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ABSTRACT

THE PRODUCER-POLLINATOR DILEMMA:

NEONICOTINOIDS AND HONEYBEE COLONY COLLAPSE

Benjamin Reynard

Sarah Willig, Ph.D.

Robert Giegengack, Ph.D.

Neonicotinoid insecticides are the most important new insecticide class 
introduced in the past 40 years.  They are the number one selling insecticide in 
the world, and are used on over 90% of the corn produced in the U.S.  However, 
neonicotinoids could very likely be causing widespread and severe impairment to 
bee colonies, and possibly contributing to Colony Collapse Disorder (CCD).  This 
is problematic since bees, and honey bees in particular, are the single most 
important pollinator for global agriculture.  Pollination services contribute to one 
of every three mouthfuls of food consumed (Xerces Society, 2011).  Direct 
pollination services were recently valued in a Cornell University study to be worth 
16 billion dollars a year in U.S. farm income (Calderone, 2012).  As more is 
learned about the nature of systemic neonicotinoids and their adverse effects on 
beneficial pollinators, a potential conflict between crop protection and pollinator 
conservation becomes clear, posing a dilemma between food production required 
to feed a growing global population and the risk of widespread colony collapses.  

The scientific community has been examining the phenomenon of CCD, and 
anecdotal links between the bee losses and the application of neonicotinoid 
insecticides, since it was first noticed by French beekeepers in 1994 and then in 
the U.S. in 2006.  While previous studies failed to demonstrate links to CCD, a 
new generation of field-realistic studies has chronicled the synergistic and 
sublethal effects of neonicotinoids on individual bees and colonies over longer-
term exposure using real-world foraging conditions.  Recent studies strongly 
support the link between neonicotinoids and CCD (Henry et al., 2012; Whitehorn 
et al., 2012; Gill, Ramos-Rodriguez, and Raine, 2012; Lu et al., 2012; Tapparo et 
al., 2012;  Krupke et al., 2012).  However, independent researchers such as 
James Cresswell, Jim Frazier, and USDA scientist Jeffrey Pettis (Cresswell, 
2011; Cresswell, Desneux, and vanEngelsdorp, 2012; Frazier et al., 2011; Frazier 
2012; Grist.org) along with farming and crop protection interests and the 
producers of the neonicotinoid products all caution that there is not yet enough 
evidence to draw definitive conclusions, and that there are a variety of causal 
factors behind CCD.  Can these pesticides continue to be used safely in the U.S. 
or do their risks to pollinators outweigh their benefits to humans and animals?    
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INTRODUCTION

 Neonicotinoid pesticides have been shown, in multiple independent 

studies conducted in the U.S. and Europe, to have negative impacts on both wild 

bees and managed honey bees (Henry et al., 2012; Whitehorn et al., 2012; Gill, 

Ramos-Rodriguez, and Raine, 2012; Lu et al, 2012; Tapparo et al., 2012;  Krupke 

et al., 2012).  France has banned such systemic pesticides based upon the 

precautionary principle, while in the U.S. neonicotinoids are used on over 90 

percent of the U.S. corn crop (Bayer Crop Science Online Resource).  The 

debate over continued approval of this potentially harmful class of pesticides has 

reached the U.S. EPA, where petitions for review have been raised by an alliance 

of beekeepers, concerned lawmakers, and environmental defense groups.  

Proponents of neonicotinoids, those in both agricultural and chemical industries, 

insist that these chemicals are safe for controlled use in the field and that recent 

studies used flawed assumptions on actual field dosage and faulty bee-colony-

reproduction statistics.  Despite the claims to the contrary, there does seem to be 

accumulating evidence that neonicotinoids, the number one selling class of 

insecticide in the world, are indeed detrimental to bees, but the question is--at 

what concentration, and are these realistic exposure rates in nature?  Can these 

pesticides continue to be used safely in the U.S., or do their risks to pollinators 

outweigh their benefits to humans and animals?  Can environmental scientists 

prove their point(s)?  Studies have been published on both sides of this debate;  

this capstone project will seek to answer the question: are neonicotinoids harmful 

to pollinators, and if so, to what extent can they be safely used?

1



 This capstone project will provide an overview of the crop protection 

industry, a summary of the insecticide market prior to neonicotinoid introduction, 

a history of the development, spread, and necessity of neonicotinoids, an 

examination of the multiple recent scientific studies conducted on neonicotinoids 

and their potential links to colony collapse disorder (CCD), an overview of the 

changing regulatory environment, and a concluding synopsis of the convergent 

research, along with recommendations for the safe use of neonicotinoids.  
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A GREEN REVOLUTION

 Food is a paramount necessity--everyone has to eat.  Hunger has driven 

population migrations and extinctions, forged hunter/gatherer and farming 

lifestyles, and, once met, fueled the development of higher culture, education, 

and fine arts.  Nobel Prize winner Norman Borlaug--a groundbreaking agricultural 

scientist/plant geneticist/agronomist/humanitarian, and a pioneer in the “Green 

Revolution,” whose work in developing “high-yield agriculture” in multiple nations 

during the mid-twentieth century is estimated to have saved over 1 billion people 

from starvation--worked from a motivation to curb hunger (Borlaug Nobel Lecture 

1970) (see Figure 1).

 Figure 1.  Dr. Norman Borlaug, (Encyclopædia Britannica Online)
“The Green Revolution has won a temporary success in man's war against 
hunger and deprivation; it has given man a breathing space. If fully 
implemented, the revolution can provide sufficient food for sustenance 
during the next three decades. But the frightening power of human 
reproduction must also be curbed; otherwise the success of the Green 
Revolution will be ephemeral only” (Borlaug, 1970 Nobel Lecture).  
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 Dr. Borlaug achieved dramatic results by working with the International 

Maize and Wheat Improvement Center to introduce geographically specialized, 

high-yielding, faster-growing, and disease-resistant crop varieties to farmers in 

developing countries--essentially teaching them how to grow more food more 

efficiently.   “Wheat production in Mexico multiplied threefold in the time that 

Borlaug worked with the Mexican government. In addition, dwarf wheat imported 

in the mid-1960s was responsible for a 60 percent increase in harvests in 

Pakistan and India” (Norman Borlaug, Encyclopædia Britannica Online).  Yields 

for all developing countries rose 208% for wheat, 109% for rice, 157% for maize, 

78% for potatoes, and 36% for cassava between 1960 and 2000 (Pingali, 2012).  

Combined fertilizer use (Nitrogen, Phosphate, and Potash) increased at an 

annual rate of 5.5% from 1960 to 1990, from 27 million nutrient tons to 143 

million nutrient tons (Bumb and Baanante, 1996).  

 The production of cereal crops has tripled over the past 50 years with only 

a 30 percent increase in the land area under cultivation, though these global 

aggregations mask geographical disparities (Pingali, 2012).  China, for example, 

has planted 82 percent of its arable land in modern crop varieties compared to 27 

percent in Africa (Pingali, 2012).  The spread of science-based agriculture and 

shared best practices championed by Dr. Borlaug brought with it an increased 

reliance on pesticides, fertilizers, and irrigation to keep the specialized crops 

growing vigorously.  It will require continued investment and increasing 

agricultural inputs to sustain the advances made in the Green Revolution and to 

enable future increases in food production.     

4



AN AGRICULTURAL NECESSITY FOR FEEDING THE PLANET

 Even with the agricultural gains produced by the Green Revolution, too 

many people, mostly in developing nations, continue to grapple with hunger.  

“Hunger is the world’s number one health risk, killing more people in a year than 

AIDS, Malaria, and TB combined” (United Nations World Food Programme).  

According to the United Nations World Food Programme (WFP):   

“925 million people do not have enough to eat and 98 percent of them live 
in developing countries.  65 percent of the world's hungry live in only 
seven countries: India, China, the Democratic Republic of Congo, 
Bangladesh, Indonesia, Pakistan and Ethiopia” (United Nations WFP).  

 

Feeding a growing global population will perpetually challenge individuals and 

nations alike.  The population on Earth is expected to grow from roughly 7 billion 

present day inhabitants to over 9.1 billion by the year 2050, requiring a food 

production increase of 70 percent--“involving an additional quantity of nearly 1 

billion tonnes of cereals and 200 million tons of meat” (United Nations Food and 

Agriculture Organization, How to Feed the World 2050).  More frequent extreme 

weather events are expected as the global mean surface temperature continues 

to rise, resulting in more droughts, heat waves, floods, and severe storms.  

Additionally, a rising demand for farm land, an increase in affluence and 

consumption patterns, and increased demand for biofuels from a shared food 

stock will all be contributing factors to increasing food pressures.  

 Food shortages and distribution problems presently exist at distressing 

rates in pockets of hunger around the world.  The International Food Policy 

Research Institute releases an annual report on the global state of hunger.  The 
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2012 Global Hunger Index report (see Figure 2) identified 20 countries with 

“alarming, or extremely alarming” hunger levels, as described by: 

  
 Figure 2.  2012 Global Hunger Index (International Food and Policy Research Institute)

“The proportion of undernourished as a percentage of the population 
(reflects share of population with insufficient dietary energy intake); the 
prevalence of underweight in children under the age of five (indicating 
proportion of children suffering from low weight for their age); the under-
five mortality rate (partially reflects fatal synergy between inadequate 
dietary intake and unhealthy environments)” 
(INTL Food and Policy Research Institute, 2012 Global Hunger Index).

In 2009 the United Nations Food and Agriculture Programme convened the High 

Level Experts Forum in Rome, Italy to address the question of “How to Feed the 

World in 2050?”  Three main drivers for increased food pressure were identified 

as:  population growth, increased urbanization, and increasing incomes.  “In 

developing countries, 80 percent of the necessary production increases would 

come from increases in yields and cropping intensity and only 20 percent from 

expansion of arable land” (United Nations, How to Feed the World 2050).  The 
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Green Revolution has shown that it will require specialized seeds, adequate 

fertilizer, and adaptive pest control in order to meet global food demand.
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PESTICIDE OVERVIEW

 It is estimated that chemical insecticides preserve twenty percent of 

annual crop yield (Blacquiere et al., 2012), making them crucial for sustaining 

global food supplies.  EPA market estimates indicate $12.5 billion is spent on 

pesticides in the U.S., amounting to nearly one third of the roughly $40 billion 

dollar aggregate worldwide pesticide expenditure (see Table 1) (EPA Pesticide 

Industry Sales and Usage 2007).  “The use of synthetic pesticides in agriculture 

is the most widespread method for pest control, with farmers justifying this high 

cost by a direct dollar return ranging from $3 to $5 for every $1 spent on 

pesticides" (EPA.com Agricultural Pesticides).  
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Table 1.  2007 EPA Market Estimates for Pesticide Industry Sales and Usage (EPA.com)

Pesticides are formally defined as:
“Any toxic substance used to kill animals or plants that cause economic 
damage to crop or ornamental plants or are hazardous to the health of 
domestic animals or humans.  All pesticides interfere with normal 
metabolic processes in the pest organism and often are classified 
according to the type of organism they are intended to 
control” (Encyclopædia Britannica Online).  
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The term pesticide has many subcategories.  The common name for each may 

include the pest for which it is targeted (Briggs, 1992).  Pesticide categories 

include:  Acaricides, Algacides, Antibiotics, Avicides, Desiccants, Fungicides, 

Herbicides, Insecticides, Molluscicides, Nematocides, Piscicides, Plant 

Regulators, Repellents, Rodenticides, Sterilants, and sometimes wood 

preservatives.  

 Agrochemicals (which are synonymous with pesticides and plant-

protection products) are subdivided into three primary categories; herbicides, 

insecticides, and fungicides.  Herbicides comprise about 45-50% of world 

pesticide expenditure, followed by insecticides at 25-30%, then fungicides at 

20-25%.  Nematocides, rodenticides, and fumigants account for the remaining 

10% (Pollack, 2011) (see Figure 3).  In 2012 there exist over 900 “structurally 

diverse compounds” that act by roughly 100 mechanisms to control insects, 

weeds, and fungi (Casida, 2012).  In addition, genetically modified crops 

engineered with Bacillus thuringiensis (Bt) were introduced for the control of 

pests in 1995, introducing a new era of biological pest control (Casida, 2005).  All 

five major groups of insecticides, detailed briefly in the following pages, act as 

neurotoxins to insect pests (Walker, 2012).

 The history of insect pest control can be divided into three phases:  1) the 

first, the period before 1870, when natural pesticides were used; 2) the second 

period, from 1870-1945, characterized by the use of inorganic synthetic 

pesticides consisting of both natural materials and inorganic compounds; and 3) 

the contemporary period since 1945 when organic synthetic pesticides were first 
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synthesized (Zhang et al., 2011).  “Insect pest control has evolved from 

botanicals and inorganics, to chlorinated hydrocarbons, to organophosphorus 

compounds and methylcarbamates, then synthetic pyrethroids and most recently 

synthetic nicotinoids as the major classes” (Yamamoto and Casida, 1999, p. v).

 What is considered a safe pesticide changes with our scientific 

comprehension, public awareness, and perception of risk.  Some of the 

pesticides used prior to 1945, and sold with limited restriction, included:  lead 

arsenate, mercury salts and other organic mercury compounds, zinc arsenate, 

cyanide salts, nicotine, nitrocresol, and sodium chlorate--few, if any of which, are 

now considered safe (Stenersen, 2004).  At the time of its inception, DDT was 

the first efficient synthetic pesticide that possessed all the desirable properties for 

an insecticide in that era (Stenersen, 2004).  Unfortunately, many pesticides have 

proven to have unintended consequences for ecosystems and human health.  

The environmental movement was spurred by Rachel Carson’s Silent Spring, 

and her book’s investigation of DDT insecticide and its associated health and 

environmental consequences.  

 There is a level of risk analysis inherent with the use of all pesticides.  The 

goals of green chemistry are to produce pesticides which are safe, effective, and 

biodegradable with minimal environmental disruption (Casida, 2012).  

“Understanding and optimizing pesticidal activity requires knowledge of 
structure-activity relationships at the primary target site coupled with 
structure-biodegradability relationships at the organismal level. 
Substituents are introduced or replaced to enhance target fit and control 
rates of bioactivation or detoxification. As a result, pesticides are 
becoming more potent and selective and generally more complex in 
structure” (Casida, 2011, p. 2768). 
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The perfect pesticide--one that is completely non-toxic and non-disruptive to non-

target species, immune from pest resistance, and minimally persistent in 

ecosystems--is still in development.  Pesticides have been engineered to be 

safer to humans and ecosystems while also being less toxic and less persistent 

in nature, but continue to pose problems for non-target species.  

 “Pesticide-environment interactions are bidirectional.  The environment 

alters pesticides by metabolism and photo-degradation, and pesticides in turn 

change the environment through non-target or secondary effects”  (Casida, 2012, 

p. 487).  As our knowledge of insects, weeds, genetically modified crops, 

pesticides, and chemistry has advanced, we have gained the ability to create 

tailor-made compounds in order to protect our food supply, but have created a 

feedback loop in the process.  

 The discovery and application of new forms of crop protection induces a 

response in individual species and throughout ecosystems.  Insects and plants 

continually evolve and adapt to agrochemicals, and each generation of crop pest 

develops a greater resistance to the previously effective pesticide, until the 

chemical compounds in the insecticides and herbicides are no longer effective.  

New pesticide classes with different modes of action must then be developed to 

stay ahead of the pest resistance.   

 Before reviewing the specific properties of the newest major insecticide 

class, the neonicotinoids, a brief general discussion of the previous major 

insecticide groups is in order.  The following pages note the history, mode of 

action, and reasons for use and development in the major insecticide groups 
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used throughout history.  See Appendix Table 13 for a listing of some of the major 

pesticides used and their ecotoxicology.
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MAJOR PESTICIDE CLASSES OVER TIME

Botanical Pesticides 

 The first botanical pesticides included such naturally occurring compounds 

as nicotine, rotenone, and sabadilla (Silva-Aguayo).  Most botanical pesticides 

work by deterring insects rather than killing them directly.  Such compounds 

“inhibit the normal development of insects” by disrupting the metamorphosis of 

the insect, by creating a feeding deterrent which will cause the insect to stop 

feeding and starve, by repellant properties which serve to irritate the insect, or by 

confusing the insects so they cannot find the specific food source they seek 

(Silva-Aguayo).  2,500 plants in 247 families exhibit some sort of toxic property 

against insects (Silva-Aguayo).  

“It has been noted that the Romans first used plant extracts and powdered 
plant parts as insecticides.  There are reports that in 400 B.C. during 
Persian King Xerxes’ reign, the delousing procedure for children was with 
a powder obtained from the dry flowers of a plant known as pyrethrum 
(Tanacetum cinerariaefolium, Compositae). The first botanical insecticide, 
used as such, dates back to the XVII Century when it was shown that 
nicotine, obtained from tobacco leaves, would kill plum beetles” (Silva-
Aguayo).  

 Tobacco was introduced to Portugal and Spain from the Americas in 1859 

by the Indians.  It reached France and Italy where it was used mostly for smoking 

but “since the late seventeenth century has been used as an important 

insecticide or insect repellent” (Yamamoto and Casida, 1999).  Various organic 

insecticidal preparations such as ground tobacco, the Pyrethrum flower, and 

organic plant materials containing rotenone continued to be widely used in the 
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19th century before giving way to the next class of manufactured, inorganic 

pesticides (Gillis, 1993). 

 Nicotine is a “non-persistent contact insecticide and its mode of action 

consists in mimicking acetylcholine when binding to its receptor at the post-

synaptic membrane of the muscular union” (Silva Aguayo).

“The acetylcholinic receptor is a site of action of the postsynaptic 
membrane which reacts with acetylcholine and alters the membrane 
permeability. Nicotine activity causes the production of new nerve 
impulses which cause convulsions, and death” (Silva Aguayo).

 Xenobiotics.  The compounds that botanical pesticides are derived from 

can be considered organic pollutants, or xenobiotics, in the sense that a chemical 

that is normal to one organism may be foreign to another if the xenobiotic 

compound does not play a role in the organism’s normal biochemistry (Walker, 

2012).  These poisonous compounds evolved in plants as a defense against 

predators and insects.  Botanical pesticides such as pyrethrins, nicotine, and 

various mycotoxins are examples of naturally occurring xenobiotics (Walker, 

2012).  

 As plants have evolved compounds to protect themselves, the animals 

that feed off them have also evolved.  Some have referred to this evolutionary 

process as a “coevolutionary arms race,” and a form of “natural chemical 

warfare,” where certain grasses, for example, can synthesize secondary 

enzymes that are highly toxic to the animals that graze off them, thereby 

protecting this type of grass from grazing.  The grazing animals then develop 

detoxification enzymes to protect against the plant toxins (Walker, 2012, p. 9).    
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These naturally occurring xenobiotic compounds later provided the conceptual 

framework for synthesized neonicotinoids and pyrethrin pesticides (Walker, 

2012).   An important new class of insecticides, commonly known as 

neonicotinoids, are “synthetic copies or derivatives of the nicotine 

structure” (Silva-Aguayo).  A more in-depth focus on the neonicotinoid category 

will be provided later in this study, insofar as this is the core of the producer-

pollinator dilemma.    

Inorganic Pesticides

 While natural pesticides derived from plants were considered to be the 

first class of insecticides, they acted more as benign repellents than as actual 

insect killers.  Inorganic pesticides were more toxic and persistent due to their 

derivation from inorganic toxicants based on arsenic, copper, lead, mercury, 

sulfur, fluorine, and other compounds (Casida, 2012).  The most popular 

inorganic pesticides of the mid-19th century, Paris Green and London Purple, 

belonged to a group of compounds called “arsenicals” (Gillis, 1993).  These 

compounds would not be permitted for agricultural use today but at the time of 

their discovery, they proved more effective and popular than any other pesticide 

available.  One such inorganic insecticide, London Purple, was a byproduct of 

the aniline dye industry, and was composed largely of calcium arsenite (Gillis, 

1993).  Another arsenical was Paris Green, which was the first mass-produced 

insecticide:  
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“Paris Green--the common name for cupric acetoarsenite--is an emerald 
green powder containing 43% arsenic and was used from 1865 until the 
1940s.  It effectively controlled the Colorado potato beetle, chewing pests 
of cotton and many other crops, and mosquito larvae, with sustained U.S. 
use levels of 4,000,000 lb/yr.” (Casida, 2012, p. 487).   

 

 Non-target Species and Persistence.  The inorganic class of insecticides 

provided “partial to adequate” pest control, but were toxic to a variety of non-

target pests, and persistent in soils since metals are nonbiodegradable and don’t 

easily break down in nature.  Once the metals enter soils and sediments they 

tend to stay there for years in the surface layers (Casida, 2012; Walker, 2012).

Organochlorines

 Synthetic organic insecticides marked the third evolutionary stage in the 

battle with agricultural pests, following the botanical and inorganic classes of 

insecticides previously described.  Organochlorine pesticides were developed in 

the 1940’s and 1950’s following Paul Muller’s Nobel Prize-winning discovery of 

DDT’s insecticidal properties in 1939 (Walker, 2012).  This synthetic organic class 

of insecticides includes organochlorine insecticides, also referred to as 

“chlorinated hydrocarbons,” meaning insecticides containing at least one 

covalently bonded chlorine atom (Michigan.gov).  

   Aside from DDT, other notable organochlorine compounds derived and 

applied in this era include the following now heavily regulated or banned 

compounds: chlorinated cyclodiene insecticides (aldrin and dieldrin), and 

hexachlorocyclohexanes (HCHs) such as lindane (Walker, 2012), chlorinated 

benzene, chlorinated camphene, and chlorinated cyclodienes (Casida, 2012).  
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 These new compounds were far more potent insecticidal weapons than 

were the botanical and inorganic insecticide classes which preceded them.  

Organochlorines were often used as emulsifiable concentrates applied to crops 

or insects as sprays, as was a primary application of DDT, but organochlorines 

were also used as seed dressing (Walker, 2012). 

 Organochlorines acted as a nerve poison for insects, impairing the 

passage of Sodium and Potassium, and thereby action potential along nerves 

and across nerve synapses, since “the passage of an action potential along a 

nerve depends on the flow of Sodium and Potassium across the nerve 

membrane” (Walker, 2012, p. 132).  Despite being particularly effective with 

regard to mosquito control and malaria, DDT and other organochlorines created 

global controversy due to their toxic effects on non-target species such as birds, 

bees, and fish (Casida, 2012).  

 Bioaccumulation.  Organochlorines, and DDT in particular, provided a 

case study on the adverse environmental effects of pesticides in nature due to 

bioaccumulation.  DDT was transported by streams where it accumulated in 

lakes as a result of runoff and accumulation in sediments.  Research conducted 

at Lake Michigan in 1966 found bioaccumulation upward from the plant kingdom 

through the animal pyramid (Walker, 2012).  A key indicator species in the Lake 

Michigan region, the Herring Gull, a year-round resident, was found to have 

thinning egg shells directly attributable to DDT poisoning, causing the eggs to 

break and leading to reproductive failure (Walker, 2012).  The same effects of 

DDT poisoning were demonstrated in other fish-eating birds such as the bald 
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eagle, cormorant, and the peregrine falcon (Walker, 2012).  Mounting evidence 

indicting DDT as a biohazard led to a protracted legal battle in 1971 and 1972, 

pitting the U.S. EPA and the Environmental Defense Fund against the chemical 

industry.  After 9000 pages of testimony, 125 expert witnesses, and four to six 

billion pounds of DDT applied in the field, DDT was highly restricted or banned in 

the U.S. in 1973 (although it is still presently used in some developing nations) 

(Walker, 2012; Casida, 2012).   

Organophosphates

 In an effort to counter the detrimental effects of organochlorines, 

development of the next major class of insecticides focused on the need to make 

the pesticides less persistent in nature.  The discovery of the organophosphate 

insecticide class occurred during WWII in Germany as a serendipitous byproduct 

of nerve gas development (Organophosphate Fact Sheet).  Organophosphates 

(“OPs”) are organic esters of phosphorus acids which, because they are less 

stable than the organochlorines and more easily processed via chemical and 

biochemical agents, “are generally less stable than organochlorine 

insecticides...thus they tend to be relatively short-lived when free in the 

environment and the environmental hazards they present are largely associated 

with short-term (acute) toxicity” (Walker, 2012, p. 14).

 Of the more than 100,000 OPs that have been tested, only a little over 100 

of these have been found useful as commercial insecticides.  These include 

products such as Dursban, Lorsban (chlorpyrifos), Sumithion (fenitrothion), and 
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Actellic (pirimiphos-methyl).  The OPs have been found to have a variety of uses, 

including applications as herbicides and fungicides, as well as contact, systemic, 

and fumigant insecticides (Organophosphate Fact Sheet).  

 Mode of Action.  Insecticides are developed to act at a particular receptor 

or “site of action.”  The mode of action, (or molecular mechanism by which a 

pharmacological substance produces an effect on an organism) of 

organophosphates differs from the organochlorine class.  Organophosphate 

insecticides were designed to act as nerve poisons by inhibiting the enzyme 

acetylcholinesterase (AChE) (Walker, 2012) leading to tetanus, a condition where 

muscles remain in a fixed state, unable to contract or relax in response to nerve 

stimulation (Walker, 2012).  Organochlorines inhibited nerves of insects 

differently--by acting on the sodium channel (Na channel) or the chlorine channel 

(GABA receptor) resulting in tremors, twitching, and convulsions (Walker, 2012).  

Interestingly, all five major classes of insecticides act as nerve agents.  See 

Appendix Figure 16 for a diagram depicting how the most widespread 

insecticides disrupt neural transmissions.

 Organophosphates can be formulated into granules for gradual release as 

a soil treatment, they may also be applied as seed dressings, or, since they are 

water soluble, they can act as a systemic pesticide when reaching high enough 

concentrations in the plant to poison insects (Walker, 2012).  Insecticides 

become systemic once they are absorbed and translocated by plants, often from 

a seed dressing but sometimes from root drenching.
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Carbamates

 The carbamate class was introduced in the 1950‘s after further research 

into the anticholinesterase action mechanism of organophosphates.  Both 

organophosphates and carbamates utilize the same mode of action (illustrated in 

Appendix Figure 16), by exerting an anticholinesterase action on the nervous 

system of insects, acting at the nerve synapses (Walker, 2012).  Carbaryl, which 

goes by the brand name Sevin, was put on the market in 1956 as the first 

successful carbamate insecticide (Carbamate Fact Sheet).   “Carbaryl is one of 

the most widely used broad-spectrum insecticides in agriculture, professional turf 

management and ornamental production, and residential pet, lawn, and garden 

markets” (EPA CARBARYL IRED FACTS).  Carbamates are derivatives of 

carbamic acid, and are usually solids but may be liquids.  They are also similar to 

organophosphates in that they are readily degradable by chemical and 

biochemical agents, therefore posing fewer risks of persistence.  Carbamates are 

commonly used as surface sprays or baits in the control of household pests and 

have proved useful against insects that have developed resistance to 

organophosphates (Carbamate Fact Sheet).  Some carbamates, such as 

aldicarb and carbofuran, can be used as systemic pesticides (Walker, 2012).

 Cumulative Effects by Mode of Action.  The EPA’s review of the cumulative 

effects of carbamate insecticides originated in 1996.  Instead of looking at 

insecticides individually, the EPA began looking at all insecticides which they 

categorized as  sharing a “common mechanism of toxicity.”  The objective of this 

review was to determine the aggregate occupational and ecological risk levels 
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(such as being very highly toxic on an acute exposure basis to honey bees, 

estuarine/marine invertebrates, and other aquatic animals, including Atlantic 

salmon).  With respect to the carbamate class, the EPA ultimately determined 

that: 

“Although all uses may not meet the current safety standard and some 
uses may pose unreasonable risks to human health and the environment, 
these effects can be mitigated by the measures identified in the Carbaryl 
interim reregistration eligibility decision.” (EPA Interim Risk Assessment for 
Carbaryl).

For pesticide classes it is important to consider not just the effects of one specific 

compound, but rather the cumulative effects of all pesticides which use that 

particular mode of action, since all such compounds will have “aggregate effects 

and risks” once applied in the field.

Synthetic Pyrethroids

 Synthetic pyrethroid insecticides were derived from the naturally occurring 

xenobiotic compounds, known as pyrethrum or pyrethrins, found in the 

Chrysanthemum plant species (Walker, 2012).  The insecticidal properties of 

pyrethrins are derived from ketoalcoholic esters of chrysanthemic and pyrethroic 

acids which are strongly lipophilic and rapidly penetrate many insects, paralyzing 

their nervous systems (Beyond Pesticides Online Resource).  The synthetic 

pyrethroid Permethrin was introduced in 1973; there are currently over 30 

pyrethroids on the market (Krieger, 2001).  The mode of action for synthetic 

pyrethroids is the same as the organochlorine insecticides, acting as a 
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neurotoxin to impair the passage of action potential along nerves and across 

nerve synapses at the sodium channel (Walker, 2012).   

 Synthetic pyrethroids are to be preferred over organochlorine insecticides 

because they have been demonstrated to be less toxic to birds and mammals 

(EPA Online, Regulating pesticides), and “are readily biodegradable and have 

short biological half-lives,” (Walker, 2012, p. 16), breaking down in a matter of 

minutes or hours (Texas A&M Pyrethroids).  The photo-stability of synthetic 

pyrethroids has been improved over time in the second generation of this 

insecticide class, making them more stable and effective insecticides, though 

differing vastly on the molecular level from the original pyrethroid compounds 

from which they were synthesized (Texas A&M Pyrethroids).  Synthetic 

pyrethroids are used to help control West Nile virus when they are mixed with 

water and oil and applied in an ultra low-volume spray to kill mosquitoes (Illinois 

Dept. of Public Health).  They are also used to control other insect vectors of 

disease such as tsetse flies in parts of Africa (Walker, 2012).  Despite their 

benefits, however, pyrethroids are solids of very low water solubility that present 

some of the same problems of environmental persistence found with DDT.  

Synthetic pyrethroids are highly toxic to aquatic organisms and can bind to soils 

and sediments (Walker, 2012).  The first generation of synthetic pyrethroids was 

produced by chemists following WWII when the insecticide Allethrin was 

introduced in 1949 (Texas A&M Pyrethroids).  There has been some concern 

over pyrethroids being an endocrine disruptor since they contain manmade 
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xenoestrogens that can increase the amount of estrogen in the body, causing an 

increased cancer risk in humans (Beyond Pesticides Online).  
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RESISTANCE AND CROSS-RESISTANCE

 Insects and weeds have steadily developed resistance to the various 

plant-protection products used and their respective modes of action:   

“Only a few years after DDT was introduced, resistant insect strains were 
selected for many pests often with cross-resistance to some pyrethroids 
due to a common low-sensitivity modified binding site in the voltage-
activated sodium channel.  Even the organophosphates and methyl- 
carbamates became ineffective for some pests as resistant strains were 
selected with a less-sensitive acetylcholinesterase and enhanced 
detoxification systems” (Tomizawa and Casida, 2009, p. 261).

Insects may be resistant to more than one pesticide, and often to insecticides in 

more than one class.  When insects developed resistance to a class of 

insecticides it became likely that resistance to other insecticides (in other 

classes) with the same mode of action would occur (Krieger, 2001).  “In a strain 

of insects, such resistance due to the same mechanism is termed cross-

resistance, in contrast to multiple resistance, which is the resistance of a strain to 

different compounds and resulting from different mechanisms” (Krieger, 2001, p. 

101).   “When resistance to more than one insecticide is achieved by a single 

mechanism, this is true cross resistance, but when several resistance 

mechanisms are involved this is called multiple resistance” (Walker, 2012, p. 

248). 

 Insects have evolved three main mechanisms of resistance.  One method 

is by increasing detoxification (which increases the rate at which the insecticide is  

broken down).  A second method used is to decrease sensitivity of the target site 

(as the result of a mutation and selection of the target protein).  “Resistance 

Mechanisms are the consequences of genetic differences between susceptible 
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and resistant strains of the same pest species.  Most commonly, a resistant strain 

possesses a highly active form (or forms) of a detoxifying enzyme or one or more 

genes encoding for an insensitive form of the target site” (Walker, 2012, p. 249).  

The third mechanism is behavioral, which includes increased sensitivity and 

avoidance after low-level dosage (Walker, 2012).  

Pesticide Treadmill  

 Once one class of insect pest control has exhausted its effectiveness as a 

result of the pests’ evolved resistance, then either greater quantities of the 

pesticide must be applied, or a new plant-protection product must be used, or a 

combination of the two must be employed.  Charles Benbrook, a research 

professor for Washington State University’s Center for Sustainable Agriculture 

and Natural Resources, and an advocate for reduced pesticide use, has referred 

to this cycle as “a chemical treadmill,” in which  new herbicides are needed for 

cross-resistant super weeds, genetically engineered seeds with Bacillus 

thuringiensis (Bt) are required to be able to tolerate the broad-spectrum 

herbicides, and different combinations of insecticides with systemic properties 

and novel molecular mechanisms of toxicity are required in order to keep the 

multi-resistant pests from destroying crops (Benbrook Interview) (NY Times 

Articles).  

 According to Benbrook’s 2012 paper: “Impacts of genetically engineered 

crops on pesticide use in the U.S. - the first 16 years,” the use of Bt in genetically 

engineered crops led to a 28% reduction in insecticide use from 1996-2011.  This 
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is due to more herbicide use, 527 million pounds more in the U.S. in those 16 

years examined, and mostly coming in the form of the world’s #1 selling 

agrochemical, Monsanto’s broad-spectrum glyphosate herbicide, Round-Up.  

Benbrook determined that ultimately “pesticide use on each acre planted with a 

genetically engineered crop was about 20 percent higher than on acres not 

planted with genetically engineered crops” (New York Times, Superweeds), and 

there are now over 26 “superweeds” and counting, for which Round-up has lost 

its effectiveness (Benbrook Interview).  Insects are also becoming Bt resistant, 

which will result in the eventual use of more insecticides along with new 

combinations of insecticides and herbicides in order to keep up with the pests, or 

risk losing the crops (Benbrook Interview).  “The expanding importance of crops 

expressing Bt endotoxin encourages neonicotinoid use, because the types of 

pests not controlled by the endotoxin are often those highly sensitive to 

neonicotinoids”  (Casida, 2005, p. 250).

 In order to counter insect resistance, a new class of compounds was 

required that acted on agricultural pests with a different mode of action than the 

previous classes.  The new pesticide would also need to be safer to non-target 

species.  “Future insecticides, as seen from the retreat of chlorinated 

hydrocarbons from the primary seat, are required to have not only high 

insecticidal potential, but also low toxicity to vertebrates and no damage to the 

environment” (Yamamoto and Casida, 1999, p. 91).  The synthetic nicotinoid, or 

neonicotinoid pesticide class, was developed for these very reasons.  
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PESTICIDE SUMMARY AS OF 1990 (Pre-Neonicotinoids)

 To briefly summarize, insecticides have continually transitioned from the 

botanical and inorganic classes before yielding to the organochlorines, which 

eventually shifted to organophosphates, carbamates, and synthetic pyrethroids.  

Each insecticide class had its relative merits, such as increased insecticidal 

properties, selectivity, and lessened persistence in ecosystems, as well as their 

respective drawbacks, most of which came in regard to non-target species 

toxicity, as well as ecological and human-health-related risks, and pests’ evolved 

resistance to the harmful compounds.  “In 1992, global organophosphate sales 

were US $2,880 million out of a total insecticide market of US $7,400 million, 

which made OPs the most widely used group of insecticides, worth nearly 40% of 

the market - at that time” (Organophosphate Fact Sheet).  “In the cotton growing 

industry where 22.5% of all insecticide use occurs, synthetic pyrethroid use 

overtook organophosphate use in the early 1990s.  By 1994, the synthetic 

pyrethroids accounted for 42.5% of the cotton insecticide market, with OP 

products still approaching 40%” (Organophosphate Fact Sheet).  This is the 

pesticide snapshot before the neonicotinoids hit the market, where they quickly 

came to dominate the global insecticide market (see Figures 3 and 4).

Figure 3. 1991 Insecticide Market by Mode of Action (Yamamoto and Casida, 1999)
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On the other hand, the turnover figures for seed treatment
are very impressive. A so-called niche market of h155 million
for insecticidal seed treatment in 1990 was dominated by
carbamates (77.4%). It has been developed to a h957 million
market, with a share for neonicotinoid insecticides of 80% in
2008 (Figure 2).
Structural Diversity. Seven neonicotinoid insecticides are

currently on the market: three cyclic compounds, that is,
neonicotinoids with five-membered ring systems such as
imidacloprid7,8 and thiacloprid9 (Bayer CropScience) and the
six-membered neonicotinoid thiamethoxam (Syngenta),10 and
four noncyclic compounds, that is, nitenpyram (Sumitomo
Chemical Takeda Agro Co.),11 acetamiprid (Nippon Soda),12

clothianidin (Sumitomo Chemical Takeda Agro Co./Bayer
CropScience),13 and dinotefuran (Mitsui Chemicals).14

Considering their pharmacophore moieties [-N—C(E)dX
—Y], neonicotinoid insecticides can be classified as N-nitrogua-
nidines (imidacloprid, thiamethoxam, clothianidin, and dinotefuran),
nitromethylenes (nitenpyram), andN-cyanoamidines (acetamiprid

and thiacloprid).15 The overall chemical structure for both ring
systems and noncyclic commercial neonicotinoids consists of
different segments (Figure 3):16,17 (i) for five- and six-membered
ring systems the bridging fragment [-CH2—Z—(CH2)n- (n =
0; Z = CH2; and n = 1; Z = O, NMe] and for noncyclic
neonicotinoids the separate substituents (R1, R2); (ii) the
hetarylmethyl or heterocyclylmethyl group R [R = 6-chloro-
pyrid-3-ylmethyl (CPM), 2-chloro-1,3-thiazol-5-ylmethyl
(CTM), and (()-6-tetrahydrofur-3-ylmethyl (TFM)]; (iii) the
functional group [dX—Y] (e.g., [dN—NO2], [dN—CN] and
[dCH—NO2]) as part of the different pharmacophore types [-
N—C(E)dX—Y].
In comparison to the corresponding ring systems

(imidacloprid, thiacloprid, and thiamethoxam), the noncyclic
neonicotinoids show similar broad insecticidal activity by form-
ing a so-called quasi-cyclic conformation when binding to the
insect nAChRs.18 Therefore, the four commercial noncyclic
neonicotinoids (nitenpyram, acetamiprid, clothianidin, and
dinotefuran) can be regarded as examples, if retrosynthetic
considerations are carried out.19 Figure 4 shows the superposi-
tion of van der Waals volumes of ring systems (A) and noncyclic
neonicotinoids (B).
On the other hand, the partial ring cleavage of the six-

membered ring system thiamethoxam into the noncyclic clothia-
nidin (Figure 4; transformation of c into f) in insect and plant
tissues has recently been demonstrated and discussed.20,21

During the past years, expansion of neonicotinoid insecticides
has been driven by growth of established products such as
imidacloprid as well as newer entrants such as thiamethoxam
and clothianidin. Imidacloprid currently accounts for approxi-
mately 41.5% of the whole neonicotinoid market (in 2009: U.S.
$2632 million). At U.S. $1091 million imidacloprid is the largest
selling insecticide in the world; its sales value growth is also being
affected by generic material. Thiamethoxam is now the second
biggest neonicotinoid (in 2009: U.S. $627 million) in terms of
sales, and clothianidin has grown rapidly to U.S. $439 million. In
2009 the sales of other neonicotinoids such as acetamiprid (U.S.
$276 million), thiacloprid (U.S. $112 million), dinotefuran (U.S.
$79 million), and nitenpyram (U.S. $8 million) are estimated to
have grown as well.
In total, N-nitroguanidines are the most prominent subclass;

they account for around 85% of the neonicotinoid insecticide
market (in 2009: U.S. $2236 million).
Physicochemical Properties. The physicochemical proper-

ties of the five- and six-membered ring systems and noncyclic
neonicotinoids played an important role in their successful

Figure 1. Development of insecticide classes in modern crop protec-
tion, 1990-2008, expressed as percentage of total.

Figure 2. Development of insecticide classes in seed treatment, 1990-
2008, expressed as percentage of total.

Figure 3. Commercial neonicotinoid insecticides: ring systems (a-c)
versus noncyclic neonicotinoids (d-g).

Figure 4.  Development of insecticide classes in modern crop protection, 
1990-2008, expressed as percentage of total (Jeschke et al., 2011)

Prior to the 1991 launch of the neonicotinoid imidacloprid, the nearly 8-billion-

dollar agrochemical market was dominated by organophosphates (OPs) (43%), 

pyrethroids (18%), and carbamates (16%).  By 2008, neonicotinoids had gained 

nearly a quarter share of a slightly decreased total market of 6.3 billion dollars, 

mainly at the expense of OPs (13.6%) and carbamates (10.8%) (Jeschke, 2011) 

(see Figure 4).  The story behind the development and rapid ascent of the 

neonicotinoids to become the world’s number one selling class of insecticide, and 

the only new major insecticide class developed in the past four decades, is 

described next. 
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DEVELOPMENT AND SPREAD OF NEONICOTINOIDS

A New Mode of Action Mimicking a Natural Compound

 History.  The first neonicotinoid compound, imidacloprid, was developed in 

1984 by Nihon Tokushu Noyaku (now Nippon Bayer), drawing upon two previous 

generations of chemical research (Yamamoto and Casida, 1999).  Imidacloprid is 

a result of research on nicotine, which, for more than 200 years, was the principal 

botanical insecticide for controlling sucking insect pests on plants (Casida, 2011).  

Throughout the 1970s, researchers at Shell Development Company’s California 

labs conducted a screening and optimization program for new crop-protection 

products based on nicotine’s insecticidal properties.  In 1977 this program 

resulted in the patent of imidacloprid’s lead compound, nithiazine (Casida, 2005; 

Yamamoto and Casida 1999; Krieger, 2001) (see Figure 5).  
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Figure 1 Nine neonicotinoid insecticides and four nicotinoids. The neonicotinoids
are nitromethylenes (C==CHNO2), nitroguanidines (C==NNO2), and cyanoamidines
(C==NCN). Compounds with 6-chloro-3-pyridinylmethyl, 2-chloro-5-thiazolylmethyl,
and 3-tetrahydrofuranmethyl moieties are referred to as chloropyridinyls (or chloroni-
cotinyls), chlorothiazolyls (or thianicotinyls), and tefuryl, respectively. The nicotinoids
are naturally occurring [(−)-nicotine and (−)-epibatidine] and synthetics (ABT-594
and desnitroimidacloprid).
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Figure 5.  Synthesis of Nithiazine (L), and structural similarity to Nicotine (R) 

(Yamamoto and Casida, 1999; Casida, 2005)

 Nithiazine is therefore the first synthesized neonicotinoid structure, and 

the compound from which imidacloprid and all other neonicotinoid insecticides 

would be derived.  The Shell research team revealed that nicotine, nithiazine, 

and imidacloprid all interact with the same site, the ACh recognition site of the 

nicotonic receptor or nAChR (Yamamoto and Casida, 1999) (see Figure 12).  

“Shell’s work on nithiazine revealed a new structural class of insecticides and 
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also a new mode of action” (Yamamoto and Casida, 1999, p. 85).  “Biological 

evaluation revealed a toxicity index of 1700 on corn earworm, an astounding 

1000-fold increase in whole organism activity” (Yamamoto and Casida, 1999, p. 

79).  However, despite demonstrating “potency, selectivity, and systemic 

properties,” nithiazine was not commercially successful due to its poor field 

persistence, and its lack of photo-stability in particular (Yamamoto and Casida, 

1999, p. 81).  Shell Labs had engineered a new compound with excellent 

insecticidal properties, but nithiazine’s photo-instability severely limited its 

commercial potential (though a highly effective commercial fly trap was produced 

for fly abatement in livestock facilities) (Casida, 2005).  Shell made many 

attempts to improve on nithiazine but, “in spite of the best intentions, plans, and 

syntheses of more than 1000 compounds, no more interesting ring systems or 

effective nitromethylene group replacements would be found” (Yamamoto and 

Casida, 1999, p. 80). 

 Imidacloprid would eventually be synthesized based on nithiazine, but only 

after chemical alterations applied in another lab operated by Bayer.  Fourteen 

years after Professor Henry Feuer of Purdue University began his investigation of 

nitroalkyl heterocycles (Nitromethylene Compounds) in 1970 (Yamamoto and 

Casida, 1999), leading to Shell Lab’s synthesis of nithiazine, it would be Bayer 

that made the ultimate breakthrough with imidacloprid.  As a starting point for his 

investigation, Professor Shinzo Kagabu, the lead Bayer scientist, who received 

the 2010 American Chemical Society International Award for Research in 

Agrochemicals in recognition of his discovery of imidacloprid (IMI) and 
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thiacloprid, explains (Utrecht University):  “Shell’s new insecticide nithiazine 

caught our attention because it acts at the same receptor as nicotine even 

though there is no apparent structural similarity between them...but more 

surprisingly and interesting for us was that nithiazine is active against insects but 

of low toxicity to mammals” (Yamamoto and Casida, 1999, p. 91).  Dr. Kagabu 

and his team at Bayer embarked on an optimization program for nithiazine in 

which over 2000 compounds were prepared, screened, and assessed based on 

the various structure-activity relationships which resulted.  They found dozens of 

compounds possessing high insecticidal activity in lab tests.  Out of these 

compounds, 10 were selected for field testing, and of these, imidacloprid was 

selected for commercial development based on positive field results (Yamamoto 

and Casida, 1999).  Bayer scientists would combine nithiazine with the unique (6-

chloro-3-pyridinyl) methyl N-substituent when they created a neonicotinoid 

prototype, which became the intermediate compound to imidacloprid (Yamamoto 

and Casida, 1999) (see Figure 6). 

                                                                        

          

  
 Figure 6.  Synthesis of Nithiazine, Intermediate Prototype, then Imidacloprid (Yamamoto and Casida, 1999)
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The Bayer scientists had created a novel new class of insecticides which met a 

“strong market demand for the new broad-spectrum insecticides with new modes 

of action and favorable toxicological and environmental properties” and after 

much investigation into the structure-activity relationship of this new class of 

compounds, finally figured out how to incorporate the desired photo-stability 

(Yamamoto and Casida, 1999, p. 110).  

 Chloropyridin Moiety.  Nicotine, nithiazine, and imidacloprid all worked at 

the same action site because “nicotine and its analogues have a basic nitrogen 

that even at physiological pH picks up a proton to form a positive ion, whereas 

neonicotinoids contain a chlorinated pyridyl group, or another heterocyclic group, 

that withdraws electrons from an imido group and thus makes it partially positive 

without being protonized” (Stenersen, 2004, p. 134).  “By introducing a 3-

pyridylmethyl group as a substituent on the heterocyclic nitromethylenes, the 

insecticidal activity increased dramatically” (Yamamoto and Casida, 1999, p. 

177).  This breakthrough by Bayer is referred to as the “chloropyridin moiety,” and 

it proved to be the key for the market launch of the neonicotinoid insecticide class  

(Yamamoto and Casida, 1999).

 The neonicotinoids featured a new and distinct mode of action compared 

to other insecticides that were on the market.  “In insects, the nicotonic receptor 

(nAChR) is present only in the central nervous system.  Imidacloprid, once it has 

entered the body (by sucking or injection) is easily accessible to the target site 

while nicotine is not” (Yamamoto and Casida, 1999, p. 21).  The net result is that 

imidacloprid, and other neonicotinoids, easily penetrate the nervous system of 
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insects (but not mammals) and bind selectively to the nicotonic acetylcholine 

receptors (Stenerson, 2004).  “The superiority of imidacloprid resulted from 

nonionization, higher hydrophobicity, and thus penetrability into the target site,” 

and the factors affecting insecticidal and selective action for imidacloprid could 

be summed up “as the binding affinity to the nAChR, hydrophobicity (allowing for 

great insect penetration), and metabolism (or lack thereof in mammals and 

vertebrates)” (Yamamoto and Casida, 1999, p. 21). 

 In 1985 Bayer sparked a wave of patent activity in the agricultural 

chemical research industry with its publication of the first patent applications for 

imidacloprid.  Novartis/Ciba/Syngenta, Takeda, Nippon Soda, and others soon 

entered this new research area, creating patents for thiacloprid (1985), 

nitenpyram (1988), acetamiprid (1989), clothianidin (1989), thiamethoxam 

(1992), and dinotefuran (1994) (Yamamoto and Casida, 1999; Tomizawa and 

Casida, 2005).  Pharmaceutical firms realized that unique neonicotinoids could 

be made based on molecular substitutions, resulting in new insecticides with 

different properties (see Figure 7).  

Figure 7. Structural Elements of Neonicotinoids (Yamamoto and Casida, 1999)
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“The new chemistry showed a relatively broad variability and it is remarkable that 

the chloropyridine moiety (of the heterocyclic group) can be replaced by other 

aromatic and even saturated heterocyclic systems” (Yamamoto and Casida, 

1999, p. 110).  After further field testing to verify safety, imidacloprid was brought 

to market in 1991 by Bayer.  Two other neonicotinoids soon followed when 

Takeda Pharmacueticals began selling nitenpyram in 1995 and Nippon Soda’s 

acetamiprid entered the market in 1996 (Yamamoto and Casida, 1999).

Neonicotinoid Types

 The versatility and market demand for neonicotinoids led agrochemical 

companies to further investigate and expand the new market for neonicotinoid 

compounds and plant-protection products, resulting in seven presently available 

commercial neonicotinoids, six of which are commonly used on plants (Xerces 

Society Online Resource) (see Figure 9 and Table 2).  

 Generational Neonicotinoid Distinctions/Subclasses.  First generation 

neonicotinoids:  imidacloprid, thiacloprid, nitenpyram, and acetamiprid all 

demonstrated the “chloropyridin moiety,” which referred to the heterocyclic group 

of the neonicotinoid structure and were developed between 1984 and 1989 

(Yamamoto and Casida, 1999; Krieger, 2001) (see Figure 7 and Table 4).  Bayer 

proposed the widely adopted term “chloronicotinyl” to describe this subclass of 

neonicotinoids (Yamamoto and Casida, 1999).
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Table 2.  Neonicotinoid Heterocyclic Subclasses (Yamamoto and Casida, 1999)

 A second generation of neonicotinoids including clothianidin (TI-435) and 

thiamethoxam (CGA 293’343) were subsequently developed between 1989 and 

1992, but instead of the chloropyridin moiety, this neonicotinoid subclass featured 

a “chlorothiazolyl moiety” on the heterocyclic group (Krieger, 2001) (Agrow online 

resource).  “Thianicotinyl” compounds is the name for this subclass (Maienfisch 

et al., 2001).  A third subclass was discovered when it was found that the 

chloropyridine or chlorothiazole rings could be replaced with (±)-tetrahydro-3-

furylmethyl, referred to as the “furnanicotinyl moiety,” resulting in Mitsui 

Chemicals 1994 synthesis of dinotefuran using acetylcholine as the lead 

compound (Wakita et al., 2003) (see Figure 9). 

 Structural Neonicotinoid Classification.   Much more would be learned 

about the structure-activity relationships as various neonicotinoid research and 

optimization programs advanced.  Pharmaceutical and agrochemical researchers 

discovered that different structural elements of neonicotinoids evoked a range of 

widely variable biological and chemical properties.  Neonicotinoid activity could 
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be manipulated by modifying and making substitutions to the “pharmacophore” 

structure as well as the heterocyclic group (see Figures 7, 8, 9, and Table 3). The 

second generation neonicotinoid, thiamethoxam, which was first registered for 

use in New Zealand in 1997, illustrates the extent to which structural 

modifications of both the heterocycle and pharmocophore impact a neonicotinoid 

compound and its potential uses (see Figure 8):  
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Figure 4. Optimisation of 4-nitroimino-
1,3,5-oxadiazinane lead structure 9.

Figure 5. Syntheses of thiamethoxam 4.
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Figure 8.  Substitutions leading to 2nd Generation Neonicotinoid Thiamethoxam 

(Maienfisch et al., 2001)

“A series of structural modifications on this lead structure revealed that 
replacement of the 6-chloro-3-pyridyl group by a 2-chloro-5-thiazolyl 
moiety resulted in a strong increase of activity against chewing insects, 
whereas the introduction of a methyl group as pharmacophore substituent 
increased activity against sucking pests. The combination of these two 
favorable modifications led to thiamethoxam” (Maienfisch et. al, 2001, p. 
907).

The pharmacophore has a dramatic effect on the insecticidal activity, and is 

responsible for some of the specific properties “such as photolytical stability, 

degradation in soil, metabolism in plants, toxicity to bees and 

beneficials” (Yamamoto and Casida, 1999, p. 179).  For instance, the other 

36



second-generation neonicotinoid, clothianidin, with its non-cyclic pharmacophore 

structure, “has longer residual activity and less water solubility than other 

neonicotinoids, such as thiamethoxam which decreases the potential risk of 

leaching in the soil profile and also means it has superior rain-fastness along with 

faster movement within the leaf’s tissue” (Clutch FAQ) (See Appendix Figure 17).  

 In addition, the pharmacophore group is responsible for physiological 

reactions that “induce the expression of specific functional proteins involved in 

various stress defense mechanisms of the plant allowing it to better cope under 

tough growing conditions, such as: drought; low pH; high soil salinity; free 

radicals from UV radiation; heat stress leading to protein degradation; toxic levels 

of aluminum; wounding from pests, wind, hail, etc., and; virus attack (Agropages 

Neonicotinoid Story).

Table 3.  Neonicotinoid Pharmacophore Subclasses (Yamamoto and Casida, 1999)

Overall, N-nitroguanidines (imidacloprid, thiamethoxam, clothianidin, and 

dinotefuran) are the most commonly featured pharmacophore subclass, as they 

account for approximately 85% all neonicotinoid insecticide sales (Jeschke, 

2011).  It should be noted that, based on their pharmacophore-induced 
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physiochemical properties, nitroguanidines are considered acutely toxic to honey 

bees, whereas cyanoamidines (acetampiprid and thiacloprid) are considered 

much less so, and nitromethylenes, of which nitenpyram is the sole 

representative, are not commonly used in agriculture, but more so in flea control 

for pets and livestock (PAN Online Resource, Xerces Society Online Resource; 

Agropages).  A further structural distinction in regard to pharmacophore type is 

based on whether a neonicotinoid pharmacophore possesses a “ring system” 

such as imidacloprid, thiacloprid, thiamethoxam, or if it is “non-cyclic,” as is the 

case with nitenpyram, acetamiprid, clothianidin, and dinotefuran (Jeschke, 2011) 

(see Table 3 and Figure 9). 
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Figure 1. Nenicotinoids 3–8 and 10, and their lead compounds 1, 2 and 9.

1-(3-furylmethyl)-2-(nitroimino)imidazolidine (18d)
and (±)-2-nitroimino-1-(tetrahydrofurfuryl)imida-
zolidine (18e) through 2-nitroimino-1-(1-propenyl)-
imidazolidine derivatives (14), (15a), (15b), (15c)
and (15e) from 2-(nitroimino)imidazolidine (13),20

through ethylenediamine derivatives (16a), (16d)
and (16e) from ethylenediamine21 and 2-methyl-
1-nitroisothiourea (17),22 (±)-2-nitromethylene-1-
(tetrahydro-3-furylmethyl)imidazolidine (19a), 1-(3-
furylmethyl)-2-(nitromethylene)imidazolidine (19d),
(±)-2-nitromethylene-1-(tetrahydrofurfuryl)imida-
zolidine (19e),23 and (±)-(tetrahydro-3-furyl)methyl
derivatives (23),24 (24),24,25 (25)5 and (26),26 and var-
ious nitroguanidines (see Fig 6)24,27 were based on
the indicated published methods. The other synthetic
methods for selected compounds mentioned in this
article are described below.

2.2.1 1-(3-Hydroxypropyl)-2-(nitromethylene)
imidazolidine (12a)
3-(2-Aminoethylamino)propanol (1.00 g, 8.61 mmol)
and 1,1-bis(methylthio)-2-nitroethylene (1.42 g,
8.59 mmol) in acetonitrile (15 ml) were refluxed for
1 h. After the mixture had cooled to room tempera-
ture, the resulting white solid was collected, washed
with acetone (20 ml) and then dried; yield: 1.29 g
(80%); mp 118.5–119.5 ◦C; Rf (silica gel TLC, ace-
tone): 0.3, 1H NMR (CDCl3) δ 1.64 (quintet, 2H,
J = 6.6 Hz), 3.22 (t, 2H, J = 6.6 Hz), 3.42 (t, 2H,
J = 6.6 Hz), 3.59 (s, 4H), 4.57 (bs, 1H), 6.58 (s, 1H),
8.74 (bs, 1H); IR (KBr): 3337, 1709, 1584, 1390,
1276, 1117 cm−1.

In a similar manner, 11a was prepared using 2-(2-
aminoethylamino)ethanol as a starting material instead
of 3-(2-aminoethylamino)propanol.

2.2.2 1-(3-Methoxypropyl)-2-(nitromethylene)
imidazolidine (12b)
Sodium hydroxide (0.80 g, 20 mmol), 12a (2.00 g,
10.7 mmol) and 98% dimethyl sulfate (1.40 g,
10.8 mmol) in water (15 ml) was stirred at 80 ◦C for
8 h. The reaction mixture was extracted with chloro-
form (2 × 100 ml), dried over anhydrous magnesium
sulfate and the solvent evaporated. The residue was
purified by column chromatography using chloroform
+ methanol (10 + 1 by volume) as eluent to give an oil;
yield: 110 mg (5%); Rf (silica gel TLC, chloroform +
methanol, 10 + 1 by volume): 0.4; 1H NMR (CDCl3)
delta 1.82 (quintet, 2H, J = 6.6 Hz), 3.27 (t, 2H,
J = 6.6 Hz), 3.34 (s, 3H), 3.38 (t, 2H, J = 6.6 Hz),
3.64–3.69 (m, 2H), 3.76–3.80 (m, 2H), 6.60 (s, 1H),
8.65 (bs, 1H); IR (neat) 3355, 1582, 1431, 1384,
1233 cm−1.

Compounds 11b–e and 12c–e were obtained by a
similar method using the corresponding alkyl halide,
acyl halide and 11a.

2.2.3 1,5-Dimethyl-2-nitroimino-hexahydro-
1,3,5-triazine (21)
To a stirred solution of nitroguanidine (10.0 g,
96.2 mmol) in water (40 ml) at room temperature
was added methylamine (11.2 g, 145 mmol, as 40%
solution in water) and the mixture stirred for
15 h. After filtration, the residual solid was washed
with water (30 ml). This wet solid 20 (9.80 g),
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Figure 9.  The 3 Generations of Neonicotinoids and their Lead Compounds (Wakida et al., 2003)
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Figure 1. Nenicotinoids 3–8 and 10, and their lead compounds 1, 2 and 9.

1-(3-furylmethyl)-2-(nitroimino)imidazolidine (18d)
and (±)-2-nitroimino-1-(tetrahydrofurfuryl)imida-
zolidine (18e) through 2-nitroimino-1-(1-propenyl)-
imidazolidine derivatives (14), (15a), (15b), (15c)
and (15e) from 2-(nitroimino)imidazolidine (13),20

through ethylenediamine derivatives (16a), (16d)
and (16e) from ethylenediamine21 and 2-methyl-
1-nitroisothiourea (17),22 (±)-2-nitromethylene-1-
(tetrahydro-3-furylmethyl)imidazolidine (19a), 1-(3-
furylmethyl)-2-(nitromethylene)imidazolidine (19d),
(±)-2-nitromethylene-1-(tetrahydrofurfuryl)imida-
zolidine (19e),23 and (±)-(tetrahydro-3-furyl)methyl
derivatives (23),24 (24),24,25 (25)5 and (26),26 and var-
ious nitroguanidines (see Fig 6)24,27 were based on
the indicated published methods. The other synthetic
methods for selected compounds mentioned in this
article are described below.

2.2.1 1-(3-Hydroxypropyl)-2-(nitromethylene)
imidazolidine (12a)
3-(2-Aminoethylamino)propanol (1.00 g, 8.61 mmol)
and 1,1-bis(methylthio)-2-nitroethylene (1.42 g,
8.59 mmol) in acetonitrile (15 ml) were refluxed for
1 h. After the mixture had cooled to room tempera-
ture, the resulting white solid was collected, washed
with acetone (20 ml) and then dried; yield: 1.29 g
(80%); mp 118.5–119.5 ◦C; Rf (silica gel TLC, ace-
tone): 0.3, 1H NMR (CDCl3) δ 1.64 (quintet, 2H,
J = 6.6 Hz), 3.22 (t, 2H, J = 6.6 Hz), 3.42 (t, 2H,
J = 6.6 Hz), 3.59 (s, 4H), 4.57 (bs, 1H), 6.58 (s, 1H),
8.74 (bs, 1H); IR (KBr): 3337, 1709, 1584, 1390,
1276, 1117 cm−1.

In a similar manner, 11a was prepared using 2-(2-
aminoethylamino)ethanol as a starting material instead
of 3-(2-aminoethylamino)propanol.

2.2.2 1-(3-Methoxypropyl)-2-(nitromethylene)
imidazolidine (12b)
Sodium hydroxide (0.80 g, 20 mmol), 12a (2.00 g,
10.7 mmol) and 98% dimethyl sulfate (1.40 g,
10.8 mmol) in water (15 ml) was stirred at 80 ◦C for
8 h. The reaction mixture was extracted with chloro-
form (2 × 100 ml), dried over anhydrous magnesium
sulfate and the solvent evaporated. The residue was
purified by column chromatography using chloroform
+ methanol (10 + 1 by volume) as eluent to give an oil;
yield: 110 mg (5%); Rf (silica gel TLC, chloroform +
methanol, 10 + 1 by volume): 0.4; 1H NMR (CDCl3)
delta 1.82 (quintet, 2H, J = 6.6 Hz), 3.27 (t, 2H,
J = 6.6 Hz), 3.34 (s, 3H), 3.38 (t, 2H, J = 6.6 Hz),
3.64–3.69 (m, 2H), 3.76–3.80 (m, 2H), 6.60 (s, 1H),
8.65 (bs, 1H); IR (neat) 3355, 1582, 1431, 1384,
1233 cm−1.

Compounds 11b–e and 12c–e were obtained by a
similar method using the corresponding alkyl halide,
acyl halide and 11a.

2.2.3 1,5-Dimethyl-2-nitroimino-hexahydro-
1,3,5-triazine (21)
To a stirred solution of nitroguanidine (10.0 g,
96.2 mmol) in water (40 ml) at room temperature
was added methylamine (11.2 g, 145 mmol, as 40%
solution in water) and the mixture stirred for
15 h. After filtration, the residual solid was washed
with water (30 ml). This wet solid 20 (9.80 g),
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Figure 1. Nenicotinoids 3–8 and 10, and their lead compounds 1, 2 and 9.

1-(3-furylmethyl)-2-(nitroimino)imidazolidine (18d)
and (±)-2-nitroimino-1-(tetrahydrofurfuryl)imida-
zolidine (18e) through 2-nitroimino-1-(1-propenyl)-
imidazolidine derivatives (14), (15a), (15b), (15c)
and (15e) from 2-(nitroimino)imidazolidine (13),20

through ethylenediamine derivatives (16a), (16d)
and (16e) from ethylenediamine21 and 2-methyl-
1-nitroisothiourea (17),22 (±)-2-nitromethylene-1-
(tetrahydro-3-furylmethyl)imidazolidine (19a), 1-(3-
furylmethyl)-2-(nitromethylene)imidazolidine (19d),
(±)-2-nitromethylene-1-(tetrahydrofurfuryl)imida-
zolidine (19e),23 and (±)-(tetrahydro-3-furyl)methyl
derivatives (23),24 (24),24,25 (25)5 and (26),26 and var-
ious nitroguanidines (see Fig 6)24,27 were based on
the indicated published methods. The other synthetic
methods for selected compounds mentioned in this
article are described below.

2.2.1 1-(3-Hydroxypropyl)-2-(nitromethylene)
imidazolidine (12a)
3-(2-Aminoethylamino)propanol (1.00 g, 8.61 mmol)
and 1,1-bis(methylthio)-2-nitroethylene (1.42 g,
8.59 mmol) in acetonitrile (15 ml) were refluxed for
1 h. After the mixture had cooled to room tempera-
ture, the resulting white solid was collected, washed
with acetone (20 ml) and then dried; yield: 1.29 g
(80%); mp 118.5–119.5 ◦C; Rf (silica gel TLC, ace-
tone): 0.3, 1H NMR (CDCl3) δ 1.64 (quintet, 2H,
J = 6.6 Hz), 3.22 (t, 2H, J = 6.6 Hz), 3.42 (t, 2H,
J = 6.6 Hz), 3.59 (s, 4H), 4.57 (bs, 1H), 6.58 (s, 1H),
8.74 (bs, 1H); IR (KBr): 3337, 1709, 1584, 1390,
1276, 1117 cm−1.

In a similar manner, 11a was prepared using 2-(2-
aminoethylamino)ethanol as a starting material instead
of 3-(2-aminoethylamino)propanol.

2.2.2 1-(3-Methoxypropyl)-2-(nitromethylene)
imidazolidine (12b)
Sodium hydroxide (0.80 g, 20 mmol), 12a (2.00 g,
10.7 mmol) and 98% dimethyl sulfate (1.40 g,
10.8 mmol) in water (15 ml) was stirred at 80 ◦C for
8 h. The reaction mixture was extracted with chloro-
form (2 × 100 ml), dried over anhydrous magnesium
sulfate and the solvent evaporated. The residue was
purified by column chromatography using chloroform
+ methanol (10 + 1 by volume) as eluent to give an oil;
yield: 110 mg (5%); Rf (silica gel TLC, chloroform +
methanol, 10 + 1 by volume): 0.4; 1H NMR (CDCl3)
delta 1.82 (quintet, 2H, J = 6.6 Hz), 3.27 (t, 2H,
J = 6.6 Hz), 3.34 (s, 3H), 3.38 (t, 2H, J = 6.6 Hz),
3.64–3.69 (m, 2H), 3.76–3.80 (m, 2H), 6.60 (s, 1H),
8.65 (bs, 1H); IR (neat) 3355, 1582, 1431, 1384,
1233 cm−1.

Compounds 11b–e and 12c–e were obtained by a
similar method using the corresponding alkyl halide,
acyl halide and 11a.

2.2.3 1,5-Dimethyl-2-nitroimino-hexahydro-
1,3,5-triazine (21)
To a stirred solution of nitroguanidine (10.0 g,
96.2 mmol) in water (40 ml) at room temperature
was added methylamine (11.2 g, 145 mmol, as 40%
solution in water) and the mixture stirred for
15 h. After filtration, the residual solid was washed
with water (30 ml). This wet solid 20 (9.80 g),
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Figure 1. Nenicotinoids 3–8 and 10, and their lead compounds 1, 2 and 9.

1-(3-furylmethyl)-2-(nitroimino)imidazolidine (18d)
and (±)-2-nitroimino-1-(tetrahydrofurfuryl)imida-
zolidine (18e) through 2-nitroimino-1-(1-propenyl)-
imidazolidine derivatives (14), (15a), (15b), (15c)
and (15e) from 2-(nitroimino)imidazolidine (13),20

through ethylenediamine derivatives (16a), (16d)
and (16e) from ethylenediamine21 and 2-methyl-
1-nitroisothiourea (17),22 (±)-2-nitromethylene-1-
(tetrahydro-3-furylmethyl)imidazolidine (19a), 1-(3-
furylmethyl)-2-(nitromethylene)imidazolidine (19d),
(±)-2-nitromethylene-1-(tetrahydrofurfuryl)imida-
zolidine (19e),23 and (±)-(tetrahydro-3-furyl)methyl
derivatives (23),24 (24),24,25 (25)5 and (26),26 and var-
ious nitroguanidines (see Fig 6)24,27 were based on
the indicated published methods. The other synthetic
methods for selected compounds mentioned in this
article are described below.

2.2.1 1-(3-Hydroxypropyl)-2-(nitromethylene)
imidazolidine (12a)
3-(2-Aminoethylamino)propanol (1.00 g, 8.61 mmol)
and 1,1-bis(methylthio)-2-nitroethylene (1.42 g,
8.59 mmol) in acetonitrile (15 ml) were refluxed for
1 h. After the mixture had cooled to room tempera-
ture, the resulting white solid was collected, washed
with acetone (20 ml) and then dried; yield: 1.29 g
(80%); mp 118.5–119.5 ◦C; Rf (silica gel TLC, ace-
tone): 0.3, 1H NMR (CDCl3) δ 1.64 (quintet, 2H,
J = 6.6 Hz), 3.22 (t, 2H, J = 6.6 Hz), 3.42 (t, 2H,
J = 6.6 Hz), 3.59 (s, 4H), 4.57 (bs, 1H), 6.58 (s, 1H),
8.74 (bs, 1H); IR (KBr): 3337, 1709, 1584, 1390,
1276, 1117 cm−1.

In a similar manner, 11a was prepared using 2-(2-
aminoethylamino)ethanol as a starting material instead
of 3-(2-aminoethylamino)propanol.

2.2.2 1-(3-Methoxypropyl)-2-(nitromethylene)
imidazolidine (12b)
Sodium hydroxide (0.80 g, 20 mmol), 12a (2.00 g,
10.7 mmol) and 98% dimethyl sulfate (1.40 g,
10.8 mmol) in water (15 ml) was stirred at 80 ◦C for
8 h. The reaction mixture was extracted with chloro-
form (2 × 100 ml), dried over anhydrous magnesium
sulfate and the solvent evaporated. The residue was
purified by column chromatography using chloroform
+ methanol (10 + 1 by volume) as eluent to give an oil;
yield: 110 mg (5%); Rf (silica gel TLC, chloroform +
methanol, 10 + 1 by volume): 0.4; 1H NMR (CDCl3)
delta 1.82 (quintet, 2H, J = 6.6 Hz), 3.27 (t, 2H,
J = 6.6 Hz), 3.34 (s, 3H), 3.38 (t, 2H, J = 6.6 Hz),
3.64–3.69 (m, 2H), 3.76–3.80 (m, 2H), 6.60 (s, 1H),
8.65 (bs, 1H); IR (neat) 3355, 1582, 1431, 1384,
1233 cm−1.

Compounds 11b–e and 12c–e were obtained by a
similar method using the corresponding alkyl halide,
acyl halide and 11a.

2.2.3 1,5-Dimethyl-2-nitroimino-hexahydro-
1,3,5-triazine (21)
To a stirred solution of nitroguanidine (10.0 g,
96.2 mmol) in water (40 ml) at room temperature
was added methylamine (11.2 g, 145 mmol, as 40%
solution in water) and the mixture stirred for
15 h. After filtration, the residual solid was washed
with water (30 ml). This wet solid 20 (9.80 g),
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Figure 1. Nenicotinoids 3–8 and 10, and their lead compounds 1, 2 and 9.

1-(3-furylmethyl)-2-(nitroimino)imidazolidine (18d)
and (±)-2-nitroimino-1-(tetrahydrofurfuryl)imida-
zolidine (18e) through 2-nitroimino-1-(1-propenyl)-
imidazolidine derivatives (14), (15a), (15b), (15c)
and (15e) from 2-(nitroimino)imidazolidine (13),20

through ethylenediamine derivatives (16a), (16d)
and (16e) from ethylenediamine21 and 2-methyl-
1-nitroisothiourea (17),22 (±)-2-nitromethylene-1-
(tetrahydro-3-furylmethyl)imidazolidine (19a), 1-(3-
furylmethyl)-2-(nitromethylene)imidazolidine (19d),
(±)-2-nitromethylene-1-(tetrahydrofurfuryl)imida-
zolidine (19e),23 and (±)-(tetrahydro-3-furyl)methyl
derivatives (23),24 (24),24,25 (25)5 and (26),26 and var-
ious nitroguanidines (see Fig 6)24,27 were based on
the indicated published methods. The other synthetic
methods for selected compounds mentioned in this
article are described below.

2.2.1 1-(3-Hydroxypropyl)-2-(nitromethylene)
imidazolidine (12a)
3-(2-Aminoethylamino)propanol (1.00 g, 8.61 mmol)
and 1,1-bis(methylthio)-2-nitroethylene (1.42 g,
8.59 mmol) in acetonitrile (15 ml) were refluxed for
1 h. After the mixture had cooled to room tempera-
ture, the resulting white solid was collected, washed
with acetone (20 ml) and then dried; yield: 1.29 g
(80%); mp 118.5–119.5 ◦C; Rf (silica gel TLC, ace-
tone): 0.3, 1H NMR (CDCl3) δ 1.64 (quintet, 2H,
J = 6.6 Hz), 3.22 (t, 2H, J = 6.6 Hz), 3.42 (t, 2H,
J = 6.6 Hz), 3.59 (s, 4H), 4.57 (bs, 1H), 6.58 (s, 1H),
8.74 (bs, 1H); IR (KBr): 3337, 1709, 1584, 1390,
1276, 1117 cm−1.

In a similar manner, 11a was prepared using 2-(2-
aminoethylamino)ethanol as a starting material instead
of 3-(2-aminoethylamino)propanol.

2.2.2 1-(3-Methoxypropyl)-2-(nitromethylene)
imidazolidine (12b)
Sodium hydroxide (0.80 g, 20 mmol), 12a (2.00 g,
10.7 mmol) and 98% dimethyl sulfate (1.40 g,
10.8 mmol) in water (15 ml) was stirred at 80 ◦C for
8 h. The reaction mixture was extracted with chloro-
form (2 × 100 ml), dried over anhydrous magnesium
sulfate and the solvent evaporated. The residue was
purified by column chromatography using chloroform
+ methanol (10 + 1 by volume) as eluent to give an oil;
yield: 110 mg (5%); Rf (silica gel TLC, chloroform +
methanol, 10 + 1 by volume): 0.4; 1H NMR (CDCl3)
delta 1.82 (quintet, 2H, J = 6.6 Hz), 3.27 (t, 2H,
J = 6.6 Hz), 3.34 (s, 3H), 3.38 (t, 2H, J = 6.6 Hz),
3.64–3.69 (m, 2H), 3.76–3.80 (m, 2H), 6.60 (s, 1H),
8.65 (bs, 1H); IR (neat) 3355, 1582, 1431, 1384,
1233 cm−1.

Compounds 11b–e and 12c–e were obtained by a
similar method using the corresponding alkyl halide,
acyl halide and 11a.

2.2.3 1,5-Dimethyl-2-nitroimino-hexahydro-
1,3,5-triazine (21)
To a stirred solution of nitroguanidine (10.0 g,
96.2 mmol) in water (40 ml) at room temperature
was added methylamine (11.2 g, 145 mmol, as 40%
solution in water) and the mixture stirred for
15 h. After filtration, the residual solid was washed
with water (30 ml). This wet solid 20 (9.80 g),
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Figure 1. Nenicotinoids 3–8 and 10, and their lead compounds 1, 2 and 9.

1-(3-furylmethyl)-2-(nitroimino)imidazolidine (18d)
and (±)-2-nitroimino-1-(tetrahydrofurfuryl)imida-
zolidine (18e) through 2-nitroimino-1-(1-propenyl)-
imidazolidine derivatives (14), (15a), (15b), (15c)
and (15e) from 2-(nitroimino)imidazolidine (13),20

through ethylenediamine derivatives (16a), (16d)
and (16e) from ethylenediamine21 and 2-methyl-
1-nitroisothiourea (17),22 (±)-2-nitromethylene-1-
(tetrahydro-3-furylmethyl)imidazolidine (19a), 1-(3-
furylmethyl)-2-(nitromethylene)imidazolidine (19d),
(±)-2-nitromethylene-1-(tetrahydrofurfuryl)imida-
zolidine (19e),23 and (±)-(tetrahydro-3-furyl)methyl
derivatives (23),24 (24),24,25 (25)5 and (26),26 and var-
ious nitroguanidines (see Fig 6)24,27 were based on
the indicated published methods. The other synthetic
methods for selected compounds mentioned in this
article are described below.

2.2.1 1-(3-Hydroxypropyl)-2-(nitromethylene)
imidazolidine (12a)
3-(2-Aminoethylamino)propanol (1.00 g, 8.61 mmol)
and 1,1-bis(methylthio)-2-nitroethylene (1.42 g,
8.59 mmol) in acetonitrile (15 ml) were refluxed for
1 h. After the mixture had cooled to room tempera-
ture, the resulting white solid was collected, washed
with acetone (20 ml) and then dried; yield: 1.29 g
(80%); mp 118.5–119.5 ◦C; Rf (silica gel TLC, ace-
tone): 0.3, 1H NMR (CDCl3) δ 1.64 (quintet, 2H,
J = 6.6 Hz), 3.22 (t, 2H, J = 6.6 Hz), 3.42 (t, 2H,
J = 6.6 Hz), 3.59 (s, 4H), 4.57 (bs, 1H), 6.58 (s, 1H),
8.74 (bs, 1H); IR (KBr): 3337, 1709, 1584, 1390,
1276, 1117 cm−1.

In a similar manner, 11a was prepared using 2-(2-
aminoethylamino)ethanol as a starting material instead
of 3-(2-aminoethylamino)propanol.

2.2.2 1-(3-Methoxypropyl)-2-(nitromethylene)
imidazolidine (12b)
Sodium hydroxide (0.80 g, 20 mmol), 12a (2.00 g,
10.7 mmol) and 98% dimethyl sulfate (1.40 g,
10.8 mmol) in water (15 ml) was stirred at 80 ◦C for
8 h. The reaction mixture was extracted with chloro-
form (2 × 100 ml), dried over anhydrous magnesium
sulfate and the solvent evaporated. The residue was
purified by column chromatography using chloroform
+ methanol (10 + 1 by volume) as eluent to give an oil;
yield: 110 mg (5%); Rf (silica gel TLC, chloroform +
methanol, 10 + 1 by volume): 0.4; 1H NMR (CDCl3)
delta 1.82 (quintet, 2H, J = 6.6 Hz), 3.27 (t, 2H,
J = 6.6 Hz), 3.34 (s, 3H), 3.38 (t, 2H, J = 6.6 Hz),
3.64–3.69 (m, 2H), 3.76–3.80 (m, 2H), 6.60 (s, 1H),
8.65 (bs, 1H); IR (neat) 3355, 1582, 1431, 1384,
1233 cm−1.

Compounds 11b–e and 12c–e were obtained by a
similar method using the corresponding alkyl halide,
acyl halide and 11a.

2.2.3 1,5-Dimethyl-2-nitroimino-hexahydro-
1,3,5-triazine (21)
To a stirred solution of nitroguanidine (10.0 g,
96.2 mmol) in water (40 ml) at room temperature
was added methylamine (11.2 g, 145 mmol, as 40%
solution in water) and the mixture stirred for
15 h. After filtration, the residual solid was washed
with water (30 ml). This wet solid 20 (9.80 g),
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Figure 1. Nenicotinoids 3–8 and 10, and their lead compounds 1, 2 and 9.

1-(3-furylmethyl)-2-(nitroimino)imidazolidine (18d)
and (±)-2-nitroimino-1-(tetrahydrofurfuryl)imida-
zolidine (18e) through 2-nitroimino-1-(1-propenyl)-
imidazolidine derivatives (14), (15a), (15b), (15c)
and (15e) from 2-(nitroimino)imidazolidine (13),20

through ethylenediamine derivatives (16a), (16d)
and (16e) from ethylenediamine21 and 2-methyl-
1-nitroisothiourea (17),22 (±)-2-nitromethylene-1-
(tetrahydro-3-furylmethyl)imidazolidine (19a), 1-(3-
furylmethyl)-2-(nitromethylene)imidazolidine (19d),
(±)-2-nitromethylene-1-(tetrahydrofurfuryl)imida-
zolidine (19e),23 and (±)-(tetrahydro-3-furyl)methyl
derivatives (23),24 (24),24,25 (25)5 and (26),26 and var-
ious nitroguanidines (see Fig 6)24,27 were based on
the indicated published methods. The other synthetic
methods for selected compounds mentioned in this
article are described below.

2.2.1 1-(3-Hydroxypropyl)-2-(nitromethylene)
imidazolidine (12a)
3-(2-Aminoethylamino)propanol (1.00 g, 8.61 mmol)
and 1,1-bis(methylthio)-2-nitroethylene (1.42 g,
8.59 mmol) in acetonitrile (15 ml) were refluxed for
1 h. After the mixture had cooled to room tempera-
ture, the resulting white solid was collected, washed
with acetone (20 ml) and then dried; yield: 1.29 g
(80%); mp 118.5–119.5 ◦C; Rf (silica gel TLC, ace-
tone): 0.3, 1H NMR (CDCl3) δ 1.64 (quintet, 2H,
J = 6.6 Hz), 3.22 (t, 2H, J = 6.6 Hz), 3.42 (t, 2H,
J = 6.6 Hz), 3.59 (s, 4H), 4.57 (bs, 1H), 6.58 (s, 1H),
8.74 (bs, 1H); IR (KBr): 3337, 1709, 1584, 1390,
1276, 1117 cm−1.

In a similar manner, 11a was prepared using 2-(2-
aminoethylamino)ethanol as a starting material instead
of 3-(2-aminoethylamino)propanol.

2.2.2 1-(3-Methoxypropyl)-2-(nitromethylene)
imidazolidine (12b)
Sodium hydroxide (0.80 g, 20 mmol), 12a (2.00 g,
10.7 mmol) and 98% dimethyl sulfate (1.40 g,
10.8 mmol) in water (15 ml) was stirred at 80 ◦C for
8 h. The reaction mixture was extracted with chloro-
form (2 × 100 ml), dried over anhydrous magnesium
sulfate and the solvent evaporated. The residue was
purified by column chromatography using chloroform
+ methanol (10 + 1 by volume) as eluent to give an oil;
yield: 110 mg (5%); Rf (silica gel TLC, chloroform +
methanol, 10 + 1 by volume): 0.4; 1H NMR (CDCl3)
delta 1.82 (quintet, 2H, J = 6.6 Hz), 3.27 (t, 2H,
J = 6.6 Hz), 3.34 (s, 3H), 3.38 (t, 2H, J = 6.6 Hz),
3.64–3.69 (m, 2H), 3.76–3.80 (m, 2H), 6.60 (s, 1H),
8.65 (bs, 1H); IR (neat) 3355, 1582, 1431, 1384,
1233 cm−1.

Compounds 11b–e and 12c–e were obtained by a
similar method using the corresponding alkyl halide,
acyl halide and 11a.

2.2.3 1,5-Dimethyl-2-nitroimino-hexahydro-
1,3,5-triazine (21)
To a stirred solution of nitroguanidine (10.0 g,
96.2 mmol) in water (40 ml) at room temperature
was added methylamine (11.2 g, 145 mmol, as 40%
solution in water) and the mixture stirred for
15 h. After filtration, the residual solid was washed
with water (30 ml). This wet solid 20 (9.80 g),
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Figure 1. Nenicotinoids 3–8 and 10, and their lead compounds 1, 2 and 9.

1-(3-furylmethyl)-2-(nitroimino)imidazolidine (18d)
and (±)-2-nitroimino-1-(tetrahydrofurfuryl)imida-
zolidine (18e) through 2-nitroimino-1-(1-propenyl)-
imidazolidine derivatives (14), (15a), (15b), (15c)
and (15e) from 2-(nitroimino)imidazolidine (13),20

through ethylenediamine derivatives (16a), (16d)
and (16e) from ethylenediamine21 and 2-methyl-
1-nitroisothiourea (17),22 (±)-2-nitromethylene-1-
(tetrahydro-3-furylmethyl)imidazolidine (19a), 1-(3-
furylmethyl)-2-(nitromethylene)imidazolidine (19d),
(±)-2-nitromethylene-1-(tetrahydrofurfuryl)imida-
zolidine (19e),23 and (±)-(tetrahydro-3-furyl)methyl
derivatives (23),24 (24),24,25 (25)5 and (26),26 and var-
ious nitroguanidines (see Fig 6)24,27 were based on
the indicated published methods. The other synthetic
methods for selected compounds mentioned in this
article are described below.

2.2.1 1-(3-Hydroxypropyl)-2-(nitromethylene)
imidazolidine (12a)
3-(2-Aminoethylamino)propanol (1.00 g, 8.61 mmol)
and 1,1-bis(methylthio)-2-nitroethylene (1.42 g,
8.59 mmol) in acetonitrile (15 ml) were refluxed for
1 h. After the mixture had cooled to room tempera-
ture, the resulting white solid was collected, washed
with acetone (20 ml) and then dried; yield: 1.29 g
(80%); mp 118.5–119.5 ◦C; Rf (silica gel TLC, ace-
tone): 0.3, 1H NMR (CDCl3) δ 1.64 (quintet, 2H,
J = 6.6 Hz), 3.22 (t, 2H, J = 6.6 Hz), 3.42 (t, 2H,
J = 6.6 Hz), 3.59 (s, 4H), 4.57 (bs, 1H), 6.58 (s, 1H),
8.74 (bs, 1H); IR (KBr): 3337, 1709, 1584, 1390,
1276, 1117 cm−1.

In a similar manner, 11a was prepared using 2-(2-
aminoethylamino)ethanol as a starting material instead
of 3-(2-aminoethylamino)propanol.

2.2.2 1-(3-Methoxypropyl)-2-(nitromethylene)
imidazolidine (12b)
Sodium hydroxide (0.80 g, 20 mmol), 12a (2.00 g,
10.7 mmol) and 98% dimethyl sulfate (1.40 g,
10.8 mmol) in water (15 ml) was stirred at 80 ◦C for
8 h. The reaction mixture was extracted with chloro-
form (2 × 100 ml), dried over anhydrous magnesium
sulfate and the solvent evaporated. The residue was
purified by column chromatography using chloroform
+ methanol (10 + 1 by volume) as eluent to give an oil;
yield: 110 mg (5%); Rf (silica gel TLC, chloroform +
methanol, 10 + 1 by volume): 0.4; 1H NMR (CDCl3)
delta 1.82 (quintet, 2H, J = 6.6 Hz), 3.27 (t, 2H,
J = 6.6 Hz), 3.34 (s, 3H), 3.38 (t, 2H, J = 6.6 Hz),
3.64–3.69 (m, 2H), 3.76–3.80 (m, 2H), 6.60 (s, 1H),
8.65 (bs, 1H); IR (neat) 3355, 1582, 1431, 1384,
1233 cm−1.

Compounds 11b–e and 12c–e were obtained by a
similar method using the corresponding alkyl halide,
acyl halide and 11a.

2.2.3 1,5-Dimethyl-2-nitroimino-hexahydro-
1,3,5-triazine (21)
To a stirred solution of nitroguanidine (10.0 g,
96.2 mmol) in water (40 ml) at room temperature
was added methylamine (11.2 g, 145 mmol, as 40%
solution in water) and the mixture stirred for
15 h. After filtration, the residual solid was washed
with water (30 ml). This wet solid 20 (9.80 g),
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Starkle, Albarin, Bonfram, Venom 
Scorpion, Green Light Tree & Shrub 

Insect Control with Safari 2 G,
Safari, Transect, Zylam 20SG Systemic 

Turf Insecticide

Mitsui Chemicals
1994,

commercial
introduction
2002 Japan

Soil drench or foliar spray 
to leafy and fruiting 
vegetables, turf, and 
ornamental plants. Also 
used as bait or granules 
for cockroach control.

Table 4.  Neonicotinoid Chart (AGROW Online, JEPA Online, Xerces Society Online, 
Iwasa et al., 2004; Jeschke et al., 2011; Tomizawa and Casida, 2005; Wakita et al., 2003; Tomlin, 2009)
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The Versatility and Spread of Neonicotinoids

 Neonicotinoids have made a major impact on pest control in a relatively 

short period of time.  Imidacloprid has quickly become the number one selling 

insecticide in the world.  Different waves of plant-protection products entered the 

market in the early 90s.  “Expansion of neonicotinoid insecticides has been 

driven by growth of established products such as imidacloprid as well as newer 

entrants such as thiamethoxam and clothianidin” (Jeshke et al., 2011, p. 2898). 

“Imidacloprid currently accounts for approximately 41.5% of the whole 
neonicotinoid market (in 2009: U.S. $2632 million). At U.S. $1091 million 
imidacloprid is the largest selling insecticide in the world; its sales value 
growth is also being affected by generic material. Thiamethoxam is now 
the second biggest neonicotinoid (in 2009: U.S. $627 million) in terms of 
sales, and clothianidin has grown rapidly to U.S. $439 million. In 2009 the 
sales of other neonicotinoids such as acetamiprid (U.S. $276 million), 
thiacloprid (U.S. $112 million), dinotefuran (U.S. $79 million), and 
nitenpyram (U.S. $8 million) are expected to increase” (Jeshke et al., 
2011, p. 2898).

 Presently in the U.S., there are over 400 neonicotinoid products on the 

market.  Residential, construction, backyard gardening, and veterinary uses 

cannot be overlooked as “products containing imidacloprid come in many forms, 

including liquids, granules, dusts, and packages that dissolve in water and 

imidacloprid products may be used on crops, houses, or used in flea products for 

pets” (National Pesticide Information Center Online Resource).  (See Appendix 

Figures 18 and 19 for a sampling of products which use neonicotinoids and 

Appendix Table 15 for a list of key players in the neonicotinoid industry).  

Neonicotinoid pesticides are used in over 120 countries (Jeschke, 2011) and on 
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crops such as vegetables, pomes, nuts, citrus, rice, cotton, maize, potatoes, 

sugar beets, rapes and soybeans (Agrowpages Online Resource).  

 Neonicotinoids have an endless range of uses because their unique 

physiochemical properties and translocation rates, combined with residual 

activity, make them highly effective against sucking and chewing species, 

including aphids, whiteflies, leafhoppers, planthoppers, and the Colorado potato 

beetle (Jeshke et al., 2011).  Seven different neonicotinoids are featured in a 

multitude of home and agricultural plant-protection products, for a wide variety of 

pests, using an assortment of application methods (see Table 5).
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Today, the plant systemic neonicotinoids imidacloprid, thia-
methoxam, and clothianidin are widely used for seed treatment in
different crops such as cotton, corn, cereals, sugar beet, oilseed
rape, and others. Table 2 demontrates the spectrum of activity of
clothianidin seed treatment (Poncho) for the control of early and
midseason corn pests in the United States against a broad range
of soil-inhabitating, root-, stem-, and leaf-feeding pests from
different orders such as Coleoptera, Lepidoptera, Diptera,
Homoptera, Hemiptera, and Hymenoptera.54

As a corn seed treatment, clothianidin (Poncho) protects
young plants against the entire early-season pest complex (soil
and leaf pests) and especially wireworms, Agriotes spp., and
cicadas in many crops. Furthermore, chlothianidin is very
effective against different species of Diabrotica (term is corn
rootworm) such as the western (D. virgifera virgifera), northern
(D. barberi), southern (D. undecimpunctata howardi), and Mex-
ican (D. virgifera zeae) corn root worms. Larvae feed on primary

and secondary corn roots. Excessive loss of root tissues from
larval feeding can cause an instability of the corn plants that
results in lodging. Massive lodging reduces the harvest efficiency
and, therefore, causes severe losses in yields. Feeding damage on
roots will also reduce water and nutrient uptake, root and plant
growth, and ultimately yield, especially under favorable dry soil
conditions.
Profiles of Neonicotinoid Insecticides. Key crops for neo-

nicotinoid insecticides are vegetables, pome and stone fruits,
citrus, rice, cotton, corn, potato, sugar beet, oilseed rape, and
soybean, among many others. Table 3 describes the seven
commercial neonicotinoid insecticides according to their addi-
tional biological profile and common application technique.5

The number of crop uses are indicated (e.g., foliar and soil
applications in potato are defined as two crop uses). In addition
to the common neonicotinoid spectrum, each product has its
specific target pest spectrum, mentioned in Table 3 under
additional pest spectrum. The commercial products also differ
considerably with respect to soil and seed treatment uses, as soil
stability is limited for some of them such as nitenpyram,
acetamiprid, and dinotefuran, respectively. Uses are classified
as follows:þþþ, broad;þþ, good;þ, limited;-, not relevant.5

Today, the first neonicotinoid imidacloprid has gained regis-
tration for over 140 crop uses in more than 120 countries under
the main trade names Confidor and Admire for foliar use and
Gaucho for seed treatment. Besides the development of niten-
pyram (Capstar, Takeda/Syngenta) as a fast-acting, adult flea
control product in cats and dogs for animal health, its uses for
control of sucking insects in rice, fruit, tea, vegetables, and field
crops in Japan have been marketed under the trade name
Bestguard. Acetamiprid has been marketed, for example, under
the trade name Mospilan and is registered for cotton, vegetables
(Assail), potato, orchards for codling moth control, vines, citrus,
tea, and ornamentals (ChipcoTristar). In addition, acetamiprid is
also of interest for the control of termites and household pests.
Thiamethoxam is marketed as Actara for foliar application, as
Platinum for soil application, and as Cruiser for seed treatment
uses. Today, thiamethoxam is registered for 115 crop uses in at
least 65 countries on a wide range of crops such as vegetables,
potatoes, rice, cotton, fruit, tobacco, and cereals, respectively. Its
pest spectrum includes all major sucking insects, as well as some
chewing and soil-living pests. Thiacloprid was launched under
the trade name Calypso and is active against sucking and chewing
pests on crops such as fruit, cotton, vegetables, oilseed rape,
cereals, potato, rice, and ornamentals. Besides aphids, various
species of beetles, lepidopteran leafminers, and C. pomonella (L.)
are controlled. It has a favorable beneficial profile and is bee
safe.55 Therefore, thiacloprid can also be applicated on flowering
crops.56 Clothianidin covers a broad pest spectrum, which

Table 2. Spectrum of Activity of Clothianidin Seed Treat-
ment for the Control of Early- and Mid-Season Corn Pests in
the United Statesa

insect order insect species

Coleoptera corn rootworm Diabrotica spp.

wireworm Melanotus spp., Agriotes spp.

flea beetle Chaetocnema pulicania (Mersheimer)

grape colaspis Colaspis brunnea (F.)

beet leaf weevil Tanymecus spp.

white grub Lachnosterna implicate

Japanese beetle Popillia japonica (Newman)

Lepidoptera black cutworm Agrotis ypsilon

Diptera seedcorn maggot Delia platura (Meigen)

frit fly Oscinella frit (L.)

Homoptera corn leaf aphid Rhopalosiphum maidis (Fitch)

leafhopper Empoasca spp.

leafhopper Macrosteles spp.

leafhopper Zyginida spp.

Hemiptera chinch bug Blissus leucopterus (Say)

stink bug Nezara viridula (L.)

Hymenoptera imported fire ant Solenopsis spp.
aModified after ref 54.

Table 3. Biological Profiles of Commercial Neonicotinoid Insecticidesa

neonicotinoid insecticide no. of crop uses additional pest spectrum foliar uses soil uses seed treatment

imidacloprid 140 thrips, mealybugs, leafminers, termites þþ(þ) þþþ þþ(þ)

nitenpyram 12 - þþ þ -

acetamiprid 60 codling moth, diamondback moth þþþ þ -

thiamethoxam 115 mealybugs, plant bugs, leafminers, termites þþþ þþþ þþ

thiacloprid 50 codling moth, pollen beetle þþþ þ þ

clothianidin 40 wooly aphid, oriental fruit moth, corn rootworm þþ(þ) þþ þþþ

dinotefuran 35 soft scales, thrips, mealybugs þþþ þþ -
aModified after ref 5. Uses are defined as follows: þþþ, broad; þþ, good; þ, limited; -, not relevant.

Table 5.  Neonicotinoid Applications (Jeschke et al., 2011)

The range of application methods includes foliar sprays; irrigation water in drip, 

drench systems, or in floating box systems; direct soil injection; trunk and bud 

injection; and also seed treatments (Agrowpages Online Resource).  “The 

neonicotinoid insecticides have a high degree of versatility, not seen to the same 

extent in other chemical classes” (Jeshke et al., 2011, p. 2900).  Since the 

insecticide is absorbed by all parts of the plant, it is considered highly systemic 

and toxic to pests throughout different phases of the plant’s lifecycle.

 Seed Treatments.  Seed treatments have proven to be a particularly 

efficient and effective application method which requires less overall insecticide 

41



use as a result of neonicotinoid potency.  Seed dressings, coatings, and soil 

treatments are also viewed as far safer to agricultural workers, and may eliminate 

the need for foliar spraying due to their systemic properties that are translocated 

throughout the plant, allowing for efficacy against pests from the outset of the 

growth cycle.  “New opportunities have been opened up in modern crop 

protection. Today approximately 60% of all neonicotinoid applications are soil/

seed treatments, and most spray applications are especially targeted against 

pests attacking crops such as cereals, corn, rice, vegetables, sugar beet, 

potatoes, cotton, and others” (Jeshke et al., 2011, p. 2900) (see Figure 10).

“Seed dressing, film coating, pelleting, and multilayer coating allow an 
environmentally safe and perfect protection of young plants against insect 
attack. With this method, application of the active ingredient is virtually 
independent of the weather and can be applied directly at the site of 
action. The application amount (g of active ingredient per hectare) used 
per unit area is thereby reduced remarkably” (Jeschke, 2011, p. 2900).  
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On the other hand, the turnover figures for seed treatment
are very impressive. A so-called niche market of h155 million
for insecticidal seed treatment in 1990 was dominated by
carbamates (77.4%). It has been developed to a h957 million
market, with a share for neonicotinoid insecticides of 80% in
2008 (Figure 2).
Structural Diversity. Seven neonicotinoid insecticides are

currently on the market: three cyclic compounds, that is,
neonicotinoids with five-membered ring systems such as
imidacloprid7,8 and thiacloprid9 (Bayer CropScience) and the
six-membered neonicotinoid thiamethoxam (Syngenta),10 and
four noncyclic compounds, that is, nitenpyram (Sumitomo
Chemical Takeda Agro Co.),11 acetamiprid (Nippon Soda),12

clothianidin (Sumitomo Chemical Takeda Agro Co./Bayer
CropScience),13 and dinotefuran (Mitsui Chemicals).14

Considering their pharmacophore moieties [-N—C(E)dX
—Y], neonicotinoid insecticides can be classified as N-nitrogua-
nidines (imidacloprid, thiamethoxam, clothianidin, and dinotefuran),
nitromethylenes (nitenpyram), andN-cyanoamidines (acetamiprid

and thiacloprid).15 The overall chemical structure for both ring
systems and noncyclic commercial neonicotinoids consists of
different segments (Figure 3):16,17 (i) for five- and six-membered
ring systems the bridging fragment [-CH2—Z—(CH2)n- (n =
0; Z = CH2; and n = 1; Z = O, NMe] and for noncyclic
neonicotinoids the separate substituents (R1, R2); (ii) the
hetarylmethyl or heterocyclylmethyl group R [R = 6-chloro-
pyrid-3-ylmethyl (CPM), 2-chloro-1,3-thiazol-5-ylmethyl
(CTM), and (()-6-tetrahydrofur-3-ylmethyl (TFM)]; (iii) the
functional group [dX—Y] (e.g., [dN—NO2], [dN—CN] and
[dCH—NO2]) as part of the different pharmacophore types [-
N—C(E)dX—Y].
In comparison to the corresponding ring systems

(imidacloprid, thiacloprid, and thiamethoxam), the noncyclic
neonicotinoids show similar broad insecticidal activity by form-
ing a so-called quasi-cyclic conformation when binding to the
insect nAChRs.18 Therefore, the four commercial noncyclic
neonicotinoids (nitenpyram, acetamiprid, clothianidin, and
dinotefuran) can be regarded as examples, if retrosynthetic
considerations are carried out.19 Figure 4 shows the superposi-
tion of van der Waals volumes of ring systems (A) and noncyclic
neonicotinoids (B).
On the other hand, the partial ring cleavage of the six-

membered ring system thiamethoxam into the noncyclic clothia-
nidin (Figure 4; transformation of c into f) in insect and plant
tissues has recently been demonstrated and discussed.20,21

During the past years, expansion of neonicotinoid insecticides
has been driven by growth of established products such as
imidacloprid as well as newer entrants such as thiamethoxam
and clothianidin. Imidacloprid currently accounts for approxi-
mately 41.5% of the whole neonicotinoid market (in 2009: U.S.
$2632 million). At U.S. $1091 million imidacloprid is the largest
selling insecticide in the world; its sales value growth is also being
affected by generic material. Thiamethoxam is now the second
biggest neonicotinoid (in 2009: U.S. $627 million) in terms of
sales, and clothianidin has grown rapidly to U.S. $439 million. In
2009 the sales of other neonicotinoids such as acetamiprid (U.S.
$276 million), thiacloprid (U.S. $112 million), dinotefuran (U.S.
$79 million), and nitenpyram (U.S. $8 million) are estimated to
have grown as well.
In total, N-nitroguanidines are the most prominent subclass;

they account for around 85% of the neonicotinoid insecticide
market (in 2009: U.S. $2236 million).
Physicochemical Properties. The physicochemical proper-

ties of the five- and six-membered ring systems and noncyclic
neonicotinoids played an important role in their successful

Figure 1. Development of insecticide classes in modern crop protec-
tion, 1990-2008, expressed as percentage of total.

Figure 2. Development of insecticide classes in seed treatment, 1990-
2008, expressed as percentage of total.

Figure 3. Commercial neonicotinoid insecticides: ring systems (a-c)
versus noncyclic neonicotinoids (d-g).

Figure 10. Development of seed treatment,1990- 2008, percentage of total (Jeschke et al., 2011)

As a result of the wide application of seed treatments, neonicotinoids are used on 

94%, or 147 million acres, of all corn planted in the U.S., with historical data 
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showing a resulting 6 to 14 bushels per acre yield increase (Bayer CropScience 

Online Resource).  (See Appendix Table 16 for U.S. Neonicotinoid Use).  

Market and Economic Success

 The launch of neonicotinoids was an immediate economic success.  Some 

four years after its 1991 launch, imidacloprid became the second biggest selling 

insecticide in the world, with 1995 sales of $360 million (close behind the 

organophosphate chlorpyrifos) (Yamamoto and Casida, 1999).  By 1997, sales of 

the active ingredient (including crop and animal health applications), reached 

$562 million, giving imidacloprid the distinction of being the top-selling insecticide 

in the world (Yamamoto and Casida, 1999).  Global crop-protection-industry 

news, analysis, and data provider Cropnosis (formerly Wood Mackenzie), 

confirms imidacloprid’s top-selling insecticide status.  2008 global sales of the 

Top Ten Agrochemicals appear in Figure 15.

Table 6.  2008 Top Ten Agrochemicals in terms of Global Sales (Pollack, 2011)
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 Unique Physiochemical Properties.  The reasons for the success of 

neonicotinoids are their numerous unique chemical and biological properties, 

which are summarized as follows.  

 Neonicotinoids are highly potent and considered a “low-rate technology” 

that requires lower application rates when compared to other commercial 

pesticide classes.  Table 6 illustrates this point in that, Round-Up, Monsantos’ 

herbicide, the number one selling agrochemical in 2008, requires a relatively high 

application rate of 500-4000 gallons/hectare (Pollack, 2011) versus imidacloprid’s 

application rate of .05-.125 pounds/acre (Extoxnet: Imidicloprid).  Imidacloprid is 

priced accordingly with one of the most expensive per unit costs of all 

agrochemicals, at over $500/kg (Pollack, 2011).

 Since neonicotinoids possess good water solubility, they are readily 

absorbed and translocated by root systems and leaves alike, making these 

compounds highly systemic, particularly when used as a seed dressing 

(Yamamoto 178).  As a result of these systemic properties, neonicotinoids 

possess “excellent activity especially against homopteran (i.e. aphids and 

leafhoppers), coleopteran (i.e. beetle species), dipteran (i.e. flies), and 

lepidopteran (i.e. leafworms) pests” (Yamamoto and Casida, 1999 pgs. 178, 186) 

by penetrating not only the roots and leaves of a sapling, but also affecting the 

soil around the root zone (see Figure 11).  This property makes neonicotinoids 

highly complementary to Bt seeds and crops, which take between 3-6 weeks to 

build up sufficient Bt levels in emerging seedlings to deter pests, whereas 
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neonicotinoid seed coatings provide immediate efficacy against devastating 

early-growth-stage pests such as corn rootworm species (Benbrook interview).

 

Figure 11.  Neonicotinoid Treated Seed & Sapling 9 and 21 Days After Planting (DAP) 

(Yamamoto and Casida1999)

Due to the systemic penetration into all parts of the plant, some neonicotinoids, 

such as imidacloprid, thiamethoxam, and clothianidin, have been shown to have 

“strong preventative effects on some plant virus transmissions” (Maienfisch et al., 

2001, p. 910; Jeschke, 2011).  Neonicotinoids control not only pests, but also 

prevent the spread of viruses.  

 Yet another reason for this success is due to the lack of pest resistance to 

neonicotinoids because they possess a new mode of action:  “Unlike other 

insecticides, the neonicotinoids bind at a specific site, the postsynaptic nicotinic 

acetylcholine receptor (NaChR), and there are no records of cross-resistance to 

the carbamate, organophosphate, or synthetic pyrethroid insecticides, thus 

making them important for management of insecticide resistance” (Agrowpages 

Neonicotinoid Insights).  And, of course, the major strength of neonicotinoids 
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results from their low mammalian toxicity and favorable safety profile (Maienfisch 

et al., 2001; Yamamoto and Casida, 1999).
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PERSISTENCE IN NATURE

Ecotoxicology

 Whereas nicotine is quite toxic in mammals, imidacloprid and the 

neonicotinoids have been shown to be much less so in clinical lab studies of 

toxicology.  Neonicotinoids exhibit a high ‘No Observable Effects Level’ and also 

high acceptable daily intake value for vertebrates (when determined)” (Steneren, 

2004) (see Table 7).  

Table 7.  Relative Toxicity of Nicotine and Imidacloprid (Yamamoto and Casida, 1999)

This finding is a result of the nicotinic receptor, or nAChR, the site where 

neonicotinoids selectively bind in insects, but fail to do so in mammals.  The low 

vertebrate toxicity of neonicotinoids is due to the insensitivity of both brain and 

peripheral nAChRs in mammals as compared to insects, or put another way, “the 

partial positive charge in neonicotinoids can distinguish the insect nAChR from 

the vertebrate nAChR” (Yamamoto and Casida, 1999) (See Figure 12).  

Figure 12.  Partial Positive Charge of Nicotinoids and Neonicotinoids (Yamamoto and Casida, 1999)
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Clinical tests on mammals confirm these findings with imidacloprid’s producer, 

Bayer Crop Science, reporting (Yamamoto and Casida, 1999, p. 221):

✴ Imidacloprid is a specific nicotinergic receptor binder with very low 

mammalian binding potential

✴ Imidacloprid is rapidly absorbed, metabolized in the liver, and excreted 

mostly via urine

✴ Metabolism of imidacloprid is straightforward; no open ring structures with 

potential for other toxicological properties

✴ Imidacloprid does not penetrate the blood-brain barrier

✴ This lack of penetration leads to a low toxicity after acute oral, dermal, 

inhalatory, and long-term dietary exposure

✴ Symptoms of imidacloprid toxicity are non specific

✴ Imidacloprid shows specific neurotoxicological symptoms only at lethal 

doses (tremors)

✴ Imidacloprid is not oncogenic, not mutagenic, not a primary embryotoxin, 

not a reproductive toxin, and not a neurotoxin

✴ Imidacloprid has no worker exposure-related toxic potential

✴ Imidacloprid has no consumer-related toxic potential

Compared to the previous classes of insecticides, neonicotinoids were the 

environmentally friendly example of a new pesticide class that was highly 

selective and specific to insects while being relatively non-toxic to vertebrate 

species (Krieger, 2001).  They were much safer not only for humans, but also for 

birds, fish, and crustaceans (but not aquatic insects) (Stenersen, 2004).  “Due to 

its insecticidal potency and relatively low mammalian toxicity, imidacloprid has a 

very high margin on safety” (Krieger, 2001).  
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Soils   

 Neonicotinoids have differing persistence levels in soils and water based 

on a variety of factors including soil type, microbial and weathering conditions, 

concentration levels, etc. (see Table 8).  In soils, acetamiprid and thiacloprid are 

on the low end of the spectrum with a half-life as low as 1 day, and clothianidin 

and imidacloprid can persist in soils for up to 1155 and 997 days, respectively, 

allowing for uptake by plants in subsequent seasons (Xerces Society). 

Neonicotinoids are synthetic chemical insecticides that 
are similar in structure and action to nicotine, a naturally 
occurring plant compound that was widely used as an in-
secticide before the Second World War. !ey are used to 
control crop and ornamental plant pests such as aphids 
or leaf beetles, structural pests like termites, and pests 
of domesticated animals such as "eas. Six neonicotinoid 
insecticides are used on crops: imidacloprid, clothiani-
din, thiamethoxam, dinotefuran, acetamiprid, and thia-
cloprid. (See page 5 for examples of uses and products.) 
A seventh, nitenpyram, is used to treat for "eas and other 
external parasites of livestock and pets. Because it is un-
likely to a#ect "ower-visiting insects, nitenpyram is not 
discussed further in this report.

Imidacloprid was the $rst neonicotinoid on the world 
market, and is the most commonly used (Elbert et al. 
2008). Imidacloprid $rst became available in the United 
States in 1994, and is currently present in over 400 prod-
ucts on the market (NPIC 2010). With worldwide sales 
near $1.6 billion, neonicotinoids accounted for at least 
17% of the global insecticide market in 2006 (Jeshke and 
Nauen 2008). In 2009 imidacloprid was among the most 
used pesticides in California, being applied to hundreds 
of thousands of acres (CA DPR 2010).

Neonicotinoids paralyze insects by blocking a spe-
ci$c chemical pathway that transmits nerve impulses in 
the insect’s central nervous system (Tomizawa and Ca-
sida 2003). Neonicotinoids are more e#ective at blocking 
nerve impulses in insects and other invertebrates than in 
many other animals. Consequently, they are much less 
toxic to some birds and many mammals than the older 
classes of insecticides they are replacing.

!ese insecticides are systemic, meaning that the 
chemicals can be absorbed and transported throughout 
the plant, o#ering protection against insects that feed on 
plants. Plants absorb these chemicals through their roots 
or leaves, and the vascular tissues transport the chemical 
into stems, leaves, "owers, and even fruit.

Neonicotinoids can be applied as seed coatings, soil 
drenches or granules, foliar sprays, by direct injection 
into tree trunks, or by chemigation (addition of the in-
secticide to irrigation water). !is variety of application 
methods, along with their systemic properties and lower 
toxicity to vertebrates, is one of the primary reasons why 
these chemicals are increasingly used for crop protection 
(Elbert et al. 2008).

An advantage of neonicotinoids for pest control is 
that their methods of application (i.e., a range of meth-

ods other than spraying) help to reduce direct contact to 
non-target insects during treatment. However, because 
these chemicals are systemic and absorbed into plant tis-
sues, insects that rely on nectar, pollen, or other "oral 
resources have increased oral exposure to residues of 
neonicotinoids or their metabolites. Residues have been 
recorded in pollen (Laurent and Rathahao 2003; Bon-
matin et al. 2003, 2005a), nectar (Schmuck 2001; Kris-
chik et al. 2007), and to a much lesser degree, other plant 
exudates (Girolami et al. 2009). Residues are also found 
in contaminated dust released from seed planting equip-
ment (Greatti et al. 2006; Krupke et al. 2012; Tapparo 
et al. 2012) and in weeds growing within or adjacent to 
treated $elds (Krupke et al. 2012).

Another issue arising from the systemic action of 
neonicotinoids is that they remain toxic within the plant 
for longer than other insecticides. Evidence suggests that 
systemic insecticides may remain in plant tissues for 
months or even more than a year (e.g., Maus et al. 2005). 
In addition, some neonicotinoids can persist for extend-
ed periods in soil (see table 3.1) (Rouchaud et al. 1996; 
Maus et al. 2004a, b). Clothianidin, for example, has a 
soil half-life of 148 to 1,155 days (5¼ to 38½ months) de-
pending upon soil types (EPA 2003a). Untreated plants 
may take up residues of neonicotinoids still present in 
the soil from previous applications (Bonmatin et al. 
2003, 2005b).
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Table 8.  Neonicotinoid Half-life in Soils (Xerces Society Online Resource)

Persistence data for imidacloprid in soils is rather inconsistent.  “Some authors 

have reported that imidacloprid is relatively immobile in soil and that leaching 

below the topmost layer and into the groundwater is not likely to occur, while 

other authors have claimed the exact opposite” (van Dijk, 2010).
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  Leaching studies are important for determining a pesticide’s capability to 

pollute ground water, particularly if the pesticide, such as the neonicotinoid 

imidacloprid, is highly soluble in water (van Dijk, 2010).  One recent study from 

2010 sought to determine the leaching potential and transport pattern of 

imidacloprid as it dispersed though different types of soil (see Table 9).  “Results 

from soil columns indicated that imidacloprid insecticide is of moderate mobility in 

soils. After leaching of some 15 pore volumes of 0.005 M CaCl2 solution, the 

amount of imidacloprid leached from each column varied among soils, ranging 

from 27% to 79% of that applied” (Selim et al., 2010, p. 380).

stages of leaching were underestimated, however. For example, in
Sharkey soil, CXTFIT predicted no imidacloprid in the effluent
beyond 10 pore volumes despite the fact that imidacloprid con-
tinued to leach out for 25 pore volumes.

As indicated by the simulations shown in Fig. 3 though 7,
the MRTM model was capable of describing the measured
imidacloprid BTC for all soil columns. The goodness of the
model MRTM prediction is presented with the total sum of
RMSE and r2 values in Table 4. The MRTM also provided better
prediction of imidacloprid concentration during leaching than
CXTFIT. This implies that the CXTFIT model was incapable of
describing the tailing of the BTC during leaching. Moreover, the
effect of flow interruption was well described using MRTM,
which implies that the chemical kinetics of imidacloprid reac-
tions were dominant in all soil columns.

The simulations in Fig. 3 through 7 represent best MRTM
predictions. For Mahan soil, the estimated model parameters
(Ke, k1, k2, and k3) are given in Table 4. To obtain these simu-
lations, several model versions were tested. We found that the
best predictions were obtained when the full model, as depicted
in Fig. 1, was used. For all other soils, a model version of MRTM
where the equilibrium phase (Se) was not incorporated provided
best predictions. In such a model version, only kinetic reactions
were considered, and k1, k2, and k3 are the necessary parameters.
Specifically, when the full model was used, no additional
improvements in predictions were realized. This was the case for
Sharkey, Vacherie, and Mhoon soils, where values of the esti-
mated parameter Ke were close to zero. Therefore, based on
model results, large uncertainties of estimated parameter values
(high SE) were realized, which is indicative of the failure of the
model versions tested. Such failure is most likely caused by
overfitting of the MRTMmodel versions tested. Similar findings
were reached by Ma and Selim (1997) who carried out extensive
model evaluations using atrazine BTC from an aggregated soil.
Jeong and Selim (2010) found that kinetic retention (adsorption-
desorption) of imidacloprid was dominant for all the soils used
in this study. Therefore, it is not surprising that a kinetic model
version of MRTM provided the best model predictions. There-
fore, for all soils, the use of the kinetic model version of
MRTM is recommended. The exception here is Mahan soil,
where the use of the full model to describe imidacloprid BTC
is recommended.

Downward Movement of Imidacloprid
After the termination of flow, imidacloprid was extracted

using methanol from each 2-cm segment of the soil columns.
These results (Table 5) illustrate the downward movement of
imidacloprid in the different soils. In Mahan soil, imidacloprid
increased with depth, which indicates a leaching pattern of the
applied chemical. For other soils, no clear pattern emerged,
however. In fact, imidacloprid distributions indicated that max-
imum concentrations occurred at 6 cm or lower soil depth.

Moreover, for Mhoon soil, the recovery of imidacloprid by
methanol extraction was much lower compared with other soils
(Table 5), which evidences strong retention on this soil. Several
studies suggested that DOC was responsible for the enhanced
solubility of pesticides in the soil solution (Chiou et al., 1986;
Gao et al., 1998; Flores-Céspedes et al., 2002). Recently, Flores-
Céspedes et al. (2002) reported that the mobility of imidacloprid
was increased 21.4% and 11.0% by two different types of DOC
extracted from commercial peat (DOC-PE) and high-purity
tannic acid (DOC-TA). They concluded that the increased mo-
bility might be caused by competition with the imidacloprid
molecule for sorption sites on the soil surface or by the inter-
action of imidacloprid to new active sites of soluble organic
fraction. In addition, relatively less imidacloprid was extracted
from the reference sand column compared with other soil col-
umns. It indicates that the higher amount of imidacloprid was
leached out during the elution stage in column experiments.

SUMMARY AND CONCLUSIONS
Breakthrough results from soil columns indicated that

imidacloprid insecticide is of moderate mobility in soils. After
leaching of some 15 pore volumes of 0.005 M CaCl2 solution,
the amount of imidacloprid leached from each column varied
among soils, ranging from 27% to 79% of that applied. The
extent of imidacloprid retention was consistent with Kd values
for the different soils. All BTC exhibited extensive tailing during
leaching of applied imidacloprid, which is indicative of time-
dependent release reactions of adsorbed imidacloprid. The use of
the linear model (CXTFIT) to simulate measured BTC showed
good overall predictions. Concentration maxima and peak arrival

TABLE 4. Goodness of Fit of MRTM Model Variations for the Different Soils

Soil RMSE r2 Ke k1, h
j1 k2, h

j1 k3, h
j1

Mahan 0.033 0.973 0.9098 T 0.0615 0.1936 + 0.0172 0.0381 + 0.0042 0.0055 + 0.0003
Mhoon 0.021 0.808 0.2798 T 0.0142 0.0129 T 0.0012 0.0032 T 0.0002
Sharkey 0.032 0.905 0.4767 T 0.0469 0.0594 T 0.0084 0.0051 T 0.0004
Vacherie 0.025 0.795 0.5412 T 0.0324 0.0310 T 0.0031 0.0032 T 0.0002
Reference sand 0.072 0.978 0.2033 T 0.0103

Model parameters estimated (with 95% confidence interval), RMSE, and r2 values.

TABLE 5. Mass Balance of Imidacloprid in the Miscible
Displacement Column Experiments

Mahan Mhoon Sharkey Vacherie Sand

Total applied, Kg 24,274 28,542 20,320 19,563 19,266
Cumulative
leaching, Kg

16,733 7,807 8,491 7,427 18,633

% Leached 69 27 42 38 97
Amount extracted,Kg
Column depth, cm
0Y2 879 674 515 1296 7
2Y4 1,405 458 714 1,807 6
4Y6 1,338 518 1,156 2,488 6
6Y8 1,920 691 1,930 1,744 5
8Y10 2,085 1,018 772 1,265 5

Total extracted, Kg 7,626 3,360 5,088 8,600 28
Total extracted, % 31 12 25 44 0.15
Total recovery, % 100 39 67 82 97
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Table 9.  Mass Balance of Imidacloprid in Miscible Displacement Column Experiments (Selim et al., 2010)

Water

 In water, neonicotinoids have been described as moderately soluble 

(Walker, 2012) to highly soluble (van Dijk, 2010):  

“Imidacloprid is generally persistent in water, and not easily biodegradable 
and is likely to remain in the water column in aquatic systems, with an 
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aerobic sediment and water DT50 of 30 to 162 days (time for 50% decline 
of the initial pesticide concentration, or half‐life time).  pH and formulation 
on the persistence of imidacloprid in water have also been studied, and it 
was found that a higher pH, meaning alkaline conditions, increases half-
life time and thus persistence” (van Dijk, 2010).

 Plants

 Neonicotinoids can “remain in plant tissues for months or even more than 

a year” and are found in pollen and nectar (Xerces Society Online Resource). 

Metabolism

 In animals and humans imidacloprid is absorbed readily by the 

gastrointestinal tract, where 70-80% is excreted via urine, with 20-30% excreted 

via feces (Extoxnet Online Resource).  

“Owing to their relatively high water solubility and slow metabolism in 
mammals, some (IMI and thiacloprid) to almost all (clothianidin, 
dinotefuran, and nitenpyram) of an oral neonicotinoid dose is excreted 
unchanged in urine. The chemical fate of neonicotinoids in and on crops is 
governed both by metabolic and photochemical reactions. These 
processes may produce identical or different products depending on the 
mechanisms involved” (Tomizawa and Casida, 2005, p. 253).

Most of the degradation processes of imidacloprid are common, at least 

quantitatively, in plants, animals, soil, and water (van Dijk, 2010).  “The most 

important metabolic steps include the degradation to 6-chloronicotinic acid.  In 

humans and animals 6-chloronicotinic acid may be conjugated with glycine and 

eliminated, or reduced to guanidine” (Extoxnet Online Resource), however, in 

honeybees, “6-chloronicotinic acid has been found to be more toxic to honey 

bees than imidacloprid itself” (van Dijk, 2010).  

 Neonicotinoids can be expected to persist in nature for some time after 

their application since they accumulate throughout water, soils, and flora due to 

their solubility, leaching potential, and systemic properties.
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UNINTENDED CONSEQUENCES FOR POLLINATORS

 The very same unique physiochemical properties that have made 

neonicotinoids so successful against agricultural pests have also made them 

highly toxic to beneficial insects.  For bees, neonicotinoids were shown to have 

negative effects at very low doses.  These results are not unexpected, 

considering that the lab tests conducted by Bayer Crop Science on honey bees 

concluded: “Imidacloprid is harmful to bees and should not be applied during the 

flowering period” (Yamamoto and Casida, 1999, p. 117), and during 

ecotoxicology testing on thiamethoxam, Syngenta scientists found their new 

neonicotinoid compound to be “highly toxic to honeybees, requiring adequate risk 

management” (Yamamoto and Casida, 1999, p. 205).  

 Of the seven commercially produced neonicotinoids, six are commonly 

used in agriculture (Xerces Society Online Resource).  “The commercial products 

differ considerably with respect to soil and seed treatment uses, as soil stability is  

limited for some of them such as nitenpyram, acetamiprid, and dinotefuran, 

respectively” (Jeschke, 2011, p. 2901).  Nitenpyram exhibits poor photo-stability, 

much like its lead chemical nithiazine, rendering it unsatisfactory for most field 

applications, and better suited for topical flea-control pet and livestock products 

(Yamamoto, 147) instead of agriculture.  Of the 6 neonicotinoids used in 

agrochemicals, four are considered highly toxic to bees:  imidacloprid, 

dinotefuran, clothianidin, and thiamethoxam.   Acetamiprid and thiacloprid are 

less toxic to bees (Iwasa et al., 2004).    
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 Acute Toxicity.  The toxicity of neonicotinoids was determined using the 

Federal Insecticide, Fungicide and Rodenticide Act and EPA “standard acute 

toxicity exposure scenarios,” which focus on the amount of the chemical required 

(by contact or ingestion) to kill 50 percent of the population in a specified time 

period (usually 24-48 hours) (Blacquire, 2012) (see Table 10).  Nitro-substituted 

compounds are the most toxic to the honey bee with LD50 values of 18 ng/bee 

for imidacloprid, 22 ng for clothianidin, 30 ng for thiamethoxam, 75 ng for 

dinotefuran, and 138 ng for nitenpyram.  The cyano-substituted neonicotinoids 

exhibited a much lower toxicity with respective LD50 values for acetamiprid and 

thiacloprid of 7.1 and 14.6 ug/bee, respectively (Iwasa et al., 2004).
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5.2.1  Lethal Toxicity of Neonicotinoids

Based on laboratory estimates of oral and/or contact 
LD50, clothianidin, dinotefuran, imidacloprid, and thia-
methoxam, are considered highly toxic to honey bees, 
and acetamiprid and thiacloprid are considered moder-
ately toxic (Table 5.1). Of these six neonicotinoids, acet-
amiprid and thiacloprid have structural di!erences that 
make them less toxic to honey bees than the other four 
(Jones et al. 2006; Iwasa et al. 2004). As a result, the con-
tact LD50 for thiacloprid in honey bees is 816 times larger 
than that of imidacloprid (Iwasa et al. 2004). 

Unlike many other pesticides, neonicotinoids appear 
to be more toxic to honey bees by oral consumption than 
by contact (Suchail et al. 2000). Many of the metabolites 
(breakdown products) of neonicotinoids are also toxic to 
bees. Whereas some are less toxic than the parent com-
pound, others are just as toxic or more so (e.g., ole"n-
imidacloprid is approximately two times more toxic than 
imidacloprid) (Suchail et al. 2001). #iamethoxam actu-
ally breaks down into another neonicotinoid, clothiani-
din (Nauen et al. 2003). 

#e lethal concentration of imidacloprid needed to 
kill 50% of a test population (the LC50) of honey bees is 
185 ppb (CA DPR 2008; Schmuck et al. 2001). While 
imidacloprid residues of 185 ppb in pollen and nectar 
are unlikely to result from label rates of seed coat appli-
cations, some evidence suggests that such residue levels 
may occur in plants under certain circumstances. As dis-
cussed in Section 6.3, soil drenches (Doering et al 2004b; 
Doering et al. 2005a; Doering et al. 2005b) and trunk in-
jections (Maus et al. 2004b) of imidacloprid at label rates 
approved for home and garden use resulted in residue 
levels in blossoms well above the LC50 for honey bees. It 
is also possible that residue levels above 185 ppb could 
occur in other circumstances which have not yet been 
tested, such as residues in annual or perennial crops that 
result from repeated applications that may be additive 
over time because residues accumulate in soil.

Although it appears unlikely that acute lethal doses of 
residues are typically found in agricultural settings, there 
are some unknown factors that still need to be resolved. 
(See chapter 6 for a detailed discussion of neonicotinoid 
levels found in crops.) However, available research indi-
cates that neonicotinoid levels pose a much bigger risk 
in the pollen or nectar of home and garden trees and 
shrubs, primarily because of higher label application 
rates. (#e case study on pages 21–22 gives a compari-
son of agricultural and garden application rates for apple 
trees.) 

In contrast with acute lethal exposure, chronic expo-
sure in doses much smaller than LD50 levels is far more 
likely to occur in agricultural settings, given that hon-
ey bees repeatedly visit crops while foraging. However, 
laboratory studies investigating rates of mortality a$er 

chronic sublethal exposure present con%icting results 
and conclusions. Although several studies demonstrated 
bee mortality at chronic low doses, others observed no 
mortality a$er chronic exposure. One study found no 
signi"cant di!erences in the mortality of untreated bees 
and bees exposed to doses of imidacloprid between 0.002 
and 0.02 mg/kg (2–20 ppb) for 39 days (Schmuck et al. 
2001). In contrast, another study observed high rates of 
mortality a$er 30 days with small doses of 4 and 8 µg/L 
(4 and 8 ppb) (Dechaume-Moncharmont et al. 2003). 

Suchail et al. (2001) found that doses of 0.1, 1, and 10 
µg/L (the equivalent of 0.1, 1, and 10 ppb) of imidaclo-
prid or its six metabolites induced high rates of mortal-
ity in bees from a single colony a$er only eight days of  
exposure. If these results are accurate, they have impor-
tant implications because the very low doses tested are 
similar to those that bees might encounter regularly in a 
"eld setting (e.g., residues from seed treatment) (Rortais 
et al. 2005). However, in a subsequent study, Schmuck 
(2004) used similar procedures as Suchail et al. (2001) 
to feed two imidacloprid metabolites to bees from four 
di!erent colonies. Neither metabolite caused mortality 
at the rates reported by Suchail et al. (2001), although 
mortality rates varied quite a bit between colonies. It is 
important to note that the metabolites found to be the 
most toxic by Suchail et al. (2001) were not tested by 
Schmuck (2004).

#ere are several potential reasons why these study 
results vary. Schmuck (2004) suggests that the age of the 

 Table 10.  Neonicotinoid Toxicity to Bees (Xerces Society Online Resource) 
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“Acute LD50s average 28 and 24 ng/bee, respectively, for imidacloprid 
and clothianidin, although sublethal effects have been reported at much 
lower levels.  It is unlikely that doses of neonicotinoids from routine 
systemic seed treatments will attain the necessary > 100 ppb levels in 
pollen or nectar to acutely impair honey bees” (Frazier et al., 2011). 

Frazier’s findings show neonicotinoids are unlikely to reach lethal levels in the 

pollen and nectar directly consumed by bees.  However, the machines which 

plant neonicotinoid-coated seeds (drilling machines towed behind tractors) have 

been shown capable of producing neonicotinoid dust in concentrations lethal to 

bees (Tapparo et al., 2012).  Another possible route of acute toxic neonicotinoid 

exposure comes from the exudates of corn sapling leaves, called guttation fluid, 

which can also contain concentrations of neonicotinoids great enough to kill bees 

(Reetz et al., 2011) (see Figures 13 and 14).  

  

control was applied to provide high-accuracy mass
measurements within 2 ppm deviation using one
internal lock mass; m/z 391.284290; bis-(2-ethyl-
hexyl) phthalate. Compounds were monitored at their
exact masses, imidacloprid (m/z of 256.059–256.060;
Rt 8.43 min), imidacloprid-d4 (m/z of 260.084–
260.085; Rt 8.43 min), thiacloprid (m/z of
253.0305–253.0315; Rt 9.25 min), clothianidin (m/z
of 250.0150–250.0170; Rt 8.55 min) and thiame-
thoxam (m/z of 292.026–292.028; Rt 7.84 min).
Various concentration levels of the analytes (standard
and spiked matrix solutions) ranged from 1 to
100 ng mL−1 were run to measure the detection
limits of the compounds. The limit of quantitation of
the target analytes was defined as corresponding to a
signal-to-noise ratio of 10:1 (imidacloprid 5 ng mL−1,
thiacloprid 5 ng mL−1, clothianidin 10 ng mL−1 and
thiamethoxam 30 ng mL−1). External calibration
alongside the internal standard was performed at the
concentration levels of 0.5, 2, 10, 50, 200, 1,000 and
5,000 ng mL−1 in water/methanol (80:20, v/v).

3. RESULTS

During the sampling of guttated fluids at the
field site “Heidfeldhof”, water-collecting bees
were observed collecting the exuded fluids from
Potentilla plants along the edge of the plot

(Figure 1). These observations illustrate that
guttated fluid is attractive to honeybees as a
source of water for the colony, although no bees
were observed collecting guttated fluid from
triticale or maize.

3.1. Residues in guttation fluid

3.1.1. Triticale experiments

A total of 28 samples of guttated fluid were
collected from April 1 to June 17, 2009. The
samples were collected after germination until
grains were still green with lactic content. The
guttation fluid exuded by triticale, germinated
from imidacloprid-treated seed, showed concen-
trations in the range up to 13 ng mL−1 imidaclo-
prid (Figure 2). Translocation of neonicotinoids
in a wintered triticale field was monitored, but no
trend was observed. This may be because the
first guttation fluids after germination were not
sampled. Weather conditions like rain influenced
the measured concentrations in guttated fluid so
that concentrations were not constantly linked
with each other.

In guttated fluid of the surrounding triticale,
treated only with the fungicide Landor®, no
residues of neonicotinoids were detectable
(Figure 2). Thus, the soil was not contaminated.

Figure 1. Bee collecting water from the guttated fluid of Potentilla reptans L. (picture by Wallner 2009).

600 J.E. Reetz et al.

Figure 13.  Corn Pollen Bee--left (Frazier et al., 2011) 

Figure 14.  Guttation drops--right (Reetz et al., 2011)

Secretion of guttation fluid is limited to the first three weeks after germination of a 

seed, but “during the first 3 weeks after emergence, imidacloprid concentrations 
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can be very high:  From a seed treatment of 0.5 mg per seed (Gaucho 350 FS), 

the imidacloprid concentrations in the guttation fluid of plants grown in the 

laboratory ranged between 47 ± 9.9 and 83.8 ± 14.1 mg l-1” (Blacquiere et al., 

2012).

 Chronic/Sublethal Toxicity.  Even at sublethal doses, neurotoxic 

insecticides such as the neonicotinoids have been noted to cause behavioral 

effects (Walker, 2012): 

“The effects of pollutants, and insecticides for that matter, on whole 
organisms fall into three main classes: neurophysiological, behavioral, and 
reproductive.  These effects are sometimes interrelated in that 
neurological changes can affect behavior, and changes in behavior can 
impact reproduction” (Walker, 2012, p. 148).

In susceptible species, particularly flying insects, sublethal effects of 

neonicotinoids may be exhibited in reduced learning, signaling, navigation, 

foraging, and eventually starvation (van Dijk 2010; Gill, Ramos-Rodriguez, and 

Raine, 2012; Walker, 2012).

 Since flying insects travel more than other insects, they have an increased 

likelihood of encountering more pesticide types than ground-dwelling insects.  

Honey Bees are known to forage over a radius of up to 10 miles:  “The dynamic 

foraging of a typical honey bee colony includes a range of 3.73 miles radius 95% 

of the time, with a range up to 6.21 miles in times of limited sources, with the 

ability to detect the maximum rewarding nectar within a two hour period” (Frazier 

et al., 2011).  

 Synergism.  Due to their widespread use combined with multiple 

application methods, neonicotinoids can easily combine with other agrochemicals  
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and pesticides used in the field.  Such combinations could quite possibly occur in 

the U.S., where there are “over 1200 active ingredients distributed among some 

18,000 pesticide products” (Frazier et al., 2011), and neonicotinoids are used on 

at least 147 million acres (Bayer CropScience Online Resource).  “In some 

cases, toxicity may be substantially more than additive when organisms are 

exposed to two or more chemicals and potentiation, or synergism may 

occur” (Walker, 2012, p. 167).  

“When one compound (A) causes a change in the metabolism of another 
(B), two types of interaction are recognized which lead to potentiation of 
toxicity:

1.  Compound A inhibits an enzyme system that detoxifies compound B.  
Thus the rate of detoxification of B is slowed down because of the 
action of A.

2. Compound A induces an enzyme system that activates compound B.  
Thus the rate of activation of B is speeded up because of the action of 
A” (Walker, 2012, p. 167).       

 

Certain real-world mixtures of agrochemicals have proven synergistic effects 

when used together.  Pyrethroid insecticides, for example, have been shown to 

become much more toxic to bees, exhibiting a synergistic ratio of 5 to 20 times, 

when applied in the presence of certain ergosterol biosynthesis-inhibitor (EBI) 

fungicides (Walker, 2012). 

 A 2004 study of the neonicotinoids imidacloprid, acetamiprid, and 

thiacloprid confirmed that fungicides widely used in the field have synergistic 

effects with neonicotinoids:

“The DMI-fungicides are an important group of fungicides widely used in 
crop protection. Therefore, the fact that compounds like triflumizole can 
increase toxicity of the cyano-substituted neonicotinoids like acetamiprid 
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against the honeybee, as much as 244-fold, is of some concern because 
of potential non- target effects when these compounds are used in 
combination. Colin and Belzunces (1992) and Pilling and Jepson (1993) 
found that the DMI-fungicides synergized pyrethroids at practical field 
rates” (Iwasa et al., 2004, p. 376) (See Appendix Table 14 for chart of 
synergism between neonicotinoids and DMI-fungicides).  

Such chemicals can build up in beehives, contributing to additive, cumulative, 

and sometimes synergistic effects which could cripple a colony. 

 Chemical Cocktails.  The potential result is a “chemical cocktail” that bees 

and other flying beneficial insects could become exposed to when they 

continually encounter multiple chemical combinations in sublethal doses (Walker, 

51).  A 2010 study by a Penn State research team turned up 121 different 

pesticides in a sampling of 887 hives managed by migratory and stationary 

beekeepers (Johnson et al., 2010). 

“These included 16 parent pyrethroids, 13 organophosphates, 4 
carbamates, 4 neonicotinoids, 4 insect growth regulators, 3 chlorinated 
cyclodienes, 3 organochlorines, 1 formamindine, 8 miscellaneous 
miticides,/insecticides, 2 synergists, 30 fungicides, and 17 herbicides.  
Only one of the wax samples, 3 pollen samples, and 12 bee samples had 
no detectable pesticides” (Johnson et al., 2010, p. 13). 

The study, titled “High levels of miticide and agrochemicals in North American 

apiaries:  Implications for honey bee health,” brought focus to a potential problem 

involving chronic and sublethal, cumulative, and possibly synergizing effects from 

multiple plant protection products (Mullin et al., 2010).

 Bayer CropScience has developed new products based on mixtures of 

neonicotinoids with pyrethroid insecticides so as to “broaden the spectrum of 

neonicotinoid pesticides,” while also protecting against cross-resistance by 

rotating different insecticide formulations (Jeschke, 2011).  Some of the novel 
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imidacloprid/pyrethroids combinations developed and marketed by Bayer include 

(Jeschke, 2011, p. 2903):

✴ Muralla (imidacloprid and cyfluthrin) used on Central America vegetables 

and rice 

✴ Confidor S (imidacloprid and cyfluthrin) used on S. America tobacco pests   

✴ Leverage (imidacloprid and cyfluthrin) in the United States for broad-

spectrum pest control in cotton  

✴ Connect (imidacloprid and β-cyfluthrin) for stinkbugs and soybean pests  

✴ Solomon and Thunder (imidacloprid and β-cyfluthrin) are cost-competitive 

solutions for African and Asian markets 

✴ Confidor Energy (imidacloprid and deltamethrin) used in Europe for broad-

spectrum insect control in vegetables, potato, tobacco, sugar beet, cereals

 Cumulative Sublethal Exposure.  Thus, it is very likely that managed 

honeybees, wild bees, and other beneficial pollinators are being exposed to 

multiple agrochemicals at sublethal levels from a variety of sources.  Seed-

treatment dust, foliar sprays, and guttation fluid have been proven to cause acute 

toxicity in bees, while pollen and nectars from neonicotinoid-treated plants can 

build up in hives, beeswax, and honey, sometimes with synergistic effects.  A 

recent study from October 2012 sought to mimic real-world conditions by 

exposing bumblebees to both imidacloprid and the pyrethroid cyhalothrin, two 

commonly used agrochemicals that foraging insects could encounter.  The study, 

discussed later, showed a link between cumulative sublethal neonicotinoid 

exposure and decreased individual foraging effectiveness with its associated 
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“knock-on” effects that impacted the health of the hive and colony (Gill, Ramos-

Rodriguez, and Raine, 2012).
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POSSIBLE LINKS TO COLONY COLLAPSE DISORDER

Concern for Beekeepers

 In 2006 U.S. beekeepers began to notice 30-90% declines in the number 

of bees found in their hives (Kaplan, 2012).  While certain winter losses are 

typical with honeybee colonies, unexplainably large numbers of managed 

honeybees were disappearing without explanation.  Pollinator declines have now 

been noted in many parts of the world and on all continents except Antarctica 

(where there are no honeybees) (United Nations, Pollinators Status Report).  The 

recognition of widespread pollinator losses, identified broadly as Colony Collapse 

Disorder, is now recognized in Europe and the U.S., as put forward in the U.N.’s 

2008 Rapid Assessment of Pollinators’ Status Report, which has helped generate 

consensus amongst numerous leading researchers that bee losses are real 

(Murray, Kuhlmann, and Potts, 2009).  “The defining characteristic of CCD is the 

disappearance of most, if not all, of the adult honeybees in a colony, leaving 

behind honey and brood but no dead bee bodies” (Kaplan, 2012).  Discovering 

the cause of the bee declines has proven to be a complicated question for the 

leading researchers.  

 Bees, both wild and managed, including honey bees, bumblebees, and 

solitary bees, are the most predominant pollinator group in most geographical 

regions and therefore are particularly important for global agriculture since they 

are directly or indirectly essential for an estimated 15-35% of food production 

(Kremen et al., 2007; Blacquiere et al., 2012).  Furthermore, honey bees, mainly 

Apis mellifera, remain the most economically valuable pollinators of crops 

60



worldwide (Klein et al., 2007) and are “estimated to be valued at 5-14 billion 

dollars per year in the U.S. alone,” (Kremen et al., 2002, p. 16812) with an 

estimated global annual value of 200 billion (Blaquiere, 2012).

Complex Interactions  

 Multiple factors are known to contribute to the bee losses, making it 

difficult to pinpoint just one cause.  “While worldwide managed honey bee 

populations have increased over the past 50 years, colony populations in many 

European and North American Nations have decreased significantly” (Pettis et 

al., 2012, p. 153).  At the U.S. Dept. of Agriculture Bee Research Lab, the honey 

bee loss factors are grouped into four types:  pathogens, parasites, 

environmental stressors, and management stressors (list of factors compiled 

from Kaplan, 2012, and USDA Online Resource).  

✴ Pathogens: scientists are considering Nosema (a pathogenic gut fungus), 
Israeli Acute Paralysis Virus, and possibly unknown pathogens as possible 
culprits in CCD. No one pathogen of any class directly correlates with the 
majority of CCD incidents. Rather, a higher total pathogen load of viruses 
and bacteria correlates more directly with CCD than any one specific 
pathogen. 
 

✴ Parasites: Varroa mites are often found in honeybee colonies that are 
affected by CCD. It is not known if the Varroa mites are directly involved or 
if the viruses that Varroa mites transmit (similar to the way mosquitoes 
transmit the malaria virus) are a factor in causing CCD. 
 

✴ Management stressors: Among the management stressors that are 
possible contributors to CCD are poor nutrition due to apiary overcrowding 
and increased migratory stress brought on by the practice of transporting 
honeybees to multiple locations across the country. 
 

✴ Environmental stressors: Such stressors include the impact of pollen/
nectar scarcity, lack of diversity in nectar/pollen, availability of only pollen/
nectar with low nutritional value, and limited access to water or access 
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only to contaminated water. Stressors also include accidental or 
intentional exposure to pesticides at lethal or sublethal levels.

Habitat loss (and fragmentation as a result of agricultural intensification), invasive 

species, and global climate change all have the potential to impact bee 

populations as well (Brown and Paxton, 2009; Kremen et al., 2002).  Bees 

awakening from hibernation have in the past been synchronized to the bloom of 

flower plants used as floral resources by bees, but now many plant species are 

blooming while the bees are still in hibernation (The Guardian, Bees Stung by 

Climate Change Link). 

 A factor that stresses bees may not be directly responsible for an untimely 

bee mortality, but the cumulative effects of multiple stressors combined with 

parasites and disease are proving to be more than bees and colonies can 

handle.  Multiple studies have been conducted to determine the extent to which 

neonicotinoids are harmful to bees at both acute and sublethal levels.  A 

convergence of research is zeroing in on sublethal, cumulative, and synergistic 

impacts (Frazier et al., 2011).  

 Imidacloprid was shown in a laboratory study over a 10-week sublethal-

dose experiment to bring about significantly increased levels of the gut parasite 

Nosema (Pettis et al., 2012).  

“In the study, bees were first exposed to low levels of the pesticide 
imidacloprid in the field and then introduced to Nosema mites in the 
laboratory. Bees that had been exposed to the neonicotinoid had three to 
four times the level of Nosema spores 12 days later than bees in a control 
group that had not been exposed to the insecticide” (Crop Protection 
Association Online).  
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The authors of this noteworthy study, U.S. Department of Agriculture lead 

researcher and bee scientist Jeff Pettis, and coauthor, Penn State University 

entomologist Dennis van Engelsdorp, made the following remarks about their 

research in the documentary “The Strange Disappearance of the Bees,” when 

filmmaker Mark Daniels caught up with Pettis at the international conference of 

bee scientists, Apimondia, in Montpellier, France, in September 2009.  Pettis and 

Dennis Van Engelsdorp spoke frankly about their findings for the film: (Grist.com; 

Beeuntoothers; Strange Disappearance of the Bees): 

van Engelsdorp: We’re finding that virus levels are much higher in CCD 
bees. But since we’re not finding a consistent virus, or a consistent 
pathogen, that implies that something else then is happening underneath 
it. Something is breaking down their immune system or somehow 
challenging them so that they’re more susceptible to disease.

Pettis: I’ve done a recent study, actually in collaboration with Dennis and 
some others, where we exposed whole colonies to very low levels of 
neonicotinoids … and then challenged the bees from those colonies with 
Nosema, a gut pathogen, and we saw an increase. Even if we fed the 
pesticide at very low levels we saw an increase in Nosema levels in direct 
response to the low level feeding of neonicotinoids as compared to the 
ones who were fed normal protein.

van Engelsdorp: … The only reason that we knew the bees had 
exposure is because we exposed them. Otherwise you would never have 
known they were exposed.

Pettis: The take-home message is that interactions may be key. Bee 
health is very complex and these interactions are often … overlooked and/
or hard to tease apart. In this case we’re manipulating one pesticide, and 
one pathogen, and we’re clearly seeing the interactions.

 

The dialogue created by USDA scientists and this possible link among Nosema, 

neonicotinoids, and CCD would lead to more studies to attempt to confirm this 
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connection.  Doing so would require a different methodology than traditional 

toxicological testing.

Realistic Field Studies 

 Results from the lab do not always approximate real-world conditions, 

however.  Pettis later went on to clarify his comments by stating:  “This study did 

not look for nor establish any connection between either imidacloprid or Nosema 

and CCD, but the effect of the combination of imidacloprid and Nosema 

demonstrates that there are many complex interactions between stress factors 

that need to be considered in looking for a cause of CCD and high honeybee 

mortality in general” (Kaplan, 2012).  More studies are needed that track bees in 

real-world environments where there are varied chemicals coming from multiple 

sources, and over longer times than the 24-48 hours which LD50 tests use.  

 A new era of research is now yielding data that enable researchers to 

track individual bees with radio frequency identification tags (RFID) as they enter 

and exit the hive to forage.  A greater level of comprehension is possible when 

the aggregated behavior patterns of individual bees can be studied and 

compared to the overall hive’s performance and well-being.  This unique 

methodology for bee research began in early 2011 with experiments conducted 

by Decourtye et al. which aimed to show how the RFID device can be used to 

study pesticide effects on bees’ behavioral traits and lifespan (Decourtye et al., 

2011).  
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Figure 15.  Honey bee RFID monitoring equipment: (A) A pollen-forager honey bee fitted with a 3-mg RFID 
tag,  (B) A hive entrance equipped with RFID readers for detecting returning marked foragers 

(Henry et al, 2012)

Others soon expanded on RFID tracking experiments.  The 2012 study 

conducted by Henry et al. tested the hypothesis that “a sublethal exposure to a 

neonicotinoid indirectly increases hive death rate through homing failure in 

foraging honey bees” (Henry et al., 2012) (see Figure 15).  

 Another 2012 study conducted by Gill, Ramos-Rodriguez, and Raine from 

Royal Holloway, University of London, provided additional insights into hive 

dynamics and complex foraging interactions.  Using RFID radio tags, Gill’s team 

was able to track different control groups of bees as they entered and exited their 

hives over a long-term, four-week exposure, to demonstrate cumulative, 

sublethal, and synergistic effects of neonicotinoids and pyrethroid fungicides.  

This study demonstrates how imidacloprid impairs the ability of individual bees to 

return to the hive, thereby reducing foraging efficiency and altering colony 

dynamics (Gill, Ramos-Rodriguez, and Raine, 2012) (see Table 11): 
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P5 0.03). Furthermore, when considering worker mortality and losses
combined over the 4weeks (mean (6 s.e.m.): I5 416 4.2%, LC5
516 6.8%, M5 696 7.1% versus control5 306 5.0%, LMER, I,
t5 1.79, P5 0.08; LC, t5 3.25, P5 0.0026; M, t5 5.24, P, 0.001;
Table 1 and Fig. 3), we found that colonies treated with both pesticides
(M) suffered most severely. Moreover, M colonies had significantly
higher overall worker losses than either I colonies (LMER, t523.69,
P, 0.001) or LC colonies (LMER, t522.31, P5 0.027).
We have shown that imidacloprid exposure at concentrations that

can be found in the pollen and nectar of flowering crops causes impair-
ment to pollen foraging efficiency, leading to increased colony demand
for food as shownby increasedworker recruitment to forage.However,
imidacloprid-treated colonies (I and M) were still unable to collect as

much pollen as control colonies. Such pollen constraints, coupled with
a higher number of workers undertaking foraging rather than brood
care, seemed to affect brood development, resulting in reduced worker
production that canonly exacerbate the problemofhaving an impaired
colony workforce. These findings show a mechanistic explanation to
link recently reported effects on individual worker behaviour10,11,26–29

and colony queen production12 as a result of neonicotinoid exposure.
Moreover, exposure to a second pesticide l-cyhalothrin (pyrethroid)
applied at label-guideline concentration for crop use caused additional
worker mortality in this study highlighting another potential risk. Bee
colonies typically encounter several classes of pesticides when foraging
in the field13–15, potentially exposing them to a range of combinatorial
effects. Indeed, M colonies in our study were consistently negatively
affected in all our measures of worker behaviour, suffered the highest
overall worker losses (workermortality and forager losses), whichwere
twice as great as for control colonies, and two colonies did in fact fail
(Table 1).
Pesticide-label-guidance concentrations and application rates are

approved on the basis of ecotoxicological tests using single pesticides
and set at a level for field use deemed ‘sublethal’ (below a dose lethal to
50% of animals tested (LD50)). However, the risk of exposure to mul-
tiple pesticides, or of the same pesticide being applied to different
(adjacent) crops, is currently not consideredwhen evaluating the safety
of pesticides for bees. Given the serious impacts on M colonies it is
concerning that pesticide products containing mixtures of neonico-
tinoids and pyrethroids are in current use18. At present there are also
no guidelines for testing chronic or sublethal effects of pesticides on
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Figure 2 | Foraging performance. a, Mean (6 s.e.m.) number of foragers per
colony (column), and foraging bouts per worker per colony (filled circles:
n5 259 foragers). b, Mean pollen score per worker per colony for all observed
foraging bouts (n5 228 foragers). c, Mean pollen score per successful (pollen)
foraging bout for each worker per colony (column), and mean duration of
successful foraging bouts per worker per colony (filled-circles) (n5 147
foragers).n colonies shown in top left corner of columns. Significant differences
from control treatment for column data are shown at the bases of columns, and
for filled-circle data are shown above columns (a and c). #P# 0.1, *P# 0.05,
**P# 0.01, ***P# 0.001 (comparison with control).

Table 1 | Summary of observed pesticide effects for each treatment
group (I, LC or M) in comparison to the control group
Effect level Effect type I LC M

Effects on
individual
behaviour

Number of foragers 1 ND 1
Foraging bout frequency ND ND 2
Amount of pollen collected 2 ND 2
Duration of pollen foraging bouts 1 ND 1

Effects at
colony level

Worker production 2 ND 2
Brood number 2 ND 2
Nest structure mass ND ND ND
Worker mortality ND 1 1
Worker loss 1 2 1
Worker mortality & loss ND 1 1
Colony failure (n failed/n survived) 0/10 0/10 2/8

Significant decrease (2), significant increase (1) and no detected effect (ND) at the 5% significance
level.
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Figure 3 | Overall worker losses. Mean (6 s.e.m.) overall percentage of
workers lost per colony, including workers lost outside (below the dashed line)
and worker mortality (dead workers found in nest box; above the dashed line),
during the 4-week experiment. n5 40 colonies. #P# 0.1, **P# 0.01,
***P# 0.001 (comparison with control).
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Table 11.  Results of field realistic dose and long term exposure study (note that “I” refers to 
imidacloprid, “LC” to cyhalothrin, and “M” refers to imidacloprid/pyrethroid mix) 

(Gill, Ramos-Rodriguez, and Raine, 2012)

“These findings show a mechanistic explanation to link recently reported 
effects on individual worker behavior and queen production as a result of 
neonicotinoid exposure. Moreover, exposure to a second pesticide l-
cyhalothrin (pyrethroid) applied at label-guideline concentration for crop 
use caused additional worker mortality in this study, highlighting another 
potential risk. Bee colonies typically encounter several classes of 
pesticides when foraging in the field, potentially exposing them to a range 
of combinatorial effects.... that impairs natural foraging behavior and 
increases worker mortality leading to significant reductions in brood 
development and colony success. We found that worker foraging 
performance, particularly pollen collecting efficiency, was 
significantly reduced with observed knock-on effects for forager 
recruitment, worker losses and overall worker productivity. 
Moreover, we provide evidence that combinatorial exposure to 
pesticides increases the propensity of colonies to fail” (Gill, Ramos-
Rodriguez, and Raine, 2012). 

This study proved that a cascade of effects could impact the colony when the 

additive effects of long-term exposure to field-realistic combinations and doses of 

agrochemicals were examined.

 Based on anecdotal evidence from their own hives, and due to studies like 

the one conducted by Gill, Ramos-Rodriguez, and Raine (2012), many 

beekeepers around the world suspect the neonicotinoids are a primary 
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contributing factor which has pushed their colonies to collapse as a result of 

impaired foraging combined with weakened immunity to disease.
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NEONICOTINOID REGULATION IN THE U.S. AND EUROPE

 Neonicotinoid insecticides have been a great success in pest control, 

having replaced previously used, more harmful pesticides, with a family of 

agrochemicals which are much more benign to humans and animals.  Compared 

to DDT, organophosphates, and pyrethroids, the neonicotinoids are not only 

safer, but allow for more concentrated and targeted use, thereby requiring far 

less volume applied in order to be effective.  As has been the case with previous 

pesticide classes, the secondary effects of a new chemical’s use became known 

after the widespread use of the new product.  There are many sides to the 

debate over safe neonicotinoid use.    

 Stakeholders.  At one end of the debate over neonicotinoid use are the 

beekeepers, honey producers, pesticide safety advocates, and bee researchers 

who claim neonicotinoids harm bees and at the other end are the agrochemical 

and pharmaceutical firms that produce neonicotinoid products and claim they are 

safe when properly used.  The agrochemical companies control a large portion of 

the genetically modified crop, plant, and seed markets (the top ten companies for 

2008 sales:  Syngenta, Bayer CropScience, Monsanto, BASF, Dow 

Agrosciences, Dupont, Makhteshim-Agan, Nufarm, Sumitomo Chemical, and 

Ayrsta LifeScience) (Pollack, 2011).  Farmers and government agencies 

responsible for the public and environmental health have been in the middle of 

the debate, while the public to some extent has remained largely unaware and 

unconcerned over the use of neonicotinoids and their possible link to bee 

declines.  Numerous stakeholders clearly have different objectives.  At the 
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regulatory level, countries such as France, Italy, Germany, and Slovenia have 

imposed neonicotinoid restrictions (EPA clothianidin registration) and bans, while 

nations such as the U.S. continue to study the problem and weigh the evidence.  

European Restrictions

 Beginning in 1994, French beekeepers began to report “mad bee 

disease,” a condition synonymous with CCD (the term later coined in 2006 by 

U.S. beekeeper David Hackenberg), in which bees become disoriented and 

unable to return to the hive resulting in “melting away of the hive” (The Guardian 

Online Resource).  In describing the 1994 and 1995 bee losses, an anecdotal 

link was made between the bee declines and the introduction of the systemic 

neonicotinoid seed coating, Gaucho, on Sunflower seeds in central France.  

 One team of French researchers, lead by Dr. Colin of the Institute National 

Researche Agricole (INRA), determined, after years of study, that “the problem 

has worsened with the increasing use of the seed-dressing formulation of 

imidacloprid on sunflower, maize, and rape, in west European countries. From 

this, imidacloprid has been suspected of having harmful effects on honeybees, 

whereas other factors such as Varroa infestations or viruses development had to 

be studied as well” (Bonmatin et al., 2005, p. 5336).  Anecdotally, while the 

scientific studies were under way, French beekeepers continued to notice 

widespread hive collapses during the years when imidacloprid was introduced as 

a seed coating, with the National Union of French Beekeepers reporting that one 

third of their colonies had disappeared (resulting in a loss of over 90 billion 
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French bees in ten years), causing honey production to fall from 110 tons in 1996 

to 50 tons in 1999 (API Services Online Resource; Soils Association Online).  A 

government commissioned French science team concluded after three years of 

research:

“The French researchers (led by Dr Colin at INRA) looked at doses of IMD 
down to <1 ppb (parts per billion) and found that as little as 6ppb could 
impair the foraging behaviour of the bees – and their feeding 
behavior. This was of course completely at odds with the 
manufacturer, Bayer’s, figure of IMD being safe at levels 50- 
100ppb” (Soils Association Online Resource).

 French Ban.  On Jan 22nd 1999 the French Minister of Agriculture acted 

on the scientific evidence and directed the suspension of imidacloprid on 

sunflowers, pending research which proved it safe (Soils Association Online 

Resource). France became the first country to apply the precautionary principle 

in banning imidacloprid in 1999 as a sunflower seed treatment, and then again 

renewed the ban in 2001 and 2004.  In 2004, the imidacloprid ban was extended 

to corn seeds (Maxim and van der Sluijs, 2010).  The precedent had been set 

that imidacloprid and the neonicotinoids could pose danger to pollinators and 

threaten food security.  In July of 2012, the French Minister of Agriculture 

extended the scope of the neonicotinoid restriction when it banned  Syngenta’s 

thiamethoxam-based seed coating, Cruiser OSR (Beyond Pesticides Online 

Resource).  

 In Italy, Slovenia, and Germany various neonicotinoid restrictions and 

bans have been enacted while environmental scientists continued to study the 

effects of sublethal and field-realistic doses.  In Italy, imidacloprid and other 

neonicotinoid seed treatments were suspended temporarily, but foliar uses were 
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still permitted (EPA clothianidin registration).  In Germany temporary restrictions 

on seed treatments went into effect following a 2008 accident when 12,000 bee 

colonies were severely poisoned by contaminated neonicotinoid seed-treatment 

dust from the bags of seeds and also from the drilling machines used to plant the 

seeds (Forster, 2011).  The accident occurred when:

“The formulation of the pesticide clothianidin used to protect seed corn 
from corn root worm in Germany did not include a polymer seed coating 
known as a "sticker." This coating makes the pesticide product stick to the 
seed. Although the formulation used in the United States also does not 
require a “sticker” on corn seed, the major seed suppliers and distributors, 
agricultural industry groups, and clothianidin’s registrant have confirmed 
that it is typical practice to use “stickers” on corn seed in the United 
States” (EPA clothianidin registration).

Following further investigation and after putting new best practices into place to 

mitigate factors contributing to seed-treatment dust (including better label 

warnings), Germany eventually lifted the suspensions, except for clothianidin, 

which remains suspended as a corn-seed treatment (EPA clothianidin 

registration).  Slovenia took similar action regarding restriction of neonicotinoid 

seed treatments (EPA clothianidin Registration).

U.S. Conditional Registration and Regulation

 Conditional Registration.  Neonicotinoids have not escaped U.S. 

controversy.  There has been much debate surrounding the use of the 

neonicotinoid clothianidin, produced by Bayer, sold under the brand name 

“Poncho,” and used as a seed treatment and foliar application on corn, wheat, 

soy, sunflowers, and canola, amongst other U.S. crops.  In 2003, after submitting 

and satisfying the basic study requirements of the EPA, Bayer was granted 
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conditional registration for clothianidin for use in U.S. agriculture.  The EPA was 

not completely sure about the environmental fate of systemic neonicotinoids, and 

requested additional studies at that time: “to address uncertainties about 

potential long-term effects of clothianidin on honey bees. In 2007 (the EPA) 

reviewed the additional studies submitted by Bayer and determined that it 

satisfied the EPA’s field study guidelines. However, the agency’s assessment of 

the usefulness of this study has changed since the 2007 review, which is not 

unusual in the scientific field” (EPA.com clothianidin registration).

 Confirming U.S. Bee Losses.  In 2006 U.S. beekeepers began to see the 

same type of widespread bee declines that had been recently observed in 

Europe.  A team lead by Dennis vanEngelsdorp, “In an attempt to quantify the 

degree and extent of losses experienced in beekeeping operations in the United 

States between September 2006 and March 2007, requested that all members of 

the Apiary Inspectors of America (AIA) survey beekeepers in their state, and in 

all, 396 beekeepers were surveyed, who managed a total of 160,526 colonies at 

the end of September 2006” (vanEngelsdorp et al., 2007, p. 1) :

“In all, 349 of the surveyed beekeepers reported on how many of the 
colonies they lost died without any or with very few bees. While 127 
respondents reported some losses with no or very few bees in dead 
colonies, only 80 met our specified definition threshold of 50% of the 
operation’s lost colonies being found without bees (vanEngelsdorp et al., 
2007).”

“Overall, the total losses in operations suffering from CCD were nearly 
twice as high (45.0%) as the total losses experienced in the non-CCD 
suffering group (25.4%)” (vanEngelsdorp et al., 2007, p. 3) (see Table 12 
below).
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without any or with very few bees. While 127 respondents report-
ed some losses with no or very few bees in dead colonies, only 80
met our specified definition threshold of 50% of the operation’s
lost colonies being found without bees.

Overall, the total losses in operations suffering from CCD were
nearly twice as high (45.0%) as the total losses experienced in the
non-CCD suffering group (25.4%; Table 3, Figure 2). When loss-
es were stratified by operation type, they revealed that the dis-
tinction between CCD sufferers and non-sufferers was evident
only when total losses were considered. When average losses
were compared, differences among operation types were not evi-
dent. 

Although this survey was not designed to determine the cause
of winter losses, respondents were asked to identify why they
thought their colonies died. Five main reasons were reported
(Table 4). The most commonly mentioned cause was starvation,
followed by invertebrate pests (Varroa mites, tracheal mites,
and/or small hive beetles), weather, weak colonies in the fall, and
queen/genetic problems. Most respondents cited multiple reasons
for their losses. Surveys of beekeepers specifically designed to
identify the cause(s) have been initiated5, 6, 7.

Considerable variability in total and average losses was report-
ed from the various states (Table 5). The number of respondents,
as well as the number of hives managed in each state, was also

variable. The uneven sampling that occurred in different states
suggests that responses from more heavily sampled states may
have biased the reported average and total loss figures (Tables 1
and 2). However, the mean average loss experienced by all states
(34.6%) is reasonably close to the average loss calculated from
all individual respondents (37.6%). Similarly, the mean total loss
experienced by all states (33.2%) was similar to the total loss as
calculated by summing all the losses of all respondents (31.8%).

New Mexico reported the lowest average loss (14.4%) and
total loss (2.9%), while Ohio had the highest average and total
loss (61.4 and 71.5%, respectively). The proportion of operations
suffering from CCD in states varied, with zero Michigan bee-
keepers meeting the case definition for CCD, while more than
80% of South Dakota beekeepers met CCD-qualifying conditions
(Figure 3). In several cases, including one beekeeper from
Michigan, respondents identified CCD as the cause of the colony
loss. However, these beekeepers did not meet our specified defi-
nition of CCD of 50% loss without dead bees present and so were
not included as CCD cases for purposes of this paper.

It should be noted that while the absence of dead bees in
colonies or collapsed apiaries is a key symptom of CCD, other
characteristics such as the rapid loss of adult bee populations are
also defining symptoms that help differentiate this condition
from losses associated with varroa and honey bee tracheal mites.

Table 3:  Total losses experienced by beekeepers suffering from and not suffering from CCD.

Table 4:  The five most commonly mentioned suspected causes of CCD (n = 71 operations) and non-CCD losses (n
= 165 operations).  Numbers indicate the percent of respondents who mentioned each cause.  “Invertebrate Pests”
includes Varroa and tracheal mites, along with small hive beetles.  “Queen or genetics” includes queen loss, bad
queens, and bad stock.
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Table 12. Total beekeeper losses experienced by beekeepers suffering from and not suffering from CCD 

(vanEngelsdorp et al., 2007)

The U.S. bee losses were a focusing event.  Following the widely reported and 

scientifically surveyed and confirmed bee declines, a consensus was reached 

that colony collapse disorder was impacting U.S. colonies.  The cause remained 

the larger question for those involved.  One Harvard researcher recently 

hypothesized that the collapses in the US could be due to a new route of 

exposure for managed bees.  Harvard School of Public Health Associate 

Professor of Environmental Exposure Biology, Chensheng Lu, and his co-authors 

explain:

“The uptick in CCD resulted from the presence of imidacloprid, a 
neonicotinoid introduced in the early 1990s. Bees can be exposed in two 
ways: through nectar and pollen from plants or through high-fructose corn 
syrup beekeepers use to feed their bees. (Since most U.S.-grown corn 
has been treated with imidacloprid since 2005, it’s also found in corn 
syrup)” (Harvard Online Resource).  

Evidence is mounting that sublethal, chronic exposure to neonicotinoids is very 

likely a factor/contributor causing CCD.
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 EPA Internal Communication.  It has been contended that the reports 

produced by Bayer were internally questioned within the EPA since their initial 

submission.  “Leaked memos written by EPA scientists stated that what studies 

Bayer did submit were poorly run, and the scientists openly admitted that 

neonicotinoids pose harm to honeybees” (Stonebrook, 2012).  A published 

internal EPA communication, SUBJECT: Clothianidin Registration of Prosper 

T400 Seed Treatment on Mustard Seed (Oilseed and Condiment) and 

Poncho/Votivo Seed Treatment on Cotton, written in November 2010 by the 

Environmental Risk and Environmental Fate and Effects Division, seems to 

confirm that the EPA harbors doubts regarding clothianidin use, noting:  “This 

compound is toxic to honey bees. The persistence of residues and 

potential residual toxicity of clothianidin in nectar and pollen suggests the 

possibility of chronic toxic risk to honey bee larvae and the eventual 

instability of the hive (Grist.org EPA internal memo on clothianidin).  

 Lobbyists and Coalitions.  The internal communication from the EPA was 

received with great interest by groups such as The National Honey Bee Advisory 

Board, The American Beekeeping Federation, The American Honey Producers 

Association, Beyond Pesticides, Pesticide Action Network of North America, and 

The Center for Biological Diversity, who were all critical of the EPA’s “conditional 

registration” program.  These groups formed a coalition and requested a “stop 

use order” on clothianidin due to “imminent hazard,” stating in a December, 2010 

letter to the EPA:    

“The conditional registration of clothianidin in 2003 with outstanding data 
critical to its safety assessment represents a failure that could and should 
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have been avoided. Clearly, the impacts on pollinators were not 
adequately evaluated prior to the issuance of the conditional registration, 
despite knowledge of "chronic toxic risk to honey bee larvae and the 
eventual instability of the hive"  (EPA.com clothianidin stop use letter).

These groups claimed: “because the hazards to honeybee health are present 

within registered use parameters, it is clear that label changes alone will not offer 

adequate protection. The issue is not one of application error, in other 

words” (EPA.com clothianidin stop use letter).

 EPA Rationale.  The EPA responded to the “stop use” letter by saying that 

it had reviewed its original stance on Bayer’s clothianidin field-testing reports 

and, though the initial testing submitted by Bayer that was used to grant 

conditional approval has since been called into question, the EPA contends 

clothianidin was assessed during the registration process using “hundreds of 

studies,” and still meets the Agency’s risk/benefit standards (EPA.com 

clothianidin registration). 

“As the EPA’s understanding of honeybee biology has improved, staff 
scientists have started to recognize the challenges associated with field-
pollinator study designs.

It is clear that field-pollinator studies cannot be viewed in the same context 
as laboratory studies where experimental conditions can be strictly 
manipulated. Recognizing the complexity of conducting field studies, the 
EPA is endeavoring to make the best use of existing data to address 
uncertainties. Although the EPA noted deficiencies in the clothianidin 
pollinator field study, including some cross-contamination between treated 
and non-treated (control) experimental plots and inadequate separation 
between treated and control portions of the study, there was information 
that could be used to qualitatively describe hive survival following 
exposure to clothianidin.
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The re-evaluation of the study in question does not change the agency’s 
conclusion that the registered uses of clothianidin meet the FIFRA risk/
benefit standard for registration” (EPA.com clothianidin registration) 

The EPA went on to further clarify its rationale for the acceptable use of 

clothianidin and other neonicotinoids:

“The Agency bases pesticide risk characterizations on the entire body of 
information submitted by the pesticide registrant and the open scientific 
literature data.  For clothianidin, the weight-of-evidence risk 
characterization was based on 34 studies and not on the findings of a 
single, specific field study.  Therefore, the reevaluation of the study in 
question does not change the Agency’s conclusion that the registered 
uses of clothianidin meet the FIFRA risk/benefit standard for registration.  
Clothianidin generally poses less risk to agricultural workers and 
fish and wildlife when compared to the organophosphate insecticide 
alternatives.  While acute laboratory data show that clothianidin is 
toxic to honey bees, as are most insecticides, current labels for 
clothianidin products used as foliar treatments include bee hazard 
statements that prohibit applications when plants are flowering and 
bees are in the area.  At this time, we are not aware of any data that 
reasonably demonstrates that bee colonies are subject to elevated 
losses due to chronic exposure to this pesticide.  Based on EPA’s 
thorough review of scientific information, EPA does not intend at this time 
to initiate suspension or cancellation actions against the registered uses of 
clothianidin” (EPA.com clothianidin response letter).

  

The EPA continues to investigate neonicotinoid safety.  A re-evaluation of all 

neonicotinoids is currently being conducted in coordination with Canada’s Pest 

Management Regulatory Authority, along with the California Department of 

Pesticide Regulation.  The EPA registration review began in December of 2011.  

“This extensive review will determine if any restrictions are necessary to protect 

people, the environment, or pollinators” (EPA.com clothianidin registration).

 Emergency Citizen Petition.  While the EPA continued to investigate and 

gather data, a group of 27 petitioners, including beekeepers and honey 
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producers, Beyond Pesticides, Center for Food Safety, International Center for 

Technology Assessment, and Pesticide Action Network of North America 

submitted a second petition to the EPA--this time “an emergency citizen petition” 

for the suspension of registration for clothianidin in March of 2012.  The EPA 

responded in July 2012 with a response, and, while agreeing with petitioners in 

some regards, and straddling the fence on many others, the EPA ultimately failed 

to suspend, opting to continue study.  Some of the summary findings of the EPA 

decision on clothianidin (from EPA.com July 2012 clothianidin petition response):

✴ Clothianidin use was widespread and common (neonicotinoids used on 

90% of U.S. corn) with multiple routes of exposure for bees 

✴ Clothianidin was persistent and stable across multiple soil, aquatic, and 

under conditions of reduced or low sunlight (EPA not sure if it binds longer 

than a one year and accumulates in successive growing seasons)

✴ EPA recognizes that clothianidin is acutely toxic--but questioned exposure 

levels (EPA not certain if clothianidin is generally available in the 

environment at levels that can cause serious, imminent danger to bee 

populations)

✴ EPA was aware of over 134 adverse incidents reported in 2012 involving 

clothianidin and bee losses (EPA also aware of German incidents of 

confirmed bee poisonings involving seed dust residues, but cited user 

error as the cause)

✴ Synergistic with Nosema and other pesticides (EPA agrees with USDA 

scientist Dr. Pettis, that concurrent exposure to insecticides at sublethal 
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levels is associated with some increased sensitivity to Nosema 

infestations, but EPA remains uncertain how to interpret this data)

✴ EPA ultimately could not make the link to CCD (EPA agrees that studies 

appear to show links between imidacloprid and sublethal effects on 

mobility, feeding activity and memory and associative learning capabilities, 

but stating that the studies cited failed to indicate if these effects are 

permanent or transitory or whether such effects would be likely for other 

neonicotinoids)

This petition and the response from the EPA sum up many of the points of 

contention in the neonicotinoid debate and emphasize the need for future studies 

testing synergistic combinations of sublethal neonicotinoids over longer time 

periods.  “The EPA agrees with the scientific community that additional research 

in necessary to address CCD.  However, the existence of uncertainty as to these 

questions is not sufficient to satisfy the high probability standard necessary to 

support a finding on imminent hazard” (from EPA.com July 2012 clothianidin 

petition response). 

 The EPA, recognizing the limitations of its current pesticide-testing 

procedures in the age of systemic neonicotinoids and bee declines, is actively 

seeking to update its methodologies.  Working with the California Department of 

Pesticide Management and Canada’s Pest Management Regulatory Agency, the 

U.S. EPA released its “Draft Pollinator Risk Assessment Framework” in August 

2012 (Western Farm Press).  “In September 2012, the agency will seek an 

independent scientific peer review on how to better assess the risks of pesticides 
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to pollinators. This effort will improve our understanding and strengthen the 

scientific and regulatory process to protect honey bees and other 

pollinators” (EPA clothianidin registration).  The review is not expected to be 

completed until 2018 (Senator Gillibrand Online Resource).   

 U.S. Legislators.  Such findings have not escaped concerned U.S. 

legislators such as Senator Kirsten Gillibrand (D) from New York, and a member 

of the Senate Agriculture Committee, who called in July 2012 for the EPA to 

expedite their review of pesticides which “could be inadvertently decimating 

honey bee populations.”  “Senator Gillibrand urged a quicker timeframe, asking 

that the neonicotinoid review be completed by the end of 2013, instead of 

2018” (Senator Gillibrand Online Resource).   

 Congressman Richard Markley, (D) of Massachusetts, is also urging for 

the EPA to take greater action in light of growing evidence linking clothianidin and 

other neonicotinoids to CCD (Chemical and Engineering News).  A month after 

the EPA responded to the emergency petition, Congressman Markley cited two 

recent noteworthy studies linked to bee impairment in an August 2012 letter to 

the EPA:

“Two recent scientific studies offer evidence that neonicotinoids may 
cause Colony Collapse Disorder.  In a study published in the journal 
Science on April 20, 2012, (by French researcher Dr. Mickael Henry et al.) 
scientists reported that honeybees treated with a nonlethal dose of 
thiamethoxam, a type of neonicotinoid, failed to return to their hive.  In a 
related study published in the same issue of Science, (by Dr. Penelope 
Whitehorn et al.) researchers treated colonies of bumblebees with a low 
dose or high dose of imidacloprid, another type of neonicotinoid.  They 
observed that bees exposed to imidacloprid had a lower body weight than 
non-exposed bees.  Moreover, colonies exposed to imidacloprid produced 
fewer queens than non-exposed colonies.  Many other studies show that 
neonicotinoids harm bees, as reviewed in the March 2012 petition and in 
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the EPA’s technical support document for the July 17, 2012 
response” (Markley Letter to EPA, p. 2).

 

 Markley contends, along with many others, that there is sufficient evidence 

linking neonicotinoids to CCD for the EPA to act now.  As some concerned 

environmentalists have noted “Germany, France, and Slovenia have banned use 

of the controversial pesticides or limited it pending further study, and the U.K. is 

considering such a move.  Why isn’t the EPA more cautious when it comes to 

using chemicals?  Why isn’t it standard to wait until a chemical is proven to be 

safe to approve it, rather than wait until a chemical is proven to do harm to 

remove it?” (Grist.com Online Resource). 

 Counter Evidence and Study Bias.  Whereas France banned Syngenta’s 

Cruiser due to studies like the one conducted by Henry et al. (2012), other 

nations are taking a more measured approach, as claims of bias and sloppy 

science have been made about the Henry study.  The British Food and 

Environmental Agency, in coordination with University of Exeter researcher Dr. 

James Cresswell, raised concerns about Henry’s methodology, questioning the 

reproduction rates of the bees used in the study as well as the dose administered 

(Cresswell and Thompson, 2012). 

“They modeled a colony that isn’t increasing in size and what we know is 
that in springtime when oilseed rape is blossoming, they increase rapidly,” 
Cresswell told Reuters.  And, in regard to the way bees were given the 
nectar laced with the insecticide, the dosage given was equivalent to a full 
day’s intake. “We know that neonicotinoids affect honeybees, but there is 
no evidence that they could cause colony collapse.”  When we repeated 
the previous calculation with a realistic birth rate, the risk of colony 
collapse under pesticide exposure disappeared” (Center For Regulatory 
Effectiveness Online Resource).  
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Cruiser manufacturer Syngenta also believed such studies were incomplete.  

Mark Titterington, Syngenta’s head of European, African, and Middle East affairs, 

said:  “There are bee health declines in certain upland areas of Switzerland 

where there are no neonicotinoids used. In contrast, there is no significant 

decline in bee health in Australia but neonicotinoids are widely used.” (Farmers 

Weekly).

"Based on previous statements, we believe this committee is in danger of 
pinpointing the bee colony decline on a single pesticide when there are 
other important factors at play, such as climate change, habitat, and the 
Varroa mite (a serious honeybee colony pest)” (Farmers Weekly).

Syngenta makes these statements as Britain’s Department for Environment, 

Food, and Rural Affairs (DEFRA), due to increasing pressure from conservation 

groups, asked government officials in Parliament's Environmental Audit 

Committee to “examine the practical consequences of a ban or restriction over 

the use of neonicotinoid pesticides” (Farmers Weekly). 

 While the governing agencies sift through the evidence and decide which 

agrochemicals the multinationals should be allowed to sell, the environmental 

advocates, conservation groups, and beekeepers will continue sounding the 

alarm, independent researchers will continue to look for links to CCD, and the 

public will likely grow more aware over time of the impact of neonicotinoids.  

“The contradictions between the different expert views have a triple origin: 
(1) the lack of shared definition and quantification of the signs observed in 
colonies; (2) the lack of specialist knowledge on honeybees; and (3) the 
strategic discursive practices associated with the lack of trust between 
experts representing stakeholders having diverging stakes in the 
case” (Maxim and van der Sluijs, 2010, p. 9).
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The goal is that proper regulation can be implemented in order to avert a 

potential pollinator crisis.  More studies using standardized methodologies, and 

time, will tell.  
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CONCLUSIONS:  WEIGHING EVIDENCE AND MEASURING RISKS

 The controversy over neonicotinoids is one about managing risks amidst 

uncertainty.  The debate encompasses a crisis of hunger for far too many citizens 

of our planet while population growth, global climate change, increasing 

consumption patterns, and the evolved resistance of insect pests to crop 

protection products all culminate to exert amplified pressure on the global food 

supply.  Pesticides have come a long way in the quest for control over our food 

supply, but bees are also important in the same regard, since roughly one third of 

all food consumed results from the pollination work of bees.  Green chemistry 

has advanced to the point that we can now create tailor-made compounds to 

protect our crops by selectively targeting pests from the inside-out via 

translocated seed coatings, all with a very high margin of safety for humans and 

animals.  The same could not be said before the arrival of the neonicotinoid 

insecticides.  These advances have arisen in the past 50 years as the result of 

the search for the perfect pesticide--one that is completely non-toxic and non-

disruptive to non-target species, immune from pest resistance, and minimally 

persistent in ecosystems.  Pesticides have been engineered to be much safer to 

humans and ecosystems than previous crop-protection products, but continue to 

pose problems for non-target species, such as beneficial pollinators.  The 

dilemma presently faced involves the risk that managed and wild bee colonies, 

along with solitary bees, could ultimately collapse as the result of the widespread 

use of neonicotinoids.  This is problematic because neonicotinoids have proven 
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far superior to previous insecticide classes, and many commercial crops are now 

reliant on neonicotinoid seed coatings, despite their risk to pollinators.     

 Uncertainty over the safe use of neonicotinoids is a main result of the lack 

of understanding about how the neonicotinoid insecticide class impacts bees, but 

also is a result of how we value ecosystem services provided by bees.  Whether 

neonicotinoids can be considered “safe,” depends on how we quantify the effects 

of neonicotinoids, and also how we measure the value of bees.  The developers 

and producers of neonicotinoids state that their products should be applied with 

care around bees, and restricted when bees are present, and have recognized 

that neonicotinoid compounds are synergistic with other agrochemicals.  

Independent researchers are now beginning to produce field-realistic studies 

(using radio-tagged individual bees) documenting sublethal doses that bees are 

exposed to, and these findings are beginning to shed light on the issue.  The 

uncertainty over field-realistic quantities from cumulative, additive, and 

sometimes synergistic exposure routes of neonicotinoids to bees is beginning to 

be resolved with data from longer term, and better designed studies.  Uncertainty 

remains within the scientific community over links of neonicotinoids to CCD, 

which, combined with the advocacy of environmental groups and beekeepers, is 

causing uncertainty within government environmental agencies.  The variety of 

regulations and restrictions, and lack thereof, on neonicotinoids reflects this 

division of opinion at the regulatory level.  

 There would seem to be a convergence of evidence through 2012, as a 

new generation of studies has been published, and the increased focus on bee 
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losses around the world have led to a greater call for neonicotinoid bans.  Brazil, 

Japan, and Britain are currently considering bans, and the U.S. is currently 

reviewing neonicotinoids.  This convergence is based on the facts that are 

emerging.  What multiple researchers are confirming is that sublethal doses of 

neonicotinoid insecticides, through cumulative and multiple routes of exposure, 

are hindering bees’ cognitive abilities (such as memory, navigation of mazes, 

foraging, communication skills), causing chronic mortality, and possibly 

weakening individual and colony immunity and ability to fight disease.  Many of 

these effects were reported at very low levels of dosage, far below the LD 50, 

and lower than the recommended application rates (in some cases at rates which 

would have been undetectable using most equipment had those bees not been 

part of the control group).  Moreover, the chronic effects of the neonicotinoids 

very often take longer than 48 hours to create observable effects, more often 

requiring weeks of sublethal exposure before a tipping point is reached within 

individual bees which then impacts, and possibly collapses, the entire hive.  

There is little dispute that the neonicotinoid class of insecticides is highly toxic to 

bees--this is a fact reported by the manufacturers throughout the testing process.  

The key issue for the agrochemical companies, which have invested many R&D 

hours combined with massive monetary resources in creating a new and safer 

pesticide, is their assertion that the neonicotinoids are safe to bees for field use 

at the prescribed rates.  The acute toxicity testing protocol required by the EPA 

has failed to assess the long-term sublethal effects.  What the EPA and 

agrochemical companies alike have failed to do thus far is to conduct long-term 
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exposure studies, like those researchers who have conducted studies that are 

more field-realistic.  What these researchers have concluded is that 

neonicotinoids cause sublethal effects in bees, even at fractions of the 

recommended use rates.  As a person well versed in the neonicotinoids 

discourse and the competing studies, Dr. James Frazier, Professor of 

Entomology at Pennsylvania State University, states regarding the EPA 

conditional registration of clothianidin for use in the US:  “For me this raises real 

concerns that the neonicotinoids that are currently being used in the market 

place were registered by a risk assessment process that was seriously flawed in 

its capacity to evaluate systemic pesticides” (Frazier Critique Letter, 2012, p. 6).

 There is presently enough evidence to make the case that neonicotinoids 

represent tremendous risk to bees, however, neonicotinoids offer so many 

benefits over the alternative pesticides, that even with the added bee risks, the 

overall benefits to human and animals may outweigh the danger to bees.  

Furthermore, the neonicotinoids are the only new major pesticide class 

developed in the past 40 years, and it will undoubtedly take time to create the 

next generation of pesticides.  Safe-use standards will need further exploration.  

It may be determined that seed treatments ultimately pose an unacceptable risk 

level to bees due to the translocation of neonicotinoids into pollen and nectar, 

whereas other neonicotinoid applications, such as foliar sprays, formulated with 

acetamiprid or thiacloprid (the neonicotinoids considered of less toxicity to bees 

because they degrade quickly), may be approved for safe use when flowers are 

not in bloom, and when applied during the evening hours when bees are less 
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likely to be exposed (Beecharmers Online Resource).  While they are considered 

safe to humans and animals, the evidence has been building that neonicotinoids 

are highly toxic to bees and likely contribute to CCD.  As a growing number of 

government environmental agencies investigate neonicotinoids to either justify 

their ban or continued use, more studies will continue to emerge which will only 

add to the evidence.  Gaps in knowledge have been addressed and now testing 

methodologies are being refined in order to paint a clearer picture of the complex 

factors involved in CCD.   

 Many people are completely unaware of the predicament currently faced 

by bees.  Worsening bee declines, in excess of natural rates, are a relatively new 

phenomena in the US and have only been noted since 2006.  Pollinators, and 

bees in particular, are a proven bioindicator and their decline should be viewed 

as a warning that something may be amiss.  “Individuals and populations can be 

used to monitor the environmental stress brought about by increased 

competitors, diseases, parasites, predators, as well as by chemical and physical 

factors, particularly pesticides and habitat modification” (Kevan, 1999, p. 373).  

Bees can provide valuable lessons about the environment if we know how to 

interpret the signals.  “Entombing,” like CCD, is a relatively new term used to 

describe beehives where poisonous pollen cells have been capped off, or 

entombed beneath a layer of propolis (a natural sticky resin with natural anti-

bacterial and anti-fungal qualities collected by bees from plants), in order to 

protect the colony from the toxic contents of the foraged pollen (The Guardian, 

Honeybees Entomb).  Entombing behavior was first observed and reported by 
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Dr. Pettis and Dr. vanEngelsdorp et al. in 2009 (vanEngelsdorp et al., 2009).  Dr. 

Pettis, a USDA entomologist, notes that entombing is an ominous signal, and 

more often than not, a bees’ last-ditch efforts to save themselves as the 

entombing behavior is found in many hives that subsequently die off (Grist.org, 

Should Some Pesticides Be Banned?).  Pettis states in describing entombing 

behavior, that: 

“This is a novel finding, and very striking. The implication is that the bees 
are sensing [pesticides] and actually sealing it off. They are recognizing 
that something is wrong with the pollen and encapsulating it … Bees 
would not normally seal off pollen...The presence of entombing is the 
biggest single predictor of colony loss. It’s a defense mechanism that has 
failed” (Grist.org, Should Some Pesticides Be Banned?)

Increasing rates of decline, colony collapse, and observed “entombing” should 

raise alarms about pesticide use considering the converging studies showing 

sublethal, cumulative, and synergistic effects of neonicotinoids on bees.  This 

topic area, like the breakthrough of imidacloprid from nithiazine, can be difficult to 

synthesize, and even more complicated to cohesively report.  The scientific 

findings can sometimes be contradictory, with claims that the studies and 

methodology were flawed.  Further complicating the issue are competing 

interests between farmers, producers and manufacturers, regulators, 

beekeepers, environmental advocates, with the public largely in the middle to 

wade through conflicting claims about safe pesticide use.  While there is little 

consensus on the cause of colony collapse, and scientists on both sides of the 

debate make valid points about neonicotinoids and colony collapse, the 

realization that bees are in trouble and in decline is apparent.  While the science 
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and regulation are sorted out it would be prudent to raise awareness about the 

plight of bees and why they are so important for the ecosystem services they 

provide and also for our food supply.  More needs to be done to educate the 

public on the importance of pollinators so we can better protect and conserve 

their vital pollination services.

 Regulatory agencies in Europe seem to be ahead of the US in terms of 

recognition of pollinator decline and in creating a pollinator conservation 

framework.  This is recently evidenced by the work of the European Food Safety 

Authority (EFSA).  The December 2012 “Inventory of EFSA’s Activities on Bees,” 

was published by an EFSA internal task force created to “collect, collate and 

analyze data related to bee risk assessment, risk mitigation and 

monitoring” (EFSA Inventory on Bees, 2012).  This task force is creating “specific 

protection goals” for actively reforming the regulation of pesticides and the 

scientific standards underpinning the risk assessment used in their approval.  

EFSA is also enhancing and expanding conservation frameworks for pollinators 

based on the value of bees ecosystem services such as; food (honey and other 

bee hive products), pollination, genetic resources, education and inspiration; and 

aesthetic values (EFSA Inventory on Bees, 2012).  “For the development of 

robust and efficient environmental risk assessment procedures it is crucial to 

know what to protect, where to protect it and over what time period” (EFSA 

Inventory on Bees, 2012). 

“Given the importance of bees in the ecosystem and the food chain and 
given the multiple services they provide to humans, their protection is 
essential. With its mandate to improve EU food safety and to ensure a 
high level of consumer protection, the European Food Safety Authority 
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(EFSA) has the responsibility to protect bees and the ecosystem services 
they provide to humans” (EFSA Inventory on Bees, 2012, p. 5).
 

The EFSA is predicting that a better approval process for plant-protection 

products combined with a comprehensive valuation of bees’ ecosystem services 

will provide stakeholders and risk managers the quantitative tools they need to 

make informed decisions on food safety, plant-protection products, and pollinator 

conservation.  “The final decision on protection goals needs to be taken by risk 

managers. There is a trade-off between plant protection and the protection of 

bees. The effects on pollinators need to be weighed against increase in crop 

yields due to better protection of crops against pests” (EFSA Inventory on Bees, 

2012).

 Pollinator conservation in the US will be addressed by the EPA and also in 

the newest version of the US Farm Bill, an omnibus bill which expired in October 

2012, but was recently extended another year, and is expected to be voted on in 

the House of Representatives at some point in 2013.  This important piece of 

legislation governs wide-ranging food related programs including food stamps, 

conservation, commodities, crop insurance, energy, and exports 

(Farmbillfacts.org).  The Audubon Society reports that over 500 billion dollars are 

expected to be appropriated in the next version of the Farm Bill (Audubon.com).  

Land use incentives to farmers will be one of many economic incentives offered 

in the bill which could help protect bees.  Restoration of pollination services in 

areas with the greatest agricultural intensification will require a decrease in 

insecticide use and an increase in the nesting habitat and floral resources used 

by bees when they are not using crops (Kremen et al., 2002).  Conservation 
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biologist Dr. Claire Kremen advocates creating patches of stepping stone 

habitats within large-scale agriculture where both native bees and honeybees 

could find the required floral resources and nesting habitat.  Farmers could also 

utilize smaller field sizes, mixed crop types within fields, and create patches of 

non-crop vegetation, such as hedgerows, fallow fields, meadows, and 

seminatural habitats (Kremen et al., 2007).  This type of land use, leading to 

more habitat heterogeneity within the foraging range of bees, could be 

incentivized through the newest Farm Bill (Kremen et al., 2002).  

 The emerging pollinator conservation framework shares certain features 

with organic and sustainable agriculture best practices.  Sustainable agriculture 

and organic farming are synonymous in many ways, and these farming systems 

differ from large-scale commercial agriculture in regard to (Organic Farming 

Research Foundation, pg. 3):

✴ Crop rotation--Enhances soil quality, disrupts weed, insect, and disease 

life and cycles and sequesters carbon and nitrogen, diversifies production 

(can have market benefits)

✴ Manure, compost, green manure use--Enhances soil quality, sequesters 

carbon, recycles nutrients, and contributes to productivity

✴ Cover cropping--Enhances soil quality, reduces erosion, sequesters 

carbon and provides nitrogen, prevents dust (protects air quality), 

improves soil nutrients, contributes to productivity
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✴ Avoidance of synthetic fertilizers--Avoids contamination of surface and 

ground waters, enhances soil quality, sequesters carbon, mitigates 

salinization (in many cases)

✴ Avoidance of synthetic pesticides--Enhances biodiversity, improves water 

quality, enhances soil quality, prevents disruption of pollinators, reduces 

costs of chemical inputs

✴ Planting habitat corridors, borders, and/or insectaries--Enhances 

biodiversity, supports biological pest management, provides wildlife habitat

✴ Buffer areas--Improves water quality, enhances biodiversity, prevents wind 

erosion 

These farming techniques benefit pollinators in many ways, but most importantly 

by bypassing fertilizers and pesticides.  Floral resources are provided by the 

diversity of plants found in organic and sustainable farms, which tend to be 

smaller and grow a wider variety of crops than in large-scale commercial 

monocultures.    

 More Integrated Pest Management (IPM) could be incentivized in the 

newest version of the US Farm Bill as well, which would result in less pesticide 

use.  IPM is “an approach to pest control that utilizes regular monitoring to 

determine if and when treatments are needed and employs physical, mechanical, 

cultural, biological, and educational tactics to keep pest numbers low enough to 

prevent unacceptable damage or annoyance” (BIRC.org).  Systemic pesticides 

such as neonicotinoid seed treatments and Bt crops are opposed to IPM’s more 

targeted approach because neonicotinoid seed treatments indiscriminately kill 
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any and all insects, including beneficials, and natural biological control agents.  

Components of an IPM Program include a range of actions along a continuum: 

pest identification and their natural enemies; an ongoing monitoring and record 

keeping system for sampling of pest and natural enemy populations; 

determination of a pest threshold, above which action is taken, and below which 

pests are tolerated based on growing conditions, seasonal timing, and life stage 

of the pest/host; an integration of the least disruptive treatment programs relative 

to natural enemies and also least hazardous to humans; and an evaluation 

system to determine the outcome of treatment actions to determine the next step 

(BIRC.org).  Indeed, IPM and systemic neonicotinoids are at opposite ends of the 

pest control spectrum in terms of their techniques and philosophy.  IPM targets 

individual pests on an ad hoc basic when needed and then tries to use the most 

environmentally safe option to treat the pest, whereas neonicotinoids are used in 

a completely opposite way when applied indiscriminately as preventative and 

systemic seed treatments.  

“The world of systemic insecticides is a weird world, surpassing the 
imaginings of the brothers Grimm. It is a world where the enchanted forest 
of the fairy tales has become a poisonous forest. It is a world where a flea 
bites a dog and dies…where a bee may carry poisonous nectar back to its  
hive and presently produce poisonous honey” (Rachel Carson Silent 
Spring, 1962 via New Yorker).

This needn’t necessarily be the case since neonicotinoids have a variety of 

application methods that can make them less systemic.  For instance, if 

acetamiprid was used as a targeted foliar spray that quickly degraded, instead of 

as a preventative seed treatment, it could be a potential tool used in the IPM 
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arsenal, if conditions warranted.  “Depending on the application method and 

timing, non-target organisms are not affected by neonicotinoids. Application into 

the soil by different methods allows the transport of the compound to the pest 

within the plant without harming beneficial organisms. On the other hand, 

selectivity in time allows, for example, foliar application against starting pest 

populations when beneficial arthropods are still absent” (Jeschke, 2011, p. 2900).  

 More neonicotinoid products can be expected to enter the global market 

as the initial patents expire and more inexpensive generic options are introduced.  

Insects are also growing resistant to some of the first generation neonicotinoids 

and increasing the need for novel new formulations.  Many countries are 

currently evolving their pest control methods as their agricultural systems join the 

Green Revolution.  This is especially true in China and other countries where 

growing population and increasing consumption patterns have led to increased 

pesticide use.  China pesticide use is up 23% in 2012 (Agropages).  In a familiar 

chain of events, the more toxic and persistent chemicals are being banned, and 

replaced by neonicotinoids and newer, greener pesticides.  “With the ban of high-

toxic pesticides such as methamidophos and fipronil, demand for the alternative 

nitenpyram is heating up in China.  Meanwhile, there is constant demand in 

Southeast Asia, Europe, and South Africa” (Agropages, More Registration 

Approvals).  “Imidacloprid, as the largest application amount of neonicotinoid 

insecticide in the world, is embracing a rapid development and becoming a hot 

spot in China. China records 13,620 tonnes of imidacloprid technical output in 
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2010, accounting for more than 50% of world’s total, which is 20,000 

tonnes” (Utrecht University).  

 This increase in demand comes as many of the national patents for first 

generation neonicotinoids imidacloprid, nitenpyram, and acetamiprid begin to 

expire, and are replaced by the newer generation neonicotinoids due to reports 

of emerging insect resistance and cross-resistance.  After years of successful 

control, imidacloprid is now losing effectiveness on the dreaded Colorado Potato 

Beetle (Alyokhin et al., 2007).  The more neonicotinoids are used, the more 

chances there are for insects to evolve resistance and active defense 

mechanisms.  Cross-resistance to imidacloprid and thiamethoxam is also being 

noted due to overlapping application of different neonicotinoid insecticides 

(Alyokhin et al., 2007).  The ultimate result will be new combinations of 

neonicotinoids with specialized formulations to combat the resistant insects.  This  

is proving true in China, where Takeda Chemical’s nitenpyram patent expired in 

2008.  Since then new nitenpyram formulations are being developed domestically 

by Chinese chemical firms, and registered by the Chinese Ministry of Agriculture 

to combat aphids, rice planthoppers, and greenhouse white fly on rice, tea, 

vegetables, and fruit trees (Agropages, More Registration).  Chinese scientists 

from East China University of Science and Technology invented a new type of 

neonicotinoid that was registered in 2012 called “cycloxaprid” (Chemdatas.com).  

Cycloxaprid was then exclusively licensed to international chemical firm FMC, 

where it may one day be used in the US pending EPA registration.  The cycle of 
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neonicotinoid use within the context of the Green Revolution will continue around 

the world as more nations seek to produce more crops more efficiently.  

 From their development, neonicotinoid insecticides have been 

revolutionary in their unmatched ability to control insects and protect food 

supplies.  Since 1991, in a relatively short span, the neonicotinoid insecticides 

have proven far more safe and effective than anything previously used to control 

pests.  As their use expanded, especially with seed treatments, neonicotinoids 

staged a rapid ascent to become the number one selling insecticide class.  Even 

though bee studies are now beginning to tarnish the sterling reputation of the 

neonicotinoids, the positive qualities they possess still shine through, particularly 

in regard to human and animal safety.  Regulators and risk managers must 

consider the relative benefits of the neonicotinoid class against the potential 

dangers they pose to bees while scientists seek to clarify complex links to bee 

declines.  Additionally, it will take time to develop the next evolution of 

insecticides to replace the neonicotinoids.  In the interim, regulation and safe use 

standards will need to be implemented to manage the risks accordingly.  IPM, 

organic, and sustainable agriculture may offer alternatives to neonicotinoids.  The 

perfect pesticide--one that is completely non-toxic and non-disruptive to non-

target species, immune from pest resistance, and minimally persistent in 

ecosystems--is still in development.  In the meantime, neonicotinoids are the 

best, albeit imperfect, option for crop protection in the Green Revolution.    
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the case for some non neuroactive herbicides 
(e.g., trifluralin) and fungicides (azoxystrobin, 
benomyl, and captan) (Table 1). Endosulfan, 
the last of the major chlorinated cyclodienes, 
was the cause of one of the worst ecological 
disasters in history (Greve and Wit 1971) 
when about 70 lb spilled into the Rhine 
river, killing millions of fish through much 
of Germany and into the Netherlands [see 
Supplemental Material, Figure 11A (http://
dx.doi.org/10.1289/ehp.1104405)]. Despite 
its ultrahigh fish toxicity, endosulfan contin-
ues to be used for pest management in some 
countries. The -aminobutyric acid–gated 
chloride channel is the molecular target of 
several very potent fish toxins, specifically, 
endosulfan, lindane, toxaphene, and fipronil 
(Ratra et al. 2001). Toxicity to fish is also 
a major limiting factor in the use of pyre-
throids, such as fenvalerate, particularly when 
agriculture and aquaculture are in proximity 
or inter mixed (Haya 1989); however, this risk 
is minimized by proper application methods 
and the very low field rates required for pest 
control (Coats 2008). The search for pyre-
throids with reduced fish toxicity led to the 
discovery of the non ester fenvalerate analogs 
etofenprox and silafluo fen, which resulted in 
expanded use and improved environ mental 
safety in rice production (Tomlin 2009) (see 
Supplemental Material, Figure 12).

Another pesticide spill may have been 
California’s worst inland environmental 
disaster. A tank car of metam sodium, a soil 
fungicide, tipped over into the Sacramento 
River, where it degraded into methyl isothio-
cyanate (the primary active product) and 
hydrogen sulfide (Carlock and Dotson 2010; 
Rubin 2004). Further breakdown probably 
involved methyl dithio carbamate sulfenic acid 
as an inter mediate (Kim et al. 1994; Lam et al. 
1993) [see Supplemental Material, Figure 11B 
(http://dx.doi.org/10.1289/ehp.1104405)]. 
Although most of these compounds are 
water reactive and biodegradable, it took 
many months for organisms in the exposed 
area to recover (Carlock and Dotson 2010; 
Gherman 1997).

Fish kill with a pesticide is sometimes 
intentional. For example, the biodegradable 
and photo labile rotenone in the form of derris 
resin (Cheng et al. 1972; Fukami et al. 1967; 
Schuler and Casida 2001) was used to remove 
invasive northern pike and other rough fish 
(i.e., less desirable fish) before reintroducing 
trout into Lake Davis in California (California 
Department of Fish and Game 2004, 2008). 
Lake Davis was treated with derris in 1997 
and again 10 years later in an attempt to 
suppress or eradicate the rough fish. At one 
time rotenone was also a candidate anti cancer 
agent (Fang and Casida 1998; Gerhäuser et al. 
1995) and a model for Parkinson’s disease 
(Caboni et al. 2004). !e primary target of 

rotenone is reduced nicotinamide adenine 
dinucleotide oxidase (Horgan et al. 1968; 
Schuler and Casida 2001), but rotenone also 
inhibits induced ornithine decarboxylase 
activity, which serves as an anti cancer 
model (Fang and Casida 1998; Gerhäuser 
et al. 1995) [see Supplemental Material, 
Figure 11C (http://dx.doi.org/10.1289/
ehp.1104405)]. From the derris added to 
Lake Davis, 40 components were identified 
and their inhibitory activity for NADH 
oxidase correlated with that for the anticancer 
model (Fang and Casida 1998). 

Beneficial insects. Honeybees are generally 
no more sensitive than other insects to insec-
ticides (Hardstone and Scott 2010). However, 
honeybee losses pose a major problem for 
agriculture. Pesticides with an LD50 < 1 µg/
bee include some insecticidal chlorinated 
hydrocarbons (e.g., lindane), OPs and MCs 
(carbaryl and chlorpyrifos), pyrethroids (del-
tamethrin), neonicotinoids (imidacloprid), 

and microbials (spinosad), but not any of the 
herbicides and fungicides listed in Table 1. 
Currently, pesticide levels are high in North 
American apiaries (Mullin et al. 2010). It is 
possible to design analogs with low toxic-
ity for honeybees. For example, parathion is 
highly toxic to bees, whereas its diiso propyl 
analog is much less harmful (Camp et al. 
1969). Many potential uses of imidacloprid 
and clothianidin are restricted or banned in 
France, Germany, and Italy because of high 
bee toxicity, but other neonicotinoids, such as 
the cyanoimines thiacloprid and acetamiprid, 
are less toxic to bees (Iwasa et al. 2004). 

Insect pests may be adequately controlled 
by natural predators and parasites until these 
enemies are removed by insecticide exposure. 
Integrated pest management programs were 
therefore developed to optimize bio control 
agents and minimize insecticide effects on 
biological control (Huffaker and Messenger 
1976). Favored chemicals are those with 

Table 1. Ecotoxicology of some major pesticides.a

Year 
intro

LD50 (mg/kg)b LC50 (ppm) LD50
c t½ (days)

Pesticide type Mammal Bird Fish Honeybee Soil
Insecticides

Paris greend 1867 22 Toxic High 
DDT 1944 113 to > 1,000 Moderate 0.004–0.009 5 90–10,000
Lindane 1945 59–270 120–130 0.02–0.06 0.01
Toxaphened 1947 40–112 80–250 < 0.05 22–80
Endosulfan 1955 70–110 205–1,000 0.002 Low 150–240
Carbaryl 1957 264–710 1,000–3,000 1.3–10 0.18 7–28
Chlorpyrifos 1965 135–2,000 32–490 0.002–0.54 0.36 7–56
Deltamethrin 1974 87 to > 10,000 > 2,250 0.00091–0.0014 0.023 8–28
Diflubenzuron 1975 > 4,640 > 5,000 > 65 > 100 3.2
Methoprene 1975 > 10,000 0.37 > 1,000 10
Abamectin 1985 10–221 85 to > 2,000 0.003–0.01 Toxic Rapid
Imidacloprid 1991 450 31–152 211–237 High 0.17
Fipronil 1993 95–97 11 to > 2,000 0.085–0.43 High 
Tebufenozide 1994 > 5,000 > 2,150 3–5.7 > 234 7–66
Spinosad 1997 3,783 to > 5,000 > 2,000 3.5–30 0.0029 9–17
Flonicamid 2000 884–1,768 > 2,000 > 100 > 60 1.1
Tolfenpyrad 2002 107–386 0.0029
Chlorantraniliprole 2006 > 5,000 > 2,250 > 14 > 104 < 60–365
Spirotetramat 2006 > 2,000 > 2,000 2.2–2.5 107 < 1
Pyrifluquinazon 2009 300–2,000 1,360 4.4

Herbicides
2,4-D 1942 138–764 472 to > 1,000 > 100 104 < 7
Atrazine 1957 > 1,332–3,992 940–4,273 4.3–76 > 97 16–117
Trifluralin 1961 5,545–6,293 > 2,000 0.088 > 100 25–201
Paraquat 1962 22–157 75–175 26–135 15 < 7
Alachlor 1969 930–1,350 1,536 2.1–5.3 > 94 8–17
Glyphosate 1974 3,530 to > 10,000 > 3,851 97 to > 1,000 100 27–146
Chlorsulfuron 1982 5,545–6,293 > 5,000 > 50 to > 980 > 100 28-42
Glufosinate 1981 200–2,000 710 to > 1,000 > 100 7–20
Mesotrione 2001 > 5,000 > 2,000 > 120 > 11 3–7

Fungicides
Maneb 1950 > 5,000 1.8 Nontoxic 25
Captan 1952 9,000 2,000 to > 5,000 0.034–0.3 91 1
Benomyl 1970 > 5,000 0.27–4.2 > 50 0.8
Triadimefon 1976 250–1,000 > 2,000 4–10. 6–18
Metalaxyl 1979 633–788 923–1,466 > 100 269 29
Azoxystrobin 1996 > 5,000 > 2,000 0.47–1.6 > 25 70

Abbreviations: intro, introduced; LC50, median lethal concentration; t½, half-life.
aData from Tomlin (2009) except as indicated. bAcute oral LD50 values are for the range of species described in the cited 
study. cLD50 data are presented as µg/bee by oral exposure except for benomyl, chlor sulfuron, and spinosad, for which 
data represent contact exposure. Toxicity levels are given as nontoxic, low, moderate, toxic, and high. dData for Paris 
Green and toxaphene from Negherbon (1959).

Table 13. Some major pesticides used over time (Casida, 2012)
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Figure 16.  Mode of action for the most commonly used insecticide classes 
(Japan Endocrine Disruption Preventive Action Online Resource)
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triflumizole, produced the greatest synergistic effect
among the metabolic inhibitors tested for acetamiprid
and thiacloprid (Table 2), it appears that oxidation
is an important neonicotinoid detoxification pathway
in the honey bee for the cyano-substituted neonicoti-
noids. This is also in agreement with the results reported
earlier (Table 1) where the metabolites of acetamiprid
(IM-2-1, IM-O and IC-O, Fig. 1), which are potential
products of P450s, were non-toxic to the honey bee
when applied topically (Table 1). Esterases and glu-
tathione transferases appear to be less important in
detoxification.

Suchail et al. (2001) found that the metabolites of
imidacloprid in the honey bee were a hydroxy derivative
at the 50 position and an olefin derivative in the
imidazolin ring. The olefin has higher not lower
insecticidal activity than the parent (Nauen et al.,
1998). In the house fly, PBO increased imidacloprid
toxicity 10.7-fold (Liu et al., 1995) while O-propyl-O-(2-
propynyl) phenylphosphate (PPP) increased both imi-
dacloprid and acetamiprid toxicity (Yamamoto et al.,
1998). These findings suggest that metabolism and
detoxification pathways may vary between insect species
which can affect insect susceptibility to neonicotinoids.
P450 inhibitors produced only a minimal increase in
imidacloprid activity in the honey bee in our studies
(Table 2), indicating that this was not an important
detoxification pathway.

3.4. Triflumizole acetamiprid toxicity to honey bees when
applied to alfalfa

The DMI-fungicides are an important group of
fungicides widely used in crop protection. Therefore,
the fact that compounds like triflumizole can increase
toxicity of the cyano-substituted neonicotinoids like
acetamiprid against the honey bee, as much as 244-fold
(Table 2), is of some concern because of potential non-
target effects when these compounds are used in
combination. Colin and Belzunces (1992) and Pilling
and Jepson (1993) found that the DMI-fungicides
synergized pyrethroids at practical field rates. Triflumi-
zole in our laboratory studies synergized thiacloprid
activity in the honey bee 1141-fold (Table 2).

To evaluate the field implication of our laboratory
studies, acetamiprid alone and acetamiprid and triflu-
mizole in combination were applied at the maximum
recommended field rates of 168.1 g/hec for acetamiprid
and 280.2 g/hec for triflumizole on alfalfa. Acetamiprid
and triflumizole in combination was sprayed as a tank
mix. At 3 and 24 h after application, the plants were
harvested and honey bees exposed to the treated plants
in cages in the laboratory. At 3 h after application,
average mortality for the treated plants was 4%, and
this was not significantly different by a t-test from that
obtained for acetamiprid alone or the non-treated
control. At 24 h after treatment, the average mortality
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Table 2
Pretreatment effect of general insecticide synergists, DMI-fungicides, and a plant growth regulator on honey bee toxicity of neonicotinoid insecticides

Insecticide synergista nb LD50 (mg/bee)
c 95% CId Chi-square Slope7SE SRe 95% CIc

Acetamiprid
Alone 465 7.07 4.57–11.2 0.826 1.7770.105 1
PBO 202 1.17 0.342–3.79 1.18 1.5570.181 6.04 4.29–8.51
DEF 124 2.39 0.278–12.4 5.85 2.9670.736 2.96 1.83–4.76
DEM 123 6.94 4.10–13.2 0.278 1.4670.140 1.02 0.783–1.33
Triflumizole 215 0.0290 0.0080–0.102 3.46 1.9170.240 244 171–347
Propiconazole 201 0.0675 0.0231–0.197 2.63 2.3070.242 105 76.7–143
Triadimefon 131 0.0844 0.0431–0.176 0.693 2.0570.198 83.8 64.2–110
Epoxiconazole 156 0.500 0.156–1.66 4.42 2.7470.404 14.1 10.0–20.0
Uniconazole-P 156 1.12 0.270–4.96 3.66 2.0570.349 6.31 4.22–9.45

Imidacloprid
Alone 137 0.0179 0.0092–0.0315 0.303 1.7070.176 1
PBO 152 0.0105 0.0061–0.0172 0.0889 1.6670.112 1.70 1.29–2.26
Triflumizole 125 0.0097 0.0052–0.0168 0.694 2.7670.284 1.85 1.67–3.09
Propiconazole 145 0.0118 0.0038–0.0303 1.01 2.1270.272 1.52 1.04–2.24

Thiacloprid
Alone 158 14.6 9.53–25.4 0.480 2.7370.371 1
PBO 193 0.0948 0.0406–0.211 0.424 1.6470.134 154 115–207
Triflumizole 160 0.0128 0.0031–0.0415 1.66 2.3270.363 1141 752–1740
Propiconazole 159 0.0261 0.0083–0.0690 1.05 2.2770.298 559 388–811

aIn all, 10 mg of synergist was applied to the dorsal thorax of each worker honey bee 1 h prior to insecticide application.
bNumber of insects tested.
cResults were corrected for control mortality. Dose is given in micrograms of active ingredient.
dCI, confidence interval.
eSR, synergism ratio (the LD50 of insecticide alone/LD50 of synergist and the insecticide).

T. Iwasa et al. / Crop Protection 23 (2004) 371–378376

Table 14.  Neonicotinoid synergy with common DMI-fungicides (Iwasa et al., 2004)
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Table 15.  Major products and companies in the neonicotinoid market
(Agropages Neonicotinoid Insecticides Insight Online Resource)

100



**Note:  This manufacturer refers to clothianidin as a third generation 
neonicotinoid (presuming nithiazine to be the first generation).  
Clothianidin and thiamethoxam are from the same generation of 
neonicotinoids, referred to as 2nd generation in Figure 9 and Table 2.

 

 
Frequently Asked Questions  

 
 
1. How is Clutch® different from other neonicotinoid insecticides?  

The active ingredient in Clutch is clothianidin, a 3rd generation neonicotinoid. Clothianidin 
has longer residual activity and less water solubility than other neonicotinoids, such as 
thiamethoxam. This decreases the potential and risk of leaching in the soil profile. It also 
means Clutch has superior rain-fastness. And clothianidin has faster movement within the 
leaf’s tissue. 

2. How does Clutch move in the plant? How long does it take to start moving? 
Clutch has local translaminar and systemic movement following a foliar spray. Results show 
translaminar movement in 30 minutes after application. Clutch also moves through the xylem 
of the plant when applied to soil. As expected, actively growing plants tend to move Clutch 
faster and more efficiently.  

3. Does Clutch get tied up in soil, or does it remain available for plant uptake?  
Clutch does not get tied up with soil colloids like imidacloprid, which can be observed in 
those soils with moderate to high percentages of clay and organic matter. Clutch gets 
adsorbed by the colloids but it is still available for plant uptake. Thus, Clutch offers the best 
of both worlds, low leaching potential through the soil’s profile and the most available to the 
crop. Higher rates are not needed in heavier soils. 

4. What MRLs are in place for Clutch in grapes as of January 2010? 
a. US: 0.6 ppm – the US Clutch tolerance is based on foliar applications at the maximum 

labeled rate with a 0 day PHI 
b. Canada: 0.6 ppm (same as US) 
c. EU: table grape – 0.6 ppm; wine grape – 0.05 ppm (harmonized across the EU) 
d. Japan: 5 ppm (including wine grape) 
e. Mexico: 0.6 ppm (same as US) 
f. South Korea: 2 ppm 
g. .Codex MRL pending.  

5. Does Clutch break down in sunlight?  
Yes, like many other insecticides, clothianidin is affected by sunlight.  

6. What is the rain fastness for Clutch?  
Extremely good. Approximately 3 hours. 

 

Figure 17.  Neonicotinoid producer advertising (Clutch FAQ Online Resource)
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7. Can Clutch be tank mixed or mixed with fertilizers, insecticides or herbicides?  
Based on available data, there is no indication of antagonism with commonly used 
insecticides or with fungicides. However, since it is not possible to test all possible mixtures, 
the user should pretest to assure the physical compatibility and lack of phytotoxic effect of 
any proposed mixtures with Clutch. There have been indications of incompatibility with some 
fertilizer mixes and these are being further evaluated. We recommend conducting a jar test 
for compatibility. Caution in mixing is advised until additional information is available. 

8. What is the mixing order for a WDG formulation in a tank mix? (Does Clutch go like a 
WP or a liquid formulation?)  
As with most pesticides, you should add ingredients for a tank mix in the following order: 
water, adjuvants (e.g., defoaming agents), dry products such as Clutch 50 WDG, liquids, 
then surfactants. 

9. Are there any adjuvant restrictions? 
Clothianidin is compatible with adjuvants used for the neonicotinoid insecticide group. 

10. Can I leave Clutch in the tank over night? 
No. 

11. How does pH affect Clutch? 
Water pH could affect clothianidin’s performance if it is less than 5.5 or higher than 8.5. 

12. How long does Clutch control key pests when applied as a foliar treatment? 
Depending on the rate used by the grower, Clutch can provide from 10 to 14 days of residual 
control. 

13. How does Clutch’s mode of action compare with other neonicotinoids? 
Clothianidin has the same mode of action of those products in the neonicotinoid group (IRAC 
MOA Group 4A). 

14. What are the risks of cross-resistance with other neonicotinoids such as imidacloprid, 
thiamethoxam and acetamiprid?  
Cross-resistance development among insecticides that have the same mode of action and 
similar sites of action should always be considered. Efforts to minimize resistance 
development should be used.  

15. What other crops are already registered or in the process of being registered?  
Clutch is EPA and CA DPR registered for use in grapes (soil and foliar), pears and apples, 
while Belay® Insecticide is labeled for us in potatoes. Longer term, between Clutch and 
Belay, which both contain clothianidin, labeled uses in California will expand to include such 
crops as vegetables, soybeans, fruits, nuts and cotton.  

Figure 17.  Neonicotinoid producer advertising (Clutch FAQ Online Resource)
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16. How does Clutch affect bees?  
Clutch is acutely toxic to bees. It is labeled to minimize harm to the environment, including 
beneficial insects such as bees.  

17. Do neonicotinoid insecticides cause colony collapse disorder?  

The cause of CCD is unknown at this time, with speculation about a number of potential 
factors. There is no known causal evidence linking CCD to any crop protection product, 
including clothianidin, the active ingredient in Clutch. It appears that the more recent the 
registration of a neonicotinoid, the more stringent the bee language, although this is not a 
function of toxicity. Newer chemistries such as dinotefuran, clothianidin and thiamethoxam 
have more bee precautionary language on their labels than older compounds in the same 
class. 

18. What is a 3rd generation neonicotinoid?  
Third generation neonicotinoids are the latest innovation in this important class of 
insecticides. New neonicotinoids have unique physical and chemical properties that are 
different from older neonicotinoids. Clothianidin was first developed in 2001–2002.  

 
 
 

Products That Work, From People Who Care® | www.valent.com | 800-6-VALENT (682-5368) 
Read and follow the label instructions before using. 
Products That Work, From People Who Care is a registered trademark and Always comes through. is a trademark of Valent U.S.A. 
Corporation. Clutch is a registered trademark of Sumitomo Chemical Company, Limited. ©2010 Valent U.S.A. Corporation. All rights 
reserved. Printed in the USA.  2010-CLU-8001  mf/AV  2/10   

Figure 17.  Neonicotinoid producer advertising (Clutch FAQ Online Resource)
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7

Usage and product names of Neonicotinoids

Product name (name of active ingredients)

Bestguard (nitenpyram)
Earth garden (imidacloprid)
Yielder SG (acetamiprid)
Kadan fertilizer with insecticides 
(acetamiprid)
Mospilan(acetamiprid)

Forestry
Prevention of pine wilt disease

Matsu Green solution (acetamiprid)
Starkle (dinotefuran)
Moriate SC (clothianidin)

Gardening
Flowers / lawn

Farming
Rice / Fruits / Vegetables

Frontline (fipronil)
Advantage Plus (imidacloprid)

Kobaega Hoihoi (dinotefuran)
Ari  no su tettei  shometsu chu 
(dinotefuran)
Bonfran (dinotefuran)
Black cap (fipronil)
Wiper one G (fipronil)

Homes
Termite eradication / Building materials

Hachikusan (imidacloprid)
Agenda SC (fipronil)
Takelock (clothianidin)

Pets 
fl ea control

Residential
insecticides

*Product name (name of active ingredients)
*Fipronil:A new type of insecticide (not a neonicotinoid type, but a phenylpyrazole type)
  It is attracting attention in countries like France as a cause of honeybees losses

Dantotsu (clothianidin)
Bestguard (nitenpyram)
Admire (imidacloprid)
Mospilan (acetamiprid)
Albarin (dinotefuran)
Prince froable (fipronil)
Cruiser FS30 (thiamethoxam)
Starkle (dinotefuran)
Hustler powder (clothianidin)

Figure 18.  A sampling of neonicotinoid products for home and residential use in Japan
(Japan Endocrine Disruption Preventive Action Online Resource)
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Neonicotinoid insecticides became available for use on 
farms and in gardens and ornamental landscapes in the 
mid 1990s. !ey o"ered great promise for long-term 
plant protection. Neonicotinoids are systemic insecti-
cides, i.e., they are absorbed by and get inside the treated 
plant, protecting it from sap-sucking insects and those 
that chew on it. !ey were also promoted as being saf-
er for wildlife because they were less toxic to birds and 
mammals than older classes of insecticides. But because 
they are within the plant, neonicotinoids also are present 
in nectar and pollen. !is provides a direct threat to bees 
and other #ower-visitors.

!ere are seven types of neonicotinoids. Only six are 
found in plant protection products, but there are hun-
dreds of such products on the shelves of garden centers 
and agricultural supply stores. Neonicotinoids may be 
applied as a spray, a soil drench, or by direct injection 
and are used on $eld and orchard crops, ornamental 
plants in nurseries and gardens, and on trees in gardens, 
streets, and parks. !ey are also used as a seed treatment, 
a coating that confers protection to even the young-

est seedlings. As a result, millions of acres of America’s 
farmlands have been treated, as have uncounted gardens 
and backyards in the nation’ s cities and suburbs.

Neonicotinoids have become the subject of public de-
bate, particularly on their impacts on honey bees. Much 
has been published about these insecticides and many 
opinions have been voiced. However, opinion sometimes 
obscures fact, and in the midst of this, at times, vigorous  
discussion, the science underlying the issues has not al-
ways been clearly laid out.

In undertaking this review of research, the Xerces 
Society focused on the interactions between neonic-
otinoids, plants, and pollinating insects, especially bees. 
Our intent is to identify the ways in which pollinating 
insects are exposed to neonicotinoids, the concentra-
tions at which these insecticides may occur in the envi-
ronment, and how they a"ect bees. We also o"er an as-
sessment of whether current regulations can adequately 
manage the e"ects of neonicotinoids, identify subjects 
for future research, and make recommendations for pro-
tecting bees.

!e Xerces Society for Invertebrate Conservation 1

Now ubiquitous on garden center shelves, neonicotinoids can be applied in much greater concentra-
tions in gardens than on farms, and with fewer restrictions. !ese products do not carry any warning 
about hazards to bees or other pollinators. (Photograph: Matthew Shepherd/!e Xerces Society.)

!

Figure 19.  A sampling of neonicotinoid products for home and residential use in the U.S.
(Xerces Society Online Resource)
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Table 2 :: U.S. crop acreage treated with clothianidin, imidacloprid and/or thiamethoxam
Sources :: Bayer Crop Science; USDA. 
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