Platform-based Plug and Play of Automotive Safety Features - Challenges and
Directions

Deepak Gangadharan, Jin Hyun Kim, Insup Lee and Oleg Sokolsky

University of Pennsylvania

BaekGyu Kim and Shinichi Shiraishi
Toyota Info Technology Center USA

Email: {deepakg,jinhyun} @seas.upenn.edu, {lee,sokolsky} @cis.upenn.edu Email: {bkim,sshiraishi} @us.toyota-itc.com

Abstract—Optional software-based features are increasingly
becoming an important cost driver in automotive systems.
These include features pertaining to active safety, infotainment,
etc. Currently, these optional features are integrated into the
vehicles at the factory during assembly. This severely restricts
the flexibility of the customer to select and use features on-
demand and therefore, the customer will either have to be
satisfied with an available set of feature options or pre-order a
car with the required features from the manufacturer resulting
in considerable delay. In order to increase flexibility and reduce
the delay, it is necessary to provide the option to configure the
vehicle on-demand at the dealership or remotely.

In this paper, we present our vision and challenges involved
in developing a platform infrastructure that allows on-demand
deployment of automotive safety features and ensures their
correct execution.

I. INTRODUCTION

In the recent years, there has been a lot of innovation in
optional automotive software features, especially the ones
pertaining to active safety and infotainment. Car manufac-
turers are increasingly providing these optional software
features in their vehicles that make driving safe and the
journey enjoyable. However, all these features are currently
integrated into the vehicle by the manufacturer. This leaves
the customer with limited options to choose a set of software
features that he/she requires. The customer has to either be
content with the set of pre-configured features provided by
the dealership or pre-order a car with the required set of
features which will take significant amount of time to be
delivered by the manufacturer. In the above context, it is
desirable to improve the customer experience by providing
more flexibility with less delay for deployment of a new
required feature.

The possible alternative to improve the flexibility of
deployment of a safety feature according to customer re-
quirement are illustrated in Fig. 1. The scenario shown in
Fig. 1(a) depicts the current process of ordering, manufac-
turing and delivering the vehicle, which has to go through
the manufacturer leading to a significant delay. It is shown
in Fig. 1(a) that the customer requires the Lane Keep Assist
(LKA) feature, but has to be satisfied with a combination
of LKA and Blind Spot Detection (BSD) features that is
offered by the dealership. The more advanced alternative

shifts the deployment of an on-demand safety feature from
a cloud server, whereby the customer can request for a new
feature remotely. The cloud server would then determine
the feasibility of deploying this new feature considering the
configuration of the vehicle platform. If the requested safety
feature is found to be feasible for deployment, then the
vehicle is configured with the new feature by downloading
the feature code and requirements from the cloud. This
scenario is shown in Fig. 1(b). This new alternative allows
the customer to configure only the LKA feature when
required. However, this alternative would require a support
infrastructure that can enable a safe deployment of the on-
demand feature such that the new feature does not interfere
with the already running system adversely. In effect, the
new alternative is plug and play (PnP) of automotive safety
features.

In this paper, we present our vision of platform-based
PnP of automotive safety features and discuss the areas
that pose significant challenges in the realization of this
new paradigm. The platform infrastructure realizing the new
paradigm will be composed of hardware (sensors, actuators,
electronic control units (ECUs) and communication net-
works) and software resources required for basic operations
such as engine control, braking, steering, etc.

The main challenges we present in this paper are:

1) developing a specification format, i.e., how can we
specify features and the platform architecture taking
into consideration the possibility of future additions of
new system properties and resource types

2) determining safety of deploying on-demand features in
terms of platform compatibility and timing schedula-
bility

3) ensuring security constraint satisfaction

4) effiicent runtime management, i.e., providing adequate
resource budgets at runtime

Further, we also discuss possible solution approaches
corresponding to the existing challenges.

The relevance of this PnP paradigm looks promising in
the automotive industry as is observed in the car sharing
business model. Several companies have launched different
car sharing programs [1]. Leveraging the car sharing pro-

[Dealership]

Order with
LKA+BSD? -
=0 2k
oK T
[User]

“

[Vehicle]
(a)

eliverito User

Deliverto User ~ LKA+BSD / D
@ Deliver to Dealership

Cloud

Services
(sl
]
NEE I
D=
[T
[Dealership]
LKA? Order

03
'
Configure LKA

(from server)

Deliver to Dealership

[Vehicle]

(c)

Figure 1: Illustration of Plug and Play in Automotives: (a) current ordering, manufacturing and delivering process, (b)

on-demand deployment from the cloud server.

grams, the users can select a car brand and type of their
choice and then may want to select more or less safety
features depending on their driving skills and experience.
The proposed platform-based infrastructure can play a role in
allowing users to select the required safety features thereby
providing a more personalized driving experience.

The rest of this paper is organized as follows. Section II
presents the static (development time) and dynamic (run
time) views of the platform architecture. Section III in-
troduces the language needed to specify requirements of a
feature that the platform needs to satisfy in order to safely
deploy the feature. Section refsec:safetyassurance describes
deployment-time checks performed by the platform to ensure
that these requirements are satisfied. Section V introduces
an approach to perform checks in a compositional man-
ner. Section VI briefly introduces the problem of runtime
resource management for dynamically installed features.
Finally, Section VII concludes the paper.

II. PLATFORM ARCHITECTURE

In this section, we present the important building blocks
that need to be developed in order to realize the paradigm
of platform-based PnP of automotive safety features. The
platform architecture can be described from two perspectives
- the platform as seen by a feature and the internal platform
perspective with concrete resources.

The high-level architecture of such an automotive plat-
form from the perspective of a feature is shown in Fig. 2.
Each on-demand feature sees virtual resources, i.e., abstract
sensors, virtual ECUs, virtual network and abstract actuators.

The feature gets access to these resources at runtime through
a runtime service API interface. The on-demand feature
is agnostic to the distributed resource manager and the
deployment APIs.

The concrete platform architecture is shown in Fig. 3.
This concrete platform view encompasses concrete resources
clearly depicting what types and number of each resources
exist on the platform. Given the concrete instance of the
resources, an admission controller determines feasibility of
deploying the feature on the platform which may already be
running other safety features. The platform is also equipped
with a distributed resource manager, which provides virtu-
alization of the physical platform resources, such as ECUs,
sensors and actuators. It also ensures that the sensor to task,
task to task and task to actuator delays satisfy the timing
requirements specified by the feature developer. A com-
munication module/layer provides ability to retrieve an on-
demand feature from the cloud server. A middleware layer
will provide functionalities such as providing an interface to
access the services of a feature, managing the installation,
update and uninstallation of the feature on the platform, etc.

There are two possible phases of operation provided
by the platform architecture to each feature - deployment
phase and runtime phase. In the deployment phase, the
requirements of a new feature are checked to analyze if it
can be serviced with required resources along with already
deployed features. Once a feature has been deployed, the
runtime goal of the platform is to ensure that sufficient
resources are provided to the feature at each and every
instant when the feature executes on the platform.

Runtime Service API
| e |
ECU
Ab

| |
oo | s |
Sensors || === Virtual Network =1 Actuators

Figure 2: Platform Architecture with virtual resources as
seen by an on-demand feature

Feature repository in the cloud

Communication
Module

Admission Controller|

Distributed Resource Manager
Middleware

m

Figure 3: Platform Architecture Implementation with con-
crete resources

To deploy an on-demand feature, the deployment interface
in the middleware would need the details of how many
ECUs, sensors and actuators need to be allocated for the
feature. In addition, it would also need information about
what is the bandwidth allocated for the feature on each
of the allocated resources. The deployment interface must
also include functions to place a request to the cloud server,
which will then initiate the admission controller to check the
feasibility of the required feature and present the information
regarding resource requirements back to the interface. The
runtime service API provides an interface to execute the
code of the on-demand feature with the required resource
bandwidths at all times.

The feasibility of deploying a feature on the platform
needs to be checked at the cloud server before the feature is
actually deployed on the platform. The feasibility check may
involve checks for timing schedulability, platform compati-
bility and verification of security requirements. The timing
schedulability check will verify that the timing requirements
in executing all the features are satisfied given the platform
architecture, mapping of tasks to resources in the platform
and the scheduling policies on the resources. The check for

platform compatibility can include complex verifications to
ensure that the required virtualized resources are available on
the platform. This will require an extensible interface speci-
fication for the resources such that varying characteristics of
different types of a resource can be specified using a gen-
eral specification part and a resource specific specification
part. We will discuss about this more while discussing the
feature specification language. In addition, certain security
requirements will be verified which ensures that there is no
leakage of information from a security critical task/feature
to a malicious task/feature. In the next section, we discuss
the potential feature manifest specification, which will be
required to test the feasibility of deploying the on-demand
feature on the platform.

III. FEATURE SPECIFICATION

In order to perform a feasibility check at the cloud server,
a feature specification format/language is required that will
specify the resource and timing requirements of the on-
demand feature. This specification is in accordance with
the platform view (shown in Fig. 2) that is visible to a
feature. Each feature is assumed to be built from a set of
tasks/runnables that communicate with each other and also
access the sensors and actuators. In order to deploy the
features, it is essential to first specify their requirements. The
requirements invariably include the resource requirements,
temporal constraints and security constraints that need to be
adhered to.

The feature manifest specifies certain requirements and
characteristics of the feature:

1) aset of tasks and information flow between these tasks

2) workload requirement for each task

3) resources accessed by each task (for e.g., the number

and type of sensors and actuators accessed)

4) timing requirements for task execution

5) criticality level of the feature

Challenges: One of the important characteristics that
the specification language must exhibit is extensibility. The
specification language must be extensible in two dimensions.
In PnP automotive systems, there can be a large number of
system properties that need to be considered while ensuring
a safe system. However, the list of properties keeps getting
updated and new properties may need to be included later.
For example, in-vehicle communication security was not
considered earlier as a design parameter, while it is increas-
ingly becoming an important design parameter. Therefore,
the language must be flexible enough to accommodate new
properties with simple additions to the specification.

The second dimension is that the specification language
should also have the flexibility to specify different classes
of the same resource. For example, a camera sensor can
have some basic parameters, but there can be variations in
the camera sensors based on the rate at which the device
captures the image, the resolution of the image captured, etc.

Hence, it is essential that the specification language takes
into consideration the basic parameters and the variation
in parameters so that any new resource variation can be
accommodated with ease.

Solution Approach: The feature specification language
must be capable to describe the architecture of the platform,
connections between the different resources and the timing
parameters concerning the usage of the resources. It must
also describe the feature details such as the constituent
tasks and their dependencies along with the workload im-
posed by each task. These details can be captured by any
architecture description language (ADL). A comprehensive
description of the commonly used ADLs has been provided
in a survey [2]. Although, many ADL frameworks are well
developed and have necessary analysis tools, they have not
been designed keeping in mind the required PnP nature of
the system. Recently, a domain specific language based on
Scala was developed for on-demand medical systems [3]. As
there are some similar concerns for system safety between
on-demand medical systems and PnP automotive platforms,
we have used the specification language presented in [3]
for feasibility analysis of platform-based PnP of automotive
safety features. There are additional safety concerns and
resource characteristics that need to be considered in the
automotives, which are different from on-demand medical
systems. Some of these aspects have been added to the
language presented in [3] and we foresee that more will
be added in the future. Our specification format for PnP of
automotive safety features was extensively discussed in [4].

We are currently working on making the specification
format extensible in the two dimensions mentioned earlier.

IV. ADMISSION CONTROL

Admission control is an important step in the correct
deployment of a new feature in the platform. This is shown
in the concrete platform view in Fig. 3. There are several
reasons that may cause rejection of features from executing
on the platform. Each platform instance has a different set
of resources and may not necessarily have all the resources
required by a feature. For example, some required sensors
may not be available on a platform instance. It may also
happen that the ECU does not have sufficient capacity
to satisfy the workload requirement of the feature due to
already deployed features. This is where admission control
is important to prevent the incorrect deployment of an on-
demand feature. In our context, admission control broadly
consists of checking for safety and security assurance in
order to admit a feature to run on the platform. Therefore,
we first present a detailed description of what safety and
security assurance are and the challenges posed by them. In
the next section, we present a potential solution to check for
safety assurance, which is based on compositional analysis.

A. Safety Assurance

This section discusses the challenges and issues concern-
ing the assurance of the safety of PnP applications (apps)
in terms of the resource virtualization. Prior to installation
and execution of such apps, the automotive PnP apps must
be assured to guarantee and contribute to the driving safety
and vehicle security.

The PnP automotive application in this paper is a safety
and security-concerned software system which performs
a safety functionality (feature), e.g. LKA and BSD, that
improves vehicle safety. The safety of vehicle systems in
ISO 26262 [5] is classified by Safety Integrity Level (SIL).

The safety integrity of the automotive PnP apps also
conforms to SIL requirements which requires a satisfiable
integrity degree of safety analysis of apps installed on ve-
hicles. The safety analysis time of automotive apps depends
on a SIL that an app has to meet; the highest SIL demands
rigorous and exhaustive analysis, such as formal analysis
techniques, which demands relatively more time and analysis
resources that lower SIL apps do. Thus, the first challenge to
guarantee the safety of the automotive PnP apps is analysis
time. Since automotive PnP apps need to be deployed within
a relatively limited time since the customer requests any app
to install, the analysis of the apps has more constraints upon
its verification time and resources than the automotive apps
installed at manufacturing time.

Second, distributed resources, e.g. sensors, actuators, mo-
tors, in the PnP environment are quite often shared to satisfy
different purposes while the resources have been dedicated
to a particular control. Hence, the arbitration of resources
need to be more sophisticated and well-tuned than ever.

1) Platform Compatibility Analysis: Static availability
constraints mandate that the checking algorithm verifies
that the virtual resource specified in the manifest has a
matching physical resource in the platform instance. It does
not depend on the other features deployed in the system. This
resource matching is termed as compatibility of the feature
resource requirements with the available resources on the
platform. The compatibility analysis can range from checks
for simple resource matches to checks for more detailed
resource matches.

Typically, a check for a simple resource match would
involve a check for the particular resource type that the
feature needs. For e.g., if a safety feature needs a ECU,
checking for the availability of ECU on the platform is a
simple check. However, a more detailed check would involve
a check to find the exact resource if the requirements specify
multiple other properties of the resource. For e.g., checking
for a camera sensor that satisfies the data rate requirements,
resolution and other properties is a more detailed check as
compared to just checking for the availability of a camera.S

2) Resource Contention Analysis: There are several tech-
niques from literature that may be exploited to perform
timing analysis of the new feature with the already deployed

features. It is important here that the timing analysis must
be done taking into consideration the safety criticality of
the features. There are several admission control techniques
for different scheduling algorithms in literature. These tech-
niques are based on schedulability analysis concepts from
the real-time scheduling domain. Several admission control
algorithms have been developed for rate monotic (RM),
deadline monotonic (DM) and earliest deadline first (EDF)
scheduling strategy.

In the seminal paper by Liu and Layland [6], they
proposed a utilization bound for a set of tasks scheduled
by rate-monotonic scheduling. If the cumulative utilization
of all the tasks along with the new task is below the
proposed utilization bound, then the new task can safely be
admitted into the system. Although this type of admission
control is computationally simple, it only gives a sufficient
but not necessary condition for schedulability. Therefore,
the processor utilization achieved using this bound may
be lower leading to under utilization of resources. On the
other hand, there are works in literature that propose exact
schedulability tests [7], [8], [9], which give necessary and
sufficient conditions. However, they are not suitable for
admission control due to the pseudo-polynomial complexity.

Several algorithms have been proposed to increase the
accuracy while maintaining low complexity. One such al-
gorithm was presented in [10], where a load test was
proposed for DM tasks with deadlines less than or equal
to periods. The proposed method computes an upper bound
on the worst-case response times (WCRT) of tasks taking
into consideration the accepted and the arriving task. If the
upper bound on WCRT is always less than or equal to the
respective deadlines, the new task and the accepted tasks are
schedulable under DM and the new task can be admitted.
Similar algorithmic improvements for admission control
under EDF scheduling policy also has been conducted [11],
[12], [13]. Admission control has also been achieved using
real-time interfaces [14], [15], whereby the authors propose
the formalism of component interfaces, which describe the
required resource requirement in terms of demand curves.
The admissibility is therefore checked by ensuring that the
resource supply curve of the platform instance is sufficient
to satisfy the component demand curve.

There hasn’t been much work done on efficient admission
control algorithms considering safety criticality levels of the
incoming and already deployed features. One work [16]
exploits the different demands of tasks along with EDF-
VD scheduling approach, whereby deadlines of the higher
criticality tasks are scaled according to their demand. One
future research direction with regards to this area will be
to devise new interface concepts to handle safety-critical
scenarios in a mixed criticality setting.

B. Security

In todays vehicles, security features must include not just
physical access and protection of confidential information,
but also critical safety systems such as drive-by-wire braking
and steering [17]. In other words, compromising the vehicle
safety-critical units can result in the safety failure of the ve-
hicle system. Compromising the security in vehicle systems
is possible in two ways: vehicle network system and vehicle
applications that potentially are connected to safety-critical
vehicle control units.

The vehicle network system is either of vehicle-to-vehicle
(V2V) or vehicle-to-cloud (V2C), and the attack to the
safety-critical units is possible through those networking
systems [18], [19], [20]. The another possibility to attack
the safety-critical components is to use a PnP application
that intends to compromise and breach the vulnerability of
vehicle systems with malicious purposes.

The first challenge is to develop security threat mod-
els potential in the emerging automotive communication
environment and applications so that appropriate security
mechanisms and systems can be developed to address those
threatening models.

The second challenge is to overcome the legacy network-
ing resource limit. Currently, the most popularly used in-
ternal networking system is CAN (Controller Area Network
bus). In order to protect safety-critical software units, such as
Engine Control Unit, Transmission Control Units, etc, from
malicious access through CAN channel shared with non-
safety-critical software components, such as infotainment
systems, one of popular ways to bring the security to CAN
is the entity authentication between communication nodes
using MAC (Message Authentication Code) [21], [22]. Since
CAN is originally not designed to account for the security
problem [23], some of data bits for data transmission need
to be sacrificed for the authentication; The more secured
channel needs the more data bits, i.e. the data bits of
CAN used for data transmission should be scarified to
guarantee the highly secured channel. For this reason, the
acquisition of the resource for security protocols is critical to
guarantee the security of PnP apps. The literature [21], [22]
proposes a resource configuration method that guarantees a
secure communication using MAC upon CAN data payload.
However, it needs to take into account a dynamic security
resource allocation for PnP app environment.

To overcome the bandwidth limitation of CAN, a new
version of CAN, CAN Flexible Data rate (CAN FD), that
supports up to 64 Bytes payload instead of 8 Byte is
proposed by ISO 11898-7. However, it requires a new design
of vehicle software communication and the update of the
legacy software codes of the manufacturer.

The third challenge is that the security analysis integrity
of automotive software has not been officially regulated by
any regulation and standard organization. In principle, it is

Secure C
Non. C

L]
sz

CPUeur J CAN | CANMAc\ | CPUEDF CAN CANW\

CPU CAN CANyac | CAN CANyac
(p.0.d) <pbd (p.b.d) c2 (ped) (pb.d) (p.b.d)

Virtualized Platform
CAN

— g g g

Figure 4: Analysis framework of platform-based design

logical that the security level of automotive software should
depend on the safety integrity level because the safety of
automotive systems is the most significant property and
the security of an automotive software system needs to
satisfy the corresponding safety integrity level required of
the software system.

In short, the automotive PnP apps should challenge to
satisfy not only a safety degree corresponding to a given SIL
but also to be deployed within a relatively limited analysis
time. Furthermore, it should challenge to overcome the limit
of the resources that support security protocols in the current
automotive platforms.

V. COMPOSITIONAL ANALYSIS APPROACH

The platform-based approach views the safety from a
resource constraint perspective. We assume that the safety
is failed when execution resources, i.e. CPU, for apps are
not sufficient.

The safety analysis of applications in this framework
is performed in two steps: platform-independent analysis
with virtual resources, and platform-specific analysis with
concrete resources. The first analysis step is to figure out the
optimal (minimal) resource requirements that enable an app
to fulfill both functional and non-functional requirements.
The purpose of this step is to quantify necessary resources
of apps independently from platforms. This step is done by
app developers. The second analysis step checks if a given
platform providing actual resources supports the virtual
resource requirements from apps. This second analysis step
is a part of the admission control in the platform-based
approach.

Figure 4 shows an example of an app. It consists of
two components (C'1,C2) of which each is composed of
3 tasks. Each task has executable programs of the target
functionality. In C'1 component, every task is assigned to a
CPU which is scheduled by EDF (Earliest Deadline First).
T2 uses C ANy ac for secure communication while T3 uses
a normal CAN CAN. Each task requires a CPU to execute

programs, a CAN (Controller Area Network) to support non-
secure communication, a secured CAN supported by MAC
(Message Authentication Code) for secure communications.
If a task is periodic, it is characterized by real-time pa-
rameters, such as a period (p), an (worst-case) execution
time (e), and a deadline (d). For the communication with
tasks in other components, a task may require a CAN. Its
requirement can be specified in a similar way with the CPU
requirement using real-time parameters, such as a period (p),
the (minimum) transmission bit (b), and a deadline (d). The
specification of a CAN (p, b, d) means that the task requires
b bits bandwidth every p time units with the deadline d. In
order to make a secure communication, a task may require a
secure channel, i.e. CAN supported by MAC, with the same
real-time parameters as the CAN not supported by MAC.

A set of tasks is encapsulated by a component, which
is responsible for controlling tasks with specific scheduling
mechanisms for such shared resource as CPU and CAN.
In principle, individual resource requirements of each task
in a component is abstracted into a collective resource
requirements specification. In Figure 4, the component C'1
specifies its collective CPU requirements that satisfy its
encompassing tasks, 7'1, T2, and T'3, on a CPU resource
specification. In addition, C'l exposes similar collective re-
source requirements for CAN and CANs supported by MAC.
The CAN is used by 72, and the CAN supported by MAC
for secure communication is used by 7'3. The component C'2
exposes similar resource requirements. The specification of
those collective resource requirements for CPU, CAN and
CAN supported MAC is called component interface. For
instance, Io1 and Ioo are component interfaces for C'1 and
C2.

Prior to analysis of apps without a given platform, A
component interface that satisfies the functional and non-
functional requirements of apps is firstly computed, and
that is called virtual configuration in the platform-based
framework. In order to satisfy functional and non-functional
requirements, real-time parameters of each tasks of an app
are computed in such a way that they require the minimal
amount of resources. This computation accounts not only
for task’s real-time properties but also for scheduling (dis-
tribution) mechanisms for sharing resources.

Next, the compatibility of component interfaces is
checked against a given specific platform to see if a new app
can achieve its functional and non-functional requirements
under platform constraints. In next section, we discuss an
approach to the virtual configuration check and the compat-
ibility check.

A. Compositional Framework

The compositional framework for hierarchical scheduling
systems [24], [15], [25] presents the fundamentals and the
underlying techniques for the computation of component
interfaces and the compatibility check.

Croot

< scheduler
vion |

==
| Workoad |

=

Cc1 Cc2

< Seheduler >
|

Figure 5: Compositional framework for hierarchical schedul-
ing systems

Workload

In the compositional framework, resource requirements
of real-time tasks are also introduced by an interface, and a
supply pattern of resources available to tasks is represented
by a resource model. The schedulability, one of compatibility
checks, is verified by checking if an interface of a component
is satisfied by a resource model, i.e. the quantity of resources
demanded by every task in a component is always be
provided by a resource model.

A component in a hierarchical scheduling systems as
shown in Figure 5 consists of a set of workloads (tasks) and
a scheduling mechanism, such as EDF (Earliest Deadline
First) and RM (Rate Monotonic). The scheduling system is
constructed in a hierarchical manner such that a workload of
components may become a component which also consists
in a set of workloads and a scheduling mechanism. Thus,
either a workload of a component can be viewed as a task
controlled by the component, or it can be viewed as a
component including another set of workloads. Individual
components, except the root component, and workloads
are given in a requirements specification, called interface.
For instance, a periodic interface (resource) model [24]
specifies a periodic resource request, such as the interface
(p,e) that requires the amount e of resources every p
time units. Both interfaces of workload and component
share the same interface such that the interface of child
level components can be analyzed as one of workloads
at the parent level component. In order to construct an
optimal hierarchical scheduling system, the construction of
a hierarchical scheduling system is done in a bottom-up way
that the terminal workloads are grouped into a component
and their optimal resource requirements are computed as the
interface of the component, which is regarded as a workload
at its parent level and grouped again into another component.

B. Challenges in Adopting Compositional Framework to
Platform-based Approach

The compositional framework can be adopted by the
platform-based approach for the analysis of PnP apps. As
mentioned in Section V, the functionality of an app are
composed of one or more components, and each component
requires the resource requirements using an interface. The

interfaces of an app would be provided to a concrete
platform so that it is checked whether or not the interface
can be supported by the platform.

However, the classical compositional framework presents
some open issues. First, the interface of components of auto-
motive PnP apps should account for multi-typed resources.
The classical compositional framework accounts for a single
type resource, e.g. single core or multi-core CPU. However,
automotive PnP apps requires multi-typed resources, such as
CPU, CAN, sensors and actuators.

Second, the timing modality of resource requests might
not be regular. The classical compositional framework han-
dles a regular resource request pattern, such as periodic
resource model, where a task requests the same amount
of resources every specific period. However, the PnP apps
might have to consider a more dynamic and divergent re-
source request pattern of tasks, which is beyond the analysis
scope of the classical analytic methods.

Third, the classical interface of the compositional frame-
work presents inherent pessimism in sharing resources. The
interface of components is a collective resource requirements
specification abstracting all resource requirements of indi-
vidual workload in a component. Hence, such an abstraction
presents an inherent pessimism, i.e. the quantity of resources
required by an interface is more than the workloads of a
component actually require.

To address to the issues above, the platform-based safety
analysis needs a more flexible and sophisticated verification
technique. The next section discusses alternative methods
that support rigorous analysis of complicated and divergent
automotive PnP apps.

C. Model-based Compositional Approach to PnP App Anal-
ySis

Formal methods are analysis techniques recommended
by ISO 26262 [5] to assure the highest safety integrity
of automotive E/E software systems. Model checking in
formal methods is an exhaustive analysis method that checks
whether or not a given model of the system satisfies a
given property by exploring all the states of a system
model. The model checking is very attractive since it is
so exhaustive that its analysis is 100% certain with respect
to a given property even though it has the state-explosion
issue. Moreover the analysis procedure does not need any
human effort, i.e. it is fully automatic. For this reason, the
international standards recommends model checking as a
verification alternative for the highest safety integrity of
automotive software system.

The model checking approach to compositional systems
has been studied for many applications, such as [26], [27].
The idea behind the compositional model checking is as
follows (Figure 6): Given two components P1 and P2, if the
interface A1 of P1 is a projection of P1 to the component
P2, the verification of the composition of P1 and P2 is

‘H A models P on |H

these actions

IM @) On
Figure 6: Interface rule [26]

possible by checking the composition of the interface A1 and
P2.If P1 and P2 interact with each other, the interface A1l
(A2) represents P1’s (P2’s) behavior projected to P2 (P1).
This approach reduces the searching space of the states for
model checker to explore and increases the chance to return
a result within linear time. The compositional approach
to real-time systems can be found from [28], [29], [30].
The approach to scheduling systems are founded from [31],
[32]; The key idea behind them is to abstract a resource
supply from the system as an interface model and check
the schedulability of the workloads of a component against
the interface model. For instance, in Figure 5, the interfaces
Inter faceci and Inter facecs are resource requirement
specifications demanded by child components consisting.
Instead of modeling individuals of all components, each
interface is modeled as a resource model that supplies
resources according to its specification. In the parent level,
the interface is checked in such a way that the workload that
inherits real-time parameters from the interface is checked
by the configuration of the parent level. In this way, individ-
ual components are compositionally checked with respect to
the other components using the interface (resource) model.

The model checking is known to be flexible enough to be
capable of handling sophisticated real-time settings which
are divergent from classical real-time parameters of the
classical frameworks. In particular, [33] presents a more
flexible schedulability analysis framework, in which the
scheduling component includes probabilistic tasks whose
real-time parameters are dependent on various probabilistic
distributions. [32] presents a resource model that is divergent
from the classical regular resource supply patterns. Hence,
the model checking can be an alternative that complements
the flexibility of the classical analytic methods.

VI. RUNTIME RESOURCE MANAGEMENT

Runtime resource management (RRM) is another key area
that poses several challenges in realizing the paradigm of our
PnP platform for automotive safety features. Once a feature
is found to be admissible, the first primary goal of RRM
should be to provide the features with adequate budgets on
each of the resources they require no matter what is the
amount of workload from other features. It is essential that
the resource allocation at runtime is done within a bounded
time and using as less resources as possible. Further, the
resource allocation policy should be able to handle the

dynamic scenario in a PnP platform, i.e., the installation
and uninstallation of features.

There are several works in literature [34], [35], which
look at the problem of runtime resource management in
various types of system. Currently, we are evaluating these
approaches so that the necessary aspects can be identified
in runtime resource allocation, which need to be addressed
for our PnP automotive platform.

VII. CONCLUSION

In this paper, we presented a vision of platform-based
plug and play of on-demand safety features in automo-
biles. A prototype architecture of the envisioned platform
was described briefly with functionalities of the constituent
blocks. Further, we presented the key areas which pose
challenges to realizing such a platform architecture. Specifi-
cally, the three main challenging areas discussed included
specification approach for such a platform and features,
approaches to ensure safety of the system in terms of
platform compatibility and schedulability of features, and
ensuring security.

ACKNOWLEDGMENT

This work, carried out at the University of Pennsylvania,
has been supported in part by the NSF grant CNS-1329984
and a gift from Toyota ITC.

REFERENCES

[1] A. Cornet, D. Mohr, F. Weig, B. Zerlin, and H. Arnt-Philipp,
“Mobility of the future - opportunities for automotive oems,”
Advanced Industries, 2012.

[2] P. C. Clements, “A survey of architecture description lan-
guages,” in 8th International Workshop on Software Specifi-
cation and Design. 1EEE Computer Society, 1996, p. 16.

[3] A. L. King, L. Feng, O. Sokolsky, and I. Lee, “Assuring the
safety of on-demand medical cyber-physical systems.”

[4] D. Gangadharan, O. Sokolsky, I. Lee, B. Kim, C.-W. Lin, and
S. Shiraishi, “Platform-based automotive safety features,” in
SAE Technical Paper, 2016.

[5] “ISO/DIS 26262-1 - Road vehicles Functional safety Part 1
Glossary,” Geneva, Switzerland, Tech. Rep., Jul. 2009.

[6] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal
of the ACM, vol. 20, no. 1, pp. 46-61, 1973.

[7]1 J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm: Exact characterization and average case
behavior,” in Real Time Systems Symposium. IEEE, 1989,
pp. 166-171.

[8] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings, “Applying new scheduling theory to static prior-
ity pre-emptive scheduling,” Software Engineering Journal,
vol. 8, no. 5, pp. 284-292, 1993.

(91

(10]

(11]

[12]

(13]

[14]

[15]

[16]

(7]

(18]

(19]

(20]

[21]

[22]

E. Bini and G. C. Buttazzo, “Schedulability analysis of
periodic fixed priority systems,” IEEE Transactions on Com-
puters, vol. 53, no. 11, pp. 1462-1473, 2004.

A. Masrur, S. Chakraborty, and G. Férber, “Constant-time
admission control for deadline monotonic tasks,” in Design,
Automation and Test in Europe. European Design and
Automation Association, 2010, pp. 220-225.

J. A. Stankovic, M. Spuri, K. Ramamritham, and G. C.
Buttazzo, Deadline scheduling for real-time systems: EDF
and related algorithms. Springer Science & Business Media,
2012, vol. 460.

U. C. Devi, “An improved schedulability test for uniprocessor
periodic task systems,” in Euromicro Conference on Real-
Time Systems. 1EEE, 2003, pp. 23-30.

A. Masrur, S. Chakraborty, and G. Firber, “Constant-time ad-
mission control for partitioned edf,” in Euromicro Conference
on Real-Time Systems. 1EEE, 2010, pp. 34-43.

E. Wandeler and L. Thiele, “Real-time interfaces for interface-
based design of real-time systems with fixed priority schedul-
ing,” in International Conference on Embedded software.
ACM, 2005, pp. 80-89.

I. Shin and I. Lee, “Compositional real-time scheduling
framework,” in Real-Time Systems Symposium, 2004. Pro-
ceedings. 25th IEEE International. 1EEE, 2004, pp. 57-67.

A. Masrur, D. Mueller, and M. Werner, “Bi-level deadline
scaling for admission control in mixed-criticality systems,”
in International Conference on Embedded and Real-Time
Computing Systems and Applications. 1EEE, 2015.

R. Soja, “Automotive security: From standards to implemen-
tation,” Freescale White Paper, Document Number: AUTOSE-
CURITYWP REV, vol. 1, 2014.

A. Aijaz, B. Bochow, F. Dotzer, A. Festag, M. Gerlach,
R. Kroh, and T. Leinmiiller, “Attacks on inter vehicle commu-
nication systems-an analysis,” Proc. WIT, pp. 189-194, 2006.

J. Blum and A. Eskandarian, “The threat of intelligent colli-
sions,” IT Professional, vol. 6, no. 1, pp. 24-29, Jan 2004.

M. Amoozadeh, A. Raghuramu, C. n. Chuah, D. Ghosal,
H. M. Zhang, J. Rowe, and K. Levitt, “Security vulnerabilities
of connected vehicle streams and their impact on cooperative
driving,” IEEE Communications Magazine, vol. 53, no. 6, pp.
126-132, June 2015.

T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to
automotive can networks—practical examples and selected
short-term countermeasures,” in Computer Safety, Reliability,
and Security. Springer, 2008, pp. 235-248.

C.-W. Lin, B. Zheng, Q. Zhu, and A. Sangiovanni-Vincentelli,
“Security-aware design methodology and optimization for au-
tomotive systems,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 21, no. 1, p. 18, 2015.

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

C. W. Lin, Q. Zhu, C. Phung, and A. Sangiovanni-Vincentelli,
“Security-aware mapping for can-based real-time distributed
automotive systems,” in 2013 IEEE/ACM International Con-
ference on Computer-Aided Design (ICCAD), Nov 2013, pp.
115-121.

I. Shin and L. Lee, “Periodic resource model for compositional
real-time guarantees,” in R7SS. IEEE Computer Society,
2003, pp. 2-13.

——, “Compositional real-time scheduling framework with
periodic model,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 7, no. 3, p. 30, 2008.

E. M. Clarke, D. E. Long, and K. L. McMillan, “Composi-
tional model checking,” in Logic in Computer Science, 1989.
LICS’89, Proceedings., Fourth Annual Symposium on. 1EEE,
1989, pp. 353-362.

T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Sym-
bolic model checking for real-time systems,” Information and
computation, vol. 111, no. 2, pp. 193-244, 1994.

F. Laroussinie and K. G. Larsen, Compositional model check-
ing of real time systems. Springer, 1995.

H. Garavel, F. Lang, and R. Mateescu, “Compositional verifi-
cation of asynchronous concurrent systems using cadp,” Acta
Informatica, vol. 52, no. 4-5, pp. 337-392, 2015.

Y. Meller, O. Grumberg, and S. Shoham, “A framework
for compositional verification of multi-valued systems via
abstraction-refinement,” Information and Computation, 2016.

A. Boudjadar, A. David, J. H. Kim, K. G. Larsen,
M. Mikucionis, U. Nyman, and A. Skou, “Hierarchical
scheduling framework based on compositional analysis using
uppaal,” in Formal Aspects of Component Software. Springer,
2013, pp. 61-78.

——, “Widening the schedulability of hierarchical schedul-
ing systems,” in Formal Aspects of Component Software.
Springer, 2014, pp. 209-227.

A. Boudjadar, J. H. Kim, A. David, K. G. Larsen,
M. Mikucionis, U. Nyman, A. Skou, I. Lee, and L. T. X. Phan,
“Flexible framework for statistical schedulability analysis
of probabilistic sporadic tasks,” in IEEE 18th International
Symposium on Real-Time Distributed Computing, ISORC
2015, Auckland, New Zealand, 13-17 April, 2015. IEEE
Computer Society, 2015, pp. 74-83. [Online]. Available:
http://dx.doi.org/10.1109/ISORC.2015.21

G. C. Durelli, M. Pogliani, A. Miele, C. Plessl, H. Riebler,
M. D. Santambrogio, G. Vaz, and C. Bolchini, “Runtime
resource management in heterogeneous system architectures:
The save approach,” in IEEE International Symposium on
Parallel and Distributed Processing with Applications. 1EEE,
2014, pp. 142-149.

J. M. Borrmann, F. Haxel, A. Viehl, O. Bringmann, and
W. Rosenstiel, “Safe and efficient runtime resource man-
agement in heterogeneous systems for automated driving,”
in /8th IEEE International Conference on Intelligent Trans-
portation Systems. 1EEE, 2015, pp. 353-360.

