Results

6.4.1 Bio-Inspired Deployment

We simulated the macro-continuous, macro-discrete, and micro-continuous models
of the extended and controlled house hunting systems. The extended house hunting
system is defined for the case M = 2, the 3-site scenario of the controlled system.
All robots and passive items are initially located at site 0, and all active robots begin
as naive.

Figure 6.10 shows the population fractions at sites 1 and 2 in all three models of
the extended house hunting system. The robot population is N = 832. In all models,
both sites achieve a quorum prior to 30 min and initially experience population
growth. Site 2 outpaces site 1 in growth because robots commit to site 2 more
quickly (ko > k1) and are more willing to switch allegiance from site 1 to 2 than

vice versa (p1a > po1). By ~130 min, all passive items have been transported from
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Figure 6.10: Population fractions at sites 1 and 2 in extended house hunting system;
p=0.25q=(10/208)N, 1 = ps = 0.013, A\ = Ay = 0.033, p12 = 0.008, k; = 0.016,
ke = 0.020, ¢1 = ¢ = 0.099 (values are from [42], [125]); po1 = 0.002, kK = 2.7.
Dashed vertical lines correspond to the times of the snapshots in Figure 6.11.

site 0, and recruiters “forget” this site. The newly naive robots at site 1 or 2 repeat
the process of finding, assessing, and recruiting to the other available site; however,
now they can recruit from the site as well. Assessors at either site are more likely to
recruit to the site of higher quality, which results in a net transport of passive items
to site 2. By ~376 min in the macro-continuous and micro-continuous models, all
passive items at site 1 have been removed to be reunited with those at site 2; only
active robots remain at site 1. Due to stochastic fluctuations, some passive items

still remain at site 1 in the macro-discrete model.

Figure 6.11 shows snapshots of the micro-continuous simulation at times indicated
by the vertical lines in Figure 6.10. The curvature in the robot paths is due to the
shape of the navigation functions, one of which is displayed in Figure 6.11a. The
snapshots correspond to the initial searching and assessing phase (6.11a), the period
of transport from site 0 (6.11b), the realization that site 0 contains no passive items

(6.11c), and the period of transport between sites 1 and 2 (6.11d).

Figure 6.12 displays the recruiter fractions at sites 1 and 2 in all three models of
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Figure 6.11: Micro-continuous simulation snapshots for extended house hunting sys-
tem (O = naive; & = assessor; % = recruiter; x = passive) showing the swarm at (a) 2.4
min (top left); (b) 80 min (top right); (c) 130 min (bottom left); and (d) 225 min (bottom
right). The navigation function that is used in a navigation controller (6.23) with q¢ at
site 2 is shown at the top left.

the controlled house hunting system. The target occupancy ratio is set to a@ = 1.25
and the active robot population is p/N = 208. At 700 min in the macro-continuous
model, y; = 0.1089 and y, = 0.1357, which fall short of the equilibrium values in
(6.11) by the fraction of recruiters that are traveling between sites 1 and 2. The
final values of y; and y, in the other two models are close to these fractions. Thus,
the equilibrium occupancy ratio in the macro-discrete and micro-continuous models

approximates o = 1.25.

To investigate the effect of robot population on the equilibrium recruiter fractions,

macro-discrete simulations were run for active robot populations of 52, 208, and 832.
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For each run, y; and y, were sampled at intervals as close as possible to 2 min from
1000 to 5000 min. Figure 6.13 shows the resulting frequency distributions of
and y,. The vertical lines near the centers of the distributions mark the macro-
continuous equilibrium values. The mean and standard deviation of each variable
are also recorded in the figure. The standard deviation decreases as the number of
robots increases: it is less than 15% of the mean for a relatively modest population
of 52 active robots and less than 4% for a larger but still realistic population of 832.

An interesting question is whether the features of ant house hunting actually
provide an advantage in fulfilling the deployment task. For example, consider the
simpler linear model, which does not rely on quorum sensing or switching between

controllers but has the desired equilibrium fractions of z, y;, and y, from (6.11):

T o= —(p + pe)z
Y1 = [T — piacyi + paicy2 +d

Yo = [+ pracyi — p2icy2 — d (6.24)

where p1a., po1c and d satisfy Equation (6.14). It would be possible to use (6.24)
as our macro-continuous model and synthesize robot behaviors from it using our
methodology. Indeed, for the particular set of parameters used in our simulations,
the difference between models (6.22) and (6.24) is not substantial. However, if the
discovery rates p; and po in both models are reduced by a factor of 10, the importance
of tandem runs becomes apparent. Fig. 6.14 shows simulation results' of 2 + v;,
i = 1,2, for the controlled model (6.22) and y;, ¢ = 1,2, for the simple model
(6.24) in this situation. The controlled model converges significantly faster to the
target equilibrium. This illustrates a possible advantage of the strategy employed
by ants over the more obvious linear model (6.24): the recruitment mechanisms can
significantly speed up the deployment process to compensate for a low discovery rate

arising from environmental constraints.

'Both models were simulated as delay differential equations with the previously defined time
delays to include the effect of navigation.
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Figure 6.12: Recruiter fractions ¥, y» in controlled house hunting system; parameters
are the same as in Figure 6.9.

6.4.2 Multi-Site Surveillance
4-Site Environment

We simulated the macro-continuous and micro-continuous models of the 4-site surveil-
lance scenario. The swarm is initially split equally between buildings 3 and 4 in all
simulations. In the optimization problems, the total equilibrium flux capacity ¢y
for all possible edges (graph Fig. 6.3b) was set to 0.175 robots/s and distributed
among the edges in proportion to the cumulative distance between the centroids of

their associated cells.

In the comparison of the system with different optimized k from the baseline
model, we used a population of 250 robots and the target distribution z¢ = 0.1,
rd =04, 28 = 0.2, and 2¢ = 0.3. The snapshots in Figure 6.15 illustrate the robot
redistribution for one trial. In Figure 6.16, we compare performance in terms of
||x — x9||; for 40 simulation runs of the micro-continuous model and the macro-
continuous DDE model (3.22) with the same k. Each time delay 7;; in the DDE

model was estimated as the average of 750 — 850 robot travel times at equilibrium
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Figure 6.13: Histograms of equilibrium ¥; and ys in controlled house hunting system
for pN = 52 (light gray), 208 (dark gray), and 832 (black), where p = 0.25. Bar
width is 1/N for each value of N. Vertical lines mark y; = 0.1089 and y, = 0.1357.

from site 7 to j, collected from a micro-continuous simulation using site graph Fig.
6.3b. The simulation runs average to a plot that is close to the DDE trajectory and
display little variability, even though the swarm is only of moderate size. We now

discuss several key points from the micro-continuous simulation results.

Tradeoff between convergence rate and equilibrium traffic: Figures 6.17 and 6.18

compare system performance for different k in terms of the distance from equilibrium,
v(x,y) =[x —x% —1Ty . (6.25)

This quantity decreases to zero at equilibrium because then the fraction of travelers,
1Ty, accounts entirely for all the discrepancies |x; — z¢|, i = 1,...,4. Each plot is
an average over 40 micro-continuous simulation runs, and the bold numbers beside
the legends are the average traveler fractions at equilibrium for each k. (Standard
deviations are not shown to avoid cluttering the figures; the maximum standard
deviation over all plots is 0.078.) The data in these figures verify that there is a

tradeoff between rapid convergence to equilibrium and the number of idle transitions
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Figure 6.14: Population fractions at sites 1 and 2 in the controlled house hunting
macro-continuous model and simple model (6.24); parameters are the same as in
Figure 6.9 except for p; = pus = 0.0013.

between sites at equilibrium. For instance, the runs in Figure 6.17b are the slowest
to converge, and they yield the lowest equilibrium traffic fractions. It is notable that
this tradeoff can occur to different degrees depending on the flux constraint, (5.11)
or (5.12). The Problem P plot converges slightly faster in Figure 6.18b than in

Figure 6.18a, but it has a lower equilibrium traffic fraction.

Faster convergence with increased site connectivity: Figures 6.17 and 6.18 show that
for both flux constraints, (5.11) and (5.12), the runs for graph Figure 6.3b converge
faster to equilibrium than those for graph Figure 6.3a. This is due to the difference in
allowable pathways between the initial and final distributions. In Figure 6.3b, robots
can travel directly from sites 3 and 4 to sites 1 and 2, while in Fig 6.3a, they can only
reach sites 1 and 2 via the path 3 — 4 — 1 — 2, which prolongs the redistribution
process. The greater number of edges in Figure 6.3b also reduces the impact on
convergence of limiting each edge’s flux capacity. The range of convergence times to
equilibrium for Figure 6.3b are similar for both constraints, while the convergence

times for Figure 6.3a increase significantly when constraint (5.12) is applied.
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Figure 6.15: Snapshots of a run using k from Problem P} with constraint (5.12). The
red robots ([J) are not engaged in a transition; the orange robots (x) have committed
to travel to another site or are in the process of traveling.
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Figure 6.16: DDE macro-continuous model and micro-continuous simulations using
k from Problem P{ with constraint (5.12). Micro-continuous plots show the average
over 40 runs + standard deviation.
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Limits on edge flux capacities eliminate the advantage of knowing x°: Since the k
produced by Problems P$ and P{ are optimized for a specific x°, it seems likely
that for any given x° the Problem P} and Problem P{ runs will converge at least
as fast as the runs corresponding to other problems, which optimize k for the entire
domain of x°. As Figures 6.17a and 6.18a show, this is true if constraint (5.11) is
used. This is because the flux capacity can be distributed among edges in any way
as long as total capacity does not exceed a limit. However, when constraint (5.12)
is used, limits are placed on edges that, if left unconstrained, would be allocated a
higher flux capacity to redistribute robots from x° to x4. The problems that are

0

independent of x” are more robust to these limitations; their corresponding runs

converge as fast as the runs that rely on x° or outperform them.

K from convex optimization is competitive compared to K from stochastic optimiza-
tion: The fastest-converging runs that use k from Problems Pi, Pi® P2 and P}
attain equilibrium at least as quickly as the corresponding runs that use k from Prob-
lem P?. Hence, we can use efficient convex optimization techniques to compute a k
that yields the same system performance as a k from a much more time-consuming
stochastic optimization approach.? This facilitates the quick computation of k in

real-time task allocation scenarios.

In the comparison of the system with optimized k from both the baseline and

chain models, we used a population of 240 robots and the target distribution z¢ =

2d = 28 = 2¢ = 0.25. In Problem P}, the same flux constraint (5.11) is applied
to both the baseline and chain models so that the models have the same equilib-
rium traveler fraction, which is necessary to have a basis for comparing the system

convergence rates due to the tradeoff between these properties that was discussed

earlier.

20n a standard 2 GHz laptop, one Metropolis optimization run used for graph Figure 6.3b took
about 15 minutes for ¢y to decrease slowly enough with each iteration for K to be deemed close
enough to optimal, while all the convex optimization programs computed an optimal K in less than
a second.
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Figure 6.17: Distance from equilibrium for micro-continuous simulations using graph
Figure 6.3a with (a) constraint (5.11) and (b) constraint (5.12). Each plot is an
average over 40 runs that use k from the problem labeled in the legend. The bold
number to the right of each legend entry is the equilibrium traveler fraction averaged
over 1000 data points of the corresponding plot.

Figures 6.19(b),(d) show that starting at ~ 15000 sec, each average traveler
fraction over 40 micro-continuous simulation runs oscillates close to the average
equilibrium value from the simulations using K, the optimized matrix in the baseline
model. Thus, K, Kone, and K suu yield approximately the same equilibrium inter-site
traffic. Figures 6.19(a),(b) show that K and K,,. produce very similar trajectories
for the average fraction of misplaced robots pu(x), average traveler fraction, and
associated standard deviations. The same can be said of the results for K and K Full
in Figures 6.19(c),(d), since the relatively high standard deviations indicate that any
disparities may not be significant.

This result arises from the fact that the average 7;; for the edges are only within a
factor of 3 of each other (see Table 6.1), as opposed to a factor of 100 in the scenario
giving rise to Figure 5.3, so there is not much advantage in terms of convergence

to rerouting robots away from a “long” route. Also, the average 7;; is at most only
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Figure 6.18: The same quantities as in Figure 6.17 for runs using graph Figure 6.3b.

about a third of the average robot waiting time at site 1, k;i;l, which indicates that
the travel times do not in general contribute as much to system convergence time as
site occupancy times.

The similarity among the results for the micro-continuous simulations run with
transition rates from the baseline and chain models indicates that for the purpose
of controller synthesis, the baseline model is a sufficiently accurate representation
of the system in this case. Hence, we can simply optimize the matrix K and do

not have to incur the greater computational expense that is needed to optimize the

larger matrix K.

42-Site Environment

This work was done in collaboration with M. Ani Hsieh and Addm Haldsz.

We simulated the macro-continuous and micro-continuous models of the 42-site

scenario using a robot population of 20,000. The robots are initially distributed
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Figure 6.20: Snapshots, sequenced from top left to bottom right, of a simulation in
which 20,000 robots use the rates in K,, to redistribute to form the design specifi-
cation for the number 8. Created by Adam Haldsz; reproduced from Figure 4 in [69].

among sites that form the number 0; they must redistributed to another set of sites
that form the number 8. Snapshots of the simulation are shown in Figure 6.20, in
which the red circles represent the number of the robots at each site. The larger the

circle, the higher the robot population.

Figure 6.21 plots ||x — x9||; over time for micro-continuous simulations that use
transition rates from each of the three K. The figure shows that the quorum-based
model allows us to maximize transient traffic between sites without sacrificing the

limit on the number of idle trips at equilibrium.

Figure 6.22 shows snapshots of a second, more radical redistribution of 20,000
robots among the 42 sites. The robots are initially located at the four corner sites,
and the task is to redistribute them to another set of sites that form the letter S.

Robots are denoted by dots that are arranged into circles at each site.
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Figure 6.21: A measure of the fraction of misplaced robots vs. time for micro-
continuous simulations using K,,, K"**, and K%. Created by Adam Haldsz; repro-
duced from Figure 6a in [69].
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Figure 6.22: Snapshots, sequenced from top left to bottom right, of a simulation in
which 20, 000 robots use the rates in K¢ redistribute to form the design specification
for the letter S. Created by Adam Halasz; reproduced from Figure 7 in [69)].
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6.5 Conclusions

We have presented an approach to the problem of redistributing a swarm of robots
in a decentralized manner among a network of sites without using inter-robot com-
munication. We designed ant-inspired behaviors that cause robots to converge to
the best site or split between two sites in a specified ratio, possibly while transfer-
ring resources. We also demonstrated our task reallocation approach on a realistic
surveillance scenario with 4 sites and a much larger system with 42 sites. In the
4-site scenario, we compared system performance for the k;; from the baseline linear
model, which was designed using the optimization methods from Section 5.2.1 for
producing fast convergence to a target distribution and long-term efficiency. We
accounted for inter-site travel times, measured from the micro-continuous simula-
tion, by constructing a linear chain model, which did not yield significantly different
performance in this case. The 42-site scenario employed ant-inspired quorum-based
control policies that, when used with non-optimal £;;, outperformed both optimized

and non-optimal baseline models.
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Chapter 7

Application: Swarm Robotic
Assembly System

The work in this chapter was first presented in [17,109] and was done in collaboration

with Loic Matthey; see individual sections for the division of work.

We consider a scenario in which a large supply of heterogeneous parts must be
assembled into target amounts of different products. The assembly strategy should
be scalable in the number of parts, easily modeled to facilitate the optimization of
appropriate parameters for fast production, and quickly adjustable when product
demand changes.

We fulfill these criteria by using a swarm of autonomous mobile robots to execute
the assembly task in a decentralized fashion. The robots move randomly inside an
assembly workspace, identify and pick up randomly scattered parts, and combine
them according to a predefined assembly plan. These actions are performed using
local sensing and local communication with parts and with other robots. Since
robots and parts are uniformly randomly distributed throughout the workspace, the
system can be modeled as being well-mixed, which allows us to abstract it to an ODE
macro-continuous model according to the justification in Chapter 3. We optimize the

reaction rate constants in the corresponding macro-continuous model to minimize
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system convergence time while enforcing target quantities of all parts at equilibrium.
It should be emphasized that the rate constants are optimized with respect to the
particular assembly plan that has been chosen; the plan itself may be optimized
as well, although this problem is not addressed in this thesis. We then map these
parameters onto probabilities of executing assemblies and disassemblies, which are
used as robot control policies in the micro-continuous model. When product demand
changes, the only adjustment needed is the update of these probabilities, such as via a
broadcast. This strategy can be readily implemented on resource-constrained robots

and is scalable in the number of parts and robots.

We use the modeling, analysis, and controller synthesis methodologies to apply
this strategy to the following assembly task. There are four types of parts, numbered
1 through 4, which are combined to form larger parts according to the assembly plans
in Figure 7.1, culminating in final assemblies F'1 and F'2. These plans were chosen to
allow subassemblies to be created in parallel, contributing to fast production of F'1
and F'2. The assembly plans, like the control policies, can be preprogrammed onto
the robots and updated via a broadcast if they are changed. Parts bond through
bi-directional connections at sites along their perimeters. The assembly task is ex-
ecuted by a group of robots in an arena that is sufficiently large to prevent robot
crowding. Initially, robots and many copies of parts 1 through 4 are randomly scat-
tered throughout the arena. There are exactly as many parts as are needed to create
a specified number of final assemblies, and the number of robots is at least the total
number of scattered parts. Each robot has the ability to recognize part types, pick up
a part, combine it with one that is being carried by another robot, and disassemble

a part it is carrying.
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F2

Figure 7.1: Assembly plans for final assemblies F'1 and F2.

7.1 Modeling

7.1.1 Micro-Continuous Model
Implementation

The robot and part controllers were initially coded by Spring Berman and then mod-
ified by Loic Matthey to improve scalability, accommodate arbitrary assembly plans,
and implement the desired robot motion patterns. Spring Berman designed the robot
arms and parts, and Loic Matthey designed the arena environment.

We implement the assembly task in the robot simulator Webots [113]. We use
the robot platform Khepera III, which has infra-red distance sensors for collision
avoidance. Each robot is outfitted with a protruding bar with a rotational servo
at the tip. A magnet on the servo bonds to a magnet on the top face of a part,
and the servo is used to rotate the bonded part into the correct orientation for
assembly. Parts bond to each other via magnets on their side faces. Magnets can be
turned off to deactivate a bond. Robots and parts are equipped with an infra-red
emitter/receiver for local communication and for computing relative bearing, which

is used to align robot and part magnets and to rotate a part for assembly. The task
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Figure 7.2: Snapshot of the arena in the realistic physical simulation. Robots carry
parts at the end of a protruding bar.

takes place inside a walled hexagonal arena. Figure 7.2 shows a snapshot of the
simulation.

To achieve the spatial homogeneity that we assume in our models, robots move
according to a random walk, and we verify that the space is uniformly covered
(Figure 7.3). Robots and parts switch between action states based on information
they receive via local sensing and communication. When a robot encounters a part
on the ground, it approaches and bonds to it and starts searching for a robot that is
carrying a compatible part, according to the assembly plans. When one is found, the
two robots align their parts and approach each other to join the parts. One robot
carries off the newly assembled part while the other resumes searching for a part on
the ground. A robot can disassemble a part it is carrying by deactivating a magnetic
part bond, which releases one of the component parts. To control the outcome of
part populations, we directly modify the probabilities of robots starting an assembly

and performing a disassembly.

CRN Descriptions

Loic Matthey developed the CRN’s in this section.
Each part of type ¢ in Figure 7.1 is symbolized by X, and a robot is symbolized by
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Figure 7.3: Average coverage of the arena by 5 robots over 5 runs of 10 minutes
each [108]. The distribution of robots over the arena is approximately uniform.

Xpg. X; may be classified as X, an unclaimed part on the ground, or as X¢, a claimed

part ¢ and the robot that is carrying it. We define a complete CRN, illustrated in

Figure 7.4, that represents each possible action in the micro-continuous model:

Xp+ X/ SN X7,
k+
X4 xe L xe 4 X

Xe4 xe L xe 4 x,
Xe 4 xe 5 xe 4 xp
xe B xe g xu
xe B2, xeq xu

.
XE 5 X4 X

i=1,..8
(& Ckz_ &
X2+X7—>XF1+XR
k+
X5+ X§ 5 XS+ X
k+
Xe+ X¢ 5 x4 X
L
Xpy — X7+ X3
k=
xe B, xeq xp
L
5 X§+ X¢

X (7.1)

In this CRN, e; is the rate constant at which a robot encounters a part of type

7, k:]+ is the rate constant of assembly process j, and k;

is the rate constant of

disassembly process j. Using the decomposition of the stochastic reaction constant c;;

given in Section 3.1.1, we estimate these rate constants as functions of the following
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Figure 7.4: CRN representing all actions in the assembly system.

probabilities:
=Ap*, kK =AppipS, ki=p;, (7.2)

where A is the area of the arena. A is included because it is the proportionality
constant between the k;; and ¢;; of a bimolecular reaction.

¢ is the probability per unit time that a robot encounters a part or another

p
robot. Since our arena size yields a low robot density, this probability is modeled as
being independent of the robot population. The property that robots and parts are

distributed uniformly throughout the arena allows us to calculate p® as ¢§;, given by

ij
Equation (3.4). In this equation, v is defined as the average robot speed and w is
twice a robot’s communication radius, since this is the range within which a robot
detects a part or robot and initiates an assembly process.

pj is the probability of two robots successfully completing assembly process j; it
depends on the part geometries.

p;“ is the probability of two robots starting assembly process j, and p; is the
probability per unit time of a robot performing disassembly process j. These are the

tunable parameters of the system.

In order to be able to prove convergence properties of the system, we reduce its
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dimensionality by abstracting away robots and retaining only interactions between
parts, assuming that the time for a robot to find a part is small and that there are

at least as many robot as parts. Then the complete CRN becomes the reduced CRN,

K Ky Ky
X1+ Xo=Xs Xz + Xy=Xe X5+ Xe—=X7

kl k2 k3
kf k+ k&
X2 +X7\:\XF1 X2 +X5\:\X8 X6 +X8‘:XF2 (73)
ky ks ke

The rate constants in this CRN are also defined by Equation (7.2).

7.1.2 Macro-Continuous Model

Spring Berman defined the model in this section.

Both the complete CRN and the reduced CRN contain bimolecular reactions.
Therefore, the corresponding macro-continuous models take the form of the multi-
affine model (3.15). The complete CRN abstracts to the complete macro-continuous
model, and the reduced CRN abstracts to the reduced macro-continuous model. Here
we describe the latter model. The reduced CRN has S = 10 species, C' = 12
complexes, and R = 6 reactions. The species vector x = [r; ... 2g Tp; Tpo)?

contains the concentrations of different part types. The vector of complexes is
_ T
Y(X) = [.Ill’g Ty 3Ty T X7 T 1 Tslg Ty XXy Ty Telg IFQ] . (74)

The rate constants in the CRN can be relabeled as k;; according to their associated
reaction pathways (i, j), where complexes i and j are numbered according to their
positions in y(x) (i.e., complex 3 is X3+ X4), and used to define K according to

(3.14). One set of linearly independent conservation constraints on the x; is:
T3 — X4 = M
T+ o5+ a7+ 23+ TFp1 + Tr2 = Ny (75)
Ty + 5+ 27+ 2(x8 + xp1 +Tp2) = N3

T3+ Tg+ X7+ Tp1 + Tr = Ny

where N;, i = 1,...,4, are computed from the initial part quantities.
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7.2 Analysis

7.2.1 Micro-Continuous and Macro-Discrete Models

Loic Matthey ran the simulations described in this section.

To confirm that the complete macro-continuous model is an accurate representa-
tion of the system, we compare the evolution of products in this model to simulations
of the micro-continuous and macro-discrete models. The forward rate constants e;
and kj contain the parameters that are measured from the Webots simulations;
therefore, we only simulate assemblies (p; = 1, p; = 0 Vj) to verify that the system
with these rate constants can be abstracted correctly. We set 7" = 1 s, and the
other parameters for p¢ are A = 23.4 m? (hexagon of radius 3 m), w = 1.2 m,
and v = 0.128 m/s from an average over 50 runs. The p¢ were measured as
p? = [0.9777 0.9074 0.9636 0.9737 0.8330 1.0] (entries follow the numbering of the
associated reactions) from averages over 100 runs. We numerically integrated the
complete macro-continuous model with the calculated e; and k;-r, and we used the
StochKit toolbox [99] to efficiently perform a stochastic simulation of the macro-
discrete model.

Figure 7.5a shows all part populations, averaged over 100 Webots runs, for a
system of 15 robots and 15 parts of types 1 through 4. The unlabeled trajectories
are the quantities of the subassemblies, which increase as they are created and then
decrease as they are combined to form final products F'1 and F2. The standard
deviations are relatively large because the system can create only 3 final products
from the 15 parts.

Figure 7.5b compares the evolution of final products in all three models. Dis-
crepancies among the models arise from several factors. The ODE model is most
accurate for very large populations, while the system has relatively low numbers
of parts and robots so that it would not be too computationally expensive to sim-

ulate. If the robot and part populations were increased, the averaged simulations
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Figure 7.5: Evolution of part populations for a system with 15 robots and parts for
3 final assemblies. Error bars show standard deviations. (a) All part populations
in the micro-continuous model, averaged over 100 runs. (b) F'1, F2 populations in
the complete macro-continuous, macro-discrete, and micro-continuous models. The
latter two models are each averaged over 100 runs.

would correspond more closely to the macro-continuous model. Also, in the Webots
simulations, an assembly is occasionally prevented by robot collisions with walls,
the interference of another robot, or erroneous part collisions. We do not model
these failures or the small local effect of a higher availability of parts where they are
dropped, which often leads to the recreation of broken assemblies. Nevertheless, the
macro-continuous model predicts the F'1 and F'2 populations fairly accurately, and

hence we can use it to design p;r, p; to direct the system behavior.
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7.2.2 Macro-Continuous Model

Spring Berman and Loic Matthey collaborated on this section.

Using the results from CRN theory outlined in Section 4.3.1, we can prove that
reduced macro-continuous model converges to a designable distribution of part quan-
tities from any initial distribution x°.

Theorem 6. The reduced macro-continuous model, subject to conservation equations

(7.5), has a unique, globally asymptotically stable equilibrium X > 0.

Proof. From definition (7.4) of y(x), it can be concluded that in each boundary
equilibrium, all z; = 0 except for one of the four combinations of variables (z1, z3),
(1, 24), (22, 23), (x2,74). Since we only consider systems that can produce g and
T o, it is not possible for the system to reach any of these equilibria; each one lacks
two part types needed for the final assemblies.

The reduced CRN (7.3) has 12 complexes, 6 linkage classes, and rank 6; hence,
its deficiency, defined by Equation (4.1), is 6 = 0. Also, the network is weakly
reversible. Because the network has deficiency 0, is weakly reversible, and does
not admit any boundary equilibria, it has a unique, globally asymptotically stable

positive equilibrium according to Theorem 4.1 of [139]. O

7.3 Controller Synthesis

7.3.1 Macro-Continuous Model

Spring Berman developed the material in this section.

We consider the problem of designing the reduced macro-continuous model, sub-
ject to Equations (7.5), to produce target quantities of parts as quickly as possible.
The objective will be posed as the design of optimal probabilities p; ,p; , i =1,...,6,
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that minimize the convergence time of the system to a vector of target part concen-
trations, x4. We formulate an optimization problem in which these probabilities are
written in terms of the rates k;, k;, i = 1, ..., 6, using Equation (7.2). Although only
the amounts of the final assemblies F'1 and F'2 may need to be specified in practice,
our optimization problem requires that target concentrations of all parts be defined.

We first specify z{, 24, 24, 22, 2d and a parameter

Q@ = x%l/(x?«“l + 37??2) . (7.6)

Then we compute the dependent variables x¢, z¢, #¢, and 2%, + 2%, from the con-
servation equations (7.5) and definition (7.6) and check that they are positive to
ensure a valid x9. In this way, we can keep 2%, + 2%, and the target non-final part
quantities constant while adjusting the ratio between xp; and x gy using a.
Theorem 6 shows that we can achieve x9 from any initial distribution x° by
specifying that * = x9 through constraint (5.7) on K. We quantify the time to
converge to x4 in terms of the system relaxation times 7;, i = 1, ..., 6, described in
Section 5.2.1. Since it is very difficult to find analytical expressions for the eigenvalues
of the Jacobian matrix J of our system, we use the alternative estimate of relaxation

time given by Equation (5.9). Each reaction j in CRN (7.3) is of the form Xj +

+

K
X; ﬁkj, X Thus, the reaction rates are v; = k:jxkxl — k:j_xm, and the entries
of column j in the stoichiometric matrix S are all 0 except for S;; = S;; = —1 and

Sm; = 1. Then, according to Equation (5.9), the relaxation time for each reaction is
T = (kj(xi + ) + kj’)’l . (7.7)

Define k € R'? as the vector of all k", k; and p € R'? as the vector of all p;", p; .
Note that according to Equation (7.2), k = k(p). We define the objective function as
the average Tj_l, which should be mazimized to produce fast convergence to x4. The
optimization problem can now be posed as a linear program, which can be solved

efficiently:
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[P]  maximize 3 Z?:l !
subject to MK(p)y(xd) =0, 0<p<1.

For comparison, we implemented Problem Pya in Section 5.2.1 using the Monte
Carlo method presented in that section to find the k(p) that directly minimizes the
convergence time. Constraint (5.8) was defined as k(0) < k(p) < k(1), and the

parameter f in the convergence time t; was set to 0.1.

7.3.2 Micro-Continuous Model

The robots execute a random walk that is based on the run-and-tumble motion
of bacteria. Obstacle avoidance is implemented with a Braitenberg algorithm [23],
which computes the angular speed of each wheel as a weighted sum of the distance

sensor values.

7.4 Results

7.4.1 Macro-Continuous model

Spring Berman produced the results in this section.

To investigate the effect of optimization on the convergence time of the reduced
macro-continuous model, we generated non-optimal k, which satisfy constraint (5.7)
and 0 < p < 1 but are not optimized for some objective, and computed k using
Problem P and Problem Py;s. The non-optimal k and k from Problem P were
calculated for a € {0.01,0.02,...,0.99}, and the k from Problem Pya for a €
{0.1,0.2,...,0.9}. We set x® = [60 120 60 60 0]7 and x4 =[0.52.5110.5111 57
57(1 — a)]”. Problem P produced the same rate constants for each a (for instance,
pi = 1 Vi) except for the rate constants of disassembly proce<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>