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ABSTRACT

SPECTRAL ESTIMATION OF HIDDEN MARKOV MODELS

Jordan Rodu

Dean Foster

This thesis extends and improves methods for estimating key quantities of hidden

Markov models through spectral method-of-moments estimation. Unlike traditional

estimation methods like EM and Gibbs sampling, the set of estimation methods,

which we call spectral HMMs (sHMMs), are incredibly fast, do not require multi-

ple restarts, and come with provable guarantees. Our first result improves upon the

original spectral estimation of hidden Markov models algorithm by estimating the pa-

rameters from fully reduced data. We also show that the parameters developed in the

fully reduced dimensional version can be estimated using various forms of regression,

which can lead to major speed gains, as well as allowing flexibility in the estimation

scheme. We then extend the algorithm beyond basic hidden Markov models to latent

variable tree structures that have linguistic applications, especially dependency pars-

ing, and finally to hidden Markov models in which the output is a high-dimensional,

continuously distributed variable. We show that spectral estimation of hidden Markov

models can be factored into two major components- estimation of the hidden state

space dynamics, and estimation of the observation probability distributions. This

leads to extremely flexible estimation procedures that can be tailored precisely for

the task of interest. These tools are all simple to implement, fast, and naturally incor-

porate dimension reduction, which allows them to scale gracefully as the dimension

of the data increases.
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1
Introduction

Hidden Markov Models (HMMs) are a class of latent state models that are widely
used in many domains. HMMs are useful for stochastic data, and can be used with
both discrete and continuous data. There are two primary uses of HMMs: identifying
the likelihood of a sequence of observations given a model, and generating features.

Obtaining the likelihood of a sequence of observations from a model is useful for
classification tasks. An interesting application of HMMs is in gene finding. Essentially
an HMM is trained on a sequence of base pairs known to be a gene, and then an
unknown sequence of base pairs is fed into the model. If the probability of this
sequence is high, then the sequence is labeled as a gene, otherwise it is not (see, for
instance, Huang et al. (1990)).

Besides the likelihood of a sequence of observations, HMMs can also generate at
each time step a vector indicating the probability of being in each hidden state at that
time given the history of observations. This belief vector can be used, for instance,
as a feature for some classification algorithm. Robot localization is one domain that
relies on these estimates. The robot is given the task to track its location inside a
building given some measurement. These measurements can range from visual data
collected by the robot, to signal data- like signal strength from wifi routers. Of
course, images or signals are almost never unique, and are often quite noisy. Hence,
localization from this data alone is not possible. Estimates can be quite improved
if the robot uses a belief vector given previous observations. Intuitively, while two
observations may look extremely similar, one of those observations might be highly
unlikely given the current state of the robot (established from previous observations).
For more on robot localization, see for instance Thrun et al. (1998).

Beyond gene recognition and robot localization, HMMs are a part of the state–
of–the–art toolkits of many domains, including speech recognition (continuous data,
and among the oldest, most successful applications of HMMs), gesture recognition
(also continuous data), and natural language processing (NLP) tasks (often discrete
data like words, and another major success story for HMMs).

Recent years have seen an explosion of data, both in terms of quantity and di-
mensionality. The internet now houses billions of webpages. 100 hours of video are
uploaded to Youtube every minute. Financial trading data on thousands of stocks
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are available at frequencies of fractions of a second. There is a major need for fast,
efficient tools to estimate the key quantities of HMMs– ways that can handle such
high–dimensional data. Spectral methods for estimating HMMs provide that plat-
form.

In this chapter we will introduce more formally the HMM, review spectral method
of moment estimation in a way that extracts the intuition behind the algorithms, and
motivate the material in the remainder of the dissertation.

1.1 The Hidden Markov Model

The basic HMM is a generative model that consists of a chain of latent states that,
at each time point, emit observations from a distribution that depends on the current
hidden state (see figure 1.1 for a graphical representation). There are two primary
assumptions for this basic HMM:

(a) The underlying hidden state process is Markovian

(b) Given the hidden states, the observations are independent

t

ht

xt

t+ 1

ht+1

xt+1

t+ 2

ht+2

xt+2

Figure 1.1: HMM with states ht, ht+1, and ht+2 which emit observations xt, xt+1, and
xt+2 respectively.

For the hidden state sequence to be Markovian means that, at time t, the proba-
bility distribution over the next hidden state at time t+ 1 depends only on the value
of the current hidden state at time t, so

Pr(ht+1|ht, . . . , h1) = Pr(ht+1|ht)

We can fully specify the basic HMM with a probability distribution over the initial
hidden state, often denoted by π, a parameter capturing the probability of transition
from hidden state to hidden state, encapsulated in a matrix T , and a parameter that
indicates the probability of a particular emission x given the current hidden state.

[π]i = Pr(h1 = i)

2



[T ]i,j = Pr(ht+1 = i|ht = j)

[λ(x)]i = Pr(xt|ht = i)

In this dissertation we will concern ourselves with a particular type of HMM– one
in which the hidden state space, of dimension k, is much smaller than the dimension
of the observation space, v. Further, the basic HMM can be generalized to include
a state space that is not discrete or to the continuous time setting. We will not
be considering these extensions in this dissertation, however we will consider both a
discrete and continuous observation space.

For completeness, the likelihood of a sequence of observations is

P (x1, . . . , xt) =
∑

h1,...,ht

[π]h1

t∏
j=2

[T ]hj ,hj−1

t∏
j=1

[λ(xj)]hj

For fun, let’s consider a pictorial view of the parameters of an HMM, seen in figure
1.2.

T =
Pr(ht+1|ht = i)

Collection of λ(x)′s

...

...

Pr(x|h)

π =

Pr(h1)

Figure 1.2: Pictorial view of HMM parameters

We can recast the probability statement in terms of a “new” formula,

P (x1, . . . , xt) = 1>A(xt) · · ·A(x1)π

where A(x) = Tdiag(λ(x)), and diag takes a vector x and puts its entries on the
diagonal of a matrix otherwise populated with 0’s. For those familiar with forward–
backward algorithm, this is the matrix form of the forward calculation. Pictorially,
A(x) can be seen in 1.3.

3



A(x) =

λ(x) = Pr(x|h)

=

Pr(ht+1, x|ht = 1)

Figure 1.3: A(x), graphically

This formulation of the likelihood is referred to as the “Observable Operator
Model” (Jaeger (2000)) in spectral HMM literature. Each observation x is mapped
to a matrix A(x), and these matrices are multiplied together to return the probability
of the sequence of observations.

Let’s look at a concrete example, pictorially. Consider the sentence “Kilroy was
here”. To calculate the likelihood of this sentence from an HMM with parameters
π, T , and λ, we have, from the “forward algorithm” viewpoint we get the picture in
figure 1.4

Pr(“Kilroy was here”) =

λ(Kilroy)λ(was)λ(here)

Figure 1.4: “Forward algorithm” version of Pr(“Kilroy was here”)

This, then, can be represented in operator form as in figure 1.5.
The key to all of this is that, for many quantities of interest, like the probability

of a string of observations, recovering T and λ(x) isn’t necessary. If one can learn
an A(x) for each observation, this is sufficient. Unfortunately, A(x) isn’t directly
learnable. However an appropriate similarity transformation of A(x) (of which there
are more than one) is learnable by the method of moments, bypassing the need to
recover the HMM parameters, and still gets us what we want. Note that

P (x1, . . . , xt) = 1> A(xt) · · · A(x1) π

= 1>S−1︸ ︷︷ ︸
b>∞

SA(xt)S
−1︸ ︷︷ ︸

B(xt)

S · · · S−1 SA(x1)S
−1 Sπ︸︷︷︸

b1

≡ b>∞ B(xt) · · · B(x1) b1

4



Pr(“Kilroy was here”) =
A(Kilroy)A(was)A(here)

Figure 1.5: “Observable Operator” version of Pr(“Kilroy was here”)

For now let’s just trust that we can learn b>∞ and b1. For those familiar with the
literature, or for those who plan to delve into the literature, this is launching point
for Hsu et al. (2009), who show how to learn, for DISCRETE OBSERVATIONS,
these truly observable operators B(x) through the method of moments. It requires
estimation of the first three moments, as seen in figure 1.6, and an “eigendictionary,”
U , that maps these moments to low dimensional embeddings. Before proceeding with
the story, let’s take a quick look at one possible eigendictionary U , and it’s function
in spectral methods.

E[X1] =

E[X2 ⊗X1] =

E[X3 ⊗X1, x2] = · · ·

v such matrices, one for each word x

Figure 1.6: Moments needed for estimation of B(x) as in Hsu et al. (2009)
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1.2 The Eigendictionary

U maps the three moments (see figure 1.6) into a lower dimensional subspace (of
dimension k). An equivalent way to think about U , and indeed the way we think
about U in this dissertation, is that it maps observations to a lower–dimensional
embedding. There are many different eigendictionaries that can work for a given data
set. The key is that the mapping cannot lose much of the distributional information
about an observation. Recall that our major assumption is that, while observations
lie in high dimensional space, they are really governed by a much lower dimensional
system.

To get a feel for what an eigendictionary does, let’s take a concrete example of
words. Let’s say our domain has 100, 000 words, and let’s assume that our underlying
space is about 50 dimensional. In the original space, we map each word to an indicator
vector– a vector of length 100, 000 that is all zeros except a single 1 in the entry
corresponding to the word of choice.

Each word will be mapped, via the eigendictionary, to a vector of length 50. Now,
consider the words “his” and “hers”. If we squint, these words are, for all intents and
purposes, distributionally equivalent. Wherever we see the word “his”, we can almost
always substitute “hers”. In the original space, these two words are as far apart from
each other as they are from any other words. One hope of a good eigendictionary is
that these words will be mapped relatively close together– in other words, that their
50–dimensional repreentations will be pointing in pretty much the same direction.

On the other hand, the word “box”– while in the original space is no more distinct
from “hers” than “his” is– should be mapped to a low dimensional representation that
is pointing in a very different direction than “his” and “hers”. Figures 1.7 and 1.8
show examples of the projection of words onto the first and second dimensions of
a possible eigendictionary and the projection of words onto the second and third
dimensions, respectively.

As mentioned before, there are many possible choices for the eigendictionary U .
One possible choice, and the most common from the literature, is to use a subset of
the left singular vectors from the singular value decomposition (SVD) of the second
moment, E[X2 ⊗X1].

1.2.1 A Quick SVD Refresher

The SVD factors a matrix S into the product of two orthonormal matrices U and V ,
and a diagonal matrix D such that S = UDV >. This is represented pictorially in the
top line of figure 1.9. One aspect of the SVD is that the best rank k approximation of
a matrix can be obtained from the first k left singular vectors (corresponding to the
first k singular values arranged in descending order), the first k right singular vectors,
and the first k singular values. The best rank 1 and 2 matrices are illustrated in the
bottom two graphics in figure 1.9.

Let’s return to our two words, “his” and “hers”. The claim made earlier is that

6



Figure 1.7: Projection of words onto the first two dimensions of the U matrix

these to words look extremely similar, meaning that if we look at the rows corre-
sponding to the words “his” and “hers” in the second moment matrix, these rows
should look extremely similar (in other words, “his” and “hers” tend to follow the
same words, and co–occur with them in the same proportions). Now, consider the
best rank 1 approximation to the second moment matrix, and let’s call the first left
singular vector u1 and the first right singular vector v1 (for now let’s ignore the singu-
lar values). One way to think about the matrix decomposition is that v1 is the single
best direction that approximates the rows of the second moment matrix, and the
entries of u1 (each of which we can identify with a word in the vocabulary), specify
the weight to place on the direction v1 for a given word. The idea is that the words
“his” and “hers” should want almost the same weight for v1, since they are basically
trying to reconstruct the same row, and they should want extremely similar weights
for successive right singular vectors. In other words, the weightings given to the words
“his” and “hers” in the k left singular vectors should effectively be the same. On the
other hand, “box” is trying to reconstruct a very different row than “his” or “hers”,
and so the weightings of the right singular vectors given to “box” by the left singular
vectors should be quite different.

Another thing to note about the SVD is that a matrix of rank k needs exactly
k left and right singular vectors, and has k positive, non–zero singular values. The
second moment matrix is of size v × v, though because we assume it is of rank k,
reconstruction of the theoretical second moment matrix needs only k of the relevant

7



Figure 1.8: Projection of words onto the second two dimensions of the U matrix

components. This is why the eigendictionary, pictured in figure 1.10, needs only k
dimensions per observation.

1.3 Returning to the Spectral Story

As mentioned before, Hsu et al. (2009) estimate their observables B(x) using the first
three moments of the data. Let’s examine a bit more closely the third moment. In
their formulation, they estimate v matrices each of size k × k (figure 1.6). When
observation x is observed, the “third moment” matrix corresponding to x is selected
for use in building B(x). Alternatively, we can stack them in a tensor, and select
the slice of the tensor corresponding to the word of choice (see figure 1.11). Nothing
really changes, except now we can think of estimating a single third moment tensor of
size k×k×v, which we can think of as a function that takes a vector (our observation
x) and returns a matrix, which can then be used to construct the observable B(x).

One question we can ask, then, is if it is possible to reduce the size of this new
third moment “function”– in other words instead of estimating something that is of
size k × k × v, estimating something of size k × k × k. The answer is yes, and is the
subject of chapter 2. To spoil the fun, chapter 2 shows how to estimate the observable
operators from the reduced–dimension data (see figure 1.12). We call the observable

8



=

=
best rank

1 approx

=
best rank

1 approx

best rank

2 approx

Figure 1.9: The top figure is a pictorial representation of the SVD, the second is the
best rank 1 approximation to the matrix, and the third is the best rank 2 approxi-
mation

=

U

E[X2 ⊗X1]

Figure 1.10: The eigendictionary U resulting from the SVD

9



· · ·

...

Figure 1.11: Stacking the third moment matrices

operators C() in this case to distinguish them from the B() in Hsu et al. (2009),
though for a given observation (in discrete space), B(x) = C(y), where y = U>x.

E[Y1] =

E[Y2 ⊗ Y1] =

E[Y3 ⊗ Y1 ⊗ Y2] =

Figure 1.12: Three moments required to build observable operators C(y)

Further, chapter 2 provides an analysis of the sample complexity required to esti-
mate the observables C(y).

1.4 Extending Spectral Estimation

So far we have focused on, as does chapter 2, standard HMMs with discrete output.
This dissertation extends spectral estimation in two ways. First, chapter 3 extends
spectral estimation to latent tree structures. These HMM–like structures, for example
in figure 1.13, has the characteristic that the distribution of a hidden node given

10



h0

h1 h2
was

Kilroy here

Figure 1.13: Sample dependency parsing tree for “Kilroy was here”

its entire ancestry depends only on its parent node. Further, each node emits an
observation.

Chapter 5 extends spectral HMM estimation to HMMs that emit high–dimensional,
continuously distributed observations. The key observation in that chapter is that
estimation of the observable function C() remains exactly the same as in 2. In fact,
spectral estimation of HMMs and HMM–like objects can be factored into two sepa-
rate parts– estimation of the hidden state space, and estimation of the observation
probabilities given the hidden states. The function C() fully encodes all relevant in-
formation about the hidden state space. Obtaining observation probabilities depends
on the argument passed to the function C(). We show in chapter 5 what quantity to
estimate in order to isolate the relevant information about the observation space in
the continuously distributed observation case.

In particular, one estimates a function g(xt) = E[yt+1|xt]. While not really the
focus of chapter 5, estimation of the function g(x) is extremely flexible, allowing a
scientist to choose from a wide array of estimation techniques. Further, one can
easily handle missing or incomplete data. This is nice because previous spectral
HMM estimation methods were extremely rigid in their estimation procedures, relying
exclusively on method of moments to estimate both the hidden state space dynamics
and the conditional observation probabilities.

Chapter 4 has a slightly different, though complimentary focus. It focuses on
the observable C() and shows that, like g(x), C() can be estimated through various
types of regression. This permits a great deal of flexibility, and combined with the
estimation of g(x) we now have a factored, extremely flexible way to estimate spectral
HMMs. We now have a framework with which to apply spectral estimation to a
broader class of latent state models. This dissertation tears apart the estimation
problem into two parts– estimation of the hidden state space dynamics and estimation
of the observation conditional probabilities– which will hopefully enable researchers to
piece together an appropriate estimation procedure in order to estimate their model,
further tailoring those estimation procedures to meet the particular characteristics of
their data.

11



1.5 A Word About Notation

A table of notation can be found in appendix A.1. One piece of notation, however,
requires a little more attention. We let M be a v × k matrix where column i of M
is the expected value of an observation given the hidden state i. In math, letting Mi

represent denote column i of matrix M , we have

Mi = E[X|hi].

For spectral methods, M is instrumental as a theoretical quantity in identifying an
appropriate similarity transform. In terms of a regular non–spectral HMM estimation
procedure, M can also be used to obtain the expected value of an observation given
the current hidden state belief vector (so if h̃t is the belief probabilities over hidden
states at time t, the Mht = E[xt|h̃t].

For discrete data, M plays another role. When x is an indicator vector (all 0’s and
a single 1 in the entry corresponding to the given observation), we have the following:

E[x|hi] = Pr(x|hi).

In other words, for a particular observation x, λ(x) can be found simply be ex-
tracting the row of M corresponding to observation x:

λ(x) = M>x.

For those familiar with HMM literature, M is often written instead as O– for “Obser-
vation matrix”– where [O]ij = Pr(x = i|h = j). One of the goals of this dissertation is
to unify estimation in the case where x is discrete and the case where x is continuous.
The double loading of O as both an expected value and as a source for λ(x) doesn’t
carry over elegantly to continuous data, and the decision was made to keep the two
functions of O separate, hence M and λ(x). However, note that in the discrete case
λ(x) is often simply referred to as M>x.

12



2
Reduced Dimensional Estimation of Hidden Markov

Models

Hidden Markov Models (HMMs) can be accurately approximated using co-occurrence
frequencies of pairs and triples of observations by using a fast spectral method Hsu
et al. (2009) in contrast to the usual slow methods like EM or Gibbs sampling. We
provide a new spectral method which significantly reduces the number of model pa-
rameters that need to be estimated, and generates a sample complexity that does
not depend on the size of the observation vocabulary. We present an elementary
proof giving bounds on the relative accuracy of probability estimates from our model.
(Corollaries show our bounds can be weakened to provide either L1 bounds or KL
bounds which provide easier direct comparisons to previous work.) Our theorem uses
conditions that are checkable from the data, instead of putting conditions on the
unobservable Markov transition matrix.

2.1 Introduction

For many applications such as language modeling, it is useful to estimate Hidden
Markov Models (HMMs) Rabiner (1989) in which observations drawn from a large
vocabulary are generated from a much smaller hidden state. Standard HMM estima-
tion techniques such as Gibbs sampling Geman and Geman (1984) and EM Baum
et al. (1970); Dempster et al. (1977) methods, although very widely used, can require
some effort to apply as they are often either slow or prone to get stuck in local op-
tima. Hsu, Kakade and Zhang, in a path breaking paper, Hsu et al. (2009) showed
that HMMs can, in theory, be efficiently and accurately estimated using closed form
calculations on trigrams of observations which have been projected onto a low dimen-
sional space. Key to this approach is the use of singular value decomposition (SVD)
on the matrix of covariances between adjacent observations to learn a matrix U that

Work from this chapter appears in Foster et al. (2012)
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projects observations onto a space of the same dimension as the hidden state. Perhaps
surprisingly, co-occurrence statistics on unigrams, pairs, and triples of observations
are sufficient to accurately estimate a model equivalent to the original HMM.

The true hidden state itself cannot, of course, be estimated (it is not observed), but
one can estimate a linear transformation of the hidden state which contains sufficient
information to give an optimal (in a sense to be made precise below) estimate of the
probability of any sequence of observations being generated by the HMM Hsu et al.
(2009). The method of Hsu et al. (2009), and the extensions to it presented here
do not require EM or Gibbs sampling, but only need an SVD on bigram observation
counts. Since SVD is an efficient method guaranteed to return the correct result in a
known number of steps, this is a major advantage over the iterative EM method.

Hsu et al. (2009) estimate a size kv matrix mapping between the the dimension
v observation space and a reduced dimension space of size k (the dimension of the
hidden state space). They also need to estimate a tensor of size vk2. We provide
an alternate formulation that replaces their vk2 tensor with one of size k3. Since the
observation vocabulary, v, is often much larger than the state space (v � k), this
provides significant reduction in model size, and hence, as we show below, in sample
complexity.

2.1.1 HMM set-up and notation

We now introduce the notation and model used throughout this chapter.
Consider an HMM where T is an k × k transition matrix on the hidden state, M

is a v × k emission matrix giving the probabilities of hidden state h = j emitting
observation x = i, and π is a vector of initial state probabilities in which πi is the
probability that h1 = i. Jaeger (2000) showed that the joint probability of a sequence
of observations from this HMM is given by

Pr(x1, x2, . . . , xt) = 1>A(xt)A(xt−1) · · ·A(x1)π, (2.1)

where A(x) ≡ Tdiag(λ(x)), x is the unit vector of length v with a single 1 in the
position corresponding to observation x, λ(x) is a vector of length k such that [λ(x)]i =
Pr(x|h = i), and diag(m) creates a matrix with the elements of the vector m on its
diagonal and zeros everywhere else. In the case of discrete observations, λ(x) = M>x,
and M>x will often be used instead of λ(x) in this chapter.

A(x) is called an “observation operator”, an idea dating back to multiplicity au-
tomata (Schutzenbeegeb (1961); Carlyle and Paz (1971); Fliess (1974)), and founda-
tional in the theory of Observable Operator Models (Jaeger (2000)) and Predictive
State Representations (Littman et al. (2002)). It is effectively a third order tensor,
giving the distribution vector over states at time t + 1 as a function of the state
distribution vector at the current time t and the current observation xt. Since A(x)
depends on the hidden state, it is not observable, and hence cannot be directly es-
timated. But Hsu et al. (2009) showed that under certain conditions there exists a
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fully observable representation of the observable operator model. We now present a
novel, fully reduced dimensional version of the observable representation.

2.1.2 The reduced dimension model

Define a random variable yt = U>xt, where U has orthonormal columns and is a
matrix mapping from observations to the reduced dimension space.

We show below that

Pr(x1, x2, . . . , xt) = c>∞C(yt)C(yt−1) · · ·C(y1)c1 (2.2)

holds where

c1 = µ

c>∞ = µ>Σ−1

C(y) = K(y)Σ−1

and µ = E(y1), Σ = E(y2 ⊗ y1), and K(a) = E(y3 ⊗ y1 ⊗ y2)a are easy to estimate
using the method of moments.1

The matrix U can be derived in several ways; Hsu et al. (2009) show that taking it
to consist of the left singular vectors of P21 corresponding to the largest singular values
gives good properties, where P21 is a matrix such that [P21]ij = Pr[x2 = i, x1 = j].
The matrix U and its properties will be discussed in more detail below.

Note that the model (c1, c∞, C(y)) will be estimated using only trigrams. Once
a model has been learned, the probability of any observed sequence (x1, x2, ...xt) can
be computed using equation 2.2, or the conditional probability Pr(xt|x1, x2...xt−1) of
the next observation xt in a sequence can be computed by Pr(xt|x1:t−1) = c>∞C(yt)ct
with recursive updates ct+1 = C(yt)ct/(c

>
∞C(yt)ct). The key term in the model is thus

C(y), which can be viewed as a tensor which takes as input the current observation
xt and produces a matrix which maps (after normalization) from the current “hidden

state estimate” ct to the next one ct+1. More precisely, ct+1 = (U>M)ĥt+1(x1:t)
is a linear function of the conditional expectation of the unobservable hidden state
ĥt+1(x1:t), which is the conditional probability vector over states at time t+ 1.

2.1.3 Comparison to Hsu et al.

Hsu et al. (2009) derive a similar model which we state here for comparison.

Pr(x1, x2, ..., xt) = b>∞B(xt)B(xt−1) . . . B(x1)b1 (2.3)

1Note that K() is a tensor. When multiplied by a vector a, it produces a matrix. K() is linear
in each of the three reduced dimension observations, y1, y2 and y3.

15



where

b1 = U>P1

b>∞ = P>1 (U>P21)
+

Bx = (U>P3x1)(U
>P21)

+

and [P1]i = Pr[x1 = i], P21 as defined above, and [P3x1]ij = Pr[x3 = i, x2 = x, x1 = j]
are the frequencies of unigrams, bigrams, and trigrams in the observed data. Note
that the subscripts on x refer to their positions in trigrams of observations of the form
(x1, x2, x3).

Our major modeling change will be to replace B(x) in equation 3.1 with the lower
dimensional tensor C(y) which depends on the reduced dimension projection y ≡ U>x
instead of the unreduced x. The models are easily related by the following lemma:

Lemma 1. Assume the hidden state is of dimension k and the rank of M is also k.
Then:

Pr(x1, x2, . . . , xt) = 1>A(xt)A(xt−1) · · ·A(x1)π (2.4)

= b>∞B(xt)B(xt−1) · · ·B(x1)b1 (2.5)

= c>∞C(yt)C(yt−1) · · ·C(y1)c1 (2.6)

Where (2.5) requires U>M to be invertible, and (2.6) requires range(M) ⊂ range(U).2

Proof: Paper Jaeger (2000) showed (2.4), Hsu et al. (2009) showed (2.5), and
(2.6) follows from a telescoping product of the following items:

c1 = U>M π

c>∞ = 1> (U>M)−1

C(y) = U>M A(x) (U>M)−1

where y = U>x. More details are given in Appendix A.2. 2

Our expression (2.6) improves on that of Hsu et al. (2009) in three ways:

(a) By reducing the size of the matrix that is estimated, we can achieve a lower
sample complexity. In particular, our sample complexity does not depend on
the size of the vocabulary nor on the frequency distribution of the vocabulary.

(b) Since the conditions given in Hsu et al. (2009) are in terms of the transition
matrix T , they can not be checked. We instead focus on conditions that are
checkable from the data.

(c) Instead of using either a L1 error or a relative entropy error, we estimate the
probabilities with relative accuracy. In other words, we show that |p̂ − p|/p

2If the matrix U is formed from the left singular vectors of P21 corresponding to nonzero singular
values, then it will satisfy this condition; See Hsu et al. (2009) lemma 2.
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Figure 2.1: Two HMMs with states h1, h2, and h3 which emit observations x1, x2,
and x3. On the left, they are further projected onto lower dimensional space with
observations y1, y2, y3 by U from which our core statistic Cy is computed based on
K = E(y3⊗ y1⊗ y2) which is a (k× k× k) tensor. On the right, x1 is hit by (P>21U)+

to make a lower dimensional z1, x2 is left unchanged and x3 has its dimension reduced
by U>. These terminal leaves are then used by Hsu et al. (2009) to estimate their
B(x) via estimating E(y3z

>
1 δ
>
x2

) which is a tensor of size (k × k × v).

is smaller than ε. This often is a more useful bound than knowing |p̂ − p| is
small. For example, it implies that computing conditional probabilities are off
by less than 2ε. Both L1 and relative entropy errors can be computed from
these bounds.

Our main theorem is weaker (as stated) than Hsu et al. (2009) in that we assume
knowledge of U rather than estimating it from a thin SVD of P21 as they do. Since
the accuracy lost when estimating U is identical to that given in their paper, we will
not discuss it here.

2.2 Theorems

The remainder of this chapter presents one main theorem giving finite sample bounds
for our reduced dimensional HMM estimation method. We first derive these in terms
of properties of the first three moments of the reduced rank Y ’s, where Y is the random
variable which takes on values of the reduced rank observation y = U>x. We then
convert those bounds to be in terms of the estimates, rather than the unobservable
true values, of the model.

Our general strategy of estimating Pr(xt, xt−1, . . . , x1) is via the method of mo-
ments. We have Pr() written in terms of c>∞, c1 and C(yt). Since each of these three
items can be written in terms of moments of the Y ’s we can plug in these moments
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to generate an estimate of Pr(). Thus we can define:

P̂r(xt, xt−1, . . . , x1) = ĉ>∞Ĉ(yt)Ĉ(yt−1) · · · Ĉ(y1)ĉ1 (2.7)

where

ĉ1 = µ̂

ĉ>∞ = µ̂>Σ̂−1

Ĉ(y) = K̂(y)Σ̂−1

where µ̂, Σ̂ and K̂() are the empirical estimates of the first, second and third moments

of the Y ’s, namely µ̂ = 1
N

∑N
i=1 Y

(i)
1 , Σ̂ = 1

N

∑N
i=1 Y

(i)
1 Y

(i)>
2 , K̂(y) = 1

N

∑N
i=1 Y

(i)
1 Y

(i)>
3 Y

(i)>
2 y,

where Y (i) indexes the N different independent observations of our data.

Definition 1. Define Λ as the smallest element of µ, Σ−1 and K(). In other words,

Λ ≡ min{min
i
|µi|,min

i,j
|Σ−1

ij |,min
i,j,l
|Kijl|}

where Kijl = K(δj)il are the elements of the tensor K(). Likewise we define the
empirical version as

Λ̂ ≡ min{min
i
|µ̂i|,min

i,j
|Σ̂−1

ij |,min
i,j,l
|K̂ijl|}

Definition 2. Define σk as the smallest singular value of Σ, and σ̂k the smallest
singular value of Σ̂.

The parameters Λ and σk will be central to our analysis. Theorem 1 gives sam-
ple complexity bounds on relative error in estimating the probability of a sequence
being generated from an HMM as a function of Λ and σk, and the following lemmas
reformulate those bounds into a more useful form in terms of their estimates. As
quantified and proved below, both Λ and σk must be “sufficiently large”; when they
approach zero one loses the ability to accurately estimate the model.

If σk = 0 then U>M will not be invertible, and one cannot infer the full information
content of the hidden state from its associated observation, violating the condition
required in Hsu et al. (2009) for (2.5) to hold. As σk becomes increasingly close to
zero, it becomes increasingly hard to identify the hidden state, and more observations
are required. Problems with small σk are intrinsically difficult. As has been pointed
out by Hsu et al. (2009), some problems of estimating HMM’s are equivalent to the
parity problem Terwijn (2002a). For such data, our algorithm need not perform well.
For parity-like problems, σk is in fact zero, or close to it; hence we end up with a
useless bound for such hard problems.

If Λ is close to zero, then even if the absolute error is small, the relative error can
be arbitrarily large, as it involves dividing by the small true value of the parameter
being estimated. Fortunately, as discussed below, since Λ depends on the somewhat
arbitrary matrix U , one can shift Λ away from zero by rotating and rescaling U .
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The proof of Theorem 1 is based on the idea that if we can estimate each term
in µ, Σ and K() accurately on an absolute scale (which will follow from basic central
limit like theorems) then we can estimate them on a relative scale if Λ is large. Hence,
our main condition is that Λ is bounded away from zero. In fact, if we take the usual
statistical limit of having the sample size N go to infinity and holding everything else
constant, then: ∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)
− 1

∣∣∣∣∣ ≤ 18kt

σ2
kΛ
√
N

√
log(k/δ)

with probability greater than 1− δ.
The following theorem gives the finite sample bound in terms of a sample com-

plexity:

Theorem 1. Let Xt be generated by an k ≥ 2 state HMM. Suppose we are given a
U which has the property that range(M) ⊂ range(U) and |Uij| ≤ 1. Suppose we use
equation (2.7) to estimate the probability based on N independent triples. Then

N ≥ 128k2

( 2t+3
√

1 + ε− 1)2 Λ2σ4
k

log

(
2k

δ

)
(2.8)

implies that

1− ε ≤

∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)

∣∣∣∣∣ ≤ 1 + ε

holds with probability at least 1− δ.

Before proceeding with the proof of this theorem, we present and prove two corol-
laries that correspond directly to Theorems 6 and 7 of Hsu et al. (2009).

Corollary 1. Assume Theorem 1 holds, then with probability at least 1− δ,∑
x1,...,xt

|P̂r(xt, . . . , xt)− Pr(x1, . . . , xt)| ≤ ε

Proof of Corollary 1: We have

1− ε ≤

∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)

∣∣∣∣∣ ≤ 1 + ε

⇒

∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)
− 1

∣∣∣∣∣ ≤ ε

⇒
∣∣∣P̂r(x1, . . . , xt)− Pr(x1, . . . , xt)

∣∣∣ ≤ εPr(x1, . . . , xt)

⇒
∑

x1,...,xt

∣∣∣P̂r(x1, . . . , xt)− Pr(x1, . . . , xt)
∣∣∣
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≤ ε
∑

x1,...,xt

Pr(x1, . . . , xt)

⇒
∑

x1,...,xt

∣∣∣P̂r(x1, . . . , xt)− Pr(x1, . . . , xt)
∣∣∣ ≤ ε

2

For the next corollary, let KL(A||B) be the Kullback-Leibler divergence between

probability distributions A and B, so KL(A||B) =
∑

x ln
(
A(x)
B(x)

)
A(x).

Corollary 2. Assume Theorem 1 holds, then we have

KL(Pr(xt|x1, . . . xt−1)||P̂r(xt|x1, . . . xt−1))

= E

(
ln

Pr(xt|x1, . . . xt−1)

P̂r(xt|x1, . . . xt−1)

)
≤ 6ε

Proof of Corollary 2: We have

1− ε ≤

∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)

∣∣∣∣∣ ≤ 1 + ε

⇒1− ε ≤

∣∣∣∣∣ P̂r(xt|x1:t−1)P̂r(x1:t−1)

Pr(xt|x1:t−1) Pr(x1:t−1)

∣∣∣∣∣ ≤ 1 + ε

⇒1− ε
1 + ε

≤

∣∣∣∣∣ P̂r(xt|x1:t−1)

Pr(xt|x1:t−1)

∣∣∣∣∣ ≤ 1 + ε

1− ε

and using the fact that for small enough x we have 1+x
1−x ≤ 1 + 3x and 1− 3x ≤ 1−x

1+x
,

plus the fact that ε0 ≤ ε
6

we have

⇒1− 3ε ≤

∣∣∣∣∣ P̂r(xt|x1:t−1)

Pr(xt|x1:t−1)

∣∣∣∣∣ ≤ 1 + 3ε

⇒ 1

1 + 3ε
≤

∣∣∣∣∣Pr(xt|x1:t−1)

P̂r(xt|x1:t−1)

∣∣∣∣∣ ≤ 1

1− 3ε

and using a similar fact from above that for small enough x, 1
1−x ≤ 1 + 2x, we get

⇒

∣∣∣∣∣Pr(xt|x1:t−1)

P̂r(xt|x1:t−1)

∣∣∣∣∣ ≤ 1 + 6ε

⇒ ln

[
P̂r(xt|x1:t−1)

Pr(xt|x1:t−1)

]
≤ ln(1 + 6ε) ≤ 6ε
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⇒
∑

x1,...,xt

Pr(x1, . . . , xt) ln

[
P̂r(xt|x1:t−1)

Pr(xt|x1:t−1)

]
≤ 6ε

∑
x1,...,xt

Pr(x1, . . . , xt)

⇒E ln

[
P̂r(xt|x1:t−1)

Pr(xt|x1:t−1)

]
≤ 6ε

2

Define J ≡ 2k

√
2 log 2k

δ

N
to simplify the following statements. The proof proceeds

in two steps. First lemma 2 converts the sample complexity bound into a more useful
bounds on Λ and σk. Then lemma 3 uses these bounds to show the theorem.

Lemma 2. If

N ≥ 128k2

( 2t+3
√

1 + ε− 1)2Λ2σ4
k

log

(
2k

δ

)
then

Λ ≥ 3J

σ2
k(

2t+3
√

1 + ε− 1)
(2.9)

σk ≥ 4J (2.10)

The proof is straightforward and given in the appendix.

Lemma 3. If equation (2.8) of Theorem 1 is replaced by (2.9) and (2.10) then the
results of the theorem follow.

Proof of Lemma 3: Our estimator (see equation 2.7) can be written as

P̂r(x1, . . . , xt) = µ̂>Σ̂−1K̂(yt)Σ̂
−1 · · · K̂(y1)Σ̂

−1µ̂

We can rewrite this matrix product as

P̂r(x1, . . . , xt) =
k∑

i1=1

· · ·
k∑

i2t+3=1

[µ̂]i1 [Σ̂
−1]i1,i2 [K̂(yt)]i2,i3 [Σ̂

−1]i3,i4

· · · [µ̂]i2t+3

The components [K̂(y)]a,b can be written as a scalar sum as:

[K̂(y)]a,b = y1[K̂]a,b,1 + y2[K̂]a,b,2 + . . .+ yk[K̂]a,b,k

So,

P̂r(x1, . . . , xt) =
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∑
i1,...,i2t+3
j1,...,jt

[µ̂]i1 [Σ̂
−1]i1,i2 [K̂]i2,i3,j1 [yt]j1

·[Σ̂−1]i3,i4 [K̂]i5,i6,j2 [yt−1]j2 · · · [µ̂]i2t+3 (2.11)

This is a sum of a product of scalars. Lemma 8 (stated precisely and proven in the
appendix) shows that accuracy of our estimates of all elements of µ, Σ−1 and K() are
bounded by 3J/σ2

k with probability 1− δ.
Each term in 2.11 can be rewritten as

θ̂ = θ

(
1 +

θ̂ − θ
θ

)

and so our products can be thought of as, instead of a product of observed quantities,
the product of the theoretical quantities times some relative error term. We can
bound this relative error term for all entries, which will allow it to factor out nicely
over all summands, giving us a relative error term for our overall probability.

Again thinking of θ as a generic item in µ, Σ, or K(), then above has shown that

|θ̂ − θ| ≤ 3J/σ2
k and so the relative error of each term is bounded as

1− 3J

σ2
kθ
≤ θ̂

θ
≤ 1 +

3J

σ2
kθ

which will hold for all terms with probability 1− δ. Since |θ| ≥ Λ, we see that

1− 3J

σ2
kΛ
≤ θ̂

θ
≤ 1 +

3J

σ2
kΛ

Since our P̂r() is a product of 2t+ 3 such terms, we see that(
1− 3J

σ2
kΛ

)2t+3

≤ P̂r()

Pr()
≤
(

1 +
3J

σ2
kΛ

)2t+3

So by our bound on Λ, we have

1− ε ≤ P̂r()

Pr()
≤ 1 + ε

holds with probability 1− δ. 2

The sample complexity bound in Theorem 1 relies on knowing unobserved pa-
rameters of the problem. To avoid this, we modify Lemma 3 to make it observable.
In other words, we convert the assumptions of sample complexity into a checkable
condition.

Corollary 3. Let Xt be generated by an k ≥ 2 state HMM. Suppose we are given a U
which has the property that range(M) ⊂ range(U). Suppose we use equation (2.7) to
estimate the probability based on N independent triples. Then with probability 1− δ,
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if the following two inequalities hold

Λ̂ σ̂2
k ≥

(
12k +

6k

( 2t+3
√

1 + ε− 1)

)√
2 log 2k

δ

N
(2.12)

σ̂k ≥ 10k

√
2 log 2k

δ

N
. (2.13)

then

1− ε ≤

∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)

∣∣∣∣∣ ≤ 1 + ε

Proof:
Two technical lemmas are needed for this corollary: Lemma 8 and Lemma 9.

They are stated and proved in appendix A.2. Lemma 8 basically says that with high
probability, each element of µ, Σ and K() is estimated accurately. This is then used
in Lemma 9 to show that Λ and σk are estimated accurately.

Recall that the theorems in this chapter are statements of high probability, where
a bound holds with probability 1− δ. Define the event A to be the set where all the
estimates given in Lemma 8 hold. On this event from Lemma 9 we know σk ≥ 4

5
σ̂k,

so σ2
k ≥ 1

2
σ̂2
k. Hence

Λ̂ ≥ 6k

σ2
k(

2t+3
√

1 + ε− 1)

√
2 log 2k

δ

N
+

6k

σ2
k

√
2 log 2k

δ

N
,

thus on the set A if (2.12) and (2.13) hold, then we see that (2.9) and (2.10) both hold
and so we can apply Theorem 1. We can now use Theorem 1 to generate our claim
on the accuracy of our probability bound. Technically, this proof as given only shows
that our corollary holds with probability 1− 2δ. But since the set where Theorem 1
fails is exactly Ac, the probability lower bound is 1− δ.

2

The advantage of the corollary is that the left hand sides of the two conditions
are observable and the right hand sides involve known quantities. Hence one can tell
if the condition is true or not–it doesn’t require knowing unobserved parameters.

2.3 Discussion: effect of Λ and σk on accuracy

As discussed above, σk and Λ have different effects on sample complexity. As σk
approaches zero, model estimation becomes intrinsically hard; some problems do not
admit easy estimation. In contrast, role of Λ in sample complexity is more of an
artifact. As Λ approaches zero, the relative error can be arbitrarily large, even if
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the estimated model is good in the sense that the probability estimates are highly
accurate.

The problem with Λ can be addressed in different ways. In this section, we show
that estimating a likelihood ratio rather than the sequence probabilities improves
relative accuracy bounds. An alternate approach, which we do not pursue here, relies
on the observation that Λ depends on the (underspecified) matrix Û , and that one
can thus search for a rotation and rescaling of the matrix Û that increases Λ.

2.3.1 Likelihood instead of probabilities

Obscure words correspond to rows of the observation matrix with very small values
throughout the row. If we were interested in only estimating the probability of such a
word, then these are the easy words–basically guess zero or close to it. But, since we
would like to estimate the relative probability accurately, these words are the most
challenging. Further, such small probabilities would make computing conditional
probabilities unstable since they would then become basically “0/0.” Further, since
the values are all small in M and in U , they do not significantly improve our estimates
of µ, Σ and K() since they are essentially zeros. Both of these problems can be fixed
by considering the problem of estimating a likelihood ratio instead of a probability.
So define:

λq(x1, . . . , xt) =
Pr(x1, x2, . . . , xt)

P1(x1)P1(x2) · · ·P1(xt)

The P1(x) could be taken to be the marginal probability of observing x. It does not,
in fact, have to be a probability–just any weighting which helps condition our matrix
Σ and our tensor K(). We can then use a modified version of M and U in all our
existing lemma’s and theorems. The precise statement of these modified versions are
in the appendix. What changes is that now Λ is much larger and hence our relative
accuracy will be greatly improved. This fact is shown in the empirical section.

2.3.2 Empirical estimates of Λ and σk

Figure 2.2 shows estimates of Λ̂ and σ̂k, using the Internet as the corpus as summarized
in the Google n-gram dataset3, which contains frequencies of the most common 1-
grams to 5-grams occurring on the web. Details on how the figures were generated
can be found in Appendix A.2. As the size, k, of the reduced dimension space is
increased, smaller and smaller singular values, σk, occur in the model, and the value
Λ of the smallest parameter in the model decreases. Empirically, both fall off with
a power of k, giving straight lines on the log-log plot. This data indicates a large
sample complexity, the reduction of which will be a focus of future work.

3http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
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Figure 2.2: First graph: Λ vs k, generated using vocabulary size 20, 000, Slope
≈ −6. Second graph: σ̂ vs k, generated using vocabulary size of 10, 000, Slope
≈ −3.2

2.4 Prior work and conclusion

Recently, ideas have been proposed that push spectral learning of HMMs in several
different directions. Boots et al. (2010) provides a kernelized spectral algorithm that
allows for learning an HMM in any domain in which there exists a kernel. This allows
for learning of an HMM with continuous output without the need for discretization.
Boots and Gordon (2011) provides an analogous algorithm that enables online learn-
ing for Transformed Predictive State Representations, and hence the setup in Hsu
et al. (2009). Finally, Siddiqi et al. (2010) directly extends Hsu et al. (2009) by re-
laxing the requirement that the transition matrix T be of rank k, but instead allows
rank less than k, creating a Reduced-Rank HMM (RR-HMM), and then applying
the algorithm from Hsu et al. (2009) to learn the observable representation of this
RR-HMM.

All of the above extensions preserve the basic structure of the tensor B(x), which
updates the hidden state estimate (or more precisely, a linear transformation of it)
based on the most recent observation x. In this paper, we replace B(x) with a tensor
C(y), which updates the hidden state estimate using a low dimensional projection
y of the observation x. C(y) contains only k3 terms, in contrast to the k2v terms
contained in B(x). Reducing the number of parameters to be estimated has both
computational and statistical efficiency advantages, but requires some changes to the
proofs in Hsu et al. (2009). While making these changes, we also give proofs that are
simpler, that only use conditions that are checkable from the data, and that bound
the relative, rather than absolute error.

This paper focused on the simplest case, in which HMMs have discrete states and
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discrete observations and in which the observations are reduced to the same sized
space as the hidden state, but our approach can be generalized in all of the ways
described above.

We have presented an improved spectral method for estimating HMMs. By using
a tensor C(y) that depends on the reduced rank y instead of the full observed x in the
B(x) tensor used by Hsu et al. (2009), we reduced the number of parameters to be
estimated by a factor of the ratio of the size of the vocabulary divided by the size of
the hidden state. This reduction has corresponding benefits in the sample complexity.
We also showed that the sample complexity depends critically upon σk, the smallest
singular value of the covariance matrix Σ. As σk becomes small, the HMM becomes
increasingly hard to identify, and increasing numbers of samples are needed.
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3
Application: Spectral learning of HMMs for Trees

Recently there has been substantial interest in using spectral methods to learn gen-
erative sequence models like HMMs. Spectral methods are attractive as they provide
globally consistent estimates of the model parameters and are very fast and scalable,
unlike EM methods, which can get stuck in local minima. In this paper, we present a
novel extension of this class of spectral methods to learn dependency tree structures.
We propose a simple yet powerful latent variable generative model for dependency
parsing, and a spectral learning method to efficiently estimate it. As pilot experimen-
tal evaluations, 1) we use the spectral tree probabilities estimated by our model to
re-rank the outputs of a discriminative parser and 2) use spectral estimates of prob-
abilities of edges and sub-trees as features in a discriminative parser. Our approach
reduces the error of the baseline parser by up to 7.3%.

3.1 Introduction

Markov models have been for two decades a workhorse of statistical pattern recog-
nition with applications ranging from speech to vision to language. Adding latent
variables to these models gives us additional modeling power and have shown success
in applications like POS tagging Merialdo (1994), speech recognition Rabiner (1989)
and object recognition Quattoni et al. (2004). However, this comes at the cost that
the resulting parameter estimation problem becomes non-convex and techniques like
EM Dempster et al. (1977) which are used to estimate the parameters can only lead
to locally optimal solutions.

Recent work by Hsu et al. (2009) has shown that globally consistent estimates
of the parameters of the HMMs can be found by using spectral methods, particu-
larly by singular value decomposition (SVD) of appropriately defined linear systems.
They avoid the NP Hard problem of the global optimization problem of the HMM
parameters Terwijn (2002b), by putting restrictions on the smallest singular value of

Work from this chapter appears in Rodu et al. (2012)
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the HMM parameters. The main intuition behind the model is that, although the
observed data (i.e. words) seems to live in a very high dimensional space but in re-
ality they live in a very low dimensional space (size k ∼ 30− 50) and an appropriate
eigen decomposition of the observed data will reveal the underlying low dimensional
dynamics and thereby revealing the parameters of the model. Besides ducking the
NP hard problem, the spectral methods are very fast and scalable to train compared
to EM methods.

In this paper we generalize the approach of Hsu et al. (2009) to learn dependency
tree structures with latent variables.1 Petrov et al. (2006); Musillo and Merlo (2008)
have shown that learning PCFGs and dependency grammars respectively with latent
variables can produce parsers with very good generalization performance. However,
both these approaches rely on EM for parameter estimation and can benefit from
using spectral methods.

We propose a simple yet powerful latent variable generative model for use with
dependency parsing which has one hidden node for each word in the sentence, like the
one shown in figure 3.1 and work out the details for the parameter estimation of the
corresponding spectral learning model. At a very high level, the parameter estimation
of our model involves collecting unigram, bigram and trigram counts sensitive to the
underlying dependency structure of the given sentence.

Recently Luque et al. (2012) have also proposed a spectral method for dependency
parsing, however they deal with horizontal Markovization and use hidden states to
model sequential dependencies within a word’s sequence of children. In contrast with
that, in this paper, we propose a spectral learning algorithm where latent states are
not restricted to HMM-like distributions of modifier sequences for a particular head,
but instead allow information to be propagated through the entire tree.

More recently Cohen et al. (2012) have proposed a spectral method for learning
PCFGs.

Its worth noting that recent work by Parikh et al. (2011) also extends Hsu et al.
(2009) to latent variable dependency trees like us but under the restrictive conditions
that model parameters are trained for a specified, albeit arbitrary, tree topology.2

In other words, all training sentences and test sentences must have identical tree
topologies. By doing this they allow for node-specific model parameters, but must
retrain the model entirely when a different tree topology is encountered. Our model
on the other hand allows the flexibility and efficiency of processing sentences with a
variety of tree topologies from a single training run.

Most of the current state-of-the-art dependency parsers are discriminative parsers Koo
et al. (2008); McDonald (2006) due to the flexibility of representations which can be
used as features leading to better accuracies and the ease of reproducibility of results.
However, unlike discriminative models, generative models can exploit unlabeled data.
Also, as is common in statistical parsing, re-ranking the outputs of a parser leads to

1Actually, instead of using the model by Hsu et al. (2009) we work with a related model proposed
in chapter 2 which addresses some of the shortcomings of the earlier model which we detail below.

2This can be useful in modeling phylogeny trees for instance, but precludes most NLP applica-
tions, since there is a need to model the full set of different tree topologies possible in parsing.
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Figure 3.1: Sample dependency parsing tree for “Kilroy was here”

significant reductions in error Collins and Koo (2005).
Since our spectral learning algorithm uses a generative model of words given a tree

structure, it can score a tree structure i.e. its probability of generation. Thus, it can
be used to re-rank the n-best outputs outputs of a given parser; note that unlike the
standard discriminative re-rankers, our approach is generative.3 In addition to that,
we can use our edge factored spectral probability scores as features in a discriminative
parser.

The remainder of the paper is organized as follows. In the next section we in-
troduce the notation and give a brief overview of the spectral algorithm for learning
HMMs (see for instance Hsu et al. (2009) and chapter 2). In Section 3 we describe our
proposed model for dependency parsing in detail and work out the theory behind it.
Section 4 provides experimental evaluation of our model on Penn Treebank data. We
demonstrate the utility of our model by re-ranking the n-best outputs of a standard
discriminative (the MST parser) McDonald (2006) and by using edge spectral proba-
bilities as features in a discriminative parser. We conclude with a brief summary and
future avenues for research.

3.2 Spectral algorithm for learning HMMs

In this section we describe the spectral algorithm for learning HMMs.4

3Sangati et al. (2009) also propose a carefully defined generative re-ranker for Italian dependency
parsing which outperforms discriminative re-ranker.

4As mentioned earlier, we use the model in chapter 2 which is conceptually similar to the one
by Hsu et al. (2009), but does further dimensionality reduction and thus has lower sample complexity.
Also, critically, the fully reduced dimension model that we use generalizes much more cleanly to trees.
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3.2.1 Notation

The HMM that we consider in this section is a sequence of hidden states h ∈ {1, . . . , k}
that follow the Markov property:

Pr(ht|h1, . . . , ht−1) = Pr(ht|ht−1)

and a sequence of observations x ∈ {1, . . . , n} such that

Pr(xt|x1, . . . , xt−1, h1, . . . , ht) = Pr(xt|ht)

The parameters of this HMM are:

• A vector π of length k where πi = Pr(h1 = i): The probability of the start state
in the sequence being i.

• A matrix T of size k × k where
Ti,j = Pr(ht+1 = i|ht = j): The probability of transitioning to state i, given
that the previous state was j.

• A matrix M of size n× k where
Mi,j = Pr(x = i|h = j): The probability of state h emitting observation x.

Define δj to be the vector of length n with a 1 in the jth entry and 0 everywhere else,
and diag(v) to be the matrix with the entries of v on the diagonal and 0 everywhere
else.

The joint distribution of a sequence of observations x1, . . . , xm and a sequence of
hidden states h1, . . . , hm is:

Pr(x1, . . . ,xm, h1, . . . , hm)

= πh1

m−1∏
j=2

Thj ,hj−1

m∏
j=1

Mxj ,hj

Now, we can write the marginal probability of a sequence of observations as

Pr(x1, . . . xm)

=
∑

h1,...,hm

Pr(x1, . . . , xm, h1, . . . , hm)

which can be expressed in matrix form5 as:

Pr(x1, . . . , xm) = 1>A(xm)A(xm−1) · · ·A(m1)π

where A(xm) ≡ Tdiag(M>xm), and 1 is a k-dimensional vector with every entry equal
to 1.

5This is essentially the matrix form of the standard dynamic program (forward algorithm) used
to estimate HMMs.

30



A(xm) is called an “observation operator”, and is effectively a third order tensor,
giving the distribution vector over states at time m + 1 as a function of the state
distribution vector at the current time m and the current observation xm. Since
A(xm) depends on the hidden state, it is not observable, and hence cannot be directly
estimated. However chapter 2 showed that under certain conditions there exists a fully
observable representation of the observable operator model.

3.2.2 Fully Observable Representation

Before presenting the model, we need to address a few more points. First, let U be a
“representation matrix” (eigenfeature dictionary) which maps each observation to a
reduced dimension space (n→ k) that satisfies the conditions:

• U>M is invertible

• |Uij| < 1.

Hsu et al. (2009) and chapter 2 discuss U in more detail, but U can, for example,
be obtained by the SVD of the bigram probability matrix (where Pij = Pr(xt+1 =
i|xt = j)) or by doing CCA on neighboring n-grams Dhillon et al. (2011).

Letting yi = U>xi, we have

Pr(x1, . . . , xm)

= c>∞C(ym)C(ym−1) . . . C(y1)c1 (3.1)

where

c1 = µ

c∞ = µ>Σ−1

C(y) = K(y)Σ−1

and µ, Σ and K, described in more detail below, are quantities estimated by frequen-
cies of unigrams, bigrams, and trigrams in the observed (training) data.

Under the assumption that data is generated by an HMM, the distribution p̂
obtained by substituting the estimated values ĉ1, ĉ∞, and Ĉ(y) into equation (3.1)
converges to p sufficiently fast as the amount of training data increases, giving us
consistent parameter estimates. For details of the convergence proof, please see Hsu
et al. (2009) and chapter 2.
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3.3 Spectral algorithm for Learning Dependency

Trees

In this section, we first describe a simple latent variable generative model for depen-
dency parsing. We then define some extra notation and finally present the details of
the corresponding spectral learning algorithm for dependency parsing, and prove that
our learning algorithm provides a consistent estimation of the marginal probabilities.

It is worth mentioning that an alternate way of approaching the spectral esti-
mation of latent states for dependency parsing is by converting the dependency trees
into linear sequences from root-to-leaf and doing a spectral estimation of latent states
using Hsu et al. (2009). However, this approach would not give us the correct proba-
bility distribution over trees as the probability calculations for different paths through
the trees are not independent. Thus, although one could calculate the probability of
a path from the root to a leaf, one cannot generalize from this probability to say
anything about the neighboring nodes or words. Put another way, when a parent has
more than the one descendant, one has to be careful to take into account that the
hidden variables at each child node are all conditioned on the hidden variable of the
parent.

3.3.1 A latent variable generative model for Dependency Pars-
ing

In the standard setting, we are given training examples where each training example
consists of a sequence of words x1, . . . , xm together with a dependency structure over
those words, and we want to estimate the probability of the observed structure.
This marginal probability estimates can then be used to build an actual generative
dependency parser, re-rank the outputs of another parser or to augment the feature
set of a discriminative parser.

As in the conventional HMM described in the previous section, we can define a
simple latent variable first order dependency parsing model by introducing a hidden
variable hi for each word xi. The joint probability of a sequence of observed nodes
x1, . . . , xm together with hidden nodes h1, . . . , hm can be written as

Pr(x1, . . . ,xm, h1, . . . , hm)

= πh1

m∏
j=2

td(j)(hj|hpa(j))
m∏
j=1

o(xj|hj) (3.2)

where pa(j) is the parent of node j and d(j) ∈ {L,R} indicates whether hj is a left
or a right node of hpa(j). For simplicity, the number of hidden and observed nodes in
our tree are the same, however they are not required to be so.
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Figure 3.2: Dependency parsing tree with observed variables y1, y2, and y3.

As is the case with the conventional HMM, the parameters used to calculate this
joint probability are unobservable, but it turns out that under suitable conditions a
fully observable model is also possible for the dependency tree case with the param-
eterization as described below.

3.3.2 Parameters

We will define both the theoretical representations of our observable parameters, and
the sampling versions of these parameters. Note in all cases the estimated versions
are unbiased estimates of the theoretical quantities.

Define Td and T ud where d ∈ {L,R} to be the hidden state transition matrices
from parent to left or right child, and from left or right child to parent (hence the u
for ‘up’), respectively. In other words (referring to Figure 3.2)

TR = t(h3|h1)

TL = t(h2|h1)

T uR = t(h1|h3)

T uL = t(h1|h2)

Let Ux(i) be the ith entry of vector U>x and G = U>M . Further, recall the
notation diag(v), which is a matrix with elements of v on its diagonal, then:

• Define the k-dimensional vector µ (unigram counts):

µ = Gπ

[µ̂]i =
n∑
u=1

c̄(u)Uu(i)

where c̄(u) = c(u)
N1

, c(u) is the count of observation u in the training sample, and
N1 =

∑
u∈n c(u).
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• Define the k × k matrices ΣL and ΣR (left child-parent and right child-parent
bigram counts):

[Σ̂L]i,j =
n∑
u=1

n∑
v=1

c̄L(u, v)Uu(j)Uv(i)

ΣL = GT uLdiag(π)G>

[Σ̂R]i,j =
n∑
u=1

n∑
v=1

c̄R(u, v)Uu(j)Uv(i)

ΣR = GT uRdiag(π)G>

where c̄L(u, v) = cL(u,v)
N2L

, cL(u, v) is the count of bigram (u, v) where u is the left

child and v is the parent in the training sample, and N2L =
∑

(u,v)∈n×n cL(u, v).

Define c̄R(u, v) similarly.

• Define k × k × k tensor K (left child-parent-right child trigram counts):

K̂i,j,l =
n∑
u=1

n∑
v=1

n∑
w=1

c̄(u, v, w)Uw(i)Uu(j)Uv(l)

K(y) = GTLdiag(G>y)T uRdiag(π)G>

where c̄(w, u, v) = c(w,u,v)
N3

, c(w, u, v) is the count of bigram (w, u, v) where w is
the left child, u is the parent and v is the right child in the training sample, and
N3 =

∑
(w,u,v)∈n×n×n c(w, u, v).

• Define k × k matrices ΩL and ΩR (skip-bigram counts (left child-right child)
and (right child-left child)) 6:

[Ω̂L]i,j =
n∑
u=1

n∑
v=1

n∑
w=1

c̄(u, v, w)Uw(i)Uu(j)

ΩL = GTLT
u
Rdiag(π)G>

[Ω̂R]i,j =
n∑
u=1

n∑
v=1

n∑
w=1

c̄(u, v, w)Uw(j)Uu(i)

ΩR = GTRT
u
Ldiag(π)G>

3.3.3 Model estimation algorithm

Using the above definitions, we can estimate the parameters of the model, namely
µ,ΣL,ΣR,ΩL,ΩR and K, from the training data and define observables useful for the

6Note than ΩR = ΩT
L, which is not immediately obvious from the matrix representations.
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dependency model as7

c1 = µ

cT∞ = µTΣ−1
R

EL = ΩLΣ−1
R

ER = ΩRΣ−1
L

D(y) = E−1
L K(y)Σ−1

R

As we will see, these quantities allow us to recursively compute the marginal proba-
bility of the dependency tree, p̂(x1, . . . , xm), in a bottom up manner by using belief
propagation.

To see this, let hch(i) be the set of hidden children of hidden node i (in Figure 3.2
for instance, hch(1) = {2, 3}) and let och(i) be the set of observed children of hidden
node i (in the same figure och(i) = {1}). Then compute the marginal probability
Pr(x1, . . . , xm) from Equation 3.2 as

ri(h) =
∏

j∈hch(i)

αj(h)
∏

j∈och(i)

o(xj|h) (3.3)

where αi(h) is defined by summing over all the hidden random variables i.e., αi(h) =∑
h′ Pr(h′|h)ri(h

′).
This can be written in a compact matrix form as

−→ri > = 1>
∏

j∈hch(i)

diag(T>dj
−→rj )

·
∏

j∈och(i)

diag(M>xj) (3.4)

where −→ri is a vector of size k (the dimensionality of the hidden space) of values ri(h).
Note that since in Equation 3.2 we condition on whether xj is the left or right child
of its parent, we have separate transition matrices for left and right transitions from
a given hidden node dj ∈ {L,R}.

The recursive computation can be written in terms of observables as:

−→ri > = c>∞
∏

j∈hch(i)

D(E>dj
−→rj )

·
∏

j∈och(i)

D((U>U)−1U>xj)

The final calculation for the marginal probability of a given sequence is

P̂r(x1, . . . , xm) = −→r1>c1 (3.5)

7The details of the derivation follow directly from the matrix versions of the variables.
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The spectral estimation procedure is described below in Algorithm 1.

Algorithm 1 Spectral dependency parsing (Computing marginal probability of a
tree.)

1: Input: Training examples- x(i) for i ∈ {1, . . . ,M} along with dependency structures
where each sequence x(i) = x

(i)
1 , . . . , x

(i)
mi .

2: Compute the spectral parameters µ̂, Σ̂R, Σ̂L, Ω̂R, Ω̂L, and K̂
#Now, for a given sentence, we can recursively compute the following:

3: for x(i)
j for j ∈ {mi, . . . , 1} do

4: Compute:

−→ri> = c>∞
∏

j∈hch(i)

D(E>dj
−→rj )

·
∏

j∈och(i)

D((U>U)−1U>xj)

5: end for
6: Finally compute

P̂r(x1, . . . , xmi) = −→r1>c1

#The marginal probability of an entire tree.

3.3.4 Sample complexity

Our main theoretical result states that the above scheme for spectral estimation of
marginal probabilities provides a guaranteed consistent estimation scheme for the
marginal probabilities:

Theorem 2. Let the sequence {x1, . . . , xm} be generated by an k ≥ 2 state HMM.
Suppose we are given a U which has the property that U>M is invertible, and |Uij| ≤ 1.
Suppose we use equation (3.5) to estimate the probability based on N independent
triples. Then

N ≥ Cm
k2

ε2
log

(
k

δ

)
(3.6)

where Cm is specified in the appendix, implies that

1− ε ≤
∣∣∣∣ p̂(x1, . . . , xm)

p(x1, . . . , xm)

∣∣∣∣ ≤ 1 + ε

holds with probability at least 1− δ.

36



Proof. A proof, in the case without directional transition parameters, can be found
appendix A.4. The proof with directional transition parameters is almost identical.

3.4 Experimental Evaluation

Since our algorithm can score any given tree structure by computing its marginal
probability, a natural way to benchmark our parser would be to generate n-best
dependency trees using some standard parser McDonald (2006); Koo et al. (2008)
and then use our algorithm to re-rank the candidate dependency trees. One might
expect purely generative models to not be competitive with state-of-the-art discrim-
inative re-rankers Collins (2000); Koo and Collins (2005), however recently Sangati
et al. (2009) have shown that carefully designed generative re-rankers can outperform
discriminative re-rankers for Italian dependency parsing. So, we use a base parser Mc-
Donald (2006) to generate a set of n-best parses which we re-rank by computing their
marginal probabilities as described in Algorithm 1.

Secondly, as a separate experiment we use our model to derive features for the
MST parser based on the edge factored spectral log-probabilities.

3.4.1 Experimental Setup

Our base parser was the discriminatively trained MSTParser McDonald (2006), which
implements both first and second order parsers and is trained using MIRA Crammer
et al. (2006) and used the standard baseline features as described in McDonald (2006).
We tested our methods on the English Penn Treebank Marcus et al. (1993). We use
the standard splits of Penn Treebank; i.e., we used sections 2-21 for training, section
22 for development and section 23 for testing. We used the PennConverter8 tool to
convert Penn Treebank from constituent to dependency format. Following McDonald
(2006); Koo et al. (2008), we used the POS tagger by Ratnaparkhi (1996) trained on
the full training data to provide POS tags for development and test sets and used
10-way jackknifing to generate tags for the training set. As is common practice we
stripped our sentences of all the punctuation. We evaluated our approach on sentences
of all lengths.

3.4.2 Details of spectral learning

For the spectral learning phase, we need to just collect word counts from the train-
ing data as described above, so there are no tunable parameters as such. However,

8http://nlp.cs.lth.se/software/treebank_converter/
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Method Accuracy Complete
I Order
MST Parser 90.8 37.2
MST Parser+(RR, n=10) 91.1 37.4
MST Parser+(RR, n=50) 91.3 37.6
II Order
MST Parser 91.8 40.6
MST Parser+(RR, n=10) 92.2 40.9
MST Parser+(RR, n=50) 92.4 41.2

Table 3.1: Dependency Parsing (Unlabeled) results for English test set (Section 23).
Note: 1). n=10 or 50 indicates the number of parses which were re-ranked. 2).
Accuracy is the number of words which correctly identified their parent and Complete
is the number of sentences for which the entire dependency tree was correct.

we need to have access to an attribute dictionary U which contains a k dimensional
representation for each word in the corpus. A possible way of generating U as sug-
gested by Hsu et al. (2009) is by performing SVD on bigrams P21 and using the left
eigenvectors as U . We instead used the eigenfeature dictionary proposed by Dhillon
et al. (2011) (LR-MVL) which is obtained by performing CCA on neighboring words
and has provably better sample complexity for rare words compared to the SVD
alternative.

We induced the LR-MVL embeddings for words using the Reuters RCV1 corpus
which contains about 63 million tokens in 3.3 million sentences and used their context
oblivious embeddings as our estimate of U . We experimented with different choices
of k (the size of the low dimensional projection) on the development set and found
k = 10 to work reasonably well and fast. Using k = 10 we were able to estimate our
spectral learning parameters µ,ΣL,R,ΩL,R, K from the entire training data in under
2 minutes on a 64 bit Intel 2.4 Ghz processor.

3.4.3 Experiment 1: Re-ranking the outputs of MST parser

We used the MST parser to generate a list of n-best parses and we re-ranked them by
their marginal probabilities as calculated using Algorithm 1. The results are shown
in Table 3.1. As can be seen, the best results (corresponding to n=50) give up to
7.3% reduction in error over the baseline 1-best parser.
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Method Accuracy Complete
I Order
MST Parser 90.8 37.2
MST Parser(+S) 91.1 37.4
II Order
MST Parser 91.8 40.6
MST Parser(+S) 92.1 40.9

Table 3.2: Dependency Parsing (Unlabeled) results for English test set (Section 23).
1) (+S) indicates using spectral features in addition to baseline features. 2) Accuracy
is the number of words which correctly identified their parent and Complete is the
number of sentences for which the entire dependency tree was correct.

3.4.4 Experiment 2: Spectral Features for a Discriminative
parser

Next, in a separate experiment, we used our model to generate spectral features for
use within the MST parser.

3.4.4.1 Spectral Features

Since the MST parser is edge factored, it can only use features over a single depen-
dency attachment (or two attachments for a second order parser, where two of the
words are the siblings on the same side of their parent). This poses a potential prob-
lem for using our spectral probabilities as calculated in Algorithm 1 as features, as
they require recursive calculation over the entire tree structure.

To circumvent this difficulty, we compute the probability of a dependency at-
tachment (first or second order), by doing the exact same probability calculation
as described in Algorithm 1, but for each dependency attachment separately. I.e.,
we compute p̂(xi, xj), where xi, xj have a parent-child dependency relation. We re-
peatedly do this probability calculation for all first and second order dependency
attachments and use their log-probabilities as additional features in the MST parser.

3.4.4.2 Discriminative Parsing Results

The results are shown in Table 3.2. Using the spectral features described in the
previous section we got an unlabeled accuracy of 91.1% on the test set for first order
parser and 92.1% for second order parser, and we get further gains by doing re-
ranking in addition to adding spectral features. We believe that further improvement
is possible by better tuning the features used.
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3.5 Conclusion

In this paper we proposed a novel spectral method for dependency parsing. Unlike
EM trained generative latent variable models, our method does not get stuck in local
optima, it gives consistent parameter estimates, and it is extremely fast to train. We
worked out the theory of a simple yet powerful generative model and showed how it
can be learned using a spectral method. As pilot experimental evaluations we showed
the efficacy of our approach by using the marginal probabilities output by our model
as features in the MST parser as well as for re-ranking its outputs. Our method
reduced the error of the baseline parser by up to 7.3%. Currently, we are working on
building a stand-alone spectrally learnt generative parser which can estimate powerful
dependency grammar models such as head automata Eisner (2000).
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4
Using Regression to Estimate Parameters in

Spectral HMM models

Hidden Markov Models (HMMs) are widely used to model discrete time series data,
but the EM and Gibbs sampling methods used to estimate them are often slow or
prone to get stuck in local minima. A more recent class of reduced-dimension spec-
tral methods for estimating HMMs has attractive theoretical properties, but their
finite sample size behavior has not been well characterized. We introduce a new spec-
tral model for HMM estimation, a corresponding spectral bilinear regression model,
and systematically compare them with a variety of competing simplified models, ex-
plaining when and why each method gives superior performance. Using regression
to estimate HMMs has a number of advantages, allowing more powerful and flexible
modeling.

4.1 Introduction

Hidden Markov Models (HMMs) Baum and Eagon (1967) are widely used in model-
ing time series data from text, speech, video and genomic sequences. In applications
where the dimension of the observations is much larger than the dimension of the
hidden state space, spectral methods can be used project the high dimensional obser-
vations down to a much lower dimensional representation that captures the informa-
tion of the hidden state in the HMM. We call this class of model “spectral HMMs”
(sHMMs) and show in this paper that sHMMs can be estimated in a variety of ways.

Standard algorithms for HMMs estimate the unobservable transition matrix T
and emission matrix M , but are prone to getting stuck in local optima (for instance
the EM algorithm) or are computationally intensive (Gibbs sampling). In contrast,
sHMM methods estimate a fully observable representation of T and M and are fast,
do not have local minima, have nice theoretical error bound proofs, and are optimal

Work from this chapter appears in Rodu et al. (2013)
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in linear estimation sense.
Hsu et al. (2009) showed that a set of statistics using unigrams, bigrams and

trigrams of observations are sufficient to estimate such models. We present a simpler
estimation technique and show that it generalizes to a rich collection of regression-
based methods for estimating HMMs. In regression, one can easily include more
information such as a longer history, or more features about the observed data. These
cannot as easily be added into a pure HMM model. Our methods are particularly
useful for language modeling, where the emissions of the Hidden Markov Models are
words drawn from a large vocabulary (tens or hundreds of thousands of words), and
the hidden state is a much lower dimensional representation (30-100 dimensions).

HMMs of this size are widely used in modeling Natural Language Processing
(NLP). Many variants of and applications of HMMs have been proposed including
(to present a random list of recent work) multiple span-HMM to predict predicates
in different domains Huang and Yates (2010), factorial-HMMs to resolve the pronoun
anaphora Li et al. (2011), multi-chain HMMs to compute the meaning of terms in
text Turdakov and Lizorkin (2009), tree-modified HMMs to do machine translation
Zabokrtsky and Popel (2009), fertility-HMM to reduce word alignment errors Zhao
and Gildea (2010) and continuous HMMs to summarize speech documents without
text Maskey and Hirschberg (2006).

Our main HMM estimation method, which we call a spectral HMM is inspired by
the observation in Hsu et al. (2009) that the “Observable Operator” model Jaeger
(2000) which estimates the probability of a sequence x1, x2, . . . , xt as

Pr(x1, x2, . . . , xt) = 1>A(xt)A(xt−1) · · ·A(x1)π (4.1)

in terms of the still unobservable A(x) = Tdiag(M>x) (where x = ei denotes word i
in a vocabulary, and ei denotes as usual the vector of all zeros and a one in the ith

position) and the unigram probabilities π, can be rewritten to be a fully observable,
partially reduced model through clever projections and combinations of the moment
statistics. In chapter 2 we extend this to a fully reduced, fully observable model. This
extension directly motivates simplified bilinear and regression estimation procedures.

We find that a wide range of spectral methods work well for estimating HMMs.
HMMs have an intrinsically bi-linear model, but using a linear approximation works
well in practice, especially when one sti recursive prediction. Our regression methods
are competitive with the ”traditional” method of moments methods, and make it
relatively easy to add in much richer sets of features than either EM or standard
spectral HMM estimations.

The rest of the chapter is organized as follows. In section 2 we formally describe the
reduced dimension spectral HMM (sHMM) model and the bilinear and simplified
regression models that it motivates. We also compare our sHMM model against
the partially reduced dimension model of Hsu et al. (2009). Section 3 gives our
experimental results, and discusses prediction accuracy of the different methods in
different limits. Section 4 concludes.
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4.2 Approximations to HMMs

Consider a discrete HMM consisting of a sequence of observations (x1, x2, ..., xT ) at
discrete times 1...T . Each observation, xt is an indicator vector that corresponds to
one of v labels (e.g. words). There is a corresponding sequence of hidden states,
(h1, h2, ..., hT ), where ht corresponds to one of k labels.

Assume that k << v, as is the case, for example, when the vocabulary size v
of words is much bigger than the hidden state size. Let T of size k × k denote the
transition matrix; Tij = Pr(ht = i|ht−1 = j). Let M of size v×k denote the emission
matrix; Mij = Pr(xt = ei|ht = j).

We estimate an sHMM using a matrix U which projects each observation xt onto
a low dimensional representation yt using yt = U>xt, where xt is defined as before.
We work primarily in the y space, which is dimension k instead of the v-dimensional
observation space. Note that unlike h, which is a discrete space, y lies in a continuous
space.

U is the mapping between the original high dimension observation space and the
reduced dimensional representation space. This matrix received a full treatment in
Hsu et al. (2009) and therefore is not the focus of this paper. It is worth noting,
however, that U is not unique, and need only satisfy a handful of properties. We call
U the eigenword matrix, as y = U>x forms a low dimensional representation of each
word x in the vocabulary. For completeness, we note that a version of U can be easily
estimated by taking the largest left singular vectors of the bigram matrix P21, where

[P21]i,j = P (xt = ei, xt+1 = ej).

We use this version in the empirical results presented below. This works well in
theory (see details below) and adequately in practice, but better Us can be found,
either by estimating U from another much bigger data set, or by using more complex
estimation methods Dhillon et al. (2011).

In all of our methods, we will estimate a model to predict the probability of the
next item in the sequence given what has been observed so far:

Pr(xt+1|xt, xt−1, . . . , x1) = Pr(xt+1, xt, xt−1, . . . , x1)/Pr(xt, xt−1, . . . , x1).

We do this in the reduced dimension space of yi.

4.2.1 sHMM Model and Estimation

Our core sHMM algorithm estimates Pr(xt, xt−1, . . . , x1) via the method of moments,
writing it in terms of c>∞, c1 and C(yt), and in turn writing each of these three items
in terms of moments of the Y s. From Hsu et al. (2009) and chapter 2 we have

Pr(x1, x2, . . . , xt) = c>∞C(yt)C(yt−1) · · ·C(y1)c1 (4.2)
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with

c1 = µ, c>∞ = µ>Σ−1, C(y) = K(y)Σ−1

and parameters

µ = E(y1) = U>M π

Σ = E(y2y
>
1 ) = U>M T diag(π) M>U

K(a) = E(y3y
>
1 y
>
2 )a = U>M T diag(M>Ua) T diag(π) (M>U)

This yields the following estimate of Pr():

P̂r(xt, xt−1, . . . , x1) = ĉ>∞Ĉ(yt)Ĉ(yt−1) · · · Ĉ(y1)ĉ1 (4.3)

where

ĉ1 = µ̂, ĉ>∞ = µ̂>Σ̂−1, Ĉy = Ĉ(y) = K̂(y)Σ̂−1

and µ̂, Σ̂ and K̂() are the empirical estimates of the first, second and third moments
of the Y ’s, namely

µ̂ =
1

N

N∑
i=1

Yi,1, Σ̂ =
1

N

N∑
i=1

Yi,2Y
>
i,1, K̂(y) =

1

N

N∑
i=1

Yi,3Y
>
i,1Y

>
i,2 y

Here Yi,t indexes the N different independent observations (over i) of our data at time
t ∈ {1, 2, 3}.

Our HMM model is shown in figure 4.1.

h1

M

x1

U>

y1

T
h2

M

x2

U>

y2

T
h3

M

x3

U>

y3

Figure 4.1: The HMM with states h1, h2, and h3 which emit observations x1, x2, and
x3. These observations are further projected onto the lower dimensional space with
observations y1, y2, y3 by U from which our core statistic Cy is computed based on
K = E(y3 ⊗ y1 ⊗ y2) which is a (k × k × k) tensor

Chapter 2 proved that the sHMM model is PAC learnable if the true model is an
HMM and the projection matrix U has the property that range(M) ⊂ range(U) and
|Uij| ≤ 1. Given any small error ε and small confidence parameter δ, when the sample
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triples of observations are bigger than a polynomial of k, v, ε and δ, the probability
estimated by reduced dimensional tensor C(y) in Eqn. 4.3 is smaller than ε with high
confidence 1− δ.

For any t ∈ [2..∞), the estimated value of yt, denoted by ŷt, can be recursively
estimated using the information at the previous time:

ŷt =
C(yt−1)ŷt−1

ĉ>∞C(yt−1)ŷt−1

(4.4)

with ŷ1 = µ̂. Since the denominator in Eqn. 4.4 is a scalar constant for a particular
time, we will separate the rescaling step from the recursive computation. Let ωt =
ĉ>∞C(yt−1)ŷt−1. First we estimate ỹt = C(yt−1)ŷt−1 using the information from time
t− 1, then we set ŷt = ỹt/ωt.

1

Note that once we have computed ỹt, ωt is computed deterministically; hence the
key component in estimating ŷt is the computation of

ỹt = C(yt−1) ŷt−1. (4.5)

The observable HMM representation with ŷ1, ĉ∞ and C(y) is sufficient to predict
the probabilities of sequences of observations generated by an HMM. For joint proba-
bility of an observation sequence (x1, x2, ..., xt) one can use Eqn. 2.2. The conditional
probability of the same sequence can be computed directly using ŷt. The conditional
probability of observing i at time t is

Pr[xt = ei|x1, x2, ..., xt−1] = [Uŷt]i (4.6)

This concludes the full presentation of the sHMM model. As mentioned in the
introduction, this motivates simpler approximations which will now be discussed.

4.2.2 Bilinear Regression Model

Our sHMM model (4.5) that outputs the current ỹt is bilinear in yt−1 and ŷt−1. In
other words, let yj,t be the jth element of yt, and [C]ijk = cijk. Then we can write

ỹj,t =
∑
i,k

cijkyi,t−1ŷk,t−1 (4.7)

This leads naturally to our first simplified estimation technique–using linear re-
gression by regressing ỹt on the outer product of yt−1 and ŷt−1 as shown in eqn. 4.7.
We call this estimation method Bilin-RRegr. “Bilin”since it is Bilinear, “R” for re-
cursive, since it is recursively estimated and predicted using the previous value of
ŷk,t−1, and “Regr”, since it is estimated using regression.

A note on training this model: in order to learn the parameters cijk we first

1Note the use of ỹt for the non-rescaled version of ŷt.
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estimate ỹ’s and ŷ’s using linear regression on our empirically collected trigram data
using the actual y = U>x’s as the “responses” to be predicted. We then estimate
the parameters in 4.7 using a second regression in which these initial estimates of y
form the responses. One could iterate this to fixed point, but the above process is in
practice sufficient.

Also, although sHMM uses the method of moments to estimate the parameters
while Bilin-RRegr uses linear regression, when used to make predictions the two
methods are used identically.

4.2.3 Other Regression Models:

As mentioned in the introduction, many methods can be used to estimate the sHMM
model. We focus on two main simplifications: one can linearize the bilinear model,
and one can drop the recursive estimation. Recursion shows up in two places: when
doing estimation, one can regress either on yt and ŷt or on yt and yt−1, and when using
the model to predict, one can do a “rolling” prediction, in which yt+1 is predicted
using the observed yt and the predicted ŷt. These choices are made independently.
For example the base spectral HMM method uses trigrams (no recursion) to estimate,
but uses recursion to predict.

The bilinear equation in Eqn 4.7 can be linearized to give a simpler model to
estimate ỹt using regression on yt−1 and ŷt−1. In the experimental results below, we
call the resulting recursive linear model Lin-RReg :

ỹt = α yt−1 + β ŷt−1 (4.8)

We can also further simplify either the recursive bilinear model in Eqn 4.7 or the
recursive linear model of Eqn 4.8 by noting that a simple linear estimate of ŷt−1 is
ŷt−1 = Dyt−2. Since the matrix D is arbitrary, it can be folded into the model, giving
a simple linear regression, Lin-Regr, model

ŷt = α yt−1 + β1 ŷt−1

= α yt−1 + β2Ayt−2

= α yt−1 + β yt−2

Note that here we estimate ŷ directly instead of first estimating the unscaled ỹ and
then rescaling to get our ŷ. Similarly, one can build a non-recursive bilinear model
Bilin-Regr.

All of the above estimators work completely in the reduced dimension space Y .
They are summarized in Table 1, along the single-lag version of Lin-Regr, Lin-Regr-
1, and a couple of partially reduced dimension models which are described in the
following section.
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4.2.4 Partially Reduced Dimension Models

Instead of our fully dimension-reduced model sHMM , one can, following Hsu et al.
(2009) estimate a tensor B(x), which is only projected into the reduced dimension
space in two of its three components. B(x) thus takes an observation x, and produces
an k × k matrix, unlike C(y) which takes a reduced dimension y and produces an
k × k matrix.2

Given B(x), which is estimated from bigram and trigram occurrence counts, sim-
ilarly to C(y), the probability of the next item in a sequence is predicted using the
same recursive (rolling) method described above. The fundamental equation is similar
in form:

Pr(x1, x2, . . . , xt) = b>∞B(xt)B(xt−1) · · ·B(x1)b1 (4.9)

See Hsu et al. (2009) for details. We call this method HKZ after its authors.
Our fully reduced dimension sHMM offers several advantages over the original

HKZ method detailed in chapter 2. Working entirely in the reduced dimension space
reduces number of parameters to be estimated from k2n to k3. This comes at a cost
in that the theorems for sHMM require U to contain full range of M instead of only
just being full dimension.

The other big change in this paper over Hsu et al. (2009) is the use of linear
regression to estimate the model. Computing a regression, unlike using the method
of moments, requires computing the inverse of the covariance of the features (the
outer product of yt and ŷt). At the cost of doing the matrix inversion, we get more
accurate estimates, particularly for the rarer emissions.

Using a regression model also gives a tremendous increase in flexibility; The re-
gression can easily include more terms of history, giving more accurate estimates,
particularly for more slowly changing or non-Markovian processes. This comes at a
cost of estimating more parameters, but if the history is included in linear, instead of
a bilinear model, this is relatively cheap.

2Those familiar with the original paper will note that we have slightly re-interpreted Bx, which
Hsu et al. call a matrix, and that what we call x here, they call δx.

Also the resulting m×m matrices are identical, specifically

C(y) = K(y)Σ−1

= (U>M)T diag(M>Uy)(U>M)−1

= (U>M)T diag(M>x)(U>M)−1

= B(x)
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Table 4.1: Methods compared in our experiments. “Num Params” is the num-
ber of parameters, not including the k × n parameters for U . ŷ denotes the estimate
of y scaled by ωt as in Eqn. 4.4, and ỹ denotes the unscaled estimate

Method Equation Num. Params.
sHMM ỹt = C(yt−1)ŷt−1 k3

Bilin-RRegr ỹt = C(yt−1)ŷt−1 k3

Bilin-Regr ŷt = Γ(yt−1)yt−2 k3

Lin-RRegr ỹt = α yt−1 + β ŷt−1 2k2

Lin-Regr ŷt = α yt−1 + β yt−2 2k2

Lin-Regr-1 ŷt = α yt−1 k2

Lin-Regr-X x̂t = αxt−1 + β xt−2 2n2

HKZ ỹt = B(xt−1)ŷt−1 k2n
EM(BaumWelch) MLE k2

4.3 Experiments

In this section, we present experimental results on synthetic and real data for a variety
of algorithms for estimating spectral HMMs.

Table (4.1) lists the methods we used in our experiments. The number of parame-
ters being estimated in each case (not including the U projection matrix) are listed on
the right side. We expect models with more parameters to better on larger training
sets and worse on smaller ones.

4.3.1 Synthetic Data Test

The synthetic data is generated by constructing HMMs as follows: A potential tran-
sition matrix T is generated with elements from a folded normal distribution. It is
accepted if its second eigenvalue is in the range 0.9±0.1. Similarly, emission matrices
M are generated with elements from a folded normal distribution and accepted if the
second eigenvalue is in 0.8±0.1. This allows us to generate a selection of HMMs, as
well as to control the length of memory of the HMM and the difficulty of estimating
it.

We run the experiments as follows. For each of 10 runs, we generate a random
HMM model (T,M) as described above and use it to generate observation sequences
from length N = 100 to N = 1, 000, 000 as training data and 100 short (length 10)
sequences as test data.

We then estimate the various models using the training data. First we build
the unigram P1, bigram P21 and trigram P3x1 of the observations and use them to
estimate the projection matrix U and model parameters such as α, β, Γ and C and B.
U consists of the first k singular vectors corresponding to the k largest singular values
of P21. For the EM algorithm we use the R package (Himmelmann (2010)). Finally,
we apply every method on each of test sequences and predict the last observation of
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each test sequence given the preceding observations.
Each method in table (4.1) was tested varying several properties: training sequence

lengths and the dimension of observations (figure 4.2), and the state transition proba-
bilities (figure 4.3). In the last table, the second eigenvalue (2nd EV) of the transition
matrix is varied. When this is close to 1, the process mixes slowly. In other words, it
behaves close to a deterministic process. When this 2nd eigenvalue is close to zero,
the process mixes rapidly. Basically it behaves like a sequence of IID hidden states.
Hence more naive estimators will do well.

We report the prediction accuracy averaged over the 10 runs. We count a predic-
tion as correct if the true observation has the highest estimated probability.
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Figure 4.2: Prediction accuracy on synthetic data. Number of correct pre-
dictions of the 10th observation given the preceding 9 observations on 100 HMM
sequences generated with dimension of states m = 4, second eigenvalue of transition
matrix T = 0.9, second eigenvalue of emission matrix M = 0.8. Results are the
average of 10 runs. The standard errors of 10 runs ranged from .06 to 3.1. Left:
Accuracy as a result of training sequence length. Observation dimension
n = 10. Right: Accuracy as a result of observation dimension. Training
length 10K

4.3.2 NLP Data Test

We also evaluated our sHMM and rHMM on real NLP data sets. As with the synthetic
data experiment, we predict the last word of a test sequence using the preceding words.

We use the New York Times Newswire Service (nyt-eng) portion of English Giga-
word Fourth Edition corpus (LDC2009T13) in Penn Treebank Robert Parker (2009).
We used a vocabulary of ten thousand words, including tokens for punctuation, sen-
tence boundaries, and a single word token for all out-of-vocabulary words. The corpus
consisted of approximately 1.3 billion words from 1.8 million document. Our training
and test data set are drawn randomly without replacement from the nyt-eng corpus.
The training data consists of long sequences of observations with lengths varying from
1K to 1000K. The test data consists of 10,000 sequences of observations of length 100.
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Figure 4.3: Prediction accuracy relative to that of True Model on synthetic
data in terms of the second eigenvalue of the transition matrix. Inset:
actual prediction accuracy. Number of correct predictions of the 10th observation
given the preceding 9 observations on 100 HMM sequences. Results are the average
of 10 runs. The standard errors of 10 runs ranged from 1.3 to 3.7. The model
parameters are the number of states m = 4, the number of observations n = 10, the
training length = 10K, and the second eigenvalue of the emission matrix M = 0.8

Following the language modeling literature, we use perplexity to measure how well
our estimated language models fit the test data Brown et al. (1992); Rosenfeld (1996).
Suppose a predicted distribution of a word x is p and the true distribution is q, the
perplexity PP (x) is defined as PP (x) = 2H(p,q), where H(p, q) is the cross-entropy
of p and q. i.e. H(p, q) = −

∑
x q(x) log2 p(x). Because our true distribution q is a

unit vector with only one element 1 at the x-th dimension, the actual computing of
perplexity of word x is simplified as PP (x) = 1

px
. A lower perplexity PP (x) indicates

a better prediction on x.
We use the same test procedure and methods as for the synthetic data set. The

perplexities of language models on nyt-eng corpus are shown in figure 4.4 with vo-
cabularies of 1,000 and 10,000 words.

The results show several main trends, which are illustrated by two-way compar-
isons

• Fully reduced sHMM vs. Partially reduced method HKZ

– For small training sequences, sHMM is better than HKZ, as one would
expect, since sHMM has far fewer parameters to estimate; C(y) is m/n
times smaller than B(x). As theory predicts, in the limit of infinite training
data, the two models are equivalent.

• Fully reduced sHMM vs. Bilinear recursive regression Bilin-RReg.

– On synthetic data generated from an HMM, for smaller training sets
sHMM performs better.

• Bilinear regression Bilin-RReg. vs. Linear regression Lin-RReg.
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Figure 4.4: Log of perplexities of language models on nyteng corpus. Left:
corpus vocabulary size 1000 words. Right: corpus vocabulary size 10,000
words Note: EM has been excluded on the right in order to preserve a sensible y-axis
scale- the performance was poor across all sequence lengths

– As expected, the simpler model linear model works better with short train-
ing sequences (We are not regularizing our regression, and so overfitting is
possible). Lin-RReg unlike Bilin-RReg, is not a correct model of an HMM,
and so will not perform as well in the limit of infinite training data.

• Recursive Methods (Bilin-RReg, Lin-RReg) vs. non-recursive ones (Bilin-Reg,
Lin-Reg)

– Recursive prediction always helps for linear models. For the more com-
plicated bilinear model, recursion helps if there is sufficient training data.
Keeping more lags in the model helps (e.g. Lin-Regr vs. Lin-Regr1 ).

• EM method EM

– The EM method is prone to get stuck in local minima and often gives poor
results. One could use a more sophisticated EM method, such as random
restarts or annealing methods, but a major advantage of all of the spectral
methods presented here is that they are fast (see, for example Cohen et al.
(2013)) and guaranteed to converge to a good solution.

4.4 Discussion

HMM’s are intrinsically nonlinear, but it is often advantageous to use a linear es-
timator, even when the data are generated by a model that is not linear. Linear
estimators are fast, are guaranteed to converge to a single global optimum, and one
can prove strong theorems about them. None of these properties are true of iterative
algorithms such as EM for estimating nonlinear models.
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We compared two major classes of techniques for estimating HMMs, method of
moments (sHMM and HKZ) and regression methods. All the methods presented
here inherit the advantage of Hsu et al. (2009)’s method in that they use the projec-
tion matrix U containing the singular vectors of the bigram co-occurrence matrix to
reduce the observations from a high dimension observation space X to a low dimen-
sion space Y . The Y space captures the information inherent in the hidden states
and has same dimension as the hidden states. In this sense, the Y space can be seen
as a linear transformation of the hidden state space. One could, of course, do re-
gression in the original observation space, but that leads to models with vastly more
parameters, making bilinear models prohibitively expensive. Models in the reduced
dimension Y space have far fewer parameters and hence lower computational and
sample complexity.

The method of moments models are simple to estimate, requiring only unigram
bigram and trigram counts, and not requiring any recursive estimation (only recursive
prediction). However, using regression models to estimate HMMs allows us far more
flexibility than the method of moments models. Simple linear models can be used
when training data are limited. Bilinear models that are identical to the sHMM
model can be used when more data are available. Longer histories can be used to
estimate slowly changing HMMs (e.g. when the second eigenvalue of the transition
matrix is close to 1) or when one does not believe that the HMM model is correct.
Richer feature sets such as part of speech tags can also be added to the regression
models when they are available.

Much work has been done generalizing the (partially reduced) HKZ method
Siddiqi et al. (2010); Song et al. (2010) and extending it and our fully reduced sHMM
to probabilistic parsers Luque et al. (2012); Cohen et al. (2012, 2013). We believe
that extensions of the regression-based estimators presented in this paper should prove
valuable in these settings as well.
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5
Spectral learning of continuous observation HMMs

Hidden Markov Models (HMMs) are widely used tools for modeling sequential data.
Historically estimation of parameters in HMMs have relied on MLE methods such
as Gibbs sampling and EM, though such methods suffer from slow run time and
convergence concerns. Recently, a class of techniques, often called spectral techniques,
have been developed that provide consistent, fully estimable ways of estimating key
quantities in fully discrete HMMs through method of moments. We provide a novel
algorithm for extending these spectral techniques to HMMs with output governed by
continuous distributions.

5.1 Introduction

Hidden Markov models are an extremely useful class of models in which the latent
state is assumed to be governed by a Markov process, and whose emissions at time t
are emitted from a distribution conditional on the value of the hidden state at time t.
Hidden Markov models encompass a wide variety of models, from models in discrete
time, with a discrete hidden state space and discrete observations, to models with all
continuous components, and any combination of discrete and continuous.

Hidden Markov models have enjoyed a wide range of applications. The fully dis-
crete HMM is a major part of a toolkit in various aspects of language modeling,
like document classification, word sense disambiguation, and part of speech tagging.
Hidden Markov models with discrete time, discrete hidden state space, and continu-
ous output distributions have had interest in applications such as speech recognition,
robotics (for, say, gesture recognition for human/robot interactions or image recogni-
tion for robotic movement), and finance.

Recently a particular class of HMMs have become of interest due to the availability
of, and increased ability to process, high-dimensional data. For instance we can model

Work from this chapter with Dean Foster and Lyle Ungar
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the English language by assigning each word to an indicator vector in Rv, where v
is the size of the vocabulary. Speech processing, robotics, and finance each yield
similarly high-dimensional, continuous data. Common to all of these domains is
often a belief that the underlying process governing the data, the hidden state space
is of a much lower dimension than the data itself. It is this class of HMMs that we
will focus on in this paper.

Standard techniques for estimating these models rely on MLE methods such as
Gibbs sampling and EM. These techniques often suffer in applications, however, due
to their slow run time and risk of getting stuck in local optima. Recently, a technique
often referred to in the literature as a spectral technique has arisen to estimate key
components in fully discrete HMMs using method of moments. The spectral algorithm
was originally proposed in Hsu et al. (2009) and was modified to a fully reduced
dimensional form in chapter 2, a reduced rank form Siddiqi et al. (2010), and has
seen extensions to other topologies like trees, as in Parikh et al. (2011) and chapter 3.
Surprisingly, in many instances only three moments are needed to accurately estimate
models.

In this paper we directly extend the “traditional” spectral HMM literature in that
the parameters we estimate can be estimated from a low dimensional function of the
training data, at the end of which the training data may be completely discarded. In
the next section we present the extended, continuous output algorithm while simulta-
neously reminding the reader of the now widely used fully discrete version. The goal
of this simultaneous presentation is two-fold. First, we hope to show the reader how
this continuous version is a natural, powerful extension of the discrete case. Second,
we hope to help build intuition about spectral estimation of HMM-type structures to
enable easier extension to different hidden state space models.

Finally, one of the most important points from this work is that we are reducing
the problem of estimation of a variety of HMM-type problems to the well-studied
problem in machine learning and statistics of function estimation.

This is not the first attempt to apply spectral learning to continuous output
HMMs. In Boots et al. (2010) the authors first embed the HMM into a reproducing
kernel Hilbert space, then proceed to build theoretical observables that operate in a
way similar to the observables of the traditional spectral HMM literature. It is not
our aim in this paper to improve upon their algorithm. Rather we will provide a
novel, more natural extension of the spectral literature to continuous output HMMs,
and provide a much more flexible tool for solving a wide range of problems with a
wide range of computational power and time. As previously stated, we do this by
reducing the problem of spectral estimation of HMMs to a well known and highly
flexible problem of functional estimation, thus putting flexibility into the researchers
hands.
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5.2 Hidden Markov Models and Notation

The reader is reminded that while we will discuss HMMs with both continuous and
discrete output distributions, we will only work with HMMs in discrete time and with
a discrete hidden state space. For clarity of presentation we will consider only HMMs
whose latent dynamics are stationary, though this assumption can be easily relaxed.

We generally think of discrete observations (as well as the hidden states) as in-
dicator vectors—so we represent the jth observation (or state) by a vector of all 0’s
and a single 1 in the jth entry. The dimensionality of the vector spaces is equal to
the total number of possible observations.

Observations will be denoted by x in both discrete and continuous space, and will
be subscripted by time. A key assumption about HMMs that allow spectral estimation
is that observations live in a higher dimensional space than the hidden states. For
instance, if there are k hidden states, and the observation lies in n dimensions (either
there are n possible observations (i.e. vocabulary) or the observation comes from a
distribution that emits n-dimensional observations), then n > k. For significant gains
in efficiency we like n to be much bigger than k.

As mentioned before, the hidden state space is assumed to be governed by a
Markov process, and we define a transition parameter over the hidden state space
Tm×m such that [T ]ij = Pr(ht+1 = i|ht = j). We further define a vector valued
function λ(x) which is a vector of conditional probabilities with the ith entry being
the probability of seeing observation x given hidden state i, [λ(x)]i = Pr(x|h = i).

h1

O

x1

U>

y1

T
h2

O

x2

U>

y2

T
h3

O

x3

U>

y3

Figure 5.1: An HMM with states h1, h2, and h3 which emit observations x1, x2,
and x3. The observations are further projected onto lower dimensional space with
observations y1, y2, y3 by U .

5.3 Observable Operators

Jaeger (2000) showed that HMMs can be represented as a subclass of an observable
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operator model, which defines observable operators A(x) such that

A(x) = Tdiagλ(x)

where diagλ(x) is a diagonal matrix with λ(x) on the diagonal. Setting πi = Pr(h1 =
i), it is straightforward to verify that

Pr(x1, . . . , xt) = 1>A(xt) · · ·A(x1)π.

Note that if one had access directly to operators A(x) one need not actually learn
parameters T and λ(x), however direct estimation of A(x) is not possible, instead
still requiring the direct estimation of the HMM parameters.

Spectral methods circumvent this problem by estimating a version of the observ-
able operators that can be learned entirely from data directly.

5.4 Spectral Estimation

The hallmark of spectral estimation of hidden Markov Models is to estimate similar-
ity transformations of the observable operator form of the HMM parameters. The
similarity transform of A(x) is often of the form

B(x) = (U>M)A(x)(U>M)−1.

where M is a matrix such that the ith, column of M is the expected value of X given
hidden state i. Clearly, then, We have

Pr(x1, . . . , xt) = b>∞B(xt) · · ·B(x1)b1

where b1 = U>Mπ, and b>∞ = 1>(U>M)−1. Here it is worth mentioning that, for
ease of presentation, we are considering systems of full rank—that is the matrix T is
invertible, and, if M is n× k, the column rank of M is k.

5.5 Building Observables

In this section we will describe how to build the observables B(x). First note that the
first three moments of the data from an HMM yield the following theoretical form,
well known from the literature on spectral estimation of HMMs:

E[X1] = Mπ

E[X2 ⊗X1] = MTdiagπM>

E[X3 ⊗X1 ⊗X2](γ) = MTdiagM>γTdiagπM>
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where we interpret [a⊗ b⊗ c](d) = a⊗ b · c>d. This paper will be mostly concerned
with moments 2 and 3, since they are instrumental in estimating B(x). The nice
thing about the intuitive extension of spectral estimation to the continuous output
distribution case is that most all of the analysis from previous literature caries forward
with almost no modification. Included in this is a discussion of the estimation of b1
and b∞, and as they are readily found in previous literature (and are really not the
key objects of interest) we will not discuss them here.

We can already see from this presentation of the moments that it might be possible
to isolate a similarity transformation of A(x) by a combination of the third moment
and the inverse of the second moment. However, the second moment lies in Rm×m

and is only of rank k. The key is to project these moments into a subspace in which
they are full rank.

Consider an eigendictionary U (to be discussed later) such that U>M is invertible,
then estimating the second and third moments with reduced data y = U>x allows

B(γ) ≡ E[Y3 ⊗ Y1 ⊗X2](γ)E[Y2 ⊗ Y1]
−1

= (U>M)TdiagM>γ(U>M)−1

Recall that to this point we have not placed any assumption on our data being dis-
crete or continuous. In either case, building observable B(x) from the data naturally
captures information about the hidden state space, namely the transition matrix.

To impress the notion that the hidden state dynamics are estimated separately
from the observation parameters, algorithm 2 presents the algorithm for computing
b1, b∞ and B(γ) for both discrete observations and continuous observations.

Algorithm 2 Computing observables for spectral estimation of an HMM (fully re-
duced third moment from chapter 2)

1: Input: Training examples- x(i) for i ∈ {1, . . . ,M} where x(i) = x
(i)
1 , x

(i)
2 , x

(i)
3 .

2: Compute Ê[x2 ⊗ x1] = 1
M

∑m
i=1 x

(i)
2 x

(i)>
1 .

3: Compute the left k eigenvectors corresponding to the top k eigenvalues of Σ. Call the
matrix of these eigenvectors Û .

4: Reduce data: ŷ = Û>x.
5: Compute m̂u = 1

M

∑M
i=1 y

(i)
1 , Σ̂ = 1

M

∑M
i=1 y

(i)
2 y

(i)>
1 and tensor Ĉ = 1

M

∑M
i=1 y

(i)
3 ⊗y

(i)
1 ⊗

y
(i)
2 .

6: Set b̂1 = µ̂ and b>∞ = b>1 Σ̂−1

7: Right multiply each slice of the tensor in the y2 direction (so y2 is being sliced up,
leaving the y3y

>
1 matrices intact) by Σ̂−1 to form B̂(γ) = Ĉ(γ)Σ̂−1

57



5.6 Estimating Observation Probabilities

5.6.1 Discrete Output

The other part of A(X), namely diagλ(x), is captured in the choice of γ, and how it
interacts with M>. Recall that the ith column of M is the expected value of x given
hidden state i. Now, in the discrete case (where the jth observation is represented
by a vector of 0’s with a single 1 in the jth entry), the expected vector is precisely a
probability vector such that the jth entry of the expected vector in the ith column is
exactly Pr(xj|hi). Therefore, the jth row of M is λ(xj).

This is the formulation of HKZ, so the choice for γ at time t is simply xt, or the
observation at time t, as M>xt extracts the row corresponding to the observation at
time j.

One extension of Hsu et al. (2009), chapter 2, shows it is possible to estimate a
fully reduced third moment, E[Y3⊗Y1⊗Y2](γ). In terms of the theoretical quantities,
the first two moments remain the same, while the third becomes

E[Y3 ⊗ Y1 ⊗ Y2](γ) =

U>MTdiagM>UγTdiagπM>U

They show that the appropriate choice for γ in that case is y.
At this point we will describe the choice of γ necessary for the continuous output

HMM. Following RDHMM, we will use the fully reduced version of the third moment
matrix.

5.6.2 Continuous Output

Define g(x) ≡ E[Y2|x1]. First, we build intuition for the theoretical form of g(x)
given the observations are generated from an HMM. Let h̃t be the probability vector
associated with begin in a particular state at time t. Then

E[y2|h̃2] = U>Mh̃2.

Also,

E[h2|h̃1] = T h̃1.

thus E[y2|h1] = U>MTh̃1. To establish a belief about h1 given x1, recall from Bayes
formula

Pr(h1|x1) =
Pr(x1|h1) Pr(h1)

Pr(x1)
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We can arrange each probability into a vector, and because in the indicator vector
case the probability vector is the same as the expected value vector, we have, in vector
notation

E[h1|x1] =
diagπλ(x)

π>λ(x)

and so putting together the pieces we get

E[y2|x1] =
U>MTdiagπλ(x)

π>λ(x)

Recall that the goal is to isolate λ(x). Note that

E[y2 ⊗ y1]
−1g(x) =

(M>U)−1λ(x)

π>λ(x)

≡ G(x)

When this is plugged into our fully reduced version of B(x), we get

B(G(x)) = (U>M)TdiagM>UG(x)(U>M)−1

= (U>M)Tdiagλ(x)(U>M)−1 1

Pr(x)

where Pr(x) is the marginal probability. B(G(x)) is exactly what we want, up to a
constant factor depending on x. This condition also appears in the RKHS version.

5.7 Sample Complexity

As we are primarily concerned with extending the model of the discrete output spec-
tral HMM to the continuous version, so too will we extend the typical sample com-
plexity theorems from the discrete to the continuous version. The proof techniques
are the same, especially from chapter 2. We are in particular interested in bounding
the relative probability of a sequence of observations. We need one

Theorem 3. Let Xt be generated by an k ≥ 2 state HMM. Suppose we are given a
U which has the property that range(M) ⊂ range(U) and |Uij| ≤ 1, a function g(x)
such that the relative error of g(x) is less than α. Suppose we use equation (4.3) to
estimate the probability based on N independent triples. Then

N ≥ 128k2

( 3t+3
√

1 + ε− 1)2 Λ2σ4
k

log

(
2k

δ

)
(5.1)
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implies that

β0 ≤

∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)

∣∣∣∣∣ ≤ β1

holds with probability at least 1−δ, where β0 = (1−ε)(1−α)t and β1 = (1+ε)(1+α)t

.

Note that the upper and lower bounds of the sample complexity can be neatly
broken down into two components—error from estimation of g(x), and error from esti-
mation of the observable quantities. This parallels nicely the breakdown of estimation
of the hidden state dynamics through the observable moments and the estimation of
the observation parameters through the function g(x). Note that we assume that the
g function is estimated separately from the other parameters, and we consider this a
fixed cost- in other words increasing the sample size associated with this theorem will
not improve the relative error of the g function. Therefore, for the proofs below we
assume the user has total information about the g function, and hence it contributes
no error.

The maximal relative error for any given term contains Λ, the smallest value in any
of the terms of the parameters, in the denominator. Because this is never observed, we
recast the probability calculations using the smallest observed value. This is possible
given that we bound the relative error for any possible term in the observables, and
we state a final corollary that recasts the theorem with this consideration.

The proof proceeds in a series of lemmas. For clarity we will simply state all the
lemmas necessary to prove the main theorem, providing their proofs in the Appendix,
with the exception of the final lemma that implies the theorem itself.

Lemma 4. Our estimates of all elements of µ, Σ−1 and K() are bounded by 3J/σ2
k

with probability 1− δ, where J ≡ 2k

√
2 log 2k

δ

N
.

Using lemma 4 we obtain the following lemma.

Lemma 5. From the method of moments estimate of the parameters, we obtain the
following bound(

1− 3J

σ2
kΛ

)3t+3

(1− α)t ≤ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)
≤
(

1 +
3J

σ2
kΛ

)3t+3

(1 + α)t

The next lemma converts the sample complexity into more useful bounds on Λ
and σk.

Lemma 6. If

N ≥ 128k2

( 3t+3
√

1 + ε− 1)2Λ2σ4
k

log

(
2k

δ

)
then

Λ ≥ 3J

σ2
k(

3t+3
√

1 + ε− 1)
(5.2)
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σk ≥ 4J (5.3)

Finally we can use these bounds to get:

Lemma 7. If equation (5.1) of Theorem 3 is replaced by (5.2) and (5.3) then the
results of the theorem follow.

We prove this lemma, and hence the theorem, now.
Proof of lemma 7: Note from lemma (6) we have

Λ ≥ 3J

σ2
k(

3t+3
√

1 + ε− 1)

≥ 3J

σ2
k(1−

3t+3
√

1− ε)

First working with the lower bound from lemma (5), we have(
1− 3J

σ2
kΛ

)3t+3

(1− α)t ≥

(
1− 3J

σ2
k

3J
σ2
k(1−

3t+3√1−ε)

)3t+3

(1− α)t

≥
(
1− (1− 3t+3

√
1− ε)

)3t+3
(1− α)t

≥
(

3t+3
√

1− ε)
)3t+3

(1− α)t

≥ (1− ε) (1− α)t

And working with the upper bound we have(
1 +

3J

σ2
kΛ

)3t+3

(1 + α)t ≤

(
1 +

3J

σ2
k

3J
σ2
k(

3t+3√1+ε−1)

)3t+3

(1 + α)t

≤
(

1 + 3t+3
√

1 + ε− 1
)3t+3

(1 + α)t

≤
(

3t+3
√

1 + ε
)3t+3

(1 + α)t

≤ (1 + ε) (1 + α)t

As mentioned before, the sample complexity bound in Theorem 3 relies on knowing
unobserved parameters of the problem. To avoid this, we modify Lemma 7 to make
it observable. In other words, we convert the assumptions of sample complexity into
a checkable condition.

Corollary 4. Let Xt be generated by an k ≥ 2 state HMM. Suppose we are given a U
which has the property that range(O) ⊂ range(U). Suppose we use equation (4.3) to
estimate the probability based on N independent triples. Then with probability 1− δ,
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if the following two inequalities hold

Λ̂ σ̂2
k ≥

(
12k +

6m

( 3t+3
√

1 + ε− 1)

)√
2 log 2k

δ

N
(5.4)

σ̂m ≥ 10m

√
2 log 2k

δ

N
. (5.5)

then

1− ε ≤

∣∣∣∣∣ P̂ (x1, . . . , xt)

P (x1, . . . , xt)

∣∣∣∣∣ ≤ 1 + ε

The advantage of the corollary is that the left hand sides of the two conditions are
observable and the right hand sides involve known quantities. Hence one can tell if
the condition is true or not–it doesn’t require knowing unobserved parameters. Note
that the statement is of the form Pr(A⇒ B) ≥ 1− δ so interpretation must be done
carefully.

To prove corollary (4) we need two technical lemmas: Lemma 8 and Lemma 9.
They are stated and proved in appendix A.2. Lemma 8 basically says that with high
probability, each element of µ, Σ and K() is estimated accurately. This is then used
in Lemma 9 to show that Λ and σk are estimated accurately.

5.8 Conclusion

We have presented a spectral method for estimating HMMs with a continuous-valued
observation space. We show that the algorithm proceeds by estimating the usual
C() tensor from 2 and by further estimating a new function g(), and that these two
functions (as they can be seen) factor the problem of estimating HMMs with spectral
methods into estimation of the hidden state space, and estimation of the observation
space. Both functions can be estimated in highly flexible ways and incorporate a
variety of information beyond simply the observations of interest.
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6
Conclusions and Future Directions

We now have a framework in which to think about spectral estimation of HMMs and
HMM-like objects. There are two immediate directions in which to extend the work
in this thesis. We would like to improve the sample complexity for estimating the
observables, as well as extend spectral estimation to cover a broader class of models.

In this thesis we focused on discrete-time, discrete hiddden state space models. In
addition, beside the extension to a tree topology, this thesis considered linear chain
hidden state dynamics. However, HMMs can be arbitrarily generalized to a wide
range of models. We can extend the hidden state space to be continuous vectors
instead of discrete vectors (the Kalman filter estimates a model of this type) and can
extend the time granularity to be continuous.

Further, the hidden state space can itself be factored. For instance, some models
consider the case in which there are some number of concurrent hidden state chains
that have some dependency structure placed on them (allowing arbitrary dependence
structure does not provide any gains in efficiency). Others have layered hidden state
chains- for instance a slow moving hidden state chain that governs (or operates in-
dependently from) a faster moving hidden state chain (NLP provides an intuitive
example for this type of model, in which topics relate to the slow moving hidden
state space, and grammar relates to the faster moving hidden state space).

One focus of future research is to extend spectral methods to these classes of latent
state models. The hope is that with the fully factored framework that we developed
for spectral estimation here, we can easily extend spectral estimation to apply to
these other modeling possibilities.

Regarding the sample complexity, the proof technology used in 2 requires that
the sample complexity depend on Λ which, though it’s empirical version is both
fully observable and has a known relationship to the theoretical quantity, is entirely
uncontrollable and often explodes the sample complexity. Further, there is no intuitive
reason why the sample complexity really depends on Λ- it is simply an artifact of the
proof. In practice, the sample complexity of the spectral method in chapter 2 is much
smaller than the bound would indicate. We hope to find a better technology to obtain
a sample complexity or confidence statement about the method presented in chapter
2 that better reflects the true sample complexity.
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A
Appendices

A.1 Notation

We use the following notation throughout this document:

• v - dimensionality of the observation space

• k - dimensionality of the hidden state space

• x - an observation, discrete or continuous, in unreduced form

• y - the reduced dimensional form of x, where y = U>x.

• T - k × k transition matrix

• M - v × k matrix in which the columns are the expected value of observations

given the hidden state

• λ(x) - a k dimensional vector giving the probability of observation x given the

hidden state

• U - the eigendictionary
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• C() - a tensor, or function, that takes a vector and returns a matrix that is the

observable operator for the observation x that maps to the reduced dimensional

observation y

• Σ - E[y2 ⊗ y1]

• K - E[y3 ⊗ y1 ⊗ y2]

• σm - The mth smallest singular value of Σ.

• Λ - min{mini |µi|,mini,j |Σ−1
ij |,mini,j,l |Kijl|}

A.2 Supplement for Chapter 2

Lemma 1 (Restatement of Lemma 1). Assume the hidden state is of dimension

k and the rank of M is also k. Then:

Pr(x1, x2, . . . , xt) = 1>A(xt)A(xt−1) · · ·A(x1)π (2.1)

Pr(x1, x2, . . . , xt) = b>∞B(xt)B(xt−1) · · ·B(x1)b1 (2.5)

Pr(x1, x2, . . . , xt) = c>∞C(yt)C(yt−1) · · ·C(y1)c1 (2.6)

Where (2.5) requires U>M to be invertible, and (2.6) requires range(M) ⊂ range(U).

Proof:

As pointed out in the main text, Jaeger (2000) showed (2.1), and Hsu et al. (2009)

showed (2.5). To show (2.6), we will first write the characteristics µ, Σ and K in terms

of the theoretical matrices, T , M , U , and π:

µ = U>Mπ
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Σ = U>M T diag(π) M>U

Σ−1 = (M>U)−1 diag(π)−1 T−1 (U>M)−1

K(y) = U>M T diag(M>Uy) T diag(π) M>U

By definition, we have

c1 ≡ µ = U>M π

likewise,

c>∞ ≡ µ>Σ−1

=
(
π>M>U

) (
(M>U)−1 diag(π)−1

· T−1 (U>M)−1
)

= π> diag(π)−1 T−1 (U>M)−1

= 1>T−1(U>M)−1

= 1>(U>M)−1

For C,

C(y) = K(y) Σ−1

= U>M T diag(M>Uy)

· T diag(π) M>U Σ−1

= U>M T diag(M>Uy)(U>M)−1

Note that UU> is a projection operator and since its range is the same as that of M
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we have M>UU> = M>. So, if y = U>x, then:

C(y) = U>M T diag(M>UU>x)(U>M)−1

= U>M T diag(M>x)(U>M)−1

= U>M A(x) (U>M)−1

Thus (2.6) follows from a telescoping product.

2

Proof of lemma 6:

The proof is simply algebraic manipulation. We have

N ≥ 128k2

( 2t+3
√

1 + ε− 1)2Λ2σ4
k

log

(
2k

δ

)

which implies that

Λ2 ≥ 128k2

( 2t+3
√

1 + ε− 1)2Nσ4
k

log

(
2k

δ

)
≥ 72k2

( 2t+3
√

1 + ε− 1)2Nσ4
k

log

(
2k

δ

)

and taking the square root and making the relevant substitution for J we have

Λ ≥ 3J

σ2
k(

2t+3
√

1 + ε− 1)

To show the bound for σk we have that

N ≥ 128k2

( 2t+3
√

1 + ε− 1)2Λ2σ4
k

log

(
2k

δ

)
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and noting that Λ < 1 and 2t+3
√

1 + ε− 1 < 1,

σ4 ≥ 128k2

N
log

(
2k

δ

)

Taking the square root of both sides and making the relevant substitution, we get

σ2
k ≥ 4J

and since σk < 1 implies σ2
k < σk then we get the desired inequality. 2

Lemma 8. Our estimates of all elements of µ, Σ−1 and K() are bounded by 3J/σ2
k

with probability 1− δ, where J ≡ 2k

√
2 log 2k

δ

N
.

Proof:

We first derive absolute bounds for each entry of µ, Σ and K(). To handle all

three of them at the same time, we will generically call any one of these three “θ”

and its estimate θ̂. Suppose that θ̂ has g entries that are taking the mean with N

observations all of which are bounded between −1 and 1. Then, for each entry we

have from Hoeffding (1963) that

Pr(|θ̂i − θi| > ε) ≤ 2e
−Nε2

2

and so

Pr(∃ i s.t. |θ̂i − θi| > ε) ≤ 2ge
−Nε2

2

and setting 2ge
−Nε2

2 = δ we solve that ε =

√
2 log 2g

δ

N
so with probability 1− δ we have

that

∀i |θ̂i − θi| ≤

√
2 log 2g

δ

N
.
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Note that for µ, Σ and K() we have a vector, a matrix and a tensor that are estimated

as E(Y1), E(Y1Y
>
2 ) and E(Y3Y

>
1 Y

>
2 ) respectively with k, k2 and k3 entries respec-

tively, we see that the total number of entries in all three of them is less than k4.

(Except in the trivial case where k = 1. But this corresponds to the data being IID

and so doesn’t count as a HMM.) So all three of the following hold simultaneously

with probability 1− δ:

∀i |µ̂i − µi| ≤

√
8 log 2k

δ

N

∀i, j |Σ̂ij − Σij| ≤

√
8 log 2k

δ

N
(A.1)

∀i, j, j |[K̂]ijl − [K]ijl| ≤

√
8 log 2k

δ

N

Lastly we need to bound Σ−1. We will start by bounding the norm of Σ̂ − Σ. By

(A.1) we see ||Σ̂−Σ||max ≤
√

8 log 2k
δ

N
, by the relationship ||M ||2 ≤ m||M ||max for k×k

square matrices, we get the desired result.

From this bound on ||Σ̂− Σ||2 and lemma 20 of Hsu et al. (2009) we have that

|σ̂k − σk| ≤ J (A.2)

where σk is the smallest singular value for Σ. By their Lemma 23 we then have that

||Σ̂−1 − Σ−1||2 ≤
1 +
√

5

2

(
1

σ̂k − J

)2

J

By assumption σk > 4J , we see σk − J > 3σk/4. Thus from the algebra that

1+
√

5
2

(4
3
)2 ≤ 3, we see

||Σ̂−1 − Σ−1||2 ≤ 3J/σ2
k.

69



From ||Σ̂−1 − Σ−1||max ≤ ||Σ̂−1 − Σ−1||2 we get our element-wise norm on the errors.

Since σk ≤ 1, we see that

3J/σ2
k ≥ 3J = 3k

√
8 log 2k

δ

N
≥

√
8 log 2k

δ

N

2

Lemma 9. The estimates of Λ and σk have the following accuracy:

|Λ̂− Λ| ≤ 6k

σ2
k

√
2 log 2k

δ

N

|σ̂k − σk| ≤ 2k

√
2 log 2k

δ

N
.

with probability greater than 1− δ.

Proof: Λ̂ is the empirical minimum of all the

Λ̂ ≡ min{min
i
|µ̂i|,min

i,j
|Σ̂−1

ij |,min
i,j,l
|K̂i,j,l|}

From lemma 8 we have bounded the accuracy of the estimate of each element of µ,

Σ and K(), the minimum of these will be estimated within the same accuracy. This

established (A.3).

The second inequality (A.3) was also established in the proof of the theorem in

equation (A.2).

2
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A.3 Likelihood ratio version of theorem 3

In 2.3.1 we considered the likelihood ratio as a way of getting a better estimator.

There we used a weighting vector pi which normalized our probability. In other

words,

Pr(x1, x2, . . . , xt)

px1px2 · · · pxt

It will be a bit more mathematically convenient if we instead use qi = 1/
√
pi instead.

So, define:

Q(x1:t) = Q(x1, x2, . . . , xt) = q(x1)q(x2) · · · q(xt)

Then our “likelihood ratio” is

λ(x1, x2, . . . , xt) = Pr(x1, x2, . . . , xt)Q(x1, x2, . . . , xt)
2

We will think of these qi’s as a vector and define

M∗ ≡ diag(q)M

and

A∗x ≡ Tdiag(M∗Tdiag(q)x)

We will then be able to show a similar product rule as (2.1):

Pr(x1:t)Q
2(x1:t) = 1>A∗(xt)A

∗(xt−1) · · ·A∗(x1)π.

The version of this product rule we will estimate is also similar. We will define

U∗ = diag(q)U and y∗t = U∗>diag(q)xt = U>diag(q)2xt. Our statistics are then:

µ∗ ≡ E(y∗1)
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Σ∗ ≡ E(y∗2y
∗>
1 )

K∗(a) ≡ E(y∗3y
∗>
1 y∗>2 )a

Defining our characteristics as before:

c∗1 ≡ µ∗

c∗>∞ ≡ µ∗>Σ∗−1

C∗(y∗) = K∗(y∗) Σ∗−1

These can also be used to estimate λ as the following lemma shows:

Lemma 10. Assume the hidden state is of dimension k and the rank of M is also k.

Then:

λ(x1, . . . , xt) ≡ Pr(x1:t)Q
2(x1:t)

= 1>A∗(xt)A
∗(xt−1) · · ·A∗(x1)π

= c∗>∞ C
∗(y∗t ) · · ·C∗(y∗1)c∗1 (A.3)

Where the last equation requires

range(M) ⊂ range(Udiag(q)).

Proof:

A∗x ≡ T diag(M∗>diag(q)x)

= T diag((diag(q)M)>diag(q)x)

= T diag(M>diag(q)2x)

= T diag(M>diag(q)2diag(x)1)

72



= T diag(M>diag(x)2diag(q)21)

= T diag(M>diag(x)(q2
x))

= T diag(M>x) q2
x

= Ax q
2
x

where we have used a>diag(x)b = (a>x) (b>x).

Our “starred” versions can be written in terms of the basic items T , M , U , π and

q:

µ∗ = U>diag(q)2Mπ

Σ∗ = U>diag(q)2M T diag(π) M>diag(q)2U

Σ∗−1 = (M>diag(q)2U)−1 diag(π)−1

· T−1 (U>diag(q)2M)−1

K∗(x) = U>diag(q)2M T diag(M>diag(q)2Ux)

· T diag(π) M>diag(q)2U

So, we have

c∗1 ≡ µ∗ = U>diag(q)2M π

likewise,

c∗>∞ ≡ µ∗>Σ∗−1

=
(
π>M>diag(q)2U

)
·
(
(M>diag(q)2U)−1 diag(π)−1

· T−1 (U>diag(q)2M)−1
)
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= π> diag(π)−1 T−1 (U>diag(q)2M)−1

= 1>T−1(U>diag(q)2M)−1

= 1>(U>diag(q)2M)−1

For C∗ we

C∗(y) = K∗(y) Σ∗−1

= U>diag(q)2M T diag(M>diag(q)2Uy)

· T diag(π) M>diag(q)2U Σ∗−1

= U>diag(q)2M T diag(M>diag(q)2Uy)

· (U>diag(q)2M)−1

Note that U∗U∗> is an v × v projection operator. Since its range is the same as that

of M∗ we have M∗>U∗U∗> = M∗>. So, if y∗ = U∗>diag(q)x, then:

C∗(y∗) = U>diag(q)2M T

· diag(M∗>U∗U∗>diag(q)x)

· (U>diag(q)2M)−1

= U>diag(q)2M T diag(M>diag(q)2x)

· (U>diag(q)2M)−1

= (U>diag(q)2M) A∗(x) (U>diag(q)2M)−1

Hence equation (A.3) follows by a telescoping product.

2

Theorem 4. Let Xt be generated by an k ≥ 2 state HMM. Suppose we are given a

U which has the property that range(M) ⊂ range(U) and |Uij| ≤ 1. Suppose we use
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equation (A.3) to estimate λ(x1, x2, . . . , xt) based on N independent triples and for

appropriate choice of U∗. Then the following two inequalities

Λ∗ ≥ 6k

σ∗2k ( 2T+3
√

1 + ε− 1)

√
2 log 2k

δ

N
(A.4)

σ∗k ≥ 8k

√
2 log 2k

δ

N
. (A.5)

(where σ∗k is the smallest eigenvalue of Σ∗) imply

1− ε ≤

∣∣∣∣∣ λ̂(x1, . . . , xt)

λ(x1, . . . , xt)

∣∣∣∣∣ ≤ 1 + ε

or equivalently

1− ε ≤

∣∣∣∣∣ P̂r(x1, . . . , xt)

Pr(x1, . . . , xt)

∣∣∣∣∣ ≤ 1 + ε

holds with probability at least 1− δ.

Proof:

The proof of this goes is identical to that given for theorem 3. The only worry is

that we have defined y∗’s differently. But since we only required |y| ≤ 1, and we have

constructed |y∗| ≤ 1, the Hoeffding inequality with elements of U still hold for U∗.

2

Details of generating the graphs

In lemma 10 and theorem 4 we see that we can increase our chances of obtaining a

large enough Λ by multiplying each row of U by some function of that row. As long

as we ensure that the elements of our new U∗ are less than one, then we can make a

claim on the accuracy of the relative “likelihood”, and hence the relative probability,
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generated by our sample.

Our figures utilize this gain in the size of Λ. For our corpus we use the Internet

as captured by the Google n-gram dataset. We first create a dictionary of the v − 1

most popular tokens, as well as an “out of vocabulary” token, for a final dictionary of

size v. We take U to be the U matrix generated by the “thin” SVD of the P21 matrix

generated using this vocabulary and Google 2-grams.

From this U we consider the first k columns. As per above, we can increase our

chances of obtaining a large enough Λ by maximizing the size of the entries in this new

v× k dimensional U matrix, hence we multiply each row by 1/maxj(|Ui,j|), ensuring

that at least one of the elements in our matrix is exactly 1 or −1. Now, using this

new matrix U∗ we use the frequencies from Google 1-grams, 2-grams, and 3-grams to

compute µ∗, Σ∗, and K∗ respectively, where each of the v vocabulary words (including

one out-of-vocabulary token) correspond to a row of U∗. From this, we take Σ∗−1 and

compute the minimum element across µ∗, Σ∗−1 and K∗.

We obtain σ∗k in a similar way, first computing Σ∗ from the appropriate v × k

dimensional U∗ matrix, then taking the SVD, recording the smallest singular value.

A.4 Supplement for Chapter 3

This appendix offers a sketch of the proof of Theorem 3. The proof uses the following

definitions, which are slightly modified from those of Kakade and Foster (2007).

Definition 3. Define Λ as the smallest element of µ, Σ−1, Ω−1, and K(). In other

words,

Λ ≡min{min
i
|µi|,min

i,j
|Σ−1

ij |,min
i,j
|Ω−1

ij |,

min
i,j,k
|Kijk|,min

i,j
|Σij|,min

i,j
|Ωij|, }

76



where Kijk = K(δj)ik are the elements of the tensor K().

Definition 4. Define σk as the smallest singular value of Σ and Ω.

The proof relies on the fact that a row vector multiplied by a series of matrices,

and finally multiplied by a column vector amounts to a sum over all possible products

of individual entries in the vectors and matrices. With this in mind, if we bound the

largest relative error of any particular entry in the matrix by, say, ω, and there are,

say, s parameters (vectors and matrices) being multiplied together, then by simple

algebra the total relative error of the sum over the products is bounded by ωs.

The proof then follows from two basic steps. First, one must bound the maximal

relative error, ω for any particular entry in the parameters, which can be done using

central limit-type theorems and the quantity Λ described above. Then, to calculate

the exponent s one simply counts the number of parameters multiplied together when

calculating the probability of a particular sequence of observations.

Since each hidden node is associated with exactly one observed node, it follows

that s = 12m + 2L, where L is the number of levels (for instance in our example

“Kilroy was here” there are two levels). s can be easily computed for arbitrary tree

topologies.

It follows from chapter 2 that we achieve a sample complexity

N ≥ 128k2s2

ε2 Λ2σ4
k

log

(
2k

δ

)

·

≈1︷ ︸︸ ︷
ε2/s2

( s
√

1 + ε− 1)2
(A.6)

leading to the theorem stated above.

Lastly, note that in reality one does not see Λ and σk but instead estimates of

these quantities; chapter 2 shows how to incorporate the accuracy of the estimates

into the sample complexity.
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