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ABSTRACT

SELF-LOCALIZING SMART CAMERAS AND THEIR APPLICATIONS

Babak Shirmohammadi

Camillo J. Taylor Associate Professor of Computer and Information Science

As the prices of cameras and computing elements continue to fall, it has become

increasingly attractive to consider the deployment of smart camera networks. These

networks would be composed of small, networked computers equipped with inexpen-

sive image sensors. Such networks could be employed in a wide range of applications

including surveillance, robotics and 3D scene reconstruction.

One critical problem that must be addressed before such systems can be deployed

effectively is the issue of localization. That is, in order to take full advantage of the

images gathered from multiple vantage points it is helpful to know how the cameras

in the scene are positioned and oriented with respect to each other. To address

the localization problem we have proposed a novel approach to localizing networks

of embedded cameras and sensors. In this scheme the cameras and the nodes are

equipped with controllable light sources (either visible or infrared) which are used

for signaling. Each camera node can then automatically determine the bearing to all

the nodes that are visible from its vantage point. By fusing these measurements with

the measurements obtained from onboard accelerometers, the camera nodes are able

to determine the relative positions and orientations of other nodes in the network.

This localization technology can serve as a basic capability on which higher level

applications can be built. The method could be used to automatically survey the

locations of sensors of interest, to implement distributed surveillance systems or

to analyze the structure of a scene based on the images obtained from multiple

registered vantage points. It also provides a mechanism for integrating the imagery

obtained from the cameras with the measurements obtained from distributed sensors.

We have successfully used our custom made self localizing smart camera networks

to implement a novel decentralized target tracking algorithm, create an ad-hoc range
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finder and localize the components of a self assembling modular robot.
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Chapter 1

Introduction

As the prices of cameras and computing elements continue to fall, it has become

increasingly attractive to consider the deployment of smart camera networks. Such

networks would be composed of small, networked computers equipped with inex-

pensive image sensors. These camera networks could be used to support a wide

variety of applications including environmental modeling, 3D model construction

and surveillance. For example, in the near future it will be possible to deploy small,

unobtrusive smart cameras in the same way that one deploys lightbulbs, providing

ubiquitous coverage of extended areas. We could imagine using such a system to

track passengers at an airport from the time that they arrive at curbside check in to

the time that they board their flight.

A number of research efforts at a variety of institutions are currently directed to-

ward realizing aspects of this vision. The Cyclops project at the Center for Embedded

Networked Sensing (CENS) has developed small low power camera modules and has

applied them to various types of environmental monitoring applications [RBI+05].

Kulkarni et al describe the SensEye system which provides a tiered architecture for

multi camera applications [KGSL05]. Hengstler and Aghajan describe a smart cam-

era mote architecture for distributed surveillance [HA06]. The Panoptes system at

the Oregon Graduate Institute [FKFB05] and the IrisNet project at Intel Research

1



[NDK+02, NDG02, GKK+03] both seek to demonstrate applications based on net-

works of commercial off the shelf web cameras. Bhattacharya, Wolf and Chellapa

have also investigated the design and utilization of custom smart camera modules

under the aegis of the Distributed Smart Camera Project [YZC03, LLWW04]. Sev-

eral research efforts on smart camera systems build upon or relate to the work being

done in the field of sensor networks [ECPS02, HSW+00].

One critical problem that must be addressed before such systems can be deployed

effectively is the issue of localization. That is, in order to take full advantage of the

images gathered from multiple vantage points it is helpful to know how the cameras

in the scene are positioned and oriented with respect to each other. In this thesis

localization is viewed as a core capability which enables a range of applications;

consider for instance how Global Positioning Systems (GPS) have ushered in a host

of novel applications ranging from automated route planning to precision monitoring

of geological motions.

This thesis makes two main contributions: firstly it describes a novel approach

to the problem of localizing a distributed ensemble of smart cameras. This method

offers advantages over current state of the art vision based localization schemes in

terms of computational complexity, communication complexity, accuracy and scal-

ability. Secondly, the thesis demonstrates the utility of the proposed approach by

showing how such self localizing smart cameras could be applied to a range of prob-

lems including, surveillance, robotic guidance and 3D reconstruction.

More specifically, this thesis describes a novel deployment scheme where each of

the smart cameras is equipped with a colocated controllable light source which it

can use to signal other smart cameras in the vicinity. By analyzing the images that

it acquires over time, each smart camera is able to locate and identify other nodes

in the scene. This arrangement makes it possible to directly determine the epipolar

geometry of the camera system from image measurements and, hence, provides a

means for recovering the relative positions and orientations of the smart camera

2



nodes.

The scheme proposed in this thesis involves a combination of hardware and soft-

ware and is, therefore, most applicable in situations where the user has some control

over the design of the smart camera nodes. We argue that relatively small additions

to the smart camera hardware, namely an accelerometer and a signaling LED, can be

leveraged by an appropriate localization algorithm to determine the relative location

of the nodes with respect to each other rapidly, reliably and accurately.

A number of considerations motivate the design of the localization scheme pro-

posed in this thesis. These factors are listed below:

Simplicity The proposed scheme is designed to be amenable to implementation on

embedded processors and other platforms where computation and communi-

cation may be limited.

Accuracy The scheme takes as input bearing angles derived from images which

can typically be measured quite accurately. Further the algorithm exploits the

epipolar structure of the measurement system for greater numerical stability.

Experiments were carried out to investigate how the accuracy of the scheme

varied as important parameters were changed.

Speed The scheme has been designed with speed in mind so that networks con-

sisting of hundreds of cameras can be localized in a matter of seconds using

modest hardware. This means that the scheme can be used to support ad-

hoc deployment scenarios where constellations of sensors may be installed or

redeployed on an as needed basis.

Reliability The scheme does not make assumptions about the distribution of land-

marks or moving targets in the scene. So one can more readily predict how

well a particular arrangement of smart cameras can be localized.

Scalability The scheme was designed to support deployments over extended envi-

ronments that may involve hundreds or thousands of cameras. Furthermore
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the localization computations can be distributed to support contexts where

sensors may be added or removed from the system asynchronously.

The remainder of the thesis is organized as follows: the following section briefly

surveys some related work on sensor localization in general and smart camera local-

ization in particular. Chapter 2 describes the details of the localization scheme that

underlies the thesis. Chapter 3 describes various realizations of the scheme in hard-

ware culminating with the most recent implementation on custom designed smart

camera nodes. Chapter 4 discusses a series of experiments that were carried out to

characterize the performance of the scheme with actual hardware and in simulation.

Chapter 5 provides a comparison of the proposed localization scheme with a state

of the art feature based localization algorithm. This section presents a quantita-

tive comparison of the methods through a series of simulation experiments. It also

provides a discussion of the issues associated with implementing both schemes.

Chapters 6, 7 and 8 describe various applications of the proposed localization

scheme. Chapter 6 describes how a network of self localizing cameras can be used

to implement an ad-hoc tracking system and discusses the implementation of such

a system. Chapter 7 illustrates how the scheme could be applied to various robotics

problems by describing how it has been used to localize a set of modular robot

components. Chapter 8 describes how the self localizing cameras were used to form

an ad-hoc laser range scanner. Finally Chapter 9 discusses some of the conclusions

drawn from this research effort.

1.1 Related Work

Much of the work on localization in the context of sensor networks has concentrated

on the use of time of flight or signal strength measurements of radio or audio trans-

missions [BHET04, MLRT04, NL03]. The Cricket ranging system developed at MIT

is one example of such an approach. This thesis concentrates on the problem of
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recovering the relative configuration of the sensors using angular measurements de-

rived from images rather than range measurements. It is important to note that in

this framework angular measurements derived from images and range measurements

derived from other sources can be treated as complementary sources of information.

Measurements derived from the vision system can be used to determine the relative

orientations of the camera systems which is important information that cannot be

derived solely from range measurements. On the other hand, range measurements

can be used to resolve the scale ambiguity inherent in angle only localization schemes.

Similarly angular measurements can be used to disambiguate the mirror reflection

ambiguities that are inherent in range only localization schemes. Ultimately it is

envisioned that smart camera networks would incorporate range measurements de-

rived from sources like the MIT Cricket system, GPS receivers or Ultra Wide Band

radio transceivers. These measurements could be used to improve the results of the

localization procedure and to localize nodes that may not be visible to the smart

camera nodes.

There has, of course, been a tremendous amount of work in the computer vision

community on the problem of recovering the position and orientation of a set of

cameras based on images. Snavely, Seitz and Szeliski [SSS06] describe an impressive

system for recovering the relative orientation of multiple snapshots using feature

correspondences. This work builds on decades of research on feature extraction,

feature matching and bundle adjustment. An excellent review of these methods can

be found in [HZ03].

Antone et al [AT02] and Sinha et al [SP06] both describe schemes for calibrating

collections of cameras distributed throughout a scene. Sinha et al [SP06] discuss

effective approaches to recovering the intrinsic parameters of a pan tilt zoom camera

while Antone et al [AT02] discuss approaches that leverage the rectilinear structure

of buildings to simplify the localization procedure.

Devarajan et al [DRC06, DCR08, CDR07] describe an interesting scheme which
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distributes the correspondence establishment and bundle adjustment process among

the cameras. The scheme involves having the cameras communicate amongst them-

selves to detect regions of overlap. This approach can be very effective when sufficient

correspondences are available between the frames.

Several researchers have developed algorithms to discover spatio-temporal cor-

respondences between two unsynchronized image sequences [TG04, CSI06, WZ02,

CPSK04]. Once these correspondences have been recovered, it is often possible to

recover the epipolar geometry of the camera system. The idea of using correspon-

dences between tracked objects to calibrate networks of smart cameras has also been

explored by Rahimi et al [ARD04] and by Funiak et al.[FGPS06]. These approaches

can be very effective when the system can discover a sufficient number of correspond-

ing tracks.

Another interesting approach to smart camera localization has been presented

by Sinha, Pollefeys and McMillan [SPM04] who describe a scheme for calibrating a

set of synchronized cameras based on measurements derived from the silhouettes of

figures moving in the scene.

All of the camera localization schemes that have been advanced in the litera-

ture involve the solution of two key subproblems: establishing correspondences be-

tween features seen in multiple images and recovering the relative configuration of

the ensemble from these correspondences. The approach proposed to solving these

problems in this thesis offers advantages over previously proposed approach in the

specific context of distributed, embedded smart cameras where the computational

and communication constraints on the nodes are more stringent.

In the proposed approach the critical problem of establishing correspondences

between the nodes is accomplished via optical signaling. This provides a mechanism

for reliably identifying nodes in the scene. Other schemes rely critically on the

existence of an appropriate set of stationary or moving targets in the scene that

can be matched between views. The advantage of such schemes is that they do not
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require any modification of the camera hardware, however they can fail in situations

where such correspondences are hard to obtain or are not appropriately spaced.

Furthermore, the problem of matching objects between views is non-trivial and can

require significant computational resources particularly as the number of images

grows. Agarwal et al. [ASS+09] describe a state of the art, optimized, distributed

scheme for finding correspondences between images. They report computation times

of 5 hrs, 13 hours and 27 hours to find correspondences among 57,845, 150,000 and

250,000 images respectively. These computations were performed on a network of

62 dual quad core machines. Cheng et al. [CDR07] propose the use of feature

digests to effectively reduce the amount of information that must be sent between

smart cameras in a network to establish correspondences. However, this scheme still

requires each camera to broadcast approximately 100 kilobytes of information to

every other node in the ensemble.

The scheme proposed in this thesis provides a more direct approach that can

reliably identify neighboring nodes without any prior information in a matter of

seconds using embedded processors. Effectively the smart camera nodes act as their

own fiducials and the risks associated with relying on an appropriate distribution of

feature correspondences in the scene are reduced.

Importantly the resulting sightings directly measure the epipolar structure of

the camera network and, therefore, provide more information about the relative

location of the nodes than shared point correspondences. This can be seen by noting

that two cameras that can see each other can determine their relative position and

orientation up to a scale whereas traditional relative orientation schemes require

at least 5 correspondences in a non-degenerate configuration to recover the same

information. Because of this the number of measurements required to localize the

network and the amount of information that must be communicated between the

nodes is significantly reduced.

Another key advantage of the proposed scheme is that it leverages the sparseness
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inherent in the system of sighting measurements which makes the resulting algo-

rithms much faster than standard vision-based schemes. In recent work Agarwal et

al. [ASS+09] describe a state of the art, heavily optimized vision-based localization

system intended for city-scale reconstructions. They report reconstruction times of

16.5 hours, 7 hours and 16.5 hours on data sets with 11,868, 36,658 and 47,925 im-

ages respectively. Furukawa etal. [FCSS09] applied this reconstruction method to

indoor environments they report reconstruction times of 13 minutes for a system

with 22 cameras, 76 minutes for a system with 97 cameras, 92 minutes for a system

with 148 images and 716 minutes for a system with 492 cameras on a dual quad-core

2.66 GHz computer. Devarajan et al. [DRC06] describe a distributed approach to

camera localization and report reconstruction times on the order of 54 minutes for

a system with 40 images.

In contrast, the method described in this thesis can be used to localize networks

consisting of hundreds of cameras in a matter of seconds with modest computational

effort. This is particularly relevant in the context of smart camera systems where

computational effort can be directly related to power consumption and time com-

plexity determines the responsiveness of the system. In our experiments with our

ten camera implementation the nodes were typically able to detect each other, com-

municate their measurements and recover their relative positions within 30 seconds.

The most time consuming phase being the blinker detection portion which could

be accelerated with faster frame rates. The resulting system is fast enough that it

can be used for ad-hoc deployments and can respond quickly when nodes are added,

removed or displaced.

Recently two interesting algorithms have been proposed which address the smart

camera localization problem using distributed, consensus style schemes driven by

message passing. Piovan et al. [PSF+08] describe a scheme for recovering the relative

orientation of a set of cameras in the plane. Their method converges over time

to an estimate that is close to the global least squares estimate. Tron and Vidal
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describe a scheme that recovers the position and orientation of a set of cameras

in 3D. Their method relies on standard algorithms from computer vision that are

employed to recover the relative position and orientation of pairs of cameras based

on correspondences between the two images. Their approach uses a series of message

passing steps to recover an estimate for the relative orientation of the cameras, then

another set of message passing steps to recover the translation between the cameras.

Lastly the pose estimates are refined by a final set of iterations which adjust both

the position and orientation of the nodes. Both methods are effectively distributed

forms of gradient descent which seek to optimize agreement between the predicted

image measurements and the observed values at each node.

Distributed localization methods based on consensus style approaches have the

advantage of only requiring communication between neighboring nodes in the net-

work. However, the number of communication steps in these schemes depends criti-

cally on the convergence rate of the algorithm. For example Tron and Vidal [TV09]

report using 1400 rounds of message passing to localize a network of 7 nodes. In

contrast, in the method proposed in this thesis the nodes that perform the local-

ization procedure collect the sighting measurements from all of the nodes they wish

to localize and run a computation to determine the relative configuration of the en-

semble. This procedure only requires one round of communication and only three

numbers need to be transmitted for each measurement.

Early versions of the scheme proposed in this thesis were described in [Tay04,

TC05] subsequent works that built on these ideas were presented in [TS06] and in

[BSLS06]. The concepts were also adapted for use on small self assembling mobile

robots as discussed in [STY+07]. This thesis describes a novel variant of the scheme

which leverages the measurements from three axis accelerometers onboard the cam-

eras. These measurements allow the cameras to gauge their orientation with respect

to gravity and greatly simplify the problem of recovering the relative orientation of

the cameras. Once the camera orientations have been estimated, the localization
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problem is effectively reduced to the problem of solving a sparse system of linear

equations. A subsequent, optional bundle adjustment stage can be employed to fur-

ther refine the position estimates. Here again we show how one can exploit the sparse

structure of the measurement system and perform this optimization efficiently even

on networks involving hundreds of cameras.

Importantly, the proposed scheme allows us to develop smart camera systems

that can be deployed and calibrated in an ad-hoc fashion without requiring a time

consuming manual surveying operation.
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Chapter 2

Technical Approach to

Localization

Figure 2.1 illustrates the basic elements of our vision based localization system. In

this localization scheme each of the embedded camera systems is equipped with a

controllable light source, typically an infrared Light Emitting Diode (LED), a three-

axis accelerometer and a wireless communication system. Each smart camera uses

its signaling LED as a blinker to transmit a temporally coded sequence which serves

as a unique identifier. The cameras detect other nodes in their field of view by an-

alyzing image sequences to detect blinking pixels and, hence, are able to determine

the relative bearing to other visible nodes. Figure 2.1 shows the simplest situation in

which two nodes can see each other. Here we note that the accelerometer measure-

ments provide another independent source of information about the orientation of

the cameras with respect to the vertical axis. These measurements allow two smart

cameras to determine their relative position and orientation up to a scale factor.

When a collection of smart cameras is deployed in an environment, these visibility

relationships induce a sparse graph among the cameras as shown in Figure 2.7 where

the nodes correspond to the smart cameras and the edges to the bearing measure-

ments. These measurements can be used to localize the entire network. The scheme
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provides a fast, reliable method for automatically localizing large ensembles of smart

camera systems that are deployed in an ad hoc manner.

vab vba

A B

ga
gb

Figure 2.1: This figure shows the basic elements of the proposed localization scheme.
It depicts two smart camera nodes equipped with controllable light sources and
accelerometers. The camera nodes are able to detect and identify other nodes in
the scene by analyzing their video imagery. They can then determine their relative
position and orientation up to a scale from the available measurements. Larger
networks can be localized by leveraging this relative localization capability.

One advantage of the proposed localization scheme is that it can also be used

to detect and localize other smaller, cheaper sensor nodes that are simply outfitted

with blinking LEDs. Figure 2.3 shows the result of localizing a constellation of 4

smart cameras and 3 blinker nodes. The ability to automatically survey the locations

of a set of sensor motes distributed throughout a scene could be used to enable a

variety of application. We could imagine, for example, using the smart camera

system to localize a set of audio sensors in an environment. Once this has been

accomplished the signals from the microphone sensors could be correlated to localize

sound sources in the scene as was done by Simon et al. [SBM+04]. The locations of

these sound sources could then be related to the images acquired by the cameras so

that appropriate views of the sound source could be relayed to the user.

Various components of the proposed localization scheme are described in more

detail in the following section.
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2.1 Algorithm

2.1.1 Blinker Detection

In the first stage of the localization process, the nodes signal their presence by blink-

ing their lights in a preset pattern. That is, each of the nodes would be assigned a

unique string representing a blink pattern such as 10110101, the node would then

turn its light on or off in the manner prescribed by its string. Similar temporal

coding schemes are employed in laser target designators and freespace optical com-

munication schemes. 1

The blink patterns provide a means for each of the camera equipped nodes to

locate other visible nodes in their field of view. They do this by analyzing the images

to locate pixels whose intensity varies in an appropriate manner. This approach offers

a number of important advantages, firstly it allows each node to localize and identify

neighboring nodes since the blink patterns are individualized. Secondly, it allows the

system to reliably detect nodes that subtend only a few pixels in the image which

allows for further miniaturization of the camera and sensor nodes.

Figure 2.2 depicts the timing of the blink pattern and the image acquisition pro-

cess. As described earlier, the blinkers continuously repeat a prescribed bit sequence

at a fixed frequency. In the current implementation, this blinking function is carried

out on each node by a microcontroller based subsystem which controls an LED array.

Our current optical detection scheme does not seek to synchronize the image

acquisition process on the cameras with the blinkers. This implementation decision

significantly reduces the complexity of the system and the amount of network traffic

required.

In our detection scheme we assume that the exposure time of the images is small

compared with the bit period of the optical signal being transmitted. For example in

1One could argue that freespace optical communication dates back to classical antiquity when
the invading Greeks signaled to their hidden fleet using torches once they had successfully breached
the gates of Troy.
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0xB5 0xB50xB5
Blinker Pattern

Image Samples

Figure 2.2: The optical intensity signal in the imager is sampled at twice the bit
period which ensures that either the odd or even sample set will correctly sample
the message regardless of the offset between the sampling and encoding clocks.

our current implementation the bit period is (1/6)th of a second while the exposure

time of each camera is approximately 10 microsecond. This means that each pixel

in the camera effectively functions as a sample and hold circuit sampling the value

of the intensity signal at discrete intervals. In general, if we were to sample a binary

signal with a sampling comb of the same frequency it would correctly reproduce the

binary signal on almost every occasion the only exception being when the sampling

comb happens to be aligned with the transitions in the binary signal. In that case

since the samples are being taken while the input signal is transitioning between a

high value and a low value, the resulting sample can take on any intermediate value

and the decoded result will typically not correspond to a valid code. This problem

can be overcome by sampling the signal at twice the bit encoding frequency. We

can then divide the samples into two sets corresponding to odd and even numbered

samples as shown in Figure 2.2 and can guarantee that at least one of these sets

correctly samples the binary signal.

More specifically if the even set of samples happens to be aligned with the bit

transitions we can be sure that the odd samples which are offset by precisely half

a bit period will be safely sampled in the middle of each bit and vice versa. That
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is, while one or the other of the sets of samples may be corrupted by an accidental

alignment with the bit transitions at least one set of samples must sample the bit

pattern cleanly.

In our implementation, as each new image is obtained it is compared with the

previous odd or even frame, each pixels intensity measurement is compared with its

previous value and if it has changed by more than a specified amount we push a

1 bit on a shift register associated with that pixel otherwise we push a 0 bit. By

testing the change in intensity values between frames rather than the intensity values

themselves we avoid setting an absolute threshold on intensity values which makes

our implementation more robust to varying illumination conditions.

As an example, if the system observed the following sequence of intensity values

from a given pixel { 108, 110, 113, 70, 20, 68, 98, 58, 18, 60, 105, 108, 112, 55, 12,

54, 100, 101 }, it would produce the following 8 bit values from the odd and even

samples respectively 01111011 , 00000100 assuming that the sample indices start at 1

and a threshold value of 50 is used to test the changes between consecutive samples.

These 8 bit patterns are then compared to the transition patterns that would result

from the signal patterns that the smart camera is interested in detecting to see if a

match exists. For example a blink code of 0xB5 would produce the following pattern

of transitions 11011110. This decoding can be accomplished simply and efficiently

by using a lookup table. Note that since the samples can start at any point in

the sequence the bit transitions can correspond to any cyclic permutation of the

pattern of interest. Similarly negating a given pattern produces the same sequence

of transitions in the intensity measurements only inverted. These issues are easily

handled by appropriately tagging all equivalent patterns of transitions in the lookup

table with the same base code. In the example above, the transition pattern 01111011

would map to the code 0xB5 in the lookup table. Because of these equivalences, the

number of unique codes that this recognition scheme can distinguish is on the order

of
(

2(n−1)

n

)
where n denotes the number of bits in the code.
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After eight even or odd samples have been acquired each additional frame adds

another transition which can be used to confirm the presence of a detected code.

That is, given a complete set of 8 samples one can predict what the next transition

will be if the pixel is in fact exhibiting the suspected blink pattern. This means that

the system can confirm the presence of a blink code by monitoring the pixel over

a specified number of samples to be sure of its identity. For example if a code of

0xB5 is detected at a particular pixel based on either the odd or the even samples.

The system would monitor that location for an additional 20 frames which would

provide 10 more odd or even samples which should follow the proscribed pattern

before the detection is confirmed. In practice this simply means that the transition

patterns detected at the pixel in question should be mapped by the lookup table to

the same target code over an extended sequence of frames. This is a very effective

approach for removing false detections caused by spurious sampling alignments since

these false detections do not recur reliably.

More sophisticated decoding schemes are certainly possible. One could, for ex-

ample imagine a coding scheme which used a unique preamble to delineate the start

of the bit sequence. The advantage of the scheme described here is the fact that it

is amenable to real time implementation using straightforward per-pixel operations.

With our current system we are able to process and decode 3 Mpix images at 12

frames per second on an embedded processor. Note that this scheme returns all of

the relevant blinker patterns detected in the image so the camera can simultaneously

detect multiple targets.

Figure 2.3 shows the results of the blinker detection phase on a typical image.

Here the detected locations in the image are labeled with the unique codes that the

system found.

Once the blinkers have been detected and localized in the images, we can derive

the unit vectors, vab and vba, that relate the nodes as shown in Figure 2.1. Here we

assume that the intrinsic parameters of the cameras (focal length, principal point,
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distortion coefficients) have been determined previously. These parameters allow us

to relate locations in the image to direction vectors relative to the camera frame.

a. b.

Figure 2.3: This figure shows the results of automatically localizing a constellation
of 4 smart cameras and 3 blinker nodes. The image obtained from one of the smart
cameras is shown in (a) while the localization results are shown in (b).

2.1.2 Recovering Orientation

Each of the smart camera nodes is equipped with an accelerometer which it can

use to gauge its orientation with respect to gravity. More specifically given a unit

vector gC denoting the measured gravity vector in the cameras frame of reference

we can construct an orthonormal rotation matrix RCW ∈ SO(3) which captures the

relative orientation between the cameras frame of reference denoted by C, and a

local gravity referenced frame centered at the camera denoted by W where the z

axis points upwards as shown in Figure 2.4.

From the vector gC we can derive a second vector nC which represents a nor-

malized version of (ex × gC) where ex denotes the unit vector along the x-axis,

that is ex = (1, 0, 0)T . We use the vector nC to define the y axis of the grav-

ity reference frame, yW , in Figure 2.4. From the two perpendicular unit vec-

tors, gC and nC , we can construct the rotation matrix RCW ∈ SO(3) as follows:
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Figure 2.4: Each smart camera uses the measurements from an onboard accelerom-
eter to gauge its orientation with respect to gravity.

RCW =
[

(gC × nC) nC −gC

]
. Note that the columns of RCW correspond to

the coordinates of the x, y and z axes of the world frame in the cameras frame of

reference. These equations can easily be modified in situations where the gravity

vector is aligned with the x-axis.

W

ywxw

zw

β

α

Figure 2.5: Sighting vectors in each camera can be transformed to a local, gravity
referenced frame and represented in terms of azimuth, α, and elevation, β, angles.

This rotation matrix can be used to transform the sighting vectors recovered in

the camera frame into the local gravity referenced world frame where they can be

conveniently represented in terms of azimuth and elevation angles, α and β, as shown

in Figure 2.5. More specifically, once a blinker has been detected in the image, one

can use its position in the frame along with the intrinsic parameters of the camera,

which are recovered in a prior calibration phase, to compute a 3D vector, vC , which
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represents the ray from the center of projection of the camera to the blinker 2. The

rotation matrix RCW can then be used to transform this vector from the cameras

frame of reference to the local gravity referenced frame as follows: vW = RT
CWvC .

Equation 2.1 shows how the resulting vector, depicted in Figure 2.5, is related to the

azimuth and elevation angles, α and β.

vW =


vX
W

vY
W

vZ
W

 ∝


cos β cosα

cos β sinα

sin β

 (2.1)

These equations allow us to recover the azimuth and elevation angles from the

components of the vector vW as follows: α = atan2(vY
W ,v

X
W ), β = asin(vZ

W ). This

change of coordinates simplifies the overall localization problem since we can use the

azimuth angle measurements to localize the nodes in the horizontal plane and then

recover the vertical displacements between the nodes using the elevation angles in a

second phase.

i

j

αij

αji

θij

Figure 2.6: The relative yaw angle between two camera frames in the plane can easily
be recovered from the measured azimuth angles if the cameras can see each other.

While we can construct a gravity referenced frame for each of the cameras from

2This is a standard operation in many Computer Vision codes and one can find a thorough
description of the procedure by consulting the Matlab Calibration Toolbox which is freely available
online. See also [HS97].
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the accelerometer measurements, the relative yaw between these frames is initially

unknown. However, when two smart cameras can see each other as depicted in Fig-

ure 2.6 it is a simple matter to estimate their relative orientation from the available

azimuthal measurements αij and αji which are related by the following equation.

αji = αij − θij + π (2.2)

Here the parameter θij captures the yaw angle of camera frame j with respect to

camera frame i.

More generally, the visibility relationships between the smart camera nodes can

be captured in terms of a directed graph where an edge between nodes i and j

indicates that node i can measure the bearing to node j as shown in Figure 2.7.

Any smart camera node can construct such a graph by querying its neighbors for

their sighting measurements. From this directed visibility graph we can construct

an undirected variant where two nodes are connected if and only if they can see one

another. If there is a path between two nodes in this undirected graph, they can

determine their relative orientation. This allows any smart camera node to estimate

the relative orientation of its neighbors via a simple breadth first labeling.

a.

Smart Camera
Node

b.

Smart Camera
Node

Figure 2.7: The visibility relationships between the nodes can be represented with
a directed graph as shown on the left. If we consider only pairs of nodes that are
mutually visible we end up with the undirected variant shown on the right.

Once this has been done, all of the bearing angles can be referenced to a single

frame of reference, that of the root node. What remains then is to determine the
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position of the nodes relative to the root. This can be accomplished by concatenating

all of the available azimuthal measurements into a single homogenous linear system

which can be solved using singular value decomposition (SVD).

j

k

αjk

αkj
θik

i

θij

(xik, yik)

(xij, yij)

Figure 2.8: In this figure the positions and orientations of the cameras j and k are
referenced to the root node, camera i. The bearing measurements αjk and αkj induce
linear constraints on the coordinates (xij, yij) and (xik, yik) .

Consider the situation shown in Figure 2.8 where node j measures the relative

bearing to node k. Since we have already recovered the relative orientation between

camera frame j and the root camera node i, θij, each bearing measurement induces

a homogenous linear equation in the unknown coordinates of the following form.

(xik − xij) sin(αjk + θij)− (yik − yij) cos(αjk + θij) = 0 (2.3)

Here (xij, yij) and (xik, yik) denote the coordinates of nodes j and k with respect

to camera frame i. The collection of homogenous linear equations can be aggregated

into a row sparse system of the form Ap = 0 where p is a vector with 2n entries

formed by concatenating the coordinates of the n camera frames with respect to the

root p = (xi1,yi1,xi2,yi2, ...,xin,yin)T. The matrix A will have one row for each

bearing measurement.
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Singular value decomposition can be employed to find the null space of the matrix

A. More specifically, it can be used to find the vector corresponding to the minimal

singular value of A or the minimum eigenvalue of ATA. Because of the sparse

structure, such problems can be solved efficiently using modern matrix codes even

for systems involving hundreds of cameras [GL96]. This approach subsumes and

improves upon earlier approaches to localizing larger collections of cameras based on

repeated triangulation [TS06]. If the structure of the network cannot be completely

determined from the available measurements the dimension of the null space of A

will be two or more. This can be detected by considering the ratio between the

smallest and second smallest singular values.

Since this linear system is homogenous we can only resolve the configuration

of the nodes up to a positive scale factor. In other words, the camera systems

provide us with angular measurements which allow us to perform localization via

triangulation. They do not provide distance measurements directly so the overall

scale of the reconstruction is undetermined. This ambiguity can be resolved with a

single distance measurement, that is, knowing the distance between any two nodes

in the network determines the scale of the entire constellation.

If additional position measurements are available for some of the nodes, via GPS

or a prior survey, such information can easily be incorporated into the localization

process. For example if (xwj , y
w
j ) denote the easting and northing GPS coordinates of

node j we can add the following two equations which relate the coordinates recovered

from the homogenous system to the GPS measurements.

xwj = λ(xij cos γ − yij sin γ) + tx (2.4)

ywj = λ(xij sin γ + yij cos γ) + ty (2.5)

Where tx, ty and γ denote the position and orientation of the root node with

respect to the geodetic frame of reference and λ denotes the overall scale parameter

that relates the two frames. If we let c = λ cos γ and s = λ sin γ. We end up with
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two linear equations in the unknowns c, s, tx and ty. Given two or more such GPS

measurements one can solve the resulting linear system to recover these unknown

parameters and, hence, recover the geodetic locations of all of the nodes in the

system.

xwj = cxij − syij + tx (2.6)

ywj = sxij + cyij + ty (2.7)

2.1.3 Recovering Vertical Displacements

j

k

Zij

(Zik - Zij)

ljk

βjk

Zik

Figure 2.9: The elevation measurements induce a linear constraint on the relative
heights of the nodes once the locations in the plane have been estimated.

Once the (x, y) locations of the nodes in the horizontal planes have been esti-

mated, it is a simple matter to recover relative heights of the nodes. Figure 2.9

shows how an elevation measurement, βjk, relates the heights of two nodes zij and

zik. From each such elevation measurement one can construct a linear equation.

zik − zij√
(xik − xij)2 + (yik − yij)2

= tan βjk (2.8)

These constraint equations can be aggregated into a single linear system of the

form Bz = c where the vector z represents the aggregate of all of the unknown
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vertical coordinates z = (zi1, zi2, ..., zin)T. Once again the root node i defines the

origin so its z coordinate is 0.

2.1.4 Refining Pose Estimates

If necessary, the estimates for node position and orientation produced by the linear

process described in the preceding sections can be further refined. In this refinement

step the localization process is recast as an optimization problem where the objec-

tive is to minimize the discrepancy between the observed image measurements and

the measurements that would be predicted based on the estimate for the relative

positions and orientations of the sensors and cameras. This process is referred to as

Bundle Adjustment in the computer vision and photogrammetry literature [HZ03].

In the sequel we will let ujk ∈ R3 denote the unit vector corresponding to the

measurement for the bearing of sensor k with respect to camera j. This measure-

ment is assumed to be corrupted with noise. The vector vjk ∈ R3 corresponds to

the predicted value for this direction vector based on the current estimates for the

positions and orientations of the sensors. This vector can be calculated as follows:

vjk = Rij(Tik − Tij) (2.9)

In this expression Rij ∈ SO(3) denotes the rotation matrix which relates camera

frame j to the root frame i while Tik, Tij ∈ R3 denote the relative positions of nodes

j and k.

The goal then is to select the camera rotations and sensor positions so as to

minimize the discrepancy between the vectors ujk and vjk for every available mea-

surement. In equation 2.10 this discrepancy is captured by the objective function

O(x) where x denotes a vector consisting of all of the rotation and translation pa-

rameters that are being estimated.
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O(x) =
∑
i,j

∥∥∥∥uij −
vij

‖vij‖

∥∥∥∥2 (2.10)

Problems of this sort can be solved very effectively using variants of Newton’s

method. In these schemes the objective function is locally approximated by a

quadratic form constructed from the Jacobian and Hessian of the objective func-

tion

O(x + δx) ≈ O(x) + (∇O(x))Tδx +
1

2
δxT(∇2O(x))δx (2.11)

At each step of the Newton algorithm we attempt to find a step parameter space

δx that will minimize the overall objective function by solving a linear equation of

the form.

δx = −(∇2O(x))(∇O(x)) (2.12)

Here we can take advantage of the fact that the linear system described in equa-

tion 2.12 is typically quite sparse More specifically, the Hessian matrix ∇2O will

reflect the structure of the visibility graph of the sensor ensemble. This can be seen

by noting that the variables corresponding to the positions of nodes j and k only

interact in the objective function if node j observes node k or vice versa. For most

practical deployments, the visibility graph is very sparse since any given camera typ-

ically sees a relatively small number of nodes as depicted in Figure 2.7. This means

that the computational effort required to carry out the pose refinement step remains

manageable even when we consider systems containing several hundred cameras and

sensor nodes.

The optimization problem given in Equation 2.10 can be further simplified by

restricting the problem to recovering the relative positions of the camera in the

horizontal plane. This can be accomplished simply by projecting the bearing mea-

surements into the plane perpendicular to the gravitational vector. In this case
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Equation 2.9 would be modified, the rotation matrix Rij would be an element of

SO(2) and the vectors Tik, Tij and vjk would be in R2.

2.2 Scaling Up

The proposed linear and non-linear localization schemes which exploit the sparse

structure of the relevant matrices can be used to localize hundreds of nodes at a

time. However, when we consider networks of the future we may ultimately want

to handle systems that cover extended areas such as the airport scenario mentioned

in the introduction. Such systems may involve thousands of camera and sensor

nodes which are added and removed continuously. Here it may not be feasible or

desirable to have each node recover its position with respect to every other node in

the ensemble. The proposed scheme can be employed to allow each smart camera

node to estimate its position with respect to all of its neighbors within a specified

radius. Each node then would have an estimate for the configuration for a subset of

the total ensemble. This is however, sufficient to allow all of the nodes to agree on

locations of salient objects via a process of coordinate transformation.

Consider a situation where camera node j wants to inform its neighbor k of the

coordinates of some event. Let Rjk ∈ SO(3) and Tjk ∈ R3 denote the estimate for

the position and orientation of node k with respect to node j which is maintained

by node j. Similarly let Rkj ∈ SO(3) and Tkj ∈ R3 denote node k’s estimate for the

relative position of node j. Let ljk denote the distance between j and k in node j’s

frame of reference while lkj denotes the length of the same vector in k’s reference

frame. Notice that since the two nodes localize each other independently there is

no reason that these lengths should be the same in the absence of absolute distance

measurements. Given the location of a point in j’s reference frame, Pj one can

transform that coordinate to k’s reference frame using the following expression.
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Pk =

((
lkj
ljk

)
RkjPj

)
+ tkj (2.13)

Here the ratio
lkj
ljk

accounts for the change in scale factor between the two coordi-

nate frames. Since the procedure does not require the nodes to agree on a common

scale factor it can be employed even when no absolute distance measurements are

available to the nodes.

These transformation can be chained so that events detected by one smart camera

node can be relayed to other nodes through a sequence of transformations so that

all of the events are referenced to a common frame where they can be compared and

correlated.

One can imagine embedding these coordinate transforms into the communication

and routing protocol so that position information is seamlessly transformed into the

prevailing coordinate frame of reference as it is sent through the network.
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Chapter 3

Hardware Implementation

This chapter describes three different incarnations of our implementation of a self

localizing smart camera network. The first version used off-the-shelf camera com-

ponents. While this approach offered a fairly rapid path towards deployment it did

not offer the possibility of higher frame rates or of miniaturization. The second

implementation made use of commercially available smart camera modules. This

implementation offere relatively small size but could not be modified to allow for

higher resolution imagers or higher performance image processing. Based on what

was learned from these two earlier efforts, our third realization was based on a cus-

tom design which allowed us to acheive greater levels of flexibility, programmability

and performance.

3.1 First implementation

The first implementation made use of Dragonfly firewire cameras from Point Grey

Research. As shown in Figure 3.1, each camera was paired with a simple 5mm ultra

bright red LED blinking with a fixed 8bit pattern at 30 HZ. Each camera could

capture VGA resolution imagery (640x480) pixels at 30 frames per second. All of

the cameras were connected to a laptop via a FireWire hub. With this setup we
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Figure 3.1: Dragonfly Camera

were able to demonstrate self localization on a four camera network.

Early implementations of the blinker detection system made use of two thresholds

to discriminate high and low intensity levels which proved to have issues in very

bright or very dark environments. In this version the blinker operated at the same

frequency of the cameras which led to intermittent sampling problems.

The software side of the implementation made use of a modular programming

framework called ROCI [CHT04]. For each camera, a ROCI Dragonfly image capture

node and a blinker detection node was instantiated. The outputs from these detection

nodes were fed to a localization node, which in turn calculated the location and

orientation of all the cameras up to scale.

3.2 Second implementation

This implementation made use of VCSBC50 smart camera modules manufactured

by Vision Components GmbH. Each smart camer was equipped with an ADSP2185
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Figure 3.2: VCSBC50 Camera

Digital Signal Processor (DSP) running at 75MHz and a 1/4” CCD imager (SONY

ICX098AL-6). They were also outfitted with 8Mb of DRAM and 2MB Flash-

EPROM.

At startup the camera runs a simple shell that communicates with the user via

a RS232 serial interface. The shell offers a number of simple commands which can

be invoked from the command line. Additional routines can also be installed on the

EPROM and called in a similar manner. The camera comes with a set of basic image

processing libraries. While these libraries are quite extensive, they are slow and are

not appropriate for real-time applications. This, to some degree, defeats the purpose

of having a smart camera.

Nonetheless, with custom software we were able to succesfully implement a sys-

tem that could decode 8 bit patterns at 10 frames per second on this platform.

The ADSP2185 DSP has 16KB on chip data memory and a single DMA controller,

therefore the image processing program spends most of the time waiting for DMA
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controller. In order to communicate with camera we designed an interface board us-

ing an 8-bit PIC processor (PIC 18f2680). The interface board has an accelerometer,

an RS232 to SPI bridge, a CAN transceiver, a wireless module and power manage-

ment circuitry. Figure 3.2 shows a picture of VCSBC50 camera outfitted with the

interface board and battery.

3.3 Third implementation

Figure 3.5 shows a picture of the current generation of the Argus Smart Camera

System. Each smart camera system is powered by a dual core 600 MHz Blackfin

processor from Analog Devices. This Digital Signal Processor was designed to sup-

port high performance image processing operations in low power devices such as

cameras and cell phones. The smart camera board can be interfaced to a range of

Aptina CMOS imagers, the configuration shown in this Figure is outfitted with a 3

megapixel imager and a fisheye lens which affords a field of view of approximately

180 degrees. The system is also outfitted with a Zigbee wireless communication mod-

ule, an Ethernet controller, a three axis accelerometer and an 850 nm high intensity

infrared signaling light. When properly aligned, the smart cameras can detect the

infrared signaling lights at distances in excess of twenty meters.

In this realization, the center of the lens and the center of the LED array are

offset by 5.5 cm. Ideally, they should be colocated. This could be accomplished by

surrounding the lens with the LEDs. In practice we assume that the modeling error

introduced by this offset will be negligible if the distance between the cameras is

relatively large, on the order of 2 meters or more.
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3.3.1 Hardware

Figure 3.3 shows the major components of our smart camera system. The BlackFin

processor is connected to 64MB SDRAM and 4MB of serial flash memory. To ac-

commodate various imagers a XC2C128 CoolRunner-II CPLD was integrated into

the design. Using the CPLD, the imager port can be mapped to different IO ports

on the BlackFin. The logic voltage level of the ports can also be modified. The

system has an ICS307 which is a programmable clock source. This chip allows the

system to generate a wide variety of clock frequency for different imagers. The PLX

2272 facilitates a full speed USB 2.0 connection to the camera. The USB connection

makes it possible to use the camera like a simple USB camera. It also can be used

as a debugging interface to test a BlackFin program or upload new firmware to flash

memory. An 8-bit PIC microprocessor is also integrated into the camera. The PIC

18F97J60 processor has 3KB of RAM and 64KB of Flash memory. It also has an

integrated 10MB Ethernet module. In this design the PIC processor is handles the

communication with the onboard sensors and the wireless module. It can pass the

necessary values to the BlackFin processor via an SPI connection. The main PCB

is a 10 layer design with 5 mil accuracy, which was designed using the PADS CAD

software package. Figure 3.4 shows an unassembled main PCB. The unit can, op-

tionally, be equipped with a GPS receiver and/or a three axis magnetometer which

would allow it to gauge its absolute position and orientation. The unit consumes less

than 3 watts of power in operation and can be powered for 6 hours with a 6 ounce

Lithium Ion battery pack.

3.3.2 Software

All of the programs running on the smart cameras were written in C and C++. The

program running on the PIC processor was compiled using Microchip C18 compiler,

and the BlackFin program was compiled using the Visual DSP system from Analog

Device.
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Figure 3.3: Block Diagram showing the major components of the Smart Camera
node.

In order to obtain optimal performance from the BlackFin processor it was im-

portant to understand and respect the memory hierarchy on the device. Each of

the two cores on the device has exclusive access to 16KB of single cycle L1 memory

which is the highest level of the hierarachy. There is also 128KB of onchip memory

which is shared by the two cores (L2). Finally the remaining 64MB of memory on

the camera is provided by relatively slow DRAM memory (L3).

In the blinker detection algorithm, the incoming images were processed at frame

rate as they were read from the image sensor into a three line round ribbon buffer

in Core A L1 memory by the DMA controller. Another DMA controller copies the

same line of the image from the previous frame and shift register frame within L3

into L1. Before the next line comes in, Core A must finish processing the current

line and store the results in L3. Core B only deals with shift register values stored in

L3. Core B runs a simple and quick connected component algorithm to detect and

report the different blinker codes. All the calculation related to localization is done

on Core B. The PIC processor handles the blinker, Zigbee and the accelerometer. It
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Figure 3.4: Front side of the blank PCB (left); Back side of the blank PCB

communicates with the BlackFin processor via a high speed SPI channel.

3.3.3 Calibration

Each camera is equipped with a fisheye lens. Therefore, in order to use the images,

the lens distortion needs to modeled. In an ideal world the intrinsic parameters of

all of the lenses would be identical and the accelerometer and image frames would be

perfectly aligned. Unfortunately the vagaries of the manufacturing process dictate

that each camera must be calibrated individually after it has been assembled.

Camera calibration

For our cameras, we have used an 8th order radial distortion model with no tangential

distortion. The lack of tangential distortion in the model is justified by the fact

that most lenses, currently available do not have imperfections in centering. The

calibration parameters were calculated using a few images of a planar checkerboard.

To minimize the number of images needed for this procedure we used a custom setup

with a large checkerboard and placed the camera close to this target. This way, the

checkerboard almost fills the entire image, which in turn cuts down the total number

of images needed for calibration.
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Figure 3.5: Argus Smart Camera Node used in our experiments.

Error in imager assembly process introduces a small roll angle between the image

frame and the camera PCB frame. We could measure this angle by putting two

blinker at same height a few meters a part and several meters away from the camera

and measuring the height of each blinker in the camera frame while the camera PCB

is leveled. In all of our cameras this error was insignificant compare to accelerometer

accuracy.

Accelerometer calibration

Imperfections in the accelerometers and the soldering process dictate that the ac-

celerometers need to be individually calibrated after the circuit boards have been

assembled. This is accomplished by using a sensitive bubble level with an accuracy

better than half a degree to level the circuit board with respect to gravity. The

observedxs accelerometer measurements on the two axes nominally perpendicular to

the gravitational direction are used as bias terms.
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Chapter 4

Localization Experiments

In order to characterize the efficacy of the proposed localization scheme a number of

experiments were carried out both in simulation and with actual hardware. Section

4.1 recounts the localization experiments that were carried out with our custom smart

camera nodes. Section 4.5 describes the results of a set of simulation experiments

that were designed to further characterize the behavior of the method.

4.1 Experimental Results

The smart camera nodes were deployed in an ad hoc manner in various locations in

and around our laboratory facility. The linear localization and bundle adjustment

process were carried out on the bearing measurements obtained from the sensors.

The results of this procedure were then compared to measurements for the distances

between the nodes obtained with a Leica Disto D3 handheld range finder. Because

of the distances involved and the geometry of the camera nodes the errors in these

ground truth distance measurements are on the order of 10 centimeters. In each

experiment an appropriate scale factor was chosen to account for the scale ambiguity

in the localization result.

For each of the deployment scenarios we show pictures of the environment along
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Figure 4.1: Floor Plan of the High Bay area showing the dimensions of the space
and the approximate locations of the cameras

with a sketch indicating the dimensions of the space and the approximate locations

of the cameras. Three dimensional renderings of the camera positions recovered by

the method are presented.

4.2 High Bay

This experiment was conducted in the High Bay portion of our laboratory in an area

6.3 meters by 9 meters on side. The results obtained by the localization scheme were

compared with 23 inter node distance measurements ranging from 3.62 meters to

9.98 meters. For the linear method the average absolute error in the recovered range

measurements was 5.36 cm while the average relative error in the measurements was

0.91 %. After bundle adjustment the average absolute error was 6.24 cm and the

average relative error was 1.05%.
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Figure 4.2: Snapshots of the High Bay area showing the deployed cameras

Figure 4.3: Localization results returned by the proposed localization method show-
ing the relative positions and orientations of the nodes.
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Figure 4.4: Floor Plan of the GRASP Lab area showing the dimensions of the space
and the approximate locations of the cameras

4.3 GRASP Laboratory

This experiment was conducted in one of the main office areas of our laboratory in

an area 20 meters by 16 meters on side. The results obtained by the localization

scheme were compared with 16 inter node distance measurements ranging from 3.58

meters to 16.19 meters. For the linear method the average absolute error in the

recovered range measurements was 13.17 cm while the average relative error in the

measurements was 1.56 %. After bundle adjustment the average absolute error was

12.90 cm and the average relative error was 1.35%.

4.4 First Floor CS Building

In this experiment the cameras were deployed to cover the entire first floor of the

Computer and Information Science building an area approximately 20 meters by 16

meters on side. The results obtained by the localization scheme were compared with
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Figure 4.5: Snapshots of the GRASP Lab area showing the deployed cameras

Figure 4.6: Localization results returned by the proposed localization method show-
ing the relative positions and orientations of the nodes.
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Figure 4.7: Floor Plan of the first floor area showing the dimensions of the space
and the approximate locations of the cameras

Figure 4.8: Snapshots of the first floor area showing the deployed cameras
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Figure 4.9: Localization results returned by the proposed localization method show-
ing the relative positions and orientations of the nodes.

16 inter node distance measurements ranging from 5.06 meters to 17.48 meters. For

the linear method the average absolute error in the recovered range measurements

was 41.40 cm while the average relative error in the measurements was 4.23 %.

After bundle adjustment the average absolute error was 32.75 cm and the average

relative error was 3.31%. In this experiment camera 9 was actually mounted on the

mezzanine overlooking the entranceway which accounts for its vertical displacement.

4.5 Simulation Experiments

A series of simulation experiments were carried out to investigate how the proposed

scheme would perform on networks that were considerably larger than the ones we

could construct with our available hardware. Figure 4.10 shows the basic elements

of these simulation experiments. The horizontal plane was divided into a grid where

the cells were unit length on side. Each grid was populated with a number of virtual

smart cameras which were randomly positioned and oriented within that area. In

these experiments, the number of smart cameras per cell is referred to as the camera

density. Limitations on the cameras field of regard were modeled by stipulating that

each camera could observe all of the cameras in its own grid cell and the adjoining
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Figure 4.10: In the simulation experiments the virtual smart camera nodes were
randomly placed within various grid cells in the plane. Each cell is unit length on
side and the number of cameras in each cell is refered to as the camera density. One
camera frame at the center defines the base frame of reference.

cells but no others. The cameras were assumed to be effectively omnidirectional

so they could measure the bearing to all of the other cameras within their field of

regard.

One camera was placed at the origin of the coordinate system and defines the

coordinate frame of reference. The proposed localization schemes were employed to

recover the positions and orientations of all of the other smart cameras with respect

to this base frame. The localization was restricted to the horizontal plane since

vertical displacements could easily be recovered once the horizontal locations were

determined.

The bearing measurements recovered by the smart cameras were corrupted by

uniformly distributed random noise. The maximum error in the bearing measure-

ments is referred to as the bearing error, so a bearing error of 2 degrees would indicate

that the measured bearing could differ from the true value by up to 2 degrees.

The first simulation experiment was designed to explore how the error in the

reconstruction varied as a function of distance from the reference camera. Here
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we explored various camera configurations within a 7 by 7 grid. For each trial we

recorded the error in the rotational and translational error in each position estimate

and segregated these errors based on distance. In Figure 4.11 the first error bar in

each plot reports the mean and standard deviation of the error for cameras between

0 and 1 units from the reference camera, the second bar reports the error for cameras

between 1 and 2 units from the origin and so on. The bearing error for these

experiments was fixed at 2 degrees. The reconstruction procedure first recovered an

estimate for the camera pose using the linear method and then refined that estimate

with a bundle adjustment stage.

The graphs indicate how the rotational and translational error increase as the

distance from the reference node grows. This is similar to the effect observed in

robotic localization systems where small errors accumulate over time as the robot

moves further from its point of origin.

These experiments were repeated for camera densities varying from 1 camera per

cell up to 5 cameras per cell as shown in Figure 4.11. These plots indicate that as

the camera density increases, the reconstruction error decreases. Effectively, adding

more cameras to each cell increases the number of bearing measurements available

and further constrains the reconstruction improving the accuracy.

The second set of experiments was designed to explore how the error in the

reconstruction varied as a function of the bearing error. Several trials were carried

out on a 7 by 7 grid with a camera density of 2 as the bearing error was varied

from 0.5 degrees up to 3 degrees. Figure 4.12 shows how the mean rotational and

translational error in the reconstruction were affected as the simulated measurement

error grew.

The third set of experiments characterize the improvement afforded by the bundle

adjustment phase of the reconstruction procedure. The plots on the left hand side

indicate the rotational and translational error as a function of distance in the estimate

provided by the linear estimation stage over several trials. The plots on the right
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Figure 4.11: This figure shows how the position and orientation errors vary as the
distance from the reference frame increases and the camera density changes. The
first second and third rows of graphs correspond to camera densities of 1, 3 and 5
cameras per cell respectively. The error bars in the graph indicate the mean and
standard deviation of the errors in the reconstruction.
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Figure 4.12: This figure shows how the position and orientation errors vary as the
magnitude of the bearing error increases. The error bars in the graph indicate the
mean and standard deviation of the errors in the reconstruction.

record the error after those estimates have been refined by the bundle adjustment

stage. In these experiments we employed a 7 by 7 gird with a camera density of 2

and a bearing error of 2 degrees.

Figure 4.14 plots the time required to perform both the linear and bundle ad-

justment phases of the scheme as a function of the total number of smart cameras

being localized. The procedure was implemented in Matlab and run on a MacBook

Pro laptop. Note that even for 451 camera positions the time required to execute

the bundle adjustment phase was under 10 seconds. The linear phase of the recon-

struction is executed in under 1.5 seconds in all cases. These experiments were run

with a camera density of 2 and a bearing error of 2 degrees. The number of cameras

was increased by increasing the number of grid cells.

4.6 Discussion

These experimental results show that the accuracy of the proposed localization

scheme compares favorably with the accuracy results reported for other distributed
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Figure 4.13: The plots on the left hand column of the figure depict the error in the
pose estimates after the linear phase of the reconstruction procedure while the plots
on the right depict the errors after the bundle adjustment phase.
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Figure 4.14: This figure shows how the time required to perform the linear and bundle
adjustment phases of the localization procedure grows as the number of cameras is
increased.

localization schemes on comparable problems. The simulation results provided in

[DRC06] consider the problem of localizing a network of 40 cameras distributed over

a circle with a radius of 110 meters. The maximum level of measurement noise con-

sidered in this work was 0.1 degrees. Under these conditions their scheme localized

the cameras with a mean rotation error of 0.12 degrees and a mean translation err

of 120.1 cm. In our simulation experiments the minimum noise level considered was

0.5 degrees. Even with this level of noise the proposed scheme was able to localize

a network of 99 cameras distributed over a square 200 meters on side with a mean

rotation error of 0.15 degrees and a mean translation error of 14.28 cm.

Funiak et al. [FGPS06] describe an experiment which involved localizing a net-

work of 25 cameras distributed over a rectangular area of 50 square meters. Their

scheme was able to localize the nodes with a root mean square error of approxi-

mately 20 cm. The scheme proposed in this thesis was used to localize a network

of 6 cameras distributed over 54 square meters with an average error of 6.24 cm.

The proposed scheme also improves upon the reconstruction results described in

[ARD04], [TV09] and [PSF+08].
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Chapter 5

Comparison to Feature-Based

Localization Methods

This chapter compares the self localization scheme advanced in Chapter 2 to the

state of the art feature based localization schemes commonly employed in the Com-

puter Vision literature. The feature based approach involves extracting a set of

salient features from the available images, matching these features between views to

establish correspondences and then solving for the relative positions of the cameras

based on these correspondences. The overall approach is described quite elegantly

in the classic text by Hartley and Zisserman [HZ03].

Section 5.1 describes a series of simulation experiments which compare the accu-

racy and computational complexity of the feature based localization approach with

the proposed self localization scheme. Based in part on these results section 5.2

provides a discussion of the issues associated with implementing the feature based

method and the proposed self localization algorithm and compares these two schemes

along a number of axes.

In these experiments we make use of the Sparse Bundle Adjustment (SBA) pack-

age developed by Lourakis and Argyos [LA09]. This open source package provides a

state of the art implementation of a bundle adjustment procedure which exploits the
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sparse structure of the Hessian of the image based objective function. More specif-

ically the bundle adjustment procedure is optimized by partitioning the variables

into two sets, one for the camera positions and the other for the feature positions,

and observing that the core matrix inversion procedure in the underlying Newton

optimization algorithm can then be simplified using Schur complements. The SBA

package has been used as the basis for a number of successful image based recon-

struction procedures including the well known Photosynth project [SSS06].

5.1 Simulation Experiments

The goal of this series of experiments was to provide a quantitative comparison of

the performance of the Sparse Bundle Adjustment Package with the proposed self

localization scheme on the kinds of camera configurations that would approximate

those that one would encounter in extended environments. The simulated environ-

ment consists of a series of cells as shown in Figure 5.1. Each cell contains four

cameras deployed along the edges of a cubic region unit length on side, the four

cameras face into the cell as shown. The simulation was intended to model VGA

resolution imagers with a horizontal field of view of 120 degrees and a vertical field of

view of 90 degrees so the angular resolution of the simulated images was on the order

of (120/640) degrees per pixel. The simulated image measurements were corrupted

with random noise to simulate imaging errors.

Each cell also contains a number of simulated 3D feature points randomly dis-

tributed in the volume. The entire environment consists of an array of cells as shown

in the figure. By varying the size of the array we can vary the number of cameras,

the number of feature points and the extent of the simulated environment. Each

camera had a simulated visibility range on the order of
√

8 units which meant that it

could see features and cameras in some of the neighboring cells but not beyond. The

intent in choosing this simulated environment was to capture the essential features

50



of an environment where cameras could measure information about their neighbors

and where the extent of the area could grow without limit as cameras and features

were added.

Cameras

Feature Points x

z
Array of Cells

Figure 5.1: The simulated environment consists of an array of cells. Each cell con-
tains four cameras and a number of 3D feature points. The cells are unit length on
side and the radius of visibility of the cameras is set at

√
8 so that they can observe

some of the features and cameras in adjacent cells.

The experiments compare the results obtained with the Sparse Bundle Adjust-

ment code (SBA) with the results obtained after running the bundle adjustment

phase of the proposed Self Localization scheme (SL). The intent was to compare

the best results achievable with a state of the art feature based localization scheme,

SBA, with the best results that could be obtained with the self localization scheme,

SL.

A series of simulation experiments was carried out. The first one characterized

how the accuracy and computational complexity of the localization schemes changed

as the number of cameras and number of features was varied. Another experiment
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investigated how the accuracy of the methods changed as the error in the image

measurements was varied. The third experiment characterized how the methods

fared as the error in the initial relative orientation measurements was increased.

5.1.1 Initial Estimates

Both localization schemes are phrased as non-linear optimization procedures based

on Newton’s method, as such both schemes require initial estimates for the camera

positions. Initial estimates for the camera orientations were obtained from a proce-

dure which simulated the action of a global optimization procedure which took as

input estimates for the relative orientation of mutually visible cameras and produced

estimates for the camera orientations that were in best agreement with those mea-

surements. The camera in the lower left hand corner of the array was held fixed to

define the base frame of reference for the localization procedure.

Given these initial estimates for camera orientation one can derive initial esti-

mates for the camera positions and feature positions by solving a set of sparse linear

systems derived from the image measurements.

More specifically if we let uij ∈ R3 denote the sighting vector of feature j as seen

from camera i. Equation 5.1 shows how we expect that vector to be related to the

position and orientation of camera i, ( Ri ∈ SO(3), ti ∈ R3), and the position of

feature j, Pj ∈ R3.

uij ∝ Ri(Pj − ti) (5.1)

⇒ uij × {Ri(Pj − ti)} = 0 (5.2)

Note that given an initial estimate for the camera orientation, Ri, and the image

measurement vector, uij, Equation 5.2 is linear in the position vectors, (Pj and ti).

This means that these equations can be consolidated into a single sparse, homogenous
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linear system which can be solved to provide initial estimates for the camera and

feature positions.

5.1.2 Experiment 1

The first simulation experiment was carried out to characterize how the accuracy

and computational complexity of the SBA and SL methods varied as we changed

the number of cameras in the simulation and the number of feature points. To

accomplish this the number of rows and columns in the simulated arena was varied

as was the number of feature points in each cell. Ten trials were carried out for each

experimental condition and the results of these trials were averaged to produce the

results shown below in the tables and graphs. In these simulation experiments the

number of rows and columns in the simulated array of cells was always the same,

that is nrows = ncols = n, so the number of cameras in any trial is given by 4n2.

The maximum error added to the image measurements was fixed at 0.5 pixels.

Figures 5.2 and 5.3 indicate how the error in the camera rotation estimates and

camera translation estimates varied as we varied the size of the array, n and the

number of features in each cell. Here it is useful to recall that each cell or block in

the array is unit length on side so a translation error of 0.1 would correspond to an

error in the camera position that was on the order of 10% of the width of a cell.

The first four bars in each group correspond to different trials of the SBA method

as the number of feature points in each cell varies from 5 to 10 to 20 to 40. Gen-

erally speaking, as the number of features is increased more image measurements

are available to the optimization procedure and this tends to improve the accuracy

of the SBA measurement; this is borne out in the graphs. Changing the number

of features has no effect on the SL method since it only utilizes sightings of other

cameras. The results are summarized in Tables 5.1 and 5.2 .

These results indicate that the SL method consistently produces estimates for

camera rotation that are comparable to those produced by the SBA method and
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Figure 5.2: Figure showing how the rotational error in the recovered camera positions
varies as the size of the environment and number of cameras is changed, n, and the
number of feature points is changed.

SBA
n points in each cell SL

5 10 20 40
3 0.1279 0.1070 0.1029 0.1217 0.0571
5 0.1035 0.1061 0.0854 0.0740 0.0609
7 0.0833 0.0682 0.0441 0.0522 0.0626
9 0.0770 0.0739 0.0555 0.0524 0.0646
11 0.0622 0.0521 0.0413 0.0303 0.0646

Table 5.1: Rotational Error in reconstructed camera positions in degrees
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Figure 5.3: Figure showing how the translational error in the recovered camera
positions varies as the size of the environment and number of cameras is changed, n,
and the number of feature points is changed.

SBA
n points in each cell SL

5 10 20 40
3 0.0089 0.0112 0.0106 0.0089 0.0016
5 0.0178 0.0167 0.0254 0.0250 0.0023
7 0.0375 0.0394 0.0407 0.0541 0.0036
9 0.0512 0.0694 0.0565 0.0570 0.0047
11 0.0930 0.0632 0.0576 0.0901 0.0057

Table 5.2: Translational Error in reconstructed camera positions
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estimates for camera position that are 5 to 10 times more accurate than those pro-

duced by the SBA algorithm. This difference can be attributed to the fact that

the measurements of the camera centers, provides a direct constraint on the camera

positions while the SBA method recovers the camera locations indirectly from the

feature correspondences.

The results also show that the average error in the reconstructed camera positions

increases as the number of cameras and the extent of the simulated area increases.

To probe this effect further Figure 5.4 and Figure 5.5 show how the rotational and

translational errors increase as a function of the distance of the simulated camera

from the lower left hand camera which is fixed as the origin of the reconstructed

reference frame. These plots demonstrate that cameras that are further away have

a larger translational error which accounts for the rise in average error as the size of

the simulation is increased.

This phenomenon can be explained by considering that the image measurements

that are used to deduce the camera locations provide information about the relative

position of the features and the cameras as opposed to the absolute camera positions.

As such the locations of each camera with respect to the base camera is effectively

recovered from a chain of measurements, as the distance from the origin grows, the

size of this chain increases and the errors in the estimates accumulate.

Figure 5.6 shows how the number of image measurements utilized by the local-

ization procedure changes with the number of cameras and the number of feature

points. The grouping of the bars is the same as in Figures 5.2 and 5.3. As one would

predict the number of measurements used by the SBA method increases linearly

with both the number of cameras and the number feature points per block while

the number of measurements used by the SL method increases more slowly and only

depends on the number of cameras being localized.

Figure 5.7 compares the running time of the SBA method to that of the SL

method. Here it is important to note that the SBA measurement was written in
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Figure 5.4: Figure showing how the rotational error in the recovered camera positions
varies as the distance from the origin is increased.
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Figure 5.5: Figure showing how the translational error in the recovered camera
positions varies as the distance from the origin is increased.
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Figure 5.6: Figure showing how the total number of image measurements used by the
reconstruction schemes varies as the size of the environment and number of cameras
is changed, n, and the number of feature points is changed.

SBA
n points in each cell SL

5 10 20 40
3 0.0470 0.0640 0.1010 0.1950 0.2995
5 0.3630 0.5340 0.8260 1.5860 0.9371
7 2.0990 2.3860 3.2180 4.7880 2.2524
9 9.7770 10.3900 12.3810 16.5780 4.5587
11 32.9720 32.1630 36.1380 42.8850 8.2339

Table 5.3: Average running time required by localization algorithms in seconds
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Figure 5.7: Figure showing how the total running time of the reconstruction schemes
varies as the size of the environment and number of cameras is changed, n, and the
number of feature points is changed. Note that the SBA scheme is implemented in
optimized C while the SL method is implemented in Matlab, nonetheless, it manages
to outperform the SBA scheme as the number of cameras is increased
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C and then compiled with full optimization to produce a final executable while the

SL method was implemented in Matlab. Nonetheless, the results show that when

n is increased to 7 or more, which corresponds to the number of cameras being 196

or more, the SL method significantly outperforms the SBA method and the gap

grows larger as the number of cameras is increased. Consider for example the case

where n = 11 which simulates a situation with 484 cameras, here the SL method is 5

times faster than the SBA method. One would expect that a more heavily optimized

implementation of the SL method would perform even better. The timing numbers

are summarized in Table 5.3, all timings were carried out on a quad core Intel i7

laptop.

From these experimental results we can conclude that as the number of cameras

is increased the SL method produces more accurate estimates for the camera config-

uration from fewer measurements and with less computational effort.

5.1.3 Experiment 2

The second simulation experiment was designed to investigate how the error in the

camera position estimates returned by both methods varied as the amount of error

in the input image measurements was increased. The angular resolution of the

simulated camera was fixed at (120/640) degrees per pixel and the maximum amount

of error added to the measurements was increased from 0.5 pixels to 3 pixels. The

size of the cell array was fixed at 7 by 7 so there were 196 cameras in each trial. The

number of points in each cell was fixed at 20. Twenty trials were performed for each

experimental condition and the results were averaged to produce the following plots.

The results from these experiments are plotted in Figures 5.8 and 5.9. These

plots show that the rotational estimate from the SL method is more affected by the

increasing image error than the SBA method. This is probably due to the fact that

the camera orientation estimates are more directly derived from those measurements.

The translational error of the SL method is consistently lower than that of the SBA
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method in all cases.
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Figure 5.8: Figure showing how the rotational error in the recovered camera positions
varies as the amount of error in the input image measurements is changed.

5.1.4 Experiment 3

The third simulation experiment was designed to explore how the SBA and SL

methods performed as the error in the initial estimates for the camera rotations was

increased. This was accomplished by varying a parameter which represented the

error in the relative orientation measurements between the frames. This value was

increased from 1 degree to 4 degrees. Recall that the initial orientation for each

camera is obtained by simulating a procedure that recovers an optimal estimate for

the camera rotations from the relative orientation measurements between pairs of

cameras. Once again the size of the cell array used in the experiments was fixed at

7 by 7 and the number of points in each cell was fixed at 20. Twenty trials were

performed for each experimental condition and the results were averaged to produce
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Figure 5.9: Figure showing how the translational error in the recovered camera
positions varies as the amount of error in the input image measurements is changed.

image error in pixels SBA SL

0.5 0.0593 0.0537
1.0 0.0710 0.1258
1.5 0.0967 0.1823
2.0 0.1037 0.2925
2.5 0.1227 0.2920
3.0 0.1478 0.3899

Table 5.4: Table showing how average rotational error in the recovered cameras
estimates in degrees varies as the image errors are increased.
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image error in pixels SBA SL

0.5 0.0349 0.0030
1.0 0.0320 0.0067
1.5 0.0399 0.0109
2.0 0.0402 0.0164
2.5 0.0454 0.0170
3.0 0.0461 0.0206

Table 5.5: Table showing how average translational error in the recovered cameras
estimates varies as the image errors are increased.

relative orientation error in degrees SBA SL

1.0 0.0621 0.0610
2.0 0.1203 0.0642
3.0 0.1664 0.0625
4.0 0.1841 0.0704

Table 5.6: Table showing how average rotational error in the recovered cameras
estimates in degrees varies as the error in the relative orientation measurements is
increased.

the following plots.

These results show that the SL method is relatively robust to the error in the

initial rotation estimate. The errors in the final estimates increase only very slowly

as the errors in the initial estimates are increased. The SBA method does not fare as

well, both the rotational and translational error increase significantly with the initial

rotation error. This seems to indicate the difficulty associated with converging to

the correct answer based on the relative sighting measurements that are available

to the method. In this case it appears that there are a number of estimates for the

camera configuration that are equally plausible given the available measurements.
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Figure 5.10: Figure showing how the rotational error in the recovered camera po-
sitions varies as the rotational error in the initial relative orientation estimates is
increased.

relative orientation error in degrees SBA SL

1.0 0.0337 0.0034
2.0 0.0981 0.0040
3.0 0.1859 0.0035
4.0 0.2917 0.0038

Table 5.7: Table showing how average translational error in the recovered cameras
estimates varies as the error in the relative orientation measurements is increased.

64



1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Translational error vs rotation error

Rotation Error in degrees

M
ea

n 
tra

ns
la

tio
na

l e
rro

r

 

 
SBA
SL

Figure 5.11: Figure showing how the translational error in the recovered camera
positions varies as the rotational error in the initial relative orientation estimates is
increased.
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5.2 Comparison of Localization Schemes

The goal of this section is to compare and contrast the issues associated with im-

plementing a smart camera localization scheme based on the classical feature based

method using SBA and the self localization approach advocated in this thesis. Re-

call that the feature based method proceeds in a series of stages, first one extracts

point features in each of the images then one matches these features between views

to obtain correspondences, these correspondences are then supplied to a localiza-

tion procedure which computes an estimate for the configuration of the cameras and

the locations of the feature points. The self localization approach is similar in that

it also involves extracting correspondences from the imagery and using these corre-

spondences to recover the camera configuration but the approach taken to extracting

features, the measurements used and the localization scheme are all different.

One can compare the feature based method with the self localization scheme

along a number of relevant axes. One can consider the relative complexity of the

feature extraction and matching stages which produce the correspondences. One can

consider the implied communication requirements of the schemes, one can look at

the computational complexity of the localization procedures and one can compare

the accuracy of the estimates returned by the two schemes.

All feature based localization schemes begin with a feature extraction and match-

ing stage. SIFT and SURF features are very popular in this context since they

provide descriptors which can be used to reliably match features across views even

when the features are rotated, translated and scaled. The price for this invariance

is that the feature extraction methods are typically quite complex and the feature

descriptors that they provide can be fairly large. Typical implementations such as

Photosynth [SSS06] spend a large amount of computational resources on this phase

in order to extract as many correspondences as possible so as to improve the final

reconstruction results.

Once the features have been extracted from each image the resulting feature
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descriptors are usually transmitted to a central location where they can be matched

to features extracted in other views. Sophisticated data structures based on k-d

trees or randomized hashing are often employed to optimize this procedure and

avoid the cost of matching every feature to every other feature. Nonetheless the cost

of gathering, storing and matching features from hundreds or thousands of cameras

requires significant computational resources. In a distributed context this method

involves having each camera transmit lists of feature vectors to a central server or to

its neighbors. The cost of this communication can become quite significant as the

number of cameras increases.

One of the goals in the design of the proposed self localization scheme was to

develop a method that would be amenable to implementation on distributed, low-

power embedded processors. To that end the feature extraction method is based

on a temporal analysis of the pixels in each frame. This procedure can be readily

implemented using frame differencing. Moreover the approach yields the identity of

the camera being viewed which obviates the need for a matching procedure. This

feature extraction process produces a much smaller list of sightings since one only

reports on other smart cameras in the field of view which lowers the amount of

information that each smart camera must transmit.

Experiment 1 considered the computational complexity of the SBA and SL cam-

era localization schemes. These results show that the self localization scheme requires

less computational effort and that the difference between the two schemes becomes

more pronounced as the number of cameras is increased. This difference can be at-

tributed to the fact that the SBA system must solve a larger problem involving both

the camera locations and the feature positions. Although the SBA system cleverly

exploits the sparsity structure of the underlying measurement system, it still requires

more effort than the self localization scheme which only involves the camera location

parameters and can work with a measurement system that is smaller and sparser

than the one used by SBA.
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Experiment 1 also demonstrates that the Self Localization scheme can be ex-

pected to produce more accurate camera position estimates than the SBA system.

Here again the fact that the feature based method must recover the camera posi-

tions indirectly from feature correspondences hampers the resulting algorithm. Even

though the Self Localization scheme uses fewer measurements than the feature based

scheme these measurements are more useful since they directly reveal the epipolar

structure of the camera system and, thus, directly constrain the camera positions.

Taken together, the experimental results indicate that the proposed self localiza-

tion scheme requires less computational effort to extract correspondences, requires

fewer image measurements and, thus, less bandwidth to communicate those measure-

ments and produces more accurate results with less computational effort than the

SBA method. From this we conclude that the method offers a number of advantages

over current state of the art feature based methods and is particularly well suited

for large scale smart camera deployments which may involve hundreds or thousands

of distributed cameras where computational and communication resources must be

carefully husbanded.
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Chapter 6

Tracking

6.1 Introduction

It is natural to consider applying smart camera networks to the problem of tracking

people, vehicle or animals as they move over extended environments. Recalling

the motivating example from the introduction, we could consider the problem of

developing a system to track passengers at an airport from the time they arrive at

the facility until the time that they board their flight. Similarly, we could use such

a system to monitor the movements elderly or infirm individuals in their homes in

order to improve their quality of care.

In order to achieve our vision of a robust situational awareness percept derived

from an ensemble of distributed cameras, we will need to address the problem of

distributed sensing and tracking. More specifically, the challenge will be to reliably

detect, localize and track targets as they move over an extended area of regard

covered by multiple distributed smart cameras.

In order to field these kinds of systems we will need to develop approaches to

detection and tracking which can be distributed over multiple sensors without requir-

ing excessive amounts of communication. These systems must be scalable to allow

for deployments that may involve thousands of cameras distributed over extended
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regions and must be robust to failure so that the overall system responds gracefully

when individual sensors are added or removed asynchronously.

Most detection and tracking systems that have been developed or proposed fuse

information from multiple sensors at a central point in the network which is respon-

sible for establishing tracks and associating measurements from different views. As

the number of sensors grows, increasing demands are placed on the communication

system which must route information to these processing centers. Moreover failures

in these processing centers can often render the entire network useless.

In this thesis we describe a new approach to detection and tracking for smart

camera networks which is fundamentally decentralized. This approach builds upon

the self localization scheme described in chapter 2. We have developed novel net-

work protocols with limited communication requirements which allow the system to

distribute detection and tracking problems evenly through the network accounting

for sensor handoffs in a seamless manner.

The approach also distributes knowledge about the state of tracked objects

throughout the network. This information can then be harvested through distributed

queries which allow network participants to subscribe to different kinds of events that

they may be interested in. For example a process could request to be updated on all

movements of a particular target or may want to be told about all targets that pass

through a particular area of interest. These approaches can be used to develop simple

but robust tracking systems that respect the constraints of a distributed deployment

context.

6.2 Related Work

Distributed tracking on smart camera systems has attracted a lot of recent attention

and a number of groups have developed systems for this task [QMK+08, SSRCF08,

KCA+07, SFP06, FBBS06, GD06, BALaDO+06]. For example Kayumbi, Anjum
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and Cavallaro [KAC08] describe an effective scheme for localizing soccer players

with a network of distributed cameras. Quinn et. al. [QMK+08] propose a scheme

for calibrating a set of cameras in a room and using them to track targets. Their

approach splits the tracking task between a collection of smart camera nodes and a

higher level process which fuses the sightings from these cameras. In contrast, the

goal of this thesis is to develop protocols that can be employed on large networks

covering extended areas.

More closely related to the approach described in this thesis is the work of

Medeiros, Park and Kak [MPK08]. This paper describes a distributed approach

to triangulating targets and distributing the tracking task over multiple nodes. This

protocol involves electing a leader associated with every tracked object which is re-

sponsible for maintaining that track. Klausnet Tengg and Rinner [B.08] describe a

distributed multilevel approach to fusing the measurements gleaned from a network

of smart cameras. Their paper addresses the problem of automated aggregation of

measurements through a hierarchy where different nodes have different capabilities

and are given different responsibilities. The approach proposed in this thesis is dif-

ferent from these methods since the cameras are all viewed as peers. There is no

need for a leader election process nor is there any hierarchy. This simplifies the

deployment procedure and the resulting protocol and results in a scheme which is

simpler to implement and more resilient to failure since the state of the tracker is

automatically replicated and distributed throughout the network.

Our approach builds on the work of Mikic [MSJ00] and Focken [FS02] who de-

scribe schemes for tracking objects in 3D by triangulating the sightings obtained

from multiple distributed vantage points. Like these works we formulate the tracking

problem as one of associating measurements from different cameras and establishing

correspondences over time. Our work extends these approaches by leveraging pre-

vious work on self localization and by describing how the scheme can be scaled to

hundreds or thousands of camera nodes.
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Arth, Leistner and Bischof [AC07] describe a scheme for object tracking where

tracks are associated between cameras in the network by extracting distinctive fea-

tures and matching these features over widely distributed viewpoints. In contrast

the approach described in this thesis does not make use of distinctive appearance

based features but instead assumes that the cameras are densely distributed in the

scene so that targets can be handed off seamlessly.

Funiak Guestrin Paskin and Sukthankar [SFP06] describe an interesting algo-

rithm inspired by work on Simultaneous Localization and Mapping wherein they

tackle the tracking and camera localization problems in a single unified framework.

Their system is capable of both localizing the targets and the cameras with a single

convergent procedure given a sufficient number of corresponding tracks. Our system

leverages our self localization scheme which allows the cameras to directly estimate

their relative positions. This decomposition allows us to scale our approach more

readily to larger networks since it allows us to avoid the problem of establishing

correspondences between cameras in the absence of localization information and the

complexities of uncertainty management in the SLAM approach.

When the images or results from multiple cameras can be processed at a central

location, several sophisticated and effective algorithms have been proposed that pro-

vide state of the art results on the multicamera tracking problem. See for example re-

cent systems proposed by Liem and Gavrila [ML09], Eshel and Moses [EM08], Mittal

and Davis [MD03], Khan and Shah [KS06], Arsic [AHL+08] and Fleuret [FBLF08].

In this work we consider what can be accomplished in the context where the track-

ing task must be carried out in real time by a distributed ensemble of embedded

processors with limited communication bandwidth.
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6.3 Target Tracking

Unlike other sensor modalities, the measurements obtained from camera systems are

most useful when they are combined together as depicted in Figure 6.1. Here we see

a typical situation where a target moving through the scene is localized in space by

combining bearing measurements obtained from a variety of vantage points. Each

bearing measurement is referred to as a sighting and for each sighting the camera

can determine the range to the associated target by looking for confirming evidence

from at least two other cameras. This notion of collaborative tracking is commonly

employed in a number of vision based tracking systems [ML09, FBLF08, KS06,

MD03, FS02, MSJ00] and is most easily done when the bearing measurements can

be relayed to a central location for processing.

target

camera

Figure 6.1: The bearing measurements obtained from two or more smart camera sys-
tems can be fused via triangulation to determine the position of the targets in three
dimensions. When three or more smart camera systems are viewing the same area
of space redundant measurements are available which can be used to help eliminate
false tracks.

In this work we prefer a distributed approach where each camera localizes targets

on its own by communicating with its neighbors. This is accomplished by having

each node communicate its sightings to all of the other nodes in its immediate neigh-

borhood. Once this has been done, each camera independently considers every pair

of sighting measurements that it learns about, for each of the resulting candidate
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(x, y, vx, vy) State vector encoding the position and
velocity of the object.

C Covariance matrix associated with the state estimate
track id Globally unique identifier associated with the track.

The smart camera that creates this track forms
this number by concatenating its own unique
identifier with a local counter value to yield
a globally unique identifier.

first timestamp Time when the track was first created
last timestamp Time when the track was last updated

with a sighting

Table 6.1: Fields associated with each track data structure

points it looks for confirming sighting measurements in other views. The end result

of this procedure is a set of candidate points in space which we term targets.

In addition to the set of targets derived from the sighting measurements, each

camera also maintains a set of active tracks corresponding to trajectories of targets

over time. Each of these track structures contains a number of fields which are

described in Table 6.1.

Associated with each track is a state vector which encodes the position and

velocity of the associated target along with the covariance matrices that are required

to implement a Kalman filter tracker. Each track is tagged with a globally unique

identifier which persists as the object moves through the entire scene. The track

structure also contains timestamps indicating the first time that the tracked object

was detected and the last time that the track was updated.

On each cycle every smart camera system must solve a data association problem

resolving the relationship between the current tracks and the current targets. We

can model the situation in terms of a bipartite graph as shown in Figure 6.2 . Here

the nodes on the left depict the current tracks while the nodes on the right depict the

current targets. For each track we determine the most probable target based on the

Kalman filter estimate and covariance and link the nodes as shown. Note that at this

stage there may be more than one track associated with each target. Each target then
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chooses its best match among the list of possible tracks by considering the relative

age of the tracks and choosing the oldest one. The measurements associated with this

target are then used to update the Kalman filter associated with the winning track.

Tracks that are not updated are propagated forward allowing for short periods of

occlusion or tracker failure. Tracks that are starved of updates are eventually elided

from the list. In this manner, short ephemeral tracks are removed from the system in

favor of longer lasting records. In this scheme we assume that the clocks on the smart

camera nodes are roughly synchronized so that timestamps can be compared without

issue. This scheme is similar to the best-hypothesis tracking scheme described in

[FS02].

Detected targets that are not explained by any of the existing tracks are used to

create new tracks. When a smart camera creates such a track it concatenates its own

unique smart camera identifier with a local counter value to form a globally unique

identifier. This global identifier is then used in all subsequent communications and

effectively travels with the object as it moves through the network.

Once the camera has resolved the relationship between tracks and targets and

updated the list of tracks, it sends its current list of active tracks to its neighbors

receiving in turn a list of all the targets that they are tracking. In this manner,

information about tracks and target identities is propagated through the network

allowing for seamless handoff as targets move throughout an extended scene. Note

that ephemeral tracks may be introduced from time to time due to tracker failures

or glitches but these are typically corrected eventually since the system is biased

to prefer older labels for tracks wherever possible. We also expect occasional miss-

associations in the triangulation phase. These cases typically produce outlier targets

which do not win data association competitions and are thus starved for updates. As

stated earlier, tracks which do not receive a sufficient number of updates per second

are elided. (In the current implementation a track must receive at least 2 updates

per second).
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Tracks Targets

<track_id, x, y, track_start_time> <x, y>
<103, 4.1, 5.0, 134>

<789, 4.2, 4.9, 74>

<567, 3.3, 6.0, 23>

<111, 2.1, 3.0, 115>

<903, 7.1, 5.5, 134>

<890, 4.5, 2.0, 134>

<98, 3.2, 5.9, 134>

<4.2,5.0>

<8.1,3.0>

<3.2,5.9>

<1.3,2.6>

<2.0,3.1>

Figure 6.2: With every new image, each smart camera node must associate the
detected targets with the tracks that it currently maintains. For each of the current
tracks the system finds the best matching target - if any. The system then selects
between multiple associations by favoring tracks with longer histories. In this figure
the ultimate matches are indicated by solid lines while the dashed lines indicate
possible matches that are rejected. This scheme causes the overall system to maintain
the identities of the tracked objects as they move through the system. Unmatched
targets become new tracks while unmatched tracks are eventually elided.
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This protocol allows the network of distributed, loosely coupled smart camera

systems to achieve consensus on target identities. By preserving target identifiers, the

entire system is able to track targets over extended areas without requiring a central

coordinating authority. Moreover, since the protocol only requires communication

among near neighbors it can be scaled to networks of arbitrary size.

The entire procedure carried out by the smart camera is outlined in Algorithm 1

in pseudo-code.

Algorithm 1 Distributed Tracking Protocol

1: loop
2: Process current image and extract sightings
3: Gather sighting measurements from neighboring cameras
4: Triangulate sightings to obtain positions of current targets
5: Match current targets against the list of current tracks and update the tracks

that are matched.
6: Targets which are not matched with any existing tracks are used to form new

tracks.
7: Prune tracks that have not been updated recently.
8: Gather current tracks from neighboring cameras removing duplicates as needed
9: end loop

In summary, on every iteration of the tracking algorithm each camera sends to

its neighbors a list of its current bearing measurements (step 3 of the algorithm). It

also sends out a list of its current tracks (step 8). Each track structure contains the

fields described earlier. Since these messages contain relatively little information and

each camera only communicates with its near neighbors the method makes efficient

use of the available communication bandwidth which is often quite limited.

6.4 Exfiltrating Information

An interesting feature of the proposed protocol is that the information about the

targets in the scene is distributed among the smart cameras in the network. In

fact information about the trajectory of a particular target is distributed among
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the smart camera nodes that viewed the target at various portions of its trajectory.

These trajectory are linked by a common target id which can be used to correlate

the information across the network.

In order to harvest information from the network we propose a subscription

model where a user can inject a request into the network indicating her interest

in particular kinds of tracking events. This request would be broadcast periodically

through the prevailing communication network to the individual camera nodes which

would respond by sending back events that matched the criterion of the query.

For example a user may indicate that she is interested in all tracks passing through

a particular region in the scene or all tracks that persist for more than a certain

amount of time. Alternatively she may indicate interest in a particular set of target

ids which could then be tracked over time with the information relayed back to the

subscriber.

This scheme would decouple the service providers, the individual smart camera

nodes, from the service subscribers. The subscribers would not request information

from particular nodes which could fail or be removed at any time but would rather

phrase their request in terms of queries which would be broadcast to all of the nodes

that may be able to provide them with the desired information. This would mean

that individual smart camera nodes would be able to change their mode of operation

without disabling client applications. It also implies that the network could service

multiple applications for multiple subscribers concurrently.

6.5 Experimental Results

6.5.1 Smart Camera Results

The custom smart camera in section 3.3 was used to test the proposed tracking

scheme. In these experiments the camera was outfitted with a XVGA resolution

imager (720x480) and a fisheye lens which affords a field of view of approximately
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Figure 6.3: Snapshots of the first floor area showing some of the deployed cameras

180 degrees.

In our experiments a set of 8 cameras were deployed in an ad-hoc manner to

cover the entire first floor of our office building, an area approximately 14 meters on

side shown in Figure 6.3. The cameras were automatically localized as described in

pervious chapters and then used to track targets moving through the area of regard

in real time.

The first stage in the target tracking procedure is an adaptive background sub-

traction phase which determines which aspects of the image have changed signifi-

cantly over time. A connected component phase is applied to the resulting binary

image to find the most significant moving targets in the scene. The result of this

analysis is a set of bearing vectors emanating from each of the cameras into the

scene. Importantly, all of the real-time image processing occurs on the smart cam-

era nodes themselves. Only the final sighting vectors associated with the targets

are relayed over the Zigbee wireless network for further processing. This approach

allows us to distribute the most computationally intensive aspects of the tracking

procedure onto the smart camera nodes and avoid having to relay video imagery

over the limited wireless bandwidth. Currently, each smart camera system extracts

sighting measurements from the images at a rate of 15 frames per second.

Figures 6.5 and 6.6 shows the results of two tracking experiments. In the first
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Figure 6.4: The smart cameras automatically determine their positions and orienta-
tions with respect to each other in 3D in a matter of seconds.

experiment the camera network was used to track a single person who walked into

and around the first floor area and eventually exited through the same point he

entered. The second experiment shows the system tracking two people who start

off walking together and then split off onto two separate trajectories. In both of

these experiments the targets were correctly tracked and associated throughout the

sequence in real time through multiple camera handoffs since the structure of the

scene ensured that no one smart camera had the targets in view throughout.

6.5.2 Simulation Results

In addition to the actual implementation on our smart camera network, a series

of simulation experiments was carried out to investigate how the proposed scheme

would perform on networks that were considerably larger than the ones we could

construct with our available hardware. Figure 6.8 shows an example of an indoor

environment reminiscent of an airport. This particular scene is monitored by a

collection of 168 cameras mounted along the walls. The cameras could only see

targets within a fixed distance of their positions. Using the proposed protocol, the
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Figure 6.5: Snapshot of a real time tracking experiment showing the current position
and past trajectory of a target moving through the scene. The lines emanating from
the cameras represent sighting measurements which are triangulated to determine
target location.
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Figure 6.6: Snapshot of a real time tracking experiment showing the current position
and past trajectory of two targets moving through the scene. Note the spurious
sighting measurement, caused by a reflection in the window, which is not confirmed
by the other cameras and, hence, discarded.

81



system was able to concurrently track a collection of 100 simulated targets over 100

timesteps. In order to characterize the communication requirements of the protocol

the average number of messages received by each node was recorded on every timestep

and the results are plotted on the graph in Figure 6.7. This plot includes both

types of messages exchanged over the network, sighting measurements and track

information. After an initial transient where the nodes communicate a number of

measures to achieve consensus on target identifiers, the system settles into a steady

state. The communication load here is evenly distributed throughout the network

reflecting the distribution of the targets.
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Figure 6.7: This graph indicates the average number of messages received by each
of the nodes over the course of the simulation

Figure 6.8 shows the trajectories recovered for a few of the tracked targets. Note

that the targets move throughout the environment between many cameras but the

tracking system correctly maintains their identities.

In order to investigate how the protocol performed in the presence of failure

the simulation experiment was repeated with the additional wrinkle that on each

timestep each of the simulated smart cameras had a ten percent chance of failure. A

camera that fails produces no measurements in the network. Even in this situation
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the tracker was able to track 87 percent of the targets correctly through all 100 of

the timesteps in the simulation. The remaining thirteen continue to be tracked but

their identities are changed from the first to the last timestep indicating a tracker

reacquisition. The resilience of the system to individual camera failure is a product

of the fact that the tracker state is naturally distributed among a number of nodes

so the failure of any single node is not catastrophic.

6.6 Discussion

This chapter describes an approach to using a network of distributed self-localizing

smart cameras to localize and track moving obstacles in the scene. Our approach

takes the view that smart cameras are currently small enough and cheap enough that

one can consider deploying them fairly densely much as one installs lightbulbs. The

challenge then is one of coordinating their activities so as to extract useful informa-

tion from the ensemble subject to the prevailing computational and communication

limitations.

In this approach each of the cameras independently analyzes its video imagery

to find moving targets in its field of view, the results of this analysis are fused in the

network to triangulate the location of the objects of interest in space. This approach

devolves all of the low level image processing to the smart cameras and allows the

nodes to use the limited wireless bandwidth more efficiently since they need only

share sighting measurements and track data with their near neighbors. Using this

approach we have been able to demonstrate real time tracking of targets over an

extended area using a collection of embedded smart cameras, deployed in an ad-hoc

manner and connected by a wireless communication network.

Currently the memory architecture and limited computational power of our smart

camera nodes constrains what can be implemented in real time on our network. More

powerful processors would allow for more sophisticated target detection schemes
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such as face detection or pedestrian recognition which would cut down on false

sightings. Nonetheless, the current implementation demonstrates that the proposed

fusion scheme is resilient to spurious sightings from individual cameras because of

the cross validation.

Importantly the proposed scheme is completely distributed, all of the nodes be-

have as peers and the tracking computations and tracking results are distributed

throughout the network. Nonetheless, the protocol allows the networked cameras to

achieve distributed consensus on the target identifiers which allows the system to

seamlessly track targets as they move throughout the scene. The system is robust to

isolated failures of individual nodes since multiple cameras typically cover any area

and it recovers gracefully from momentary tracker failures.

The approach leverages the fact that the nodes can recover the relative position

and orientation of their neighbors automatically. This makes it feasible to consider

deploying large collections of smart camera nodes in an ad-hoc manner since one

need not manually survey their relative locations. Furthermore, it allows the smart

cameras to rapidly and reliably determine the nodes with which it must collaborate

in the tracking application. This drastically reduces the cost and complexity of

fielding multi-camera surveillance systems and allows them to be applied to a wider

range of applications.

84



−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

−20 −15 −10 −5 0 5 10 15 20
−20

−15

−10

−5

0

5

10

15

20

Figure 6.8: This simulation experiment modeled the layout of an airport. The system
successfully tracked 100 targets using 168 smart camera nodes. The figure shows
trajectories of individual targets successfully tracked throughout the environment.
The small circles denote camera positions, the light lines indicate walls.
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Chapter 7

Robot Self-assembly

As improvements in manufacturing continue to make sensors, actuators and pro-

cessors smaller and cheaper it has become increasingly appealing to think of con-

structing robotic systems out of collections of modular components. The underlying

theme motivating research in the field of modular robotics is the idea that complex

electromechanical systems can be assembled from collections of modules in the same

way that our bodies are constructed from collections of cells. Such an arrangement

offers a number of potential advantages. Firstly, constructing robots from a few

basic modular pieces can reduce the cost of the system since the basic units can be

mass produced much like Lego blocks. Secondly modular systems can be more reli-

able and robust since the system could leverage the redundancy afforded by multiple

active modules each having some actuation, sensing and computational capability.

Finally, one of the most intriguing aspects of modular robots is the notion that the

constituent modules of a robot could be reorganized or reconfigured depending on

the dictates of the task at hand. Imagine, for instance, a robot that was originally

configured as a humanoid that could reshape itself into a snake like form to worm

through narrow passageways and then reconstitute its original form on the other

side. In order to realize this vision of self reconfiguring or self assembling modular

robots the individual modules in the system need to be able to gauge their position
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and orientation with respect to each other. Here we describe an approach that uses

our localization approach to provide this positioning information.

There are several compelling advantages to using our vision based methods for

this localization task. Firstly, the required hardware, the imagers, computers and

light sources are all amenable to miniaturization and are compatible with the manu-

facturing processes used to produce the robot modules themselves. Secondly, the pro-

posed localization scheme requires relatively little power or communication. Thirdly

the light beams used for localization are non-interfering which means that several

nodes can self localize at the same time which is important in situations where we are

interested in having tens or hundreds of modules operating simultaneously. Finally

the imaging systems used for localization could also be used for other purposes such

as sensing the environment to find obstacles or track targets. This allows us to con-

sider applications where modular robotic systems are used to automatically deploy

camera systems to advantageous locations to provide better situational awareness.

The idea of using a team of robots as mobile landmarks for localization was

proposed by Kurazume et al as a more accurate and robust alternative to robot

positioning via dead reckoning [KK+94, Sas96, KH98] . The procedure was termed

Cooperative Positioning (CP). With the proper sensor suites, the three-dimensional

configuration of a team of robots could be determined by sharing relative position

and orientation information. Three different types of CP methods were outlined

dependent upon the sensors and number of robots available.

Type 1 CP required only a pair of robots capable of measuring relative range,

azimuth and elevation angles. At any given time, only one of the two robots would

move, leaving the second to act as a landmark of known position. This scheme was

later revisited by Rekleitis et al [RDM02], and a planar version implemented using

range and azimuth information obtained from a camera system.

Type 2 positioning required three robots capable of measuring relative azimuth

and elevation angles with respect to a common axis. Based on these measurements
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it is possible to recover the configuration of the team up to a scale factor. If two

of the robots are held stationary the third can be allowed to move with its position

continuously updated via triangulation.

Type 3 positioning required three robots where relative angle and distance mea-

surements could be made. This method allowed up to two of the three robots to

move at any given time. Kurazume et implemented and tested variants of this

scheme using laser range finders. They showed far superior positioning results to

those obtained from dead reckoning [Sas96, KH98]. Grabowski et al [GNsPK00] also

implemented a planar version of a comparable scheme using the ”Millibots” platform.

In this work radio frequency and ultrasonic emissions were combined to determine

relative agent position and orientation for collaborative localization. Similair ideas

for modular robot localization were explored by Zhang et al in [ZAD+04]. In the

commercial sector, IS Robotics (ISR) has also done similar work with their SWARM

project. Using infra-red light, a team of robots is able to determine relative range

and orientation information. The scheme described here can be viewed as a form of

cooperative localization where the relevant inter-robot measurements are obtained

using a distributed smart camera network.

7.1 Implementation

The modular reconfigurable robot used in this work is based on the CKBot (Connec-

tor Kinetic roBot) design which is described more fully in [PCTY08]. The kinematics

and connector strategy used in this design is typical of many chain style reconfig-

urable modular robots. Each module in the system consists of:

1. A laser cut plastic (ABS) body with a hobby servo actuator to control one

rotational degree of freedom.
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Figure 7.1: Each cluster in the modular robot is composed of four CKBot modules
and a smart camera system.

2. A controller (PIC18F2680) and associated hardware for implementing a Con-

troller Area Network (CAN) and neighbor-to-neighbor IR communications pro-

tocol.

3. Four connector faces that pass the communications bus and power bus with

an option of attaching at 90 rotations.

The individual modules can be connected to each other either using screws or

through a set of magnetic linkages. These magnetic linkages are implemented using

an array of rare earth magnets embedded in the connector faces of the modules. Four

north facing and four south facing magnets arranged such that two opposing faces

will attract each other. The magnets have enough strength hold a chain of seven

modules together against gravity. Using these novel magnetic linkages modules in

an assembly can dynamically attach or disconnect from each other.

For the reassembly experiment described in Section 7.2 the modules were grouped

into 3 clusters each of which was composed of four CKbot modules and a smart

camera module. The modules within each cluster were screwed together in a chain

as shown in Figure 7.1 and the clusters were connected to each other via magnetic
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linkages. When the clusters are connected together they form a simple bipedal robot

which can walk over flat terrain as depicted in Figure 7.3a; individually, the clusters

can move about on the floor using snakelike gaits.

The smart camera modules used in this work are explained in section 3.2. Each

smart camera module communicates with the other CKBot modules in the cluster

via a CAN bus using the Robotics Bus protocol [GISG+04]. This CAN bus serves

as the spinal cord of the cluster. The smart cameras are powered by rechargeable

lithium ion batteries which are integrated into the design.

Figure 7.2: Each smart camera module is equipped with an imager outfitted with
a fisheye lens, a digital signal processor, an accelerometer, a CAN bus transciever,
and an LED signalling light

7.2 Reassembly experiment

The goal of the reassembly experiment was to demonstrate, for the first time, a

modular robotic system that was capable of self-reassembly after an explosive disas-

sembly event. The sequence of events is described in Figure 7.3; Figure 7.3a shows

the modular robot which is initially configured as a bipedal walking system. This

robot is violently disassembled with a swift kick and breaks into its three constituent
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Figure 7.3: This figure shows the phases in the automated reassembly experiment.

clusters which end up randomly distributed on the floor. The modules can deter-

mine that they are no longer connected by monitoring the status of inter cluster

communication links. Each cluster then automatically orients itself with respect to

the gravity so that the camera modules are on top using the measurements from the

3-axis accelerometers.

Once upright, the clusters perform a search to find each other visually. In our

implementation, the camera nodes signal their presence by blinking their lights in a

preset pattern and use our localization schema to localize their neighbors.

The size of the blinking light in the image is a function of relative angle and

distance between the two camera nodes. Although this size is not a good indica-

tor of range when the camera nodes are far apart, our experience shows it is very

effective measure at close range. This fits perfectly with docking where accurate

measurements are only needed when the modules are close. Figure 7.4 shows an

image acquired by one of the camera modules during the docking procedure while

Figure 7.5 depicts how the size of the blinker in the image changes as a function of
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Figure 7.4: This figure shows an image taken by one of the smart camera systems
mounted on one of the clusters.

distance.

In the first phase of the reassembly procedure the cluster corresponding to the

torso and the cluster corresponding to the left leg rotate around in search of one

another. When the left leg cluster locates the torso cluster it uses its estimate for

the relative range and bearing to crawl towards that module and achieve the proper

relative position for docking. Similarly, when the torso module sees the left leg it

continually rotates around the vertical axis so that it maintains the correct relative

orientation. In this manner the modules approach each other and orient themselves

using a form of visual servoing. When the leg and torso clusters are sufficiently close

the magnetic linkages reattach automatically and the communication and control

links are reestablished.

Once the left leg and torso are docked the torso module changes its blinker

pattern. This serves as a signal for the other leg cluster to begin its approach and

docking sequence. Here, the blinker systems are used not just for localization but also

for signaling and control. The right leg docking proceeds in a similar manner to the

left leg with the torso module rotating to achieve the expected relative orientation

to the incoming leg.
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Figure 7.5: This graph shows how the area of the blinker in pixels varies as a function
of distance
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7.3 Future work

In this work the distributed smart cameras provide a relative localization capability

that can be used in a number of ways. To date, this capability has been used to

demonstrate self-reassembly of a modular system but the same technology could be

used to guide more purposeful reconfiguration operations where a modular robot may

deliberately break into pieces so that it can reassemble itself in another form for a

different purpose. We can imagine distributing a collection of modular components

onto a planetary surface and having them automatically assemble themselves into

structures that perform different functions. The fact that smart camera technology

is amenable to miniaturization makes it possible to consider endowing each of the

modules with the means to sense and localize other members of the ensemble.

Further, we envision using the camera systems mounted on the modules to sense

the environment and provide information that the system can use to plan its activi-

ties. Like Argus, the hundred eyed shepherd of Greek mythology, we envision robotic

systems that would continually capture imagery from multiple distributed vantage

points and fuse this information to localize each other, to find and track moving

objects and to build 3D representations of the scene. This information would allow

the ensemble to plan its motions, to manipulate objects and to respond intelligently

to changes in its environment.
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Chapter 8

3D reconstruction

8.1 Visual Hull Reconstruction

Multi camera systems are commonly used to derive information about the three

dimensional structure of a scene. One approach to the reconstruction problem which

is particularly well suited to the proposed self localizing smart camera network is

the method of volume intersection which has been employed in various forms by a

number of researchers [MBMG00]. This method can be used to detect and localize

dynamic objects moving through the field of view of the smart camera network.

Here a set of stationary cameras are used to observe one or more objects moving

through the scene. Simple background subtraction is employed to delineate the

portions of the images that correspond to the transient objects. Once this has been

accomplished one can interrogate the occupancy of any point in the scene, P, by

projecting it into each of the images in turn and determining whether or not it lies

within the intersection of the swept regions. This process can be used to produce

an approximation for the 3D structure of the transient objects by sampling points

in the volume. The results of such an analysis are shown in Figure 8.1.

In this application the ability to rapidly localize a set of widely separated cameras

is a distinct advantage. Other implementations of this reconstruction scheme involve
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Figure 8.1: (a) Background image of a scene (b) Image with object inserted (c)
Results of the background subtraction operation (d) Results of applying the vol-
umetric reconstruction procedure to the difference images derived from the three
smart camera nodes
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complex, time consuming calibration operations. This implementation, in contrast,

could be be quickly deployed in an ad-hoc manner and would allow a user to localize

and track moving objects such as people, cars or animals as they move through the

scene.

8.2 Ad Hoc Range Finder

Another approach to reconstructing the 3D geometry of the scene using the imagery

from the smart camera network involves establishing stereoscopic correspondences

between points viewed in two or more images. If we are able to find such correspond-

ing points we can readily reconstruct their 3D locations through triangulation. In

order to employ this scheme we need a mechanism for establishing correspondences

between pixels in one image and their mates in another.

One approach to establishing these inter frame correspondences is to employ

structured illumination to help disambiguate the matching problem. This idea has

been employed successfully in a number of stereo reconstruction systems. One such

structured illumination scheme is depicted in Figure 8.3 where a projection system

sweeps a beam of light across the surface of the scene. Correspondences can then be

established by simply observing when various pixels in the two images are lit by the

passing beam.

Figure 8.2 shows a pair of images acquired using such a structured light corre-

spondence scheme. Here a plane of laser light is swept across the scene and the

curves corresponding to the illuminated pixels in the two images are recovered. In

each image, every point on the curve corresponds to a ray in space emanating from

that camera position. To find the correspondence for that point in the other image

we first project that ray into the other image to construct the corresponding epipo-

lar line and then search along that line to find the corresponding pixel that is also

illuminated by the laser plane as shown in Figure 8.3.
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Figure 8.2: ((a) and (b) show Two images of a scene illuminated with a plane of laser
light which is used to establish correspondences between the two views (c) shows the
range map constructed based on the correspondences derived from a sequence of
such images.
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Figure 8.3: At every point in time the projector illuminates a set of scene points
along a planar curve in the scene. For every point on the projected curve in one
image we can locate its correspondent in the other image by searching along the
epipolar line in the other image.

After sweeping the plane over the entire scene we are able to determine the range

to most of the points in the scene that are visible from both camera positions even

though those two camera positions are widely separated. Such a range map is shown

in Figure 8.2c. This range scan was constructed by sweeping the laser plane through

180 degrees in 1 degree increments.

It is important to note here that this range map is constructed in an ad-hoc

manner since the relative positions and orientations of the cameras are reconstructed

automatically using the self localization algorithm and the position and orientation

of the projector are not needed to recover the scene depths. The proposed recon-

struction scheme is interesting because it provides a mechanism for recovering the

structure of an extended scene using an ensemble of small, cheap image sensors and

beam projectors which can be deployed in an ad-hoc manner. This is in contrast to

the traditional approach of recovering scene structure using expensive range sensors
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which must be carefully calibrated and aligned.

Figure 8.4: In this experiment range maps of the scene were constructed from 4
different vantage points using different configurations of cameras and projectors.
Two of these scans are shown here along with the corresponding images

The scheme can be extended for use with multiple cameras and multiple beam

projectors as shown in Figure 8.4. Here we are able to obtain multiple range maps of

the scene taken from different vantage points using a collection of camera systems and

projector positions. Importantly, since we are able to recover the relative positions

of all of the cameras used here via the self localization scheme, all of the recovered

range maps can be related to a single frame of reference. This provides an avenue

to recovering the structure of extended environments by merging the range maps

obtained from the different camera systems into a single coherent model of the scene.
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Chapter 9

Conclusion

In his novel “A Deepness In the Sky” (1999) Vernor Vinge describes a spacefaring

society which makes use of “localizers” small, embedded, networked sensors that

could be distributed throughout an extended area such as a spaceship or a planet

surface to provide a seamless web of communication, monitoring and surveillance

services. This concept echoes in literature the notion of “SmartDust” advanced by

Pister and his colleagues in the Sensor Network community. The goal of this thesis

has been to realize, in part, this vision of small intelligent sensors which can be

deployed in an ad-hoc fashion to provide intelligence about a given area.

This thesis argues for using a combination of hardware and software to address

the crucial problem of localization. More specifically, by equipping the smart camera

nodes with controllable light sources and accelerometers we are able to simplify

the problem of reliably discovering correspondences in the scene and stabilize the

problem of estimating the relative position and orientation of the nodes in the scene.

The goal in this work has been to develop an approach to localization which takes

into account the constraints on computation and communication that one faces when

developing for networked embedded platforms. The method that has been proposed

has several virtues: the detection and localization computations are simple enough

that they can be implemented efficiently on embedded processors, furthermore the
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entire localization procedure can be performed quite rapidly allowing for real-time,

ad-hoc deployment of sensor nodes. Further, the accuracy of the results compares

favorably with the accuracy obtained using other methods that have been proposed

for this problem. Using the sensor nodes as fiducials eliminates the tacit assumption

that the environment will supply an adequate distribution of feature correspondences

or tracked objects.

The method was designed to be scalable to support deployments that may ulti-

mately involve thousands of sensor systems. The localization computation exploits

the sparseness of the system of measurements which means that the method can be

used to localize hundreds of cameras in a matter of seconds using modest compu-

tational resources. The computation can also be distributed in a natural manner

where each node runs the procedure to localize its neighbors. Once this has been

done these estimates can be used to translate locations from one frame of reference

to another.

The proposed localization scheme has been compared with a state of the art

feature-based camera localization scheme, the Sparse Bundle Adjustment package

developed by developed by Lourakis and Argyos [LA09]. The methods were com-

pared along a number of axes including the accuracy of the camera location estimates

produced, the number of image measurements used, the computational complexity

and the resilience to measurement and initialization error.

The simulation results show that as the number of cameras is increased the pro-

posed self localization scheme produces more accurate results from fewer image mea-

surements with less computational effort. More specifically, the translational error

in the camera position estimates was on the order of 5 to 10 times more accurate and

the procedure required on the order of 5 times less computational effort and less than

one tenth the image measurements. The efficacy of the method can be attributed

to the fact that while the self localization method uses fewer measurements, these

measurements directly capture the epipolar structure of the camera configuration
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and are, therefore, more useful than the measurements used by the feature-based

methods which only provide indirect information about the camera layout.

It is important to keep in mind, however, that the method was designed for a

particular deployment context and is not appropriate for all situations. For example,

since the method makes use of hardware modifications, it could not be directly

applied to existing surveillance networks where the camera hardware is already fixed.

Further, an underlying assumption in this work is that the camera nodes can be

distributed fairly densely in the scene so that one can leverage situations where two

or more cameras are mutually visible. As such the method would not be as useful

in situations where the fields of view of the cameras do not overlap significantly.

In this thesis localization is viewed as a basic capability which enables a host

of applications. In order to demonstrate the utility of the proposed approach the

thesis describes a few applications which illustrate how self localizing smart camera

networks could be employed.

Tracking is one of the most natural and popular applications of smart camera

networks. This thesis describes how a network of self localizing cameras can be

used to provide real time tracking of objects moving through an extended area.

Importantly the proposed approach allows for ad-hoc deployments where the system

can be deployed and made operational in a matter of minutes. This allows us to

consider scenarios where a collection of cameras can be rapidly deployed to create

a perimeter or a virtual fence. Another important characteristic of the proposed

approach to tracking is that the tracking computation is distributed throughout the

network. All of the nodes act as peers and there is no need for leader election. This

makes the resulting system robust to intermittent failures and allows us to add or

delete nodes from the network while the system is running.

The thesis also describes one application of self localizing cameras in the field of

robotics. Here the cameras are used to provide localization services for a collection

of modules which can dynamically reconfigure themselves. In this context we argue

103



that small self localizing cameras can be adapted for use in a wide range of robotic

applications since the underlying technology, imagers, wireless networking and com-

putation are all amenable to miniaturization. This allows us to consider deploying

collections of cameras around a robots workspace to localize the components and

to provide information about the structure of the scene which could be used for

planning and obstacle avoidance. The fact that the camera systems can self localize

makes it easier to consider deploying such multi-eyed systems in practice.

Another application that is briefly described in Chapter 8 is 3D reconstruction.

Once the relative position and orientation of the cameras has been recovered, one

can view the ensemble as a wide baseline stereo system. The aim here is to establish

additional correspondences between the views which can be used to reconstruct the

3D structure of the scene. The ability to recover the 3D structure of the scene opens

up a number of possibilities. One could imagine using such a network of cameras to

study how people interact with their surroundings.

The applications that have been explored in this thesis were intended to be repre-

sentative rather than exhaustive. Clearly there is further scope for experimentation

and innovation in this area. The underlying theme has been that cameras are rapidly

becoming small enough and cheap enough that they could be unobtrusively embed-

ded throughout an area. This thesis addresses the question of how we could go

about coordinating and exploiting the information gathered from multiple vantage

points. Based on this work one could imagine smart environments where a collection

of smart cameras embedded in the walls and ceilings could be used to help local-

ize other sensors such as temperature, pressure and air-flow sensors which could be

used to provide detailed information on how a buildings heating and air condition-

ing system are functioning in order to reduce energy consumption. Such a network

could also be used to localize hosts of small robots which could be deployed into the

building to clean floors, to take additional measurements or to or provide security

services.
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Combining the angular measurements derived from the camera sensors with range

measurements derived from ultra wide band transceivers or other sources could po-

tentially provide a comprehensive solution to the problem of sensor localization since

the range signals could be used to resolve the scale ambiguity inherent in angle based

localization and could be used to localize nodes that are not visible to the camera

systems. Conversely the imagery acquired by the cameras provides orientation in-

formation and contextual information that the range measurements do not. For

example if a temperature sensor that has been localized by the camera system re-

ported an anomalously high value the system could use the imagery acquired by the

cameras to determine whether or not the area was on fire or not.

It would also be interesting to investigate how current work in networked embed-

ded camera systems could be fused with emerging trends in cloud computing. Could

such networked sensors be married with networked computational and storage re-

sources which could be scaled elastically to match the demands for analytical and

archival services. This may be a viable approach to fusing the local information gath-

ered from scores of sensors with global analytical capabilities which could correlate

and summarize the measurements to provide an overall picture of the environment

which could be used to enhance our wealth, safety and welfare.
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